

600 Southgate Drive Guelph ON Canada NIG 4P6 Tel:+1.519.823.1311Fax:+1.519.823.1316E-mail:solutions@rwdi.com

April 22, 2024

Lindsay Sulatycki, MCIP, RPP Senior Development Planner City of Guelph 1 Carden Street Guelph, ON N1H 3A1 519.822.1260 | ext. 3313

Lindsay.Sulatycki@guelph.ca

Re: Noise and Vibration Impact Study Addendum Letter 601 Scottsdale Drive, Guelph, Ontario RWDI Reference No. 2302908

Dear Ms. Sulatycki,

RWDI was retained by Forum 601 Scottsdale LP (Forum) to prepare a Noise and Vibration Impact Study in support of an Official Plan amendment and Zoning By-law Amendment for the proposed residential building located at 601 Scottsdale Avenue in Guelph, Ontario. The objective of this assessment was conducted in support of the OPA and ZBA submission to determine the feasibility of the proposed residential development surrounded by existing sources of environmental noise and vibration. As there are no sources of vibration in proximity to the development, this assessment considers environmental noise only.

A report prepared by RWDI named "*Noise and Vibration Study, 601 Scottsdale Drive, Guelph. Ontario,*" dated August 30, 2023 was submitted to the City of Guelph (the City) for a pre-submission review in October 2023. The City's comments were received on December 15, 2023, and are attached to this letter along with RWDI's responses, based on the discussion with the City's Engineering and Transportation Services personnel – Mr. Jim Hall and Mr. Louis De Jong.

As a result, RWDI prepared the updated report dated March 28. 2024, which addressed all the comments provided by the City.

Yours truly,

RWDI

UBokar

Maja Bokara, PGCert, EP Project Manager

© 2024 RWDI AIR Inc. ("RWDI") ALL RIGHTS RESERVED

This document is intended for the sole use of the party to whom it is addressed and may contain information that is privileged and/or confidential. If you have received this in error, please notify us immediately. Accessible document formats provided upon request. © RWDI name and logo are registered trademarks in Canada and the United States of America.

ATTACHMENT 1

Noise and Vibration Study Comments and RWDI's Responses

Noise and Vibration Study Comments and RWDI's Responses

601 Scottsdale Drive, Guelph Project No. 2302908

Comment #	City of Guelph Comments	Date Received	ZBA or SPA Related Comment ¹	Action By	RWDI Response March 18, 2024 Additional City of Guelph Comments (in red)	RWDI Action March 28, 2024
1	Page 9 - Please use Class 2, or provide additional justification for Class 1: based on NPC-300 definitions, the City anticipates this property to be in a Class 2 area.	18-Dec-23	ZBA	RWDI	RWDI Response: The acoustical environment of this area is dominated by the activities of people, primarily from the road traffic noise from major roadways such as the Hanlon Expressway and Stone Road. Based on the impact from the expressway, this area should be evaluated as Class 1. Based on this justification, we request confirmation from the city that the area would be considered Class 1. Please include justification in the updated report, including discussion of day and nighttime impact on the site due to human activity (consistent with the definition of a Class 1 area.)	Added discussion of the impacts of the nearby roadways and the mall in Section 2.2
2	Page 10 - Update this paragraph to correctly identify source of data: data provided in the Appendix differs from that described here.	18-Dec-23	SPA	RWDI	RWDI Response: The data in the appendix says it's between Laird Road and the intersection with Wellington St, but states distances relative to Laird Rd that correspond to College and Kortright. The email from Guelph stating growth rates will be included in the updated report for SPA.	Added explanation in Section 3.1.1 and clarification in Appendix B
3	Page 10 - Dawson Road not part of this Study	18-Dec-23	SPA	RWDI	RWDI Response: Noted. Reference to this will be removed from the updated report for SPA.	Removed
4	Page 10 - No information from the City of Guelph was included in the Appendix.	18-Dec-23	SPA	RWDI	RWDI Response: Noted. Correspondence with the city will be included in the report for SPA.	Added correspondence with City in Appendix B
5	Page 10 - Need to project traffic data to 10 years beyond project completion.	18-Dec-23	SPA	RWDI	RWDI Response: Our understanding was that 10 years from project completion applied to railways; however, this is noted, and analysis will be updated for 10 years beyond project completion. The additional noise impact is predicted to be minimal. An additional 5 years of growth at 2% annual growth is predicted to increase sound levels by less than 0.5 dB, and as such, conclusions remain unchanged. This updated analysis will be included for SPA.	The project is anticipated to be completed in August of 2027. Noted in Section 3.1.1 and Appendix B
6	Page 10 - ORNAMENT recommends 90/10 split for regional (and lower) roads, and 85/15 daytime/nighttime split for provincial roads.	18-Dec-23	SPA	RWDI	RWDI Response: This can be updated for SPA. The conclusions will not be impacted as Highway 6 is the major noise impact.	Updated to 90/10 day/night split in Appendix B
7	Page 10 - Please provide additional details of the calculation of future AADT based on provided data; Appendix B only contains the data and Table 4 only contains the final future AADT volumes: please provide the calculations used.	18-Dec-23	SPA	RWDI	This clarification will be provided in the updated report for the SPA.	Added calculation in Appendix B
8	Page 10 - Please provide information for other facades: how was this determined to be the worst-case facade?	18-Dec-23	SPA	RWDI	RWDI Response: A concurrent road noise model using RLS-90 was used to model the site noise contours. The worst noise traffic impacts were found on the southwest façade of the north building due to closer proximity to Highway 6. This will be clarified in the updated report for SPA. Feel free to include the supplementary modeling details and outputs as part of your Feasibility Noise Study (along with the STAMSON modeling).	To enable sound contour calculation, we used an implementation of Ornament that calculated the sound power levels for the roads, and calculated propagation in CadnaA. Explained in section 3.1.3. The contours and façade levels are shown in Appendix C.

Noise and Vibration Study Comments and RWDI's Responses

601 Scottsdale Drive, Guelph Project No. 2302908

Comment #	City of Guelph Comments	Date Received	ZBA or SPA Related Comment ¹	Action By	RWDI Response March 18, 2024 Additional City of Guelph Comments (in red)	RWDI Action March 28, 2024
9	Page 10 - Location of OLA1 is not adequately conservative or representative of the noise levels anticipated for the indicated Outdoor Amenity Area shown on included drawing AZS201. The other outdoor amenity area should also be assessed. For a feasibility noise study, we optionally recommend using noise contours from all transportation sources.	18-Dec-23	SPA	RWDI	RWDI Response: This is noted, and noise contour maps can be included at Site Plan Approval following the finalization of the landscaping plan. The Feasibility Noise Study is meant to identify the feasibility of site development based on noise; completing basic transportation noise contour analysis after the site is designed would mean limited ability for noise constraints to influence the design.	Added the other amenity area, and added noise contours in Appendix C.
10	Page 12 - Missing facilities: • Enbridge Gas distribution station (512 Stone Road) • residential facility approved for 237 Janefield Ave. • commercial facilities at 535 Scottsdale and 613, 615 & 617 Scottsdale If some of these have been reviewed/analyzed to not impact the site, please state/justify in the report	18-Dec-23	SPA	RWDI	RWDI Response: The site visit conducted on July 14, 2023, included visits to all of these facilities, and they were determined not to impact the site. This clarification will be included in the updated noise report for Site Plan Approval. Please ensure the additional information provided includes the methods used to determine their potential impact, and is consistent with NPC-300.	Added observations of these sites during the site visit in Section 3.2.3
11	Page 12 - Please expand on this: do either facility currently hold an ECA approval? If not, the logic following cannot be said to be true.	18-Dec-23	ZBA	RWDI	These sources are likely currently exempt from permitting. This statement will be removed. See response to #10 on justification of feasibility of the proposed development with respect to its surroundings.	Added explanation of previous permits but likely current exemption from permitting for these facilities in section 3.2.1
12	Page 13 - Intervening existing residential properties are not justification for excluding a potential noise source from analysis.	18-Dec-23	SPA	RWDI	RWDI Response: The existing residence building lies between most of the new development and the Stone Road Mall and provides some shielding. This is not the justification provided in the report. The site visit indicated that this source was insignificant relative to road traffic noise. This is not how the stationary noise levels are being assessed in this report: exclusion limit used, not ambient. This will be clarified in the updated report for SPA.	Added explanation of low sound levels observed and significant separation distance to discussion of Stone Road Mall in Section 3.2.4
13	Page 13 - What does this mean? (Proxy Data - CaprtiveAir CASRTU1)	18-Dec-23	ZBA	RWDI	RWDI Response: As sound level measurements were not possible, data from a similar unit on file at RWDI was used to predict its sound power level. Please include this definition in the report.	Added definition and explanation in Section 3.2.4
14	Page 14 - Class 2 (NPC-300)	18-Dec-23	ZBA	RWDI	RWDI Response: See response to comment #1.	See response to comment #1.
15	Page 43 - The posted speed limit changes from 80 to 70 (north bound) in front of this site: using 80kph would be more conservative and likely closer to the 85th percentile speed (this would also simplify the calculation to a single Hwy6 segment)	18-Dec-23	SPA	RWDI	RWDI Response: As per request, this will be updated in our analysis. The changes in results will be insignificant. The updated analysis will be included with the SPA.	Added comment about evaluating all of highway 6 at 80 km/h in Section 3.1.1
16	Page 43- Please provide dimensions on a sketch: the source- receiver distance used does not appear to be accurate based on the included sketches.	18-Dec-23	SPA	RWDI	RWDI Response: This sketch can be provided, but the dimension used is to the centreline of Highway 6 since both directions are modeled together. This will be clarified in the updated report for SPA.	Added figure C3 in Appendix C.
17	Page 44 - Exposure angles for the segments of Stone Road appear to be reversed (east vs west)	18-Dec-23	SPA	RWDI	RWDI Response: This has been noted and corrected. The results have been confirmed to remain the same. Updated calculations will be provided for SPA.	Updated sample calculation in Appendix C.
18	Page 44 - This segment of Stone Road is not at 0% gradient	18-Dec-23	SPA	RWDI	RWDI Response: This area has an average gradient of approximately 1% from NW to SE. The gradient will be updated in the model, but this change in gradient will not change the results. Updated calculations will be provided in the report for SPA. According to the as-built plan and profile for Stone Road, the average gradient is approximately 2%, with portions approaching 4%.	Changed to using 2% gradient for the section of Stone road east of Highway 6. Included in Stamson calculation in Appendix C.
19	Page 44 - Please provide dimensions on a sketch: the source- receiver distance used does not appear to be accurate based on the included sketches.	18-Dec-23	ZBA	RWDI	RWDI Response: See response to comment #16. One comment was for s-r distance to Hanlon, the other is to Stone; please provide sketches supporting the s-r distances used for both transportation sources.	Added figure C3 in Appendix C.

ATTACHMENT 2

"Noise and Vibration Study, 601 Scottsdale Drive, Guelph. Ontario," updated report, dated March 28, 2024.

FINAL REPORT

601 SCOTTSDALE DRIVE

GUELPH, ONTARIO

NOISE AND VIBRATION IMPACT STUDY

RWDI #2302908 March 28, 2024

SUBMITTED TO

Sydney Zhang Coordinator, Real Estate Development sydneyz@forumam.com

Forum 601 Scottsdale LP 181 Bay Street East Podium, 2nd Floor Toronto, ON M5J 2T3

SUBMITTED BY

Mikk Toome, M.Sc., P.Eng. Technical Director - Acoustics Mikk.Toome@rwdi.com

Maja Bokara, PGCert, EP Project Manager Maja.Bokara@rwdi.com

RWDI 600 Southgate Drive Guelph Ontario Canada N1G 4P6 T: 519.823.1311 | ext. 2440

F: 519.823.1316

© 2024 RWDI AIR Inc. ("RWDI") ALL RIGHTS RESERVED This document is intended for the sole use of the party to whom it is addressed and may contain information that is privileged and/or confidential. If you have received this in error, please notify us immediately. Accessible document formats provided upon request. © RWDI name and logo are registered trademarks in Canada and the United States of America RWDI#2302908 March 28, 2024

VERSION HISTORY

Index	Date	Description	Prepared by	Reviewed by
1	2023/07/24	Draft	Andrew Lambert	Mikk Toome
2	2023/08/30	Final	Andrew Lambert	Mikk Toome
3	2024/03/28	Response to Comments	Andrew Lambert	Mikk Toome

STATEMENT OF LIMITATIONS

This report entitled "601 Scottsdale Drive" was prepared by RWDI AIR Inc. ("RWDI") for Forum 601 Scottsdale LP ("Client"). The findings and conclusions presented in this report have been prepared for the Client and are specific to the Project described herein ("Project"). The conclusions and recommendations contained in this report are based on the information available to RWDI when this report was prepared. Because the contents of this report may not reflect the final design of the Project or subsequent changes made after the date of this report, RWDI recommends that it be retained by Client during the final stages of the Project to verify that the results and recommendations provided in this report have been correctly interpreted in the final design of the Project.

The conclusions and recommendations contained in this report have also been made for the specific purpose(s) set out herein. Should the Client or any other third party utilize the report and/or implement the conclusions and recommendations contained therein for any other purpose or Project without the involvement of RWDI, the Client or such third party assumes any and all risk of any and all consequences arising from such use and RWDI accepts no responsibility for any liability, loss, or damage of any kind suffered by Client or any other third party arising therefrom.

Finally, it is imperative that the Client and/or any party relying on the conclusions and recommendations in this report carefully review the stated assumptions contained herein and to understand the different factors which may impact the conclusions and recommendations provided.

EXECUTIVE SUMMARY

RWDI was retained to prepare a Noise and Vibration Impact Study in support of an Official Plan amendment and Zoning By-law Amendment for the proposed residential building located at 601 Scottsdale Avenue in Guelph, Ontario. The proposed development is intended to be used as student residences and will consist of a 7-storey residential building with two towers joined by a 1-storey podium. This building is in addition to the existing student residence on the property which has 5 storeys in the east part and 1 storey on the west connected by a sloped atrium.

The following noise control measures are recommended for the proposed development:

- 1. Installation of central air-conditioning so that all suites' windows can remain closed.
- 2. The inclusion of noise warning clauses related to:
 - a. Transportation sound levels
 - b. The inclusion of noise mitigation measures
- 3. Minimum sound isolation performance:
 - a. Suite window glazing with sound isolation performance meeting a minimum STC-30.
 - b. Suite exterior walls with sound isolation performance meeting a minimum STC-45.

Potential impacts of noise from the surrounding environment on the proposed development were assessed. Potential noise impacts from road traffic on Highway 6 and Stone Road were evaluated and found to be compatible with the use of central air conditioning and specified window glazing sound isolation performance. A review of surrounding industrial and commercial uses was completed and the significant noise sources were modeled. There were slight exceedances of the limits due to the existing building on-site, but as they share ownership it is likely feasible to provide mitigation. No incompatibilities with respect to off-site existing land uses and the proposed development were identified. There were no significant identified sources of vibration.

At this stage in design the impact of the development on itself and its surroundings could not be quantitatively assessed. However, the impact on both the building itself and its surroundings is expected to be feasible to meet the applicable criteria. We recommend that the building design is evaluated prior during detailed design to ensure that the acoustical design is adequately implemented in order to meet the applicable criteria.

Based on the results of this assessment, the proposed development is considered to be feasible from a noise impact aspect.

EXECUTIVE SUMMARY

TABLE OF CONTENTS

1		1
2	APPLICABLE CRITERIA	1
2.1	Transportation Sources 2.1.1 Road Traffic Criteria	 1 2
2.2	Stationary Sources	3
3	IMPACT OF THE ENVIRONMENT ON THE PROPOSED DEVELOPMENT	4
3.1	Transportation Source Assessment3.1.1Road Traffic Volume Data3.1.2Representative Receptors3.1.3Transportation Source Assessment - Analysis and Results	4 5 6
3.2	Stationary Source Assessment 3.2.1 Surrounding Industrial & Commercial Developments 3.2.2 Representative Receptors 3.2.3 Site Visit8 3.2.4 Analysis and Results	7 7 8
3.3	Recommendations 3.3.1 Transportation Sources 3.3.2 Stationary Sources 3.3.3 Warning Clauses	.10 . 10 . 12 . 12
4	IMPACT OF THE PROPOSED DEVELOPMENT ON THE ENVIRONMENT AND ITSELF	.14
5	CONCLUSION	14
6	REFERENCES	16

LIST OF FIGURES

- Figure 1: Context Site Plan
- Figure 2: Worst-case Receptors and OLA
- Figure 3: Noise Sources

LIST OF TABLES

Table 1:	NPC-300 Sound Level Criteria for Road	. 2
Table 2:	Ventilation, Building Component, and Warning Clauses Recommendations	. 3
Table 3:	NPC-300 Exclusion Limits - Continuous Stationary Sources	. 4
Table 4:	Road Traffic Data Summary	. 5
Table 5:	Predicted Sound Levels of Roadway Noise on Facades	. 6
Table 6:	Stationary Source Sound Power Level Assumptions	. 9
Table 7:	Predicted Sound Levels of Stationary Sources	. 9
Table 8:	Recommended Facade Component Minimum Sound Insulation Rating	11

LIST OF APPENDICES

- Appendix A: Site Plan
- Appendix B: Transportation Traffic Volume Data
- Appendix C: Modelling Outputs

1 INTRODUCTION

RWDI was retained to prepare a Noise and Vibration Impact Study for the proposed residential development located at 601 Scottsdale Drive in Guelph, Ontario. The proposed development is adjacent to the existing student residence on the property and is southwest of the Stone Road Mall on Stone Road West.

The proposed development will consist of two 7-storey buildings connected by a 1-storey podium. The east side of the site has an existing student residence that is 5 storeys tall. The new building will be located to the southwest of the existing building, closer to Highway 6. The context site plan is shown in **Figure 1**.

The site is exposed to noise from road traffic on: Highway 6 to the southwest; and Stone Road west to the southeast. Other roads around the site area were considered negligible from a noise perspective due to comparably low volumes or their separation distance.

The site is exposed to noise from the existing residence at the property (rooftop HVAC units) and commercial land uses to the north, east and south.

The objective of this assessment was conducted in support of the ZBA submission to determine the feasibility of the proposed residential development that is surrounded by existing sources of environmental noise and vibration. As there are no sources of vibration in proximity to the development, this assessment considers environmental noise only.

This report addresses City of Guelph comments following an initial pre-submission and discussion with City of Guelph staff.

This assessment was based on design drawings dated March 13, 2024. These drawings are included in **Appendix A.**

2 APPLICABLE CRITERIA

Applicable criteria for transportation noise sources and stationary noise sources are described in this section.

2.1 Transportation Sources

Guidance from Guelph Noise Control Guidelines (GNCG) was used in the assessment of transportation sources. The Guelph Noise Control Guideline incorporates the Ontario Ministry of the Environment, Conservation and Parks NPC-300 Environmental Noise Guideline by reference. The applicable limits for noise generated by transportation-related sources come from NPC-300.

There are three aspects to consider, which include the following:

- 1. Transportation noise levels in indoor living areas (living rooms and sleeping quarters), which determines building façade elements (windows, exterior walls, doors) and sound insulation design recommendations.
- 2. Transportation noise levels at the plane of the window, which determines air-conditioning and ventilation system recommendations and associated warning clauses which inform the future occupants that windows and doors must be closed in order to meet the indoor sound level criteria.
- 3. Transportation noise levels in Outdoor Living Areas (OLAs), which determines OLA noise mitigation and related warning clause recommendations.

OLAs would include outdoor areas intended and designed for the quiet enjoyment of the outdoor environment and are readily accessible from the building. OLAs may include any common outdoor amenity spaces associated with a multi-unit residential development (e.g., courtyards, rooftop terraces), including designated outdoor amenity areas required under Zoning provisions, passive recreational areas such as parks if identified by the City, and/or private backyards and terraces with a minimum depth of 4 m.

2.1.1 Road Traffic Criteria

For assessing sound originating from transportation sources, NPC-300 defines sound level criteria as summarized in **Table 1** for outdoor living areas (OLAs), and indoor areas of sensitive uses.

