englobe

Phase Two Environmental Site Assessment

303, 309 and 317 Speedvale Avenue East, Guelph, Ontario

Habitat for Humanity Wellington Dufferin Guelph Final Report | Version 00 02302109.001

November 15, 2023

Habitat for Humanity Wellington Dufferin Guelph 02302109.001

Prepared by:

Jessin Lodi

Jessica Godin, M.E.Sc., EIT Engineering Intern, Environment Southwestern Ontario

Reviewed by:

Kevin Bailey

Kevin Bailey, M.A.Sc., P.Eng., QP_{ESA} Team Lead, Environmental Southwest Ontario

Production team

Habitat for Humanity Wellington Dufferin Guelph

Client	Personnel
Habitat for Humanity Wellington Dufferin Guelph	Brett Daw, Director, Build

Englobe Corp.

Position	Personnel
Team Lead, Environment	Kevin Bailey, M.A.Sc., P.Eng., QP _{ESA}
Engineering Intern, Environment	Jessica Godin, M.E.Sc., EIT
Field Technicians	Taylor Akimov
CADD/GIS	Joven Mendoza

Revisions and publications log

REVISION No.	DATE	DESCRIPTION
0A	November 10, 2023	Preliminary version published for comments
00	November 15, 2023	Final version published

Distribution

Document	Client
1 PDF copy	Brett Daw

1 Executive Summary

Englobe Corp. (Englobe) was retained by Habitat for Humanity Wellington Dufferin Guelph (hereinafter referred to as the "Client") to complete a Phase Two Environmental Site Assessment (Phase Two ESA) for the properties including 303, 309 and 317 Speedvale Avenue East in Guelph, Ontario (hereinafter referred to as the "Phase Two Property" or "Site"). The Site Location Map and the Phase One Conceptual Site Model are provided in **Appendix A**, **Drawings 1** and **2**, respectively. Compass directions described in this report are referenced to the cardinal "North" as shown on the site drawings.

The Site is developed with four (4) building structures consisting of one (1) commercial office building, one (1) commercial (formerly residential) massage therapist office, and one (1) private residential dwelling with one (1) detached garage structure. It is Englobe's understanding that the structures are proposed to be demolished and redeveloped with a six (6) storey residential building. The surrounding area is composed of Speedvale Avenue East to the north, followed by residential properties, with commercial properties located beyond; Manhattan Court to the east, followed by residential and commercial properties, with Stevenson Street North located beyond; residential properties to the south; and residential properties to the west, followed by Metcalfe Street, with residential and institutional properties located beyond. Englobe understands that a Record of Site Condition (RSC) for the Site is required to be filed with the Ontario Ministry of the Environment, Conservation and Parks (MECP) as part of the planned redeveloped activities. The work was carried out in accordance with Englobe's proposal dated July 25, 2023 (Ref.: P2302109.001) and authorized by the Client on August 15, 2023. The Phase Two ESA was completed concurrently with a Hydrogeological Investigation at the Site, to be submitted under separate cover.

Englobe completed a Phase One ESA for the Site dated August 17, 2023. The Phase One ESA identified current and/or historical Potentially Contaminating Activities (PCAs) on Site and/or the surrounding areas, which have contributed to Areas of Potential Environmental Concern (APECs). The PCAs identified for the Site and surrounding properties are shown on **Drawing 2** provided in **Appendix A**. Based on the Phase One ESA findings, Englobe recommended that a Phase Two ESA be conducted to confirm the presence or absence of contaminants of potential concern (COPCs) in the soil and/or groundwater associated with the PCAs contributing to the Site APECs. The identified APECs and the contributing PCAs are depicted in **Drawing 3** provided in **Appendix A**.

The objective of a Phase Two ESA is to conduct intrusive investigation with sample collection and analyses to confirm the presence or absences of COPCs in soil and/or groundwater, based on APECs identified within the following above noted Phase One ESA Report:

 Phase One Environmental Site Assessment, 303, 309 and 317 Speedvale Avenue East, Guelph, Ontario. Prepared for Habitat for Humanity Wellington Dufferin Guelph. Prepared by Engoble Corp. Dated August 17, 2023. Reference No. 02302109.000.

Englobe performed this Phase Two ESA in accordance with Ontario Regulation (O. Reg.) 153/04 - Records of Site Condition, Part XV.1 of the Environmental Protection Act R.S.O. 1990 CH. E 19 (as amended).

The Englobe Phase One ESA identified PCAs both on-Site and within the Phase One Study Area (i.e. within 250 metres of the Site boundaries), resulting in five (5) APECs as summarized in the table below:

Areas of Potential Environmental Concern within Englobe's Phase One ESA (2023)

APEC (Corresponding PCA)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (on- Site or off- Site)	Contaminants of Potential Environmental Concern	Media Potentially Impacted
APEC 1 (PCA 1) Former fuel outlet with reported gasoline spill	North portion of the Site	No. 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site 324 Speedvale Avenue East (90 m north- northeast of the Site)	PHCs,BTEX, Metals and Hydride- Forming Metals (including As, Sb, Se)	Soil and Groundwater
APEC 2 (PCA 2) Historic dry- cleaning facility that used PERC	North portion of the Site	No. 37 - Operation of Dry-Cleaning Equipment (where chemicals areused) Unspecified PCA - Waste Generator Records	Off-Site 358 Speedvale Avenue East (250 north- northeast of the Site)	VOCs	Soil and Groundwater
APEC 3 (PCA 3) Current retail fuel outlet	North portion of the Site	No. 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site 328 Speedvale Avenue East (145 m north- northeast of the Site)	PHCs,BTEX, Metals and Hydride- Forming Metals (including As, Sb, Se)	Soil and Groundwater
APEC 4 (PCA 4) Waste generator for halogenated solvents	North portion of the Site	Unspecified PCA - Waste Generator Records	Off-Site 328-378 Speedvale Avenue East (145 m north- northeast of the Site)	VOCs	Soil and Groundwater
APEC 5 (PCA 5) Suspected fill materials	Northwest portion of the Site - in front of 317 Speedvale Avenue East	No. 30 - Importation of Fill Material of Unknown Quality	On-Site	Metals and Hydride- Forming Metals (including As, Sb, Se), PHCs, PAHs, BTEX	Soil
Notes: APEC - Area of Potential Environmental Concern PCA - Potentially Contaminating Activity PERC - Tetrachloroethylene PHCs- Petroleum Hydrocarbons Fractions F1 to F4 BTEX - Benzene, toluene, ethylbenzene and xylenes VOCs - Volatile Organic Compounds As - Arsenic Sb - Antimony					

Sb - Antimony

Se - Selenium PAHs - Polycyclic Aromatic Hydrocarbons

The Site stratigraphy encountered at the borehole locations, in general, consisted of surficial asphalt or topsoil, underlain by either silt, sand and gravel fill or native silt, sand and gravel, underlain by predominantly native silt to sandy silt. Bedrock was not encountered in any of the boreholes. No deleterious materials were encountered at any of the boreholes advanced across the Site.

Analytical results reported for soil and groundwater were compared to the MECP's Table 2: Full Depth Generic Site Condition Standards in а Potable Ground Water Condition. Residential/Parkland/Institutional RPI Property Use, Fine-Textured Soils (hereinafter referred to as "MECP Table 2 SCS") were identified as the applicable standards for evaluating soil and groundwater quality data. Soil analytical results were compared to MECP Table 2 SCS for RPI Property Use and Fine-Textured Soils. Groundwater analytical results were compared to the MECP Table 2 SCS for All Types of Property Use, Fine-Textured Soils.

Based on a review of the analytical data reported for the soil samples submitted for laboratory analysis, detected concentrations and reportable detection limits (RDLs) of the assessed parameters were all below their respective MECP Table 2 SCS excluding electric conductivity (EC) and sodium adsorption ratio (SAR).

Road salt and/or de-icing substances have been applied to the surface of the driveways / parking areas of the Site and the roadways surrounding the Site for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both, thus, it is the Qualified Person's (QP's) opinion that the EC and SAR concentrations in soil are deemed not to exceed the MECP Table 2 SCS in accordance with s 49.1 of O. Reg. 153/04 (as amended).

Detected concentrations and RDLs of the analyzed parameters were all below their respective MECP Table 2 SCS in each of the submitted groundwater samples at MW23-01 and MW23-03.

Based on the results, no additional subsurface investigation is recommended at this time prior to the filing of a RSC.

Englobe recommends that the groundwater monitoring wells installed on the Site by Englobe be maintained until such time that they are no longer needed, at which time it is recommended that the wells be decommissioned, in accordance with requirements defined by Ontario Regulation 903, as amended.

Property and Confidentiality

"This document is intended solely for the purposes stated herein. Any use of the report must take into consideration the purpose and scope of the mandate under which the report was prepared, as well as the limitations and conditions specified therein and the state of scientific knowledge at the time the report is issued. Englobe Corp. does not make any warranties or representations other than those expressly contained in the report.

This document is the work of Englobe Corp. Any reproduction, distribution, or adaptation, in whole or in part, is strictly prohibited without the prior written permission of Englobe and its Client. For greater certainty, the use of report excerpts is strictly prohibited without the written permission of Englobe and its Client englobe and its Client, and the report should be read and considered in its entirety.

No information contained in this report may be used by any third party without the written permission of Englobe and its Client. Englobe Corp. disclaims all liability for any unauthorized reproduction, distribution, adaptation, or use of the report.

If tests have been performed, the results of these tests are valid only for the sample described in this report.

Subcontractors of Englobe who may have performed laboratory work are duly evaluated according to the purchasing procedure of our quality system. For further information or details, please contact your project manager."

Table of Contents

1	Executive Summary	III
2	Introduction	1
2.1	Site Description	2
2.2	Property Ownership	3
2.3	Current and Proposed Future Uses	4
2.4	Applicable Site Condition Standard	4
3	Background Information	7
3.1	Physical Setting	7
3.2	Past Investigations	8
3.3	Phase One Conceptual Site Model	10
4	Scope of the Investigation	14
4.1	Overview of Site Investigation / Phase Two Work Plan	
4.2	Deviations from Phase Two Work Plan	15
4.3	Impediments	16
5	Investigation Method	17
5.1	Drilling Program	
5.2	Hand-Auger Holes	
5.3	Soil Sampling	
5.4	Field Screening Measurements	
5.5	Groundwater: Monitoring Well Installation	
5.6	Field Measurement of Groundwater Quality Parameters	
5.7	Groundwater Sampling	
5.8	Analytical Testing	
5.9	Elevation Surveying	
5.10	Residue Management	
5.11	Quality Assurance and Quality Control Measures	22
6	Review and Evaulation	
6.1	Stratigraphy	24
6.2	Groundwater Elevations	24
6.3	Groundwater Hydraulic Gradients	25
6.4	Soil Field Screening Results	25
6.5	Soil Quality	25
6.6	Groundwater Quality	26
6.7	Quality Assurance and Quality Control Results	26

7	Conclusions & Recommendations	28
7.1	Conclusions	
7.2	Recommendations	29
8	References	30

TABLES

Table 1-1	Site Description	2
Table 1-2	Summary of Grain Size Distribution Analysis Results for Tested Soil Samples	
Table 1-2	Areas of Natural Significance Definitions and Site Conditions	5
Table 2-1	Areas of Potential Environmental Concern within Englobe's Phase One ESA (2023) at	
	303, 309 and 317 Speedvale Avenue East, Guelph	9
Table 2-2	Phase One Conceptual Site Model	
Table 3-1	Deviations from the Phase Two Work Plan	.16
Table 4-1	Summary of Soil Samples Submitted for Laboratory Analysis	.18
Table 5-2	Groundwater Quality Parameter Monitoring	.20
Table 4-3	Summary of Groundwater Samples Submitted for Laboratory Analysis	.21
Table 5-2	Summary of QA/QC Program	.26

APPENDICES

- Appendix A Drawings
- Appendix B Borehole Logs
- Appendix C Analytical Tables
- Appendix D Laboratory Certificates of Analysis
- Appendix E Grain Size Distribution Results
- Appendix F Qualifications of the Assessors
- Appendix G Statement of Limitations

2 Introduction

Englobe Corp. (Englobe) was retained by Habitat for Humanity Wellington Dufferin Guelph (hereinafter referred to as the "Client") to complete a Phase Two Environmental Site Assessment (Phase Two ESA) for the properties including 303, 309 and 317 Speedvale Avenue East in Guelph, Ontario (hereinafter referred to as the "Phase Two Property" or "Site"). The Site Location Map and the Phase One Conceptual Site Model plan are provided in **Appendix A**, **Drawings 1** and **2**, respectively. Compass directions described in this report are referenced to the cardinal "North" as shown on the site drawings.

The Site is developed with four (4) building structures consisting of one (1) commercial office building, one (1) commercial (formerly residential) massage therapist office, and one (1) private residential dwelling with one (1) detached garage structure. It is Englobe's understanding that the structures are proposed to be demolished and redeveloped with a six (6) storey residential building. The surrounding area is composed of Speedvale Avenue East to the north, followed by residential properties, with commercial properties located beyond; Manhattan Court to the east, followed by residential and commercial properties, with Stevenson Street North located beyond; residential properties to the south; and residential properties to the west, followed by Metcalfe Street, with residential and institutional properties located beyond. Englobe understands that a Record of Site Condition (RSC) for the Site is required to be filed with the Ontario Ministry of the Environment, Conservation and Parks (MECP) as part of the planned redeveloped activities. The work was carried out in accordance with Englobe's proposal dated July 25, 2023 (Ref.: P2302109.001) and authorized by the Client on August 15, 2023. The Phase Two ESA was completed concurrently with a Hydrogeological Investigation at the Site, to be submitted under separate cover.

Englobe completed a Phase One ESA for the Site dated August 17, 2023. The Phase One ESA identified current and/or historical Potentially Contaminating Activities (PCAs) on Site and/or the surrounding areas, which have contributed to Areas of Potential Environmental Concern (APECs). The PCAs identified for the Site and surrounding properties are shown on **Drawing 2** provided in **Appendix A**. Based on the Phase One ESA findings, Englobe recommended that a Phase Two ESA be conducted to confirm

the presence or absence of contaminants of potential concern (COPCs) in the soil and/or groundwater associated with the PCAs contributing to the Site APECs. The identified APECs are depicted in **Drawing 3** provided in **Appendix A**.

The objective of a Phase Two ESA is to conduct intrusive investigation with sample collection and analyses to confirm the presence or absences of COPCs in soil and/or groundwater, based on APECs identified within the following above noted Phase One ESA Report:

 Phase One Environmental Site Assessment, 303, 309 and 317 Speedvale Avenue East, Guelph, Ontario. Prepared for Habitat for Humanity Wellington Dufferin Guelph. Prepared by Engoble Corp. Dated August 17, 2023. Reference No. 02302109.000.

Englobe performed this Phase Two ESA in accordance with Ontario Regulation (O. Reg.) 153/04 - Records of Site Condition, Part XV.1 of the Environmental Protection Act R.S.O. 1990 CH. E 19 (as amended).

2.1 Site Description

A summary of the Site details is presented in the following Table 2-1.

Table 2-1Site Description

Site Information			
Site Area	303 Speedvale Avenue East - 786 m ² (0.08 hectares)		
Sile Alea	309 and 317 Speedvale Avenue East – 1,816 m ² (0.18 hectares)		
	303 Speedvale Avenue East - PART LOT 15 CONCESSION 2 DIVISION F GUELPH TOWNSHIP AS IN ROS212691, SAVE AND EXCEPT PART 3, PLAN 61R21047 CITY OF GUELPH		
Legal Description	309 and 317 Speedvale Avenue East - PT LT 15 CON 2 DIVISION F GUELPH TOWNSHIP AS IN ROS532100; GUELPH; EXCEPT PARTS 1 AND 2 PLAN 61R-21047; CITY OF GUELPH		
PIN	303 Speedvale Avenue East – 71312-0098 (LT)		
PIN	309 and 317 Speedvale Avenue East - 71312-0100 (LT)		
Assessment Roll Number	303 Speedvale Avenue East - 0300-082-060-00000		
Assessment Roll Number	309 and 317 Speedvale Avenue East - 0300-082-080-00000		
Zanina	303 Speedvale Avenue East – Specialized Residential		
Zoning	309 and 317 Speedvale Avenue East – Specialized Commercial		
	303 Speedvale Avenue East - UTM Zone 17T 559829 m E, 4823784 m N		
Geodetic Coordinates to Approximate Centroid	309 Speedvale Avenue East - UTM Zone 17T 559839 m E, 4823806 m N		
	317 Speedvale Avenue East - UTM Zone 17T 559851 m E, 4823819 m N		

UTM - Universal Transverse Mercator

Site Information

m² - square metres E - Easting N - Northing

The Site is made up of two parcels of land, containing four (4) building structures. The parcel located at 309 and 317 Speedvale Avenue East is rectangular in shape and approximately 1,816 m² (0.18 hectares) in area and is developed with two building structures. The formerly residential building located at 309 Speedvale Avenue East is currently used for commercial purposes (i.e. registered massage therapy) and was reportedly developed in the 1940s, with an approximate building footprint area of 85 m². The structure located at 317 Speedvale Avenue East is developed with a multi-tenant commercial building and appears to have been constructed in the 1960s with an approximate building footprint area of 234 m². The property is accessed via an asphalt paved driveway off Speedvale Avenue East and Manhattan Court. Asphalt paved surface parking / driveway areas are located on the southeast and southwest portions of the property.

The property located at 303 Speedvale Avenue East is rectangular in shape and approximately 786 m² (0.08 hectares) in area and is developed with two (2) structures, consisting of a residential dwelling and a detached two-car garage. The property is accessed via a paved driveway off Speedvale Avenue East, located on the west portion of the Phase One Property. Paved surface parking / driveway areas and the garage are located on the southern portion of the property. The residential dwelling was reportedly constructed in the 1940s and consists of a single-storey building with a full basement with an approximate building footprint area of 85 m^2 . The garage has an approximate footprint area of 21 m^2 .

Surrounding land uses consist of commercial properties to the north on the corner of Speedvale Avenue East and Stevenson Street North and predominantly residential properties to the west and south. To the east of the Site is an area of commercial, institutional and residential use, including institutional properties (i.e. a place of worship and a public school) and condominium complexes. Directly adjacent to the Site are residential properties to the north, west and south and a dentist to the east.

The Site and surrounding properties are located as shown on the attached Phase One Conceptual Site Model, **Drawing 2** provided in **Appendix A**.

2.2 Property Ownership

The Site ownership information is as follows:

Habitat for Humanity Wellington Dufferin Guelph Suite 100B 104 Dawson Road Guelph, ON N1H 1A6

The contact information for the representative of the Site owner is as follows:

Mr. Brett Daw Habitat for Humanity Wellington Dufferin Guelph Suite 100B 104 Dawson Road Guelph, ON N1H 1A6

519-767-9752 ext. 39

2.3 Current and Proposed Future Uses

The Site is currently utilized for mixed commercial and residential purposes as a commercial office building (317 Speedvale Avenue East), registered massage therapists office (309 Speedvale Avenue East) and private residence (303 Speedvale Avenue East). Englobe understands the Client has purchased the property for proposed redevelopment, with a six (6) storey residential building with one (1) storey of underground parking. Englobe understands that an RSC for the Site is required to be filed with the MECP as part of the planned redeveloped activities.

2.4 Applicable Site Condition Standard

Soil and groundwater analytical results obtained for the Site were compared to applicable Site Condition Standards as provided in the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act," Ontario Ministry of Environment, Conservation and Parks (MECP) April 15, 2011 [hereinafter referred to as the "MECP Standards" or (MECP, 2011)].

The MECP Standards consist of background and risk-based standards developed from the evaluation of different land use scenarios (i.e. residential, commercial, etc.), groundwater conditions (potable versus not potable), soil conditions (pH, texture classification, overburden thickness) and special considerations (i.e. proximity to a surface water body or an area of natural or scientific interest). Full depth background standards are provided in Table 1 and generic risk-based standards developed for different land use scenarios are provided in Tables 2 to 9 of MECP. The Table 1 Background Standards are to be applied to environmentally sensitive sites as determined from an evaluation of conditions related to soil pH and proximity to a provincially significant wetlands (PSW) area or an area of natural and scientific interest (ANSI).

The rationale for the selection of the MECP Standards applicable to the Site setting is provided as follows:

Land Use

The Site is proposed for redevelopment for residential use (six (6) storey residential building). Therefore, the residential/parkland/institutional property use standards are applicable to the Site.

Groundwater Use

The Site and all properties within 250 m of the Site are serviced with potable water via the City of Guelph municipal system which obtains its water from groundwater wells.

Additionally, based on a search of the available MECP well records, no potable water wells were identified within 250 m of the Site.

The Table 2 Full Depth Generic Site Conditions Standards Potable Ground Water Condition apply.

Surface Water Features

There are no water bodies within the Phase One Study Area. The closest major waterbody to the Site is Speed River located approximately 810 m to the west of the Site. Speed River flows from Guelph Lake, located approximately 3.0 km northeast of the northeastern corner of the Site.

Soil Texture

Borehole Logs provided in **Appendix B**, indicate that most of the underlying native soils consists of silt and/or silty sand. Grain size analysis results are summarized in Table 2-2 below. Grain size analysis results provided in **Appendix E**.

