

190 – 216 Arkell Road, Guelph, Ontario

Final

Phase II Environmental Site Assessment

Project Location:

190 - 216 Arkell Road, Guelph, ON

Prepared for:

Crescent Homes Ltd. 151 Curzon Crescent, Guelph, ON

Prepared by:

MTE Consultants 520 Bingemans Centre Drive Kitchener, ON N2B 3X9

January 10, 2020

MTE File No.: 42063-200

Contents

Executive	e Summary	i
Introduct	ion	1
1.1	Site Description	1
1.2	Background Information	1
1.3	Purpose of Study	2
1.4	Scope of Work	2
1.5	Methodology	3
Phase II	ESA Work Program	3
1.6	Drilling Activities and Monitoring Well Installation	3
1.7	Deviations from the Phase II ESA Workplan	4
1.8	Field Screening and Soil Sampling.	4
1.9	Groundwater Sampling	
1.10	Surveying and Groundwater Elevations	
Analytica	ıl Results	
1.11	Applicable Site Condition Standards	
1.12	Analytical Results in Soil	8
1.12	2.1 Metals and Hydrides	8
1.12	2.2 PHCs F1-F4	8
1.12	2.3 BTEX Compounds	8
1.12	2.4 PAHs	8
1.13	Analytical Results in Groundwater	9
1.13	3.1 Metals and Hydrides	9
1.13	3.2 PHCs F1-F4	9
1.13	3.3 BTEX Compounds	9
1.13	3.4 PAHs	9
1.14	Quality Assurance/Quality Control	9
Results \$	Summary	
1.15	Summary of Soil Results	
1.16	Summary of Groundwater Results	.11
1.17	Conclusions and Recommendations	
1.18	Exclusions	.12
Qualifica	tions of Assessors	.13
Limitatio	ns	.14
Reference	ces	15

Figures

Figure 1	Site Location N	Иар
----------	-----------------	-----

Figure 2

Site Layout & Sampling Locations
Groundwater Elevations & Contours (October 2019) Figure 3

Contaminant Concentrations Detected Above the Table 1 Standards in Soil Figure 4

Tables (in-text)

Table 2.2	oil Sample S	Summary
-----------	--------------	---------

Groundwater Sample Summary Table 2.3 Table 2.4 Groundwater Elevations Summary

Tables (appended)

Table 3.2a	Soil Analytical Results – Metals
Table 3.2b	Soil Analytical Results – PAHs
Table 3.2c	Soil Analytical Results – PHCs
Table 3.2d	Soil Analytical Results – BTEX
Table 3.3a	Groundwater Analytical Results – Metals
Table 3.3b	Groundwater Analytical Results – PAHs
Table 3.3c	Groundwater Analytical Results – PHCs
Table 3.3d	Groundwater Analytical Results – BTEX

Appendices

Appendix A Borehole Logs

Appendix B Laboratory Certificates of Analysis

Executive Summary

MTE Consultants Inc. (MTE) was retained by Crescent Homes Ltd. (CHL) to conduct a Phase II Environmental Site Assessment (ESA) of four contiguous properties located at 190, 202, 210 and 216 Arkell Road in Guelph, Ontario (the "Subject Lands").

The Subject Lands are owned by CHL and are currently used for residential purposes. The Subject Lands comprise an area of approximately 2.6 hectares (6.3 acres) and consist of four residential dwellings, associated sheds/garages, driveways and landscaped areas.

The Phase II ESA was conducted in general accordance with Canadian Standards Association (CSA) document Z769-00. The report has been completed for due diligence purposes and to satisfy the requirements of the City of Guelph for re-development of the Subject Lands. MTE understands that a Record of Site Condition (RSC) is not required and has not been requested at this time.

The Phase II ESA work program included the advancement of six (6) boreholes with three (3) of the locations completed as permanent groundwater monitoring wells. Boreholes were advanced to a maximum depth of 6.1 meters below ground surface. Soil stratigraphy encountered at the Subject Lands can be generally described as topsoil or fill underlain by native silt, sand, and sand and gravel materials.

Soil and groundwater analytical results were compared to the MECP Table 1 SCS (Full Depth Background Site Condition Standards) and the MECP Table 2 SCS (Full Depth Generic Site Condition Standards in a Potable Water Condition) for residential property use included in the document entitled "MOE Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011.

Soil Analytical Results

Based on the soil analytical results from the Phase II ESA and a previous Geotechnical Investigation, elevated concentrations of two metal parameters (zinc and molybdenum) were detected above the 2011 Table 1 SCS.

With respect to zinc, it is MTE's opinion that the elevated concentrations detected at the Subject Lands did not result from an anthropogenic source and, therefore, would not be considered a contaminant. The concentrations of zinc encountered in soil at the Site would also not represent a risk to human health.

With respect to the molybdenum, MTE notes the following:

- **Risk of Exposure:** the concentration of molybdenum (2.5 μg/g) was detected above the 2011 Table 1 SCS (2 μg/g). The Table 1 standards are considered representative of background concentrations in Ontario. However, the concentrations of molybdenum considered protective of human health, mammals and birds, and plants and soil organisms are 110 μg/g, 6.9 μg/g, and 40 μg/g, respectively. Since the reported concentration of molybdenum is below these values, the risks associated with exposure to molybdenum is considered to be low.
- Contaminant Volatility: molybdenum is not considered a volatile compound;
- **Contaminant Mobility:** molybdenum was identified in fill material above the water table and is not considered a mobile contaminant; and

• Extent of Impact: An elevated concentration of molybdenum was detected at one soil sample location within a small stockpile within the Subject Lands. No other elevated concentrations of molybdenum were detected in soil or groundwater from other samples submitted for analysis. As such, soil impacts associated with molybdenum appears to be localized.

Based on the proposed future residential use of the Subject Lands along with the information collected during the Phase II ESA, it is MTE's opinion that the risk associated with elevated concentrations of molybdenum and zinc in soil is considered to be low.

Groundwater Analytical Results

There were no elevated concentrations of the tested parameters reported above the 2011 Table 1 SCS in the groundwater samples submitted for analysis.

Recommendations

Based on the results of the Phase II ESA, no additional subsurface investigation is recommended at this time. Notwithstanding, excess soils that may be generated at the Subject Lands in the future must be reused appropriately based on the reported chemical characteristics. Excess soil should be managed with consideration of the MECP Best Management Practices and/or in accordance with the recently enacted Ontario Regulation 406/19 "On-Site and Excess Soil Management Regulation".

It is recommended that the monitoring well network be maintained by the property owner or decommissioned in accordance with Ontario Regulation 903, as amended.

This report does not assess geotechnical issues, compliance with municipal by-laws/ permits, or features of the natural environment.

Introduction

1.1 Site Description

MTE Consultants Inc. (MTE) was retained by Crescent Homes Ltd. (CHL) to conduct a Phase II Environmental Site Assessment (ESA) of four contiguous properties located at 190, 202, 210 and 216 Arkell Road in Guelph, Ontario (the "Subject Lands"). Refer to **Figure 1** for the Site Location Map.

Compass directions described in the report are reference to "Project North" which is perpendicular to Arkell Road.

The Subject Lands are owned by CHL and are currently used for residential purposes. The Subject Lands comprise an area of approximately 2.6 hectares (6.3 acres) and consist of four residential dwellings, associated sheds/garages, driveways and landscaped areas. Refer to **Figure 2** for the Site Layout and Features.

1.2 Background Information

Phase I Environmental Site Assessment

MTE previously completed a Phase I ESA for the Subject Lands in November 2018. The Phase I ESA report (MTE Ref. 46036-200, dated November 2018) was completed under separate cover. Based on the results of the Phase I ESA, evidence of actual and potential contamination in connection with the Subject Lands was identified. The following potential environmental concerns were identified:

- **Fill Material:** Importation of fill material of unknown quality may have been used for backfill associated with the demolition of a former residential dwelling at 190 Arkell Road. In addition, three stockpiles of fill material of unknown quality were observed at 190 Arkell Road.
- Potential Historical Furnace Oil Use: Furnace oil was potentially historically used for residential heating purposes at 190, 202, and 216 Arkell Road.

Further to the above, the Phase I ESA summarized the results of a previous geotechnical investigation completed by Peto MacCallum Ltd. (PML) in 2017 that identified elevated zinc concentrations in soil.

Based on the results of the Phase I ESA, MTE recommended that a Phase II ESA (soil and groundwater sampling and analysis program) be conducted on the Subject Lands to investigate the above-noted potential environmental concerns.

Geological and Hydrogeological Investigations

Previous Geotechnical and Hydrogeological Investigations were completed for the Subject Lands. A salient discussion of relevant information is summarized below.

Six (6) boreholes were advanced at the Subject Lands between February 13 and March 21, 2017 as part of the Geotechnical Investigation completed for the Subject Lands, labelled BH1, MW2, MW3, MW4, MW5, and BH6. Boreholes were advanced to depths ranging between 6.6 to 8.1 meters below ground surface (mbgs). Four (4) boreholes were completed as groundwater monitoring wells, indicated with 'MW'.

- Soil conditions observed during the investigations reportedly consisted of topsoil underlain by native silt, sand, and sand and gravel to the maximum depth investigated.
 Fill material was reportedly encountered at borehole locations BH1 and BH6, extending to approximately 0.5 to 0.7 mbgs, and consisted of sand and gravel or silt.
- Based on groundwater levels collected from the on-Site monitoring wells on June 26, 2018, the local shallow groundwater flow direction was inferred to be southwesterly.
- Groundwater samples collected from the Subject Lands were analyzed for physical tests (e.g. colour, conductivity, pH, etc.) anions and nutrients, and dissolved metals. The samples were collected to document pre-construction groundwater quality. MTE compared the results of the groundwater samples collected during the Hydrogeological Investigation to the 2011 Table 1 and Table 2 Site Condition Standards, where applicable. The comparison did not identify any results above the Table 1 and Table 2 Site Condition Standards.

The borehole and monitoring well locations from the Geotechnical / Hydrogeological Investigations are shown on **Figure 2**.

1.3 Purpose of Study

Authorization to proceed with the project was received from Mr. Nitin Jain of CHL following acceptance of MTE's proposal for services. The assignment was completed by MTE under project reference number 42063-200. The report has been completed for due diligence purposes and to satisfy the requirements of the City of Guelph for re-development of the Subject Lands. MTE understands that a Record of Site Condition (RSC) is not required and has not been requested.

1.4 Scope of Work

The Phase II ESA was conducted in general accordance with Canadian Standards Association (CSA) document Z769-00. The Phase II ESA work program included the following:

- Preparation of a site-specific Health and Safety Plan (HASP) for field activities;
- Observation of the advancement of six (6) boreholes to a maximum depth of approximately 6.1 metres below ground surface (mbgs). Three (3) of the boreholes were installed with permanent monitoring wells;
- Collection of soil samples from the boreholes for field screening purposes (i.e. visual examination of potential staining, detection of odours, measurement of organic vapour readings);
- Submission of selected soil samples to an accredited laboratory for analysis of one or more of the following: petroleum hydrocarbon (PHC) fractions F1-F4, volatile organic compounds (VOCs) including BTEX compounds (Benzene, Ethylbenzene, Toluene and Xylene), metals and inorganics, and polycyclic aromatic hydrocarbons (PAHs);
- Measurement of groundwater elevations and development (purging) of the monitoring wells:
- Collection of groundwater samples from the monitoring wells and submission to an accredited laboratory for analysis for one or more of the following: PHCs (F1-F4), VOCs (including BTEX compounds), metals and inorganics, and PAHs;

- Quality Assurance/Quality Control (QA/QC) procedures for field work and laboratory analysis; and
- Data analysis and report preparation.

Note: The Ontario Ministry of the Environment, Conservation and Parks (MECP) was previously named the Ontario Ministry of the Environment (MOE), the Ontario Ministry of Environment and Energy (MOEE), and the Ontario Ministry of the Environment and Climate Change (MOECC). For ease of discussion in this report, "MECP" is used to represent this provincial ministry and is inclusive of MOE, MOEE and MOECC.

1.5 Methodology

The sampling program (including QA/QC methods) was conducted in accordance with MTE Standard Operating Procedures and MECP document, "Guidance on Sampling and Analytical Methods of Use at Contaminated Sites in Ontario." dated December 1996.

MTE understands that chemical analyses were performed by accredited laboratories in accordance with Ontario Regulation 153/04 (as amended), and specifically the related document "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act," March 2004 (as amended July 1, 2011).

MTE has compiled a written report of findings including figures and appendices for use by the client that has been prepared under the supervision of Mr. Robert Reaume, P. Eng., QP_{ESA}. The qualifications of Mr. Reaume and Ms. Kassandra Wallace (responsible for conducting fieldwork activities) are included in **Section 5.0**.

Phase II ESA Work Program

1.6 Drilling Activities and Monitoring Well Installation

A site-specific HASP was developed in accordance with MTE's policies and procedures prior to commencement of fieldwork activities. The HASP describes the Site location, fieldwork activities, MTE and other personnel involved in the project, potential contaminants of concern that may be present, physical hazards, environmental conditions, personal protective equipment (PPE), and directions to the nearest emergency healthcare provider.

MTE was responsible for requesting public and private utility locates. Public utility services were located and marked by utility providers through Ontario One Call. A private locator was retained by MTE to mark private utilities on the Site.

Drilling activities observed by MTE were completed on October 4, 2019 by Altech Drilling and Investigative Services using a Geoprobe 7822DT drill rig.

Drilling activities observed by MTE included the advancement of six (6) boreholes (BH101-19, BH102-19, BH103-19, MW104-19, MW105-19 and MW106-19), with three (3) of the locations completed as permanent monitoring wells (indicated as MW).

Soil cuttings were placed in drums on-Site. Boreholes were advanced to depths ranging from 1.5 to 6.1 mbgs.

Soil stratigraphy encountered during the drilling activities was generally described as native silt / silty sand / sand and gravel materials. A silt unit was encountered at borehole location MW106-19 underlying the native coarser grained sediments above.

Fill material consisting of silt was observed overlying the native silty sand and gravel at borehole location MW101-19. In addition, potential fill material consisting of silt was observed overlying the native silty sand at borehole location MW106-19. It is noted that borehole locations BH102-19, BH103-19 and BH105-19 were advance through fill piles located at 190 Arkell Road and were therefore not considered in assessing the soil stratigraphy beneath the Subject Lands. Borehole / monitoring well locations are shown on **Figure 2**. Borehole logs are provided in **Appendix A**.

MTE understands that monitoring wells were installed by licensed well technicians in accordance with Ontario Regulation (O.Reg.) 903 (as amended). Each monitoring well was constructed with a No. 10 slotted PVC screen measuring 32 mm in diameter surrounded by a coarse grained sand pack to allow for groundwater collection in the well. Monitoring well riser pipes and screens were received pre-cleaned and sealed in a protective plastic wrap from the manufacturer and were assembled to prevent cross-contamination. Pipe sections were pre-threaded with O-ring seals; no glues or solvents were used to connect the pipe sections. Upon completion, groundwater monitoring wells were sealed with a J-plug and lock and a flush mount or monument protective casing was cemented in place.

Upon the completion of soil logging / sampling, boreholes that were not constructed as monitoring wells were sealed with bentonite as required by O.Reg. 903 (as amended).

1.7 Deviations from the Phase II ESA Workplan

Borehole / monitoring well MW106-19 was relocated based on access limitations and private utility locations as identified by the private utility locator. The borehole / monitoring well was moved to an interpreted hydraulically down-gradient location.

The deviations from the workplan are not considered to represent a significant limitation to the results of the Phase II ESA.

1.8 Field Screening and Soil Sampling

MTE performed field screening activities and collected samples during the drilling program. Soil samples collected for field screening were assessed for visual concerns (i.e. staining) and olfactory evidence of environmental impact (i.e. odour). Samples were placed in a sealable plastic bag for measurement of total organic vapour (TOV) and combustible gases in the headspace using a pre-cleaned and calibrated RKI Eagle 2, which operates as both a photoionization detector (PID) and combustible gas indicator (CGI).

Based on the results of the field screening, MTE notes the following:

- Deleterious material, consisting of brick and metal piping (inferred former water line) was observed at borehole location MW101-19 at approximately 0.2-0.3 mbgs. No other deleterious materials (i.e. metal, glass, brick and/or slag) were observed in the soil cores.
- No obvious visual and olfactory indicators of environmental impact were observed / identified in the soil cores.

Organic vapour (PID) measurements from the soil samples were indicated as zero while the combustible gases (CGI) measurements ranged between 25 and 55 parts per million (ppm). Measured organic vapour and combustible gas readings are provided on the borehole logs provided in **Appendix A**.

As required by the MECP, *Protocol of Analytical Methods Used in the Assessment of properties under Part XV.1 of the Environmental Protection Act*, amended as of July 1, 2011, special care must be used when sampling for VOCs and PHC F1 fractions. For this project MTE obtained soil samples for analysis of VOCs and PHC F1 using a Terra Core Sampler (a disposable tool which takes a single soil sample from the undisturbed soil) and placed the soil sample in a 40 mL vial with 5 mL of methanol.

Standard QA/QC protocols for bottle preparation, sampling and transportation were followed as outlined by the MECP document, "Guidance on Sampling and Analytical Methods of Use at Contaminated Sites in Ontario," dated December 1996.

Soil samples were collected and placed directly into laboratory-supplied containers, sealed, labeled and stored in a cooler with ice prior to transportation to Bureau Veritas Laboratories (BV) in Mississauga, Ontario. BV is certified by the Canadian Association for Laboratory Accreditation (CALA) for all parameters tested as part of this investigation. Soil samples were submitted under chain-of-custody for analysis of target compounds as outlined in Table 2.2 below. Laboratory Certificates of Analysis are provided in **Appendix B**.

Table 2.2 - Soil Sample Summary

Sample ID	Depth (mbgs)	Analysis	Rationale
MW101-19 1-2 FT	0.3-0.6	Metals, Hydrides, PAHs	Assessment of fill material in the south portion of 190 Arkell Road (within the footprint of the former residential building).
MW101-19 15-16 FT	4.6-4.9	PHCs, BTEX	Assessment of saturated native soil (inferred water table) in the south portion of 190 Arkell Road (within the footprint of the former residential building).
BH102-19 1-2 FT	0.3-0.6	Metals, Hydrides, PAHs, PHCs, BTEX	Assessment of fill material piled in the north portion of 190 Arkell Road.
BH103-19 1-2 FT	0.3-0.6	Metals, Hydrides, PAHs, PHCs, BTEX	Assessment of fill material piled in the north portion of 190 Arkell Road.
BH104-19 1-2 FT	0.3-0.6	Metals, Hydrides, PAHs, PHCs, BTEX	Assessment of fill material piled in the north portion of 190 Arkell Road.
MW105-19 17-18 FT	5.2-5.5	Metals, Hydrides, PAHs, PHCs, BTEX	Assessment of saturated native soil (inferred water table) in the south portion of 202 Arkell Road (inferred hydraulically down-gradient from former potential furnace oil tank).
MW106-19 2-3 FT	0.6-0.9	Metals, Hydrides, PHCs, BTEX	Assessment of potential fill material in the south portion of 210 Arkell Road.
MW106-19 15.6-16 FT	4.7-4.9	Metals, Hydrides, PAHs, PHCs, BTEX	Assessment of saturated native soil (inferred water table) in the south portion of 210 Arkell Road (inferred hydraulically down-gradient from the former potential furnace oil tank at 216 Arkell Road).

1.9 Groundwater Sampling

MTE visited the Site on October 7, 2019, to develop each monitoring well with inertia and peristaltic pumps and dedicated polyethylene tubing by removing at least three well volumes or by purging the well dry. Each monitoring well was purged in order to remove stagnant water from the monitoring well and the surrounding filter pack.

A groundwater sampling event was conducted on October 8, 2019. Four (4) groundwater samples (including one [1] duplicate sample) were collected from monitoring wells MW101-19, MW105-19 and MW106-19. Prior to collecting samples, field parameters including temperature, specific conductivity, pH, and turbidity were collected using a Hanna HI991300 Water Quality Meter until stabilized measurements were recorded. Purge liquids were temporarily stored in steel drums on-Site.

Standard QA/QC protocols were followed for bottle preparation, sample collection and transportation, as outlined by MECP guidance documents. The groundwater samples were examined for visual and olfactory evidence of impact and placed in laboratory-supplied containers, sealed, labeled and stored in a cooler with ice for transportation to BV in Mississauga, Ontario. There was no evidence of odour, hydrocarbon sheen or free product in any of the monitoring wells sampled by MTE. Groundwater samples were submitted under chain-of-custody for analysis, as outlined in **Tables 2.3** below.

Table 2.3 - Groundwater Sample Summary

Sample ID	Analysis	Rationale
MW101-19	PAHs, Metals, Hydrides, PHCs, BTEX	Assessment of groundwater quality in the south portion of 190 Arkell Road (within footprint of former residential building).
MW105-19	PAHs, Metals, Hydrides, PHCs, BTEX	Assessment of groundwater quality in the south portion of 202 Arkell Road (inferred hydraulically down-gradient from former potential furnace oil tank).
MW106-19	PAHs, Metals, Hydrides, PHCs, BTEX	Assessment of groundwater quality in the south portion of 210 Arkell Road (inferred hydraulically down-gradient from the former potential furnace oil tank at 216 Arkell Road).

1.10 Surveying and Groundwater Elevations

A geodetic survey of monitoring well elevations was completed by MTE on October 24, 2019.