Assessment Location	Time Period	NPC-300 Limit L _{EQ} (averaged over time period)	Comments		
Indoor Living	16 hr Daytime 0700-2300h				
Quarters Indoor Sleeping Quarters	8 hr Nighttime 2300-0700h	45 UBA	Indoor sound levels based on the assumption of a		
	16 hr Daytime 0700-2300h	45 dBA	closed window.		
	8 hr Nighttime 2300-0700h	40 dBA			
Outdoor Living Areas	16 hr Daytime 0700-2300h	55 dBA	Where possible, separation distance should be used to achieve compliance in lieu of barriers. If technically and economically feasible, noise barriers should be used to achieve 55 dBA sound levels in OLAs. Otherwise, a warning clause would be recommended for sound levels between 56-60 dBA.		

Table	1:	NPC	-300	Sound	Level	Criteria	for	Road
	•••			000110		01100110		

Ventilation, building façade component, and warning clauses requirements for residential buildings are determined based on predicted levels of transportation noise at the exterior Plane of Window (POW) as summarized in **Table 2** below.

Assessment	Transportatio	on Noise Level		
Location	Daytime Nighttime Leq,16-hr Leq,8-hr		Recommendations	
Plane of Window	>65 dBA	>60 dBA	Air conditioning to allow windows to remained closed. The acoustical performance of building components should be designed to meet the indoor sound level limits. GNCG Warning clause "Type D" is recommended.	
	Between Between 55 and 65 dBA 50 and 60 dBA		Forced-air ventilation system to allow for the installation of air-conditioning. GNCG Warning clause "Type C" is recommended.	
Outdoor Living	Between 55 and 60 dBA	Not Applicable	Noise controls (separation distance/barriers) should be implemented to meet the 55 dBA criterion. If noise mitigation is not feasible to meet the 55 dBA criterion, a GNCG Warning Clause "Type A" or "Type B" would be recommended.	
Агеа	> 60 dBA	Not applicable	Generally, not acceptable. Noise mitigation required to reduce sound levels to less than 55 dBA if feasible for areas designated for the quiet enjoyment of the outdoors.	

Table 2: Ventilation, Building Component, and Warning Clauses Recommendations

Warning clauses, if applicable, are recommended to be included in agreements of Offers of Purchase and Sale, lease/rental agreements and condominium declarations. Central air conditioning will be included in the proposed development as part of the general design. Therefore, Warning clause "Type D" is applicable in lieu of Warning clause "Type C".

In addition to the ventilation and warning clause, building facade components should be designed to meet the indoor sound level limits based on Plane of Window noise predictions.

2.2 Stationary Sources

Noise from stationary sources is assessed to ensure the proposed development would not affect any environmental noise permits (Environmental Compliance Approvals or Environmental Activity Sector Registrations) of surrounding industrial or commercial properties and to ensure an adequate sound environment would be present for the future residents of the proposed development. Facilities such as residential towers and small commercial establishments are typically exempt from environmental noise permits but may have sources of noise, such as mechanical equipment. Sound from facilities that could require an environmental noise permit is assessed strictly against MECP sound level limits to ensure that the proposed residential use is compatible with the existing industrial and commercial uses.

Under NPC-300, noise from stationary sources is treated differently from transportation sources and requires sound levels be assessed for the predictable worst-case 1-hour average sound level (L_{EQ}) for each period of the day.

For assessing sound originating from stationary sources, NPC-300 defines sound level criteria for two types of Points of Reception (PORs): outdoor and façade.

The assessment criteria for all PORs are the higher of either the exclusion limit per NPC-300 or the minimum background sound level that occurs or is likely to occur at a POR. The applicable exclusion limit is determined based on the level of urbanization or "Class" of the area. This development should be considered to be in a Class 1 (urban) area, which is an area with an acoustical environment typical of a major population centre, where the background sound level is dominated by the activities of people, usually road traffic, often referred to as "urban hum." This property is adjacent to busy roadways such as Highway 6 and Stone Road west, and road traffic sounds are dominant at the site. Additionally the site is adjacent to the Stone Road Mall which is open until 8 pm on weekdays. As Highway 6 is a major road corridor it will have a significant impact on the noise environment in the area even during nighttime. The ambient sound levels at development location, attributable to the surrounding highways, at the quietest evening hour are predicted to exceed the exclusion limits for Class 1 area. The City of Guelph official plan also identifies this location along Stone Road West as an intensification corridor that aims to achieve increased residential and employment densities.

The NPC-300 exclusion limits for continuously operating stationary sources are summarized in **Table 3**. For the façade, the exclusion limits apply at the exterior plane of window; there are no indoor criteria for stationary sources.

Time Deried	Exclusion Limit, Class 1 (L _{EQ-1hr})				
	Outdoor	Façade			
Daytime 0700-1900h	50 dBA	50 dBA			
Evening 1900 – 2300h	50 dBA	50 dBA			
Nighttime 2300-0700h		45 dBA			

Table 3: NPC-300 Exclusion Limits - Continuous Stationary Sources

The NPC-300 limits in **Table 3** are used as guidance in assessing comfort of the acoustic environment at the proposed development.

3 IMPACT OF THE ENVIRONMENT ON THE PROPOSED DEVELOPMENT

3.1 Transportation Source Assessment

Roadways identified as having the potential to affect the proposed development included Highway 6, and Stone Road West. Other arterial roads around the proposed development were considered negligible from a noise perspective due to comparatively low volumes and/or their separation distance.

The locations of these sources of sound in relation to the proposed development is shown in **Figure 1**.

3.1.1 Road Traffic Volume Data

The Highway 6 and Stone Road West traffic volumes were obtained from traffic data obtained from the Ontario Ministry of Transportation (MTO). Data from the City of Guelph was also obtained, but the traffic volumes from the MTO data were higher and thus conservatively used.

Turning Movement Counts (TMCs) provided from the MTO at the intersection of Highway 6 and Stone Road West providing detailed traffic volumes for the AM and PM peaks, and an 8-hour interval was used to determine the AADT on Stone Road West.

The TMCs were used to determine the Average Annual Daily Traffic (AADT) traffic volumes for Stone Road West and vehicle type breakdown for Stone Road West and Highway 6. 24-hour count data was provided for Highway 6 at Kortright and College (one intersection north and south of Stone Road West along Highway 6) and was used to determine the future AADT for Highway 6.

For Stone Road, the AM and PM peaks and 8-hour interval were assumed to be 9%, 10%, and 60% of the AADT, respectively, based on typical traffic distributions from the International Traffic Engineers (ITE, 2010). The maximum estimated AADT from the AM and PM peaks and 8-hour interval conversions were used in the assessment for each roadway. To determine the traffic volumes for a 10-year horizon past project completion in 2027, traffic volumes for Highway 6 and Stone Road West were increased at a 2% per year rate (based on information provided by the City of Guelph) to represent the predicted traffic volumes for 2037. An 90%/10% daytime/nighttime split was applied for Stone Road West, based on a typical daytime/nighttime split for local roads from the Ontario Road Noise Analysis Method for Environment and Transportation (ORNAMENT) Technical Guide (MECP, 1989). The 24-hour counts for Highway 6 were used to determine a 91%/9% daytime/nighttime split.

Truck percentages were included in the TMC data provided. To further split the truck percentages into medium and heavy trucks for implementation in the modelling, a breakdown of 5%/8% for medium/heavy vehicles was assumed based on typical truck percentages on local roads from the MTO (MTO, 1992).

A summary of the traffic data used is included in **Table 4** below, with more detailed information included in **Appendix B**.

Roadway	Future Traffic	% Day/	Post Speed	% Trucks	
,	(AADT) ¹	%Night	Limit (km/hr.)	Medium	Heavy
Highway 6 South of Stone Road West	61414	91% / 9%	80	2.9%	4.7%
Highway 6 North of Stone Road West	61414	91% / 9%	70 ²	2.9%	4.7%
Stone Road West, east of Highway 6	25653	90% / 10%	60	1.4%	2.2%
Stone Road West, West of Highway 6	5066	90% / 10%	60	0.9%	1.5%

Table 4: Road Traffic Data Summary

Note:

1. Future traffic volumes were based on 2% growth rate forecasted to 2037, 10 years past anticipated project completion in 2027.

2. The speed limit for this section was conservatively modeled at 80 km/hr. following comments from the City of Guelph.

3.1.2 Representative Receptors

The selection of receptors affected by transportation noise sources was based on the drawings reviewed for this assessment. The worst-case facade receptor F1 was then analyzed and identified to be on the southwest façade of the north tower and faces Highway 6. Common outdoor amenity space is located in the courtyard between the towers and is included as OLA1. Moreover, another courtyard is located east of the proposed building and is included as OLA2. The OLAs are modelled as a single receiver point in the middle of the amenity space area, as per NPC-300 guidelines. It is anticipated that the sound levels may vary (increase/decrease) away from the modelled receiver point; however, the NPC-300 guideline intent is to satisfy the transportation sound criteria on average at the middle point. The location of all assessed receptors is presented in **Figure 2**.

3.1.3 Transportation Source Assessment - Analysis and Results

The sound from the adjacent roads was modelled at the PORs using the ORNAMENT algorithms (MECP, 1989) to predict the sound power levels of the roads, with sound propagation calculated in CadnaA, a commercial implementation of the ISO 9213 algorithms. Results from the STAMSON implementation of ORNAMENT are included in **Appendix C** for the worst-case façade point F1 identified via the CadnaA analysis and shown in **Figure C1a and C1b**. The Stamson results and the CadnaA results at worst-case façade point F1 are within 1 dB so they show good agreement. The sound levels at the building façade are shown in **Figure C.1a** for daytime and **C.1b** for nighttime road sound levels.

The results for each worst-case receptor were determined with the results summarized in **Table 5**. Modelling outputs are provided in **Appendix C**, along with contours of sound levels at 1.5m above the ground for the amenity areas.

Building	Receptor	Daytime L _{EQ} , 16hr / Nig Sound Le	Recommendations for Warning Clause	
		Day	Night	and/or Ventilation Requirements
Proposed Building	F1	69	62	Yes [1]
West Outdoor Amenity	OLA1	55	-	n/a
East Outdoor Amenity	OLA2	59	-	n/a ^[2]

Table 5: Predicted Sound Levels of Roadway Noise on Facades

Note:

1. Air conditioning to allow windows to remained closed. The acoustical performance of building components should be designed to meet the indoor sound level limits. GNCG Warning clause "Type D" is recommended.

2. GNCG Warning clause "Type A" is recommended to address noise from transportation facilities.

3.2 Stationary Source Assessment

Stationary sources could be grouped into two categories: Those that have a permit with the Ontario Ministry of the Environment, Conservation and Parks (MECP) through an Environmental Compliance Approval (ECA) or Environmental Activity and Sector Registry (EASR); and those that are exempt from ECA or EASR permit requirements.

In the case where a stationary source has an ECA or an EASR permit with the MECP and would be put in a position where it is no longer in compliance with the applicable sound level criteria due to the encroachment of the proposed new development, source-specific mitigation and/or formal classification of the proposed development lands as a "Class 4 Area" (refer to C.4.4.2 "Class 4 Area" in NPC-300) would be required. In this case, coordination and agreements between the stationary source owner, proposed new development owner, the land-use planning authority and potentially the MECP would be needed.

In the case where a stationary source is exempt from ECA or EASR permit requirements with the MECP, the noise provisions of the applicable Municipal Noise By-Law and guidance from NPC-300 would be applicable.

3.2.1 Surrounding Industrial & Commercial Developments

Nearby facilities were assessed for potential noise impacts at the proposed development. Industrial and commercial facilities were identified through aerial and street-level imagery and publicly available business directories and confirmed by an RWDI site visit on July 14, 2023.

A number of commercial and light industrial facilities were identified in the area with the potential for noise impacts at the proposed development, including:

- Stone Road Mall;
- Existing residential building at 601 Scottsdale Drive; and
- Car Wash at Canadian Tire Gas+ across Stone Road W.
- Enbridge Gas Distribution Station on Stone Road West
- Commercial developments on Scottsdale Drive south of Stone Road West

Searches of publicly available data from the MECP showed that the Stone Road Mall (in 2009), as well as the Holiday Inn (2003) that was converted to the residence at 601 Scottsdale Drive, have at least previously held Environmental Compliance Approvals (ECA) which would restrict the emission of noise from the facility. Given the age of these ECAs, both of these facilities are likely to be exempt from noise permitting under modern regulations and no longer have permits.

The Car Wash at the Canadian Tire Gas+ across Stone Road W from the existing residence does not have an Environmental permit that would restrict noise from this facility.

Other developments in the area were evaluated during the site visit as detailed in Section 3.2.3.

3.2.2 Representative Receptors

The worst-case façade receptor locations for on-site (POR1) and off-site (POR2) stationary sources were determined using the building evaluation feature in CadnaA. POR1, POR2, and the common outdoor courtyard (as shown in **Figure 2**) were assessed to evaluate the potential stationary source noise impact.

3.2.3 Site Visit

A site visit by RWDI personnel was completed on July 14, 2023. During the site visit, operations of the surrounding industries and commercial uses were confirmed. Measurements indicated sound levels in the area during daytime were between 60 and 70 dBA around the site. Measurements were dominated by the sounds of traffic on Highway 6 and Stone Road West.

Noise sources on the Stone Road Mall were audible near the mall but not audible closer to the site.

The car wash was observed during measurements from the sidewalk north of Stone Road West while it was operating. The car wash was only audible while the fans were operating for about 30 seconds of the car wash cycle, which lasted a few minutes. The rest of the commercial facilities to the south of Stone Road West were not observed to have noise sources that would be significant at the development. These sources would be categorized as Class I under the D-6 land use compatibility guidelines, and they fall outside of the 70m potential influence area.

The residential areas to the north of the site were not noted to include noise sources that would be significant at the development.

The Enbridge Gas distribution station at 512 Stone Road West was visited and while it was audible at the property line, measurements of the sound level showed it was low enough that this facility would not have a significant impact at the development and is predicted to meet the applicable criteria at the development.

RWDI staff were given access to the roof of the existing residence building at 601 Scottsdale Drive, which allowed the equipment that was operating to be measured and the nameplates of the other equipment to be recorded. The Two existing rooftop units on the building were identified as the most significant source of noise.

To confirm whether sound levels from identified stationary sources in the vicinity have the potential to generate significant sound levels at the proposed development, sound modelling was completed to complement the results of the measurements.

3.2.4 Analysis and Results

The potential worst-case impact of sound from the existing residence at 601 Scottsdale Drive were evaluated further through modelling. The Stone Road Mall was not assessed in detail due to significant separation distance, low observed sound levels, and the intervening existing residence providing shielding.

The existing building at 601 Scottsdale has a 5-storey section to the northeast, a 1-storey section to the west, and an atrium in the middle with a sloping roof. The east part of the building has residence apartments equipped with PTAC units that point towards the stone road mall and away from the new development.

The low roof has three (3)large Lennox KGB or KGA240S HVAC units, one of which was measured. There were also two smaller Lennox KGB048S HVAC Units, two Lennox VRB120H heat recovery ventilators on the roof along with two more similar units at ground level, and a Captive Air RTU unit on the low roof as well as at ground level. The car wash was modeled as a single noise source based on the measurement. The measured and/or assumed sound power levels included in the screening level stationary source assessment are presented in **Table 6**. The locations of the sources summarized in **Table 6** included in the stationary source assessment are illustrated in **Figure 3**.

		Sound	Duty Cycle			
Source	Proxy Data / Calculation	Power Level (dBA)	Daytime and Evening (07:00h – 23:00h)	Nighttime (23:00h – 07:00h)		
Lennox KG(A/B)240S	Measured	82	Continuous	Continuous		
Lennox KGB048S	Manufacturer Data	85	Continuous	Continuous		
Lennox VRB120H	Manufacturer Data	88	Continuous	Continuous		
CaptiveAir CASRTU1	Proxy Data ¹	92	Continuous	Continuous		
Canadian Tire Gas+ Car Wash	Measured	100	10 minutes/hour	10 minutes/hour		

Table 6: Stationary Source Sound Power Level Assumptions

Note: 1.

As sound level measurements were not possible, sound level data from a similar sized unit on file was used in lieu for the purpose of the analysis.

Potential sound from these properties was modelled in Cadna/A, a commercially available software package that implements the ISO-9613 algorithms for sound propagation. Sound levels for the sources that weren't measured were drawn from historical data on file at RWDI. The results are shown in

Table 7.

Table 7: Predicted Sound Levels of Stationary Sources

Receptor	Time Period	Predicted 1-hour Sound Level (dBA)	MECP Sound Level Limit (dBA)	Comments	
POR1	Daytime / Evening	52	50	2 dB exceedance due to building RTUs	
	Nighttime	52	45	7 dB exceedance due to building RTUs	
POR2	Daytime / Evening	43	50	Meets Sound Level Limit	
	Nighttime	43	45	Meets Sound Level Limit	

Receptor	Time Period	Predicted 1-hour Sound Level (dBA)	MECP Sound Level Limit (dBA)	Comments
Courtyard Point of Reception	Daytime / Evening	37	50	Meets criterion

As shown in

Table 7, the daytime-evening and nighttime continuous sound levels at the façade due to existing stationary sources are predicted to slightly exceed the NPC-300 Class 1 sound level targets based on screening level noise modelling analysis. This exceedance is due to the combined impact from the noise sources at the existing residence building at 601 Scottsdale.

The car wash is much less significant, and its partial contribution is about 4 dB below the nighttime criterion using this conservative estimate of its duty cycle. The receptor at the south façade of the building (POR2) that is oriented towards the car wash and around the corner from the existing residence meet the daytime and nighttime sound level criterion.

Given that the proposed development shares ownership with the neighbouring building and rooftop units, it is feasible to mitigate the sound levels. Recommendations to ensure a comfortable indoor environment for the proposed development are included in **Section 3.3.2**.

3.3 Recommendations

Based on an analysis of the predicted sound levels, the following recommendations and requirements were determined for the Project. Recommendations are provided for both transportation sources and stationary sources.

3.3.1 Transportation Sources

3.3.1.1 Building Façade Components

Due to the elevated transportation sound levels in the area, acoustical design of the façade components, including spandrel, window glazing, and exterior doors, are recommended to be specified for the proposed development.

To assess the development's feasibility, preliminary window glazing and exterior balcony door sound isolation requirements were determined. These were based on the following assumptions:

- Typical residential living room:
 - o Glazing 80% of façade, Door: N/A
 - o 55% Façade to floor area Ratio
- Typical residential bedroom:
 - Glazing 80% of façade, Door: N/A
 - o 81% Façade to floor area Ratio

• Acoustical character of rooms: intermediate absorption finishes/furniture for bedrooms and intermediate absorption finishes/furniture for living rooms.

Based on the predicted plane of window sound levels and the assumptions listed above, recommendations for the minimum sound insulation ratings for the building components were determined using the National Research Council of Canada "BPN-56 method" (NRCC, 1985). The reported results are in terms of Sound Transmission Class (STC) ratings, as summarized in **Table 8**.

Portion of Development	Façade	Window Glazing	Façade Wall
	Southwest Façades	STC 30	STC 45
	Northwest Façades	STC 26	STC 45
North and South Towers	Southeast Façades	STC 26	STC 45
	Northeast Façades	OBC	OBC

Table 8: Recommended Facade Component Minimum Sound Insulation Rating

Note:

1. "OBC" denotes that the noise insulation design is not required to be specified. Building envelope assemblies meeting the minimum Ontario Building Code (OBC) requirements will also exhibit sufficient noise reduction to meet the interior sound level criteria.

The maximum requirement for the window glazing was determined to be STC-30, which is considered feasible as this can be achieved by various double-glazed configurations of insulated glazing units. Façade wall meeting a minimum STC-45 would be feasible with typical façade assemblies.

Taking into account the assumptions used as a basis to determine the glazing requirements, the applicable indoor transportation source sound level criteria are predicted to be achieved.

We recommend that the façade construction is reviewed during detailed design to ensure that the indoor sound level limits will be met and that the window/door supplier is requested to provide STC laboratory test reports as part of the shop drawing submittal to confirm that the glazing/door components will meet the minimum STC requirements.

3.3.1.2 Ventilation Recommendations

Due to the transportation sound levels at the plane of the façade, the installation of central air conditioning prior to occupancy is required for the proposed development to allow for windows and doors to remain closed as a noise mitigation measure. Further, prospective tenants should be informed by a warning clause as noted in Section 3.3.3.