Sample ID	% Gravel (> 4.75 mm) (by mass)	% Sand (75 μm to 4.75 mm) (by mass)	% Silt (2 μm to 75 μm) (by mass)	% Clay (< 2 μm) (by mass)	Soil Texture (Description)
MW23-01 SS9	9.8	37.4	42.6	10.2	Medium (Sand and Silt, some clay, trace gravel)
MW23-02 SS7	16.5	39.7	36.4	7.4	Coarse (Sand and Silt, some gravel, trace clay)
MW23-03 SS8	4.0	25.5	62.8	7.7	Medium (Sandy silt, trace gravel, trace clay)
MW23-04 SS7	1.5	35.5	57.1	5,9	Medium (Sand and Silt, trace gravel, trace clay)
MW23-05 SS8	0.1	65.7	31.3	2.9	Medium (Silty sand, trace clay)

Table 2-2 Summary of Grain Size Distribution Analysis Results for Tested Soil Samples

A review of the borehole logs and above-noted grain size analysis result indicate that the soil at the Site is medium textured, therefore for the purposes of this report, analytical results for soil samples will be evaluated against medium/fine-textured standards.

Environmentally Sensitive Areas

According to O. Reg. 153/04, if a site is within an area of natural significance or is adjacent to or within 30 m of an area of natural significance, it is considered environmentally sensitive. The following **Table 2-3** presents the criteria for areas of natural significance as they are defined in O. Reg. 153/04 and the actual site conditions as they relate to the criteria.

Table 2-3 Areas of Natural Significance Definitions and Site Conditions

Definition Under O. Reg. 153/04 "area of natural significance" means any of the following:	Site Conditions and Characteristics	
 An area reserved or set apart as a provincial park or conservation reserve under the Provincial Parks and Conservation Reserves Act, 2006. 	The Site is not located within or adjacent to a provincial park according to the Ontario Ministry of Natural Resources and Forestry (MNRF) nor is it located within or adjacent to a conservation reserve under the Provincial Parks and Conservation Reserves Act, 2006 (Provincial Parks and Conservation Reserves Act, 2006; MNRF, 2014).	
2. An area of natural and scientific interest (life science or earth science) identified by the Ministry of Natural Resources as having provincial significance.	The Site is not located within or adjacent to an area of natural and scientific interest (life or earth sciences) (MNRF, 2014).	
3. A wetland identified by the Ministry of Natural Resources and Forestry as having provincial significance.	The Site is not part of an area or within 30 m of an area identified by the MNRF as being a provincially significant wetland (MNRF, 2014).	

	O. Reg. 153/04 ' means any of the following:	Site Conditions and Characteristics
 An area designated by a m as environmentally signific including designations of a sensitive, as being of envi being ecologically signification 	ant, however expressed, areas as environmentally ronmental concern and as	The Site and surrounding properties are not considered to be environmentally sensitive, of environmental concern or ecologically significant according to the City of Guelph's Official Plan.
5. An area designated as an an escarpment protection Escarpment Plan under th Planning and Development	area by the Niagara e Niagara Escarpment	The Site and surrounding properties are not part of the Niagara Escarpment natural/protection areas as defined by the Niagara Escarpment Planning and Development Act (Niagara Escarpment Commission, 2008).
6. An area identified by the M as significant habitat of a t species.		The Site and surrounding properties are not in an area that is classified as a significant habitat for a threatened or endangered species.
7. An area which is habitat of under section 7 of the End as a threatened or endang	angered Species Act, 2007	The Site and surrounding properties are not in an area that is classified as habitat for a threatened or endangered species.
	a within the area to which the ervation Plan under the Oak	The Site and surrounding properties are not part of the Oak Ridges Moraine core/linkage areas as defined by the Oak Ridges Moraine Act (MNRF, 2014).
9. An area set apart as a wild Wilderness Areas Act;	lerness area under the	The area is not set apart as a wilderness area under the Wilderness Area Act (MNRF, 2010).

Therefore, based on the information provided in the above table, the Site and surrounding properties are not considered to be an area of natural significance according to O. Reg. 153/04.

<u>Soil pH</u>

Laboratory pH measurements reported for soil samples collected from surface and subsurface depths were within the respective acceptable ranges of 5 to 9 and 5 to 11. As such, the Site is not considered to be environmentally sensitive due to pH.

Depth to Bedrock

Based on the borehole logs, bedrock was not encountered during the advancement of any of the boreholes, advanced to 6.1 to 6.7 mbgs.

Depth to Groundwater

The measured depth to groundwater was encountered between 4.62 to 6.66 mbgs (326.83 to 327.47 metres above sea level (masl)).

Site Condition Standard Determination

Based on evaluation of the Site conditions, the Table 2: Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition, Residential/Parkland/Institutional (RPI) Property Use, Fine-Textured Soils (hereinafter referred to as "MECP Table 2 SCS") were identified as the applicable standards for evaluating soil and groundwater quality data. Soil analytical results were compared to MECP Table 2 SCS for RPI Property Use and Fine-Textured Soils. Groundwater analytical results were compared to the MECP Table 2 SCS for All Types of Property Use, Fine-Textured Soils.

3 Background Information

3.1 Physical Setting

The Site is made up of two parcels of land, containing four (4) building structures. The parcel located at 309 and 317 Speedvale Avenue East is rectangular in shape and approximately 1,816 m² (0.18 hectares) in area and is developed with two building structures. The formerly residential building located at 309 Speedvale Avenue East is currently used for commercial purposes (i.e. registered massage therapy) and was reportedly developed in the 1940s, with an approximate building footprint area of 85 m². The structure located at 317 Speedvale Avenue East is developed with a multi-tenant commercial building and appears to have been constructed in the 1960s with an approximate building footprint area of 234 m². The property is accessed via an asphalt paved driveway off Speedvale Avenue East and Manhattan Court. Asphalt paved surface parking / driveway areas are located on the southeast and southwest portions of the property.

The property located at 303 Speedvale Avenue East is rectangular in shape and approximately 786 m² (0.08 hectares) in area and is developed with two (2) structures, consisting of a residential dwelling and a detached two-car garage. The property is accessed via a paved driveway off Speedvale Avenue East, located on the west portion of the Phase One Property. Paved surface parking / driveway areas and the garage are located on the southern portion of the property. The residential dwelling was reportedly constructed in the 1940s and consists of a single-storey building with a full basement with an approximate building footprint area of 85 m^2 . The garage has an approximate footprint area of 21 m^2 .

Surrounding land uses consist of commercial properties to the north on the corner of Speedvale Avenue East and Stevenson Street North and predominantly residential properties to the west and south. To the east of the Site is an area of commercial, institutional and residential use, including institutional properties (i.e. a place of worship and a public school) and condominium complexes. Directly adjacent to the Phase One Property are residential properties to the north, west and south and a dentist to the east. The Site Location Map and the Site and Surrounding Land Use plan are provided in Appendix A, Drawings 1 and 2, respectively.

An Ontario Base Map (OBM) shows the ground surface elevation for the Site at approximately 330-335 metres above mean sea level (masl). The regional topography appears to slope gently to the southeast (towards the Speed River). Based on visual observations during the Site reconnaissance, the Site and surrounding areas appeared to be generally flat with a gentle slope towards the southeast.

The Site is located within the physiographic region of Southern Ontario known as the Guelph Drumlin Field (Chapman and Putnam, 2007). The primary physiographic landform in the area of the Site is the Drumlins. The subsurface stratigraphy at the Site is comprised of stone-poor, sandy silt to silty sand-textured till (Ontario Geological Survey, 1991). The Ontario Geological Survey Bedrock Geology of Ontario map accessed via Google Earth, shows the Site being underlain sandstone, shale, dolostone and/or siltstone of the Guelph Formation.

According to the available surficial geology maps from the Ministry of Northern Development and Mines, accessed via Google Earth, the surficial geology at the Site and surrounding properties was listed as stone-poor, sandy silt to silty sand-textured till. According to CMT's Geotechnical Report (2023) summarized in **Section 2.2**, the soil stratigraphy encountered at the Site during soil excavation was fill materials consisting of brown sand and gravel with trace silt, brown silty sand, or silt at depths ranging between 0.8 to approximately 1.4 m mbgs. The fill materials were underlain by brown to grey sand with trace to some silt and gravel to sand and silt with some clay and trace gravel to the final extent of the excavations at approximately 6.1 mbgs.

There are no surface water bodies in the Phase One Study Area. The nearest water body to the Site is Speed River located approximately 810 m to the west of the Site. Speed River flows from Guelph Lake, located approximately 3.0 km northeast of the northeastern corner of the Site. Based on the regional topography and location of the nearest surface water body, the inferred direction of the regional groundwater flow is to the southwest. Inferred groundwater flow directions at the Site based on measured groundwater elevations are summarized in **Section 5.2**. Depending on climate conditions and the amount of surface water available, ditching, underground services, and ground surface may affect the shallow groundwater flow on a local level.

3.2 Past Investigations

The following reports were available for Englobe's review:

Geotechnical Investigation, Proposed Building - 303, 309, 317 Speedvale Avenue East, Guelph, Ontario. CMT Project 23-399.R01. Prepared for Habitat for Humanity Guelph-Wellington, prepared by CMT Engineering Inc., dated August 3, 2023 (CMT, 2023).

According to the CMT Geotechnical Report, CMT was retained to conduct a geotechnical investigation for the proposed building to be construed at 303, 309 and 317 Speedvale Avenue East, in Guelph, Ontario. The purpose of the geotechnical investigation was to assess the existing soil and groundwater conditions encountered at the Site to support the design and construction of a proposed residential development (building) with either half or one (1) storey of underground parking, as well as surface level parking.

Included in the assessment were the soil classification and groundwater observations, as well as comments and recommendations regarding geotechnical resistance (bearing capacity); serviceability

limit states (anticipated settlement); recommended founding elevations; site classification for seismic site response; dewatering considerations; recommendations for site grading, site servicing, excavations and backfilling; recommendations for slab-on-grade construction; pavement design/drainage; soil design properties; and a summary of the laboratory test results.

The following is a summary of the activities that took place as part of this investigation:

- On July 10 2023, five (5) boreholes (designated BH1 through BH5) were advanced at the Site utilizing a Geoprobe 7822DT drill rig operated by CMT Drilling Inc. The boreholes were advanced in the area of the proposed building to depths of approximately 6.10 mbgs.
- CMT Inc. personnel surveyed the ground surface elevations at the borehole locations (using laser survey equipment) on July 31, 2023. The nail in the existing hydro pole located to the north of the proposed construction was utilized as a benchmark with a reported elevation of 333.00 m. As such, the ground surface elevations at the borehole locations ranged from approximately 330.06 m to 334.21 m.
- The soil stratigraphy encountered at the Site during soil excavation was fill materials consisting of brown sand and gravel with trace silt, brown silty sand, or silt at depths ranging between 0.8 to approximately 1.4 m mbgs. The fill materials were underlain by brown to grey sand with trace to some silt and gravel to sand and silt with some clay and trace gravel to the final extent of the excavations at approximately 6.1 mbgs.
- Saturated soils, typically sand, were observed within Boreholes 1, 2 and 5 ranging from approximately 3.66 m to 6.10 m below the ground surface.

Phase One Environmental Site Assessment, 303, 309 and 317 Speedvale Avenue East, Guelph, Ontario. Prepared for Habitat for Humanity Wellington Dufferin Guelph, prepared by Englobe Corp. Dated August 17, 2023. Reference No. 02302109.000 (Englobe, 2023).

The Englobe Phase One ESA identified PCAs both on-Site and within the Phase One Study Area (i.e. within 250 metres of the Site boundaries), resulting in five (5) APECs as summarized in **Table 3-1** below:

APEC (Corresponding PCA)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (on- Site or off- Site)	Contaminants of Potential Environmental Concern	Media Potentially Impacted
APEC 1 (PCA 1) Former fuel outlet with reported gasoline spill	North portion of the Site	No. 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site 324 Speedvale Avenue East (90 m north- northeast of the Site)	PHCs,BTEX, Metals and Hydride- Forming Metals (including As, Sb, Se)	Soil and Groundwater
APEC 2 (PCA 2) Historic dry- cleaning facility that used PERC	North portion of the Site	No. 37 - Operation of Dry-Cleaning Equipment (where chemicals areused) Unspecified PCA - Waste Generator Records	Off-Site 358 Speedvale Avenue East (250 north- northeast of the Site)	VOCs	Soil and Groundwater

Table 3-1Areas of Potential Environmental Concern within Englobe's Phase One ESA (2023) at 303, 309and 317 Speedvale Avenue East, Guelph

APEC (Corresponding PCA)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (on- Site or off- Site)	Contaminants of Potential Environmental Concern	Media Potentially Impacted
APEC 3 (PCA 3) Current retail fuel outlet	North portion of the Site	No. 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site 328 Speedvale Avenue East (145 m north- northeast of the Site)	PHCs,BTEX, Metals and Hydride- Forming Metals (including As, Sb, Se)	Soil and Groundwater
APEC 4 (PCA 4) Waste generator for halogenated solvents	North portion of the Site	Unspecified PCA - Waste Generator Records	Off-Site 328-378 Speedvale Avenue East (145 m north- northeast of the Site)	VOCs	Soil and Groundwater
APEC 5 (PCA 5) Suspected fill materialsNorthwest portion of the Site - in front of 317 Speedvale Avenue EastNo. 30 - Importation of Fill Material of Unknown QualityMetals and Hydride- Forming On-SiteMetals and Hydride- Forming Metals (including As, Sb, Se), PHCs, PAHs, BTEX					Soil
Notes: APEC - Area of Potential Environmental Concern PCA - Potentially Contaminating Activity PERC - Tetrachloroethylene PHCs- Petroleum Hydrocarbons Fractions F1 to F4 BTEX - Benzene, toluene, ethylbenzene and xylenes VOCs - Volatile Organic Compounds As - Arsenic Sb - Antimony Se - Selenium PAHs - Polycyclic Aromatic Hydrocarbons					

The locations of the aforementioned PCAs and APECs are illustrated on **Drawing 3** provided in **Appendix A**.

3.3 Phase One Conceptual Site Model

Based on the results of the Phase One ESA, APECs were identified at the Site which were associated with historical and/or current PCAs on the Site and/or surrounding properties. In accordance with the requirements of O. Reg. 153/04, a Phase One Conceptual Site Model (CSM) was developed by integrating information on the Site setting and land use conditions, PCAs and APECs in a narrative, tabular and graphical format.

The Phase One CSM for the Site was prepared in accordance with "Table 1 Mandatory Requirements for Phase One Environmental Site Assessment Reports", Schedule D, Part XV.I, O.Reg. 153/04 and is summarized in **Table 3-2** below.

Table 3-2 Phase One Conceptual Site Model

O.Reg. 153/04 Schedule D (Part VI) Table 1 Requirement	Phase One ESA Findings / Details
Show any existing buildings and structures	The Site is made up of two (2) parcels of land, containing four (4) building structures. The parcel located at 309 and 317 Speedvale Avenue East is rectangular in shape and approximately 1,816 m ² (0.18 hectares) in area and is developed with two building structures. The formerly residential building located at 309 Speedvale Avenue East is currently used for commercial purposes (i.e. registered massage therapy) and was reportedly developed in the 1940s, with an approximate building footprint area of 85 m ² . The structure located at 317 Speedvale Avenue East is developed with a multi-tenant commercial building and appears to have been constructed in the 1960s with an approximate building footprint area of 234 m ² . The property is accessed via an asphalt paved driveway off Speedvale Avenue East and Manhattan Court. Asphalt paved surface parking / driveway areas are located on the southwest portion of the property.
	The property located at 303 Speedvale Avenue East is rectangular in shape and approximately 786 m ² (0.08 hectares) in area and is developed with two (2) building structure, consisting of a residential dwelling and a detached two-car garage. The property is accessed via a paved driveway off Speedvale Avenue East, located on the west portion of the Phase One Property. Paved surface parking / driveway areas and the garage are located on the southern portion of the property. The residential dwelling was reportedly constructed in the 1940s and consists of a single-storey building with a full basement with an approximate building footprint area of 85 m ² . The garage has an approximate footprint area of 21 m ² .
	Surrounding land uses consist of commercial properties to the north on the corner of Speedvale Avenue East and Stevenson Street North and predominantly residential properties to the west and south. To the east of the Site is an area of commercial, institutional and residential use, including institutional properties (i.e. a place of worship and a public school) and condominium complexes. Directly adjacent to the Phase One Property are residential properties to the north, west and south and a dentist to the east.
	The Site features are shown on the attached Drawing 1 , Appendix A . The Site and surrounding properties are located as shown on the attached Phase One Conceptual Site Model, Drawing 2 provided in Appendix A .
Identify and locate water bodies located in whole or in part on the Phase One Study Area	No water bodies, streams, ponds or wetland areas were observed at the Site. Speed River is located approximately 810 metres west of the southwest corner of the Site. Guelph Lake is located approximately 3.0 kilometers northeast of the northeastern corner of the Site.
Identify and locate any areas of natural significance located in whole or in part on the Phase One Study Area	Based on the MNRF mapping website accessed in June 2023, the reported information indicated that there are no PSWs or ANSIs that are contained within the Site or Phase One Study Area.
Locate any drinking water wells at the Phase One Property	No known water supply wells were identified or observed at the Site. No known water supplywells were identified within the Phase One Study Area.
Show roads, including names, within the Phase One Study Area	The Phase One Property is located southeast of Speedvale Avenue East, southwest of Stevenson Street North and Manhattan Court, northeast of Metcalfe Street, and northwest of Balsam Drive, in Guelph, Ontario. Roads located in the Phase One Study Area are identified on the Figure 2, Appendix A .

O.Reg. 153/04 Schedule D (Part VI) Table 1 Requirement	Phase One ESA Findings / Details
Show uses of properties adjacent to the Phase One Property	The Site is in a residential/commercial area in Guelph. General land uses in the area are mainly residential with some commercial to the north, on the corner of Stevenson Street North and Speedvale Avenue East. Surrounding land uses consist of Speedvale Avenue East to the northwest followed by residential properties. Manhattan Court is to the northeast of the Site, followed by condominiums and institutional properties (i.e. a church and public school); and residential properties followed by Metcalfe Street to the south. The Site and surrounding properties are located as shown on the attached Figure 2 provided in Appendix A .
Identify and locate areas where any PCA has occurred and show tanks in such areas.	 PCAs were identified on Site and off-Site properties. These included: No. 28 - Gasoline and Associated Products Storage in Fixed Tanks No. 30 - Importation of Fill Material of Unknown Quality No. 37 -Operation of Dry-Cleaning Equipment (where chemicals are used) Unspecified PCA - Waste generator records Unspecified PCA - Waste generator records PCAs noted in the study area are shown on Drawing 2 in Appendix A.
Identify and locate any APECs	 Five (5) APECs identified at the Site, as shown on Figure 3 in Appendix A. APEC 1 - North portion of Site - former retail fuel outlet at 324 Speedvale Avenue East APEC 2 - North portion of Site - Historic dry cleaning facility at 358 Speedvale Avenue East APEC 3 - North portion of the Site - current retail fuel outlet at 328 Speedvale Avenue East APEC 4 - North Portion of the Site - Use of halogenated solvents at 328-378 Speedvale Avenue East APEC 5 - Northwest corner of the Site in front of 317 Speedvale Avenue East - Importation of Fill Material of Unknown Quality
Describe and assess any areas where potentially contaminating activity on or potentially affecting the Phase One Property has occurred.	 On-Site Importation of fill material of unknown quality over the northwestern portion of the Site containing 317 Speedvale Avenue East. Off-Site Historical records reviewed by Englobe indicate a gas station with three (3) underground storage tanks (USTs) was located north-northeast of the Phase One Property at 324 Speedvale Avenue East which may have possible impacts to soil and/or groundwater. During the Site visit, an active gas station with underground storage tanks was also observed north-northeast of the Site at 328 Speedvale Avenue East. Historical records reviewed by Englobe indicate a dry-cleaning facility located at 358 Speedvale Avenue East that was a waste generator of halogenated solvents, which may have possible impacts to soil and/or groundwater. Additionally, the plaza at 328-378 Speedvale Avenue East was listed as a waste generator of halogenated solvents, which may have possible impacts to soil and/or groundwater.

O.Reg. 153/04 Schedule D (Part VI) Table 1 Requirement	Phase One ESA Findings / Details	
Describe and assess and contaminants of potential environmental concern	Soil: Metals and Hydride-Forming Metals, PHCs, BTEX, VOCs, PAHs Groundwater: Metals and Inorganic, PHCs, BTEX, VOCs	
Describe and assess the potential for underground utilities, if any, to affect contaminant distribution and transport	Two catch basins were observed in the parking lot located behind 309 and Speedvale Avenue East during the Site visit on June 7, 2023. A storm sewer is press connecting the two catch basins and continuing towards Manhattan Court. A teleph cable is present in the eastern portion of the parking lot located behind 309 and Speedvale Avenue East. A water service is present in the driveway adjacent to Speedvale Avenue East, running perpendicular to Speedvale Avenue East. A hy line, natural gas line and cable conduit run parallel to Speedvale Avenue East thro the northwestern portion of the Site. A natural gas service is present for 303, 309 317 Speedvale Avenue East. A hydro service is present for 317 Speedvale Ave East	
Describe and assess available regional or site specific geological and hydrogeological information	Englobe reviewed a copy of the 2019 Ontario Base Map (OBM) provided by Ministry of Natural Resources and Forestry (MNRF) on-line mapping. Based on the site reconnaissance and a review of the contour linesfrom the OBM, the topography of the Site is generally flat, sloping gently to the southeast. The Site appearsto be at an elevation of between approximately 330 to 335 metres above sea level (masl). The surficial geology in the area is described as stone-poor, sandy silt to silty sand-textured till (Ontario Geological Survey, 2010). The Site is located within the physiographic region of the Guelph Drumlin Field and consists of drumlins (Ontario Geological Survey, 2007). The bedrock geology consists of sandstone, shale, dolostone and/or siltstone of the Guelph Formation (Ontario Geological Survey, 2011). The nearest water body to the Site is Speed River located approximately 3.0 km northeast of the northeast corner of the Site. Based on the observed topography it is anticipated that regionally, groundwater will flow towards the southwest. It is noted that local groundwater flow can be influenced by surface topography and subsurface utilities and structures.	
Describe and assess how any uncertainty or absence of information obtained in each of the components of the Phase One ESA could affect the validity of the model.	Multiple information sources were relied upon in the identification and evaluation of PCAs, which may have contributed to an APEC including historical records, previous reports, site observations, interviews, and environmental databases. Each of these sources has potential uncertainties related to accuracy (i.e., written records), interpretation (i.e., resolution of aerial photographs) and time gaps (directory sources and aerial photographs). As multiple sources of information were evaluated in this Phase One ESA with corroborated findings, uncertaintiesrelated to the validity of the CSM, and conclusions based on the model were minimized. It is Englobe's opinion that the uncertainty or absence of information in the Phase One ESA are not anticipated to affect the validity of the Phase One ESA are not anticipated to affect the validity of the Phase One ESA conclusions.	