MTE collected groundwater level measurements from all on-Site monitoring wells on October 29, 2019. A summary of the measurements is provided in **Table 2.4** below.

Table 2.4 - Groundwater Elevations Summary

Monitoring Well	29-Oct-19								
ID	mbgs	mamsl							
MW-2 ¹	3.925	330.37							
MW-3 ¹	3.112	330.53							
MW-4 ¹	2.01	331.23							
MW-5 ¹	3.56	330.46							
MW101-19	4.246	330.43							
MW105-19	4.377	330.46							
MW106-19	4.227	330.65							

Notes:

Mbgs = meters below ground surface

Mamsl = meters above mean sea level

Based on the measured elevations and inferred groundwater contours, shallow groundwater at the Site appears to flow in a southwesterly direction, as shown on **Figure 3**.

Analytical Results

1.11 Applicable Site Condition Standards

MTE understands that the Subject Lands are intended to be used for residential purposes.

A portion of the Subject Lands are located within, adjacent to, or within 30 meters of areas of natural significance (Torrence Creek Provincially Significant Wetland). Therefore, portions of the Subject Lands have been identified as being "environmentally sensitive" as defined by O.Reg. 153/04 (as amended). Accordingly, the soil and groundwater analytical results were compared to the MECP Table 1 Site Condition Standards (Full Depth Background Site Condition Standards) included in the MOE Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 15, 2011, for residential property use (hereafter referred to as the "2011 Table 1 SCS").

A portion of the Subject Lands are located more than 30 meters from the defined wetland boundary. As a result, soil and groundwater analytical results have also been compared the MECP Table 2 SCS (Full Depth Generic Site Condition Standards in a Potable Ground Water Condition with Coarse Textured Soil) for residential property use (hereafter referred to as the "2011 Table 2 SCS").

¹ Monitoring Well installed as part of the Hydrogeological Investigation for the Site

1.12 Analytical Results in Soil

Analytical results in soil are shown in **Tables 3.2a to 3.2d**, along with a comparison to the 2011 Table 1 and Table 2 SCS, where applicable. Laboratory Certificates of Analysis are provided in **Appendix B**.

A summary of the laboratory results for the soil samples submitted for analysis is provided in the sections below.

1.12.1 Metals and Hydrides

Eight (8) soil samples including one (1) duplicate sample were submitted for analysis of metals and hydrides.

Elevated concentrations of two metals parameters (molybdenum and zinc) were detected above the 2011 Table 1 SCS in soil samples collected from the Subject Lands. Results are further summarized below:

- Molybdenum was detected in a soil sample collected from the fill material at borehole BH103-19 (interval of 0.3-0.6m) at a concentration of 2.5 micrograms per gram (μg/g), compared to the Table 1 SCS of 2.0 μg/g. It is noted that the borehole was advanced through fill material stockpiled on the ground surface and therefore the depth interval does not represent depth below ground surface. MTE requested that the sample be reextracted and re-analyzed. The re-extracted and re-analyzed sample had a detected molybdenum concentration of 1.9 μg/g.
- Zinc was detected in a soil sample collected from the native material at borehole MW106-19 (4.7-4.9 mbgs) (located >30 m from the wetland boundary) at a concentration of 340 μg/g, compared to the Table 1 SCS of 290 μg/g. This concentration is equal to the 2011 Table 2 SCS (340 μg/g).

There were no other elevated concentrations of metals reported above the 2011 Table 1 SCS in the soil samples submitted for analysis as part of the Phase II ESA.

1.12.2 PHCs F1-F4

Eight (8) soil samples including one (1) duplicate sample were submitted for analysis of PHC fractions F1-F4.

There were no concentrations of PHC fractions F1-F4 reported above the laboratory detection limits and, accordingly, no concentrations above the 2011 Table 1 SCS in the analyzed soil samples.

1.12.3 BTEX Compounds

Eight (8) soil samples including one (1) duplicate sample were submitted for analysis of BTEX compounds.

There were no concentrations of BTEX compounds reported above the laboratory detection limits and, accordingly, no concentrations above 2011 Table 1 SCS in the analyzed soil samples.

1.12.4 PAHs

Seven (7) soil samples including one (1) duplicate sample were submitted for analysis of PAHs.

There were no concentrations of PAH compounds reported above the laboratory detection limits and, accordingly, no concentrations above 2011 Table 1 SCS in the analyzed soil samples.

1.13 Analytical Results in Groundwater

Analytical results in groundwater are shown in **Tables 3.3a to 3.3d**, along with a comparison to the 2011 Table 1 SCS and Table 2 SCS, where applicable. Laboratory Certificates of Analysis are provided in **Appendix B**.

A summary of the laboratory results for the groundwater samples submitted for analysis is provided in the sections below.

1.13.1 Metals and Hydrides

Four (4) groundwater samples including one (1) duplicate sample were submitted for analysis of metals and hydrides.

There were no detected concentrations of metals and hydrides reported above the 2011 Table 1 SCS in the groundwater samples submitted for analysis.

1.13.2 PHCs F1-F4

Four (4) groundwater samples including one (1) duplicate sample were submitted for analysis of PHC fractions F1-F4.

There were no elevated concentrations of PHC fractions F1-F4 reported above the laboratory detection limit, and, accordingly, no concentrations above the 2011 Table 1 SCS in the analyzed groundwater samples.

1.13.3 BTEX Compounds

Four (4) groundwater samples including one (1) duplicate sample were submitted for analysis of BTEX compounds.

There were no elevated concentrations of BTEX compounds reported above the laboratory detection limits and, accordingly, no concentrations above the 2011 Table 1 SCS in the analyzed groundwater samples.

1.13.4 PAHs

Four (4) groundwater samples including one (1) duplicate sample were submitted for analysis of PAHs.

There were no elevated concentrations of PAHs reported above the laboratory detection limits and, accordingly, no concentrations above the 2011 Table 1 SCS in the analyzed groundwater samples.

1.14 Quality Assurance/Quality Control

QA/QC was maintained during the field program through equipment decontamination and sampling procedures, as outlined in the MOECC *Guidance on Sampling and Analytical Methods* (MOECC, 1996) and the *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act* (MOECC, 2004).

Samples were labelled with a unique sample identifier, project number, MTE contact and date.

MTE understands that laboratory Quality Control was carried out in accordance with the requirements of the *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act* (MOE, 2004). Included in the laboratory QA/QC program are the use of Method blanks, Laboratory Control Samples, Matrix Spikes, Laboratory Duplicates, Surrogates and Internal Standards depending on the analyte of interest.

The soil and groundwater samples were stored and transported in iced, insulated coolers to initiate cooling until submission to the analytical laboratory. Chain-of-custody sheets were maintained for the samples.

A duplicate soil sample from MW101-19 1-2', labelled MW1101-19 1-2', was submitted for analysis of Metals, Hydrides, and PAHs. In addition, a duplicate soil sample from MW101-19 15-16', labelled MW1101-19 15-16', was submitted for analysis of PHCs and BTEX Compounds. There were no elevated Relative Percent Difference (RPD) values (i.e. above 50%) between the original and duplicate sample.

A duplicate groundwater sample from MW105-19, labelled MW1105-19, was submitted for analysis of Metals, Hydrides, PAHs, PHCs, and BTEX Compounds. There were no elevated Relative Percent Difference (RPD) values (i.e. above 30%) between the original and duplicate sample.

In addition, one laboratory prepared trip blank was submitted for analysis of VOCs. There were no detections reported for the trip blank.

Results Summary

1.15 Summary of Soil Results

Soil samples were submitted for analysis of metals and hydrides, PHCs (F1-F4), BTEX compounds, and PAHs.

Based on the soil analytical results, an elevated concentration of molybdenum was detected above the 2011 Table 1 SCS in a soil sample collected from the stockpiled fill material in the north portion of 190 Arkell Road (depth interval of 0.3-0.6m from the top of the pile). A re-extracted and re-analyzed sample from the same location had a molybdenum concentration of 1.9 μ g/g which is below the 2011 Table 1 SCS (2 μ g/g).

Two additional soil samples were collected from the fill stockpiled in the north portion of 190 Arkell Road which reported molybdenum concentrations below the detectable limits (i.e. <0.50 μ g/g). In addition, soil samples collected from subsurface fill material in the south portion of 190 Arkell Road as well as from the native material at the Subject Lands did not report elevated concentrations above the 2011 Table 1 SCS indicating that the molybdenum impacts may be localized to the fill stockpile in the north portion of 190 Arkell Road.

In addition, an elevated concentration of zinc was detected above the 2011 Table 1 SCS in a soil sample collected form the native material at borehole MW106-19 (depth interval of 4.7-4.9 mbgs). MTE notes the following with respect to the elevated zinc concentration in soil:

- 1. A total of eight soil samples were analyzed for metals as part of the Phase II ESA. No elevated concentrations were detected in fill material. The elevated concentration of zinc was detected in one of the two samples collected from native material.
- 2. The zinc concentration at MW106-19 was reported to be 340 μ g/g which does not exceed the 2011 Table 2 SCS of 340 μ g/g. The comparison is considered appropriate since the sample location is more than 30 m from the wetland boundary.
- 3. Two soil samples collected during a previous geotechnical investigation reported zinc concentrations above the Table 1 SCS:
 - One sample collected from topsoil at borehole location BH5 (0-0.6 m) had a reported zinc concentration of 313 μg/g; and

- b. One sample collected from native sand and gravel at borehole location BH6 (1.2-2.1 m) had a reported zinc concentration of 254 µg/g.
- 4. The soils where the elevated zinc concentrations were reported during the Phase II ESA and the geotechnical investigation coincided with either topsoil material or native material at the Subject Lands.
- Elevated concentrations of zinc were not detected in groundwater samples collected from the Subject Lands.
- 6. The concentration of zinc in soil considered protective of human health is 5,600 μg/g. The concentrations detected in soil are well below this concentration.
- 7. Based on the Phase I ESA, no man-made source was identified that would result in elevated zinc concentrations at depth in the soil at the Subject Lands.
- 8. Based on discussions with employees of the City of Guelph, as well as previous subsurface investigations conducted in the Guelph area, MTE is aware of naturally occurring elevated concentrations of zinc in soil.

Based on the above, it is MTE's opinion that the elevated zinc concentration detected at the Subject Lands did not result from an anthropogenic source and, therefore, would not be considered a contaminant.

There were no other elevated concentrations detected above the 2011 Table 1 SCS in soil samples submitted for analysis.

1.16 Summary of Groundwater Results

Groundwater samples were submitted for analysis of metals and hydrides, PHCs (F1-F4), BTEX compounds, and PAHs.

Based on the groundwater analytical results, there were no elevated contaminant concentrations detected above the 2011 Table 1 SCS in the groundwater samples submitted for analysis.

1.17 Conclusions and Recommendations

Soil Analytical Results

Based on the soil analytical results from the Phase II ESA and a previous Geotechnical Investigation, elevated concentrations of two metal parameters (zinc and molybdenum) were detected above the 2011 Table 1 SCS.

With respect to zinc, it is MTE's opinion that the elevated concentrations detected at the Subject Lands did not result from an anthropogenic source and, therefore, would not be considered a contaminant. The concentrations of zinc encountered in soil at the Site would also not represent a risk to human health.

With respect to the molybdenum, MTE notes the following:

- **Risk of Exposure:** the concentration of molybdenum (2.5 μg/g) was detected above the 2011 Table 1 SCS (2 μg/g). The Table 1 standards are considered representative of background concentrations in Ontario. However, the concentrations of molybdenum considered protective of human health, mammals and birds, and plants and soil organisms are 110 μg/g, 6.9 μg/g, and 40 μg/g, respectively. Since the reported concentration of molybdenum is below these values, the risks associated with exposure to molybdenum is considered to be low.
- Contaminant Volatility: molybdenum is not considered a volatile compound;
- Contaminant Mobility: molybdenum was identified in fill material above the water table and is not considered a mobile contaminant; and
- Extent of Impact: An elevated concentration of molybdenum was detected at one soil sample location within a small stockpile within the Subject Lands. No other elevated concentrations of molybdenum were detected in soil or groundwater from other samples submitted for analysis. As such, soil impacts associated with molybdenum appears to be localized.

Based on the proposed future residential use of the Subject Lands along with the information collected during the Phase II ESA, it is MTE's opinion that the risk associated with elevated concentrations of molybdenum and zinc in soil is considered to be low.

Groundwater Analytical Results

There were no elevated concentrations of the tested parameters reported above the 2011 Table 1 SCS in the groundwater samples submitted for analysis.

Recommendations

Based on the results of the Phase II ESA, no additional subsurface investigation is recommended at this time. Notwithstanding, excess soils that may be generated at the Subject Lands in the future must be reused appropriately based on the reported chemical characteristics. Excess soil should be managed with consideration of the MECP Best Management Practices and/or in accordance with the recently enacted Ontario Regulation 406/19 "On-Site and Excess Soil Management Regulation".

It is recommended that the monitoring well network be maintained by the property owner or decommissioned in accordance with Ontario Regulation 903, as amended.

This report does not assess geotechnical issues, compliance with municipal by-laws/ permits, or features of the natural environment.

1.18 Exclusions

This report does not assess geotechnical issues, compliance with municipal by-laws/ permits, or features of the natural environment.

Qualifications of Assessors

As required by CSA Standard Z769-00, an appropriate combination of formal education, skills, experience and training is required in order to provide a technically sound and rational Phase II ESA. The key participants involved in performing the components of the Phase II ESA were Mr. Robert Reaume, P. Eng., and Ms. Kassandra Wallace of MTE Consultants Inc.

Mr. Reaume has obtained a Bachelor of Applied Science, Honours Environmental Engineering / Management Sciences Option from the University of Waterloo. His responsibilities include project management, regulatory and public liaison, coordinating field work activities including soil/sediment/groundwater sampling, data analysis, remediation planning and report preparation. Mr. Reaume has over 10 years of professional experience in conducting Phase I and II Environmental Site Assessments. Mr. Reaume is a licensed Professional Engineer in the Province of Ontario and a Qualified Person for Environmental Site Assessment (QP_{ESA}) as defined in Ontario Regulation 153/04 (as amended).

Ms. Wallace is a graduate of the Honours Bio-Resource Management Program (Environmental Management Major) at the University of Guelph and obtained her Ontario College Graduate Certificate in Environmental Engineering Applications at Conestoga College. She has completed the Hazardous Wastes Operations and Emergency Response (29 CFR 1910) training (40 hour course, with annual 8-hour refresher course) in accordance with the U.S. Department of Labour's OSHA. She has experience in the environmental consulting industry that include due diligence Phase I and II Environmental Site Assessments, Ontario Regulation 153/04 (as amended) Phase One and Two Environmental Site Assessments, soil and groundwater remediation projects, and various hydrogeological assessments.

Limitations

Services performed by **MTE Consultants Inc.** (MTE) were conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the Environmental Engineering and Consulting profession. No other warranty or representation expressed or implied as to the accuracy of the information, conclusions or recommendations is included or intended in this report.

This report was completed for the sole use of MTE and the client. The assignment was carried out in accordance with the Scope of Work described in Section 1.4. The report was prepared in accordance with the requirements of CAN/CSA-Z769-00 (R2013) subject to any deviations noted herein. MTE makes no representation that the present report has dealt with all of the important environmental issues, except as provided in the Scope of Work. This report is not intended to be exhaustive in scope or to imply a risk-free facility. As such, this report may not deal with <u>all</u> issues potentially applicable to the Site and may omit aspects which are or may be of interest to the reader.

In addition, it should be recognized that a soil or groundwater sample result represents one discrete portion of a site at the time it is collected, and that the findings of this report are based on conditions as they existed during the time period of the investigation.

Any use which another party makes of this report, or any reliance on, or decisions to be made based upon it, are the responsibility of such parties. MTE accepts no responsibility for liabilities incurred by or damages, if any, suffered by another party as a result of decisions made or actions taken, based upon this report. Others with interest in the Site should undertake their own investigations and studies to determine how or if the condition affects them or their plans.

It should be recognized that the passage of time may affect the views, conclusions and recommendations (if any) provided in this report because environmental conditions of a property can change, along with regulatory requirements. Should additional or new information become available, MTE recommends that it be brought to our attention in order that we may determine whether it affects the contents of this report.

All of which is respectfully submitted,

MTE Consultants Inc.

Robert Reaume, P.Eng., QPESA

Division Manager, Environmental Kitchener

519-743-6500 ext. 1209

rreaume@mte85.com

Kassandra Wallace, B.B.R.M.

Environmental Scientist 519-743-6500 ext. 1321

kwallace@mte85.com

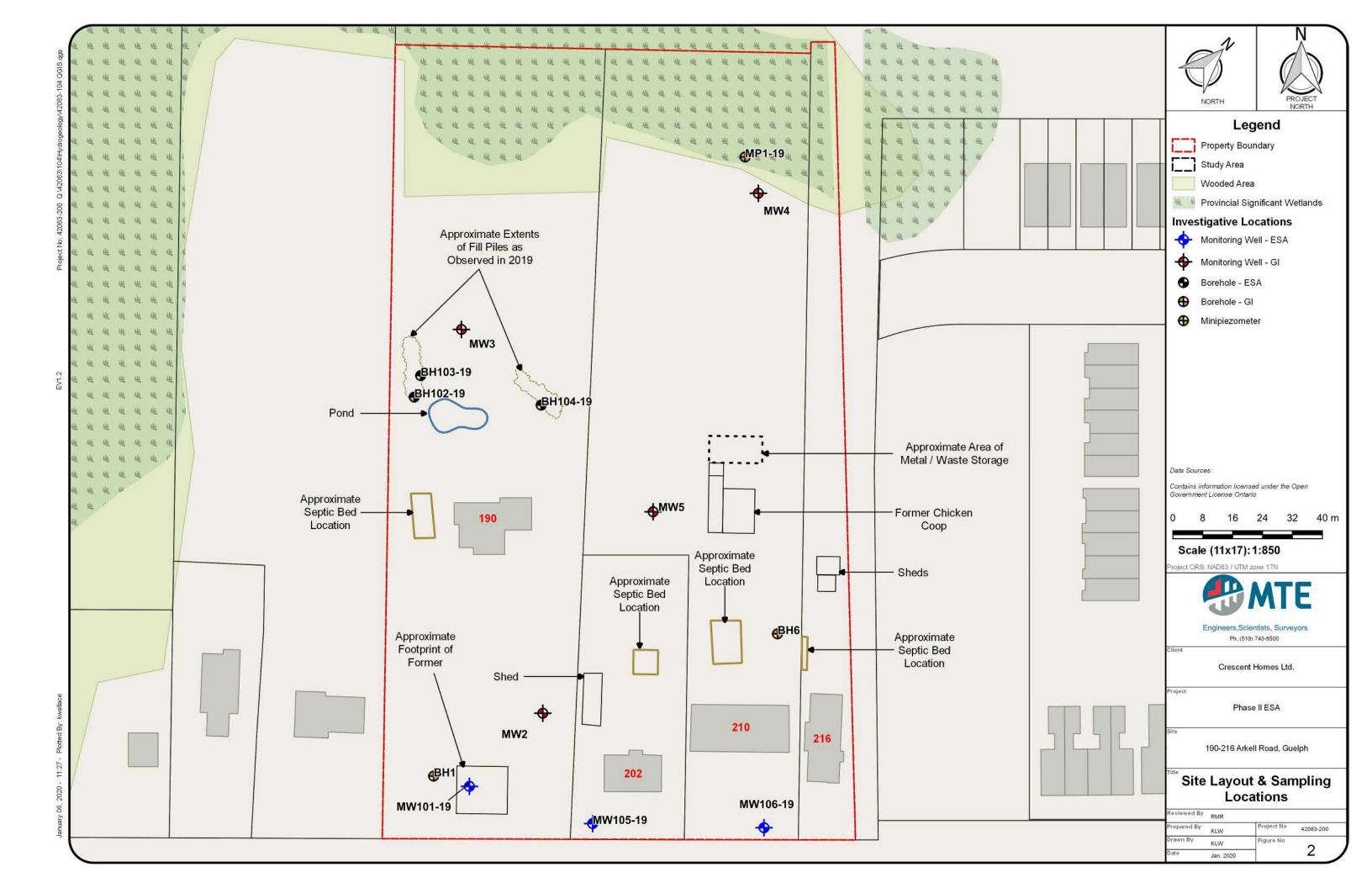
KLW:amc

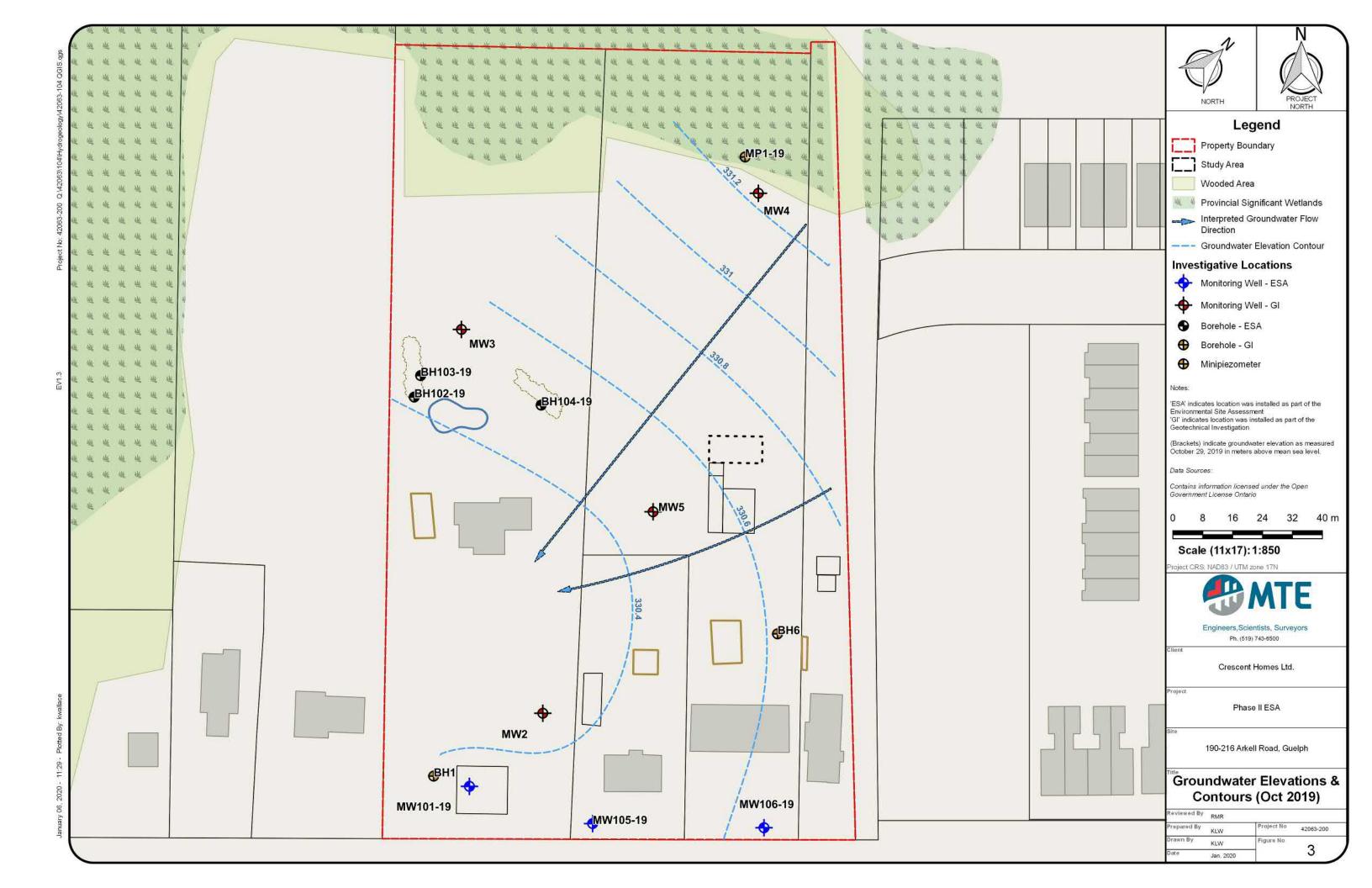
M:\42063\200\Phase II ESA\04-Draft Deliverables\42063-200_Phase II ESA_196-216 Arkell Road - FINAL.docx