3.3.1.3 Outdoor Living Areas

Due to exposure to transportation sources along the nearby Highway 6 and Stone Road West, sound levels in OLAs are predicted to be elevated. The road daytime average sound levels for the OLAs included in the assessment are in the range of 55-59 dBA. As these sound levels are less than or equal to 60 dBA, NPC-300 indicates that noise control measures may be applied to reduce the sound level to 55 dBA but they are not required. The designers have indicated that barriers are undesirable for the amenity areas. If measures are not provided, prospective purchasers or tenants should be informed of potential noise problems by a NPC-300 Warning Clause Type A as noted in Section 3.3.3.

3.3.2 Stationary Sources

The measured and assumed sound power levels for the stationary sources show that the development would exceed Class 1 targets. To ensure a comfortable indoor environment, air conditioning is required to allow windows to be closed. With windows closed, the development is expected to be acoustically compatible with existing non-permitted stationary sources.

Given that the existing building is owned by the same company, it is feasible for them to reduce the sound levels due to the equipment by 7 dB to meet the NPC-300 criteria. Noise mitigation can be achieved via silencers, compressor covers and quiet condenser fans. Further detailed measurements and analysis are recommended to specify noise control measures, and to confirm assumptions applied in the analysis (such as worst-case duty cycles of the roof top AHUs).

Additionally, we recommend the inclusion of a Warning Clause to note that there are existing commercial and industrial activities in the area.

3.3.3 Warning Clauses

Warning clauses are recommended to be included on all development agreements, offers of purchase and agreements of purchase and sale or lease. Warning clauses may be used individually or in combination.

<u>City of Guelph Warning Clause for all cases: Recommended to address nearby commercial/industrial</u> <u>land-use</u>

"The Transferee covenants with the Transferor that the below clause, verbatim, will be included in all subsequent Agreements of Purchase of sale or lease and Sale and Deeds conveying the lands described herein, which covenant shall run with the said lands and is for the benefit of the subsequent owners and renters of the said lands and the owner of the adjacent road."

City of Guelph Warning Clause A: Recommended to address transportation noise

""The Transferee of [insert lots/blocks/units], for himself, his heirs, executors, administrators, successors and assigns acknowledge being advised that despite the inclusion of noise control features in the development and/or within the building unit sound levels due to increasing road traffic may occasionally interfere with some indoor and/or outdoor activities of the dwelling occupants as the sound levels may at times exceed the sound level limits of the municipal and provincial noise criteria."

"This development includes a number of measures to help reduce noise impacts, listed below. To ensure that provincial and municipal sound level limits are not exceeded and/or to keep sound levels as low as possible it is important to maintain the sound attenuation features provided."

City of Guelph Warning Clause B: Recommended to address inclusion of acoustic barrier

"This development includes an acoustic barrier to help reduce the sound levels within the rear yard of this and other nearby units."

<u>City of Guelph Warning Clause D: Recommended to address transportation noise</u>

"This dwelling unit has been supplied with a central air conditioning system which will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the municipal and provincial sound level limits."

"The building components of this dwelling unit (walls, windows and exterior doors) have been designed to provide acoustic insulation so that, when windows and exterior doors are closed, the indoor sound levels are within the municipal and provincial sound level limits. The details of this building component design are available by contacting the builder of this unit."

City of Guelph Warning Clause F: Recommended to address inclusion of acoustic barrier

"The Transferee, for himself, his heirs, executors, administrators, successors and assigns acknowledge being additionally advised that the installed acoustic barrier is on private property and must be maintained and kept in good repair by the property owner. Any maintenance, repair or replacement is the responsibility of the property owner and shall be the same material or to the same standards, having the same colour, appearance and function of the original."

<u>City of Guelph Warning Clause H: Recommended to address transportation noise</u>

"Purchasers/tenants are advised that due to the proximity of the adjacent industrial/commercial lands-uses, noise from the adjacent industrial/commercial land uses may at times be audible."

NPC-300 Warning Clause Type A: Recommended to address transportation noise

"Purchasers/tenants are advised that sound levels due to increasing road traffic may occasionally interfere with some activities of the dwelling occupants as the sound levels exceed the sound level limits of the Municipality and the Ministry of the Environment."

4 IMPACT OF THE PROPOSED DEVELOPMENT ON THE ENVIRONMENT AND ITSELF

On-site stationary sources for the development are expected to consist of HVAC-related equipment in the rooftop mechanical penthouse as well as various exhaust fans. Further, consideration should be given to controlling airborne and structure-borne noise generated within the proposed development.

Within the development itself, the main sources of noise that are likely to affect the uses of the building are the mechanical systems. The potential noise effect of the commercial component of the development is recommended to be reviewed during detailed design to ensure the applicable criteria will be met.

Provided that best practices for the acoustical design of the building are followed, noise from building services equipment associated with the development is expected to be feasible to meet the applicable sound level criteria due to the nature (residential) of the proposed development.

We recommend that the potential noise effect of the proposed development is reviewed during detailed design to ensure the applicable sound level criteria will be achieved.

5 CONCLUSION

RWDI was retained to prepare a Noise and Vibration Impact Study in support of an Official Plan amendment and Zoning By-law Amendment for the proposed residential building located at 601 Scottsdale Avenue in Guelph, Ontario. The proposed development is intended to be used as student residences and will consist of a 7-storey residential building with two towers joined by a 1-storey podium. This building is in addition to the existing student residence on the property which has 4 storeys in the east part and 1 storey on the west connected by a sloped atrium.

The following noise control measures are recommended for the proposed development:

- 1. Installation of central air-conditioning so that all suites' windows can remain closed.
- 2. The inclusion of noise warning clauses related to:
 - a. Transportation sound levels
 - b. The inclusion of noise mitigation measures
- 3. Minimum sound isolation performance:
 - a. Suite window glazing with sound isolation performance up to STC-30.
 - b. Suite exterior walls with sound isolation performance meeting a minimum STC-45.

Potential impacts of noise from the surrounding environment on the proposed development were assessed. Potential noise impacts from road traffic on Highway 6 and Stone Road were evaluated and found to be compatible with the use of central air conditioning and specified window glazing sound isolation performance. A review of surrounding industrial and commercial uses was completed, and the significant noise sources were modeled.

There were slight exceedances of the limits due to the existing building on-site, but as they share ownership, it is likely feasible to provide mitigation. No incompatibilities with respect to existing land uses and the proposed development were identified. There were no significant identified sources of vibration.

At this stage in design, the impact of the development on itself and its surroundings could not be quantitatively assessed. However, the impact on both the building itself and its surroundings is expected to be feasible to meet the applicable criteria. We recommend that the building design is evaluated prior to detailed design to ensure that the acoustical design is adequately implemented in order to meet the applicable criteria.

Based on the results of this assessment, the proposed development is considered to be feasible from a noise impact aspect.

6 **REFERENCES**

- 1. Ontario Ministry of the Environment, Conservation, and Parks, August 2013, Publication NPC-300, Environmental Noise Guideline Stationery and Transportation Sources – Approval and Planning (NPC-300)
- 2. Ontario Ministry of the Environment (MOE) Publication Guideline D-6, "Compatibility Between Industrial Facilities and Sensitive Land Uses", July 1995 (MOE, 1995).
- 3. City of Guelph, 2018. Guelph Noise Control Guidelines (Guelph, 2018)
- 4. City of Guelph, 2022. The City of Guelph Official Plan (Guelph, 2022)
- 5. ORNAMENT, Ontario Road Noise Analysis Method for Environment and Transportation, Technical Document, Ontario Ministry of the Environment, ISBN 0-7729-6376, 1989 (ORNAMENT)
- 6. Institute of Transportation Engineers (ITE), 2010, Traffic Engineering Handbook, 6th Edition.
- International Organization for Standardization (ISO), 1994b, International Standard ISO 9613-1:1994, Acoustics –Attenuation of Sound during propagation outdoors. Part 1: Calculation of the absorption of sound by the atmosphere. (ISO, 1994)
- International Organization for Standardization (ISO), 1996, International Standard ISO 9613-2:1996, Acoustics – Attenuation of sound during propagation outdoors – Part 2: General method of calculation (ISO, 1996)
- 9. Ontario Ministry of Transportation (MTO), 1992, Environmental Office Manual Technical Areas Noise, EO-V-1000-00.

FIGURES

Context Site Plan	Drawn by: ACCL	Figure: 1	Л	V	٦
	Project #:	2302908		9	
601 Scottsdale Drive	Date:	2023-07-24			

Worst-case Receptors and OLA	Drawn by: ACCL	Figure: 2		7
	Project #:	2302908	•	4
601 Scottsdale Drive	Date:	2024-03-26		

601 Scottsdale Drive

APPENDIX A

APPENDIX B

Ministry of Transportation

Hwy	/: 6		Betwee	en: LAIRD RD IC												
тя	6: 153		ar	nd:	S JCT HW	Y 7-	WELLINGT	ON	ST IC							
Regr	n: WEST		Patte	rn:	С		PDCS:	90		I	Factor: 1.0)3				
LHRS	: 13599		Offs	et:	2.501		Locn:	2.5	01 KM N O	F L/	AIRD RD IC	(ł	Cortright	t Ro	(W b	
Dii	r: N		Lan	es:	2		Speed:	80	km/h		Dates: 10	-No	/-2019 to 1	7 -N o	v-2019	
	Sun		Mon		Tue		Wed		Thu		Fri		Sat		Sun	
H. Interval	11/10		11/11	Pk.	11/12	Pk.	11/13	Pk.	11/14	Pk.	11/15	Pk.	11/16	<u>₽</u> .	11/17	Pk.
00:00-01:00			123		140		183		157		177		282		236	
01:00-02:00			76		133		127		123		117		137		140	
02:00-03:00			49		67		70		54		63		79		105	
03:00-04:00			53		67		73		67		63		70		62	
04:00-05:00			124		102		122		97		121		60		46	
05:00-06:00			290		273		333		323		288		140		67	
06:00-07:00			893		814		906		911		888		277		169	
07:00-08:00			1193		1199		1318		1273		1259		422		233	
08:00-09:00			1387	۵	1449	۵	1522	٥	1484	۵	1552		807	0	463	
09:00-10:00			1066		1237		1241		1330		1255		984		736	
10:00-11:00			972		1043		1116		1095		1141		1222		933	
11:00-12:00			841		1110	۵	1140		1085		1191		1266		1156	٥
AM Total			7067		7634		8151		7999		8115		5746		4346	
12:00-13:00	1143		924	0	1101		1162		1168	0	1264		1293			
13:00-14:00	1195	٥	865		1086		1083		1135		1335	۵	1302	0		
14:00-15:00	1186		984		1186		1241		1280		1418		1343			
15:00-16:00	1067		1053		1298		1366		1384		1492		1291			
<u>16:00-17:00</u>	1100	۵	1074	۵	1494	۵	1529		1569	0	1597		1115			
17:00-18:00	1025		1027		1350		1553	۵	1533		1434		964			
18:00-19:00	804		725		1190		1111		1115		1247		938			
19:00-20:00	753		514		868		755		978		921		761			
20:00-21:00	733		395		623		645		677		702		634			
21:00-22:00	512		267		448		517		508		589		510			
22:00-23:00	385		270		376		413		442		432		479			
23:00-00:00	198		241		287		306		326		421		356			
PM Total	10101		8339		11307		11681		12115		12852		10986			
24h. Total	10101		15406		18941		19832		20114		20967		16732		4346	
Noon - No	on 1	1716	8 1	597	'3 [']	1945	8 1	968	0 2	2023	0	1859	8 .	1533	2	

Ministry of Transportation

Hwy:	6		Betwe	en:	LAIRD RD	IC										
TS:	153		a	nd:	S JCT HW	Y 7-	WELLINGT	ON	ST IC							
Regn:	WEST		Patte	rn:	С		PDCS:	90		J	actor: 1.	03				
LHRS:	13599		Offs	et:	2.501		Locn:	2.5	01 KM N O	F L/	ARD RD IC	(Kortrigi	nt F	ka vv)	
Dir:	S		Lan	es:	2		Speed:	80	km/h		Dates: 10	-No	v-2019 to 1	7 -N o	v-2019	
	Sun		Mon		Tue		Wed		Thu		Fri		Sat		Sun	
H. Interval	11/10		11/11	P.	11/12	Pk.	11/13	Pk.	11/14	P <u>k.</u>	11/15	Pk.	11/16	P <u>k</u> .	11/17	P <u>k</u> .
00:00-01:00			95		126		139		126		128		214		168	
01:00-02:00			68		62		60		77		85		95		112	
02:00-03:00			50		70		68		75		88		105		115	
03:00-04:00			60		86		78		61		65		61		59	
04:00-05:00			191		192		188		176		176		83		73	
05:00-06:00			578		531		581		611		582		198		104	
06:00-07:00			998		946		1058		1051		958		268		139	
07:00-08:00			1249	۵	1309	٥	1419		1355		1356		466		286	
08:00-09:00			1245		1234		1439	۵	1442	۵	1415	٥	732	0	417	۵
09:00-10:00			891		1013		1080		968		1067		908		650	
10:00-11:00			866		879		943		900		1032		1119		921	
11:00-12:00			886		1007		958		988		1131		1232		1104	۵
AM Total			7177		7455		8011		7830		8083		5481		4148	
12:00-13:00	1250		862		1112		1126		1204		1272		1345			
13:00-14:00	1315		976	۵	1164	0	1170	0	1211	۵	1326		1341			
14:00-15:00	1263		980		1218		1347		1388		1555		1332			
15:00-16:00	1238		1229		1575		1638		1644		1789		1350	0		
16:00-17:00	1278	۵	1259	۵	1625	۵	1860	۵	1767	۵	1855	٥	1307			
17:00-18:00	1084		1152		1479		1642		1413		1707		1210			
18:00-19:00	853		705		1067		1117		1065		1245		1067			
19:00-20:00	788		540		860		844		936		978		727			
20:00-21:00	590		408		657		698		792		761		509			
21:00-22:00	410		328		562		588		626		565		444			
22:00-23:00	295		235		335		339		432		473		387			
23:00-00:00	134		219		258		279		289		364		276			
PM Total	10498		8893		11912		12648		12767		13890		11295			
24h. Total	10498		16070		19367		20659		20597		21973		16776		4148	
Noon - Noo	n 1	767	5 1	1634	8 1	992	3 2	2047	8 2	2085	0 .	1937	1	1544	3	

Ministry of Transportation

H	wy: 6		Betwe													
	TS: 153		a	ind:	S JCT H	NY	7-WELLING	TO	N ST IC							
Re	gn: WEST	•	Patte	ern:	С		PDCS	6: 9	0		Factor: '	1.03	(Kortri	aht		
LHI	RS: 13599		Off	set:	2.501		Locr	n: 2	.501 KM N	OF l	AIRD RD I	C	(NOTIT	gm	. Ru vv)	
I	Dir: COME	BINE	D Lar	ies:	4		Speed	I: 8	0 km/h		Dates:	10-N	lov-2019 to	17-N	lov-2019	
	Sun		Mon		Tue		Wed		Thu		Fri		Sat		Sun	
H. Interval	11/10		11/11	Pĸ.	11/12	Pk.	11/13	Pk.	11/14	Pĸ.	11/15	PK.	11/16	P <u>r.</u>	11/17	P <u>.</u>
00:00-01:00			218		266		322		283		305		496		404	
01:00-02:00			144		195		187		200		202		232		252	Γ
02:00-03:00			99		137		138		129		151		184		220	
03:00-04:00			113		153		151		128		128		131		121	
04:00-05:00			315		294		310		273		297		143		119	
05:00-06:00			868		804		914		934		870		338		171	
06:00-07:00			1891		1760		1964		1962		1846		545		308	
07:00-08:00			2442		2508		2737		2628		2615		888		519	
08:00-09:00			2632		2683	٥	2961	۵	2926	۵	2967	۵	1539	0	880	۵
09:00-10:00			1957		2250		2321		2298		2322		1892		1386	
10:00-11:00			1838		1922		2059		1995		2173		2341		1854	
11:00-12:00			1727		2117		2098		2073		2322		2498		2260	0
AM Total			14244		15089		16162		15829		16198		11227		8494	
12:00-13:00	2393		1786		2213		2288	۵	2372	۵	2536		2638			
13:00-14:00	2510	٥	1841		2250	٥	2253		2346		2661	٥	2643	0		
14:00-15:00	2449		1964		2404		2588		2668		2973		2675			Γ
15:00-16:00	2305		2282		2873		3004		3028		3281		2641	۵		
16:00-17:00	2378	۵	2333		3119	٥	3389	۵	3336	۵	3452	۵	2422			
17:00-18:00	2109		2179		2829		3195		2946		3141		2174			
18:00-19:00	1657		1430		2257		2228		2180		2492		2005			
19:00-20:00	1541		1054		1728		1599		1914		1899		1488			
20:00-21:00	1323		803		1280		1343		1469		1463		1143			Γ
21:00-22:00	922		595		1010		1105		1134		1154		954			
22:00-23:00	680		505		711		752		874		905		866			
23:00-00:00	332		460		545		585		615		785		632			
PM Total	20599		17232		23219		24329		24882		26742		22281			
24h. Total	20599		31476		38308		40491		40711		42940		33508		8494	
Noon - No	oon 3	3484	3 32	2321	3	938	1 4	1015	8 4	4108	80 :	3796	i9 :	3077	5	
	ADT		AWD		AADT		SADT		SAWD	Γ	WADT		DHV			

Ministry of Transportation

Ministry of Transportation

Hwy	/: 6		Betwee	en:	1: LAIRD RD IC											
тя	6: 155		aı	nd:	S JCT HW	Y 7-	WELLING	ON	ST IC							
Regr	n: WEST		Patte	rn:	UC		PDCS:	74		I	Factor: 0.9	99				
LHRS	: 13599		Offs	et:	4.402		Locn:	4.4	02 KM N O	FLA	ARD RD IC	(College	Av	e W.)	
Dii	r: N		Lan	es:	2		Speed:	70	km/h		Dates: 18	-No	v-2019 to 2	5-No	v-2019	
	Mon		Tue		Wed		Thu		Fri		Sat		Sun		Mon	\square
H. Interval	11/18		11/19	P <u>k</u> .	11/20	못	11/21	Pr.	11/22	P <u>k</u> .	11/23	<u> </u>	11/24	못	11/25	못
00:00-01:00			138		198		165		180		295		274		131	
01:00-02:00			129		123		127		147		135		171		63	
02:00-03:00			80		65		55		78		94		144		32	
03:00-04:00			78		74		80		74		91		73		60	
04:00-05:00			107		108		97		112		71		55		119	
05:00-06:00			302		335		335		294		132		84		337	
06:00-07:00			935		1009		1027		994		330		184		972	
07:00-08:00			1392		1460		1414		1374		449		247		1357	
08:00-09:00			1571	۵	1691	۵	1672	۵	1666	۵	821	۵	439		1530	
09:00-10:00			1333		1336		1408		1328		1087		804		1191	
10:00-11:00			1177		1294		1256		1335		1371		1122		1034	
11:00-12:00			1275		1288		1234		1448		1505		1365		1043	٥
AM Total			8517		8981		8870		9030		6381		4962		7869	
12:00-13:00	1183	٥	1390	0	1363		1401	ĺ	1578		1683	0	1578			
13:00-14:00	1104		1378		1325		1487	0	1651	۵	1665		1536			
14:00-15:00	1259		1534		1568		1675		1724		1734		1467			
15:00-16:00	1418		1682		1836		1806		1901		1783	۵	1467			
<u>16:00-17:00</u>	1477		1967	۵	1957	۵	2042		2045	۵	1573		1391			
17:00-18:00	1303		1650		1899		1923		1931		1340		1253			
<u>18:00-19:00</u>	929		1414		1369		1380		1557		1169		959			
19:00-20:00	720		1064		1007		1238		1146		825		851			
20:00-21:00	528		804		934		952		920		681		707			
21:00-22:00	394		652		642		657		773		560		509			
22:00-23:00	328		442		485		547		543		526		427			
23:00-00:00	277		309		360		377		465		402		216			
PM Total	10920		14286		14745		15485		1 <mark>62</mark> 34		13941		1 <mark>236</mark> 1			
24h. Total	10920		22803		23726		24355		25264		20322		17323		7869	
Noon - No	on	1943	7 2	2326	i7 2	2361	5	2451	5 2	2261	5	1890	3	2023	0	