4 Scope of the Investigation

4.1 Overview of Site Investigation / Phase Two Work Plan

The objective of the Phase Two ESA was to conduct intrusive investigation with sample collection and analyses to confirm the presence or absences of COPCs in specific media, as identified during the Englobe Phase One ESA. The soil and groundwater investigations were conducted in accordance with the requirements of O. Reg. 153/04, as amended.

The Phase Two ESA scope of work program consisted of the following activities:

- Coordinate the mobilization and demobilization of all personnel and equipment required to complete the work;
- Development of a Site-Specific Health and Safety Plan;
- Development of a Phase Two Work Plan;
- Clearance of underground utilities (public and private);
- Advancement of three (3) boreholes in strategic areas of the Site to a maximum depth of approximately 6 mbgs and instrument the boreholes as a groundwater monitoring well. The drilling program is to be completed by a MECP-licensed drilling contractor in accordance with O. Reg. 903;
- Complete three (3) shallow hand-auger holes within the area of APEC 5 at the Site to a maximum depth of approximately 1 mbgs;
- Collect soil samples from the boreholes and hand-auger holes for field screening to identify visual/olfactory evidence of impacts and measure total organic vapours (TOVs) using a hand-held gas meter;

- Submit one 'worst-case' soil sample from each of the three (3) boreholes for laboratory analyses of PHCs fractions F1-F4, VOCs, and O.Reg. 153/04 metals and inorganics;
- Submit one 'worst-case' soil sample from each of the three (3) hand-auger holes for laboratory analyses of PHCs fractions F1-F4, BTEX, PAHs and O.Reg. 153/04 metals and inorganics;
- Complete borehole layout mapping and elevation surveying;
- Collect groundwater level measurements and develop the three (3) newly installed monitoring wells;
- Collect and submit groundwater sample from all three (3) newly installed monitoring wells for laboratory analyses of PHC fractions F1-F4, VOCs and O.Reg. 153/04 metals and inorganics;
- Collect and submit field duplicate soil and groundwater samples for quality assurance/quality control (QA/QC) purposes. In total, one soil duplicate sample, one groundwater duplicate sample and one trip blank sample will be submitted for select laboratory analyses;
- Collection of one (1) soil sample and submission for grain size analysis testing;
- Soil cutting and purged groundwater will be containerized in labelled drums on-Site in an agreed upon location pending receipt of analytical test results. Englobe will retain the services of a licensed waste hauler to remove the investigation derived waste from the Site and disposed at the a licensed waste disposal facility; and,
- Preparation of a Phase Two ESA report in accordance with the requirements of O. Reg. 153/04.

The Phase Two ESA was completed concurrently with a Hydrogeological Investigation at the Site, to be submitted under separate cover. The Hydrogeological Investigation scope of work completed concurrently with the Phase Two ESA included the following activities:

- Advancement of an additional two (2) boreholes to an approximate depth of 6.0 mbgs and instrument these boreholes as groundwater monitoring wells. The drilling program is to be completed by a MECP-licensed drilling contractor in accordance with Ontario Regulation (O.Reg.) 903;
- Collect and submit up to five (5) soil samples for grain size analysis;
- Collect groundwater level measurements and develop the two (2) newly installed monitoring wells;
- Collection of two (2) groundwater sample(s) from selected newly installed monitoring wells for submission to an analytical laboratory to test for the following parameters:
 - The parameters listed in the City of Guelph Sewer Use bylaw (By-Law 15202 (1996));

4.2 Deviations from Phase Two Work Plan

There were a number of deviations from the Phase Two Work Plan. Due to site specific conditions encountered during drilling, boreholes were advanced to approximate depths ranging from 6.0 to 7.6 mbgs. Additional deviations from the Phase Two Work Plan are provided in **Table 4-1**:

Table 4-1Deviations from the Phase Two Work Plan

Borehole / Monitoring Well ID	Proposed Sampling	Actual Sampling	Reasoning for Deviation from the Proposed Sampling			
	Soil					
MW-23-04	No sampling proposed.	[1] PHCs fractions F1-F4, BTEX, VOCs, Metals and hydride-forming metals, EC, SAR, pH	Due to the presence of fill materials identified in this location, an additional soil sample was submitted.			
		Groundwater				
MW-23-02	[1] PHCs fractions F1-F4, VOCs, Metals and hydride- forming metals, EC, SAR, pH	No sample taken.	Due to dry conditions, the groundwater sample could not be collected at this location.			
Notes: PHCs fractions F1-F4 - Petroleum Hydrocarbons Fractions F1 to F4 BTEX - Benzene, toluene, <u>ethylbenzene</u> and xylenes VOCs - Volatile Organic Compounds PAHs - Polycyclic Aromatic Hydrocarbons EC - Electrical Conductivity SAR - Sodium Absorption Ratio						

There were no other significant deviations from the Phase Two Work Plan.

4.3 Impediments

No significant physical impediments were encountered during the execution of the Phase Two ESA fieldwork.

5 Investigation Method

5.1 Drilling Program

Following the clearance of public and private utility locates, three (3) boreholes (MW23-01 through MW23-03) were advanced as part of the Phase Two ESA, and two (2) boreholes (MW23-04 and MW23-05) were advanced as part of the Hydrogeological Investigation at the Site on September 19 and 20, 2023 to maximum depths ranging from 6.1 to 7.6 mbgs. All five (5) boreholes (MW23-01 through MW-23-05) were subsequently instrumented as groundwater monitoring wells. The locations of the boreholes are illustrated on the Sampling Location Plan, **Drawing 4** provided in **Appendix A**.

All five (5) boreholes were advanced by means of a track-mounted Geoprobe[®] direct push soil coring drilling rig equipped with dual tube sampling equipment. A hollow stem auger (HSA) was used in conjunction with this system for installation of monitoring wells. The drilling equipment was supplied and operated by Direct Environmental Drilling Inc. (DED) of London, Ontario, an MECP licensed well drilling contractor. Disposable plastic liners were used with the direct push method to minimize the potential for sample cross-contamination. All non-dedicated in-hole drilling equipment was decontaminated by washing with a water and non-phosphate detergent mixture (Alconox), followed by a rinse with distilled water. Wash waters and drilling spoils were collected in sealed labelled drums on Site for posterior assessment and disposal. All decontaminated drilling equipment was placed on plastic sheet lined surfaces to minimize the potential for cross-contamination. No drilling fluids or additives were used during the drilling process.

The subsurface samples were collected beneath the ground surface to maximum depths ranging from 6.10 to 7.62 mbgs. A total of forty-three (43) soil samples were collected, ranging between eight (8) and ten (10) from each of the five (5) boreholes (MW23-01 through MW23-05).

All of the fieldwork was observed by an Englobe field technician who documented drilling and sampling procedures, logged stratigraphic details from recovered soil cores, monitored groundwater conditions,

conducted headspace screening, and collected soil and groundwater samples for laboratory chemical analysis. Borehole logs are provided in **Appendix B**.

5.2 Hand-Auger Holes

Following public and private utility locates, three (3) hand-auger holes were advances at the Site on September 21, 2023. The holes were advanced using a hand-auger to a maximum depth of approximately 0.85 mbgs. The subsurface samples were collected beneath the ground surface to maximum depths ranging from 0.46 to 0.85 mbgs. A total of three (3) soil samples were collected, one (1) from each of the three (3) hand-auger hole (TP23-01 through TP23-03).

5.3 Soil Sampling

During the drilling activities, soil cores were recovered from the boreholes at continuous intervals using direct-push sampling rods equipped with disposable 1.5 metre (m) plastic liners. New plastic liners were inserted within the direct push sampling rods to prevent cross-contamination between samples.

Recovered soil cores were logged for stratigraphic and textural details and examined for visual and olfactory evidence of chemical impacts. Samples were collected from the soil cores for headspace screening of combustible vapour concentrations (CVC) and total organic vapours (TOV). Selected cores were chosen for chemical analysis of target parameter groups. Headspace soil samples were collected into sealable plastic bags and screening was performed using a hand-held catalytic combustible gas detection (CCGD) and photoionization detector (PID) equipped with a 10.6 electron-volt lamp and calibrated with hexane and isobutylene reference gases. Samples selected for laboratory chemical analysis were collected into pre-cleaned laboratory supplied containers and placed in an ice chilled cooler to minimize the potential for chemical degradation and volatilization. Sample containers were labelled with a unique sample number, project reference, date and time of sampling. New disposable nitrile gloves were worn for handling and sampling of soil materials from each recovered soil core to minimize the potential for cross-contamination. The samples were delivered to the analytical laboratory within test group specific holding times following Chain of Custody protocols.

The borehole logs, presented in **Appendix B**, include the soil descriptions, stratigraphy, and headspace readings. Soil sample locations and analysis are presented in **Figure 4**, **8** to **11 and 14** provided in **Appendix A** and within the below **Table 5-1**.

Borehole / Monitoring Well ID	Associated APEC	Sample Depth (mbgs)	Laboratory Analysis
MW23-01	APEC 5	1.52 - 1.83	PHCs fractions F1-F4, VOCs, metals and hydride- forming metals, EC, SAR, pH
MW23-02	APEC 1, APEC 2, APEC 3, APEC 4	3.96 - 4.57 PHCs fractions F1-F4, VOCs, metals and forming metals, EC, SAR, pH	
MW23-03	APEC 4, APEC 6, APEC 8, APEC 10	4.57 - 5.18	PHCs fractions F1-F4, VOCs, metals and hydride- forming metals, EC, SAR, pH
MW23-04	NA	1.52 - 1.83	PHCs fractions F1-F4, VOCs, metals and hydride- forming metals, EC, SAR, pH

Table 5-1 Summary of Soil Samples Submitted for Laboratory Analysis

Borehole / Monitoring Well ID	Associated APEC	Sample Depth (mbgs)	Laboratory Analysis		
TP23-01	APEC 5	0.46 - 0.76 PHCs fractions F1-F4, BTEX, PAHs, meta hydride-forming metals, EC, SAR, p			
TP23-02	APEC 5	0.15 - 0.46 PHCs fractions F1-F4, BTEX, PAHs, metal hydride-forming metals, EC, SAR, pH			
TP23-03	APEC 5 0.55 - 0.85 PHCs fractions F1-F4, BTEX, PAHs, metals hydride-forming metals, EC, SAR, pH		PHCs fractions F1-F4, BTEX, PAHs, metals and hydride-forming metals, EC, SAR, pH		
Notes: APEC - Area of Potential Environmental Concern mbgs - metres below ground surface PHCs fractions F1-F4 - Petroleum Hydrocarbons Fractions F1 to F4 BTEX - Benzene, toluene, ethylbenzene and xylenes VOCs - Volatile Organic Compounds PAHs - Polycyclic Aromatic Hydrocarbons EC - Electrical Conductivity SAR - Sodium Absorption Ratio NA - Not Applicable					

5.4 Field Screening Measurements

A portion of each collected soil sample was placed in a polyethylene bag and allowed to equilibrate in a warm environment for approximately 15 minutes prior to being tested for undifferentiated CVCs and VOC concentrations. CVC and VOC headspace concentrations of soil samples were measured using an RKI Eagle 2TM portable vapour meter. The RKI Eagle 2TM was equipped with a catalytic combustible gas detector (CCGD) and a PID.

The CCGD was operated in methane elimination mode, and the vapour meters were all calibrated by Pine Environmental prior to shipment for use in the field by Englobe. The CVC measurements expressed as ppm are summarized on the individual borehole logs presented in **Appendix B**.

5.5 Groundwater: Monitoring Well Installation

Monitoring wells were installed at all five (5) borehole locations (MW23-01 through MW23-05) using continuous flight hollow stem augers. The monitoring wells were installed to measure the groundwater level and for the collection of representative groundwater samples.

The monitoring wells were constructed using flush-threaded, 51 mm diameter Trilock polyvinyl chloride (PVC) riser pipe and a #10 slotted PVC well screen, approximately 3.0 m in length, equipped with rubber O-ring seals to prevent leakage. The monitoring well piping was delivered to the Site pre-cleaned and enclosed in a sealed plastic bag. The monitoring well screens were placed in an attempt to intersect the water table to allow for groundwater level monitoring and appropriate groundwater quality assessment. Sand filter pack material was added within the annulus space surrounding the screened section of the well from approximately 0.3 m below and above the top of the screen. A bentonite seal was placed above the sand pack to 0.3 mbgs to prevent the infiltration of surface water. A locking J-Plug cap was placed at the top of each well pipe, followed by a monument style protective casing (MW23-01 through MW23-03) or flushmount protective casing (MW23-04 and MW23-05), which was cemented into place. The monitoring wells were installed and registered in accordance with O. Reg. 903 - Wells, made under the Ontario Water Resources Act.

Following monitoring well installation activities, groundwater levels were measured on September 21, 2023, and the wells were equipped with dedicated Waterra[™] tubing and inertial lift foot valves for well development purpose. Four (4) monitoring wells (MW23-01 and MW23-03 through MW23-05) contained groundwater and were purged a minimum of five casing volumes or to a dry condition to remove any groundwater impacted by drilling activities and to reduce the amount of sediment within the wells. Due to dry conditions at MW23-02, the well was not developed.

The groundwater monitoring well installation details were documented by field staff and are summarized in the borehole logs provided in **Appendix B** and **Table 201** provided in **Appendix C**.

5.6 Field Measurement of Groundwater Quality Parameters

Field measurements of water quality parameters were recorded during groundwater sampling, which was conducted using a low flow method. Low flow sampling was undertaken by means of a peristaltic pump and flow cell - multi-sensor water quality meter setup. Field parameter measurements were recorded by means of the flow cell and a Horiba U-50 multi-sensor water quality meter. Field parameter measurements were recorded at 3 minute intervals during monitoring, until stabilization of the measured field parameters within purged groundwater was achieved. The purged water is considered stabilized and representative of formation water as evidenced by three consecutive readings agreeing to within set limits for individual parameters. The applied stabilization criteria are summarized in **Table 5-2** as follows:

Parameter	Stabilization Criteria*
Dissolved Oxygen (mg/L)	+/- 10% or 0.2 mg/L (whichever is greater)
Electrical Conductivity (mS/cm)	+/- 3%
pH	+/- 0.1 units
Notes: * Average of three consecutive readings mg/L - milligrams per litre mS/cm - milliSiemens per centimetre	

Table 5-2 Groundwater Quality Parameter Monitoring

5.7 Groundwater Sampling

Groundwater levels and potential non-aqueous phase liquid (NAPL) thicknesses, if any, were measured at all monitoring well locations using a Solinst[™] electronic interface probe and meter. Between monitoring well locations, the interface probe was washed with a non-phosphate detergent/municipal water mixture and then rinsed with distilled water to prevent cross-contamination. No measurable NAPL layer thicknesses were detected in the monitoring wells. Groundwater elevations for September 21, 2023 are summarized in **Table 201** of **Appendix C** and shown on the Interpreted Contours of Groundwater Elevation Plan, **Drawing 5** in **Appendix A**.

Following well development, two (2) monitoring wells (MW23-01 and MW23-03) were sampled on September 29, 2023. MW23-02 was not sampled due to dry conditions. Groundwater at the two (2) monitoring wells was sampled by means of the low flow method using a peristatic pump connected by dedicated low density polyethylene (LDPE) tubing to a flow cell, and a Horiba U-50 multi-sensor water

quality meter to monitor water quality parameter stabilization. Drawdown was monitored by a Solinst[™] interface meter. Prior to sampling, the flowrate of the peristaltic pump was set to approximately 200 millilitres per minute (mL/min) and the pumping rate of the peristaltic pump was adjusted accordingly and checked to maintain a drawdown of less than 10 centimetres (cm). The maximum allowable pumping rate was not to exceed 500 mL/min.

Upon achieving water quality parameter stabilization, as outlined in **Section 4.5**, the pump discharge line was disconnected from the flow cell to permit the collection of groundwater samples. Samples were collected into labelled, pre-cleaned laboratory containers provided with any necessary preservatives. Samples for analysis of volatile chemical constituents (PHC fraction F1 and VOCs) were collected in duplicate into Teflon lined screw capped vials. The vials were filled to prevent head space formation and the potential degassing of volatile chemical constituents. Each vial was inverted and inspected for the presence of gas bubbles and sampling repeating as necessary to ensure headspace free samples. Upon sample collection, the chemical containers were placed in an ice chilled, insulated cooler to minimize chemical degradation and volatilization and submitted to the analytical laboratory following Chain of Custody protocols. Samples were collected and handled at each location using new disposable chemical resistant nitrile gloves.

Groundwater sample locations and analysis are presented in **Figure 4** and **17** to **19** provided in **Appendix A** and within the below Error! Reference source not found.

Monitoring Well ID	Associated APEC	Screened Interval (mbgs)	Laboratory Analysis		
MW-23-01	APEC 5	4.57 - 7.62	PHCs fractions F1-F4, VOCs, metals		
MW-23-03 APEC 1, APEC 2, APEC 3, APEC 4		3.81 - 6.86	PHCs fractions F1-F4, VOCs, metals		
Notes: APEC - Area of Potential Environmental Concern mbgs - metres below ground surface PHCs fractions F1-F4 - Petroleum Hydrocarbons Fractions F1 to F4 BTEX - Benzene, toluene, ethylbenzene and xylenes VOCs - Volatile Organic Compounds PAHs - Polycyclic Aromatic Hydrocarbons EC - Electrical Conductivity SAR - Sodium Absorption Ratio					

Table 5-3	Summary of Groundwater Samples Submitted for Laboratory Analysis

5.8 Analytical Testing

All soil and groundwater samples collected from the Site for chemical analysis were submitted to ALS Environmental (ALS) of Waterloo, Ontario. ALS is a Canadian Association for Laboratory Accreditation Inc. (CALA) certified and SCC (Standards Council of Canada) accredited laboratory. As noted, the jarred samples were preserved in ice chilled coolers to minimize the potential chemical degradation and volatilization and submitted within test group specific holding times following chain of custody protocols. Soil and groundwater samples submitted for chemical analysis were selected to assess COPCs as identified in the Englobe Phase One ESA, as well as on the basis of field screening headspace

measurements, visual or olfactory evidence of potential contamination, and at locations where contaminants are expected to be present (e.g., fill materials, near the water table, etc.).

5.9 Elevation Surveying

Horizontal and vertical control of the investigative locations were established by Englobe using a Geneq[™] Model SXBlue Global Navigation Satellite System (GNSS) rover. The ground surface elevations at each investigative location are shown on the borehole logs included in **Appendix B**, the monitoring well locations are summarized in **Table 201** provided in **Appendix C** and **Figure 5** provided in **Appendix A**.

5.10 Residue Management

Excess soil cuttings, wash water, and purged groundwater generated as part of this Phase Two ESA were contained in labeled 205 litre (L) steel drums equipped with locking secure lids.

5.11 Quality Assurance and Quality Control Measures

Quality assurance/quality control (QA/QC) measures were incorporated into the field sampling and laboratory analytical programs to provide for the provision of data of accepted accuracy, precision, and representativeness. Related measures consisted of equipment decontamination protocols, equipment calibration, sample collection and handling protocols, field documentation, residuals management, and contractor provision.

Borehole drilling and monitoring well installations were undertaken by an MECP licensed well drilling contractor and overseen by experienced Englobe field personnel. The drilling and monitoring installation were undertaken using accepted equipment, methodologies and materials as documented by field personnel.

Decontamination procedures were followed during the course of soil and groundwater sampling as follows:

- All drilling and monitoring equipment having potential to come into contact with potentially contaminated soil and groundwater was decontaminated prior to and following each use. Decontamination consisted of washing equipment with a non-phosphate soap/water mixture followed by rinsing with distilled water;
- Prior to installation, well screens and riser pipes were not allowed to come into contact with the ground
 or any drilling equipment;
- All individual soil and groundwater samples and containers were handled with disposable chemical resistant nitrile gloves to minimize the potential for cross-contamination;
- Soil and groundwater samples were collected into pre-cleaned laboratory supplied containers;
- Specific procedures were followed for the documentation, handling, and transport of the soil and groundwater samples including:
 - Soil and groundwater samples, upon collection, were placed in ice-chilled coolers to minimize the potential for chemical degradation and volatilization; and,

 Soil and groundwater samples were assigned unique identification numbers and submitted to the analytical laboratory following chain of custody protocols adhering to test group specific holding times.