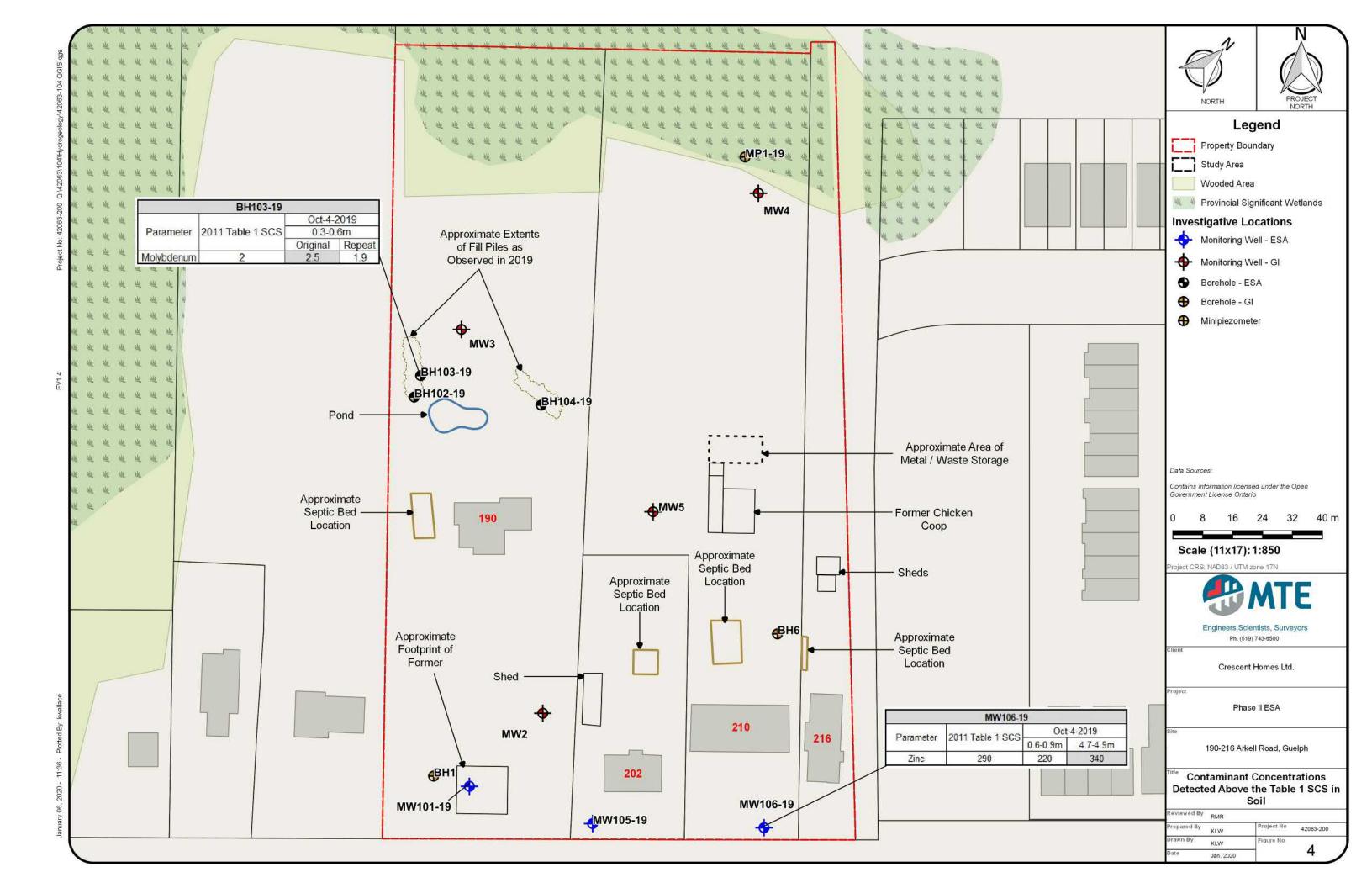
References

"Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", Ontario Ministry of the Environment, May 1996.

"Ontario Regulation 153/04, as amended", Ministry of the Environment, January 2014. Environmental Protection Act.


"Phase I Environmental Site Assessment, 190-216 Arkell Road, Guelph, ON" dated November 2018, prepared by MTE Consultants Inc.


"Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", Ontario Ministry of the Environment, March 2004, amended July 2011.


Figures

Tables

						Sample Location	MW101-19	BH102-19	BH103-19	BH103-19	BH104-19	MW105-19	MW105-19	MW106-19	MW106-19	MW101-19
						Sample Name	MW101-19 1-2'	BH102-19 1-2'	BH103-19 1-2'	BH103-19 1-2'	BH104-19 1-2'	MW105-19 17-18'	MW105-19 17-18' Lab-Dup	MW106-19 2-3'	MW106-19 15.5- 16'	MW1101-19 1-2'
						Lab Job #	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922
Parameters	Unit	RDL	2011 Table 1 SCS (R/P/I	2011 Table 2 SCS (R/P/I, Coarse)		Laboratory ID	KYZ350	KYZ356	KYZ358	KYZ358	KYZ360	KYZ363	KYZ363	KYZ365	KYZ367	KYZ354
			or I/C/C, Coarse)			Sampling Date	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019
					Sa	ample Depth (m bgs)	0.3-0.6	0.3-0.6	0.3-0.6	0.3-0.6	0.3-0.6	5.2-5.5	5.2-5.5	0.6-0.9	4.7-4.9	0.3-0.6
					Ма	ximum Concentration				Repeat			Laboratory Duplicate			
Metals and Inorganics																
Antimony	μg/g	0.2 - 1	1.3	7.5		0.21	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.21	<0.20	<0.20
Arsenic	μg/g	1	18	18		5.5	4.4	4.5	3.4	4	2.6	1.5	1.4	5.5	2.1	4.1
Barium	μg/g	0.5 - 1	220	390		51	35	49	35	45	25	5.4	5	51	14	44
Beryllium	μg/g	0.2 - 0.5		4		0.57	0.35	0.49	0.33	0.38	0.27	<0.20	<0.20	0.57	<0.20	0.4
Boron	μg/g	5	36	120		6.9	6.9	5.4	<5.0	<5.0	<5.0	<5.0	<5.0	6.1	5.2	6.3
Cadmium	μg/g	0.1 - 0.5		1.2		0.61	0.49	0.43	0.36	0.37	0.26	0.24	0.25	0.61	0.35	0.47
Chromium	μg/g	1	70	160		17	12	15	16	16	8.6	4.3	3.7	17	7.6	14
Cobalt	μg/g	0.1 - 1	21	22		6.3	4.3	5	4	4.4	3.1	1.2	1.1	6.3	2.6	5
Copper	μg/g	0.5 - 1	92	140		15	9.7	12	11	9.6	8.3	5.7	6	15	10	9.7
Lead	μg/g	1	120	120		71	46	42	24	30	30	18	19	71	28	49
Molybdenum	μg/g	0.5 - 1	2	6.9		2.5	0.8	<0.50	2.5	1.9	<0.50	<0.50	<0.50	<0.50	<0.50	0.65
Nickel	μg/g	0.5 - 1	82	100		13	9.2	11	7.8	8.7	6.6	2.7	2.5	13	5.8	10
Selenium	μg/g	0.5 - 1	1.5	2.4	<	0.5	<0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50
Silver	μg/g	0.2	0.5	20	<	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium	μg/g	0.05 - 0.5		1		0.13	0.11	0.093	0.079	0.1	0.071	< 0.050	< 0.050	0.13	0.054	0.11
Uranium	μg/g	0.05 - 1	2.5	23		0.62	0.51	0.49	0.48	0.46	0.45	0.43	0.41	0.62	0.47	0.52
Vanadium	μg/g	1 - 5	86	86		32	23	30	21	26	18	11	8.8	32	20	27
Zinc	μg/g	5	290	340		340	240	210	130	150	220	150	160	220	340	210

"-" - parameter not analyzed
RDL - Reported detection limit
NR - Not Relevant
NV- No Value
NA - Not Appliant

NA - Not Applicable
"<" - Less than the Reporting Detection Limit

Phase II ESA 190-216 Arkell Road, Guelph MTE File No.: 42063-200 Page 1 of 1 November 2019

					S	ample Location	MW101-19	BH102-19	BH103-19	BH104-19	BH104-19	MW105-19	MW106-19	MW101-19
						Sample Name	MW101-19 1-2'	BH102-19 1-2'	BH103-19 1-2'	BH104-19 1-2'	BH104-19 1-2' Lab-Dup	MW105-19 17-18'	MW106-19 15.5- 16'	MW1101-19 1-2'
			2011 7 11 1 200 (7/7/7			Lab Job #	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922
Parameters	Unit	RDL	2011 Table 1 SCS (R/P/I or	2011 Table 2 SCS (R/P/I,		Laboratory ID	KYZ350	KYZ356	KYZ358	KYZ360	KYZ360	KYZ363	KYZ367	KYZ354
			I/C/C, Coarse)	Coarse)		Sampling Date	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019
					Sam	ple Depth (m bgs)	0.3-0.6	0.3-0.6	0.3-0.6	0.3-0.6	0.3-0.6	5.2-5.5	4.7-4.9	0.3-0.6
					Maximum Concentration						Laboratory Duplicate			Field Duplicate
Polycyclic Aromatic Hydrocarbons (PAHs	s)													
Acenaphthene	μg/g	0.005 - 0.4	0.072	7.9	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Acenaphthylene	μg/g	0.005 - 0.125	0.093	0.15	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Anthracene	μg/g	0.005 - 0.125	0.16	0.67	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Benz(a)anthracene	μg/g	0.005 - 0.125	0.36	0.5	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Benzo(a)pyrene	μg/g	0.005 - 0.125	0.3	0.3	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Benzo(b)fluoranthene	μg/g	0.005 - 0.125	0.47	0.78	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Benzo(g,h,i)perylene	μg/g	0.005 - 0.15	0.68	6.6	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Benzo(k)fluoranthene	μg/g	0.005 - 0.125	0.48	0.78	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chrysene	μg/g	0.005 - 0.125	2.8	7	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Dibenz(a,h)anthracene	μg/g	0.005 - 0.125	0.1	0.1	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Fluoranthene	μg/g	0.005 - 0.5	0.56	0.69	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Fluorene	μg/g	0.005 - 0.125	0.12	62	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Indeno(1,2,3-cd)pyrene	μg/g	0.005 - 0.125	0.23	0.38	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1-Methylnaphthalene	μg/g	0.005 - 0.075	0.59	0.99	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
2-Methylnaphthalene	μg/g	0.005 - 0.075	0.59	0.99	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1+2-Methylnaphthalene	μg/g	0.0071 - 0.106	0.59	0.99	<	0.0071	< 0.0071	<0.0071	<0.0071	< 0.0071	-	< 0.0071	< 0.0071	< 0.0071
Naphthalene	μg/g	0.005 - 0.32	0.09	0.6	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050
Phenanthrene	μg/g	0.005 - 0.46	0.69	6.2	<	0.005	< 0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
Pyrene	μg/g	0.005 - 0.5	1	78	<	0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050

Bold
Bold
"-" - parameter not analyzed
RDL - Reported detection limit
NR - Not Relevant
NV- No Value
NA - Not Applicable
"<" - Less than the Reporting Detection Limit

Phase II ESA 190-216 Arkell Road, Guelph

					S	Sample Location	MW101-19	BH102-19	BH102-19	BH103-19	BH104-19	BH104-19	MW105-19	MW106-19	MW106-19	MW101-19
						Sample Name	MW101-19 15-16'	BH102-19 1-2'	BH102-19 1-2' Lab-Dup	BH103-19 1-2'	BH104-19 1-2'	BH104-19 1-2' Lab-Dup	MW105-19 17-18'	MW106-19 2-3'	MW106-19 15.5- 16'	MW1101-19 15- 16'
						Lab Job #	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922
Parameters	Unit	RDL	2011 Table 1 SCS (R/P/I or	2011 Table 2 SCS (R/P/I,		Laboratory ID	KYZ352	KYZ356	KYZ356	KYZ358	KYZ360	KYZ360	KYZ363	KYZ365	KYZ367	KYZ355
			I/C/C, Coarse)	Coarse)		Sampling Date	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019
					San	nple Depth (m bgs)	4.6-4.9	0.3-0.6	0.3-0.6	0.3-0.6	0.3-0.6	0.3-0.6	5.2-5.5	0.6-0.9	4.7-4.9	4.6-4.9
						Maximum			Laboratory			Laboratory				
						Concentration			Duplicate			Duplicate				Field Duplicate
Petroleum Hydrocarbons (PHCs)																
F1 (C6 to C10)	μg/g	5 - 10	25	55	<	10	<10	<10	<10	<10	<10		<10	<10	<10	<10
F1 (C6 to C10) minus BTEX	μg/g	5 - 10	25	55	<	10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
F2 (C10 to C16)	μg/g	10 - 50	10	98	<	10	<10	<10	-	<10	<10	<10	<10	<10	<10	<10
F3 (C16 to C34)	μg/g	50 - 250	240	300	<	50	<50	<50	-	<50	<50	<50	<50	<50	<50	<50
F4 (C34 to C50)	μg/g	50 - 250	120	2800	<	50	<50	<50	-	<50	<50	<50	<50	<50	<50	<50
Reached Baseline at C50	unitless		NR	NR		NA	YES	YES	-	YES	YES	YES	YES	YES	YES	YES

"-" - parameter not analyzed
RDL - Reported detection limit
NR - Not Relevant
NV- No Value
NA - Not Applicable
"<" - Less than the Reporting Detection Limit

Phase II ESA 190-216 Arkell Road, Guelph MTE File No.: 42063-200 Page 1 of 1

November 2019

					San	nple Location	MW101-19	BH102-19	BH102-19	BH103-19	BH104-19	MW105-19	MW106-19	MW106-19	MW101-19
					Sa	ample Name	MW101-19 15-16'	BH102-19 1-2'	BH102-19 1-2' Lab-Dup	BH103-19 1-2'	BH104-19 1-2'	MW105-19 17-18'	MW106-19 2-3'	MW106-19 15.5- 16'	MW1101-19 15- 16'
						Lab Job #	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922	B9S0922
Parameters	Unit	RDL	2011 Table 1 SCS (R/P/I or	2011 Table 2 SCS (R/P/I,	La	aboratory ID	KYZ352	KYZ356	KYZ356	KYZ358	KYZ360	KYZ363	KYZ365	KYZ367	KYZ355
			I/C/C, Coarse)	Coarse)	Sa	mpling Date	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019	04-Oct-2019
					Sampl	e Depth (m bgs)	4.6-4.9	0.3-0.6	0.3-0.6	0.3-0.6	0.3-0.6	5.2-5.5	0.6-0.9	4.7-4.9	4.6-4.9
						Maximum encentration			Laboratory Duplicate						Field Duplicate
Volatile Organic Compounds (VOCs)															
Benzene	μg/g	0.0068 - 0.02	0.02	0.21	<	0.02	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	< 0.020
Ethylbenzene	μg/g	0.018 - 0.02	0.05	1.1	<	0.02	< 0.020	< 0.020	<0.020	<0.020	<0.020	<0.020	< 0.020	< 0.020	<0.020
Toluene	μg/g	0.02 - 0.08	0.2	2.3	<	0.02	< 0.020	< 0.020	< 0.020	< 0.020	<0.020	< 0.020	< 0.020	< 0.020	< 0.020
o-Xylene	μg/g	0.02	NR	NR	<	0.02	< 0.020	< 0.020	<0.020	< 0.020	<0.020	<0.020	< 0.020	< 0.020	< 0.020
m+p-Xylene	μg/g	0.03 - 0.04	NR	NR	<	0.04	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Xylene Mixture	μg/g	0.04 - 0.05	0.05	3.1	<	0.04	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040

"-" - parameter not analyzed
RDL - Reported detection limit
NR - Not Relevant
NV- No Value
NA - Not Applicable
"<" - Less than the Reporting Detection Limit

Phase II ESA 190-216 Arkell Road, Guelph

						Sample Location	MW101-19	MW105-19	MW106-19	MW105-19
						Sample Name	MW101-19	MW105-19	MW106-19	MW1105-19
						Lab Job #	B9S4652	B9S4652	B9S4652	B9S4652
Parameters	Unit	RDL	2011 Table 1 SCS (R/P/I or	2011 Table 2 SCS (R/P/I,		Laboratory ID	KZT008	KZT009	KZT010	KZT011
			I/C/C, Coarse)	Coarse)		Sampling Date	08-Oct-2019	08-Oct-2019	08-Oct-2019	08-Oct-2019
					W	ell Screen Interval (m bgs)	3.0-6.1	3.0-6.1	3.4-4.9	3.0-6.1
					ľ	Maximum Concentration				Field Duplicate
Metals and Inorganics					•					
Antimony	μg/L	0.5	1.5	6	<	0.5	< 0.50	< 0.50	< 0.50	< 0.50
Arsenic	μg/L	1	13	25	<	1	<1.0	<1.0	<1.0	<1.0
Barium	μg/L	2	610	1000		43	17	43	33	32
Beryllium	μg/L	0.5	0.5	4	<	0.5	< 0.50	< 0.50	< 0.50	< 0.50
Boron	μg/L	10	1700	5000		25	20	21	24	25
Cadmium	μg/L	0.1	0.5	2.7		0.1	<0.10	0.1	<0.10	<0.10
Chromium	μg/L	5	11	50	<	5	< 5.0	<5.0	<5.0	< 5.0
Cobalt	μg/L	0.5	3.8	3.8	<	0.5	< 0.50	< 0.50	<0.50	< 0.50
Copper	μg/L	1	5	87		1.9	1.3	1.3	1.6	1.9
Lead	μg/L	0.5	1.9	10	<	0.5	< 0.50	< 0.50	<0.50	< 0.50
Molybdenum	μg/L	0.5	23	70		3	3	0.55	0.69	0.63
Nickel	μg/L	1	14	100	<	1	<1.0	<1.0	<1.0	<1.0
Selenium	μg/L	2	5	10	<	2	<2.0	<2.0	<2.0	<2.0
Silver	μg/L	0.1	0.3	1.5	<	0.1	<0.10	<0.10	<0.10	<0.10
Thallium	μg/L	0.05		2	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050
Uranium	μg/L	0.1	8.9	20		0.37	0.37	0.35	0.32	0.32
Vanadium	μg/L	0.5	3.9	6.2	<	0.5	< 0.50	< 0.50	<0.50	< 0.50
Zinc	μg/L	5	160	1100		9	5.3	6.2	8.3	9

"-" - parameter not analyzed
RDL - Reported detection limit
NR - Not Relevant

NX - Not Relevant NV- No Value NA - Not Applicable "<" - Less than the Reporting Detection Limit