Ministry of Transportation

Hwy	: 6		Betwe	en: LAIRD RD IC nd: S JCT HWY 7-WELLINGTON ST IC												
TS	: 155		a	nd:	S JCT HW	Y 7-	WELLINGT	ON	ST IC							
Regn	WEST		Patte	rn:	UC		PDCS:	74		I	Factor: 0.	99				
LHRS	: 13599		Offs	et:	4.402		Locn:	4.4	02 KM N O	FLA	AIRD RD IC	(C	College	Ave	e W.)	
Dir:	S		Lan	es:	2		Speed:	70	km/h		Dates: 18	-No	v-2019 to 2	5-No	v-2019	
	Mon		Tue		Wed		Thu		Fri		Sat		Sun		Mon	Τ
H. Interval	11/18		11/19	P.	11/20	P.	11/21	Pk.	11/22	Pk.	11/23	P <u>k.</u>	11/24	<u>P</u> .	11/25	P <u>k</u> .
00:00-01:00			127		130		127		158		222		235		62	
01:00-02:00			54		65		72		82		90		149		41	
02:00-03:00			64		69		72		95		77		102		44	
03:00-04:00			71		75		55		72		61		63		64	
04:00-05:00			166		147		158		155		56		56		166	
05:00-06:00			532		531		549		522		211		99		514	
06:00-07:00			1005		945		971		963		273		153		819	
07:00-08:00			1433		1458		1407		1490		432		245		1263	
08:00-09:00			1811	۵	1826	۵	1765	۵	1633		764	۵	344	۵	1636	۵
09:00-10:00			1320		1313		1423		1465		1111		462		1171	
10:00-11:00			1206		1206		1296		1454		1398		513		1068	
11:00-12:00			1304		1298		1469		1561		1593		630		1167	0
AM Total			9093		9063		9364		9650		6288		3051		8015	
12:00-13:00	1194		1378	۵	1384	۵	1488	٥	1604		1659	۵	730	0		
13:00-14:00	1236	٥	1325		1287		1431		1612		1598		684			
14:00-15:00	1336		1493		1510		1565		1669		1681		788			
15:00-16:00	1744		1811		1878		1884		2061		1643	0	791	۵		
16:00-17:00	1872		2097	۵	2056	۵	2086	۵	2193		1570		740			
17:00-18:00	2037	۵	2032		2029		2086		2111		1354		640			
18:00-19:00	1244		1327		1335		1414		1502		1080		494			
19:00-20:00	916		1016		935		1114		1162		770		435			
20:00-21:00	710		756		716		915		818		627		348			
21:00-22:00	485		631		573		613		643		549		262			
22:00-23:00	381		333		365		431		562		464		219			
23:00-00:00	344		369		372		401		451		312		132			
PM Total	13499		14568		14440		15428		16388		13307		6263			
24h. Total	13499		23661		23503		24792		26038		19595		9314		8015	
Noon - Noo	on 2	2259	2 2	2363	31 2	2380	4 2	2507	8 :	2267	6	1635	8	1427	8	

Ministry of Transportation

H	wy: 6		Betw	een: LAIRD RD IC												
-	TS: 155			and:	S JCT H	WY	7-WELLING	TO	N ST IC							
Re	gn: WES	т	Pat	tern:	UC		PDCS	: 7	4		Factor:).99				
LH	RS: 1359	9	Of	fset:	4.402		Locr	n: 4	402 KM N	OF I	AIRD RD I	c (College	Av	'e W.)	
I	Dir: CON	BINE	D La	ines:	4		Speed	I: 7	0 km/h		Dates:	18-N	lov-2019 to	25-N	lov-2019	
	Mon		Tue		Wed		Thu		Fri		Sat		Sun		Mon	
H. Interval	11/18		11/19	Pk.	11/20	P <u>k.</u>	11/21	Pk.	11/22	Pk.	11/23	P <u>k.</u>	11/24	P <u>k.</u>	11/25	P <u>K.</u>
00:00-01:00			265		328		292		338		517		509		193	
01:00-02:00			183		188		199		229		225		320		104	
02:00-03:00			144		134		127		173		171		246		76	
03:00-04:00			149		149		135		146		152		136		124	
04:00-05:00			273		255		255		267		127		111		285	
05:00-06:00			834		866		884		816		343		183		851	
06:00-07:00			1940		1954		1998		1957		603		337		1791	
07:00-08:00			2825		2918		2821		2864		881		492		2620	
08:00-09:00			3382	۵	3517	٥	3437	٥	3299	۵	1585		783	۵	3166	
09:00-10:00			2653		2649		2831		2793		2198		1266		2362	
10:00-11:00			2383		2500		2552		2789		2769		1635		2102	
11:00-12:00			2579		2586		2703		3009		3098		1995		2210	0
AM Total			17610		18044		18234		18680		12669		8013		15884	
12:00-13:00	2377	0	2768		2747	٥	2889		3182		3342	۵	2308	0		
13:00-14:00	2340		2703		2612		2918	0	3263	۵	3263		2220			
14:00-15:00	2595		3027		3078		3240		3393		3415		2255			
15:00-16:00	3162		3493		3714		3690		3962		3426	۵	2258	0		
16:00-17:00	3349	۵	4064		4013	۵	4128	٥	4238	۵	3143		2131			
17:00-18:00	3340		3682		3928		4009		4042		2694		1893			
18:00-19:00	2173		2741		2704		2794		3059		2249		1453			
19:00-20:00	1636		2080		1942		2352		2308		1595		1286			
20:00-21:00	1238		1560		1650		1867		1738		1308		1055			
21:00-22:00	879		1283		1215		1270		1416		1109		771			
22:00-23:00	709		775		850		978		1105		990		646			
23:00-00:00	621		678		732		778		916		714		348			
PM Total	24419		28854		29185		30913		32622		27248		18 <mark>624</mark>			
24h. Total	24419		46464		47229		49147		51302		39917		26637		15884	
Noon - No	on	4202	.9 4	46898	8 4	4741	9 4	1959	3 4	4529)1 ;	3526	i 1 :	3450	8	
	ADT		AWD		AADT		SADT		SAWD	Г	WADT		DHV			

Ministry of Transportation

Andrew Lambert

From:Amy PatenaudeSent:Tuesday, July 4, 2023 9:41 AMTo:Andrew LambertSubject:FW: 601 Scottsdale Avenue Traffic Request - Project number 2302908

Hi Andrew,

Please scroll through the email for growth rates, etc. Please let me know what you'd like to order.

Thanks.

Amy

Amy Patenaude | Senior Technical/Administrative Assistant Americas Noise/Acoustics/Vibration RWDI Direct Line: 226-314-1280

From: Wollen Medina <Wollen.Medina@guelph.ca>
Sent: Friday, June 30, 2023 3:06 PM
To: Amy Patenaude <Amy.Patenaude@rwdi.com>
Subject: RE: 601 Scottsdale Avenue Traffic Request - Project number 2302908

Hello Amy,

Please see my comments below in red. Furthermore, the city's data for AADT and TMC can be purchase. I will list the available data we have currently below. Please let me know if you are interested in purchasing any of the data.

- Stone Rd W at Scottsdale Dr TMC July 2018
- Stone between College and Woodland Glen Dr ATR July 2018
- Edinburgh at Stone TMC 2016
- Scottsdale between College Ave and Winsonview Ave AADT Sept 2022, Sep 2020
- Scottsdale Between Winsonview and Janefield Sep 2022, 2021 Nov
- Scottsdale at Janefield May 2022

Regards,

Wollen Medina Traffic Technologist I Engineering and Transportation Services, Infrastructure, Development & Enterprise City of Guelph T 519-822-1260 extension 2048 M 519-820-4982 Wollen.Medina@guelph.ca

From: Traffic <<u>Traffic@guelph.ca</u>>
Sent: Friday, June 30, 2023 1:11 PM

To: Wollen Medina <<u>Wollen.Medina@guelph.ca</u>>; Amy Patenaude <<u>Amy.Patenaude@rwdi.com</u>> Subject: FW: 601 Scottsdale Avenue Traffic Request - Project number 2302908

Hello Amy,

Thank you for your email to the City of Guelph and sharing your concerns with us. I am including our Traffic Technologist <u>@Wollen Medina</u>to this email to provide a complete response.

Thank you,

Harvinder Marjara, **Clerical Assistant** Engineering and Transportation Services, **Infrastructure, Development and Enterprise City of Guelph** 519-822-1260, extension 2338 <u>harvinder.marjara@guelph.ca</u>

<u>guelph.ca</u> <u>Facebook.com/cityofguelph</u> @cityofguelph

My work hours may not match yours, and I do not expect you to respond outside your working hours

From: Amy Patenaude <<u>Amy.Patenaude@rwdi.com</u>>
Sent: Friday, June 30, 2023 11:18 AM
To: Traffic <<u>Traffic@guelph.ca</u>>
Cc: Andrew Lambert <<u>Andrew.Lambert@rwdi.com</u>>
Subject: 601 Scottsdale Avenue Traffic Request - Project number 2302908

[EXTERNAL EMAIL] Do not click links or attachments unless you recognize the sender and know the content is safe.

Good Day

•

We are doing a noise study for the above-noted location. We are looking for:

- Automatic Traffic Recorder (ATR) (hour-by-hour) counts
- or AADT
- Turning movement counts at intersections
- Traffic growth rate per annum.
 - 2% growth rate per year
 - Speed limits for noted road segments.
 - Shown below.
- Heavy and Medium Truck Percentages

The road we are interested in are:

- Stone Rd W 50
- Scottsdale Dr 40
- Highway 6 (Hanlon expressway)
- Janefield Ave 40

We are hoping you have TMCs and 24-hour counts. Ideally, we would like this data to not be impacted by Covid shutdowns.

Thank you.

Amy

SUMMER HOURS ALERT: Please note that starting the week of June 26th running through August 1st our offices will be enjoying summer hours. On Fridays, our workday will end at 12:30 PM. We return to regular office hours the week of September 3rd. Happy summer.

Amy Patenaude (she/her) SENIOR TECHNICAL/ADMINISTRATIVE ASSISTANT Americas Noise/Acoustics/Vibration RWDI 600 Southgate Drive, Guelph, ON N1G 4P6 Canada Direct Line: 226-314-1280 | Fax: (519) 823-1316 rwdi.com

Celebrating 50 years of engineering for the environment

RWDI - A Platinum Member of Canada's 50 Best Managed Companies

This communication is intended for the sole use of the party to whom it was addressed and may contain information that is privileged and/or confidential. Any other distribution, copying or disclosure is strictly prohibited. If you received this email in error, please notify us immediately by replying to this email and delete the message without retaining any hard or electronic copies of same. Outgoing emails are scanned for viruses, but no warranty is made to their absence in this email or attachments. If you require any information supplied by RWDI in a different format to facilitate accessibility, contact the sender of the email, email solutions@rwdi.com or call +1.519.823.1311. Please be aware that when you contact us with a business query we may collect and use your details for future communications.

This e-mail message (including attachments, if any) is intended for the use of the individual to whom it is addressed and may contain information that is privileged and confidential. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender and erase this e-mail message immediately.

AADT Traffic Data Estimations for Modelling

Boadway	Link/Direction	AADT[7]	%Tru	icks	2	4-hr Volum	es				Forecast to:		Vehicle	es / Hour
Roadway	Ennobilection	AAD1	%MT	%HT	Cars	Med	Heavy	Data From Year	Speed Limit	Traffic Growth	2037	Future AADT	Daytime (7-23)	Nighttime (23-7)
Hwy 6 at Kortright	North	36647	3.1%	4.9%	33738	1119	1790	2019	80	2%	18	52341	2932	678
Hwy 6 at College	South	43000	2.9%	4.7%	39711	1265	2024	2019	80	2%	18	61414	3486	706

		DT Split %	NT Split %	
Intersection:	Hwy 6 at Kortright	90%	10%	(north)
	Hwy 6 at College	91%	9%	(south)

Ontario

AdHoc Turning Movement Total Count and Peak Summary Report

Ministry of Transportation

Description:	HWY 6 @ STONE RD			
Region:	WEST	Survey Type: TM – Intersection	Hwy:	6
Start Date:	29-Mar-2017 (Wed)	I/C Side:	LHRS:	13600
End Date:	29-Mar-2017 (Wed)	Int. Type: Four Leg	Offset:	4.120

Schedule Summary: TUES-THURS, 07:00-09:00, 11:00-14:00, 15:00-18:00

Midday Peak Hour Report	Start Time: 12:00	PM Peak Hour Report	Start Time: 16:30
HWY	6		HWY 6
Total 0% 14% 3% (T (T (T (T +LT) +LT) +LT) +L	% ↑ Ped. 10	0% 39 (T (+LT) +	% 2% ↑ (T (T) LT) +LT) 20 417 1701
Ped. 1 Venicies 21 937 3.	STONE RD	Ped. 0 Venicies 33 13	STONE RD
← 111 ← ↓ └	→ 1 ²⁹⁹ ^{2%} (T +LT)	← 212 ←	$ \begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $
0% 17 ∫ (T +LT)	← 75 4% (T +LT)	0% 25 Ĵ +LT)	← 150 ^{3%} (T +LT)
$ \begin{array}{ccc} 1\% & 73 \\ (T & +LT) & \longrightarrow \end{array} $	↓ 237 4% (T+LT)	$ \begin{array}{ccc} 2\% & 88 \\ (T & +LT) & \longrightarrow \end{array} $	↓ 358 ^{1%} (T+LT)
0% ²⁵ +LT) ↓ ↓ ↓	$\uparrow r \rightarrow \qquad \qquad$	4% 24 (T +LT) ↓	
STONE RD 1199 15 8	Total Ped. 2 Vehicles	STONE RD 1901 2	29 1263 271 Total Ped. 0 Vehicles
Ped. 1 (T +LT) +	2% 3% (T (T LT) +LT)	Ped. 1	% 4% 2% (T (T (T LT) +LT) +LT)
HWY 6			HWY 6

1. Traffic Counts to AADT (Future with Growth)											Intersection	: Stone Rd E of Hwy 6	90%	10%	(east)
												Stone Rd W of Hwy 6	90%	10%	(west
													DT Split %	NT Split %	
AADT Traffic Data Estimations for Modelling															
															-
Roadway	Link/Direction	A A DT ^[7]	%Tru	cks		24-hr Volum	es				Forecast to:		Vehic	les / Hour]
Roadway	Link/Direction	AADT ^[7]	%MT	cks %HT	Cars	24-hr Volum Med	es Heavy	Data From Year	Speed Limit	Traffic Growth	Forecast to: 2037	Future AADT	Vehicl Daytime (7-23)	es / Hour Nighttime (23-7)	-
Roadway Stone Rd E of Hwy 6	Link/Direction East	AADT ^[7] 17264	%Tru %MT 1.4%	cks %HT 2.2%	Cars 16639	24-hr Volum Med 240	es Heavy 385	Data From Year 2017	Speed Limit	Traffic Growth 2%	Forecast to: 2037 20	Future AADT 25653	Vehicl Daytime (7-23) 3 1443	Nighttime (23-7)	

APPENDIX C

National Research Council of Canada (NRCC) Division of Building Research, Building Practice Note No. 56 (BPN 56), "Controlling Sound Transmission Into Buildings", 1985. Ontario Ministry of the Environment, "Manual for Environmental Noise Assessment In Land Use Planning Course", July 1997.

			Sound Leve	ls and Sour	ce Inputs			Room and	Façade Pro	operties										Exte	erior wa	all (STC 45 to 60)				Window (STC-25 to STC	2-44)			
Window STC Requirement	Reeptor	Source	Façade Sound Level (dBA)	Sound Lew Criterion (dBA)	l Sound Angle of Incidence (Degrees)	of Angle of Incidence Correction (dB)	Required Noise Reduction (dB)	Window to Façade Area (%)	Exterior Door to Façade Area (%)	Exterior Wall to Façade Area (%)	Façade/ Floor Area (%)	Façade Height (m)	Façade Length (m)	Room Depth (m)	Room Absorption	Floor Area (m ²)	Window Area (m ²)	Exterior Door Area (m ²)	Exterior Wall Area (m ²)	S Ra	TC ting	Category	Room Correction	Source- Component Correction	Noise Reduction	Category	Room Correction	Source- Component Correction	Minimum Source Specific STC	Window STC Requirement
North Building Southw	est Side (worst-case)			-													-													
28	Living Room - Daytime	d. Mixed road traffic	69	45	0 - 90°	0	27	80%	0%	20%	55%	3.0	3.7	5.5	0.80	20.4	8.9	0.0	2.2		45 d	d. Exterior wall, or roof/ceiling	-9	7	47	c. Sealed thin window	-3	4	28	28
30	Bedroom - Daytime	d. Mixed road traffic	69	45	0 = 90°	0	27	80%		20%	81%	3.0	3.0	3.7	0.80	11.1	7.2	0.0	1.8	4	45 d	d. Exterior wall, or roof/ceiling	-7	7	45	c. Sealed thin window	-1	4	30	30
28	Bedroom - Nighttime	d. Mixed road traffic	62	40	0 - 90°	0	25	80%		20%	81%	3.0	3.0	3.7	0.80	11.1	7.2	0.0	1.8	4	45 d	d. Exterior wall, or roof/ceiling	-7	7	45	c. Sealed thin window	-1	4	28	28

30 Maxiumum STC Requirment

Receiver Name: Worst-case POR ID: POR1 X: 561309.61 m Y: 4818354.86 m

Z: 353.08 m

			Point S	ource,	ISO	9613,	Name:	"4-fan	HVAC",	ID: "	1050	!Lenn	ox_KO	B240)S''					-
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2	561351.65	4818364.74	337.70	0	DEN	Α	86.9	0.0	0.0	0.0	0.0	44.2	0.3	-2.4	0.0	0.0	0.0	0.0	0.0	44.8
4	561351.65	4818364.74	337.70	1	DEN	A	86.9	0.0	0.0	0.0	0.0	48.9	0.4	-2.4	0.0	0.0	0.0	0.0	2.0	37.9

			Point S	ource	, ISO	9613, I	Name:	"4-fan	HVAC"	ID: "	10501	l!Lenr	nox_KC	GB24)S''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6	561356.01	4818358.92	337.70	0	DEN	A	86.9	0.0	0.0	0.0	0.0	44.8	0.3	-2.4	0.0	0.0	0.0	0.0	0.0	44 <u>.</u> 2
7	561356.01	4818358.92	337.70	1	DEN	A	86.9	0.0	0.0	0.0	0.0	49.1	0.4	-2.4	0.0	0.0	0.0	0.0	2.0	37.7

			Point S	ource	, ISO :	9613, I	Name:	"4-fan	HVAC",	ID: "	1050	!Lenn	ox_KC	B240	DS"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8	561364.88	4818347.54	337.70	0	DEN	A	86.9	0.0	0.0	0.0	0.0	46.2	0.3	-2.4	0.0	0.0	0.0	0.0	0.0	42 <u>.</u> 7
9	561364.88	4818347.54	337.70	1	DEN	A	86.9	0.0	0.0	0.0	0.0	49.7	0.5	-2.4	0.0	0.0	0.0	0.0	2.0	37.1

			Point S	Source	, ISO	9613,	Name:	"1-fai	י HVAC"	, I D: '	'!050	1!Cap	tiveAir	e_RT	'U''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
10	561357.27	4818355.50	337.20	0	DEN	A	82.0	0.0	0.0	0.0	0.0	45.0	0.1	-2.4	0.0	0.0	0.0	0.0	0.0	39.3
11	561357.27	4818355.50	337.20	1	DEN	A	82.0	0.0	0.0	0.0	0.0	49.4	0.2	-2.4	0.0	0.0	0.0	0.0	2.0	32.9

			Po	oint So	ource,	ISO 9	613, N	ame: '	'car was	h", I C): "!05	501!Ca	ar_Was	sh"						
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
12	561450.52	4818274.10	334.54	0	DEN	A	92.2	0.0	0.0	0.0	0.0	55.3	0.3	-2.0	0.0	0.0	0.0	0.0	0.0	38.6
13	561450.52	4818274.10	334.54	1	DEN	A	92.2	0.0	0.0	0.0	0.0	55.8	0.3	-2.0	0.0	0.0	0.0	0.0	2.0	36.0