Field duplicate soil and groundwater samples were collected to evaluate the precision/reproducibility of the sampling programs. A groundwater trip blank was collected to ensures primary samples were not contaminated during sampling and transport.

The analytical laboratory, ALS, performed chemical analysis following written procedures and referenced methods incorporating QA/QC protocols. Chemical analyses for specific analytical test groups were performed in accordance with the "*Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act*" MECP 2011.

Analytical test group specific quality control samples were prepared and analyzed by the analytical laboratory including:

- Laboratory duplicate samples to evaluate method reproducibility and sample homogeneity;
- Method blanks to evaluate potential bias;
- Spike blanks to evaluate method accuracy and bias;
- Surrogate compounds to evaluate extraction efficiency and method reproducibility;
- Laboratory control samples to evaluate analyte recovery and method reproducibility;
- Matrix spikes to evaluate extraction efficiency and matrix interferences; and
- Quality control results reported by the analytical laboratory were compared to applicable alert and control criteria and were presented in the quality control reports accompanying the certificates of analysis (COAs).

Copies of the laboratory chain of custody forms are included with the COAs provided in Appendix D.

6 Review and Evaulation

6.1 Stratigraphy

The Site stratigraphy encountered at the borehole locations, in general, consisted of surficial asphalt or topsoil, underlain by either silt, sand and gravel fill or native silt, sand and gravel, underlain by predominantly native silt to sandy silt. Bedrock was not encountered in any of the boreholes. No deleterious materials were encountered at any of the boreholes advanced across the Site.

A summary of the soil stratigraphy encountered during the subsurface assessments and the corresponding depths and elevations are summarized in the borehole stratigraphic logs provided in **Appendix B**.

6.2 Groundwater Elevations

Groundwater levels and potential NAPL levels were measured at each monitoring well location by utilizing a Solinst[™] interface meter. No evidence of NAPL was detected on the surface of the water table, or at the bottom of the monitoring wells during the groundwater level measurement dates.

Groundwater measurements at the monitoring well locations on Site were recorded on September 22, 2023, as summarized in **Table 201** of **Appendix C**, shown on borehole logs provided in **Appendix B** and shown on **Figure 5**, provided in **Appendix A**. The groundwater table was encountered within the native silt layers. Based on the groundwater measurements at the monitoring well locations, the groundwater table is located between approximately 4.62 mbgs to 6.66 mbgs (326.83 masl to 327.466 masl).

6.3 Groundwater Hydraulic Gradients

Englobe field personnel collected groundwater level measurements from the installed monitoring wells prior to groundwater sampling activities on September 22, 2023. Groundwater elevation data is provided in **Table 201** of **Appendix C**.

The data indicates that groundwater flows in a southwest direction towards the Speed River.

Hydraulic gradient is the slope of the water table (change in water level per unit of distance) which describes the driving force that causes groundwater to move in the direction of flow. The hydraulic gradient was calculated between monitoring wells MW23-03 and MW23-05, which are located in line with the inferred direction of groundwater flow, using the following equation.

$$i = \frac{h_1 - h_2}{1}$$

Where,

i = Hydraulic Gradient

 h_1 = Groundwater elevation at MW23-03

 h_2 = Groundwater elevation at MW23-05

/= Distance between MW23-03 and MW23-05

The horizontal hydraulic gradient between MW23-03 and MW23-05 was calculated to be approximately 0.0104 m/m (horizontal to vertical).

6.4 Soil Field Screening Results

All soil samples were field screened for CVCs and TOVs using a RKI Instruments Eagle 2 multi-sensor gas meter equipped with a combustible gas detector and a PID with a 10.6 electron volt (eV) ultraviolet lamp. In general, the headspace readings of all soil samples were measured between 0 to 150 ppm, which is indicative of non-detectable or low concentrations of volatiles in the recovered soil samples. Field observations revealed no evidence of staining or odour.

Vapour readings are shown on the borehole logs presented in Appendix B.

6.5 Soil Quality

Analytical data for the soil samples collected from the Site for laboratory chemical analysis including PHCs fraction F1-F4, metals and hydride-forming metals, VOCs, and PAHs are presented in **Table 101** to **104**, respectively, which are provided in **Appendix C**. Copies of the laboratory Certificate of Analyses are provided in **Appendix D**.

Based on a review of the analytical data reported for the soil samples submitted for laboratory analysis, detected concentrations and reportable detection limits (RDLs) of the assessed parameters were all below their respective MECP Table 2 SCS excluding EC and SAR.

Road salt and/or de-icing substances have been applied to the surface of the driveways / parking areas of the Site and the roadways surrounding the Site for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both, thus, it is the Qualified Person's (QP's) opinion that the EC and SAR

concentrations in soil are deemed not to exceed the MECP Table 2 SCS in accordance with s 49.1 of O. Reg. 153/04 (as amended).

Soil sample locations meeting and exceeding the MECP Table 2 SCS with corresponding analytical data are presented in **Figure 8** to **11 and 14**, which are provided in **Appendix A**.

6.6 Groundwater Quality

Analytical data for the groundwater samples collected from the Site for laboratory chemical analysis PHCs fraction F1-F4 and BTEX, metals and inorganics, and VOCs are presented in **Tables 202** to **204**, respectively, provided in **Appendix C**. Copies of the laboratory Certificate of Analyses are provided in **Appendix D**.

Based on a review of the analytical data reported for the groundwater samples collected and submitted for laboratory analysis at MW23-01 and MW23-03, detected concentrations and RDLs of the assessed parameters were all below their respective MECP Table 2 SCS. Groundwater sample locations meeting the MECP Table 2 SCS are present in **Figure 17** to **19**, which are provided in **Appendix A**.

6.7 Quality Assurance and Quality Control Results

Soil and groundwater sampling undertaken during field activities followed written procedures to ensure sample integrity and the collection of reliable data to support the objectives of the Phase Two ESA. Soil and groundwater samples were collected into pre-cleaned test group specific containers prepared with any necessary preservatives by the analytical laboratory. Sample integrity was maintained by placing containerized samples immediately upon collection into ice-chilled insulated coolers to minimize chemical activity and delivery to the laboratory within test group specific holding times. Decontamination protocols were followed and new disposable sampling equipment (i.e. gloves, sample tubing, etc.) used to minimize the potential for sample cross contamination and bias.

Laboratory certificate of analysis reports have been received for all soil and groundwater samples analyzed as part of this assessment. Copies of the complete laboratory certificates of analysis are presented in **Appendix D**. According to the laboratory, the certificate of analysis reports comply with subsection 47 (3) of O.Reg. 153/04.

As noted, QA/QC samples were collected during the field sampling programs for laboratory analysis to evaluate the reliability of the analytical data and the interpretations made from the data. Field duplicate samples were submitted to the accredited laboratory for chemical analysis as part of the QA/QC program. A summary of the field duplicates is provided in **Table 6-1** below.

Sample Location	Parent Sample ID	Duplicate Sample ID	Media	Analysis Performed
MW23-01	MW23-01 SA3	DUP23-01	Soil	PHCs fraction F1-F4, BTEX, VOCs, metals and hydride-forming metals, pH, EC, SAR
TP23-01	TP23-01 SA1	DUP23-02	Soil	PAHs

Table 6-1 Summary of QA/QC Program

Sample Location	Parent Sample ID	Duplicate Sample ID	Media	Analysis Performed
MW23-03	MW23-03	DUP23-01	Groundwater	PHC fraction F1-F4, BTEX, VOCs, metals and inorganics
	natic Hydrocarbons ivity			

A quantitative evaluation of the duplicate sample results was completed by calculating the relative percent difference (RPD) and comparing the results to applicable alert criteria. The calculation of RPDs is only valid if an analyte is detected in both samples and in one of the samples at a concentration at least five times the RDL. Alert criteria is matrix and test group specific. For parameters analyzed in the soil duplicate samples, owing to matrix heterogeneity, an alert criterion of 60% was applied. For the groundwater samples an alert criterion of 40% was applied.

Soil

- For PHCs fraction F1-F4, BTEX, VOCs and PAHs in soil, the RPD values between the primary and field duplicate soil samples could not be calculated as the results were below their respective RDLs;
- For metals and hydride forming metals in soil, the RPD values between the primary and field duplicate soil samples, where calculable, were between 1.0% and 38%. All RPD values were below the applicable alert criterion limit of 60%, could not be calculated as one of the results were below their respective RDLs or both results were less than five times the RDL.

Groundwater

- For PHCs fraction F1-F4, BTEX, and VOCs in groundwater, the RPD values between the primary and field duplicate groundwater samples could not be calculated as the results were below their respective RDLs;
- For metals in groundwater, the RPD values between the primary and field duplicate groundwater samples, where calculable, were between 0.0% and 16%, all within the applied alert criteria of 40%. Non-calculable RPD values has at least one result below their respective RDL.

The analytical certificates prepared by the analytical laboratory, included reports presenting and comparing QC analytical results to applicable alert and control criteria. Overall, the quality of the analytical data was deemed acceptable to meet the objectives of the Phase Two ESA and did not affect decision making related to the findings of the investigation.

7 Conclusions & Recommendations

7.1 Conclusions

The Site stratigraphy encountered at the borehole locations, in general, consisted of surficial asphalt or topsoil, underlain by either silt, sand and gravel fill or native silt, sand and gravel, underlain by predominantly native silt to sandy silt. Bedrock was not encountered in any of the boreholes. No deleterious materials were encountered at any of the boreholes advanced across the Site.

Analytical results reported for soil and groundwater were compared to the MECP's Table 2: Full Depth Standards Potable Generic Site Condition in Ground Water Condition. а Residential/Parkland/Institutional RPI Property Use, Fine-Textured Soils (hereinafter referred to as "MECP Table 2 SCS") were identified as the applicable standards for evaluating soil and groundwater quality data. Soil analytical results were compared to MECP Table 2 SCS for RPI Property Use and Fine-Textured Soils. Groundwater analytical results were compared to the MECP Table 2 SCS for All Types of Property Use, Fine-Textured Soils.

Based on a review of the analytical data reported for the soil samples submitted for laboratory analysis, detected concentrations and reportable detection limits (RDLs) of the assessed parameters were all below their respective MECP Table 2 SCS excluding electric conductivity and sodium adsorption ratio.

Road salt and/or de-icing substances have been applied to the surface of the driveways / parking areas of the Site and the roadways surrounding the Site for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both, thus, it is the Qualified Person's (QP's) opinion that the EC and SAR concentrations in soil are deemed not to exceed the MECP Table 2 SCS in accordance with s 49.1 of O. Reg. 153/04 (as amended).

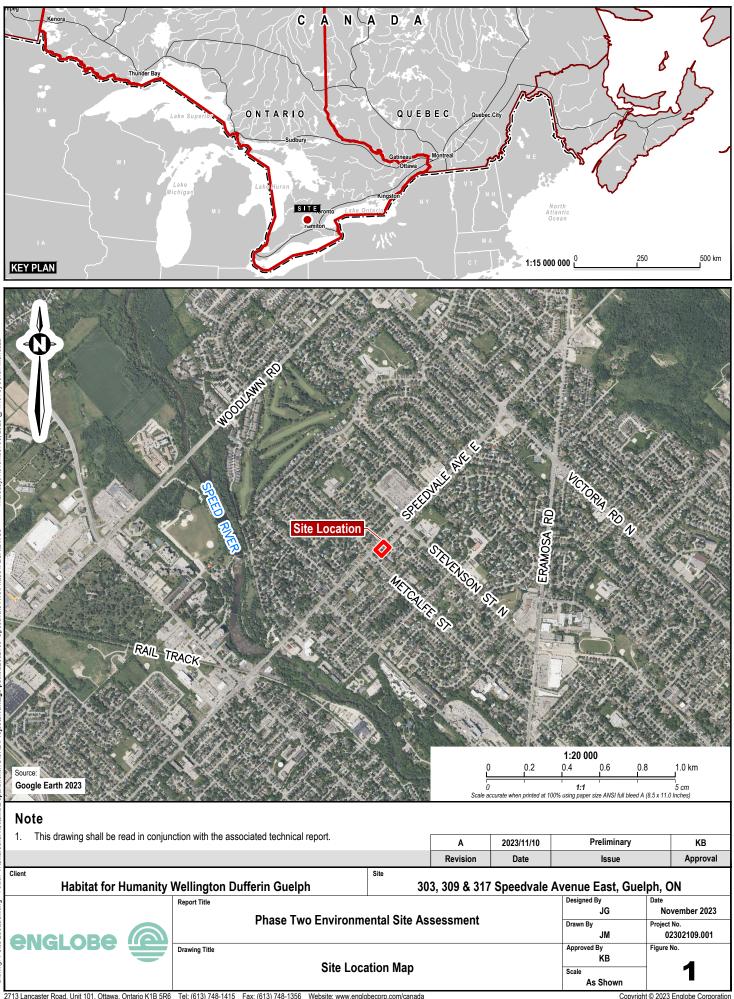
Detected concentrations and RDLs of the analyzed parameters were all below their respective MECP Table 2 SCS in each of the submitted groundwater samples at MW23-01 and MW23-03.

7.2 Recommendations

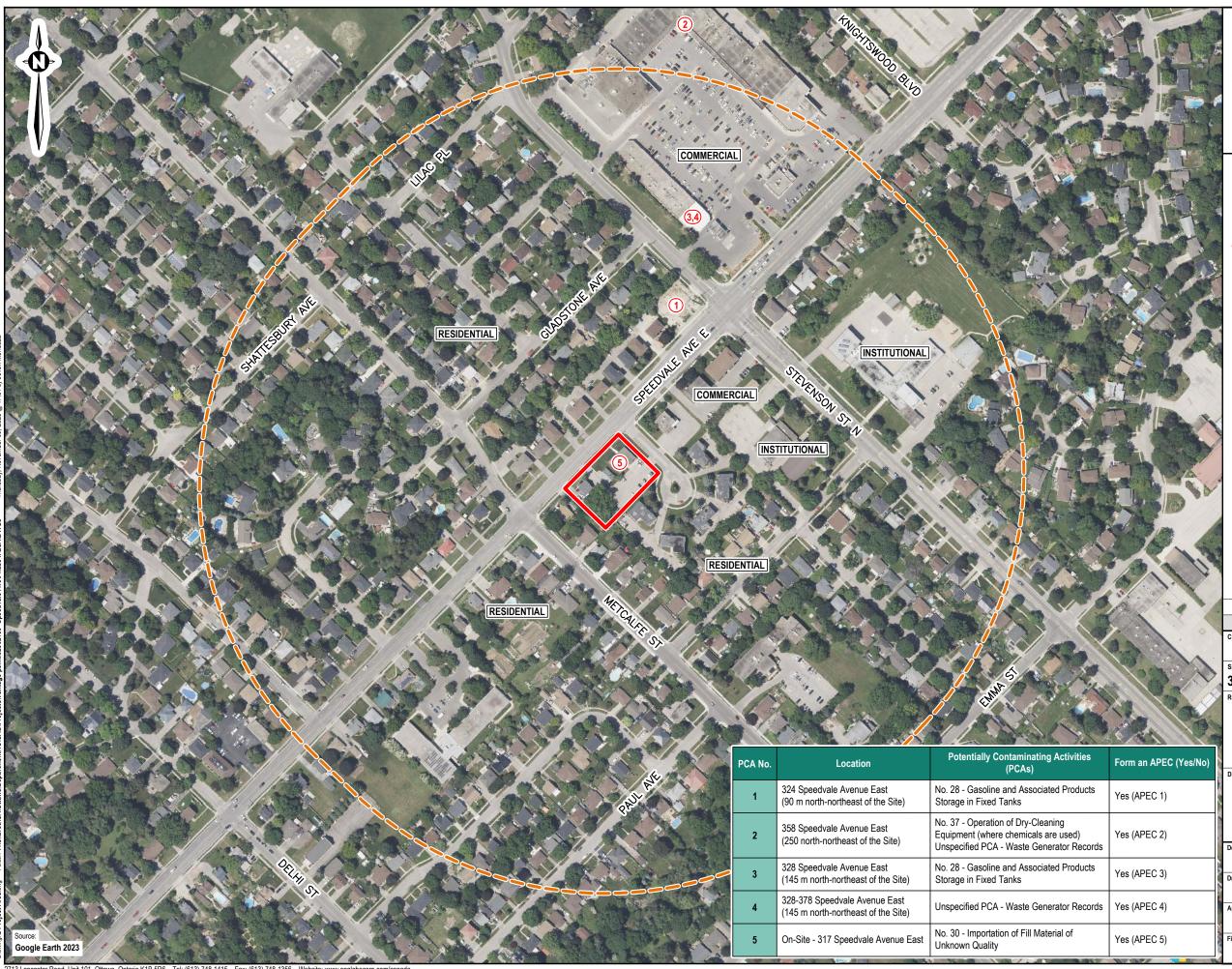
Based on the results, no additional subsurface investigation is recommended at this time prior to the filing of a Record of Site Condition.

Englobe recommends that the groundwater monitoring wells installed on the Site by Englobe be maintained until such time that they are no longer needed, at which time it is recommended that the wells be decommissioned, in accordance with requirements defined by Ontario Regulation 903, as amended.

8 References


- Armstrong, D.K. and Dodge, J.E.P. 2007. Paleozoic Geology Map of Southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 219. (Armstrong, D.K. and Dodge, J.E.P, 2007).
- Bouwer, H., 1978. Groundwater Hydrology, McGraw-Hill Book, New York, 480. (Bouwer, 1978).
- Chapman, L.J. and Putnam, D.F. 2007. The Physiography of Southern Ontario; Ontario Geological Survey, Miscellaneous Release-Data 228. (Chapman and Putnam, 2007).
- Chapman, L.J., Putman, D.F., 1984. The Physiography of Southern Ontario, Third Edition; Ontario Geological Survey, Special Volume 2. (Chapman and Putnam, 1984).
- City of Guelph Official Plan, consolidation of policies up to February, 2022.
- CMT Engineering Inc., 2023. *Geotechnical Investigation, Proposed Building 303, 309, 317 Speedvale Avenue East, Guelph, Ontario.* Prepared for Habitat for Humanity Guelph-Wellington. CMT Project 23-399.R01. (CMT, 2023).
- Conservation Authorities Act, RSO 1990, c C.27.
- Englobe Corp., August 17, 2023. Phase One Environmental Site Assessment, 303, 309 and 317 Speedvale Avenue East, Guelph, Ontario (Reference Number: 02302109.000).
- Ministry of Environment, Conservation and Parks (MECP), 2004. Protocol for Analytical Methods used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, dated March 9, 2004 (as amended). (MECP, 2004)
- MECP, 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. (MECP, 2011).