Phase II ESA 190-216 Arkell Road, Guelph

	Unit	RDL		2011 Table 2 SCS (R/P/I, Coarse)		Sample Location	MW101-19	MW105-19	MW106-19	MW105-19
						Sample Name	MW101-19	MW105-19	MW106-19	MW1105-19
						Lab Job #	B9S4652	B9S4652	B9S4652	B9S4652
Parameters			2011 Table 1 SCS (R/P/I or			Laboratory ID	KZT008	KZT009	KZT010	KZT011
			I/C/C, Coarse)			Sampling Date	08-Oct-2019	08-Oct-2019	08-Oct-2019	08-Oct-2019
						ell Screen Interval (m bgs)	3.0-6.1	3.0-6.1	3.4-4.9	3.0-6.1
			Maximum Concentration							Field Duplicate
Polycyclic Aromatic Hydrocarbons (PAHs	s)									
Acenaphthene	μg/L	0.05	4.1	4.1	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050
Acenaphthylene	μg/L	0.05	1	1	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050
Anthracene	μg/L	0.05	0.1	2.4	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050
Benz(a)anthracene	μg/L	0.05	0.2	1	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050
Benzo(a)pyrene	μg/L	0.01	0.01	0.01	<	0.01	< 0.010	< 0.010	< 0.010	< 0.010
Benzo(b)fluoranthene	μg/L	0.05	0.1	0.1	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050
Benzo(g,h,i)perylene	μg/L	0.05	0.2	0.2	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050
Benzo(k)fluoranthene	μg/L	0.05	0.1	0.1	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050
Chrysene	μg/L	0.05	0.1	0.1	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050
Dibenz(a,h)anthracene	μg/L	0.05	0.2	0.2	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050
Fluoranthene	μg/L	0.05	0.4	0.41	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050
Fluorene	μg/L	0.05	120	120	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050
Indeno(1,2,3-cd)pyrene	μg/L	0.05	0.2	0.2	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050
1-Methylnaphthalene	μg/L	0.05	2	3.2	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050
2-Methylnaphthalene	μg/L	0.05	2	3.2	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050
1+2-Methylnaphthalene	μg/L	0.071	2	3.2	<	0.071	< 0.071	< 0.071	<0.071	< 0.071
Naphthalene	μg/L	0.05	7	11	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050
Phenanthrene	μg/L	0.03	0.1	1	<	0.03	< 0.030	< 0.030	< 0.030	< 0.030
Pyrene	μg/L	0.05	0.2	4.1	<	0.05	< 0.050	< 0.050	<0.050	< 0.050

"-" - parameter not analyzed RDL - Reported detection limit

NR - Not Relevant
NV- No Value
NA - Not Applicable
"<" - Less than the Reporting Detection Limit

Phase II ESA 190-216 Arkell Road, Guelph

Parameters	Unit	RDL	2011 Table 1 SCS (R/P/I or I/C/C, Coarse)	2011 Table 2 SCS (R/P/I, Coarse)	Sample Location		MW101-19	MW105-19	MW106-19	MW105-19
						Sample Name	MW101-19	MW105-19	MW106-19	MW1105-19
					Lab Job # Laboratory ID Sampling Date		B9S4652	B9S4652	B9S4652	B9S4652
							KZT008	KZT009	KZT010	KZT011
							08-Oct-2019	08-Oct-2019	08-Oct-2019	08-Oct-2019
						ell Screen Interval (m bgs)	3.0-6.1	3.0-6.1	3.4-4.9	3.0-6.1
						Maximum Concentration				Field Duplicate
Petroleum Hydrocarbons (PHCs)							•			
F1 (C6 to C10)	μg/L	25	420	750	<	25	<25	<25	<25	<25
F1 (C6 to C10) minus BTEX	μg/L	25	420	750	<	25	<25	<25	<25	<25
F2 (C10 to C16)	μg/L	100	150	150	<	100	<100	<100	<100	<100
F3 (C16 to C34)	μg/L	200	500	500	<	200	<200	<200	<200	<200
F4 (C34 to C50)	μg/L	200	500	500	<	200	<200	<200	<200	<200
Reached Baseline at C50	unitless		NR	NR		NA	YES	YES	YES	YES

Notes:

2011 Site Condition Standards (SCS) - As identified in 'Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act' (as amended April 15, 2011)

Bold
- Exceeds 2011 Table 1 SCS
- Exceeds 2011 Table 2 SCS

"-" - parameter not analyzed

RDL - Reported detection limit

NR - Not Relevant

NV- No Value

NA - Not Applicable

NA - Not Applicable
"<" - Less than the Reporting Detection Limit

						Sample Location	MW101-19	MW105-19
						Sample Name	MW101-19	MW105-19
				Lab Job #		B9S4652	B9S4652	
Parameters	Unit	RDL	2011 Table 1 SCS (R/P/I or	2011 Table 2 SCS (R/P/I,	Laboratory ID		KZT008	KZT009
			I/C/C, Coarse)	Coarse)		Sampling Date	08-Oct-2019	08-Oct-2019
					Well Screen Interval (m bgs)		3.0-6.1	3.0-6.1
						aximum Concentration		
Volatile Organic Compounds (VOCs)								
Benzene	μg/L	0.2	0.5	5	<	0.2	<0.20	<0.20
Ethylbenzene	μg/L	0.2	0.5	2.4	<	0.2	<0.20	<0.20
Toluene	μg/L	0.2	0.8	24		0.29	0.29	<0.20
o-Xylene	μg/L	0.2	NR	NR	<	0.2	<0.20	<0.20
m+p-Xylene	μg/L	0.2 - 0.4	NR	NR	<	0.4	< 0.40	< 0.40
Xylene Mixture	μg/L	0.2 - 0.4	72	300	<	0.4	<0.40	<0.40

Page 1 of 2

Notes:

2011 Site Condition Standards (SCS) - As identified in 'Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act' (as amended April 15, 2011)

Bold
- Exceeds 2011 Table 1 SCS
- Bold
- Exceeds 2011 Table 2 SCS

"-" - parameter not analyzed

RDL - Reported detection limit

NR - Not Relevant

NV- No Value

NA - Not Applicable

NA - Not Applicable
"<" - Less than the Reporting Detection Limit

Phase II ESA 190-216 Arkell Road, Guelph

MTE File No.: 42063-200 November 2019

			2011 Table 1 SCS (R/P/I or I/C/C, Coarse)		MW106-19	MW105-19	TRIP BLANK
					MW106-19	MW1105-19	TRIP BLANK
					B9S4652	B9S4652	B9S4652
Parameters	Unit	RDL		2011 Table 2 SCS (R/P/I, Coarse)	KZT010	KZT011	KZT012
					08-Oct-2019	08-Oct-2019	08-Oct-2019
					3.4-4.9	3.0-6.1	
						Field Duplicate	Trip Blank
Volatile Organic Compounds (VOCs)							
Benzene	μg/L	0.2	0.5	5	<0.20	<0.20	< 0.20
Ethylbenzene	μg/L	0.2	0.5	2.4	<0.20	<0.20	<0.20
Toluene	μg/L	0.2	0.8	24	<0.20	<0.20	< 0.20
o-Xylene	μg/L	0.2	NR	NR	<0.20	<0.20	< 0.20
m+p-Xylene	μg/L	0.2 - 0.4	NR	NR	< 0.40	< 0.40	<0.20
Xylene Mixture	μg/L	0.2 - 0.4	72	300	< 0.40	< 0.40	< 0.20

Notes:

2011 Site Condition Standards (SCS) - As identified in 'Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act' (as amended April 15, 2011)

Bold
- Exceeds 2011 Table 1 SCS
- Exceeds 2011 Table 2 SCS

"-" - parameter not analyzed

RDL - Reported detection limit

NR - Not Relevant

NV- No Value

NA - Not Applicable

NA - Not Applicable
"<" - Less than the Reporting Detection Limit

Phase II ESA 190-216 Arkell Road, Guelph

Appendix A

Borehole Logs

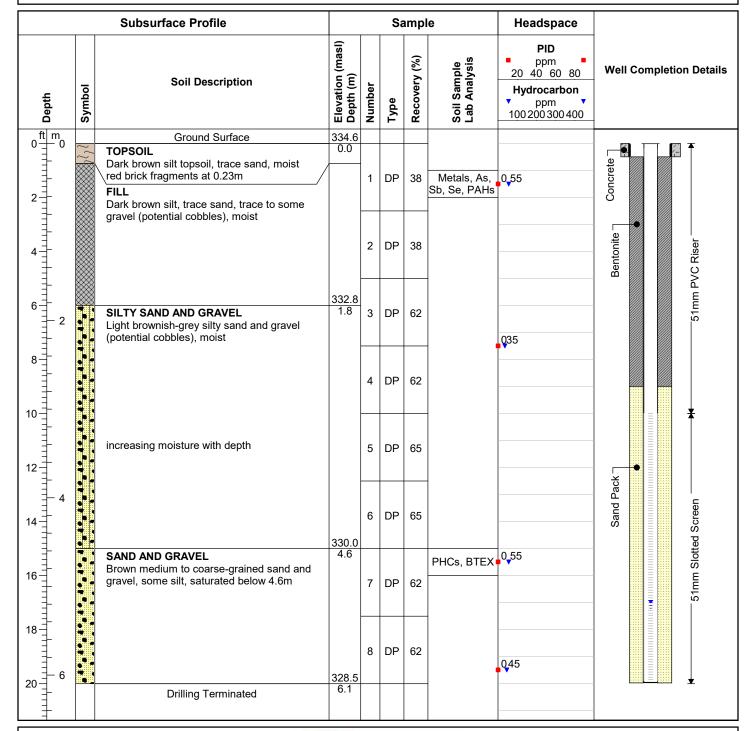
ID Number: MW101-19

Project: Phase II ESA

Project No: 42063-200

Client: Crescent Homes Ltd.

Site Location: 190-216 Arkell Rd., Guelph


Drill Date: 10/4/2019

Drilling Contractor: Altech Drilling

Drill Rig: Geoproble 7822DT

Drill Method: Direct-Push

Protective Cover: Monument

Field Technician: KLW

Drafted by: KLW

Reviewed by: RMR

Sheet: 1 of 1

Notes:

Water level measured October 8, 2019. Metal pipe encountered in first attempted borehole at approximately 0.3mbgs. Moved borehole off pipe and redrilled.

No noticeable staining or odours.

ID Number: BH102-19

Project: Phase II ESA

Project No: 42063-200

Client: Crescent Homes Ltd.

Site Location: 190-216 Arkell Rd., Guelph

Drill Date: 10/4/2019

Drilling Contractor: Altech Drilling

Drill Rig: Geoproble 7822DT

Drill Method: Direct-Push

Protective Cover: NA

		SUBSURFACE PROFILE	SAMPLE		HEADSPACE				
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Туре	Recovery (%)	Soil Sample Lab Analysis	PID ppm 20 40 60 80 Hydrocarbon ppm 100 200 300 400	Well Completion Details
0 ft m		Ground Surface	0.0						7777
2		FILL Brown sandy silt, some gravel, moist	0.0	1	DP	53	Metals*, PAHs, PHCs*	Q 45	
+	\bowtie		-0.9 0.9						
4=		SILTY SAND AND GRAVEL Light brownish-grey silty sand and gravel (potential cobbles), moist		2	DP	53		© 0	Bentonite -
# -			-1.5 1.5						Be
1 =		Drilling Terminated	1.5						
6 =									
2									
‡									
8=									
1 3									
=									
10 =									
1 =									
‡									
12 🛨									
1 ±									
1									
14 =									
'									
1 1									
1‡									
16									
‡									
=[
18									
‡									
‡ .									
20 = 6									
=									
1 =									

Field Technician: KLW

Drafted by: KLW

Reviewed by: RMR

Sheet: 1 of 1

Borehole advance on top of fill pile. Metals* - sample analyzed for Metals, As, Sb and

Se PHCs* - sample analyzed for PHCs and BTEX No noticeable staining or odours.

ID Number: BH103-19

Project: Phase II ESA

Project No: 42063-200

Client: Crescent Homes Ltd.

Site Location: 190-216 Arkell Rd., Guelph

Drill Date: 10/4/2019

Drilling Contractor: Altech Drilling

Drill Rig: Geoproble 7822DT

Drill Method: Direct-Push

Protective Cover: NA

		SUBSURFACE PROFILE			SA	MPL	.E	HEADSPACE	
	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Туре	Recovery (%)	Soil Sample Lab Analysis	PID ppm 20 40 60 80 Hydrocarbon ppm 100 200 300 400	Well Completion Details
0 ft m	~~	Ground Surface	0.0						7777
2-		FILL Brown sandy silt, some gravel, moist	-0.8	1	DP	33	Metals*, PAHs, PHCs*	0,45	
4		SILTY SAND AND GRAVEL Light brownish-grey silty sand and gravel (potential cobbles), moist	0.8	2	DP	33	•	,2 25	Bentonite
6 - 2 8 - 1 10 - 1 12 - 1 14 - 1 16 - 1 18 - 1 18 - 1 18 - 1 18 - 1 18 - 1 10 - 1		Drilling Terminated	1.5						ă 💹

Field Technician: KLW

Drafted by: KLW

Reviewed by: RMR

Sheet: 1 of 1

Borehole advance on top of fill pile. Metals* - sample analyzed for Metals, As, Sb and

Se PHCs* - sample analyzed for PHCs and BTEX No noticeable staining or odours.

ID Number: BH104-19

Project: Phase II ESA

Project No: 42063-200

Client: Crescent Homes Ltd.

Site Location: 190-216 Arkell Rd., Guelph

Drill Date: 10/4/2019

Drilling Contractor: Altech Drilling

Drill Rig: Geoproble 7822DT

Drill Method: Direct-Push

Protective Cover: NA

	SUBSURFACE PROFILE			SA	MPL	.E	HEADSPACE	
	Soil Description	Elevation (masl) Depth (m)	Number	Туре	Recovery (%)	Soil Sample Lab Analysis	PID	Well Completion Details
0 ft m	Ground Surface	0.0						2777
2	FILL Brown sandy silt, some gravel, moist SILTY SAND AND GRAVEL	-0.6 0.6	1	DP	38	Metals*, PAHs, PHCs*	. 035	
4	Light brownish-grey silty sand and gravel (potential cobbles), moist	-1.5	2	DP	38		Q 45	Bentonite
10 - 1 - 4 - 14 - 14 - 16 - 1 - 4 - 16 - 1 - 4 - 16 - 1 - 4 - 16 - 1 - 4 - 16 - 1 - 16 - 1 - 16 - 1 - 16 - 1 - 1	Drilling Terminated	1.5						

Field Technician: KLW

Drafted by: KLW

Reviewed by: RMR

Sheet: 1 of 1

Borehole advance on top of fill pile. Metals* - sample analyzed for Metals, As, Sb and

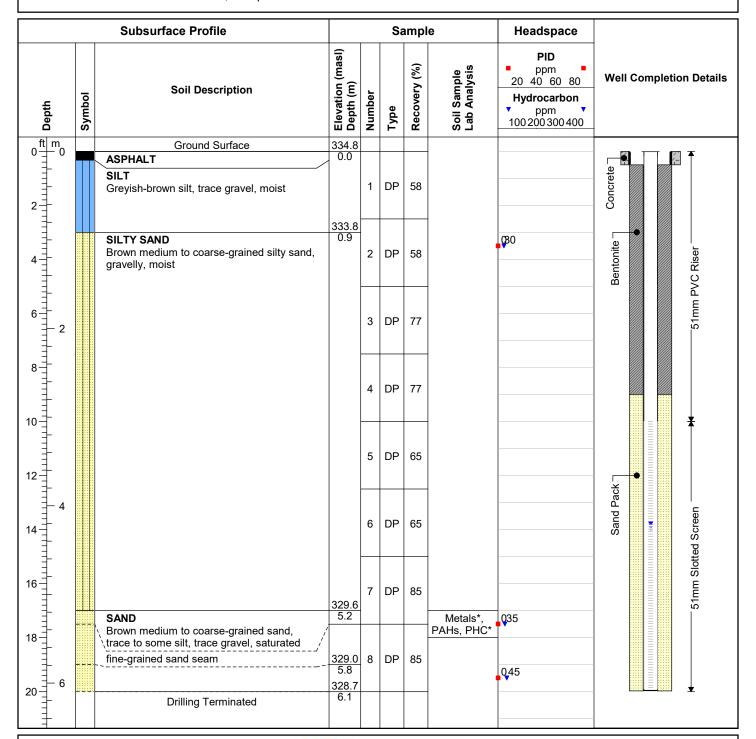
Se PHCs* - sample analyzed for PHCs and BTEX No noticeable staining or odours.

ID Number: MW105-19

Project: Phase II ESA

Project No: 42063-200 Client: Crescent Homes Ltd.

Site Location: 190-216 Arkell Rd., Guelph


Drill Date: 10/4/2019

Drilling Contractor: Altech Drilling

Drill Rig: Geoproble 7822DT

Drill Method: Direct-Push

Protective Cover: Flushmount

Field Technician: KLW

Drafted by: KLW

Reviewed by: RMR

Sheet: 1 of 1

Water level measured October 8, 2019. Metals* - sample analyzed for Metals, As, Sb, Se PHCs* - sample analyzed for PHCs and BTEX

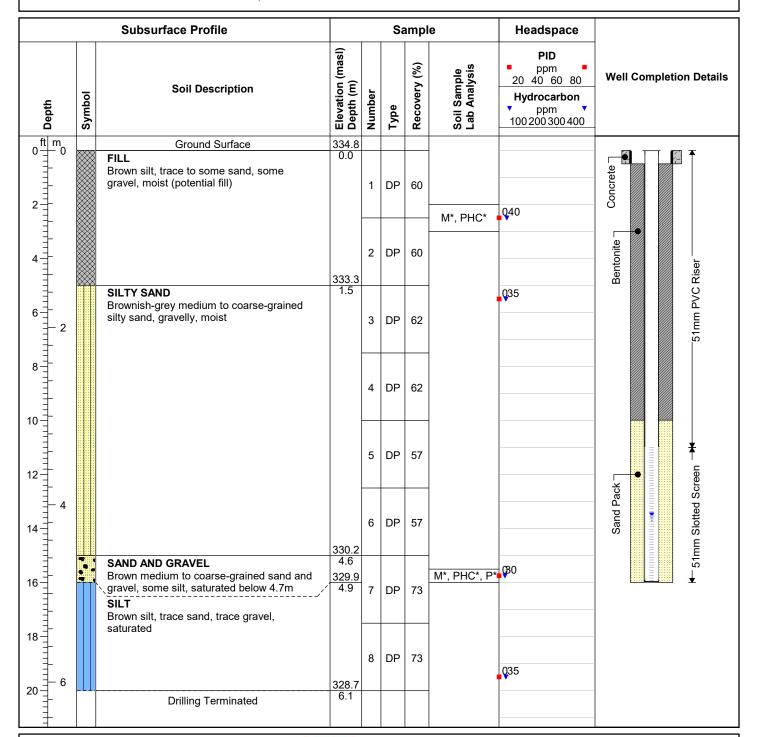
No noticeable staining or odours.

ID Number: MW106-19

Project: Phase II ESA
Project No: 42063-200

Client: Crescent Homes Ltd.