			Point S	Source	e, ISO	9613,	Name:	"1-fai	י HVAC	, I D: '	'!050	1!Cap	tiveAir	e_RT	'U''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
14	561347.40	4818413.89	334.84	0	DEN	A	82.0	0.0	0.0	0.0	0.0	48.2	0.1	-1.7	0.0	0.0	0.0	0.0	0.0	35.3

			Point S	ource,	ISO 9	9613, I	Name:	"1-fan	HVAC",	ID: "	1050	Lenn!	ox_KO	GB048	3S''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
15	561348.14	4818368.31	336.95	0	DEN	A	73.6	0.0	0.0	0.0	0.0	43.8	0.2	-2.4	0.0	0.0	0.0	0.0	0.0	31.9
16	561348.14	4818368.31	336.95	1	DEN	Α	73.6	0.0	0.0	0.0	0.0	48.8	0.3	-2.4	0.0	0.0	0.0	0.0	2.0	24.8

			Point S	ource	, ISO	9613, I	Name:	"2-far	HVAC"	ID: "	10501	I!Lenr	ox_KO	GB048	BS"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
17	561367.99	4818339.60	336.95	0	DEN	A	73.6	0.0	0.0	0.0	0.0	46.9	0.2	-2.4	0.0	0.0	0.0	0.0	0.0	28.8
18	561367.99	4818339.60	336.95	1	DEN	A	73.6	0.0	0.0	0.0	0.0	48.2	0.3	-2.4	0.0	0.0	0.0	0.0	3.0	24.5
19	561367.99	4818339.60	336.95	1	DEN	A	73.6	0.0	0.0	0.0	0.0	50.3	0.3	-2.4	0.0	0.0	0.0	0.0	2.0	23.3

		Point S	Source, I	SO 96	613, N	lame: '	'Lenno:	x VRE	heat re	cover	y", I D	: "!050)1!Len	nox_'	VRB1	20H"				
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
20	561359.55	4818357.12	337.20	0	DEN	A	65.0	0.0	0.0	0.0	0.0	45.4	0.1	-2.4	0.0	0.0	0.0	0.0	0.0	21.9
21	561359.55	4818357.12	337.20	1	DEN	A	65.0	0.0	0.0	0.0	0.0	49.1	0.2	-2.4	0.0	0.0	0.0	0.0	2.0	16.1

		Point S	Source, IS	SO 96	13, N	ame: "	Lenno×	(VRB	Heat Re	cove	ry", I C	D: "!05	01!Ler	nox_	VRB	120H"				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
22	561360.79	4818355.39	337.20	0	DEN	A	65.0	0.0	0.0	0.0	0.0	45.6	0.1	-2.4	0.0	0.0	0.0	0.0	0.0	21.7
23	561360.79	4818355.39	337.20	1	DEN	A	65.0	0.0	0.0	0.0	0.0	49.2	0.2	-2.4	0.0	0.0	0.0	0.0	2.0	16.0

		Point S	Source, I	SO 96	613, N	ame: '	'Lenno:	x VRB	heat red	cover	y", I D	: "!050)1!Len	nox_'	VRB1	20H"				
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
24	561345.48	4818408.47	334.51	0	DEN	A	65.0	0.0	0.0	0.0	0.0	47.5	0.1	-1.7	0.0	0.0	4.8	0.0	0.0	14.2

		Point S	Source, I	SO 96	613, N	lame: '	"Lenno:	x VRE	heat re	cover	y", I D	: "!050)1!Len	nox_`	VRB1	20H"				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
27	561346.95	4818409.62	334.64	0	DEN	A	65.0	0.0	0.0	0.0	0.0	47.8	0.1	-1.7	0.0	0.0	6.2	0.0	0.0	12.6
30	561346.95	4818409.62	334.64	1	DEN	A	65.0	0.0	0.0	0.0	0.0	48.1	0.1	-1.7	0.0	0.0	20.0	0.0	2.0	-3.6

F1 Distance to roadways	Drawn by: ACCL	Figure: C3		/
	Project #:	2302908		4
601 Scottsdale Drive	Date:	2024-03-26		

STAMSON 5.0 NORMAL REPORT 1 Date: 27-03-2024 16:53:03 2 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT 3 4 Filename: nb sw F1.te Time Period: Day/Night 16/8 hours 5 Description: 6 7 8 Road data, segment # 1: Hwy6NofStone (day/night) 9 _____ 10 Car traffic volume : 51504/5214 veh/TimePeriod 11 Medium truck volume : 1640/166 veh/TimePeriod 12 Heavy truck volume : 2625/266 veh/TimePeriod 13Posted speed limit80 km/h14Road gradient0 %15Road pavement1 (Typical asphalt or concrete) 16 17 Data for Segment # 1: Hwy6NofStone (day/night) 18 _____ 19Angle1Angle2: -90.00 deg90.00 deg20Wood depth: 0(No woods.)21No of house rows: 0 / 022Surface: 2(Reflective) (Reflective ground surface) 23 Receiver source distance : 106.00 / 106.00 m 24Receiver height:7.50 / 7.50 m25Topography:126Reference angle:0.00 27 2.8 ΕF 29 Road data, segment # 2: StoneRdEof6 (day/night) 30 _____ Car traffic volume : 22252/2472 veh/TimePeriod 31 32Medium truck volume :321/36veh/TimePeriod33Heavy truck volume :514/57veh/TimePeriod 34Posted speed limit :60 km/h35Road gradient :2 %36Road pavement :1 (Typical asphalt or concrete) 37 38 Data for Segment # 2: StoneRdEof6 (day/night) 39 _____ (Reflective ground surface) 44 $\,$ Receiver source distance $\,$: 106.00 / 106.00 m $\,$ 45Receiver height:7.50 / 7.50 m46Topography:147Reference angle:0.00 48 49 FF50 Road data, segment # 3: StoneRdWof6 (day/night) 51 52 Car traffic volume : 4447/494 veh/TimePeriod 52641 craffic volume447/454ven/fimereriod53Medium truck volume :43/5veh/TimePeriod54Heavy truck volume :69/8veh/TimePeriod55Posted speed limit :60 km/h56Road gradient :0 %57Road pavement :1 (Typical asphalt or concrete) 58 59 Data for Segment # 3: StoneRdWof6 (day/night) 60 ------

 61
 Angle1
 Angle2
 : 50.00 deg
 90.00 deg

 62
 Wood depth
 : 0
 (No woods.)

 63
 No of house rows
 : 0 / 0

 64
 Surface
 : 2
 (Reflective)

 (Reflective ground surface) 65 Receiver source distance : 106.00 / 106.00 m 66Receiver height:7.50 / 7.50 m67Topography:168Reference angle:0.00 69

```
70
    FF
71
    Results segment # 1: Hwy6NofStone (day)
72
    _____
73
74
    Source height = 1.47 m
75
76
    ROAD (0.00 + 69.30 + 0.00) = 69.30 dBA
77
    Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
78
    _____
    -90 90 0.00 77.79 0.00 -8.49 0.00 0.00 0.00 0.00 69.30
79
80
    _____
81
82
    Segment Leg : 69.30 dBA
83
    FF
84
85
    Results segment # 2: StoneRdEof6 (day)
86
    _____
87
88
    Source height = 1.22 m
89
90
    ROAD (0.00 + 55.87 + 0.00) = 55.87 dBA
91
    Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
92
    _____
      0 50 0.00 69.92 0.00 -8.49 -5.56 0.00 0.00 0.00 55.87
93
94
    _____
95
96
    Segment Leg : 55.87 dBA
97
    FF
98
99
    Results segment # 3: StoneRdWof6 (day)
100
    _____
101
102
    Source height = 1.11 \text{ m}
103
104
    ROAD (0.00 + 46.51 + 0.00) = 46.51 \text{ dBA}
    Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
105
106
              -----
                        _____
                             _____
       50 90 0.00 61.53 0.00 -8.49 -6.53 0.00 0.00 0.00 46.51
107
108
    _____
109
110
    Segment Leq : 46.51 dBA
111
112
    Total Leg All Segments: 69.51 dBA
113
114
    귀귀
115
    Results segment # 1: Hwy6NofStone (night)
116
         _____
               _____
117
118
    Source height = 1.47 \text{ m}
119
120
    ROAD (0.00 + 62.37 + 0.00) = 62.37 \text{ dBA}
121
    Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
122
    _____
123
     -90 90 0.00 70.86 0.00 -8.49 0.00 0.00 0.00 0.00 62.37
124
    _____
125
126
    Segment Leq : 62.37 dBA
127
128
    \mathbf{FF}
129
    Results segment # 2: StoneRdEof6 (night)
    _____
130
131
132
    Source height = 1.22 m
133
134
    ROAD (0.00 + 49.33 + 0.00) = 49.33 dBA
135
    Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
    _____
136
137
      0
          50 0.00 63.39 0.00 -8.49 -5.56 0.00 0.00 0.00 49.33
```

138

Sec	ment Le	eq :	49.33	dBA							
FF Res	ults se	egmen	t # 3:	StoneRd	Wof6 (r	night)					
Sοι	irce he:	ight	= 1.12	m							
RO <i>F</i> Ang	AD (0.00 gle1 Ang) + 4 gle2	0.06 + Alpha	0.00) = RefLeq	40.06 P.Adj	dBA D.Adj	F.Adj	W.Adj	H.Adj	B.Adj	SubLeq
	50	90	0.00	55.09	0.00	-8.49	-6.53	0.00	0.00	0.00	40.06
Sec	ment Le	ed :	40.06	dBA							
Tot	al Leq	All	Segmen	ts: 62.6	0 dBA						
1919											
TOT	'AL Leq	FROM	I ALL S	OURCES ((NI	DAY): (GHT): (59.51 52.60					
FF FF											

ATTACHMENT 3

"Noise and Vibration Study, 601 Scottsdale Drive, Guelph. Ontario," report, dated August 30, 2023.

FINAL REPORT

601 SCOTTSDALE DRIVE

GUELPH, ONTARIO

NOISE AND VIBRATION IMPACT STUDY

RWDI #2302908 August 30, 2023

SUBMITTED TO

Sydney Zhang Coordinator, Real Estate Development sydneyz@forumam.com

Forum 601 Scottsdale LP 181 Bay Street East Podium, 2nd Floor Toronto, ON M5J 2T3 SUBMITTED BY

Mikk Toome, M.Sc., P.Eng. Technical Director - Acoustics Mikk.Toome@rwdi.com

Maja Bokara, PGCert, EP Project Manager Maja.Bokara@rwdi.com

RWDI

600 Southgate Drive Guelph Ontario Canada N1G 4P6 T: 519.823.1311 | ext. 2440 F: 519.823.1316

© 2023 RWDI AIR Inc. ("RWDI") ALL RIGHTS RESERVED This document is intended for the sole use of the party to whom it is addressed and may contain information that is privileged and/or confidential. If you have received this in error, please notify us immediately. Accessible document formats provided upon request. ® RWDI name and logo are registered trademarks in Canada and the United States of America RWDI#2302908 August 30, 2023

VERSION HISTORY

Index	Date	Description	Prepared by	Reviewed by
1	2023/07/24	Draft	Andrew Lambert	Mikk Toome
2	2023/08/30	Final	Andrew Lambert	Mikk Toome

STATEMENT OF LIMITATIONS

This report entitled "601 Scottsdale Drive" was prepared by RWDI AIR Inc. ("RWDI") for Forum 601 Scottsdale LP ("Client"). The findings and conclusions presented in this report have been prepared for the Client and are specific to the Project described herein ("Project"). The conclusions and recommendations contained in this report are based on the information available to RWDI when this report was prepared. Because the contents of this report may not reflect the final design of the Project or subsequent changes made after the date of this report, RWDI recommends that it be retained by Client during the final stages of the Project to verify that the results and recommendations provided in this report have been correctly interpreted in the final design of the Project.

The conclusions and recommendations contained in this report have also been made for the specific purpose(s) set out herein. Should the Client or any other third party utilize the report and/or implement the conclusions and recommendations contained therein for any other purpose or Project without the involvement of RWDI, the Client or such third party assumes any and all risk of any and all consequences arising from such use and RWDI accepts no responsibility for any liability, loss, or damage of any kind suffered by Client or any other third party arising therefrom.

Finally, it is imperative that the Client and/or any party relying on the conclusions and recommendations in this report carefully review the stated assumptions contained herein and to understand the different factors which may impact the conclusions and recommendations provided.

NOISE AND VIBRATION IMPACT STUDY 601 SCOTTSDALE DRIVE RWDI#2302908 August 30, 2023

EXECUTIVE SUMMARY

RWDI was retained to prepare a Noise and Vibration Impact Study in support of an Official Plan amendment and Zoning By-lw Amendment for the proposed residential building located at 601 Scottsdale Avenue in Guelph, Ontario. The proposed development is intended to be used as student residences and will consist of a 7-storey residential building with two towers joined by a 1-storey podium. This building is in addition to the existing student residence on the property which has 4 storeys in the east part and 1 storey on the west connected by a sloped atrium.

The following noise control measures are recommended for the proposed development:

- 1. Installation of central air-conditioning so that all suites' windows can remain closed.
- 2. The inclusion of noise warning clauses related to:
 - a. Transportation sound levels at the building façade
- 3. Minimum sound isolation performance:
 - a. Suite window glazing with sound isolation performance meeting a minimum STC-29.
 - b. Suite exterior walls with sound isolation performance meeting a minimum STC-45.

Potential impacts of noise from the surrounding environment on the proposed development were assessed. Potential noise impacts from road traffic on Highway 6 and Stone Road were evaluated and found to be compatible with the use of central air conditioning and specified window glazing sound isolation performance. A review of surrounding industrial and commercial uses was completed and the significant noise sources were modeled. There were slight exceedances of the limits due to the existing building on-site, but as they share ownership it is likely feasible to provide mitigation. No incompatibilities with respect to off-site existing land uses and the proposed development were identified. There were no significant identified sources of vibration.

At this stage in design the impact of the development on itself and its surroundings could not be quantitatively assessed. However, the impact on both the building itself and its surroundings is expected to be feasible to meet the applicable criteria. We recommend that the building design is evaluated prior during detailed design to ensure that the acoustical design is adequately implemented in order to meet the applicable criteria.

Based on the results of this assessment, the proposed development is considered to be feasible from a noise impact aspect.

TABLE OF CONTENTS

	ITIN/E	CLIMANAADV	
EXECU	JIIVE	SUMMARY	

1	INTRODUCTION	1
2	APPLICABLE CRITERIA	1
2.1	Transportation Sources 2.1.1 Road Traffic Criteria	1 2
2.2	Stationary Sources	3
3	IMPACT OF THE ENVIRONMENT ON THE PROPOSED DEVELOPMENT	4
3.1	Transportation Source Assessment	4 4 5 6
3.2	 Stationary Source Assessment 3.2.1 Surrounding Industrial & Commercial Developments 3.2.2 Representative Receptors 3.2.3 Site Visit7 3.2.4 Analysis and Results 	6 6 7
3.3	Recommendations	9 9 11 11
4	IMPACT OF THE PROPOSED DEVELOPMENT ON THE ENVIRONMENT AND ITSELF	12
5	CONCLUSION	13
6	REFERENCES	14

LIST OF FIGURES

- Figure 1: Context Site Plan
- Figure 2: Worst-case Receptors and OLA
- Figure 3: Noise Sources

LIST OF TABLES

Table 1:	NPC-300 Sound Level Criteria for Road	2
Table 2:	Ventilation, Building Component, and Warning Clauses Recommendations	3
Table 3:	NPC-300 Exclusion Limits - Continuous Stationary Sources	4
Table 4:	Road Traffic Data Summary	5
Table 5:	Predicted Sound Levels of Roadway Noise on Facades	6
Table 6:	Stationary Source Sound Power Level Assumptions	8
Table 7:	Predicted Sound Levels of Stationary Sources	9
Table 8:	Recommended Facade Component Minimum Sound Insulation Rating	10

LIST OF APPENDICES

- Appendix A: Site Plan
- Appendix B: Transportation Traffic Volume Data
- Appendix C: Modelling Outputs

1 INTRODUCTION

RWDI was retained to prepare a Noise and Vibration Impact Study for the proposed residential development located at 601 Scottsdale Drive in Guelph, Ontario. The proposed development is adjacent to the existing student residence on the property and is southwest of the Stone Road Mall on Stone Road West.

The proposed development will consist of two 7-storey buildings connected by a 1-storey podium. The east side of the site has an existing student residence that is 4 storeys tall. The new building will be located to the southwest of the existing building, closer to Highway 6. The context site plan is shown in **Figure 1**.

The site is exposed to noise from road traffic on: Highway 6 to the southwest; and Stone Road west to the southeast. Other roads around the site area were considered negligible from a noise perspective due to comparably low volumes or their separation distance.

The site is exposed to noise from the existing residence at the property (rooftop HVAC units) and commercial land uses to the north, east and south.

The objective of this assessment was conducted in support of the ZBA submission to determine the feasibility of the proposed residential development that is surrounded by existing sources of environmental noise and vibration. As there are no sources of vibration in proximity to the development, this assessment considers environmental noise only.

This assessment was based on design drawings dated July 4, 2023. These drawings are included in Appendix A.

2 APPLICABLE CRITERIA

Applicable criteria for transportation noise sources and stationary noise sources are described in this section.

2.1 Transportation Sources

Guidance from Guelph Noise Control Guidelines (GNCG) was used in the assessment of transportation sources. The Guelph Noise Control Guideline incorporates the Ontario Ministry of the Environment, Conservation and Parks NPC-300 Environmental Noise Guideline by reference. The applicable limits for noise generated by transportationrelated sources come from NPC-300. There are three aspects to consider, which include the following:

- 1. Transportation noise levels in indoor living areas (living rooms and sleeping quarters), which determines building façade elements (windows, exterior walls, doors) and sound insulation design recommendations.
- 2. Transportation noise levels at the plane of the window, which determines air-conditioning and ventilation system recommendations and associated warning clauses which inform the future occupants that windows and doors must be closed in order to meet the indoor sound level criteria.
- 3. Transportation noise levels in Outdoor Living Areas (OLAs), which determines OLA noise mitigation and related warning clause recommendations.

OLAs would include outdoor areas intended and designed for the quiet enjoyment of the outdoor environment and are readily accessible from the building. OLAs may include any common outdoor amenity spaces associated with a multi-unit residential development (e.g., courtyards, rooftop terraces), including designated outdoor amenity areas required under Zoning provisions, passive recreational areas such as parks if identified by the City, and/or private backyards and terraces with a minimum depth of 4 m.

2.1.1 Road Traffic Criteria

For assessing sound originating from transportation sources, NPC-300 defines sound level criteria as summarized in **Table 1** for outdoor living areas (OLAs), and indoor areas of sensitive uses.

Assessment Location	Time Period	NPC-300 Limit L _{EQ} (averaged over time period)	Comments
Indoor Living	16 hr Daytime 0700-2300h		
Quarters	8 hr Nighttime 2300-0700h	45 UBA	Indoor sound levels based on the assumption of a
Indoor Sleeping Quarters	16 hr Daytime 0700-2300h	45 dBA	closed window.
	8 hr Nighttime 2300-0700h	40 dBA	
Outdoor Living Areas	16 hr Daytime 0700-2300h	55 dBA	Where possible, separation distance should be used to achieve compliance in lieu of barriers. If technically and economically feasible, noise barriers should be used to achieve 55 dBA sound levels in OLAs. Otherwise, a warning clause would be recommended for sound levels between 56-60 dBA.

Table 1: NPC-300 Sound Level Criteria for Road

Ventilation, building façade component, and warning clauses requirements for residential buildings are determined based on predicted levels of transportation noise at the exterior Plane of Window (POW) as summarized in **Table 2** below.