- Niagara Escarment Commission, Niagara Escarpment Planning and Development Act, RSO 1990, c N.2. (Niagara Escarment Commission, 2008).
- Ontario Geological Survey 2010, Surficial Geology of Southern Ontario; Ontario Geological Survey, Miscellaneous Release-Data 128-Revised.
- Ontario Geological Survey 2011. 1:250 000 scale bedrock geology of Ontario; Ontario Geological Survey, Miscellaneous Release Data 126-Revision 1. (Ontario Geological Survey, 2011)
- Ontario Geological Survey, 1991. Quaternary Geology of Ontario, Southern Sheet, Map 2556, scale 1:1,000,000. (Ontario Geological Survey, 1991)
- Ontario Ministry of Natural Resources and Forestry, 2014. Make a Map: Natural Heritage Areas (https://www.lioapplications.lrc.gov.on.ca/Natural_Heritage/index.html?viewer=Natural_Heritage e.Natural_Heritage&locale=en-CA). (MNRF, 2014).
- Ontario Regulation 154/04, Records of Site Condition Part XV.1 of the Act (as amended).
- Ontario Regulation 558/00: General Waste Management (as amended)
- Provincial Parks and Conservation Reserves Act, 2006, SO 2006, c 12. (Provincial Parks and Conservation Reserves Act, 2006)


Appendix A Drawings

Copyright © 2023 Englobe Corporation

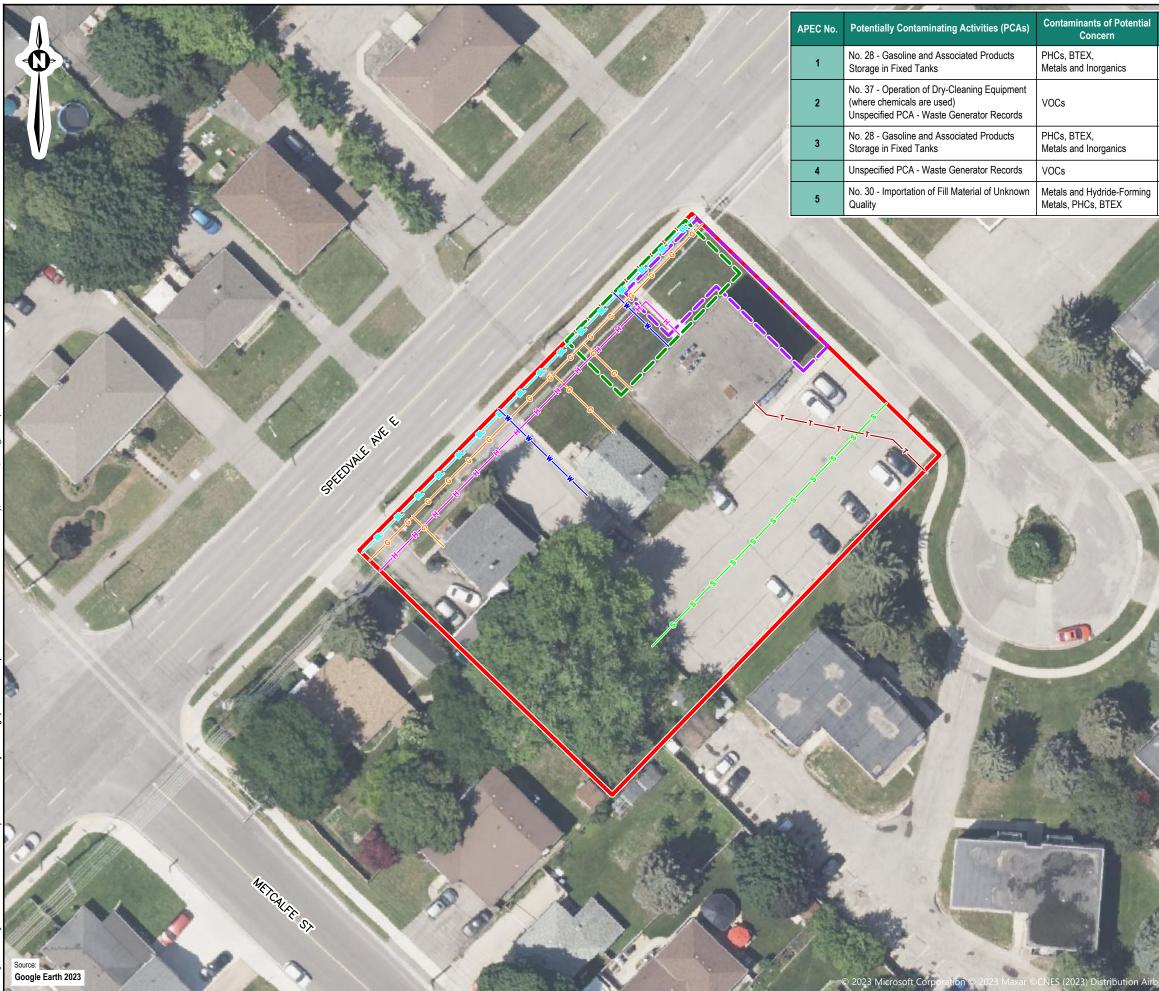
englobe

Note

1. This drawing shall be read in conjunction with the associated technical report.

Legend

(1)


 Approximate Project Limits
 300 m Study Area

Potentially Contaminating Activities (PCAs)

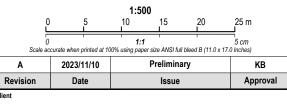
1:3 000 150 m 1:1 5 cm Scale accurate when printed at 100% using paper size ANSI full bleed B (11.0 x 17.0 Inches 2023/11/10 Preliminary KB Α Revision Date Approval Issue Habitat for Humanity Wellington Dufferin Guelph 303, 309 & 317 Speedvale Avenue East, Guelph, ON Report Title

Phase Two Environmental Site Assessment

	Drawing Title	
	Phase One C	onceptual Site Model
	Designed By	Scale
	JG	As Shown
ļ	Drawn By	Date
	JM	November 2023
	Approved By	Project No.
	КВ	02302109.001
	Figure No.	2

1.0								
Media Potentially Impacted								
Soil and Groundwater								
Soil and Groundwater								
Soil and Groundwater								
Soil and Groundwater								
Soil								

englobe



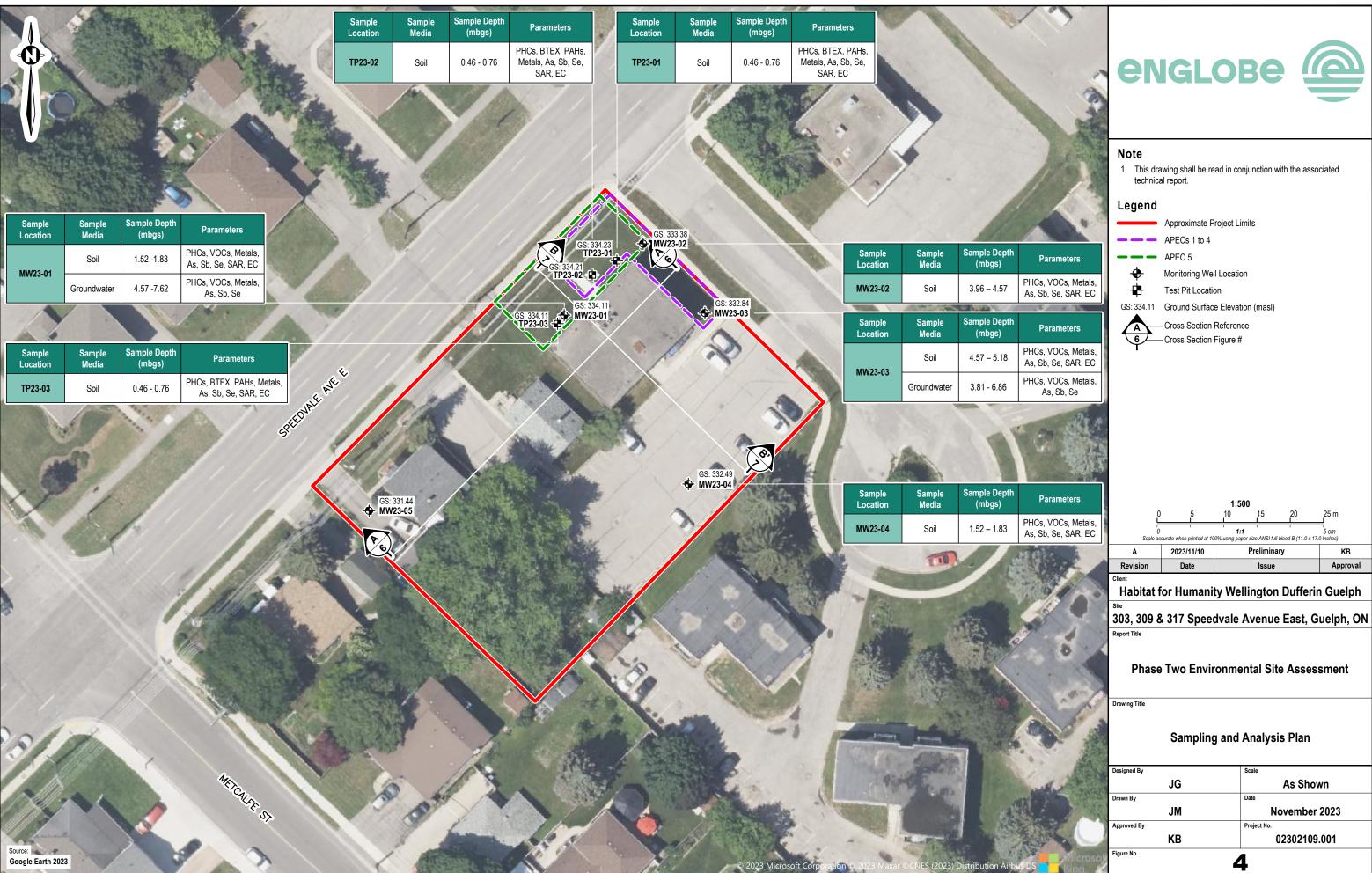
Note

1. This drawing shall be read in conjunction with the associated technical report.

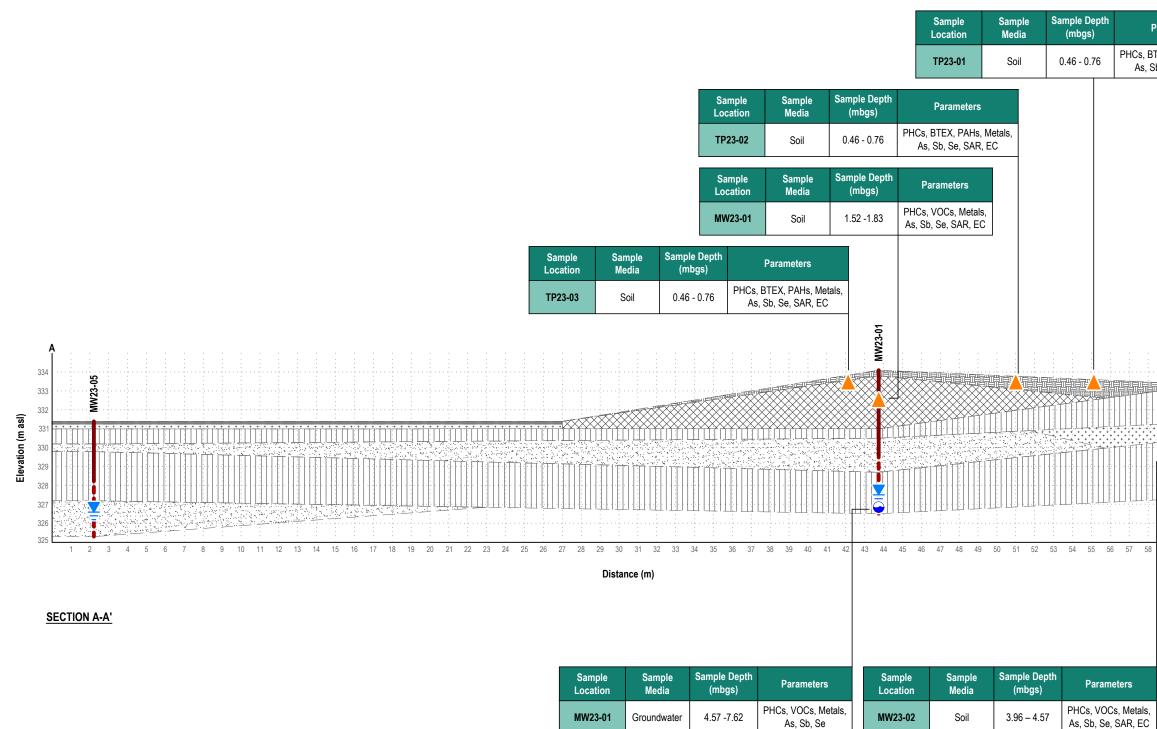
Legend

- Approximate Project Limits
- APECs 1 to 4
- -w------ Water Line
- —н—— Hydro Line
- -s---- Storm Sewer
- -T Bell Telephone Cable BL Bell Conduit

Habitat for Humanity Wellington Dufferin Guelph ^{Site} 303, 309 & 317 Speedvale Avenue East, Guelph, ON

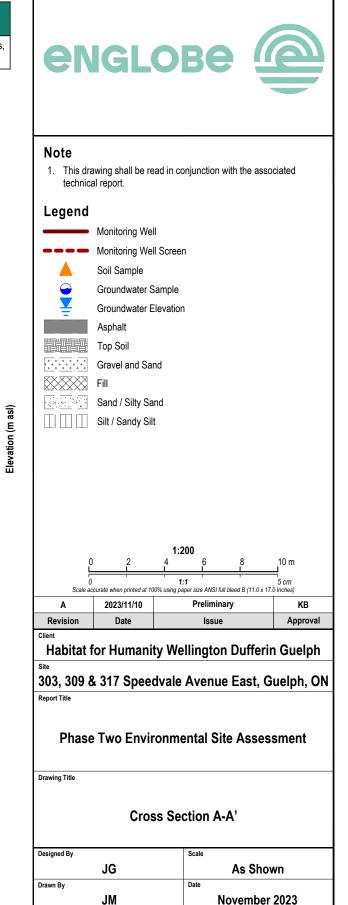

Report Title


Phase Two Environmental Site Assessment


Drawing Title

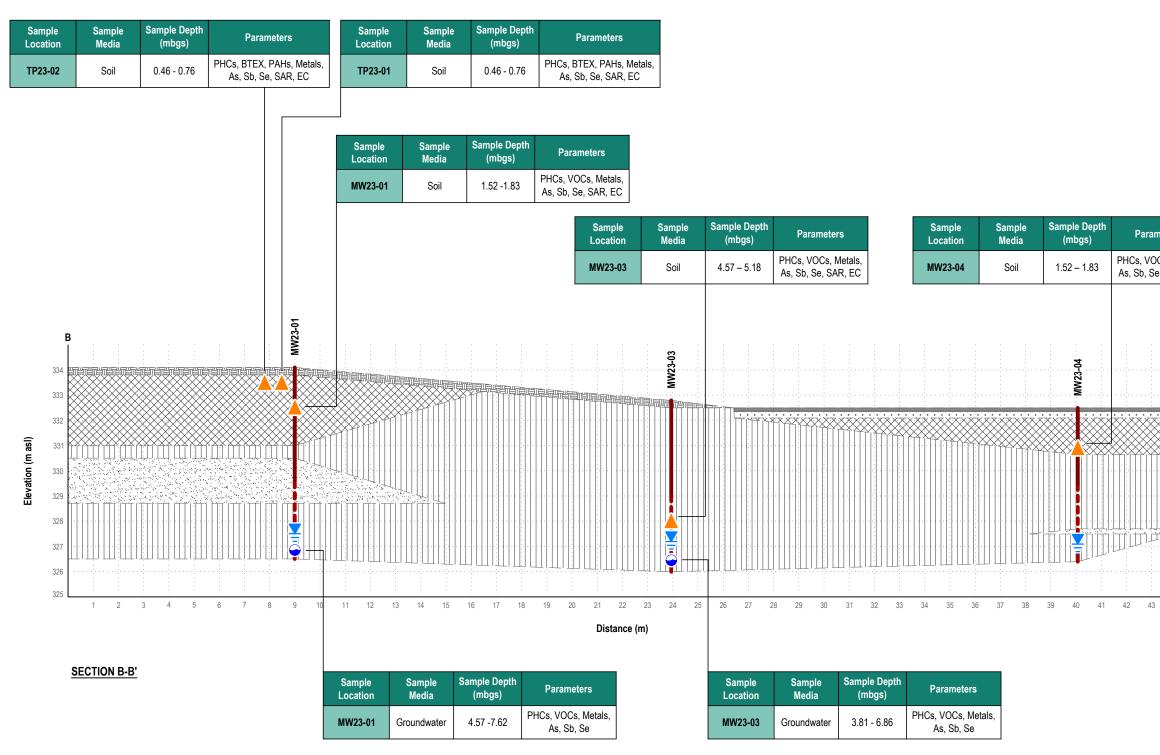
Areas of Potential Environmental Concern (APECs)

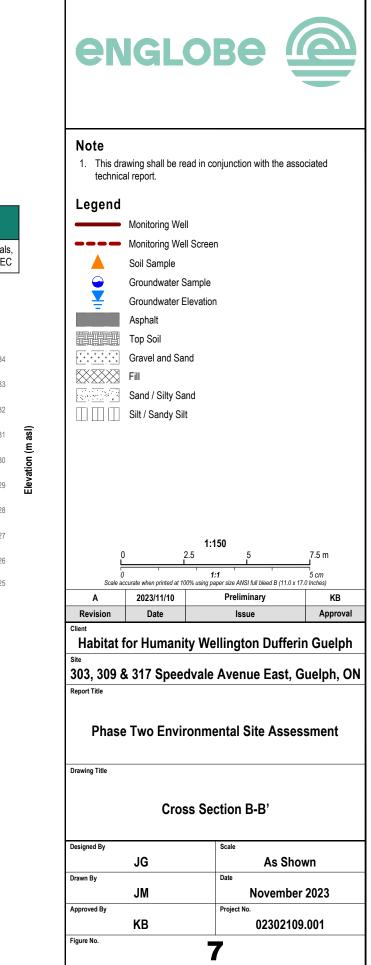
Designed By	Scale
JG	As Shown
Drawn By	Date
JM	November 2023
Approved By	Project No.
KB	02302109.001
Figure No.	3



PHCs, BTEX, PAHs, Metals, As, Sb, Se, SAR, EC

Approved By


Figure No.


KB

02302109.001

Project No.

6

Parameters PHCs, VOCs, Metals, As, Sb, Se, SAR, EC

		1	Real Property in	Ke	1	Sample Location	Sample Media	Sample Depth (mbgs)	Parameters		Sample Location	Sample Media	Sample Depth (mbgs)		Parameters		de la
					N.	TP23-02	Soil	0.46 - 0.76	All soil samples were below the MECP Table 2 SCS for all PHC and BTEX Parameters		TP23-01	Soil	0.46 - 0.76	All soil sample SCS for a	es were below the	e MECP Table 2 Parameters	
	2 ~			3	2			1				1		2/			
					1							1		2.0			
				3/						12		a contraction of the second se		a.		•	
				1							4		15.00		~/		
				~	1	/		N/		Y	AMMOR	02				X	11
	Sample Location	Sample Media	Sample Depth (mbgs)		Parame	ters		Y		/	- TP23-01			Sample Location	Sample Media	Sample Depth (mbgs)	Par
oza	MW23-01	Soil	1.52 -1.83	All soil sam Table 2 SC	ples were CS for all F	below the ME PHC Paramete	CP ers	///		TP23		⇔ ₩₩	22.02	MW23-02	Soil	3.96 – 4.57	All soil samples Table 2 SCS for
/ Joven Mend	Sample Location	Sample Media	Sample Depth (mbgs)		Par	ameters			TP23-	23-01 03			23-03	Sample Location	Sample Media	Sample Depth (mbgs)	Par
23 @ 17:01 b	TP23-03	Soil	0.46 - 0.76	All soil sam SCS for	nples were r all PHC a	e below the ME and BTEX Par	CP Table 2 ameters							MW23-03	Soil	4.57 – 5.18	All soil samples Table 2 SCS for
vember 09, 20	-			A	Y		//		10 AN			1.	1/2				150
Thursday, No		and the second s	h			ANE E			L ALY		5					34	
DWGs			1		EDVALE			Se !!				↔ MW23-04	C.		· . j		
hase II ESA	X	11	//	es.		12						1		Sample Location	Sample Media	Sample Depth (mbgs)	Par
edvale Ave/F	Sel.	1 and the				13				Ke /	//		N.S.W.	MW23-04	Soil	1.52 - 1.83	All soil samples Table 2 SCS for
2302109 Spe							ALL A						ALL.				- 3
ntage point\0	•			1							5			A.	T and		
0\Projects\Va				he a								5		A.	A		TE C
tment/TS/CAI				Car .						4	30	- C					
)ttawa\Depari				X		1					No.	and a	Nation .			-	
\Shared\CA\0	01	The						E-184					,		0.6	1000 m	
Folder: Y:				4	ETCALLE			6	4000		1			0		See.m.	
HC in Soil.dwg	11×		1		· K	Ś		0		~	6	110	TAL .				
Drawing: 8 PI	Source: Google Earth 20	123		1	0	>		X		00	h		© 2023 Micros	oft Corporation	n © 2023 Maxar	©CNES (2023) D	Pistribution Airbus

arameters

les were below the MECP S for all PHC Parameters A STATE AND

arameters

les were below the MECP S for all PHC Parameters

Parameters

les were below the MECP 6 for all PHC Parameters

englobe

Note

1. This drawing shall be read in conjunction with the associated technical report.

Legend


 Approximate Project Limits Monitoring Well Location

↔ I Soil Sample Meets Table 2 SCS -Cross Section Reference

-Cross Section Figure #

Client Habitat for Humanity Wellington Dufferin Guelph

303, 309 & 317 Speedvale Avenue East, Guelph, ON Report Title

Phase Two Environmental Site Assessment

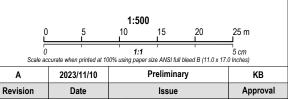
Drawing Title

Petroleum Hydrocarbons (PHCs) and BTEX in Soil Plan View

Designed By	Scale
JG	As Shown
Drawn By	Date
JM	November 2023
Approved By	Project No.
KB	02302109.001
Figure No.	8