Site Location: 190-216 Arkell Rd., Guelph


Drill Date: 10/4/2019

Drilling Contractor: Altech Drilling

Drill Rig: Geoproble 7822DT

Drill Method: Direct-Push

Protective Cover: Flushmount

Field Technician: KLW

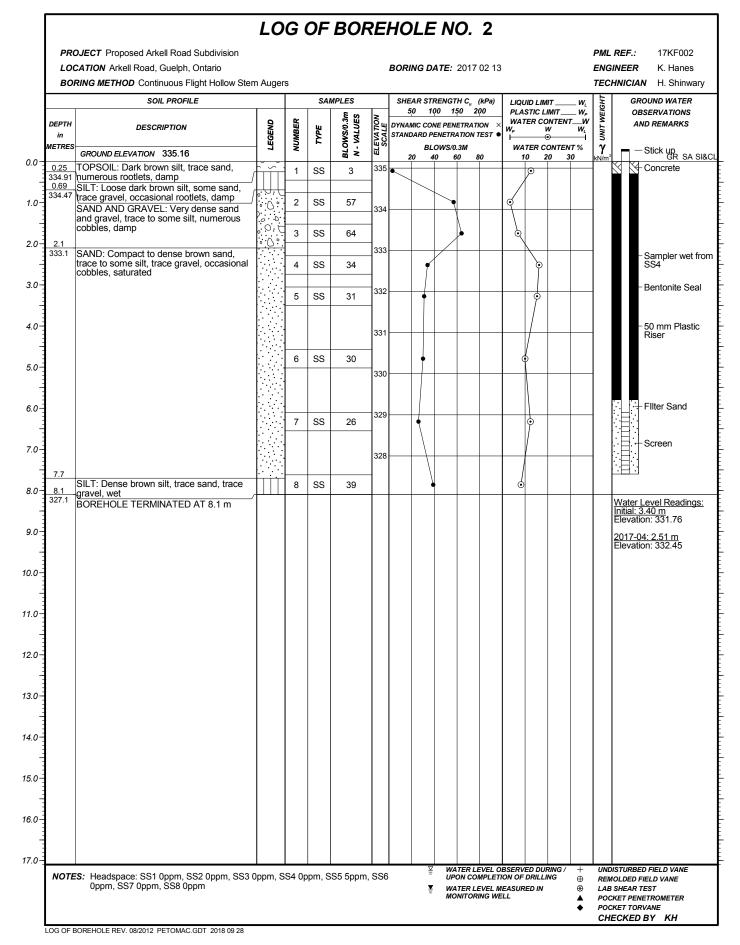
Drafted by: KLW

Reviewed by: RMR

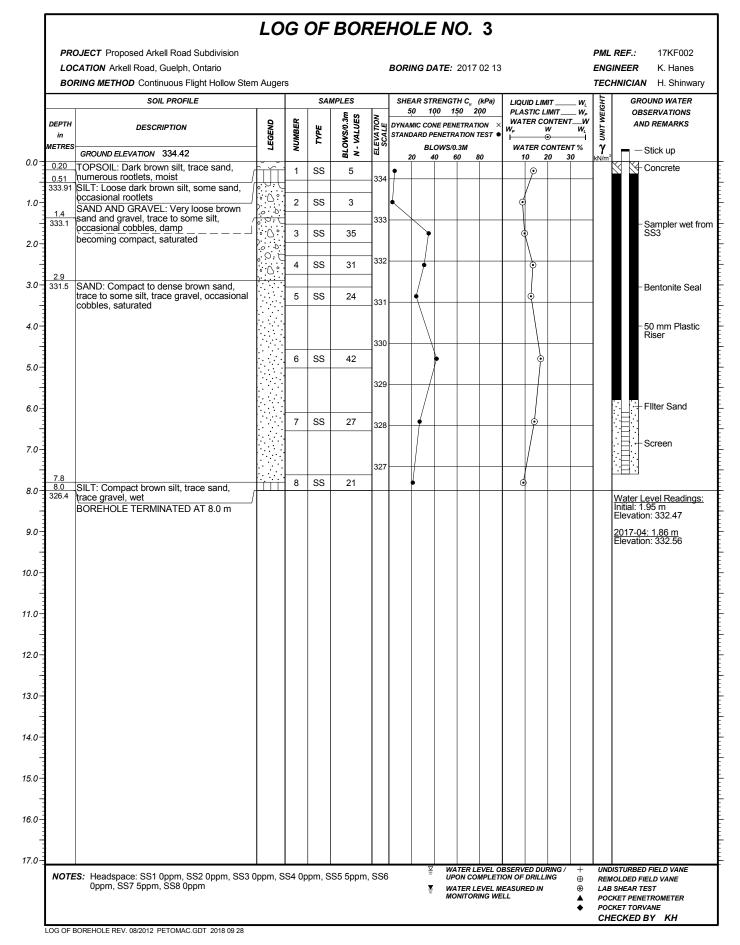
Sheet: 1 of 1

Notes:

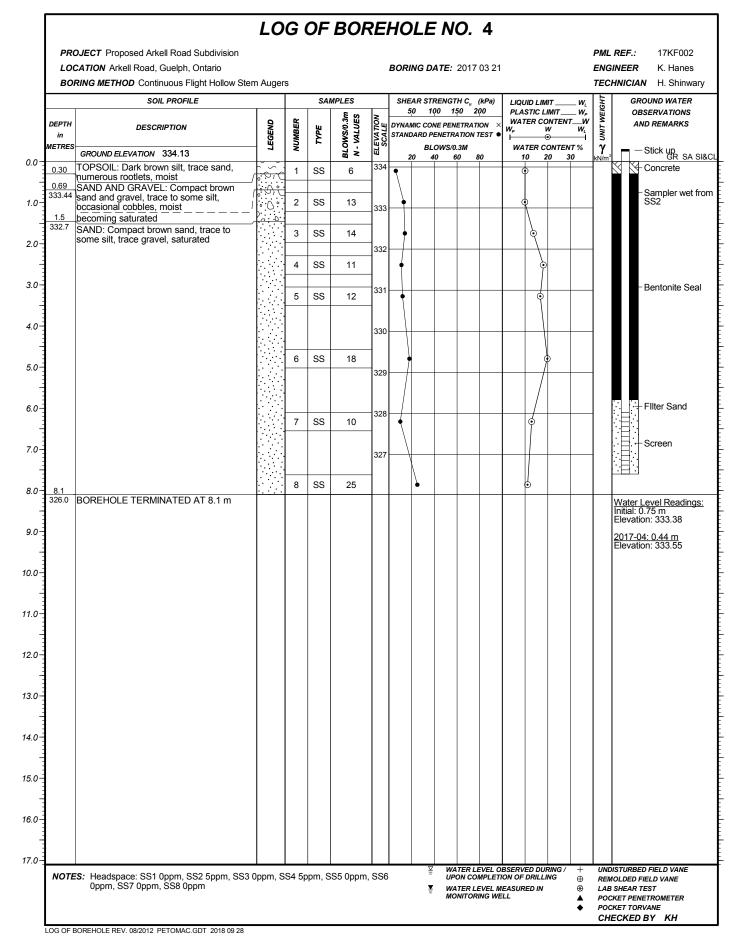
Water level measured October 8, 2019.

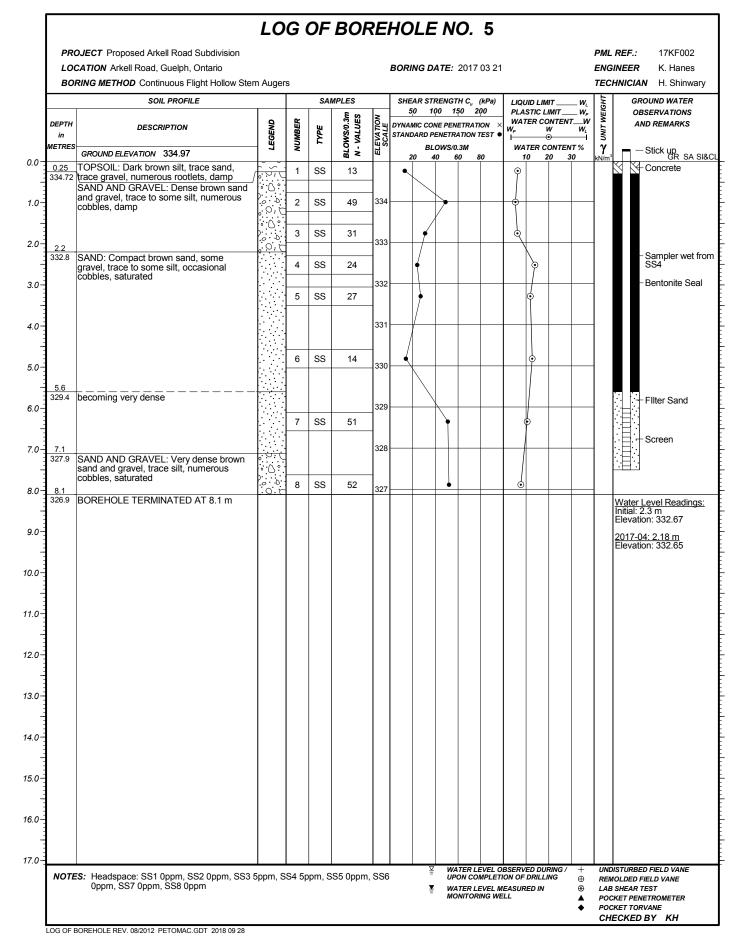

Metals* - sample analyzed for Metals, As, Sb, Se
PHCs* - sample analyzed for PHCs and BTEX
P* - sample analyzed for PAHs

No noticeable staining or odours.



LOG OF BOREHOLE NO. 1 PROJECT Proposed Arkell Road Subdivision PML REF.: 17KF002 **ENGINEER** LOCATION Arkell Road, Guelph, Ontario **BORING DATE**: 2017 02 13 K. Hanes BORING METHOD Continuous Flight Hollow Stem Augers **TECHNICIAN** H. Shinwary SHEAR STRENGTH C_{...} (kPa) 50 100 150 200 SOIL PROFILE SAMPLES GROUND WATER LIQUID LIMIT UNIT WEIGHT PLASTIC LIMIT **OBSERVATIONS** BLOWS/0.3m N - VALUES ELEVATION SCALE WATER CONTENT __W __W DEPTH NUMBER DYNAMIC CONE PENETRATION AND REMARKS DESCRIPTION TYPE STANDARD PENETRATION TEST IETRES BLOWS/0.3M WATER CONTENT % γ GROUND ELEVATION 334.56 GR SA SI&CL 20 0.0 TOPSOIL: Dark brown silt, trace sand, 1 SS 7 o 0.46 numerous rootlets, damp 0.69 FILL: Brown sand and gravel, trace silt, moist 2 SS 42 1.0 SILT: Loose brown silt, trace sand, occasional rootlets, damp SAND AND GRAVEL: Dense to very 3 SS 50/150mn dense brown sand and gravel, trace to some silt, numerous cobbles, damp 2.1 332.5 becoming moist 4 SS 332 3.0-331.7 becoming compact, no cobbles. Sampler wet from SS5 saturated, contains saturated silt layers 5 SS 23 331 4.0 330.6 SAND: Compact brown sand, trace to some silt, trace gravel, saturated 330 6 SS 12 5.0 329 6.0 7 SS 16 (0) 328.0 BOREHOLE TERMINATED AT 6.6 m Upon completion of augering Wet cave to 3.1 m 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 UNDISTURBED FIELD VANE WATER LEVEL OBSERVED DURING / UPON COMPLETION OF DRILLING NOTES: Headspace: SS1 0ppm, SS2 0ppm, SS3 0ppm, SS4 0ppm, SS5 0ppm, SS6 REMOLDED FIELD VANE \oplus 0ppm, SS7 0ppm WATER LEVEL MEASURED IN MONITORING WELL LAB SHEAR TEST POCKET PENETROMETER POCKET TORVANE CHECKED BY KH





LOG OF BOREHOLE NO. 6 PROJECT Proposed Arkell Road Subdivision PML REF.: 17KF002 **ENGINEER** LOCATION Arkell Road, Guelph, Ontario BORING DATE: 2017 03 21 K. Hanes BORING METHOD Continuous Flight Hollow Stem Augers **TECHNICIAN** H. Shinwary SHEAR STRENGTH C_{...} (kPa) 50 100 150 200 SOIL PROFILE SAMPLES GROUND WATER LIQUID LIMIT UNIT WEIGHT PLASTIC LIMIT **OBSERVATIONS** BLOWS/0.3m N - VALUES ELEVATION SCALE WATER CONTENT NUMBER DEPTH DYNAMIC CONE PENETRATION AND REMARKS DESCRIPTION TYPE STANDARD PENETRATION TEST IETRE BLOWS/0.3M WATER CONTENT % γ GROUND ELEVATION 334.0 GR SA SI&CL 0.0 TOPSOIL: Dark brown silt, trace sand, 1 SS numerous rootlets, damp 0.69 0.69 FILL: Dark brown silt, some sand, trace gravel, occasional rootlets, damp 2 SS 1.0 333 SAND AND GRAVEL: Dense brown sand and gravel, trace to some silt, numerous 332.6 cobbles, damp Sampler wet from SS3 3 SS 36 becoming moist 2.0 332 becoming saturated 331.8 SILT: Compact brown silt, trace sand, 4 SS 12 trace gravel, trace clay, wet to saturated 3.0 331 SS 5 10 4.0 330 6 SS 16 5.0 329 SILT TILL: Very dense brown silt, some sand, some gravel, occasional cobbles, 6.0 328 7 9 SS 50/75mm 327.4 BOREHOLE TERMINATED AT 6.6 m Upon completion of augering Cave to 2.0 m Free water at 1.83 m 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 UNDISTURBED FIELD VANE WATER LEVEL OBSERVED DURING / UPON COMPLETION OF DRILLING NOTES: Headspace: SS1 0ppm, SS2 0ppm, SS3 0ppm, SS4 5ppm, SS5 0ppm, SS6 REMOLDED FIELD VANE \oplus 0ppm, SS7 0ppm WATER LEVEL MEASURED IN MONITORING WELL LAB SHEAR TEST POCKET PENETROMETER POCKET TORVANE

CHECKED BY KH

Appendix B

Laboratory Certificates of Analysis

Your Project #: 42063-200 Your C.O.C. #: 741470-01-01

Attention: Kassandra Wallace

MTE Consultants Inc 520 Bingemans Centre Dr Kitchener, ON CANADA N2B 3X9

Report Date: 2019/10/16

Report #: R5923369 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9S4652 Received: 2019/10/09, 13:10

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	4	N/A	2019/10/16	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum	1	N/A	2019/10/12		EPA 8260C m
Petroleum Hydro. CCME F1 & BTEX in Water	4	N/A	2019/10/15	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	4	2019/10/12	2019/10/15	CAM SOP-00316	CCME PHC-CWS m
Dissolved Metals by ICPMS	4	N/A	2019/10/15	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM)	4	2019/10/12	2019/10/13	CAM SOP-00318	EPA 8270D m
Volatile Organic Compounds in Water	1	N/A	2019/10/11	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: 42063-200 Your C.O.C. #: 741470-01-01

Attention: Kassandra Wallace

MTE Consultants Inc 520 Bingemans Centre Dr Kitchener, ON CANADA N2B 3X9

Report Date: 2019/10/16

Report #: R5923369 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9S4652 Received: 2019/10/09, 13:10

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Ronklin Gracian, Project Manager Email: Ronklin.Gracian@bvlabs.com Phone# (905)817-5752

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

MTE Consultants Inc Client Project #: 42063-200

Sampler Initials: ASK

O.REG 153 METALS GROUPS 1.2.2 & 1.2.3 (WATER)

BV Labs ID		KZT008	KZT009	KZT010	KZT011										
Sampling Date		2019/10/08	2019/10/08	2019/10/08	2019/10/08										
		14:10	15:05	16:33	15:05										
COC Number		741470-01-01	741470-01-01	741470-01-01	741470-01-01										
	UNITS	MW101-19	MW105-19	MW106-19	MW1105-19	RDL	QC Batch								
Metals															
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	6380442								
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	6380442								
Dissolved Barium (Ba)	ug/L	17	43	33	32	2.0	6380442								
Dissolved Beryllium (Be)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	6380442								
Dissolved Boron (B)	ug/L	20	21	24	25	10	6380442								
Dissolved Cadmium (Cd)	ug/L	<0.10	0.10	<0.10	<0.10	0.10	6380442								
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	6380442								
Dissolved Cobalt (Co)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	6380442								
Dissolved Copper (Cu)	ug/L	1.3	1.3	1.6	1.9	1.0	6380442								
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	6380442								
Dissolved Molybdenum (Mo)	ug/L	3.0	0.55	0.69	0.63	0.50	6380442								
Dissolved Nickel (Ni)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	6380442								
Dissolved Selenium (Se)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	6380442								
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	6380442								
Dissolved Thallium (TI)	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6380442								
Dissolved Uranium (U)	ug/L	0.37	0.35	0.32	0.32	0.10	6380442								
Dissolved Vanadium (V)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	6380442								
Dissolved Zinc (Zn)	ug/L	5.3	6.2	8.3	9.0	5.0	6380442								
RDL = Reportable Detection Li	mit														
OC Datab Ovality Cambral Day	4 a la														

QC Batch = Quality Control Batch

O.REG 153 PAHS (WATER)

	1					1				
BV Labs ID		KZT008	KZT009	KZT010	KZT011					
Sampling Date		2019/10/08	2019/10/08	2019/10/08	2019/10/08					
		14:10	15:05	16:33	15:05					
COC Number		741470-01-01	741470-01-01	741470-01-01	741470-01-01					
	UNITS	MW101-19	MW105-19	MW106-19	MW1105-19	RDL	QC Batch			
Calculated Parameters										
Methylnaphthalene, 2-(1-)	ug/L	<0.071	<0.071	<0.071	<0.071	0.071	6378177			
Polyaromatic Hydrocarbons										
Acenaphthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6384956			
Acenaphthylene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6384956			
Anthracene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6384956			
Benzo(a)anthracene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6384956			
Benzo(a)pyrene	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	6384956			
Benzo(b/j)fluoranthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6384956			
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6384956			
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6384956			
Chrysene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6384956			
Dibenz(a,h)anthracene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6384956			
Fluoranthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6384956			
Fluorene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6384956			
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6384956			
1-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6384956			
2-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6384956			
Naphthalene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6384956			
Phenanthrene	ug/L	<0.030	<0.030	<0.030	<0.030	0.030	6384956			
Pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6384956			
Surrogate Recovery (%)	•									
D10-Anthracene	%	114	114	111	116		6384956			
D14-Terphenyl (FS)	%	96	103	87	96		6384956			
D8-Acenaphthylene	%	105	106	103	106		6384956			
RDL = Reportable Detection L	imit					•				
QC Batch = Quality Control Ba	atch									

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

BV Labs ID		KZT008	KZT009	KZT010	KZT011		
Carrallina Data		2019/10/08	2019/10/08	2019/10/08	2019/10/08		
Sampling Date		14:10	15:05	16:33	15:05		
COC Number		741470-01-01	741470-01-01	741470-01-01	741470-01-01		
	UNITS	MW101-19	MW105-19	MW106-19	MW1105-19	RDL	QC Batch
BTEX & F1 Hydrocarbons							
Benzene	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	6384922
Toluene	ug/L	0.29	<0.20	<0.20	<0.20	0.20	6384922
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	6384922
o-Xylene	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	6384922
p+m-Xylene	ug/L	<0.40	<0.40	<0.40	<0.40	0.40	6384922
Total Xylenes	ug/L	<0.40	<0.40	<0.40	<0.40	0.40	6384922
F1 (C6-C10)	ug/L	<25	<25	<25	<25	25	6384922
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	<25	25	6384922
F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	<100	100	6384955
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	<200	200	6384955
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	<200	200	6384955
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes		6384955
Surrogate Recovery (%)	•						
1,4-Difluorobenzene	%	102	104	105	102		6384922
4-Bromofluorobenzene	%	95	94	96	95		6384922
D10-Ethylbenzene	%	110	111	110	108		6384922
D4-1,2-Dichloroethane	%	102	102	103	102		6384922
o-Terphenyl	%	98	101	100	98		6384955
RDL = Reportable Detection L							

QC Batch = Quality Control Batch

O.REG 153 VOCS BY HS (WATER)

 	i		1	
BV Labs ID		KZT012		
Sampling Date		2019/10/08		
COC Number		741470-01-01		
	UNITS	TRIP BLANK	RDL	QC Batch
Calculated Parameters				
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	6378830
Volatile Organics				
Acetone (2-Propanone)	ug/L	<10	10	6380108
Benzene	ug/L	<0.20	0.20	6380108
Bromodichloromethane	ug/L	<0.50	0.50	6380108
Bromoform	ug/L	<1.0	1.0	6380108
Bromomethane	ug/L	<0.50	0.50	6380108
Carbon Tetrachloride	ug/L	<0.20	0.20	6380108
Chlorobenzene	ug/L	<0.20	0.20	6380108
Chloroform	ug/L	<0.20	0.20	6380108
Dibromochloromethane	ug/L	<0.50	0.50	6380108
1,2-Dichlorobenzene	ug/L	<0.50	0.50	6380108
1,3-Dichlorobenzene	ug/L	<0.50	0.50	6380108
1,4-Dichlorobenzene	ug/L	<0.50	0.50	6380108
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	6380108
1,1-Dichloroethane	ug/L	<0.20	0.20	6380108
1,2-Dichloroethane	ug/L	<0.50	0.50	6380108
1,1-Dichloroethylene	ug/L	<0.20	0.20	6380108
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	6380108
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	6380108
1,2-Dichloropropane	ug/L	<0.20	0.20	6380108
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	6380108
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	6380108
Ethylbenzene	ug/L	<0.20	0.20	6380108
Ethylene Dibromide	ug/L	<0.20	0.20	6380108
Hexane	ug/L	<1.0	1.0	6380108
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	6380108
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	6380108
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	6380108
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	6380108
Styrene	ug/L	<0.50	0.50	6380108
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	6380108
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

O.REG 153 VOCS BY HS (WATER)

BV Labs ID		KZT012		
Sampling Date		2019/10/08		
COC Number		741470-01-01		
	UNITS	TRIP BLANK	RDL	QC Batch
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	6380108
Tetrachloroethylene	ug/L	<0.20	0.20	6380108
Toluene	ug/L	<0.20	0.20	6380108
1,1,1-Trichloroethane	ug/L	<0.20	0.20	6380108
1,1,2-Trichloroethane	ug/L	<0.50	0.50	6380108
Trichloroethylene	ug/L	<0.20	0.20	6380108
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	6380108
Vinyl Chloride	ug/L	<0.20	0.20	6380108
p+m-Xylene	ug/L	<0.20	0.20	6380108
o-Xylene	ug/L	<0.20	0.20	6380108
Total Xylenes	ug/L	<0.20	0.20	6380108
Surrogate Recovery (%)				
4-Bromofluorobenzene	%	87		6380108
D4-1,2-Dichloroethane	%	118		6380108
D8-Toluene	%	94		6380108
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

MTE Consultants Inc Report Date: 2019/10/16 Client Project #: 42063-200 Sampler Initials: ASK

TEST SUMMARY

BV Labs ID: KZT008 Sample ID: MW101-19

Matrix: Water

Collected: 2019/10/08 Shipped:

Received: 2019/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6378177	N/A	2019/10/16	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6384922	N/A	2019/10/15	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6384955	2019/10/12	2019/10/15	Prabhjot Gulati
Dissolved Metals by ICPMS	ICP/MS	6380442	N/A	2019/10/15	Prempal Bhatti
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6384956	2019/10/12	2019/10/13	Bibin Alias Paul

BV Labs ID: KZT009

Sample ID: MW105-19 Matrix: Water

Collected:

2019/10/08

Shipped: Received: 2019/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6378177	N/A	2019/10/16	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6384922	N/A	2019/10/15	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6384955	2019/10/12	2019/10/15	Prabhjot Gulati
Dissolved Metals by ICPMS	ICP/MS	6380442	N/A	2019/10/15	Prempal Bhatti
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6384956	2019/10/12	2019/10/13	Bibin Alias Paul

BV Labs ID: KZT010 Sample ID: MW106-19 Matrix: Water

Collected: 2019/10/08 Shipped:

Received: 2019/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6378177	N/A	2019/10/16	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6384922	N/A	2019/10/15	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6384955	2019/10/12	2019/10/15	Prabhjot Gulati
Dissolved Metals by ICPMS	ICP/MS	6380442	N/A	2019/10/15	Prempal Bhatti
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6384956	2019/10/12	2019/10/13	Bibin Alias Paul

BV Labs ID: KZT011 MW1105-19 Sample ID:

Matrix: Water Collected: 2019/10/08

Shipped:

Received: 2019/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6378177	N/A	2019/10/16	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6384922	N/A	2019/10/15	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6384955	2019/10/12	2019/10/15	Prabhjot Gulati
Dissolved Metals by ICPMS	ICP/MS	6380442	N/A	2019/10/15	Prempal Bhatti
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6384956	2019/10/12	2019/10/13	Bibin Alias Paul

BV Labs ID: KZT012 Sample ID: TRIP BLANK Matrix: Water

Collected: 2019/10/08 Shipped:

Received: 2019/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6378830	N/A	2019/10/12	Automated Statchk
Volatile Organic Compounds in Water	GC/MS	6380108	N/A	2019/10/11	Juan Pangilinan

BV Labs Job #: B9S4652 MTE Consultants Inc

Report Date: 2019/10/16 Client Project #: 42063-200

Sampler Initials: ASK

Sumpler mittal.