Accessment	Transportatio	on Noise Level			
Location	Daytime Leq,16-hr	Nighttime Leq,8-hr	Recommendations		
Plane of Window	>65 dBA	>60 dBA	Air conditioning to allow windows to remained closed. The acoustical performance of building components should be designed to meet the indoor sound level limits. GNCG Warning clause "Type D" is recommended.		
	Between 55 and 65 dBA	Between 50 and 60 dBA	Forced-air ventilation system to allow for the installation of air-conditioning. GNCG Warning clause "Type C" is recommended.		
Outdoor Living Area	Between 55 and 60 dBA	Not Applicable	Noise controls (separation distance/barriers) should be implemented to meet the 55 dBA criterion. If noise mitigation is not feasible to meet the 55 dBA criterion, a GNCG Warning Clause "Type A" or "Type B" would be recommended.		
	> 60 dBA	Not applicable	Generally, not acceptable. Noise mitigation required to reduce sound levels to less than 55 dBA if feasible for areas designated for the quiet enjoyment of the outdoors.		

Table 2: Ventilation, Building Component, and Warning Clauses Recommendations

Warning clauses, if applicable, are recommended to be included in agreements of Offers of Purchase and Sale, lease/rental agreements and condominium declarations. Central air conditioning will be included in the proposed development as part of the general design. Therefore, Warning clause "Type D" is applicable in lieu of Warning clause "Type C".

In addition to the ventilation and warning clause, building facade components should be designed to meet the indoor sound level limits based on Plane of Window noise predictions.

2.2 Stationary Sources

Noise from stationary sources is assessed to ensure the proposed development would not affect any environmental noise permits (Environmental Compliance Approvals or Environmental Activity Sector Registrations) of surrounding industrial or commercial properties and to ensure an adequate sound environment would be present for the future residents of the proposed development. Facilities such as residential towers and small commercial establishments are typically exempt from environmental noise permits but may have sources of noise, such as mechanical equipment. Sound from facilities that could require an environmental noise permit is assessed strictly against MECP sound level limits to ensure that the proposed residential use is compatible with the existing industrial and commercial uses.

Under NPC-300, noise from stationary sources is treated differently from transportation sources and requires sound levels be assessed for the predictable worst-case 1-hour average sound level (L_{EQ}) for each period of the day.

For assessing sound originating from stationary sources, NPC-300 defines sound level criteria for two types of Points of Reception (PORs): outdoor and façade.

The assessment criteria for all PORs are the higher of either the exclusion limit per NPC-300 or the minimum background sound level that occurs or is likely to occur at a POR. The applicable exclusion limit is determined based on the level of urbanization or "Class" of the area. This development should be considered to be in a Class 1 (urban) area.

The NPC-300 exclusion limits for continuously operating stationary sources are summarized in **Table 3**. For the façade, the exclusion limits apply at the exterior plane of window; there are no indoor criteria for stationary sources.

Time Period	Exclusion Limit	hit, Class 2 (L _{EQ-1hr})			
	Outdoor	Façade			
Daytime 0700-1900h	50 dBA	50 dBA			
Evening 1900 – 2300h	45 dBA	50 dBA			
Nighttime 2300-0700h		45 dBA			

Table 3: NPC-300 Exclusion Limits - Continuous Stationary Sources

The NPC-300 limits in **Table 3** are used as guidance in assessing comfort of the acoustic environment at the proposed development.

3 IMPACT OF THE ENVIRONMENT ON THE PROPOSED DEVELOPMENT

3.1 Transportation Source Assessment

Roadways identified as having the potential to affect the proposed development included Highway 6, and Stone Road West. Other arterial roads around the proposed development were considered negligible from a noise perspective due to comparatively low volumes and/or their separation distance.

The locations of these sources of sound in relation to the proposed development is shown in **Figure 1**.

3.1.1 Road Traffic Volume Data

The Highway 6 and Stone Road West traffic volumes were obtained from traffic data obtained from the Ontario Ministry of Transportation (MTO). Data from the City of Guelph was also obtained, but the traffic volumes from the MTO data were higher and thus conservatively used.

Turning Movement Counts (TMCs) at the intersection of Highway 6 and Stone Road West providing detailed traffic volumes for the AM and PM peaks, and an 8-hour interval was used to determine the AADT on Stone Road West.

The TMCs were used to determine the Average Annual Daily Traffic (AADT) traffic volumes for Stone Road West and vehicle type breakdown for Stone Road West and Highway 6. 24-hour count data was provided for Highway 6 at Kortright and College (one intersection north and south of Stone Road West along Highway 6) and was used to determine the future AADT for Dawson Road.

For Stone Road, the AM and PM peaks and 8-hour interval were assumed to be 9%, 10%, and 60% of the AADT, respectively, based on typical traffic distributions from the International Traffic Engineers (ITE, 2010). The maximum estimated AADT from the AM and PM peaks and 8-hour interval conversions were used in the assessment for each roadway. To determine the traffic volumes for a 10-year horizon, traffic volumes for Highway 6 and Stone Road West were increased at a 2% per year rate (based on information provided by the City of Guelph) to represent the predicted traffic volumes for 2030. An 85%/15% daytime/nighttime split was applied for Stone Road West, based on a typical daytime/nighttime split for local roads from the Ontario Road Noise Analysis Method for Environment and Transportation (ORNAMENT) Technical Guide (MECP, 1989). The 24-hour counts for Highway 6 were used to determine a 91%/9% daytime/nighttime split.

Truck percentages were included in the TMC data provided. To further split the truck percentages into medium and heavy trucks for implementation in the modelling, a breakdown of 5%/8% for medium/heavy vehicles was assumed based on typical truck percentages on local roads from the MTO (MTO, 1992).

A summary of the traffic data used is included in **Table 4** below, with more detailed information included in **Appendix B**.

Roadway	Future Traffic	% Day/	Post Speed	% Trucks	
	(AADT) ¹	%Night	Limit (km/hr.)	Medium	Heavy
Highway 6 South of Stone Road West	56737	91% / 9%	80	2.9%	4.7%
Highway 6 North of Stone Road West	56737	91% / 9%	70	2.9%	4.7%
Stone Road West, east of Highway 6	23700	85% / 15%	60	1.4%	2.2%
Stone Road West, West of Highway 6	4680	85% / 15%	60	0.9%	1.5%

Table 4: Road Traffic Data Summary

Note:

1. Future traffic volumes were based on 2% growth rate forecasted to 2033

3.1.2 Representative Receptors

The selection of receptors affected by transportation noise sources was based on the drawings reviewed for this assessment. The worst-case facade receptor F1 was then analyzed and identified to be on the southwest façade of the north tower and faces Highway 6. Common outdoor amenity space is located in the courtyard between the towers and is included as OLA1. The location of all assessed receptors is presented in **Figure 2**.

3.1.3 Transportation Source Assessment - Analysis and Results

The sound from the adjacent roads was modelled at the PORs using the ORNAMENT algorithms (MECP, 1989). Results from the STAMSON implementation of ORNAMENT are included in **Appendix C**.

The results for each worst-case receptor were determined with the results summarized in **Table 5**. Modelling outputs are provided in **Appendix C**.

Building	Receptor	Daytime L _{EQ} , 16hr / Niຍ Sound Le	Recommendations for Warning Clause	
		Day	Night	and/or Ventilation Requirements
Proposed Building	F1	68	62	Yes [1]
Outdoor Amenity	OLA	50	-	n/a

Table 5: Predicted Sound Levels of Roadway Noise on Facades

Note:

1.

Air conditioning to allow windows to remained closed. The acoustical performance of building components should be designed to meet the indoor sound level limits. GNCG Warning clause "Type D" is recommended.

3.2 Stationary Source Assessment

Stationary sources could be grouped into two categories: Those that have a permit with the Ontario Ministry of the Environment, Conservation and Parks (MECP) through an Environmental Compliance Approval (ECA) or Environmental Activity and Sector Registry (EASR); and those that are exempt from ECA or EASR permit requirements.

In the case where a stationary source has an ECA or an EASR permit with the MECP and would be put in a position where it is no longer in compliance with the applicable sound level criteria due to the encroachment of the proposed new development, source-specific mitigation and/or formal classification of the proposed development lands as a "Class 4 Area" (refer to C.4.4.2 "Class 4 Area" in NPC-300) would be required. In this case, coordination and agreements between the stationary source owner, proposed new development owner, the land-use planning authority and potentially the MECP would be needed.

In the case where a stationary source is exempt from ECA or EASR permit requirements with the MECP, the noise provisions of the applicable Municipal Noise By-Law and guidance from NPC-300 would be applicable.

3.2.1 Surrounding Industrial & Commercial Developments

Nearby facilities were assessed for potential noise impacts at the proposed development. Industrial and commercial facilities were identified through aerial and street-level imagery and publicly available business directories and confirmed by an RWDI site visit on July 14, 2023.

A number of commercial and light industrial facilities were identified in the area with the potential for noise impacts at the proposed development, including:

- Stone Road Mall;
- Existing residential building at 601 Scottsdale Drive; and
- Car Wash at Canadian Tire Gas+ across Stone Road W.

Searches of publicly available data from the MECP showed that the Stone Road Mall, as well as the Holiday Inn that was converted to the residence at 601 Scottsdale Drive, have at least previously held Environmental Compliance Approvals (ECA) which would restrict the emission of noise from the facility. For both these facilities, there are either existing receptors located either between the facilities and the proposed development or with similar set-back distances from the facility to the proposed development, or the facilities themselves would have been noise-sensitive. With compliance achieved at the existing residential developments, sound levels would be below the limits at the proposed development, as discussed in detail in **Section 3.2.3**.

The Car Wash at the Canadian Tire Gas+ across Stone Road W from the existing residence does not have an Environmental permit that would restrict noise from this facility.

3.2.2 Representative Receptors

The worst-case façade receptor locations for on-site (POR1) and off-site (POR2) stationary sources were determined using the building evaluation feature in CadnaA. POR1, POR2, and the common outdoor courtyard (as shown in **Figure 2**) were assessed to evaluate the potential stationary source noise impact.

3.2.3 Site Visit

A site visit by RWDI personnel was completed on July 14, 2023. During the site visit, operations of the surrounding industries and commercial uses were confirmed. Measurements indicated sound levels in the area during daytime were between 60 and 70 dBA around the site. Measurements were dominated by the sounds of traffic on Highway 6 and Stone Road West.

Noise sources on the Stone Road Mall were audible near the mall but not audible closer to the site.

The car wash was observed during measurements from the sidewalk north of Stone Road West while it was operating. The car wash was only audible while the fans were operating for about 30 seconds of the car wash cycle, which lasted a few minutes.

RWDI staff were given access to the roof of the existing residence building at 601 Scottsdale Drive, which allowed the equipment that was operating to be measured and the nameplates of the other equipment to be recorded. The Two existing rooftop units on the building were identified as the most significant source of noise.

To confirm whether sound levels from identified stationary sources in the vicinity have the potential to generate significant sound levels at the proposed development, sound modelling was completed to complement the results of the measurements.

3.2.4 Analysis and Results

The potential worst-case impact of sound from the existing residence at 601 Scottsdale Drive were evaluated further through modelling. The Stone Road Mall was not assessed in detail due to significant separation distance and intervening existing residential properties.

The existing building at 601 Scottsdale has a 4-storey section to the northeast, a 1-storey section to the west, and an atrium in the middle with a sloping roof. The east part of the building has residence apartments equipped with PTAC units that point towards the stone road mall and away from the new development. The low roof has three (3)large Lennox KGB or KGA240S HVAC units, one of which was measured. There were also two smaller Lennox KGB048S HVAC Units, two Lennox VRB120H heat recovery ventilators on the roof along with two more similar units at ground level, and a CaptiveAir RTU unit on the low roof as well as at ground level. The car wash was modeled as a single noise source based on the measurement. The measured and/or assumed sound power levels included in the screening level stationary source assessment are presented in **Table 6**. The locations of the sources summarized in **Table 6** included in the stationary source assessment are illustrated in **Figure 3**.

			Duty Cycle		
Source	Proxy Data / Calculation	Power Level (dBA)	Daytime and Evening (07:00h – 23:00h)	Nighttime (23:00h – 07:00h)	
Lennox KG(A/B)240S	Measured	82	Continuous	Continuous	
Lennox KGB048S	Manufacturer Data	85	Continuous	Continuous	
Lennox VRB120H	Manufacturer Data	88	Continuous	Continuous	
CaptiveAir CASRTU1	Proxy Data	92	Continuous	Continuous	
Canadian Tire Gas+ Car Wash	Measured	100	10 minutes/hour	10 minutes/hour	

Table	6: Stationary	Source	Sound	Power	l evel	Assum	otions
IGNIC	••• Stationary	Jource	Jound	1 0000	LCVCI	/ 350111	500115

Potential sound from these properties was modelled in Cadna/A, a commercially available software package that implements the ISO-9613 algorithms for sound propagation. Sound levels for the sources that weren't measured were drawn from historical data on file at RWDI. The results are shown in **Table 7**.

Receptor	Time Period	Predicted 1-hour Sound Level (dBA)	MECP Sound Level Limit (dBA)	Comments
POP1	Daytime / Evening	52	50	2 dB exceedance due to building RTUs
PORT	Nighttime	52	45	7 dB exceedance due to building RTUs
DODO	Daytime / Evening	43	50	Meets Sound Level Limit
PURZ	Nighttime	43	45	Meets Sound Level Limit
Courtyard Point of Reception	Daytime / Evening	37	50	Meets criterion

Table 7: Predicted Sound Levels of Stationary Sources

As shown in **Table 7**, the daytime-evening and nighttime continuous sound levels at the façade due to existing stationary sources are predicted to slightly exceed the NPC-300 Class 1 sound level targets based on screening level noise modelling analysis. This exceedance is due to the combined impact from the noise sources at the existing residence building at 601 Scottsdale.

The car wash is much less significant, and its partial contribution is about 4 dB below the nighttime limit using this conservative estimate of its duty cycle. The receptor at the south façade of the building (POR2) that is oriented towards the car wash and around the corner from the existing residence passes the daytime and nighttime limits.

Given that the proposed development shares ownership with the neighbouring building and rooftop units, it is feasible to mitigate the sound levels. Recommendations to ensure a comfortable indoor environment for the proposed development are included in **Section 3.3.2**.

3.3 Recommendations

Based on an analysis of the predicted sound levels, the following recommendations and requirements were determined for the Project. Recommendations are provided for both transportation sources and stationary sources.

3.3.1 Transportation Sources

3.3.1.1 Building Façade Components

Due to the elevated transportation sound levels in the area, acoustical design of the façade components, including spandrel, window glazing, and exterior doors, are recommended to be specified for the proposed development.

To assess the development's feasibility, preliminary window glazing and exterior balcony door sound isolation requirements were determined. These were based on the following assumptions:

- Typical residential living room:
 - Glazing 80% of façade, Door: N/A
 - 55% Façade to floor area Ratio
- Typical residential bedroom:
 - Glazing 80% of façade, Door: N/A
 - 81% Façade to floor area Ratio
- Acoustical character of rooms: intermediate absorption finishes/furniture for bedrooms and intermediate absorption finishes/furniture for living rooms.

Based on the predicted plane of window sound levels and the assumptions listed above, recommendations for the minimum sound insulation ratings for the building components were determined using the National Research Council of Canada "BPN-56 method" (NRCC, 1985). The reported results are in terms of Sound Transmission Class (STC) ratings, as summarized in **Table 8**.

Portion of Development	Façade	Window Glazing	Façade Wall
	Southwest Façades	STC 29	STC 45
	Northwest Façades	STC 26	STC 45
North and South Towers	Southeast Façades	STC 26	STC 45
	Northeast Façades	OBC	OBC

Table 8: Recommended Facade Component Minimum Sound Insulation Rating

Note:

1. "OBC" denotes that the noise insulation design is not required to be specified. Building envelope assemblies meeting the minimum Ontario Building Code (OBC) requirements will also exhibit sufficient noise reduction to meet the interior sound level criteria.

The maximum requirement for the window glazing was determined to be STC-29, which is considered feasible as this can be achieved by various double-glazed configurations of insulated glazing units. Façade wall meeting a minimum STC-45 would be feasible with typical façade assemblies.

Taking into account the assumptions used as a basis to determine the glazing requirements, the applicable indoor transportation source sound level criteria are predicted to be achieved.

We recommend that the façade construction is reviewed during detailed design to ensure that the indoor sound level limits will be met and that the window/door supplier is requested to provide STC laboratory test reports as part of the shop drawing submittal to confirm that the glazing/door components will meet the minimum STC requirements.

3.3.1.2 Ventilation Recommendations

Due to the transportation sound levels at the plane of the façade, the installation of central air conditioning prior to occupancy is required for the proposed development to allow for windows and doors to remain closed as a noise mitigation measure. Further, prospective tenants should be informed by a warning clause as noted in Section 3.3.3.

3.3.2 Stationary Sources

The measured and assumed sound power levels for the stationary sources show that the development would exceed Class 1 targets. To ensure a comfortable indoor environment, air conditioning is required to allow windows to be closed. With windows closed, the development is expected to be acoustically compatible with existing non-permitted stationary sources.

Given that the existing building is owned by the same company, it is feasible for them to reduce the sound levels due to the equipment by 7 dB to meet the NPC-300 criteria. Noise mitigation can be achieved via silencers, compressor covers and quiet condenser fans. Further detailed measurements and analysis are recommended to specify noise control measures, and to confirm assumptions applied in the analysis (such as worst-case duty cycles of the roof top AHUs).

Additionally, we recommend the inclusion of a Warning Clause to note that there are existing commercial and industrial activities in the area.

3.3.3 Warning Clauses

Warning clauses are recommended to be included on all development agreements, offers of purchase and agreements of purchase and sale or lease. Warning clauses may be used individually or in combination.

City of Guelph Warning Clause: Recommended to address nearby commercial/industrial land-use

"The Transferee covenants with the Transferor that the below clause, verbatim, will be included in all subsequent Agreements of Purchase of sale or lease and Sale and Deeds conveying the lands described herein, which covenant shall run with the said lands and is for the benefit of the subsequent owners and renters of the said lands and the owner of the adjacent road."

"The Transferee, for himself, his heirs, executors, administrators, successors and assigns acknowledge being additionally advised that due to the proximity of the adjacent industrial/commercial lands-uses, sound levels from the industrial/commercial land-uses may at times be audible."

City of Guelph Warning Clause: Recommended to address transportation noise

"This dwelling unit has been supplied with a central air conditioning system which will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the municipal and provincial sound level limits."

"The building components of this dwelling unit (walls, windows and exterior doors) have been designed to provide acoustic insulation so that, when windows and exterior doors are closed, the indoor sound levels are within the municipal and provincial sound level limits. The details of this building component design are available by contacting the builder of this unit."

4 IMPACT OF THE PROPOSED DEVELOPMENT ON THE ENVIRONMENT AND ITSELF

On-site stationary sources for the development are expected to consist of HVAC-related equipment in the rooftop mechanical penthouse as well as various exhaust fans. Further, consideration should be given to controlling airborne and structure-borne noise generated within the proposed development.

Within the development itself, the main sources of noise that are likely to affect the uses of the building are the mechanical systems. The potential noise effect of the commercial component of the development is recommended to be reviewed during detailed design to ensure the applicable criteria will be met.

Provided that best practices for the acoustical design of the building are followed, noise from building services equipment associated with the development is expected to be feasible to meet the applicable sound level criteria due to the nature (residential) of the proposed development.

We recommend that the potential noise effect of the proposed development is reviewed during detailed design to ensure the applicable sound level criteria will be achieved.

5 CONCLUSION

RWDI was retained to prepare a Noise and Vibration Impact Study in support of an Official Plan amendment and Zoning By-law Amendment for the proposed residential building located at 601 Scottsdale Avenue in Guelph, Ontario. The proposed development is intended to be used as student residences and will consist of a 7-storey residential building with two towers joined by a 1-storey podium. This building is in addition to the existing student residence on the property which has 4 storeys in the east part and 1 storey on the west connected by a sloped atrium.

The following noise control measures are recommended for the proposed development:

- 4. Installation of central air-conditioning so that all suites' windows can remain closed.
- 5. The inclusion of noise warning clauses related to:
 - a. Transportation sound levels at the building façade
- 6. Minimum sound isolation performance:
 - a. Suite window glazing with sound isolation performance up to STC-29.
 - b. Suite exterior walls with sound isolation performance meeting a minimum STC-45.