Note

1. This drawing shall be read in conjunction with the associated technical report.

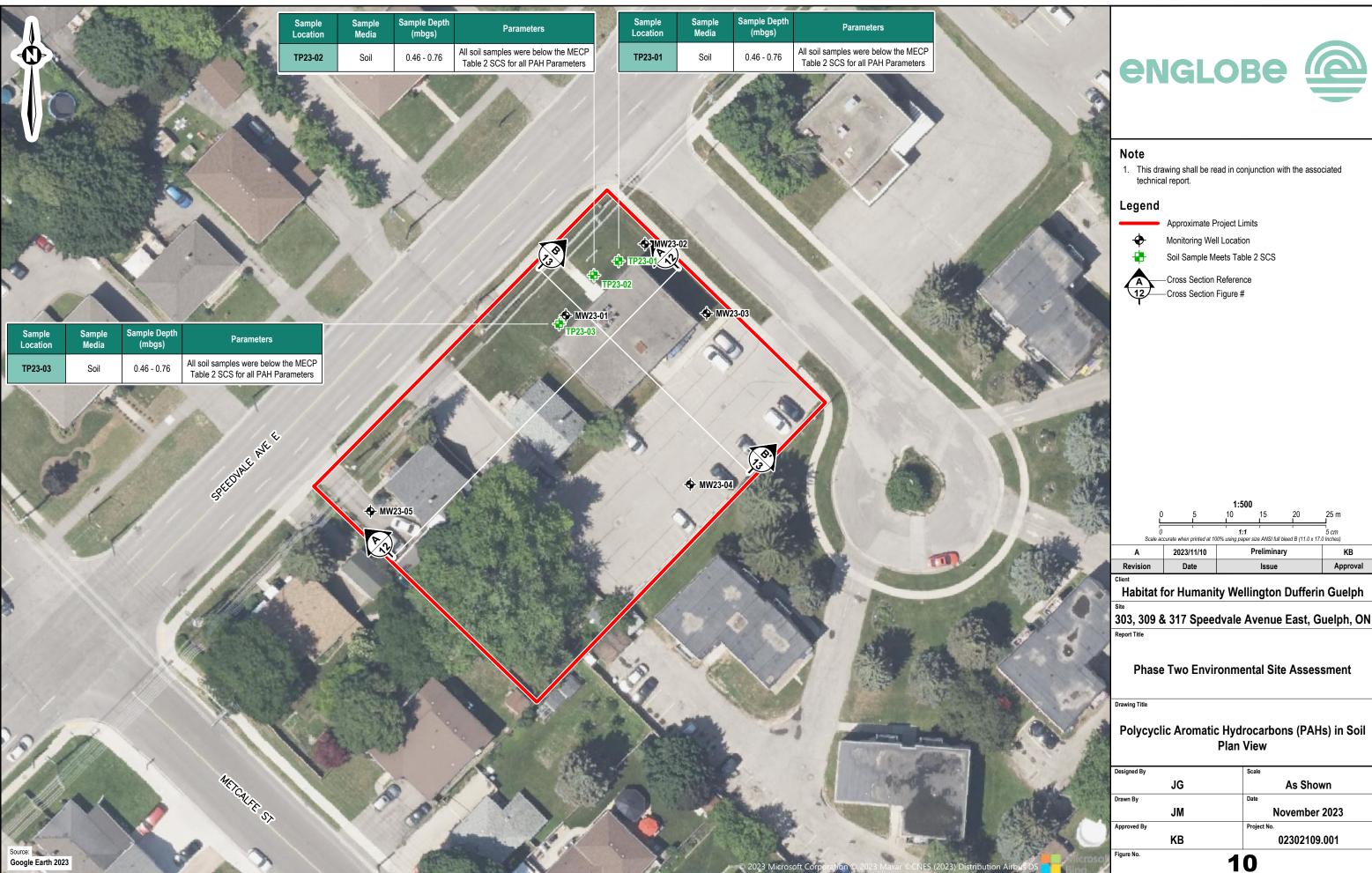

Legend

	Approximate Project Limits
÷	Monitoring Well Location
÷	Test Pit Location

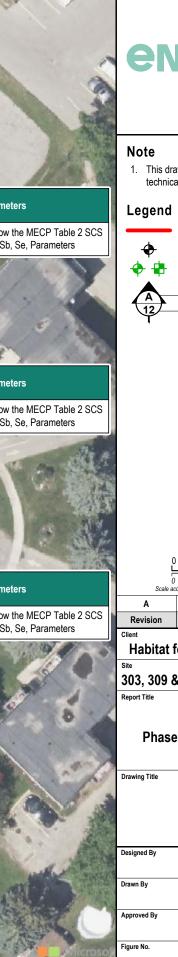
Monitoring Well Location Test Pit Location + Soil Sample Meets Table 2 SCS

-Cross Section Reference -Cross Section Figure #

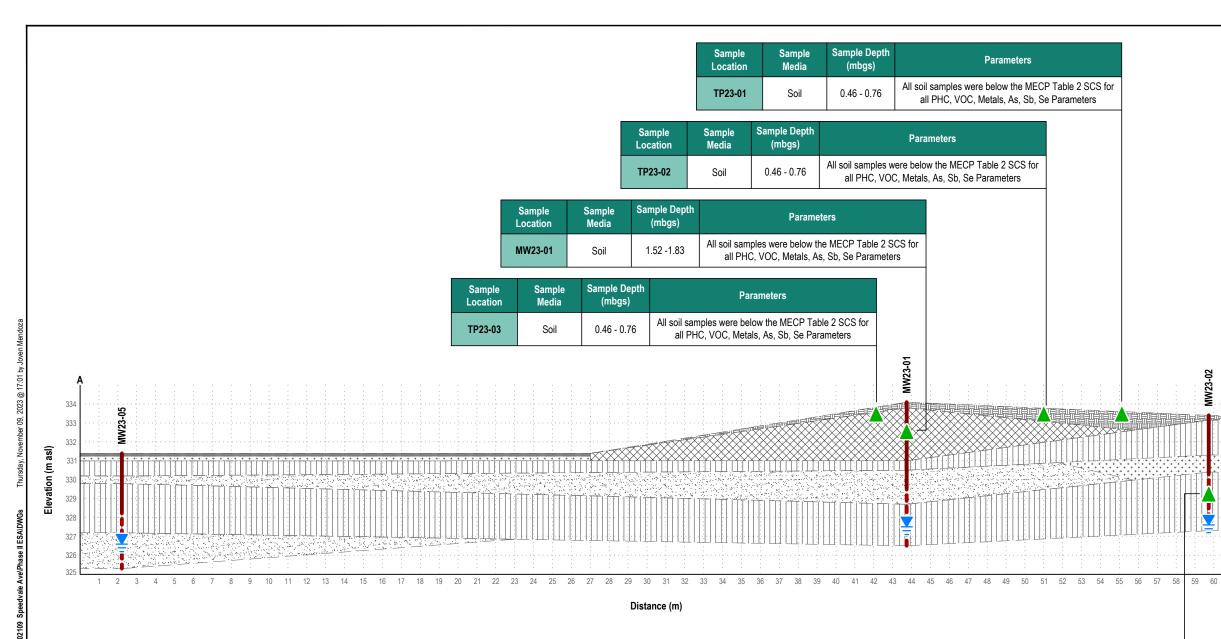
Habitat for Humanity Wellington Dufferin Guelph


303, 309 & 317 Speedvale Avenue East, Guelph, ON Report Title

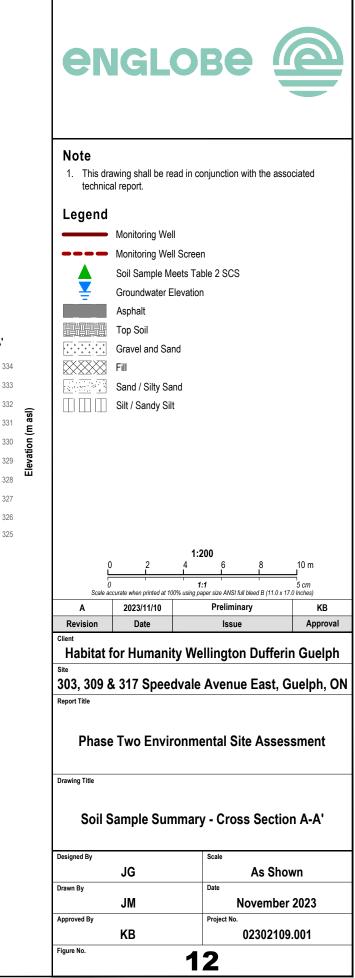
Phase Two Environmental Site Assessment


rawing Title

Volatile Organic Compounds (VOCs) in Soil Plan View"


Designed By	Scale
JG	As Shown
Drawn By	Date
JM	November 2023
Approved By	Project No.
KB	02302109.001
Figure No.	

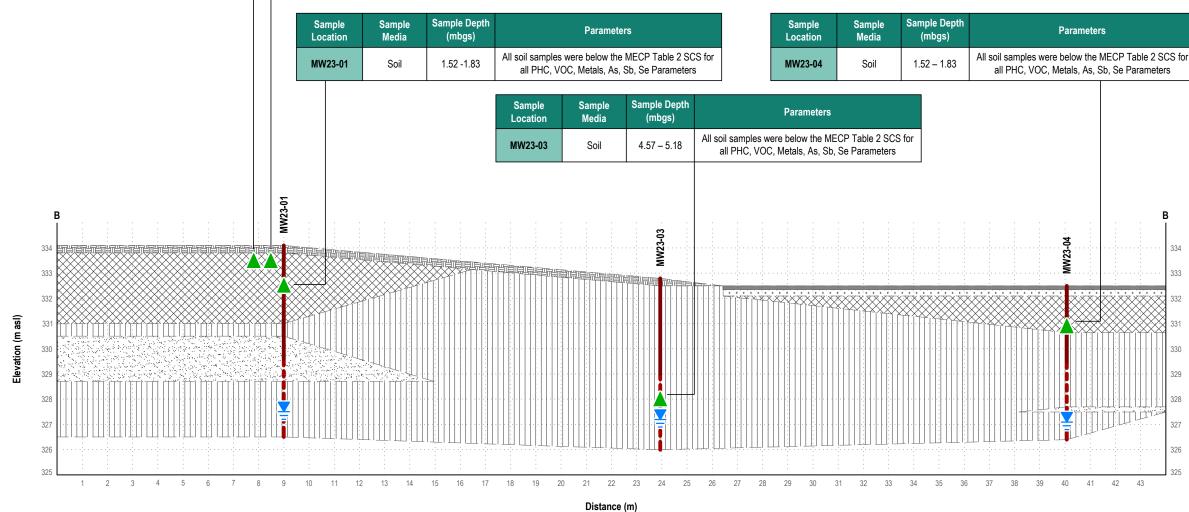
		1.4			Sample Location	Sample Media	Sample Depth (mbgs)	Parameters	Sample Location	Sample Media	Sample Depth (mbgs)		Parameters	and the
	Ď-				TP23-02	Soil	0.46 - 0.76	All soil samples were below the MECP Table 2 SCS for all Metals, As, Sb, Se, Parameters	TP23-01	Soil	0.46 - 0.76	All soil samples for all Me	were below the ME tals, As, Sb, Se, Pa	CP Table 2 SCS arameters
2	C		K									4.		
				1		Xz	inter .					5	17	
and the second				5		X	MA				Sample Location	Sample Media	Sample Depth (mbgs)	Paramete
			S.	~	\checkmark					23-02	MW23-02	Soil	3.96 – 4.57	All soil samples were below th for all Metals, As, Sb, S
	ample ocation	Sample Media	Sample Depth (mbgs)	All	Paramete		2000		+ TP23-01					All L
	W23-01 ample	Soil Sample	1.52 -1.83 Sample Depth	for all	Metals, As, Sb,			TP23-03	3-01	∲ ™	23-03			
Lo	P23-03	Media Soil	(mbgs) 0.46 - 0.76	All soil samp	Paramete	ne MECP Table 2	SCS	1.1.			Sample Location	Sample Media	Sample Depth (mbgs)	Paramete
Vovember 09				for all	I Metals, As, Sb,	Se Parameters				//	MW23-03	Soil	4.57 – 5.18	All soil samples were below th for all Metals, As, Sb, S
e AvelPhase II ESADWGs Inursday	No Contraction of the second s			4	REDWAL AVE		◆ MW23-	05		♦ MW23-0.		No.		
J9 Speedva		and a				and the	R.		6//		Sample Location	Sample Media	Sample Depth (mbgs)	Paramete
oint/0230210						STATES.					MW23-04	Soil	1.52 – 1.83	All soil samples were below th for all Metals, As, Sb, S
SICAD/Projects/Vantage p												y.		
Ottawa\Department\T				Sec.					N.					
-older: Y:ISharedICA	1	1				1.1	N.				-	ſ		
h Soll.dwg		~~		M	TCALE SP		- m	of A	12		in the second	1	4140	
Dawing: 11 Metals - Boood	le Earth 202	23		1	7		Y			1	© 2023 Micros	oft Corporati <mark>on (</mark>	0 2023 Maxar ©C	NES (2023) Distribution Airbu



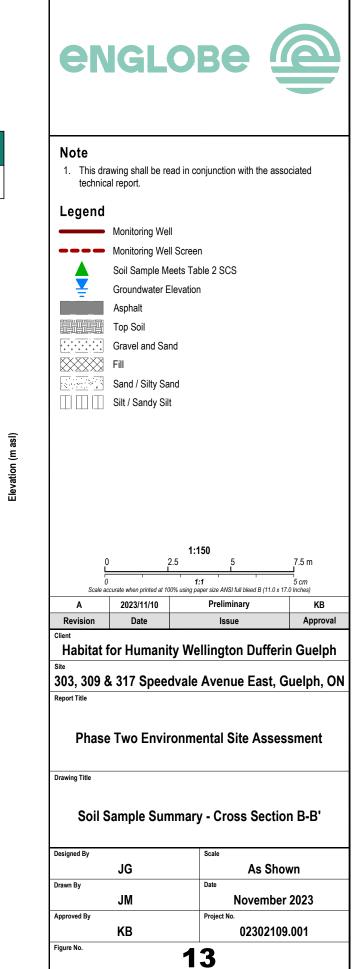
englobe 1. This drawing shall be read in conjunction with the associated technical report. Approximate Project Limits Monitoring Well Location Soil Sample Meets Table 2 SCS -Cross Section Reference -Cross Section Figure # 1:500 15 20 25 m 10 U 1:1 5 cm Scale accurate when printed at 100% using paper size ANSI full bleed B (11.0 x 17.0 Inches) 2023/11/10 Preliminary KB Date Approval Issue Habitat for Humanity Wellington Dufferin Guelph 303, 309 & 317 Speedvale Avenue East, Guelph, ON Phase Two Environmental Site Assessment Metals, As, Sb, Se in Soil Plan View Scale JG As Shown Date JM November 2023 Project No. KB 02302109.001 11

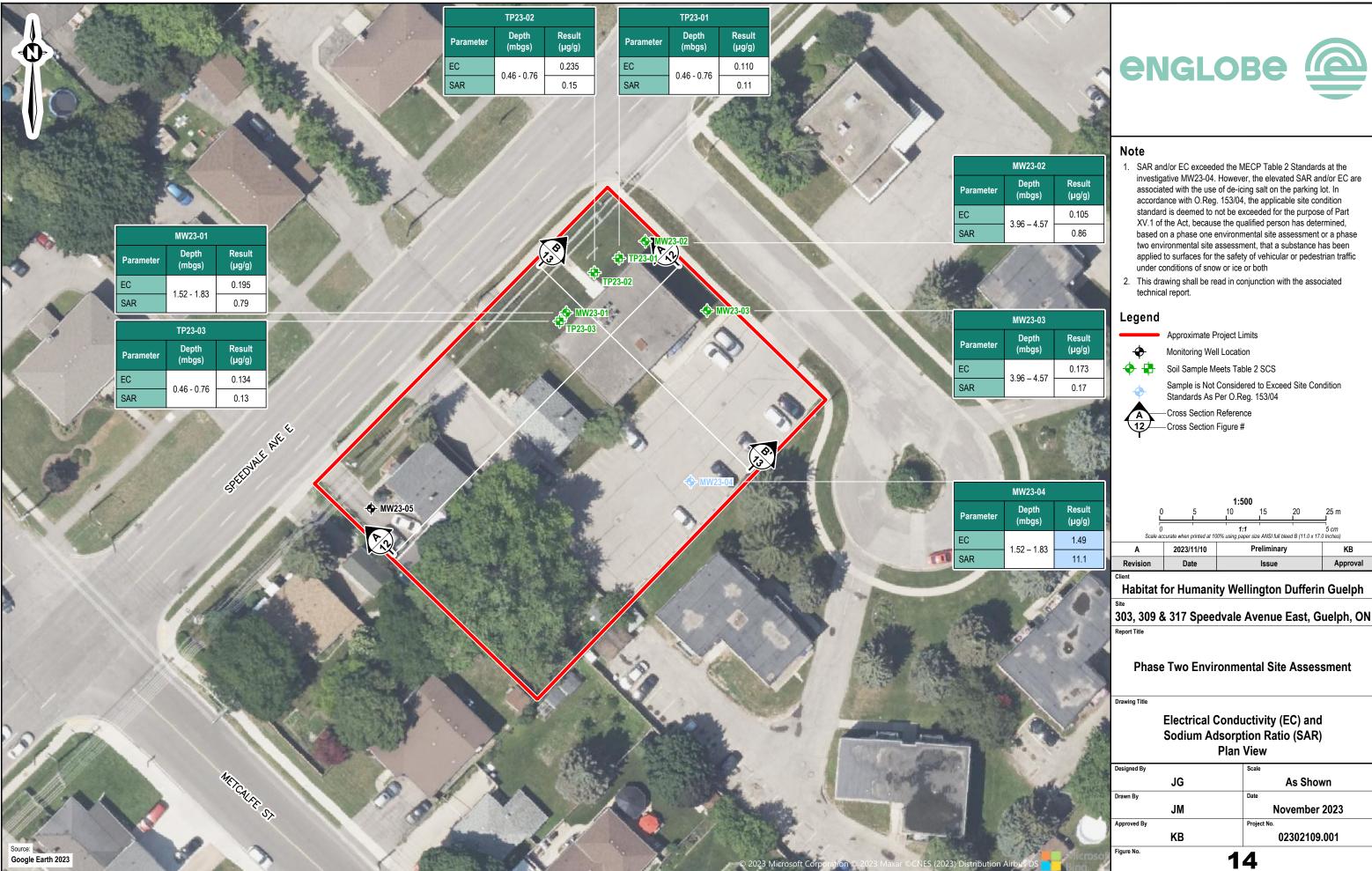
SECTION A-A'

Sample Location			Parameters
MW23-02	Soil	3.96 – 4.57	All soil samples were below the MECP Table 2 SCS fo all PHC, VOC, Metals, As, Sb, Se Parameters

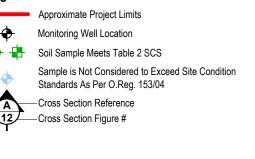


Copyright © 2023 Englobe Corporation

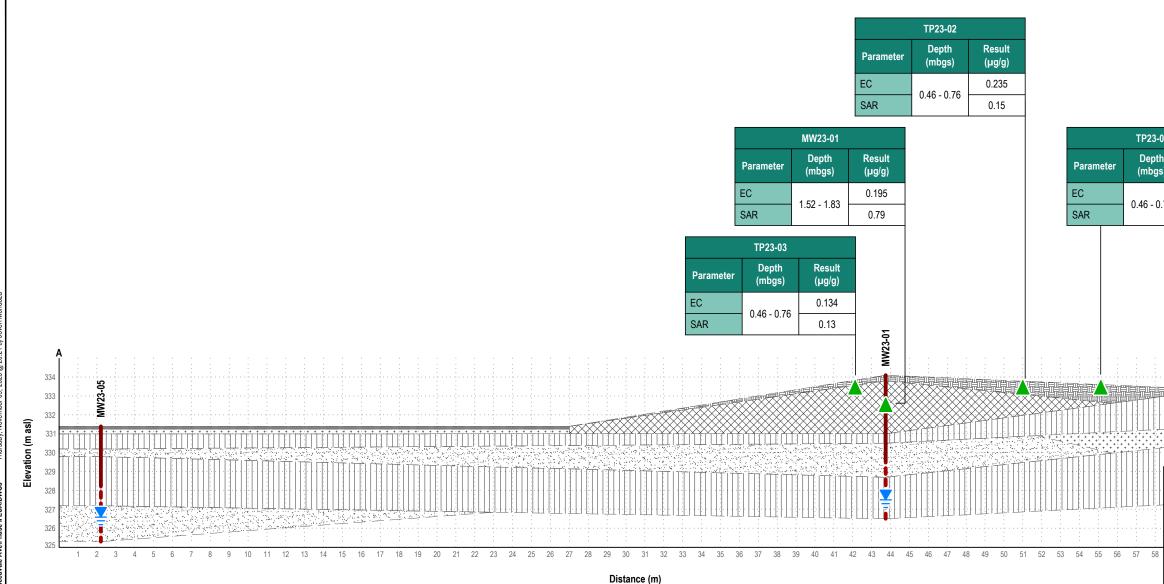

327


Sample	Sample	Sample Depth	Parameters
Location	Media	(mbgs)	
TP23-02	Soil	0.46 - 0.76	All soil samples were below the MECP Table 2 SCS for all PHC, VOC, Metals, As, Sb, Se Parameters

Sample	Sample	Sample Depth	Parameters
Location	Media	(mbgs)	
TP23-01	Soil	0.46 - 0.76	All soil samples were below the MECP Table 2 SCS for all PHC, VOC, Metals, As, Sb, Se Parameters



SECTION B-B'



Drawing Title									
Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) Plan View									
Designed By	Scale								
JG	As Shown								
Drawn By	Date								
JM	November 2023								
Approved By	Project No.								
KB 02302109.001									
Figure No.	4								

SECTION A-A'

	MW23-02	
Parameter	Depth (mbgs)	Result (µg/g)
EC	3.96 – 4.57	0.105
SAR	3.90 - 4.37	0.86

3-01	
oth gs)	Result (µg/g)
0.76	0.110
0.76	0.11

MW23-02

59 60

334

333

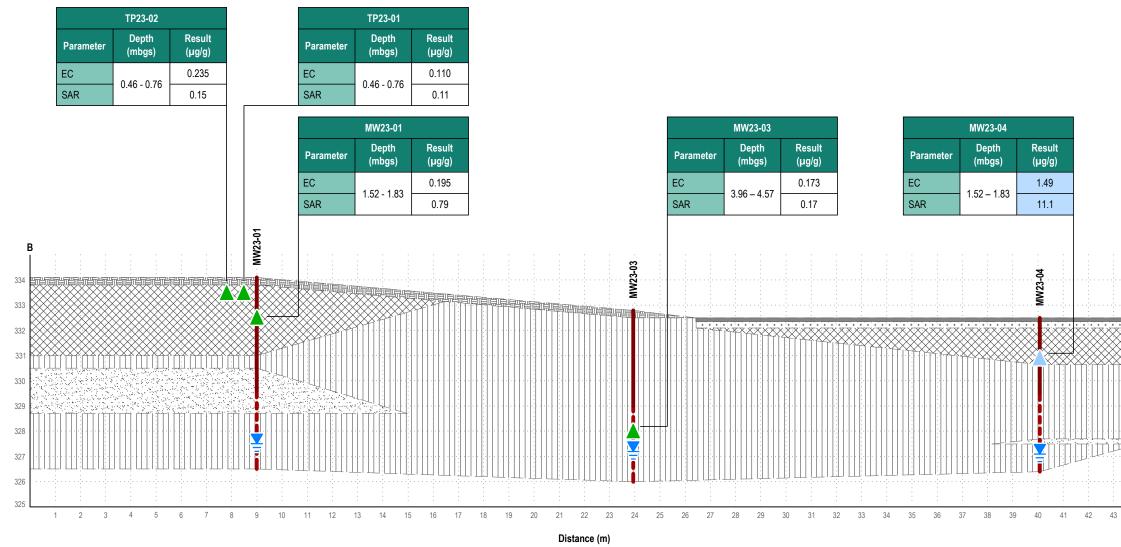
330

329

328

327

326



Note

- SAR and/or EC exceeded the MECP Table 2 Standards at the investigative MW23-04. However, the elevated SAR and/or EC are associated with the use of de-icing salt on the parking lot. In accordance with O.Reg. 153/04, the applicable site condition standard is deemed to not be exceeded for the purpose of Part XV.1 of the Act, because the qualified person has determined, based on a phase one environmental site assessment or a phase two environmental site assessment, that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both
- 2. This drawing shall be read in conjunction with the associated technical report.