GENERAL COMMENTS

Each te	emperature is the	average of up to t	three cooler temperatures taken at receipt
	Package 1	3.0°C	
	•	·	
Result	s relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

MTE Consultants Inc Client Project #: 42063-200 Sampler Initials: ASK

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6380108	4-Bromofluorobenzene	2019/10/11	98	70 - 130	98	70 - 130	95	%		
6380108	D4-1,2-Dichloroethane	2019/10/11	110	70 - 130	109	70 - 130	115	%		
6380108	D8-Toluene	2019/10/11	103	70 - 130	104	70 - 130	93	%		
6384922	1,4-Difluorobenzene	2019/10/15	102	70 - 130	101	70 - 130	102	%		
6384922	4-Bromofluorobenzene	2019/10/15	98	70 - 130	99	70 - 130	95	%		
6384922	D10-Ethylbenzene	2019/10/15	99	70 - 130	110	70 - 130	102	%		
6384922	D4-1,2-Dichloroethane	2019/10/15	98	70 - 130	101	70 - 130	98	%		
6384955	o-Terphenyl	2019/10/15	104	60 - 130	103	60 - 130	101	%		
6384956	D10-Anthracene	2019/10/12	117	50 - 130	114	50 - 130	111	%		
6384956	D14-Terphenyl (FS)	2019/10/12	113	50 - 130	111	50 - 130	98	%		
6384956	D8-Acenaphthylene	2019/10/12	110	50 - 130	103	50 - 130	103	%		
6380108	1,1,1,2-Tetrachloroethane	2019/10/11	99	70 - 130	98	70 - 130	<0.50	ug/L	NC	30
6380108	1,1,1-Trichloroethane	2019/10/11	102	70 - 130	100	70 - 130	<0.20	ug/L	NC	30
6380108	1,1,2,2-Tetrachloroethane	2019/10/11	107	70 - 130	106	70 - 130	<0.50	ug/L	NC	30
6380108	1,1,2-Trichloroethane	2019/10/11	117	70 - 130	116	70 - 130	<0.50	ug/L	NC	30
6380108	1,1-Dichloroethane	2019/10/11	104	70 - 130	102	70 - 130	<0.20	ug/L	5.8	30
6380108	1,1-Dichloroethylene	2019/10/11	101	70 - 130	99	70 - 130	<0.20	ug/L	NC	30
6380108	1,2-Dichlorobenzene	2019/10/11	97	70 - 130	96	70 - 130	<0.50	ug/L	NC	30
6380108	1,2-Dichloroethane	2019/10/11	110	70 - 130	108	70 - 130	<0.50	ug/L	NC	30
6380108	1,2-Dichloropropane	2019/10/11	105	70 - 130	103	70 - 130	<0.20	ug/L	NC	30
6380108	1,3-Dichlorobenzene	2019/10/11	96	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
6380108	1,4-Dichlorobenzene	2019/10/11	96	70 - 130	96	70 - 130	<0.50	ug/L	NC	30
6380108	Acetone (2-Propanone)	2019/10/11	117	60 - 140	111	60 - 140	<10	ug/L	NC	30
6380108	Benzene	2019/10/11	99	70 - 130	97	70 - 130	<0.20	ug/L	0.16	30
6380108	Bromodichloromethane	2019/10/11	103	70 - 130	102	70 - 130	<0.50	ug/L	NC	30
6380108	Bromoform	2019/10/11	99	70 - 130	97	70 - 130	<1.0	ug/L	NC	30
6380108	Bromomethane	2019/10/11	96	60 - 140	92	60 - 140	<0.50	ug/L	NC	30
6380108	Carbon Tetrachloride	2019/10/11	97	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
6380108	Chlorobenzene	2019/10/11	100	70 - 130	99	70 - 130	<0.20	ug/L	NC	30
6380108	Chloroform	2019/10/11	102	70 - 130	100	70 - 130	<0.20	ug/L	NC	30
6380108	cis-1,2-Dichloroethylene	2019/10/11	107	70 - 130	103	70 - 130	<0.50	ug/L	2.5	30

QUALITY ASSURANCE REPORT(CONT'D)

MTE Consultants Inc Client Project #: 42063-200 Sampler Initials: ASK

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	 D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6380108	cis-1,3-Dichloropropene	2019/10/11	106	70 - 130	101	70 - 130	<0.30	ug/L	NC	30
6380108	Dibromochloromethane	2019/10/11	99	70 - 130	98	70 - 130	<0.50	ug/L	NC	30
6380108	Dichlorodifluoromethane (FREON 12)	2019/10/11	83	60 - 140	80	60 - 140	<1.0	ug/L	NC	30
6380108	Ethylbenzene	2019/10/11	100	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
6380108	Ethylene Dibromide	2019/10/11	103	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
6380108	Hexane	2019/10/11	103	70 - 130	100	70 - 130	<1.0	ug/L	NC	30
6380108	Methyl Ethyl Ketone (2-Butanone)	2019/10/11	101	60 - 140	97	60 - 140	<10	ug/L	NC	30
6380108	Methyl Isobutyl Ketone	2019/10/11	119	70 - 130	118	70 - 130	<5.0	ug/L	NC	30
6380108	Methyl t-butyl ether (MTBE)	2019/10/11	100	70 - 130	98	70 - 130	<0.50	ug/L	NC	30
6380108	Methylene Chloride(Dichloromethane)	2019/10/11	97	70 - 130	94	70 - 130	<2.0	ug/L	NC	30
6380108	o-Xylene	2019/10/11	95	70 - 130	97	70 - 130	<0.20	ug/L	NC	30
6380108	p+m-Xylene	2019/10/11	99	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
6380108	Styrene	2019/10/11	101	70 - 130	102	70 - 130	<0.50	ug/L	NC	30
6380108	Tetrachloroethylene	2019/10/11	95	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
6380108	Toluene	2019/10/11	94	70 - 130	94	70 - 130	<0.20	ug/L	2.0	30
6380108	Total Xylenes	2019/10/11					<0.20	ug/L	NC	30
6380108	trans-1,2-Dichloroethylene	2019/10/11	105	70 - 130	102	70 - 130	<0.50	ug/L	NC	30
6380108	trans-1,3-Dichloropropene	2019/10/11	114	70 - 130	108	70 - 130	<0.40	ug/L	NC	30
6380108	Trichloroethylene	2019/10/11	94	70 - 130	92	70 - 130	<0.20	ug/L	1.5	30
6380108	Trichlorofluoromethane (FREON 11)	2019/10/11	99	70 - 130	97	70 - 130	<0.50	ug/L	NC	30
6380108	Vinyl Chloride	2019/10/11	99	70 - 130	96	70 - 130	<0.20	ug/L	6.2	30
6380442	Dissolved Antimony (Sb)	2019/10/16	113	80 - 120	98	80 - 120	<0.50	ug/L	NC	20
6380442	Dissolved Arsenic (As)	2019/10/16	105	80 - 120	100	80 - 120	<1.0	ug/L	NC	20
6380442	Dissolved Barium (Ba)	2019/10/16	NC	80 - 120	99	80 - 120	<2.0	ug/L	0.76	20
6380442	Dissolved Beryllium (Be)	2019/10/16	107	80 - 120	94	80 - 120	<0.50	ug/L	NC	20
6380442	Dissolved Boron (B)	2019/10/16	109	80 - 120	94	80 - 120	<10	ug/L	0.35	20
6380442	Dissolved Cadmium (Cd)	2019/10/16	105	80 - 120	100	80 - 120	<0.10	ug/L	NC	20
6380442	Dissolved Chromium (Cr)	2019/10/16	104	80 - 120	98	80 - 120	<5.0	ug/L	NC	20
6380442	Dissolved Cobalt (Co)	2019/10/16	104	80 - 120	99	80 - 120	<0.50	ug/L	1.1	20
6380442	Dissolved Copper (Cu)	2019/10/16	105	80 - 120	97	80 - 120	<1.0	ug/L	6.3	20
6380442	Dissolved Lead (Pb)	2019/10/16	97	80 - 120	100	80 - 120	<0.50	ug/L	NC	20

QUALITY ASSURANCE REPORT(CONT'D)

MTE Consultants Inc Client Project #: 42063-200 Sampler Initials: ASK

			Matrix	Spike	SPIKED BLANK		Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6380442	Dissolved Molybdenum (Mo)	2019/10/16	116	80 - 120	100	80 - 120	<0.50	ug/L	1.4	20
6380442	Dissolved Nickel (Ni)	2019/10/16	98	80 - 120	98	80 - 120	<1.0	ug/L	5.7	20
6380442	Dissolved Selenium (Se)	2019/10/16	102	80 - 120	103	80 - 120	<2.0	ug/L	NC	20
6380442	Dissolved Silver (Ag)	2019/10/16	96	80 - 120	98	80 - 120	<0.10	ug/L	NC	20
6380442	Dissolved Thallium (TI)	2019/10/16	96	80 - 120	100	80 - 120	<0.050	ug/L	NC	20
6380442	Dissolved Uranium (U)	2019/10/16	103	80 - 120	101	80 - 120	<0.10	ug/L	0.85	20
6380442	Dissolved Vanadium (V)	2019/10/16	110	80 - 120	97	80 - 120	<0.50	ug/L	1.2	20
6380442	Dissolved Zinc (Zn)	2019/10/16	98	80 - 120	100	80 - 120	<5.0	ug/L	NC	20
6384922	Benzene	2019/10/15	114	70 - 130	105	70 - 130	<0.20	ug/L	NC	30
6384922	Ethylbenzene	2019/10/15	127	70 - 130	111	70 - 130	<0.20	ug/L	NC	30
6384922	F1 (C6-C10) - BTEX	2019/10/15					<25	ug/L	NC	30
6384922	F1 (C6-C10)	2019/10/15	NC	70 - 130	88	70 - 130	<25	ug/L	0.45	30
6384922	o-Xylene	2019/10/15	122	70 - 130	106	70 - 130	<0.20	ug/L	NC	30
6384922	p+m-Xylene	2019/10/15	100	70 - 130	108	70 - 130	<0.40	ug/L	3.2	30
6384922	Toluene	2019/10/15	NC	70 - 130	101	70 - 130	<0.20	ug/L	3.8	30
6384922	Total Xylenes	2019/10/15					<0.40	ug/L	3.2	30
6384955	F2 (C10-C16 Hydrocarbons)	2019/10/15	107	50 - 130	104	60 - 130	<100	ug/L	NC	30
6384955	F3 (C16-C34 Hydrocarbons)	2019/10/15	NC	50 - 130	107	60 - 130	<200	ug/L	NC	30
6384955	F4 (C34-C50 Hydrocarbons)	2019/10/15	87	50 - 130	88	60 - 130	<200	ug/L	NC	30
6384956	1-Methylnaphthalene	2019/10/13	112	50 - 130	100	50 - 130	<0.050	ug/L	NC	30
6384956	2-Methylnaphthalene	2019/10/13	101	50 - 130	88	50 - 130	<0.050	ug/L	NC	30
6384956	Acenaphthene	2019/10/13	109	50 - 130	101	50 - 130	<0.050	ug/L	NC	30
6384956	Acenaphthylene	2019/10/13	107	50 - 130	96	50 - 130	<0.050	ug/L	NC	30
6384956	Anthracene	2019/10/13	100	50 - 130	96	50 - 130	<0.050	ug/L	NC	30
6384956	Benzo(a)anthracene	2019/10/13	115	50 - 130	110	50 - 130	<0.050	ug/L	NC	30
6384956	Benzo(a)pyrene	2019/10/13	107	50 - 130	106	50 - 130	<0.010	ug/L	NC	30
6384956	Benzo(b/j)fluoranthene	2019/10/13	103	50 - 130	103	50 - 130	<0.050	ug/L	NC	30
6384956	Benzo(g,h,i)perylene	2019/10/13	98	50 - 130	99	50 - 130	<0.050	ug/L	NC	30
6384956	Benzo(k)fluoranthene	2019/10/13	105	50 - 130	108	50 - 130	<0.050	ug/L	NC	30
6384956	Chrysene	2019/10/13	100	50 - 130	99	50 - 130	<0.050	ug/L	NC	30
6384956	Dibenz(a,h)anthracene	2019/10/13	113	50 - 130	111	50 - 130	<0.050	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

MTE Consultants Inc Client Project #: 42063-200 Sampler Initials: ASK

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6384956	Fluoranthene	2019/10/13	123	50 - 130	120	50 - 130	<0.050	ug/L	NC	30
6384956	Fluorene	2019/10/13	105	50 - 130	100	50 - 130	<0.050	ug/L	NC	30
6384956	Indeno(1,2,3-cd)pyrene	2019/10/13	115	50 - 130	113	50 - 130	<0.050	ug/L	NC	30
6384956	Naphthalene	2019/10/13	93	50 - 130	84	50 - 130	<0.050	ug/L	NC	30
6384956	Phenanthrene	2019/10/13	111	50 - 130	107	50 - 130	<0.030	ug/L	NC	30
6384956	Pyrene	2019/10/13	123	50 - 130	117	50 - 130	<0.050	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Report Date: 2019/10/16

MTE Consultants Inc Client Project #: 42063-200 Sampler Initials: ASK

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		Bureau Veritas Laboratories 6740 Campobello Road, Missi	sissauga, Ontario C	Canada L5N 2L	.8 Tel:(905) 817-57	700 Toll-free:800-	563-6266 Fax:	(905) 817-5	777 www.1	ovlabs.com					C	CHAIN OF CU	STODY RECORD		Page 1 of 1
BUREAU VERITAS	INV	OICE TO:		T		REPO	RT TO:						PROJECT	INFORMATION:			Laborato	nr Heo O	alve
	#6868 MTE Cons	BASIC SOLU		Company	Name	المحالي بك	pôfilio-	74.54	duction.		Quotation	1#	B90004	10 11 12 13	AST OF	D) III	BV Labs Job #:	ny ose or	Bottle Order #:
pany Name:	Accounts Payable			Attention	Kans	andra Wa	Maie	Pobe	rt R	eann					Same Park		10.000		
ess:	520 Bingemans C		TETT III	Address							Project:		42063-2	200		The last			741470
	Kitchener ON N2E	3 3X9	E PARTY			All - V - Min	TKOP NIJE	9/10		2 134	Project Na	ame:	150				COC #:		Project Manager:
	(519) 743-6500	Fax: (519)	743-6513	Tel:			Fax				Site #:		20	V					Ronklin Gracian
E .	accounting@mte8			Email:		Water and the second					Sampled I	1.6.20	AS				C#741470-01-01		
MOE REC	GULATED DRINKING	WATER OR WATER IN IN THE BV LABS DRINK	TENDED FOR	HUMAN CO	ONSUMPTION	MUST BE		_		I AN	ALYSIS RE	QUESTED	(PLEASE BE	SPECIFIC)			Turnaround Tin Please provide advan		
	SUBMITTED C	CONTRACTOR OF THE PERSON		HAIN OF C		The second second	circle):	1		eg S			1 1			Regular	(Standard) TAT:	ce notice for t	usii projects
	ion 153 (2011)		r Regulations	SULL PRINCIPAL	Special In	structions	≥ cin ≥	1		S,							lied if Rush TAT is not specifie		
STATES IN	Res/Park Medium		anitary Sewer Bylav torm Sewer Bylaw	łw .			id Filtered (please c	×		n As,						the state of the s	AT = 5-7 Working days for mos		
	Ind/Comm Coarse Agri/Other For RSC		icipality				Hg H	BT6		Scan			1 1			Please note days - conta	Standard TAT for certain test act your Project Manager for de	s such as BOD stails.	and Dioxins/Furans are >
ble		PWQO		Z TO	1 march		ere (S)	HCs.	PAHs	etals	SOCs					Job Speci	fic Rush TAT (if applies to e	entire submiss	sion)
		Other		XO I VVC			Meta	53 P	153 P.	83	8					Date Requir	red:		Required:
11/ - 25/4	Include Criteria	on Certificate of Analysi	is (Y/N)?		Haris		Field Filtered (please	O.Reg 153 PHCs+BTEX	Reg 1	O.Reg 153 Metals	Reg 153 VOCs						mation Number:	(call I	ab for #)
Samp	ie Barcode Label	Sample (Location) Identif	fication Da	ate Sampled	Time Sampled	Matrix		O.R.	О. В	9.0	0.8					# of Bottles		Comment	s
		MW101-19	20	19/10/8	14:10	SW	Y	1	V	V						5	REC'D IN	WATER	21.00
		MW105-19			15:05		Y	V	V	V						5			
		MW106-19		V	16:33	V	Y	V	V	~						5			
		MW 110	5-19	1	15:05	Ţ	Y	V	V	~						5			
		Trip Blank	_						-	4	V					2			
		NI NI															09	-Oct-19	13:10
-																	Ronklin	Gracian	1
																	11 11 11 11 11 11 11 11	1111111111	
-																		4652	
																	WVL	ENV-	1339
1	RELINQUISHED BY: (S	ignature/Print)	Date: (YY/MM/I		ime		3Y: (Signature/	7777.53	_	Date: (YY/N		Tir		# jars used and not submitted			tory Use Only		
my	-/Amiley)	Churana	19/10/0	9 09	:31 (10		MOUD	771	/ 6	9/10		13:10	-		Time Sensit	remperatu	are (O) on Necel	stody Seal Present	Yes No
1					Sin	KXI OU	PIKA SI	NUH	Z		109		00			4/	2/3FIR	Intact	
NOWLEDGI S THE RESI	MENT AND ACCEPTANCE PONSIBILITY OF THE REL	RITING, WORK SUBMITTED ON OF OUR TERMS WHICH ARE A INQUISHER TO ENSURE THE A	AVAILABLE FOR VI ACCURACY OF TH	E CHAIN OF C	USTODY RECORD.	AN INCOMPLETE	CHAIN OF CUST	ODY MAY R	ESULT IN				NENT IS	SAMPLES	MUST BE KEP UNT	T COOL (< 10° C) F IL DELIVERY TO BV	ROM TIME OF SAMPLING LABS	White: BV L	abs Yellow: Clie
MPLE CON	ITAINER, PRESERVATION	, HOLD TIME AND PACKAGE II	NFORMATION CAN	BE VIEWED A	T WWW.BVLABS.C	OM/RESOURCES/	CHAIN-OF-CUST							SHA ME			are all a line		
								Bur	eau Veritas	Canada (2	019) Inc.			A 31 1 00 .		314	1-	1 1	y Intac

Your Project #: 42063-200 Your C.O.C. #: 741246-01-01

Attention: Kassandra Wallace

MTE Consultants Inc 520 Bingemans Centre Dr Kitchener, ON CANADA N2B 3X9

Report Date: 2019/10/16

Report #: R5923234 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9S0922 Received: 2019/10/07, 09:00

Sample Matrix: Soil # Samples Received: 10

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	2	N/A	2019/10/10	CAM SOP-00301	EPA 8270D m
Methylnaphthalene Sum	5	N/A	2019/10/11	CAM SOP-00301	EPA 8270D m
Petroleum Hydro. CCME F1 & BTEX in Soil (1)	7	N/A	2019/10/10	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydro. CCME F1 & BTEX in Soil (1)	1	N/A	2019/10/11	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (2)	2	2019/10/09	2019/10/09	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (2)	5	2019/10/10	2019/10/11	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (2)	1	2019/10/11	2019/10/15	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS	7	2019/10/09	2019/10/10	CAM SOP-00447	EPA 6020B m
Strong Acid Leachable Metals by ICPMS	1	2019/10/10	2019/10/11	CAM SOP-00447	EPA 6020B m
Moisture	9	N/A	2019/10/08	CAM SOP-00445	Carter 2nd ed 51.2 m
Moisture	1	N/A	2019/10/11	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	2	2019/10/09	2019/10/09	CAM SOP-00318	EPA 8270D m
PAH Compounds in Soil by GC/MS (SIM)	5	2019/10/10	2019/10/11	CAM SOP-00318	EPA 8270D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Your Project #: 42063-200 Your C.O.C. #: 741246-01-01

Attention: Kassandra Wallace

MTE Consultants Inc 520 Bingemans Centre Dr Kitchener, ON CANADA N2B 3X9

Report Date: 2019/10/16

Report #: R5923234 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9S0922 Received: 2019/10/07, 09:00

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.