Potential impacts of noise from the surrounding environment on the proposed development were assessed. Potential noise impacts from road traffic on Highway 6 and Stone Road were evaluated and found to be compatible with the use of central air conditioning and specified window glazing sound isolation performance. A review of surrounding industrial and commercial uses was completed, and the significant noise sources were modeled. There were slight exceedances of the limits due to the existing building on-site, but as they share ownership, it is likely feasible to provide mitigation. No incompatibilities with respect to existing land uses and the proposed development were identified. There were no significant identified sources of vibration.

At this stage in design, the impact of the development on itself and its surroundings could not be quantitatively assessed. However, the impact on both the building itself and its surroundings is expected to be feasible to meet the applicable criteria. We recommend that the building design is evaluated prior to detailed design to ensure that the acoustical design is adequately implemented in order to meet the applicable criteria.

Based on the results of this assessment, the proposed development is considered to be feasible from a noise impact aspect.

6 REFERENCES

- 1. Ontario Ministry of the Environment, Conservation, and Parks, August 2013, Publication NPC-300, Environmental Noise Guideline Stationery and Transportation Sources – Approval and Planning (NPC-300)
- 2. City of Guelph, 2018. Guelph Noise Control Guidelines (Guelph, 2018)
- 3. ORNAMENT, Ontario Road Noise Analysis Method for Environment and Transportation, Technical Document, Ontario Ministry of the Environment, ISBN 0-7729-6376, 1989 (ORNAMENT)
- 4. Institute of Transportation Engineers (ITE), 2010, Traffic Engineering Handbook, 6th Edition.
- International Organization for Standardization (ISO), 1994b, International Standard ISO 9613-1:1994, Acoustics –Attenuation of Sound during propagation outdoors. Part 1: Calculation of the absorption of sound by the atmosphere. (ISO, 1994)
- International Organization for Standardization (ISO), 1996, International Standard ISO 9613-2:1996, Acoustics – Attenuation of sound during propagation outdoors – Part 2: General method of calculation (ISO, 1996)
- 7. Ontario Ministry of Transportation (MTO), 1992, Environmental Office Manual Technical Areas Noise, EO-V-1000-00.

601	Scottsd	lale	Drive
-----	---------	------	-------

2023-08-02

601 Scottsdale Drive

	2302300
Date:	2023-08-02

601 Scottsdale Drive

APPENDIX A

	BICYCLE PARKING 93 (Long & Short Term) PHASE 1 BICYCLE PARKING 500 (Long & Short Term) PHASE 2 BICYCLE PARKING ON SITE: 593 TOTAL BICYCLE PARKING RATIO: 1/1.1 UNITS	DRAWING NOT TO BE SCALED Contractor must check and verify all dimensions on the job and report any discrepancies to the architect before proceeding with the work. This drawing shall not be used for construction purposes until signed by the consultant responsible. This drawing, as an instrument of service, is provided by and is the property of Sweeny & Co. Architects ISSUED 23-07-04 Draft for Coord Image: Description of the
UOUS TRIAN (ALK DING) PROPER	TY LINE TY LIN	
	Solution of the contraction of t	Specification Specification NAPETER STREET SUITE 1601 TORONTO, ONTARIO MSV 2H2 CANADA P.16-971-6252 F.416-971-5420 E. info@sweenyandco.com www.sweenyandco.com
CONCRETE BOX	EXISTING CURB CUT AND DRIVEWAY REMOVED	ALMA GUELPH Phase 2 601 Scottsdale Dr Guelph, ON OWNER Forum DWG TITLE Site Plan
		DATE: 03/13/23 SCALE: 1:400 DRAWN: Author CHECKED: Checker PROJ. No.: 2305 DWG No. AZS101

	DRAWING NOT TO BE SCALED Contractor must check and verify all dimensions on the job and report any discrepancies to the architect before proceeding with the work. This drawing shall not be used for construction purposes until signed by the consultant responsible. This drawing, as an instrument of service, is provided by and is the property of Sweeny & Co. Architects. ISSUED 23-07-04 Draft for Coord
EXISTING HYDRO EASEMENT DOUE DANKE USE 0050 0050 0050 0050 0050 0050 0050 00	
	Sweeny&Co Architects 134 PETER STREET SUITE 1601 TORONTO, ONTARIO M5V 2H2 CANADA P: 416-971-6252 F: 416-971-5420 E: info@sweenyandco.com www.sweenyandco.com
	PROJ. NAME ALMA GUELPH Phase 2 601 Scottsdale Dr Guelph, ON OWNER Forum
	DWG TITLE Floor Plans_Level -1 Parking DATE: YY-MM-DD SCALE: 1:250 DRAWN: Author CHECKED: Checker PROJ. No.: 2305 DWG No. K7COOO

)23-07-04 12:24:30 P

DRAWING NOT TO BE SCALEDContractor must check and verify all dimensions on the job and report any discrepancies to the architect before proceeding with the work.This drawing shall not be used for construction purposes until signed by the consultant responsible. This drawing, as an instrument of service, is provided by and is the property of Sweeny & Co. Architects.DESUED23-07-04
Sweeny&Co Architects
134 PETER STREET SUITE 1601 TORONTO, ONTARIO M5V 2H2 CANADA P: 416-971-6252 F: 416-971-5420 E: info@sweenyandco.com www.sweenyandco.com
PROJ. NAME ALMA GUELPH Phase 2 601 Scottsdale Dr Guelph, ON
owner Forum
DWG TITLE Floor Plans_Level Typical
DATE: YY-MM-DD SCALE: 1:250 DRAWN: Author CHECKED: Checker PROJ. No.: 2305 DWG No. AZS202

APPENDIX B

Ministry of Transportation

Hwy	/: 6		Betwee	n:	LAIRD RD	IC										
тя	6: 153		ar	d:	S JCT HW	Y 7-	WELLINGT	ON	ST IC							
Regr	n: WEST		Patter	n:	С		PDCS:	90			Factor: 1.0	03				
LHRS	6: 13599		Offs	et:	2.501		Locn:	2.5	01 KM N O	F L/	AIRD RD IC					
Di	r: N		Lane	s:	2		Speed:	80	km/h		Dates: 10	- No v	v-2019 to 1	7-No	v-2019	
	Sun		Mon		Tue		Wed		Thu		Fri		Sat		Sun	
H. Interval	11/10		11/11	Pk.	11/12	Pk.	11/13	Pk.	11/14	Pk.	11/15	Pk.	11/16	Pk.	11/17	Pk.
00:00-01:00			123		140		183		157		177		282		236	
01:00-02:00			76		133		127		123		117		137		140	
02:00-03:00			49		67		70		54		63		79		105	
03:00-04:00			53		67		73		67		63		70		62	
04:00-05:00			124		102		122		97		121		60		46	
05:00-06:00			290		273		333		323		288		140		67	
06:00-07:00			893		814		906		911		888		277		169	
07:00-08:00			1193		1199		1318		1273		1259		422		233	
08:00-09:00			1387		1449		1522		1484		1552		807		463	
09:00-10:00			1066		1237		1241		1330		1255		984		736	Г
10:00-11:00			972		1043		1116		1095		1141		1222		933	
11:00-12:00			841		1110		1140		1085		1191		1266		1156	
AM Total			7067		7634		8151		7999		8115		5746		4346	
12:00-13:00	1143		924		1101		1162		1168		1264		1293			
13:00-14:00	1195		865		1086		1083		1135		1335		1302			
14:00-15:00	1186		984		1186		1241		1280		1418		1343			
15:00-16:00	1067		1053		1298		1366		1384		1492		1291			
16:00-17:00	1100		1074		1494		1529		1569		1597		1115			
17:00-18:00	1025		1027		1350		1553		1533		1434		964			
18:00-19:00	804		725		1190		1111		1115		1247		938			
19:00-20:00	753		514		868		755		978		921		761			
20:00-21:00	733		395		623		645		677		702		634			
21:00-22:00	512		267		448		517		508		589		510			
22:00-23:00	385		270		376		413		442		432		479			
23:00-00:00	198		241		287		306		326		421		356			
PM Total	10101		8339		11307		11681		12115		12852		10986			
24h. Total	10101		15406		18941		19832		20114		20967		16732		4346	
Noon - No	on 1	716	8 1	597	3 1	945	8 1	968	0 2	2023	30 ·	1859	8	15332	2	

Ministry of Transportation

Hwy	: 6		Betwee	en:	LAIRD RD	IC					en: LAIRD RD IC												
TS	: 153		ar	ıd:	S JCT HW	Y 7-	WELLINGT	ON	ST IC														
Regn	: WEST		Patte	n:	С		PDCS:	90		I	Factor: 1.	03											
LHRS	: 13599		Offs	et:	2.501		Locn:	2.5	01 KM N O	F L/	AIRD RD IC												
Dir	: S		Lane	es:	2		Speed:	80	km/h		Dates: 10	-Nov	v-2019 to 1	7-No	v-2019								
	Sun		Mon		Tue		Wed		Thu		Fri		Sat		Sun								
H. Interval	11/10		11/11	Pk.	11/12	Pk.	11/13	Pk.	11/14	Pk.	11/15	Pk.	11/16	Pk.	11/17	Pk.							
00:00-01:00			95		126		139		126		128		214		168								
01:00-02:00			68		62		60		77		85		95		112								
02:00-03:00			50		70		68		75		88		105		115								
03:00-04:00			60		86		78		61		65		61		59								
04:00-05:00			191		192		188		176		176		83		73								
05:00-06:00			578		531		581		611		582		198		104								
06:00-07:00			998		946		1058		1051		958		268		139								
07:00-08:00			1249		1309		1419		1355		1356		466		286								
08:00-09:00			1245		1234		1439		1442		1415		732		417								
09:00-10:00			891		1013		1080		968		1067		908		650								
10:00-11:00			866		879		943		900		1032		1119		921								
11:00-12:00			886		1007		958		988		1131		1232		1104								
AM Total			7177		7455		8011		7830		8083		5481		4148								
12:00-13:00	1250		862		1112		1126		1204		1272		1345										
13:00-14:00	1315		976		1164		1170		1211		1326		1341										
14:00-15:00	1263		980		1218		1347		1388		1555		1332										
15:00-16:00	1238		1229		1575		1638		1644		1789		1350										
16:00-17:00	1278		1259		1625		1860		1767		1855		1307										
17:00-18:00	1084		1152		1479		1642		1413		1707		1210										
18:00-19:00	853		705		1067		1117		1065		1245		1067										
19:00-20:00	788		540		860		844		936		978		727										
20:00-21:00	590		408		657		698		792		761		509										
21:00-22:00	410		328		562		588		626		565		444										
22:00-23:00	295		235		335		339		432		473		387			1							
23:00-00:00	134		219		258		279		289		364		276										
PM Total	10498		8893		11912		1 26 48		12767		13890		11295										
24h. Total	10498		16070		19367		20659		20597		21973		16776		4148								
Noon - No	on 1	767	5 1	634	8 1	992	3 2	047	8 2	2085	i0 ·	1937	1 1	544	3								

Ministry of Transportation

H	wy: 6		Betwee	veen: LAIRD RD IC												
	TS: 153		an	ıd:	S JCT HV	NY .	7-WELLING	τοι	N ST IC							
Re	gn: WEST		Patter	rn:	С		PDCS	: 9	0		Factor:	1.03				
LHF	RS: 13599		Offs	et:	2.501		Locn	: 2	.501 KM N	of l	AIRD RD I	С				
I	Dir: COMB	INE	D Lane	es:	4		Speed	l: 8	0 km/h		Dates:	10-N	lov-2019 to	17-1	lov-2019	
	Sun		Mon		Tue		Wed		Thu		Fri		Sat		Sun	
H. Interval	11/10		11/11	P	11/12	Pk.	11/13	Pk.	11/14	Pk.	11/15	Pk.	11/16	Pk.	11/17	PK.
00:00-01:00			218		266		322		283		305		496		404	
01:00-02:00			144		195		187		200		202		232		252	
02:00-03:00			99		137		138		129		151		184		220	
03:00-04:00			113		153		151		128		128		131		121	
04:00-05:00			315		294		310		273		297		143		119	
05:00-06:00			868		804		914		934		870		338		171	
06:00-07:00			1891		1760		1964		1962		1846		545		308	
07:00-08:00			2442		2508		2737		2628		2615		888		519	
08:00-09:00			2632		2683		2961		2926		2967		1539		880	
09:00-10:00			1957	Т	2250		2321		2298		2322		1892		1386	Γ
10:00-11:00			1838		1922		2059		1995		2173		2341		1854	
11:00-12:00			1727		2117		2098		2073		2322		2498		2260	
AM Total			14244	Τ	15089		16162		15829		16198		11227	\square	8494	
12:00-13:00	2393		1786	Í	2213		2288		2372		2536		2638			
13:00-14:00	2510		1841		2250		2253		2346		2661		2643			
14:00-15:00	2449		1964	Т	2404		2588		2668		2973		2675			Г
15:00-16:00	2305		2282		2873		3004		3028		3281		2641			
16:00-17:00	2378		2333		3119		3389		3336		3452		2422			
17:00-18:00	2109		2179		2829		3195		2946		3141		2174			
18:00-19:00	1657		1430		2257		2228		2180		2492		2005			
19:00-20:00	1541		1054		1728		1599		1914		1899		1488			
20:00-21:00	1323		803	Т	1280		1343		1469		1463		1143			Γ
21:00-22:00	922		595		1010		1105		1134		1154		954			
22:00-23:00	680		505		711		752		874		905		866			
23:00-00:00	332		460		545		585		615		785		632			
PM Total	20599		17232	T	23219		24329		24882		26742		22281			Γ
24h. Total	20599		31476		38308		40491		40711		42940		33508		8494	Γ
Noon - No	oon 3	484	3 323	321	3	938	1 4	015	8 4	108	0	3796	9	3077	5	
	ADT		AWD		AADT		SADT		SAWDT	•	WADT		DHV			

Ministry of Transportation

Ministry of Transportation

Hwy	r: 6		Betwee	n:	LAIRD RD	IC										
TS	S: 155		an	d:	S JCT HW	Y 7-	WELLINGT	ON	ST IC							
Regr	: WEST		Patter	n:	UC		PDCS:	74		I	Factor: 0.9	99				
LHRS	5: 13599		Offse	et:	4.402		Locn:	4.4	02 KM N O	F L/	AIRD RD IC					
Dii	r: N		Lane	s:	2		Speed:	70	km/h		Dates: 18	-Nov	v-2019 to 2	5-No	v-2019	
	Mon		Tue		Wed		Thu		Fri		Sat		Sun		Mon	
H. Interval	11/18		11/19	Pk.	11/20	Pk.	11/21	Pk.	11/22	Pk.	11/23	Pk.	11/24	Pk.	11/25	P.
00:00-01:00			138		198		165		180		295		274		131	
01:00-02:00			129		123		127		147		135		171		63	
02:00-03:00			80		65		55		78		94		144		32	
03:00-04:00			78		74		80		74		91		73		60	
04:00-05:00			107		108		97		112		71		55		119	
05:00-06:00			302		335		335		294		132		84		337	
06:00-07:00			935		1009		1027		994		330		184		972	
07:00-08:00			1392		1460		1414		1374		449		247		1357	
08:00-09:00			1571		1691		1672		1666		821		439		1530	
09:00-10:00			1333		1336		1408		1328		1087		804		1191	
10:00-11:00			1177		1294		1256		1335		1371		1122		1034	
11:00-12:00			1275		1288		1234		1448		1505		1365		1043	
AM Total			8517		8981		8870		9030		6381		4962		7869	
12:00-13:00	1183		1390		1363		1401		1578		1683		1578			
13:00-14:00	1104		1378		1325		1487		1651		1665		1536			
14:00-15:00	1259		1534		1568		1675		1724		1734		1467			
15:00-16:00	1418		1682		1836		1806		1901		1783		1467			
16:00-17:00	1477		1967		1957		2042		2045		1573		1391			
17:00-18:00	1303		1650		1899		1923		1931		1340		1253			
18:00-19:00	929		1414		1369		1380		1557		1169		959			
19:00-20:00	720		1064		1007		1238		1146		825		851			
20:00-21:00	528		804		934		952		920		681		707			
21:00-22:00	394		652		642		657		773		560		509			
22:00-23:00	328		442		485		547		543		526		427			
23:00-00:00	277		309		360		377		465		402		216			
PM Total	10920		14286		14745		15485		16234		13941		12361			
24h. Total	10920		22803		23726		24355		25264		20322		17323		7869	
Noon - No	on 1	9437	2	326	7 2	361	5 2	451	5 2	261	5 1	1890	3 2	2023	0	

Ministry of Transportation

Hwy	: 6		Betwee	en:	LAIRD RD	IC										
TS	: 155		ar	d:	S JCT HW	Y 7-	WELLINGT	ON	ST IC							
Regn	: WEST		Patte	n:	UC		PDCS:	74		I	Factor: 0.9	99				
LHRS	: 13599		Offs	et:	4.402		Locn:	4.4	02 KM N O	F L/	AIRD RD IC					
Dir	: S		Lane	es:	2		Speed:	70	km/h		Dates: 18	-No	v-2019 to 2	5-No	v-2019	
	Mon		Tue		Wed		Thu		Fri		Sat		Sun		Mon	
H. Interval	11/18		11/19	PK.	11/20	Pk.	11/21	Pk.	11/22	Pk.	11/23	Pk.	11/24	P.	11/25	Pk.
00:00-01:00			127		130		127		158		222		235		62	
01:00-02:00			54		65		72		82		90		149		41	
02:00-03:00			64		69		72		95		77		102		44	
03:00-04:00			71		75		55		72		61		63		64	
04:00-05:00			166		147		158		155		56		56		166	
05:00-06:00			532		531		549		522		211		99		514	
06:00-07:00			1005		945		971		963		273		153		819	
07:00-08:00			1433		1458		1407		1490		432		245		1263	
08:00-09:00			1811		1826		1765		1633		764		344		1636	
09:00-10:00			1320		1313		1423		1465		1111		462		1171	
10:00-11:00			1206		1206		1296		1454		1398		513		1068	
11:00-12:00			1304		1298		1469		1561		1593		630		1167	
AM Total			9093		9063		9364		9650		6288		3051		8015	
12:00-13:00	1194		1378		1384		1488		1604		1659		730			
13:00-14:00	1236		1325		1287		1431		1612		1598		684			
14:00-15:00	1336		1493		1510		1565		1669		1681		788			
15:00-16:00	1744		1811		1878		1884		2061		1643		791			
16:00-17:00	1872		2097		2056		2086		2193		1570		740			
17:00-18:00	2037		2032		2029		2086		2111		1354		640			
18:00-19:00	1244		1327		1335		1414		1502		1080		494			
19:00-20:00	916		1016		935		1114		1162		770		435			
20:00-21:00	710		756		716		915		818		627		348			
21:00-22:00	485		631		573		613		643		549		262			
22:00-23:00	381		333		365		431		562		464		219			
23:00-00:00	344		369		372		401		451		312		132			
PM Total	13499		14568		14440		15428		16388		13307		6263			
24h. Total	13499		23661		23503		24792		26038		19595		9314		8015	
Noon - Noo	on 2	259	2 2	363	31 2	2380	4 2	2507	8 2	2267	⁷ 6 ⁷	1635	8 '	1427	8	