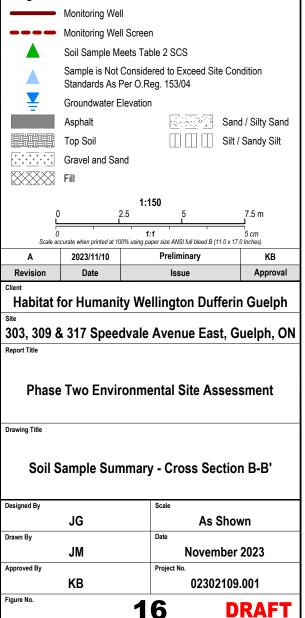
Legend Monitoring Well Monitoring Well Screen Soil Sample Meets Table 2 SCS Elevation (m asl) Sample is Not Considered to Exceed Site Condition Standards As Per O.Reg. 153/04 Ţ Groundwater Elevation Asphalt Sand / Silty Sand Silt / Sandy Silt Top Soil Gravel and Sand Fill 1:200 10 m 1:1 5 cm urate when printed at 100% using paper size ANSI full bleed B (11.0 x 17.0 Inches Scale an Α 2023/11/10 Preliminary KB Revision Date Issue Approval Habitat for Humanity Wellington Dufferin Guelph 303, 309 & 317 Speedvale Avenue East, Guelph, ON Report Title Phase Two Environmental Site Assessment Drawing Title Soil Sample Summary - Cross Section A-A' Designed By Scale JG As Shown Drawn By Date JM November 2023 Approved By Project No. KB 02302109.001 Figure No. 15

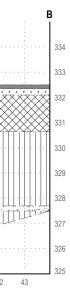
SECTION B-B'

asl)

£

Elevation


englobe



Note

- SAR and/or EC exceeded the MECP Table 2 Standards at the investigative MW23-04. However, the elevated SAR and/or EC are associated with the use of de-icing salt on the parking lot. In accordance with O.Reg. 153/04, the applicable site condition standard is deemed to not be exceeded for the purpose of Part XV.1 of the Act, because the qualified person has determined, based on a phase one environmental site assessment or a phase two environmental site assessment, that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both
- 2. This drawing shall be read in conjunction with the associated technical report.

Legend

asl)

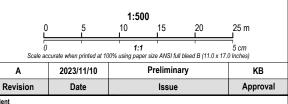
Elevation (m

Copyright © 2023 Englobe Corporation

Note

1. This drawing shall be read in conjunction with the associated technical report.

Legend



•

Approximate Project Limits Monitoring Well Location Test Pit Location Soil Sample Meets Table 2 SCS

-Cross Section Reference -Cross Section Figure #

Habitat for Humanity Wellington Dufferin Guelph 303, 309 & 317 Speedvale Avenue East, Guelph, ON

Report Title

Phase Two Environmental Site Assessment

rawing Title

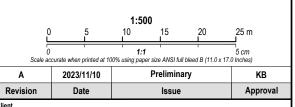
Petroleum Hydrocarbon (PHCs) in Groundwater Plan View

Designed By	Scale
JG	As Shown
Drawn By	Date
JM	November 2023
Approved By	Project No.
KB	02302109.001
Figure No.	7

Note

1. This drawing shall be read in conjunction with the associated technical report.

Legend



•

Approximate Project Limits Monitoring Well Location Test Pit Location Soil Sample Meets Table 2 SCS

-Cross Section Reference -Cross Section Figure

Habitat for Humanity Wellington Dufferin Guelph 303, 309 & 317 Speedvale Avenue East, Guelph, ON

Report Title

Phase Two Environmental Site Assessment

Drawing Title

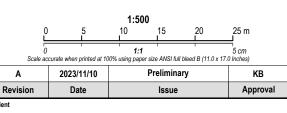
Volatile Organic Compounds (VOCs) in Groundwater Plan View

Designed By	Scale
JG	As Shown
Drawn By	Date
JM	November 2023
Approved By	Project No.
KB	02302109.001
Figure No.	8

Note

1. This drawing shall be read in conjunction with the associated technical report.

Legend

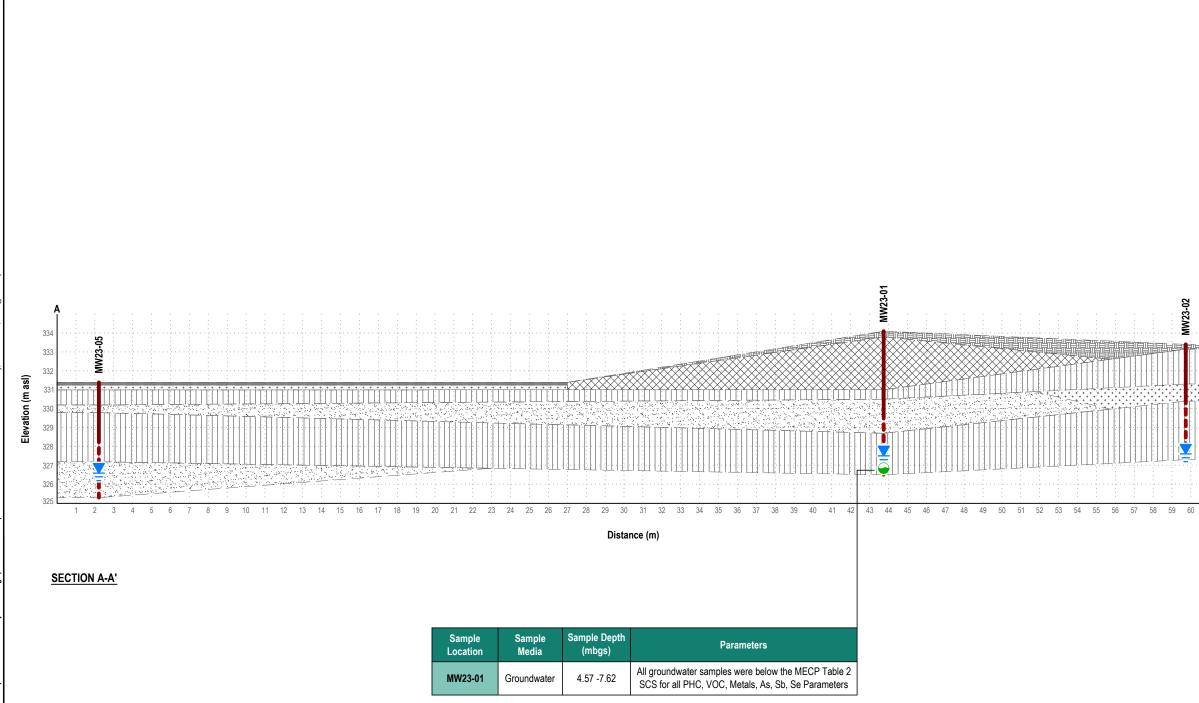


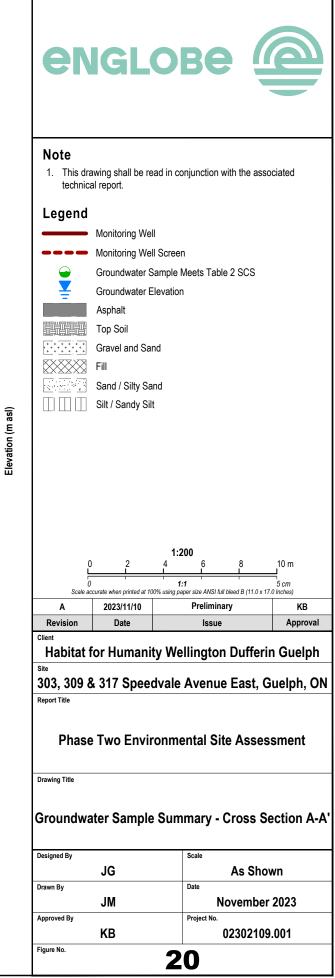
•

Approximate Project Limits Monitoring Well Location Test Pit Location Soil Sample Meets Table 2 SCS

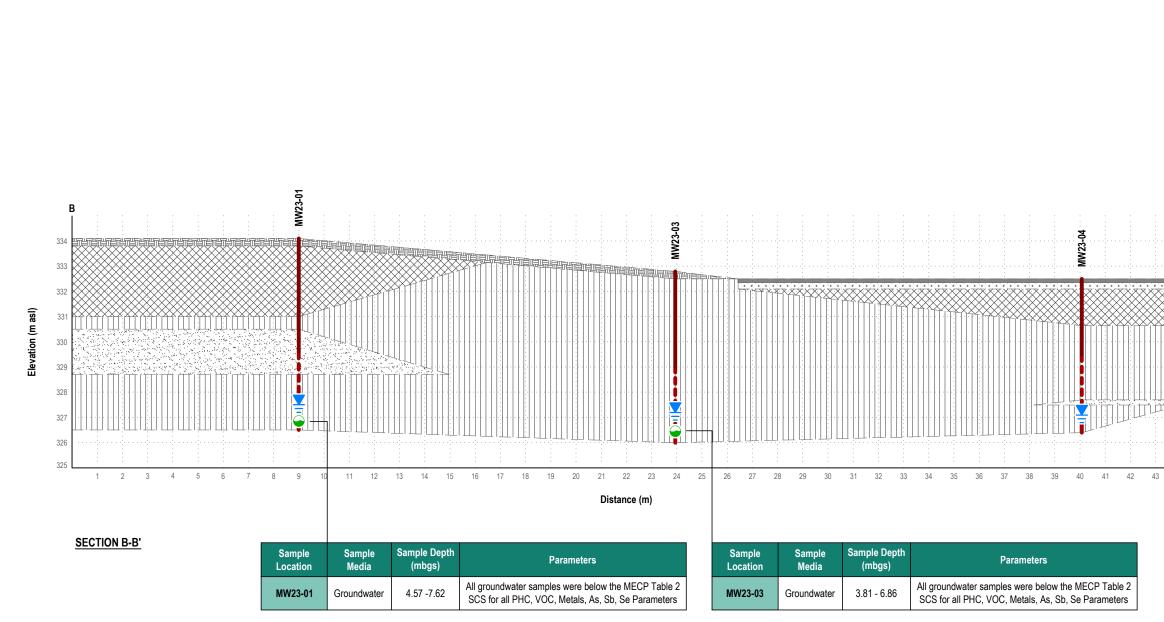
-Cross Section Reference -Cross Section Figure #

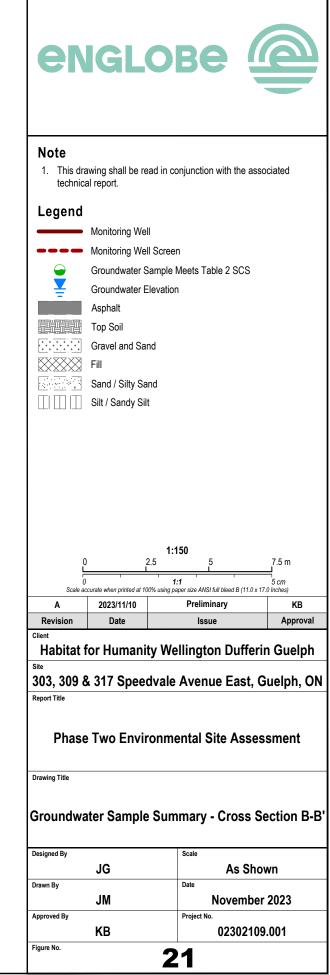
Habitat for Humanity Wellington Dufferin Guelph 303, 309 & 317 Speedvale Avenue East, Guelph, ON


Report Title


Phase Two Environmental Site Assessment

rawing Title


Metals, As, Sb, Se in Groundwater Plan View

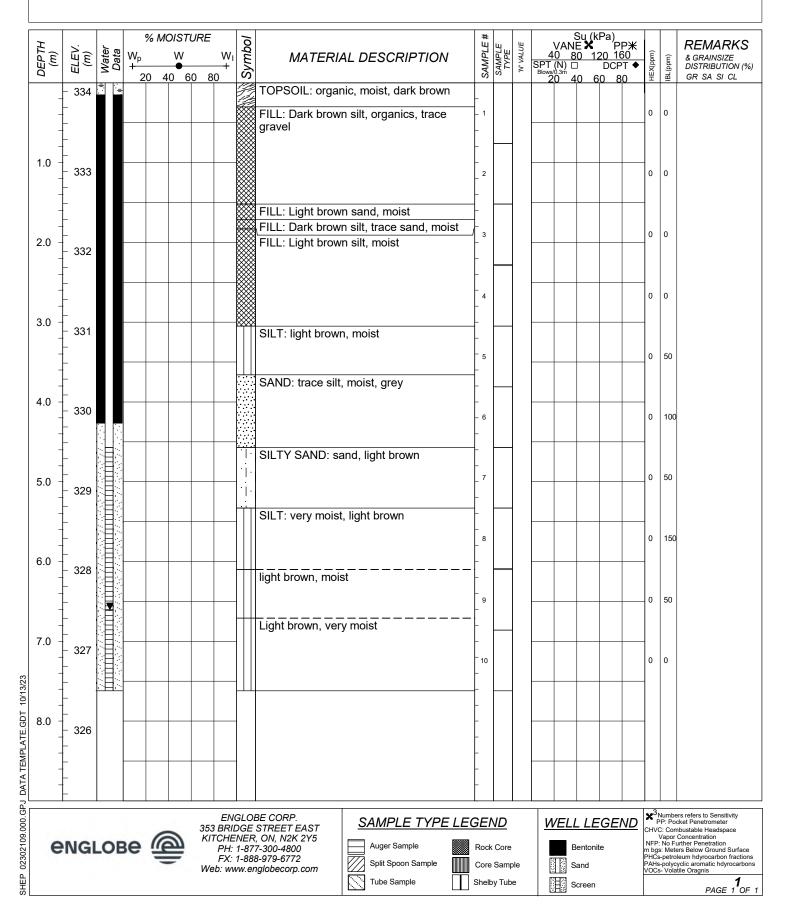

Designed By	Scale
JG	As Shown
Drawn By	Date
JM	November 2023
Approved By	Project No.
KB	02302109.001
Figure No.	9

Δ'

asl)

Elevation (m

Appendix B Borehole Logs



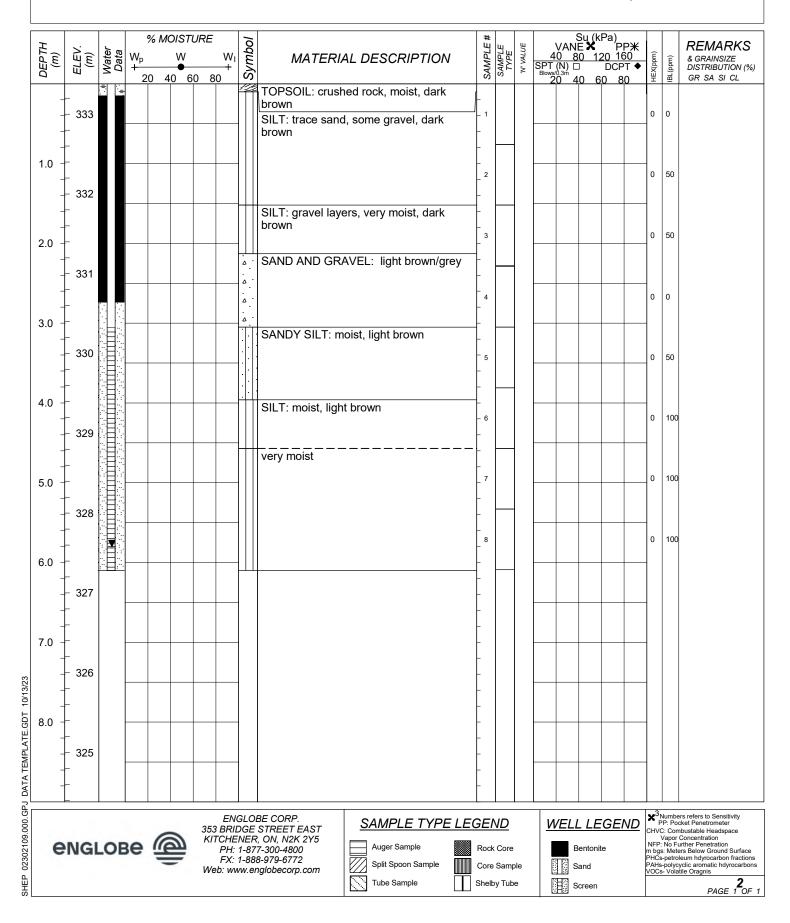
LOG OF BOREHOLE MW-23-01

ENGLOBE REF. No.: 02302109.001 CLIENT: Habitat for Humanity Wellington Dufferin Guelph PROJECT: Phase Two ESA- 303, 309 and 317 Speedvale Avenue East, Guelph, ON LOCATION: 303, 309 and 317 Speedvale Avenue East, Guelph, ON SURFACE ELEV.: 334.11 meters above sea level (MASL)

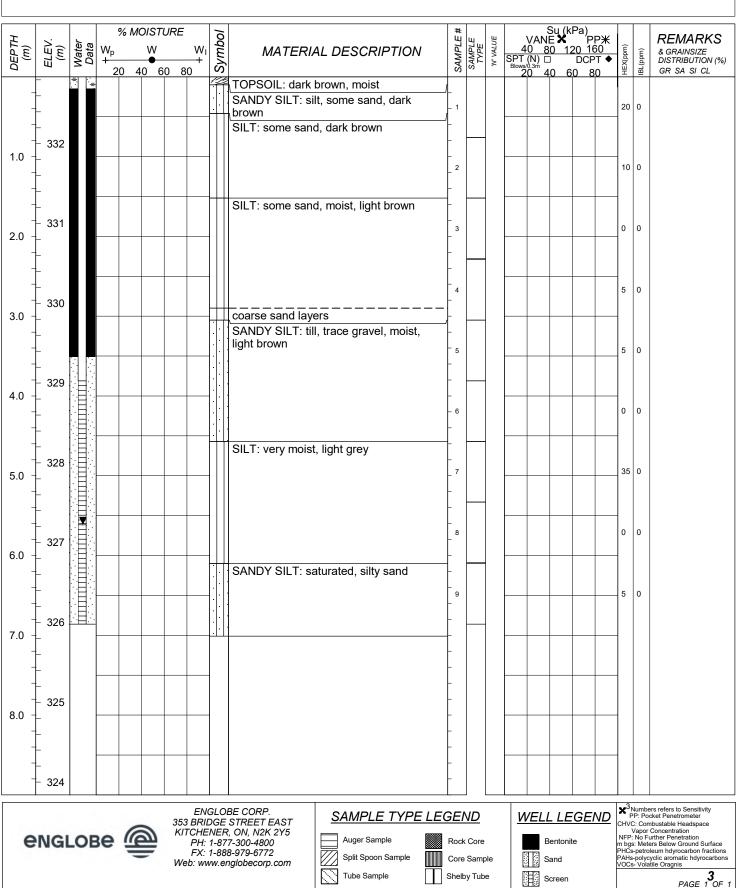
Drilling Data METHOD: Direct Push DIAMETER: 150 mm DATE: September 19, 2023 COORDINATES: 4823820.174 m N, 559842.306 m E