 (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ronklin Gracian, Project Manager Email: Ronklin.Gracian@bvlabs.com
Phone# (905)817-5752

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

O.REG 153 METALS GROUPS 1.2.2 & 1.2.3 (SOIL)

BV Labs ID		KYZ350	KYZ354	KYZ356	KYZ358	KYZ360		
Sampling Date		2019/10/04	2019/10/04	2019/10/04	2019/10/04	2019/10/04		
Sampling Date		10:00	10:00	08:50	09:08	09:15		
COC Number		741246-01-01	741246-01-01	741246-01-01	741246-01-01	741246-01-01		
	UNITS	MW101-19 1-2'	MW1101-19 1-2'	BH102-19 1-2'	BH103-19 1-2'	BH104-19 1-2'	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6378737
Acid Extractable Arsenic (As)	ug/g	4.4	4.1	4.5	3.4	2.6	1.0	6378737
Acid Extractable Barium (Ba)	ug/g	35	44	49	35	25	0.50	6378737
Acid Extractable Beryllium (Be)	ug/g	0.35	0.40	0.49	0.33	0.27	0.20	6378737
Acid Extractable Boron (B)	ug/g	6.9	6.3	5.4	<5.0	<5.0	5.0	6378737
Acid Extractable Cadmium (Cd)	ug/g	0.49	0.47	0.43	0.36	0.26	0.10	6378737
Acid Extractable Chromium (Cr)	ug/g	12	14	15	16	8.6	1.0	6378737
Acid Extractable Cobalt (Co)	ug/g	4.3	5.0	5.0	4.0	3.1	0.10	6378737
Acid Extractable Copper (Cu)	ug/g	9.7	9.7	12	11	8.3	0.50	6378737
Acid Extractable Lead (Pb)	ug/g	46	49	42	24	30	1.0	6378737
Acid Extractable Molybdenum (Mo)	ug/g	0.80	0.65	<0.50	2.5	<0.50	0.50	6378737
Acid Extractable Nickel (Ni)	ug/g	9.2	10	11	7.8	6.6	0.50	6378737
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6378737
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6378737
Acid Extractable Thallium (Tl)	ug/g	0.11	0.11	0.093	0.079	0.071	0.050	6378737
Acid Extractable Uranium (U)	ug/g	0.51	0.52	0.49	0.48	0.45	0.050	6378737
Acid Extractable Vanadium (V)	ug/g	23	27	30	21	18	5.0	6378737
Acid Extractable Zinc (Zn)	ug/g	240	210	210	130	220	5.0	6378737
		•	•					

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

O.REG 153 METALS GROUPS 1.2.2 & 1.2.3 (SOIL)

BV Labs ID		KYZ363	KYZ363		KYZ365		
Sampling Date		2019/10/04	2019/10/04		2019/10/04		
Sumpling Butte		12:38	12:38		14:50		
COC Number		741246-01-01	741246-01-01		741246-01-01		
			MW105-19				
	UNITS	MW105-19 17-18'	17-18'	QC Batch	MW106-19 2-3'	RDL	QC Batch
			Lab-Dup				
Metals							
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	6378737	0.21	0.20	6380721
Acid Extractable Arsenic (As)	ug/g	1.5	1.4	6378737	5.5	1.0	6380721
Acid Extractable Barium (Ba)	ug/g	5.4	5.0	6378737	51	0.50	6380721
Acid Extractable Beryllium (Be)	ug/g	<0.20	<0.20	6378737	0.57	0.20	6380721
Acid Extractable Boron (B)	ug/g	<5.0	<5.0	6378737	6.1	5.0	6380721
Acid Extractable Cadmium (Cd)	ug/g	0.24	0.25	6378737	0.61	0.10	6380721
Acid Extractable Chromium (Cr)	ug/g	4.3	3.7	6378737	17	1.0	6380721
Acid Extractable Cobalt (Co)	ug/g	1.2	1.1	6378737	6.3	0.10	6380721
Acid Extractable Copper (Cu)	ug/g	5.7	6.0	6378737	15	0.50	6380721
Acid Extractable Lead (Pb)	ug/g	18	19	6378737	71	1.0	6380721
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	<0.50	6378737	<0.50	0.50	6380721
Acid Extractable Nickel (Ni)	ug/g	2.7	2.5	6378737	13	0.50	6380721
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	6378737	<0.50	0.50	6380721
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	6378737	<0.20	0.20	6380721
Acid Extractable Thallium (TI)	ug/g	<0.050	<0.050	6378737	0.13	0.050	6380721
Acid Extractable Uranium (U)	ug/g	0.43	0.41	6378737	0.62	0.050	6380721
Acid Extractable Vanadium (V)	ug/g	11	8.8	6378737	32	5.0	6380721
Acid Extractable Zinc (Zn)	ug/g	150	160	6378737	220	5.0	6380721

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

O.REG 153 METALS GROUPS 1.2.2 & 1.2.3 (SOIL)

BV Labs ID		KYZ367		
Sampling Date		2019/10/04 15:10		
COC Number		741246-01-01		
	UNITS	MW106-19 15.5-16'	RDL	QC Batch
Metals				
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.20	6378737
Acid Extractable Arsenic (As)	ug/g	2.1	1.0	6378737
Acid Extractable Barium (Ba)	ug/g	14	0.50	6378737
Acid Extractable Beryllium (Be)	ug/g	<0.20	0.20	6378737
Acid Extractable Boron (B)	ug/g	5.2	5.0	6378737
Acid Extractable Cadmium (Cd)	ug/g	0.35	0.10	6378737
Acid Extractable Chromium (Cr)	ug/g	7.6	1.0	6378737
Acid Extractable Cobalt (Co)	ug/g	2.6	0.10	6378737
Acid Extractable Copper (Cu)	ug/g	10	0.50	6378737
Acid Extractable Lead (Pb)	ug/g	28	1.0	6378737
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.50	6378737
Acid Extractable Nickel (Ni)	ug/g	5.8	0.50	6378737
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	6378737
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	6378737
Acid Extractable Thallium (Tl)	ug/g	0.054	0.050	6378737
Acid Extractable Uranium (U)	ug/g	0.47	0.050	6378737
Acid Extractable Vanadium (V)	ug/g	20	5.0	6378737
Acid Extractable Zinc (Zn)	ug/g	340	5.0	6378737
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

O.REG 153 PAHS (SOIL)

BV Labs ID		KYZ350	KYZ354		KYZ356	KYZ358	KYZ360		
Sampling Date		2019/10/04 10:00	2019/10/04 10:00		2019/10/04 08:50	2019/10/04 09:08	2019/10/04 09:15		
COC Number		741246-01-01	741246-01-01		741246-01-01	741246-01-01	741246-01-01		
	UNITS	MW101-19 1-2'	MW1101-19 1-2'	QC Batch	BH102-19 1-2'	BH103-19 1-2'	BH104-19 1-2'	RDL	QC Batch
Inorganics		-		•	•		•	!	
Moisture	%	9.0	11	6376718	9.0	8.5	5.9	1.0	6376718
Calculated Parameters				!		-		!	
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	<0.0071	6373102	<0.0071	<0.0071	<0.0071	0.0071	6373102
Polyaromatic Hydrocarbons		1	1		•	1	•		
Acenaphthene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
Acenaphthylene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
Anthracene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
Benzo(a)anthracene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
Benzo(a)pyrene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
Benzo(b/j)fluoranthene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
Benzo(g,h,i)perylene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
Benzo(k)fluoranthene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
Chrysene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
Dibenz(a,h)anthracene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
Fluoranthene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
Fluorene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
Naphthalene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
Phenanthrene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
Pyrene	ug/g	<0.0050	<0.0050	6377464	<0.0050	<0.0050	<0.0050	0.0050	6381127
Surrogate Recovery (%)	•				•		•		
D10-Anthracene	%	88	92	6377464	119	112	104		6381127
D14-Terphenyl (FS)	%	87	90	6377464	109	107	107		6381127
D8-Acenaphthylene	%	83	86	6377464	114	111	103		6381127
RDL = Reportable Detection I	imit			•					
OC Batch = Quality Control B	atch								

QC Batch = Quality Control Batch

O.REG 153 PAHS (SOIL)

BV Labs ID		KYZ360			KYZ363	KYZ367		
Sampling Date		2019/10/04			2019/10/04	2019/10/04		
		09:15			12:38	15:10		
COC Number		741246-01-01			741246-01-01	741246-01-01		
		BH104-19						
	UNITS	1-2'	RDL	QC Batch	MW105-19 17-18'	MW106-19 15.5-16'	RDL	QC Batch
		Lab-Dup						
Inorganics								
Moisture	%				17	10	1.0	6376718
Calculated Parameters								
Methylnaphthalene, 2-(1-)	ug/g				<0.0071	<0.0071	0.0071	6373102
Polyaromatic Hydrocarbons								
Acenaphthene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
Acenaphthylene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
Anthracene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
Benzo(a)anthracene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
Benzo(a)pyrene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
Benzo(b/j)fluoranthene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
Benzo(g,h,i)perylene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
Benzo(k)fluoranthene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
Chrysene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
Dibenz(a,h)anthracene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
Fluoranthene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
Fluorene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
1-Methylnaphthalene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
2-Methylnaphthalene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
Naphthalene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
Phenanthrene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
Pyrene	ug/g	<0.0050	0.0050	6381127	<0.0050	<0.0050	0.0050	6381127
Surrogate Recovery (%)							•	
D10-Anthracene	%	115		6381127	115	115		6381127
D14-Terphenyl (FS)	%	112		6381127	109	113		6381127
D8-Acenaphthylene	%	108		6381127	108	113		6381127

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

k	KYZ356		
201	019/10/04		
	08:50		
741	1246-01-01		
ch BH1	102-19 1-2'	RDL	QC Batch
•		•	
18			
·			l
37	<0.020	0.020	6379037
37 -	<0.020	0.020	6379037
37 <	<0.020	0.020	6379037
37 -	<0.020	0.020	6379037
37 -	<0.040	0.040	6379037
37 -	<0.040	0.040	6379037
37	<10	10	6379037
37	<10	10	6379037
		•	•
85	<10	10	6381143
85	<50	50	6381143
85	<50	50	6381143
85	Yes		6381143
37	102		6379037
37	98		6379037
37	101		6379037
37	94		6379037
85	91		6381143
3	7	7 94	7 94

QC Batch = Quality Control Batch

Report Date: 2019/10/16

MTE Consultants Inc Client Project #: 42063-200 Sampler Initials: KLW

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

			_	_			_				
BV Labs ID		KYZ356			KYZ358	KYZ360			KYZ360		
Sampling Date		2019/10/04			2019/10/04	2019/10/04			2019/10/04		
Jamping Date		08:50			09:08	09:15			09:15		
COC Number		741246-01-01			741246-01-01	741246-01-01			741246-01-01		
		BH102-19							BH104-19		
	UNITS		RDL	QC Batch	BH103-19 1-2'	BH104-19 1-2'	RDL	QC Batch	1-2'	RDL	QC Batch
		Lab-Dup							Lab-Dup		
BTEX & F1 Hydrocarbons											
Benzene	ug/g	<0.020	0.020	6379037	<0.020	<0.020	0.020	6379037			
Toluene	ug/g	<0.020	0.020	6379037	<0.020	<0.020	0.020	6379037			
Ethylbenzene	ug/g	<0.020	0.020	6379037	<0.020	<0.020	0.020	6379037			
o-Xylene	ug/g	<0.020	0.020	6379037	<0.020	<0.020	0.020	6379037			
p+m-Xylene	ug/g	<0.040	0.040	6379037	<0.040	<0.040	0.040	6379037			
Total Xylenes	ug/g	<0.040	0.040	6379037	<0.040	<0.040	0.040	6379037			
F1 (C6-C10)	ug/g	<10	10	6379037	<10	<10	10	6379037			
F1 (C6-C10) - BTEX	ug/g	<10	10	6379037	<10	<10	10	6379037			
F2-F4 Hydrocarbons	•	•									
F2 (C10-C16 Hydrocarbons)	ug/g				<10	<10	10	6381143	<10	10	6381143
F3 (C16-C34 Hydrocarbons)	ug/g				<50	<50	50	6381143	<50	50	6381143
F4 (C34-C50 Hydrocarbons)	ug/g				<50	<50	50	6381143	<50	50	6381143
Reached Baseline at C50	ug/g				Yes	Yes		6381143	Yes		6381143
Surrogate Recovery (%)											
1,4-Difluorobenzene	%	102		6379037	102	102		6379037			
4-Bromofluorobenzene	%	99		6379037	100	101		6379037			
D10-Ethylbenzene	%	108		6379037	104	104		6379037			
D4-1,2-Dichloroethane	%	95		6379037	95	95		6379037			
o-Terphenyl	%				86	93		6381143	92		6381143
	•	•									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

MTE Consultants Inc Client Project #: 42063-200 Sampler Initials: KLW

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID		KYZ363			KYZ365			KYZ367		
Sampling Date		2019/10/04 12:38			2019/10/04 14:50			2019/10/04 15:10		
COC Number		741246-01-01			741246-01-01			741246-01-01		
	UNITS	MW105-19 17-18'	RDL	QC Batch	MW106-19 2-3'	RDL	QC Batch	MW106-19 15.5-16'	RDL	QC Batc
Inorganics	•		•							
Moisture	%				12	1.0	6383419			
BTEX & F1 Hydrocarbons										
Benzene	ug/g	<0.020	0.020	6379037	<0.020	0.020	6382773	<0.020	0.020	637903
Toluene	ug/g	<0.020	0.020	6379037	<0.020	0.020	6382773	<0.020	0.020	637903
Ethylbenzene	ug/g	<0.020	0.020	6379037	<0.020	0.020	6382773	<0.020	0.020	637903
o-Xylene	ug/g	<0.020	0.020	6379037	<0.020	0.020	6382773	<0.020	0.020	637903
p+m-Xylene	ug/g	<0.040	0.040	6379037	<0.040	0.040	6382773	<0.040	0.040	637903
Total Xylenes	ug/g	<0.040	0.040	6379037	<0.040	0.040	6382773	<0.040	0.040	637903
F1 (C6-C10)	ug/g	<10	10	6379037	<10	10	6382773	<10	10	637903
F1 (C6-C10) - BTEX	ug/g	<10	10	6379037	<10	10	6382773	<10	10	637903
F2-F4 Hydrocarbons	•		•							
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	6381143	<10	10	6383219	<10	10	638114
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	6381143	<50	50	6383219	<50	50	638114
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	6381143	<50	50	6383219	<50	50	638114
Reached Baseline at C50	ug/g	Yes		6381143	Yes		6383219	Yes		638114
Surrogate Recovery (%)										
1,4-Difluorobenzene	%	102		6379037	108		6382773	102		637903
4-Bromofluorobenzene	%	100		6379037	104		6382773	99		637903
D10-Ethylbenzene	%	108		6379037	100		6382773	106		637903
D4-1,2-Dichloroethane	%	96		6379037	102		6382773	94		637903
o-Terphenyl	%	96		6381143	84		6383219	93		638114

QC Batch = Quality Control Batch

Report Date: 2019/10/16

MTE Consultants Inc Client Project #: 42063-200 Sampler Initials: KLW

TEST SUMMARY

BV Labs ID: KYZ350

Sample ID: MW101-19 1-2'

Matrix: Soil

Collected: 2019/10/04

Shipped:

Received: 2019/10/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6373102	N/A	2019/10/10	Automated Statchk
Strong Acid Leachable Metals by ICPMS	ICP/MS	6378737	2019/10/09	2019/10/10	Daniel Teclu
Moisture	BAL	6376718	N/A	2019/10/08	Gurpreet Kaur
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6377464	2019/10/09	2019/10/09	Mitesh Raj

BV Labs ID: KYZ352

Sample ID: MW101-19 15-16'

Matrix: Soil

Collected: 2019/10/04

Shipped:

Received: 2019/10/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6379037	N/A	2019/10/10	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6377585	2019/10/09	2019/10/09	Prabhjot Gulati
Moisture	BAL	6376718	N/A	2019/10/08	Gurpreet Kaur

BV Labs ID: KYZ354

Sample ID: MW1101-19 1-2'

Matrix: Soil

Collected: 2019/10/04

Shipped:

Received: 2019/10/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6373102	N/A	2019/10/10	Automated Statchk
Strong Acid Leachable Metals by ICPMS	ICP/MS	6378737	2019/10/09	2019/10/10	Daniel Teclu
Moisture	BAL	6376718	N/A	2019/10/08	Gurpreet Kaur
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6377464	2019/10/09	2019/10/09	Mitesh Raj

BV Labs ID: KYZ355

Sample ID: MW1101-19 15-16'

Matrix: Soil

Collected: 2019/10/04 Shipped:

Received: 2019/10/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6379037	N/A	2019/10/10	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6377585	2019/10/09	2019/10/09	Prabhjot Gulati
Moisture	BAL	6376718	N/A	2019/10/08	Gurpreet Kaur

BV Labs ID: KYZ356

Sample ID: BH102-19 1-2'

Matrix: Soil

Collected: 2019/10/04 Shipped:

Received: 2019/10/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6373102	N/A	2019/10/11	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6379037	N/A	2019/10/10	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6381143	2019/10/10	2019/10/11	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6378737	2019/10/09	2019/10/10	Daniel Teclu
Moisture	BAL	6376718	N/A	2019/10/08	Gurpreet Kaur
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6381127	2019/10/10	2019/10/11	Mitesh Raj

MTE Consultants Inc Client Project #: 42063-200 Sampler Initials: KLW

TEST SUMMARY

BV Labs ID: KYZ356 Dup

Sample ID: BH102-19 1-2' Matrix: Soil

Collected: Shipped:

2019/10/04

Received: 2019/10/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro, CCME F1 & BTEX in Soil	HSGC/MSFD	6379037	N/A	2019/10/10	Georgeta Rusu	

BV Labs ID: KYZ358

Sample ID: BH103-19 1-2'

Matrix: Soil Collected: 2019/10/04

Shipped:

Received: 2019/10/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6373102	N/A	2019/10/11	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6379037	N/A	2019/10/10	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6381143	2019/10/10	2019/10/11	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6378737	2019/10/09	2019/10/10	Daniel Teclu
Moisture	BAL	6376718	N/A	2019/10/08	Gurpreet Kaur
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6381127	2019/10/10	2019/10/11	Mitesh Raj

BV Labs ID: KYZ360 **Sample ID:** BH104-19 1-2'

Matrix: Soil

Collected: 2019/10/04

Shipped:

Received: 2019/10/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6373102	N/A	2019/10/11	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6379037	N/A	2019/10/10	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6381143	2019/10/10	2019/10/11	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6378737	2019/10/09	2019/10/10	Daniel Teclu
Moisture	BAL	6376718	N/A	2019/10/08	Gurpreet Kaur
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6381127	2019/10/10	2019/10/11	Mitesh Raj

BV Labs ID: KYZ360 Dup Sample ID: BH104-19 1-2'

Matrix: Soil Collected: 2019/10/04

Shipped:

Received: 2019/10/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6381143	2019/10/10	2019/10/11	Prabhjot Gulati
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6381127	2019/10/10	2019/10/11	Mitesh Rai

BV Labs ID: KYZ363

Sample ID: MW105-19 17-18'

Matrix: Soil Collected: Shipped:

2019/10/04

Received: 2019/10/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6373102	N/A	2019/10/11	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6379037	N/A	2019/10/10	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6381143	2019/10/10	2019/10/11	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6378737	2019/10/09	2019/10/10	Daniel Teclu
Moisture	BAL	6376718	N/A	2019/10/08	Gurpreet Kaur
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6381127	2019/10/10	2019/10/11	Mitesh Raj

MTE Consultants Inc Report Date: 2019/10/16 Client Project #: 42063-200

Sampler Initials: KLW

TEST SUMMARY

BV Labs ID: KYZ363 Dup

Sample ID: MW105-19 17-18'

Matrix: Soil

Collected: 2019/10/04 Shipped:

Received: 2019/10/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	6378737	2019/10/09	2019/10/10	Daniel Teclu

BV Labs ID: KYZ365

Sample ID: MW106-19 2-3'

> Matrix: Soil

Collected: Shipped:

2019/10/04

Received: 2019/10/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6382773	N/A	2019/10/11	Haibin Wu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6383219	2019/10/11	2019/10/15	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6380721	2019/10/10	2019/10/11	Daniel Teclu
Moisture	BAL	6383419	N/A	2019/10/11	Amitoj Singh Uppal

BV Labs ID: KYZ367

Matrix:

Sample ID: MW106-19 15.5-16' Soil

Shipped:

Collected: 2019/10/04

Received: 2019/10/07

Analyst **Test Description** Instrumentation **Extracted Date Analyzed** Batch Methylnaphthalene Sum CALC 6373102 N/A 2019/10/11 **Automated Statchk** Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 6379037 N/A 2019/10/10 Georgeta Rusu Petroleum Hydrocarbons F2-F4 in Soil GC/FID 2019/10/10 2019/10/11 Prabhjot Gulati 6381143 Strong Acid Leachable Metals by ICPMS ICP/MS 6378737 2019/10/09 2019/10/10 Daniel Teclu Moisture BAL 6376718 N/A 2019/10/08 Gurpreet Kaur PAH Compounds in Soil by GC/MS (SIM) GC/MS 6381127 2019/10/10 2019/10/11 Mitesh Raj

BV Labs Job #: B9S0922 MTE Consultants Inc
Report Date: 2019/10/16 Client Project #: 42063-200
Sampler Initials: KLW

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	0.3°C
-----------	-------

Sample KYZ352 [MW101-19 15-16']: F1/BTEX Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	 D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6377464	D10-Anthracene	2019/10/09	88	50 - 130	94	50 - 130	93	%		
6377464	D14-Terphenyl (FS)	2019/10/09	87	50 - 130	90	50 - 130	89	%		
6377464	D8-Acenaphthylene	2019/10/09	86	50 - 130	89	50 - 130	88	%		
6377585	o-Terphenyl	2019/10/09	94	60 - 130	96	60 - 130	97	%		
6379037	1,4-Difluorobenzene	2019/10/10	104	60 - 140	104	60 - 140	103	%		
6379037	4-Bromofluorobenzene	2019/10/10	103	60 - 140	104	60 - 140	100	%		
6379037	D10-Ethylbenzene	2019/10/10	108	60 - 140	106	60 - 140	101	%		
6379037	D4-1,2-Dichloroethane	2019/10/10	96	60 - 140	95	60 - 140	95	%		
6381127	D10-Anthracene	2019/10/11	96	50 - 130	111	50 - 130	119	%		
6381127	D14-Terphenyl (FS)	2019/10/11	93	50 - 130	106	50 - 130	116	%		
6381127	D8-Acenaphthylene	2019/10/11	94	50 - 130	104	50 - 130	112	%		
6381143	o-Terphenyl	2019/10/11	96	60 - 130	98	60 - 130	85	%		
6382773	1,4-Difluorobenzene	2019/10/11	97	60 - 140	126	60 - 140	123	%		
6382773	4-Bromofluorobenzene	2019/10/11	92	60 - 140	101	60 - 140	99	%		
6382773	D10-Ethylbenzene	2019/10/11	118	60 - 140	100	60 - 140	96	%		
6382773	D4-1,2-Dichloroethane	2019/10/11	94	60 - 140	120	60 - 140	118	%		
6383219	o-Terphenyl	2019/10/15	107	60 - 130	86	60 - 130	87	%		
6376718	Moisture	2019/10/08							2.6	20
6377464	1-Methylnaphthalene	2019/10/09	100	50 - 130	107	50 - 130	<0.0050	ug/g	NC	40
6377464	2-Methylnaphthalene	2019/10/09	93	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
6377464	Acenaphthene	2019/10/09	91	50 - 130	96	50 - 130	<0.0050	ug/g	NC	40
6377464	Acenaphthylene	2019/10/09	90	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
6377464	Anthracene	2019/10/09	81	50 - 130	86	50 - 130	<0.0050	ug/g	NC	40
6377464	Benzo(a)anthracene	2019/10/09	99	50 - 130	102	50 - 130	<0.0050	ug/g	NC	40
6377464	Benzo(a)pyrene	2019/10/09	92	50 - 130	98	50 - 130	<0.0050	ug/g	NC	40
6377464	Benzo(b/j)fluoranthene	2019/10/09	89	50 - 130	102	50 - 130	<0.0050	ug/g	NC	40
6377464	Benzo(g,h,i)perylene	2019/10/09	100	50 - 130	106	50 - 130	<0.0050	ug/g	NC	40
6377464	Benzo(k)fluoranthene	2019/10/09	94	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
6377464	Chrysene	2019/10/09	84	50 - 130	89	50 - 130	<0.0050	ug/g	NC	40
6377464	Dibenz(a,h)anthracene	2019/10/09	111	50 - 130	106	50 - 130	<0.0050	ug/g	NC	40
6377464	Fluoranthene	2019/10/09	101	50 - 130	109	50 - 130	<0.0050	ug/g	NC	40

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6377464	Fluorene	2019/10/09	93	50 - 130	96	50 - 130	<0.0050	ug/g	NC	40
6377464	Indeno(1,2,3-cd)pyrene	2019/10/09	101	50 - 130	106	50 - 130	<0.0050	ug/g	NC	40
6377464	Naphthalene	2019/10/09	84	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40
6377464	Phenanthrene	2019/10/09	90	50 - 130	95	50 - 130	<0.0050	ug/g	27	40
6377464	Pyrene	2019/10/09	99	50 - 130	106	50 - 130	<0.0050	ug/g	NC	40
6377585	F2 (C10-C16 Hydrocarbons)	2019/10/09	94	50 - 130	94	80 - 120	<10	ug/g	NC	30
6377585	F3 (C16-C34 Hydrocarbons)	2019/10/09	95	50 - 130	95	80 - 120	<50	ug/g	NC	30
6377585	F4 (C34-C50 Hydrocarbons)	2019/10/09	93	50 - 130	94	80 - 120	<50	ug/g	NC	30
6378737	Acid Extractable Antimony (Sb)	2019/10/10	110	75 - 125	106	80 - 120	<0.20	ug/g	NC	30
6378737	Acid Extractable Arsenic (As)	2019/10/10	111	75 - 125	101	80 - 120	<1.0	ug/g	8.5	30
6378737	Acid Extractable Barium (Ba)	2019/10/10	108	75 - 125	94	80 - 120	<0.50	ug/g	8.7	30
6378737	Acid Extractable Beryllium (Be)	2019/10/10	108	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
6378737	Acid Extractable Boron (B)	2019/10/10	108	75 - 125	99	80 - 120	<5.0	ug/g	NC	30
6378737	Acid Extractable Cadmium (Cd)	2019/10/10	109	75 - 125	103	80 - 120	<0.10	ug/g	4.4	30
6378737	Acid Extractable Chromium (Cr)	2019/10/10	110	75 - 125	102	80 - 120	<1.0	ug/g	15	30
6378737	Acid Extractable Cobalt (Co)	2019/10/10	109	75 - 125	101	80 - 120	< 0.10	ug/g	2.0	30
6378737	Acid Extractable Copper (Cu)	2019/10/10	107	75 - 125	101	80 - 120	<0.50	ug/g	4.2	30
6378737	Acid Extractable Lead (Pb)	2019/10/10	115	75 - 125	102	80 - 120	<1.0	ug/g	2.0	30
6378737	Acid Extractable Molybdenum (Mo)	2019/10/10	114	75 - 125	102	80 - 120	<0.50	ug/g	NC	30
6378737	Acid Extractable Nickel (Ni)	2019/10/10	105	75 - 125	103	80 - 120	<0.50	ug/g	5.7	30
6378737	Acid Extractable Selenium (Se)	2019/10/10	112	75 - 125	104	80 - 120	<0.50	ug/g	NC	30
6378737	Acid Extractable Silver (Ag)	2019/10/10	110	75 - 125	103	80 - 120	<0.20	ug/g	NC	30
6378737	Acid Extractable Thallium (TI)	2019/10/10	106	75 - 125	99	80 - 120	<0.050	ug/g	NC	30
6378737	Acid Extractable Uranium (U)	2019/10/10	110	75 - 125	100	80 - 120	<0.050	ug/g	5.8	30
6378737	Acid Extractable Vanadium (V)	2019/10/10	108	75 - 125	102	80 - 120	<5.0	ug/g	26	30
6378737	Acid Extractable Zinc (Zn)	2019/10/10	NC	75 - 125	116	80 - 120	<5.0	ug/g	9.8	30
6379037	Benzene	2019/10/10	91	60 - 140	93	60 - 140	<0.020	ug/g	NC	50
6379037	Ethylbenzene	2019/10/10	100	60 - 140	102	60 - 140	<0.020	ug/g	NC	50
6379037	F1 (C6-C10) - BTEX	2019/10/10					<10	ug/g	NC	30
6379037	F1 (C6-C10)	2019/10/10	104	60 - 140	100	80 - 120	<10	ug/g	NC	30
6379037	o-Xylene	2019/10/10	97	60 - 140	101	60 - 140	<0.020	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6379037	p+m-Xylene	2019/10/10	97	60 - 140	100	60 - 140	<0.040	ug/g	NC	50
6379037	Toluene	2019/10/10	88	60 - 140	90	60 - 140	<0.020	ug/g	NC	50
6379037	Total Xylenes	2019/10/10					<0.040	ug/g	NC	50
6380721	Acid Extractable Antimony (Sb)	2019/10/15	96	75 - 125	105	80 - 120	<0.20	ug/g	NC	30
6380721	Acid Extractable Arsenic (As)	2019/10/15	102	75 - 125	106	80 - 120	<1.0	ug/g	2.8	30
6380721	Acid Extractable Barium (Ba)	2019/10/15	NC	75 - 125	105	80 - 120	<0.50	ug/g	5.0	30
6380721	Acid Extractable Beryllium (Be)	2019/10/15	102	75 - 125	101	80 - 120	<0.20	ug/g	2.0	30
6380721	Acid Extractable Boron (B)	2019/10/15	103	75 - 125	107	80 - 120	<5.0	ug/g	8.3	30
6380721	Acid Extractable Cadmium (Cd)	2019/10/15	101	75 - 125	104	80 - 120	<0.10	ug/g	11	30
6380721	Acid Extractable Chromium (Cr)	2019/10/15	99	75 - 125	108	80 - 120	<1.0	ug/g	2.2	30
6380721	Acid Extractable Cobalt (Co)	2019/10/15	100	75 - 125	106	80 - 120	<0.10	ug/g	0.51	30
6380721	Acid Extractable Copper (Cu)	2019/10/15	99	75 - 125	108	80 - 120	<0.50	ug/g	0.91	30
6380721	Acid Extractable Lead (Pb)	2019/10/15	98	75 - 125	104	80 - 120	<1.0	ug/g	7.1	30
6380721	Acid Extractable Molybdenum (Mo)	2019/10/15	104	75 - 125	106	80 - 120	<0.50	ug/g	2.2	30
6380721	Acid Extractable Nickel (Ni)	2019/10/15	96	75 - 125	107	80 - 120	<0.50	ug/g	1.8	30
6380721	Acid Extractable Selenium (Se)	2019/10/15	107	75 - 125	108	80 - 120	<0.50	ug/g	NC	30
6380721	Acid Extractable Silver (Ag)	2019/10/15	102	75 - 125	105	80 - 120	<0.20	ug/g	NC	30
6380721	Acid Extractable Thallium (TI)	2019/10/15	99	75 - 125	103	80 - 120	<0.050	ug/g	4.0	30
6380721	Acid Extractable Uranium (U)	2019/10/15	97	75 - 125	102	80 - 120	<0.050	ug/g	1.1	30
6380721	Acid Extractable Vanadium (V)	2019/10/15	101	75 - 125	108	80 - 120	<5.0	ug/g	3.7	30
6380721	Acid Extractable Zinc (Zn)	2019/10/15	NC	75 - 125	112	80 - 120	<5.0	ug/g	5.4	30
6381127	1-Methylnaphthalene	2019/10/11	85	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
6381127	2-Methylnaphthalene	2019/10/11	81	50 - 130	87	50 - 130	<0.0050	ug/g	NC	40
6381127	Acenaphthene	2019/10/11	95	50 - 130	106	50 - 130	<0.0050	ug/g	NC	40
6381127	Acenaphthylene	2019/10/11	98	50 - 130	106	50 - 130	<0.0050	ug/g	NC	40
6381127	Anthracene	2019/10/11	86	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
6381127	Benzo(a)anthracene	2019/10/11	104	50 - 130	108	50 - 130	<0.0050	ug/g	NC	40
6381127	Benzo(a)pyrene	2019/10/11	96	50 - 130	105	50 - 130	<0.0050	ug/g	NC	40
6381127	Benzo(b/j)fluoranthene	2019/10/11	92	50 - 130	102	50 - 130	<0.0050	ug/g	NC	40
6381127	Benzo(g,h,i)perylene	2019/10/11	97	50 - 130	106	50 - 130	<0.0050	ug/g	NC	40
6381127	Benzo(k)fluoranthene	2019/10/11	97	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6381127	Chrysene	2019/10/11	90	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
6381127	Dibenz(a,h)anthracene	2019/10/11	111	50 - 130	116	50 - 130	<0.0050	ug/g	NC	40
6381127	Fluoranthene	2019/10/11	102	50 - 130	113	50 - 130	<0.0050	ug/g	NC	40
6381127	Fluorene	2019/10/11	103	50 - 130	113	50 - 130	<0.0050	ug/g	NC	40
6381127	Indeno(1,2,3-cd)pyrene	2019/10/11	105	50 - 130	113	50 - 130	<0.0050	ug/g	NC	40
6381127	Naphthalene	2019/10/11	86	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
6381127	Phenanthrene	2019/10/11	96	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40
6381127	Pyrene	2019/10/11	98	50 - 130	108	50 - 130	<0.0050	ug/g	NC	40
6381143	F2 (C10-C16 Hydrocarbons)	2019/10/11	107	50 - 130	107	80 - 120	<10	ug/g	NC	30
6381143	F3 (C16-C34 Hydrocarbons)	2019/10/11	92	50 - 130	90	80 - 120	<50	ug/g	NC	30
6381143	F4 (C34-C50 Hydrocarbons)	2019/10/11	88	50 - 130	84	80 - 120	<50	ug/g	NC	30
6382773	Benzene	2019/10/11	97	60 - 140	132	60 - 140	<0.020	ug/g	NC	50
6382773	Ethylbenzene	2019/10/11	109	60 - 140	102	60 - 140	<0.020	ug/g	NC	50
6382773	F1 (C6-C10) - BTEX	2019/10/11					<10	ug/g	NC	30
6382773	F1 (C6-C10)	2019/10/11	109	60 - 140	109	80 - 120	<10	ug/g	NC	30
6382773	o-Xylene	2019/10/11	100	60 - 140	101	60 - 140	<0.020	ug/g	NC	50
6382773	p+m-Xylene	2019/10/11	100	60 - 140	99	60 - 140	<0.040	ug/g	NC	50
6382773	Toluene	2019/10/11	86	60 - 140	116	60 - 140	<0.020	ug/g	NC	50
6382773	Total Xylenes	2019/10/11					<0.040	ug/g	NC	50
6383219	F2 (C10-C16 Hydrocarbons)	2019/10/16	NC	50 - 130	82	80 - 120	<10	ug/g	1.4	30
6383219	F3 (C16-C34 Hydrocarbons)	2019/10/16	91	50 - 130	82	80 - 120	<50	ug/g	0.55	30
6383219	F4 (C34-C50 Hydrocarbons)	2019/10/16	NC	50 - 130	80	80 - 120	<50	ug/g	0.98	30

Report Date: 2019/10/16

QUALITY ASSURANCE REPORT(CONT'D)

MTE Consultants Inc Client Project #: 42063-200 Sampler Initials: KLW

			Matrix Spike		SPIKED	BLANK	Method B	lank	RPD	
QC Batch	Parameter	Date	% Recovery QC Limits		% Recovery	QC Limits	Value UNITS		Value (%)	QC Limits
6383419	Moisture	2019/10/11							5.5	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

BV Labs Job #: B9S0922 MTE Consultants Inc
Report Date: 2019/10/16 Client Project #: 42063-200
Sampler Initials: KLW

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Service Specialist

Eva Pranjic Service Specialist

Eva Pranjic Service Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

 S09		Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario	Canada L5N 2	2L8 Tel (905) 817-57	00 Toll-free:800	-563-6266 Fax	(906) 817	5777 www.	bylabs cor	#) Ti:						CHAIN	LOF CUS	TODY RECORD	Page
Ē	NV-595	OICE TO:			REPO	ORT TO:				T	5	PROJE	CT INFORM/	ATION:				Laboratory Use 0	Only:
1000000		Consultants Inc	Compan	y Name:			- 0		VII	Quotation	1#:	B900	004	9		ă II		BV Labs Job #:	Bottle Order
Atten	ess 520 Bingema	ns Gentre Dr	Attention Address		dra Wallace	* Yone	X+ K	COLLIN	ll.	P.O. #: Project		4206	3-200		*7				741246
	Kitchener ON (519) 743-650			(540) 74	2.0500 5 :	1001				Project N	ame:		2					COC #:	Project Manag
Tel _{in} Emai			Tel: Email:		3-6500 Ext: e@mte85.c		Rahne	@ mte	85.100	Site #:	By	KL	w					C#741246-01-01	Ronklin Grac
	MOE REGULATED DRINE	KING WATER OR WATER INTENDED FOR ED ON THE BV LABS DRINKING WATER (R HUMAN C	ONSUMPTION N	NUST BE							PLEASE	BE SPECIFIC	C)			-	Turnaround Time (TAT) Re	aquired:
Ta	able 2 Ind/Comm Co			Special Ins	tructions	d Filtered (please circle): Metals / Hg / Cr VI		Sh mel.	.7	×						¥.	(will be applied Standard TA Please note: days - contact Job Specifi	Please provide advance notice for itandard) TAT: did Rush TAT is not specified): I' = 5-7 Working days for most tests. Standard TAT for certain tests such as BC your Project Manager for details. Rush TAT (if applies to entire submit	OD and Dioxins/Furans
	Include Crit	teria on Certificate of Analysis (Y/N)?				ield Filtere Metals	PAHS	Metas	PA	TE							Rush Confirm	nation Number	e Required: •
	Sample Barcode Label		ate Sampled	Time Sampled	Matrix	iĒ.	0.0	E .	0	8						1	# of Bottles	• (ca	ell lab for #) ents
1		MW101-19 1-2' 0	4,4/9	10.00	2		X	X-									3	REC'D IN WAT	EDI OO
2		mw101-19 7-8"		10.05			_									_	1	Hold	LKLL)('
3		MW101-19 15-16		10:15					X	×		40.0	,					, 11010	
4		MW101-19 19-20'		10.30		-F1				Ĺ	-4.					- 11		Hold.	
5		mw1101-19 1-2		10.00			Y	×						\top				101	=
6		MW1101-19 15-16		10:15		THE STATE OF			¥	X		-							
7		BH102-19 1-2'		8:50			X	X 4,	X	X								± 3	
8		4-5'	-	8155		TA'S	· .										-	Hold	i i
9		9H103-19 1-2'		9:08	-		¥	χ	X	¥		54							
10		4-5'		9:10													e: 6: \.	Hold.	
1/.	* RELINQUISHED BY:	/VI. ////		-	RECEIVED E	Y: (Signature/F	Print)		Date: (YY/	20002547	_	ime	# jars us				Laborat	ory Use Only	
KINS	andra Wallace	19/10/05 hours	13:3	30 Jum	MAHIL	LOUD A	MIN	,	4/10	1010	09:0	19	not sub	- Titled	Time Sen	sitive	Temperatu	re (°C) on Recei Custody Sea Present Intact	Yes Yes

Bureau Veritas Canada (2019) Inc.

	/'	
$\Gamma \Lambda$	$a\sqrt{\sqrt{am}}$	ŕ
IVI	Bureau Veritas Group Company	1

6740 Campobello Road, Mississauga, Ontario L5N 2L8 DOM: Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266 CHAIN OF CUSTODY RECORD CAM FCD-01191/4 Turnaround Time (TAT) Required Project Information (where applicable) Report information (if differs from invoice) Invoice Information Regular TAT (5-7 days) Most analyses Quotation #: P9004 PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECT! Kassandia mailare 1 Contact Name: Rush TAT (Surcharges will be applied) 42063-200 Robert leaune Project #: 2 Days 3-4 Days Site #: Email: KNAHOLEGIME 85. COM/TRAUNICE INTESS SHE Tocation Province: Date Required: ush Confirmation #: LABORATORY USE ONLY Analysis Requested Regulation 153 CUSTODY SEAL Med/ Fine Sanitary Sewer Bylaw Res/Park Y / N COOLER TEMPERATURES MISA Storm Sewer Bylaw Ind/Comm Present -Agri/ Other Table 3 Other (Specify) Table _ REG 558 (MIN. 3 DAY TAT REQUIRED) FOR RSC (PLEASE CIRCLE) Y / N nclude Criteria on Certificate of Analysis: Y / N SAMPLES MUST BE KEPT COOL (< 10 $^{\circ}\text{C}$) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM QOLING MEDIA PRESENT: Y / N DATE SAMPLED COMMENTS SAMPLE IDENTIFICATION (YYYY/MM/DD) XXX 2019/10/04 9.15 BH104-19 1-3' 9.18 3-4' 12:20 mw105-19 12:38 17-18 X 12:43 19-20 P 2-3' 14:50 6 mW106-19 H:57 5-6 15:10 15.5-16 15:14 191-20 MAXXAM JOB# DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RELINQUISHED BY: (Signature/Print) 13:30 2019/10/05 dropped of after hours Signing of this Chain of Custody document is acknowledgment and acceptance of our terms which are available for viewing at www.maxxam.ca/terms Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Maxxam's standard Terms and Conditions. Sample container, preservation, hold time and packages information can be viewed at http://maxxam.ca/wp-content/uploads/Ontario-COC.pdf. White: Maxxam ~ Yellow: Client

Page 22 of 22