Ministry of Transportation

H	wy: 6		Betwee	en:	LAIRD R	D IC										
	TS: 155		an	ıd:	S JCT H	NY	7-WELLING	тог	I ST IC							
Re	gn: WEST		Patter	n:	UC		PDCS	: 7	4		Factor:	0.99				
LHF	RS: 13599		Offse	et:	4.402		Locn	: 4	402 KM N	of L	AIRD RD I	С				
	Dir: COMB	INE	D Lane	es:	4		Speed	: 7	0 km/h		Dates:	18-N	ov-2019 to	25-N	lov-2019	
	Mon		Tue		Wed		Thu		Fri		Sat		Sun		Mon	
H. Interval	11/18		11/19	₽	11/20	Pĸ.	11/21	Pk.	11/22	Pk.	11/23	PK.	11/24	P.	11/25	Pr.
00:00-01:00			265		328		292		338		517		509		193	
01:00-02:00			183		188		199		229		225		320		104	
02:00-03:00			144		134		127		173		171		246		76	
03:00-04:00			149		149		135		146		152		136		124	
04:00-05:00			273		255		255		267		127		111		285	
05:00-06:00			834		866		884		816		343		183		851	
06:00-07:00			1940		1954		1998		1957		603		337		1791	
07:00-08:00			2825		2918		2821		2864		881		492		2620	
08:00-09:00			3382		3517		3437		3299		1585		783		3166	
09:00-10:00			2653		2649		2831		2793		2198		1266		2362	
10:00-11:00			2383		2500		2552		2789		2769		1635		2102	
11:00-12:00			2579		2586		2703		3009		3098		1995		2210	
AM Total			17610		18044		18234		18680		12669		8013		15884	
12:00-13:00	2377		2768		2747		2889		3182		3342		2308			
13:00-14:00	2340		2703		2612		2918		3263		3263		2220			
14:00-15:00	2595		3027		3078		3240		3393		3415		2255			
15:00-16:00	3162		3493		3714		3690		3962		3426		2258			
16:00-17:00	3349		4064		4013		4128		4238		3143		2131			
17:00-18:00	3340		3682		3928		4009		4042		2694		1893			
18:00-19:00	2173		2741		2704		2794		3059		2249		1453			
19:00-20:00	1636		2080		1942		2352		2308		1595		1286			
20:00-21:00	1238		1560		1650		1867		1738		1308		1055			
21:00-22:00	879		1283		1215		1270		1416		1109		771			
22:00-23:00	709		775		850		978		1105		990		646			
23:00-00:00	621		678		732		778		916		714		348			
PM Total	24419		28854		29185		30913		32622		27248		18624			
24h. Total	24419		46464		47229		49147		51302		39917		26637		15884	
Noon - No	on 4	202	9 468	398	4	741	9 4	959	3 4	1529	1	3526	1 :	3450	8	
	ADT		AWD		AADT		SADT		SAWD	-	WADT	•	DHV			

Ministry of Transportation

AdHoc Turning Movement Total Count and Peak Summary Report

Ministry of Transportation

Description:	HWY 6 @ STONE RD			
Region:	WEST	Survey Type: TM – Intersection	Hwy:	6
Start Date:	29-Mar-2017 (Wed)	I/C Side:	LHRS:	13600
End Date:	29-Mar-2017 (Wed)	Int. Type: Four Leg	Offset:	4.120

Schedule Summary: TUES-THURS, 07:00-09:00, 11:00-14:00, 15:00-18:00

Midday Peak Hou	r Rep	oort		S	start Time:	12:00	PM P	eak Ho	our Re	port			Start	Time:	16:30	D
		HV	VY 6								HW	/Y 6				
Total Ped 1	0% (T +LT) 21	14% (T +LT) 937	3% (T +LT) 332	1 172	Ped. 10	= RD	Ped	0 Ve	Γotal ehicles	0% (T +LT) 33	3% (T +LT) 1519	2% (T +LT) 417	1	Ped. 16	STONE	: PD
← 111	: ↓	\downarrow	L,	Ĺ	299 2% (T			• ←	212	: ↓	\downarrow	╘	Ĺ	413	2% (T +I T)	
0% 17 (T +1 T)	Ţ			←	75 4% (T +LT)			0% (T +LT)	25	Ĺ			←	150	3% (T +LT)	
1% 73 (T +LT)	\rightarrow			L	237 4% (T+LT)			2% (T +LT)	88	\rightarrow			L	358 (7	1% T+LT)	
0% 25 (T +LT)	ļ	←	Ť	⊢	⁶⁶⁹ →			4% (T +LT)	24	Ţ	←	1	┍→	776	→	
STONE RD	1199	15	856	264	Total Vehicles	Ped. 2	S	TONE R	D	1901	29	1263	271	Total Vehicle	s	Ped. 0
Ped. 1	↓	0% (T +LT)	12% (T +LT)	3% (T +LT)					Ped. 1	↓	0% (T +LT)	4% (T +LT)	2% (T +LT)			
		HW	Y 6								HW	Y 6				

APPENDIX C

BPN-56 Method for Calculating Façade Sound Transmission Class (STC) Requirements
Projet Name:
RVDI Project:
20298
Date:
20298
7242023

National Research Council of Canada (NRCC) Division of Building Research, Building Practice Note No. 56 (BPN 56), "Controlling Sound Transmission Into Buildings", 1985. Ontario Ministry of the Environment, "Manual for Environmental Noise Assessment In Land Use Planning Course", July 1997.

			Sound Leve	els and Sour	ce Inputs			Room and Façade Properties Ext							Exterio	r wall (STC 45 to 60)				Window (STC-25 to ST	C-44)								
Window STC Requirement	Recptor	Source	Façade Sound Level (dBA)	Sound Lew Criterion (dBA)	el Sound Angle of Incidence (Degrees)	f Angle of Incidence Correction (dB)	Required Noise Reduction (dB)	Window to Façade Area (%)	Exterior Door to Façade Area (%)	Exterior Wall to Façade Area (%)	Façade/ Floor Area (%)	Façade Height (m)	Façade Length (m)	Room Depth (m)	Room Absorption	Floor Area (m ²)	Window Area (m ²)	Exterior Door Area (m ²)	Exterior Wall Area (m ²)	STC Rating	Category	Room Correction	Source- Component Correction	Noise Reduction	Category	Room Correction	Source- Component Correction	Minimum Source Specific STC	Window STC Requirement
North Building Southw	est Side (worst-case)																												
28	Living Room - Daytime	d. Mixed road traffic	68	45	0 - 90°	0	26	80%	0%	20%	55%	3.0	3.7	5.5	0.80	20.4	8.9	0.0	2.2	45	d. Exterior wall, or roof/ceiling	-9	7	47	c. Sealed thin window	-3	4	28	28
29	Bedroom - Daytime	d. Mixed road traffic	68	45	0 - 90°	0	26	80%		20%	81%	3.0	3.0	3.7	0.80	11.1	7.2	0.0	1.8	45	d. Exterior wall, or roof/ceiling	-7	7	45	c. Sealed thin window	-1	4	29	29
28	Bedroom - Nighttime	d. Mixed road traffic	62	40	0 - 90°	0	25	80%		20%	81%	3.0	3.0	3.7	0.80	11.1	7.2	0.0	1.8	45	d. Exterior wall, or roof/ceiling	-7	7	45	c. Sealed thin window	-1	4	28	28
		_																											

29 Maxiumum STC Requirment

Receiver Name: Worst-case POR ID: POR1 X: 561309.61 m Y: 4818354.86 m

Z: 353.08 m

			Point S	ource,	ISO	9613,	Name:	''4-fan	HVAC",	ID: "	1050	!Lenn	ox_KG	B240)S''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2	561351.65	4818364.74	337.70	0	DEN	A	86.9	0.0	0.0	0.0	0.0	44.2	0.3	-2.4	0.0	0.0	0.0	0.0	0.0	44.8
4	561351.65	4818364.74	337.70	1	DEN	A	86.9	0.0	0.0	0.0	0.0	48.9	0.4	-2.4	0.0	0.0	0.0	0.0	2.0	37.9

			Point S	ource	, ISO 9	9613,	Name:	"4-fan	HVAC",	ID: "	10501	!Lenn	ox_KO	B240)S''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6	561356.01	4818358.92	337.70	0	DEN	A	86.9	0.0	0.0	0.0	0.0	44.8	0.3	-2.4	0.0	0.0	0.0	0.0	0.0	44.2
7	561356.01	4818358.92	337.70	1	DEN	A	86.9	0.0	0.0	0.0	0.0	49.1	0.4	-2.4	0.0	0.0	0.0	0.0	2.0	37.7

			Point S	ource	ISO	9613,	Name:	"4-fan	HVAC",	ID: "	10501	l!Lenn	iox KG	B24	0S"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8	561364.88	4818347.54	337.70	0	DEN	A	86.9	0.0	0.0	0.0	0.0	46.2	0.3	-2.4	0.0	0.0	0.0	0.0	0.0	42.7
9	561364.88	4818347.54	337.70	1	DEN	A	86.9	0.0	0.0	0.0	0.0	49.7	0.5	-2.4	0.0	0.0	0.0	0.0	2.0	37.1

			Point S	Source	, ISO	9613,	Name:	"1-far	י HVAC	, ID: '	'!050	1!Cap	tiveAir	e_RT	U"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
10	561357.27	4818355.50	337.20	0	DEN	A	82.0	0.0	0.0	0.0	0.0	45.0	0.1	-2.4	0.0	0.0	0.0	0.0	0.0	39.3
11	561357.27	4818355.50	337.20	1	DEN	A	82.0	0.0	0.0	0.0	0.0	49.4	0.2	-2.4	0.0	0.0	0.0	0.0	2.0	32.9

			Po	oint So	ource,	ISO 9	613, N	ame: '	'car was	h'', ID): "!05	501!Ca	ar_Was	sh"						
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
12	561450.52	4818274.10	334.54	0	DEN	A	92.2	0.0	0.0	0.0	0.0	55.3	0.3	-2.0	0.0	0.0	0.0	0.0	0.0	38.6
13	561450.52	4818274.10	334.54	1	DEN	A	92.2	0.0	0.0	0.0	0.0	55.8	0.3	-2.0	0.0	0.0	0.0	0.0	2.0	36.0

			Point S	Source	, ISO	9613,	Name:	"1-fai	n HVAC"	, ID: '	'!050	1!Cap	tiveAir	e_RT	U"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
14	561347.40	4818413.89	334.84	0	DEN	A	82.0	0.0	0.0	0.0	0.0	48.2	0.1	-1.7	0.0	0.0	0.0	0.0	0.0	35.3

			Point Se	ource	, ISO 9	9613,	Name:	"1-fan	HVAC",	ID: "	1050	1!Lenr	ox_KC	B048	3S"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
15	561348.14	4818368.31	336.95	0	DEN	A	73.6	0.0	0.0	0.0	0.0	43.8	0.2	-2.4	0.0	0.0	0.0	0.0	0.0	31.9
16	561348.14	4818368.31	336.95	1	DEN	A	73.6	0.0	0.0	0.0	0.0	48.8	0.3	-2.4	0.0	0.0	0.0	0.0	2.0	24.8

			Point S	ource	, ISO	9613,	Name:	"2-far	HVAC",	ID: "	10501	l!Lenr	iox_KC	B048	8S"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
17	561367.99	4818339.60	336.95	0	DEN	A	73.6	0.0	0.0	0.0	0.0	46.9	0.2	-2.4	0.0	0.0	0.0	0.0	0.0	28.8
18	561367.99	4818339.60	336.95	1	DEN	A	73.6	0.0	0.0	0.0	0.0	48.2	0.3	-2.4	0.0	0.0	0.0	0.0	3.0	24.5
19	561367.99	4818339.60	336.95	1	DEN	A	73.6	0.0	0.0	0.0	0.0	50.3	0.3	-2.4	0.0	0.0	0.0	0.0	2.0	23.3

		Point S	Source, I	SO 96	613, N	lame: '	'Lenno	x VRE	heat red	cover	y'', ID	: "!050	01!Len	nox_'	VRB1	20H"				
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
20	561359.55	4818357.12	337.20	0	DEN	A	65.0	0.0	0.0	0.0	0.0	45.4	0.1	-2.4	0.0	0.0	0.0	0.0	0.0	21.9
21	561359.55	4818357.12	337.20	1	DEN	A	65.0	0.0	0.0	0.0	0.0	49.1	0.2	-2.4	0.0	0.0	0.0	0.0	2.0	16.1

		Point S	ource, IS	SO 96	13, N	ame: "	Lennox	(VRB	Heat Re	cove	ry", IE	D: "!05	01!Lei	nnox_	VRB	120H"				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
22	561360.79	4818355.39	337.20	0	DEN	A	65.0	0.0	0.0	0.0	0.0	45.6	0.1	-2.4	0.0	0.0	0.0	0.0	0.0	21.7
23	561360.79	4818355.39	337.20	1	DEN	A	65.0	0.0	0.0	0.0	0.0	49.2	0.2	-2.4	0.0	0.0	0.0	0.0	2.0	16.0

		Point S	Source, I	SO 96	613, N	lame: '	'Lenno	x VRE	heat red	cover	y", ID	: "!050)1!Len	nox_`	VRB1	20H"				
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
24	561345.48	4818408.47	334.51	0	DEN	A	65.0	0.0	0.0	0.0	0.0	47.5	0.1	-1.7	0.0	0.0	4.8	0.0	0.0	14.2

		Point S	Source, I	SO 96	613, N	lame: '	'Lenno	x VRB	heat rea	cover	y'', ID	: "!05)1!Len	nox_`	VRB1	20H"				
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
27	561346.95	4818409.62	334.64	0	DEN	A	65.0	0.0	0.0	0.0	0.0	47.8	0.1	-1.7	0.0	0.0	6.2	0.0	0.0	12.6
30	561346.95	4818409.62	334.64	1	DEN	A	65.0	0.0	0.0	0.0	0.0	48.1	0.1	-1.7	0.0	0.0	20.0	0.0	2.0	-3.6

STAMSON 5.0 NORMAL REPORT Date: 21-07-2023 12:55:01 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: F1.te Time Period: Day/Night 16/8 hours Description: North building SW facade Road data, segment # 1: Hwy6NofStone (day/night) -----Car traffic volume : 47582/4817 veh/TimePeriod Medium truck volume : 1515/153 veh/TimePeriod Heavy truck volume : 2425/245 veh/TimePeriod Posted speed limit : 70 km/h Road gradient:0 %Road pavement:1 (Typical asphalt or concrete) Data for Segment # 1: Hwy6NofStone (day/night) _____ Angle1Angle2: -45.00 deg90.00 degWood depth: 0(No woodsNo of house rows: 0 / 0Surface: 1(Absorptive) : 0 (No woods.) Surface 1 (Absorptive ground surface) : Receiver source distance : 106.00 / 106.00 m Receiver height : 25.50 / 25.50 m Topography : 1 (Flat Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Road data, segment # 2: Hwy6SofStone (day/night) _____ Car traffic volume : 47582/4817 veh/TimePeriod Medium truck volume : 1515/153 veh/TimePeriod Heavy truck volume : 2425/245 veh/TimePeriod Posted speed limit :80 km/hRoad gradient :0 %Road pavement :1 (Typical asphalt or concrete) Data for Segment # 2: Hwy6SofStone (day/night) _____ Angle1Angle2: -90.00 deg-45.00 degWood depth: 0(No woods.)No of house rows: 0 / 0Curface: 1(Absorptive) : 0 (No woods.) 1 (Absorptive ground surface) Surface : Receiver source distance : 106.00 / 106.00 m Receiver height : 25.50 / 25.50 m : 1 (Flat/gentle slope; no barrier) Topography Reference angle : 0.00

♠

Road data, segment # 3: StoneRdEof6 (day/night) _____ Car traffic volume : 19415/3426 veh/TimePeriod Medium truck volume : 281/50 veh/TimePeriod Heavy truck volume : 449/79 veh/TimePeriod Posted speed limit : 60 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) Data for Segment # 3: StoneRdEof6 (day/night) _____ Angle1Angle2: -90.00 deg-45.00 degWood depth:0(No woods.)No of house rows:0 / 0Surface:1(Absorptive ground surface) Receiver source distance : 106.00 / 106.00 m Receiver height: 25.50 / 25.50 mTopography: 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Road data, segment # 4: StoneRdWof6 (day/night) _____ Car traffic volume : 3880/685 veh/TimePeriod Medium truck volume :38/7veh/TimePeriodHeavy truck volume :60/11veh/TimePeriodPosted speed limit :60 km/hRoad gradient :0 %Road pavement :1 (Typical asphalt or concrete) Data for Segment # 4: StoneRdWof6 (day/night) Angle1Angle2: -45.00 deg0.00 degWood depth: 0(No wood) Wood depth : 0 (No woods.) No of house rows : 0 / 0 Surface : 1 (Absorptive : Surface 1 (Absorptive ground surface) Receiver source distance : 106.00 / 106.00 m Receiver height : 25.50 / 25.50 m Topography : 1 (Flat/gentle slope; no barrier) Topography:1Reference angle:0.00 Results segment # 1: Hwy6NofStone (day) _____ Source height = 1.47 mROAD (0.00 + 66.55 + 0.00) = 66.55 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _____

-45 90 0.00 76.29 0.00 -8.49 -1.25 0.00 0.00 0.00 66.55 _____ Segment Leq : 66.55 dBA Results segment # 2: Hwy6SofStone (day) -----Source height = 1.47 mROAD (0.00 + 62.94 + 0.00) = 62.94 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _____ -45 0.00 77.45 0.00 -8.49 -6.02 0.00 0.00 0.00 62.94 -90 Segment Leq : 62.94 dBA ۸ Results segment # 3: StoneRdEof6 (day) Source height = 1.22 m $ROAD (0.00 + 54.32 + 0.00) = 54.32 \, dBA$ Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _ _ _ _ _ _ _ _ . -90 -45 0.00 68.84 0.00 -8.49 -6.02 0.00 0.00 0.00 54.32 _____ Segment Leq : 54.32 dBA Results segment # 4: StoneRdWof6 (day) -----Source height = 1.11 m ROAD (0.00 + 46.43 + 0.00) = 46.43 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq 0 0.00 60.94 0.00 -8.49 -6.02 0.00 0.00 0.00 46.43 -45 _____ Segment Leq : 46.43 dBA Total Leq All Segments: 68.33 dBA

♠
Results segment # 1: Hwy6NofStone (night) -----Source height = 1.47 m ROAD (0.00 + 59.61 + 0.00) = 59.61 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _____ -45 90 0.00 69.35 0.00 -8.49 -1.25 0.00 0.00 0.00 59.61 _____ Segment Leq : 59.61 dBA Results segment # 2: Hwy6SofStone (night) Source height = 1.47 m ROAD (0.00 + 55.99 + 0.00) = 55.99 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _____ -90 -45 0.00 70.51 0.00 -8.49 -6.02 0.00 0.00 0.00 55.99 _____ Segment Leq : 55.99 dBA Results segment # 3: StoneRdEof6 (night) _____ Source height = 1.22 m $ROAD (0.00 + 49.80 + 0.00) = 49.80 \, dBA$ Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------90 -45 0.00 64.31 0.00 -8.49 -6.02 0.00 0.00 0.00 49.80 _____ Segment Leq : 49.80 dBA Results segment # 4: StoneRdWof6 (night) -----Source height = 1.12 m ROAD (0.00 + 41.98 + 0.00) = 41.98 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _____

-45 0 0.00 56.50 0.00 -8.49 -6.02 0.00 0.00 0.00 41.98 Segment Leq : 41.98 dBA Total Leq All Segments: 61.53 dBA ↑ TOTAL Leq FROM ALL SOURCES (DAY): 68.33 (NIGHT): 61.53

♠

STAMSON 5.0 NORMAL REPORT Date: 21-07-2023 09:35:08 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: quad w2.te Time Period: Day/Night 16/8 hours Description: Courtyard OLA1 Road data, segment # 1: Hwy6NofStone (day/night) _____ Car traffic volume : 47582/4817 veh/TimePeriod Medium truck volume : 1515/153 veh/TimePeriod Heavy truck volume : 2425/245 veh/TimePeriod Posted speed limit : 70 km/h Road gradient : 0% Road pavement : 1 (Typical asphalt or concrete) Data for Segment # 1: Hwy6NofStone (day/night) _____ Angle1Angle2: -10.00 deg10.00 degWood depth: 0(No woods : 0 (No woods.) Wood deptn No of house rows : 0/0 Surface : 1 (Absorptive ground surface) Receiver source distance : 161.00 / 161.00 m Receiver height : 1.50 / 1.50 m Topography : 1 (Flat : 1 (Flat/gentle slope; no barrier) Topography Reference angle : 0.00 Results segment # 1: Hwy6NofStone (day) _____ Source height = 1.47 m ROAD (0.00 + 49.63 + 0.00) = 49.63 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _____ -10 10 0.66 76.29 0.00 -17.11 -9.56 0.00 0.00 0.00 49.63 -----Segment Leq : 49.63 dBA Total Leq All Segments: 49.63 dBA Results segment # 1: Hwy6NofStone (night) -----Source height = 1.47 m ROAD (0.00 + 42.68 + 0.00) = 42.68 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -10 10 0.66 69.35 0.00 -17.11 -9.56 0.00 0.00 0.00 42.68 Segment Leq : 42.68 dBA Total Leq All Segments: 42.68 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 49.63 (NIGHT): 42.68

↑