LOG OF BOREHOLE MW-23-02

 ENGLOBE REF. No.: 02302109.001
 Drilling Date


 CLIENT: Habitat for Humanity Wellington Dufferin Guelph
 METHOD

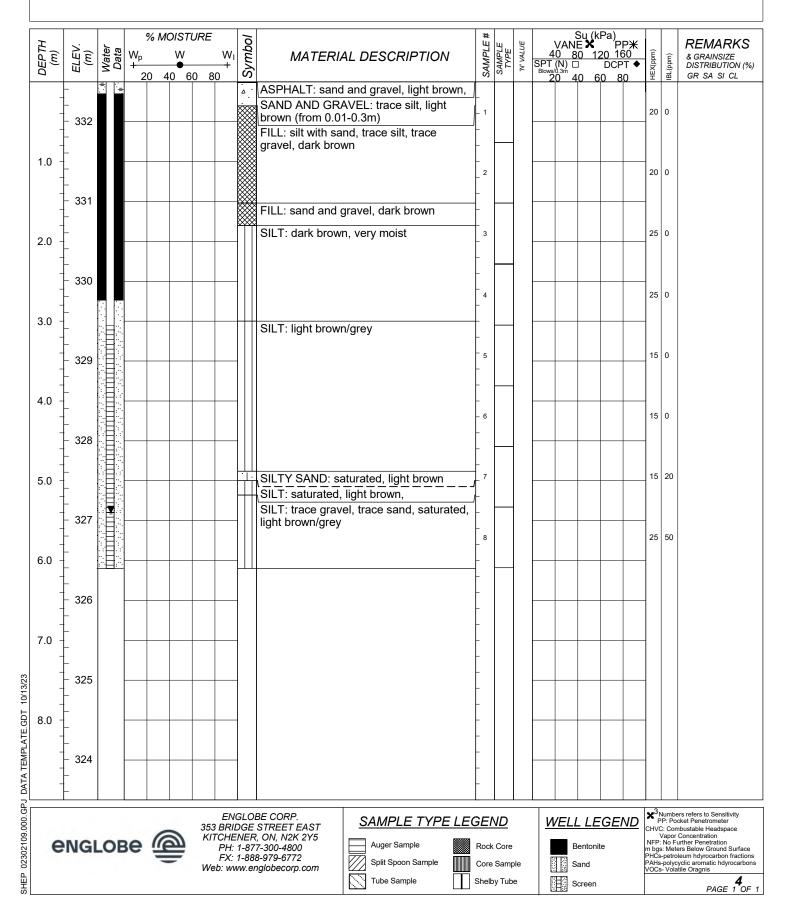
 PROJECT: Phase Two ESA- 303, 309 and 317 Speedvale Avenue East, Guelph, ON
 DIAMETE


 LOCATION: 303, 309 and 317 Speedvale Avenue East, Guelph, ON
 DATE: Se

 SURFACE ELEV.: 333.38 meters above sea level (MASL)
 COORDIN

Drilling Data METHOD: Direct Push DIAMETER: 150 mm DATE: September 19, 2023 COORDINATES: 4823830.912 m N, 559854.175 m E

Drilling Data METHOD: Direct Push CLIENT: Habitat for Humanity Wellington Dufferin Guelph PROJECT: Phase Two ESA- 303, 309 and 317 Speedvale Avenue East, Guelph, ON DIAMETER: 150 mm DATE: September 19, 2023 COORDINATES: 4823820.487 m N, 559863.457 m E


ENGLOBE REF. No.: 02302109.001

LOCATION: 303, 309 and 317 Speedvale Avenue East, Guelph, ON

SURFACE ELEV.: 332.84 meters above sea level (MASL)

ENGLOBE REF. No.: 02302109.001 CLIENT: Habitat for Humanity Wellington Dufferin Guelph PROJECT: Phase Two ESA- 303, 309 and 317 Speedvale Avenue East, Guelph, ON LOCATION: 303, 309 and 317 Speedvale Avenue East, Guelph, ON SURFACE ELEV.: 332.49 meters above sea level (MASL)

Drilling Data METHOD: Direct Push DIAMETER: 150 mm DATE: September 19, 2023 COORDINATES: 4823794.795 m N, 559860.972 m E

LOG OF BOREHOLE MW-23-05

ENGLOBE REF. No.: 02302109.001 Drilling Data METHOD: Direct Push CLIENT: Habitat for Humanity Wellington Dufferin Guelph PROJECT: Phase Two ESA- 303, 309 and 317 Speedvale Avenue East, Guelph, ON DIAMETER: 150 mm LOCATION: 303, 309 and 317 Speedvale Avenue East, Guelph, ON DATE: September 19, 2023 SURFACE ELEV.: 331.44 meters above sea level (MASL) COORDINATES: 4823790.771 m N, 559812.975 m E
 Su (kPa)

 VANE ★ PP#

 40
 80
 120
 160

 SPT (N)
 DCPT ◆

 Blows0.3m
 20
 40
 67
 % MOISTURE Symbol DEPTH (m) REMARKS SAMPLE SAMPLE TYPE 'N' VALUE Water Data (m) ELEV Wp W W MATERIAL DESCRIPTION HEX(ppm) & GRAINSIZE DISTRIBUTION (%) IBL(ppm) 20 40 60 80 GR SA SI CL ASPHALT ۵ SAND AND GRAVEL: dark brown 25 0 331 SILT: some sand, dark brown 1.0 10 50 2 SAND: dark brown 330 SILT: very moist, light brown 3 0 50 2.0 329 100 4 0 3.0 light brown, wet 0 50 328 5 4.0 100 15 6 SAND: light brown, wet 327 SILTY SAND: some silt, saturated 0 0 7 5.0 SAND: some silt, saturated 326 8 0 50 with saturated fine sand 6.0 325 7.0 324 02302109.000.GPJ DATA TEMPLATE.GDT 10/13/23 8.0 323 ✗³Numbers refers to Sensitivity PP: Pocket Penetrometer ENGLOBE CORP. SAMPLE TYPE LEGEND WELL LEGEND 353 BRIDGE STREET EAST KITCHENER, ON, N2K 2Y5 PP: Pocket Penetrometer CHVC: Combustable Headspace Vapor Concentration NFP: No Further Penetration m bgs: Meters Below Ground Surface PHCs-petroleum hdyrocarbon fractions PAHs-polycocilc aromatic hdyrocarbons VOCs- Volatile Oragnis енсьове Auger Sample PH: 1-877-300-4800 Rock Core Bentonite FX: 1-888-979-6772 Sand Split Spoon Sample Core Sample Web: www.englobecorp.com SHEP (**5** PAGE 1 OF 1 Tube Sample Shelby Tube Screen

		TEST PIT STRATIGRAPHY LOG								_			
Project Na		Phase Two Environmental Site Assessment				т	est Pit Designatio	n .	TP23-01	Page :	1	of	1
Project Nu							Date Started:	11.	9/21/2023				
Client:		Habitat for Humanit Wellington Dufferin Guelph	Test Pit Method:	Hand Auge			Date Completed:		9/21/2023				
Excavating	a Agency:	Englobe Corp.	Operator:	TA			Equipment:		Hand Auger				
		317 Speedvale Avenue East, Guelph, Ontario				E	nglobe Superviso	r:	Taylor Akim				
C	Depth	Soil Symbol, Primary Component, Secondary Components, Relative D Grain Size/Plasticity, Gradation/Structure, Colour, Moisture Content,			Sample No.	Sample Interval		Location:					
From	То	Descriptors	11 5		o.	am	DIA (mqq)						
(m)	(m)	,			νz	ο E		D		Geologic F	rofile		
0.00	0.25	Top Soil Dark Brown						Photo not a	vailable				
0.25	0.76	ISILT			S1	0.40.0.70	20						
0.25	0.70	Dark brown, with trace GRAVEL			31	0.46-0.76	20						
		Dark brown, with trace GRAVEL											
		End Test Pit @ 0.76 m bgs											
													ļ
enc	LOBE	<u>_</u>	Elevation ir	ı metres (m) :	above mea	n sea level	1	1					

		TEST PIT STRATIGRAPHY LOG										
									Page :	1	of	1
Project Na		Phase Two Environmental Site Assessment					est Pit Designati					
Project Nu	mber:		Ground Surface E				Date Started:	9/21/2023				
Client:				Hand Aug	ər		Date Completed					
Excavating			Operator:	TA			Equipment:	Hand Auge				
		d 317 Speedvale Avenue East, Guelph, Ontario				En	globe Supervis		ιον			
From	epth To	Soil Symbol, Primary Component, Secondary Components, Relative De Grain Size/Plasticity, Gradation/Structure, Colour, Moisture Content, S Descriptors			Sample No.	Sample Interval	(mqq) OIA	Location:				
(m)	(m)	-			ΰž	s n	E I		Geologic	Profile		
0.00	0.30	Topsoil						Photo not available				
		Dark brown										
0.30	0.46	SILT Dark brown, trace GRAVEL			S1	0.15- 0.46	15					
		End Test Pit @ 0.46 m bgs										
enc	GLOBE				Elevation	in metre	es (m) above me	an sea level				

		TEST PIT STRATIGRAPHY LOG								Page :	1	of	1
Project Na	me:	Phase Two Environmental Site Assessment				Te	st Pit Designat	ion:	TP23-03	Tugo .		01	
Project Nu		02302109.001	Ground Surface Elevation	on ⁽¹⁾ (m): 334	.108		Date Started:		9/21/2023				
Client:		Habitat for Humanit Wellington Dufferin Guelph	Test Pit Method:	Hand Auge	ər	[Date Complete	d:	9/21/2023				
Excavating		Englobe Corp.	Operator:	ТА			Equipment:		Hand Auger				
		nd 317 Speedvale Avenue East, Guelph, Ontario				En	globe Supervis		Taylor Akim	ov			
De From	epth	Soil Symbol, Primary Component, Secondary Components, Relative De Size/Plasticity, Gradation/Structure, Colour, Moisture Content, Supple			Sample No.	Sample Interval	PID (ppm)	Location:					
(m)	To (m)	Size Plasticity, Gradation Structure, Colour, Moisture Content, Supple	mentary Descriptors		lo ga	hte	<u> </u>			Geologic F	Inofilo		
0.00	0.30	Topsoil			0.2	0 =	<u> </u>	Photo not a	vailable	Geologic r	Tome		
0.00	0.00	Dark brown						i noto not u	vanable				
0.30	0.85	SILT			S1	0.55-0.85	20	1					
		Dark brown, trace GRAVEL											
		End Test Pit @ 0.85 m bgs											
eNo	GLOB				Elevatio	n in metres	(m) above mea	in sea level					

Appendix C Analytical Tables

PETROLEUM HYDROCARBON FRACTIONS (PHC) F1 to F4 AND BTEX ANALYSIS - SOIL

Phase Two Environmental Site Assessment 303, 309 and 317 Speedvale Avenue East

PARAMETERS	TABLE 1 STANDARDS RESIDENTIAL / PARKLAND / INSTITUTIONAL / INDUSTRIAL /	TABLE 2 STANDARDS RESIDENTIAL / PARKLAND / INSTITUTIONAL PROPERTY USE		MW23-01 SA3		MW23-02 SA6	MW23-03 SA7	MW23-04 SA3	TP23-01	TP23-02	TP23-03
	COMMERCIAL / COMMUNITY PROPERTY USE	FINE SOILS	19-Sep-2023	19-Sep-2023		19-Sep-2023	19-Sep-2023	19-Sep-2023	21-Sep-2023	21-Sep-2023	21-Sep-2023
			1.53-1.83 mbgs	Field Duplicate	RPD (%)	3.96-4.57 mbgs	4.57-5.18 mbgs	1.52-1.83 mbgs	0.46-0.76 mbgs	0.15-0.46 mbgs	0.55-0.85 mbgs
Benzene	0.02	0.17	<0.0050	< 0.0050	NC	< 0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050
Ethylbenzene	0.05	1.6	< 0.015	< 0.015	NC	< 0.015	< 0.015	<0.015	< 0.015	< 0.015	< 0.015
Toluene	0.2	6	< 0.050	< 0.050	NC	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Xylenes (Total)	0.05	25	< 0.050	< 0.050	NC	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
F1 (C6-C10)	25	65	<5.0	<5.0	NC	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
F1-BTEX	25	65	<5.0	<5.0	NC	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
F2 (C10-C16)	10	150	<10	<10	NC	<10	<10	<10	<10	<10	<10
F3 (C16-C34)	240	1300	<50	<50	NC	<50	<50	<50	<50	<50	<50
F4 (C34-C50)	120	5600	<50	<50	NC	<50	<50	<50	<50	<50	<50
Chrom. to baseline at nC50	NA	NA	YES	YES	NC	YES	YES	YES	YES	YES	YES

Note:
Standards from Table 1 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the
Environmental Protection Act. Actil 15, 2011. O. Res. 15304 as amenided document for Full Det/h Backround Sile Condition Standards
for Residential/Parkiand/Institutional/Instatituticommercial/Community Property Use.
Standards from Table 2 of the MECP Soil. Community Progenty Use.
Standards from Table 2 of the MECP Soil. Community Progenty Use.
Standards from Table 2 of the MECP Soil. Community Progenty Use.
Test results advant hold by per coeceded the MECP Table 2 O. Reg. 15304 Standards, as amended.
Test results advant hold by per coeceded the MECP Table 2 O. Reg. 15304 Standards, as amended.
Laboratory detection Inits of the test results shown in hold by per seceeded the standards.
All Standards and results aboven in prigt.
Methy and the standards and tables at the standards and tables at the standards.
All Standards and results aboven in prigt.
Test results advant hold standards at the standards at the standards.
All Standards and results aboven in prigt.
Test results advant hold standards at the standards at the standards at the standards.
All Standards and results aboven in prigt.
Test results advant hold standards at the stan

O.REG. 153/04 METALS AND/OR INORGANICS ANALYSIS - SOIL

Phase Two Environmental Site Assessment 303, 309 and 317 Speedvale Avenue East

TABLE 1 STANDARDS RESIDENTIAL / PARKLANI PARAMETERS INSTITUTIONAL / INDUSTRI		TABLE 2 STANDARDS RESIDENTIAL / PARKLAND / INSTITUTIONAL, PROPERTY USE		MW23-01 SA3		MW23-02 SA6	MW23-03 SA7	MW23-04 SA3	TP23-01	TP23-02	TP23-03
	COMMERCIAL / COMMUNITY PROPERTY USE	FINE SOILS	19-Sep-2023	19-Sep-2023		19-Sep-2023	19-Sep-2023	19-Sep-2023	21-Sep-2023	21-Sep-2023	21-Sep-2023
		1.53-1.83 mbgs	Field Duplicate	RPD (%)	3.96-4.57 mbgs	4.57-5.18 mbgs	1.52-1.83 mbgs	0.46-0.76 mbgs	0.15-0.46 mbgs	0.55-0.85 mbgs	
Antimony (Sb)	1.3	7.5	<0.10	<0.10	NC	<0.10	<0.10	<0.10	<0.10	0.28	<0.10
Arsenic (As)	18	18	1.76	2.66	20%	1.91	1.30	2.39	2.30	4.17	3.12
Barium (Ba)	220	390	15.2	26.6	27%	23.1	11.5	16.4	29.6	50.5	38.8
Beryllium (Be)	2.5	5	0.18	0.27	20%	0.19	0.12	0.15	0.29	0.42	0.36
Boron (B), Hot Water Ext.	NA	1.5	0.12	0.13	4%	<0.10	< 0.10	< 0.10	<0.10	0.47	0.11
Boron (B)	36	120	5.2	<5.0	NC	6.9	5.1	<5.0	6.8	8.0	6.6
Cadmium (Cd)	1.2	1.2	0.113	0.222	33%	0.249	0.154	0.231	0.317	0.561	0.389
Chromium (Cr)	70	160	9.73	12.3	12%	8.01	7.00	7.00	10.4	17.2	13.4
Chromium, Hexavalent	0.66	10	0.12	0.14	8%	<0.10	<0.10	< 0.10	<0.10	<0.10	0.12
Cobalt (Co)	21	22	2.22	3.51	23%	2.72	1.56	2.80	3.50	4.90	4.33
Copper (Cu)	92	180	<14.0	<14.0	NC	<14.0	<14.0	<14.0	8.82	18.0	9.88
Cyanide, Weak Acid Diss	0.051	0.051	< 0.050	< 0.050	NC	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Conductivity	0.57	0.7	0.195	0.220	6%	0.105	0.173	1.49	0.110	0.235	0.134
Lead (Pb)	120	120	8.35	14.0	25%	13.4	10.4	19.5	18.5	48.5	37.4
Mercury (Hg)	0.27	1.8	0.0104	0.0231	38%	0.0059	< 0.0050	0.0070	0.0165	0.0967	0.0236
Molybdenum (Mo)	2	6.9	0.97	0.47	35%	0.28	0.61	0.23	0.20	0.57	0.30
Nickel (Ni)	82	130	5.20	7.50	18%	5.61	3.16	6.14	7.42	10.3	8.57
Selenium (Se)	1.5	2.4	<0.20	< 0.20	NC	< 0.20	< 0.20	< 0.20	< 0.20	0.23	<0.20
Silver (Ag)	0.5	25	<0.10	<0.10	NC	<0.10	<0.10	<0.10	<0.10	0.10	<0.10
SAR	2.4	5	0.79	0.86	4%	0.17	0.79	11.1	0.11	0.15	0.13
Thallium (TI)	1	1	< 0.050	0.064	NC	0.050	<0.050	< 0.050	0.066	0.099	0.079
Uranium (U)	2.5	23	0.372	0.396	3%	0.410	0.397	0.398	0.458	0.497	0.589
Vanadium (V)	86	86	16.4	25.3	21%	14.9	12.4	15.7	18.8	28.4	29.1
Zinc (Zn)	290	340	44.4	78.3	28%	85.0	47.1	177	114	176	124
pH	5 to 9 and 5 to 11	5 to 9 and 5 to 11	7.75	7.66	1%	7.97	8.11	7.96	7.67	7.36	7.53

 Notes
 Standards from Table 1 of the MECP Soil. Ground Water and Sedment Standards for Use Under Part XV1 of the Environmental Protection Act, Aorii 15, 2011. O. Reg. 1530/d as amended document for Full Depth Background Site Condition Standards for Residential/Parkinad/Instatutical/Commonal/Porcept Use.

 Standards from Table 2 of the MECP Soil. (Ground Water and Sediment Standards for Use Under Part XV1 of the Environmental Protection Act, Aorii 15, 2011. O. Reg. 1530/d as amended document for Full Depth Genetic Site Condition Standards for Table 2 of the MECP Soil. 2 (Sround Water and Sediment Standards for Use) Under Part XV1 of the Environmental Protection Act, Aorii 15, 2011. O. Reg. 1530/d Standards, as amended.

 Test results shown in bod type exceeded the MECP Table 2 O. Reg. 1530/d Standards, as amended.

 Laborator detection innits for the tet results shown in bod type exceeded the AECP Table 1 O. Reg. 1530/d Standards, as amended.

 Automation of the second of the MECP Table 1 O. Reg. 1530/d Standards, as amended.

 Laborator detection innits for the tet results shown in bod type exceeded the applicable standards.

 Automation of the anticyce and the AECP Table 2 O. Reg. 1530/d Standards, as amended.

 Not: RPD not calculabelinitional Proceedines.

 Work - RPD not calculabelinitional Proceedines.

 Work - RPD not calculabelinitional Proceedines.

 Mice - and and subsurface soils, respectively.

 Mice a refers to surface and subsurface soils, respectively.

 Tests calmid out by:
 ALS Environmental of Waterloo, Ontario.

TABLE 103 VOLATILE ORGANIC COMPOUNDS (VOCs) ANALYSIS - SOIL

Phase Two Environmental Site Assessment 303, 309 and 317 Speedvale Avenue East

PARAMETERS	TABLE 1 STANDARDS RESIDENTIAL / PARKLAND / INSTITUTIONAL / INDUSTRIAL / COMMENTALY	TABLE 2 STANDARDS RESIDENTIAL / PARKLAND / INSTITUTIONAL PROPERTY USE	MW23-01 SA3			MW23-02 SA6	MW23-03 SA7	MW23-04 SA3
	PROPERTY USE	FINE SOILS	19-Sep-2023	19-Sep-2023		19-Sep-2023	19-Sep-2023	19-Sep-2023
			1.53-1.83 mbgs	Field Duplicate	RPD (%)	3.96-4.57 mbgs	4.57-5.18 mbgs	1.52-1.83 mbgs
Acetone	0.5	28	<0.50	< 0.50	NC	< 0.50	< 0.50	<0.50
Benzene	0.02	0.17	< 0.0050	<0.0050	NC	< 0.0050	<0.0050	< 0.0050
Bromodichloromethane	0.05	1.9	< 0.050	<0.050	NC	< 0.050	< 0.050	< 0.050
Bromoform	0.05	0.26	< 0.050	<0.050	NC	< 0.050	< 0.050	< 0.050
Bromomethane	0.05	0.05	< 0.050	<0.050	NC	< 0.050	< 0.050	< 0.050
Carbon tetrachloride	0.05	0.12	<0.050	<0.050	NC	<0.050	<0.050	<0.050
Chlorobenzene	0.05	2.7	<0.050	<0.050	NC	<0.050	<0.050	<0.050
Chloroform	0.05	0.17	<0.050	<0.050	NC	<0.050	<0.050	<0.050
Dibromochloromethane	0.05	2.9	< 0.050	<0.050	NC	<0.050	<0.050	< 0.050
1.2-Dichlorobenzene	0.05	1.7	<0.050	<0.050	NC	<0.050	<0.050	<0.050
1.3-Dichlorobenzene	0.05	6	< 0.050	<0.050	NC	< 0.050	< 0.050	< 0.050
1 4-Dichlorobenzene	0.05	0.097	<0.050	<0.050	NC	<0.050	<0.050	<0.050
Dichlorodifluoromethane	0.05	25	<0.050	<0.050	NC	<0.050	<0.050	<0.050
1.1-Dichloroethane	0.05	0.6	<0.050	<0.050	NC	<0.050	<0.050	<0.050
1.2-Dichloroethane	0.05	0.05	<0.050	<0.050	NC	<0.050	<0.050	<0.050
1.1-Dichloroethylene	0.05	0.05	<0.050	<0.050	NC	<0.050	<0.050	<0.050
cis-1.2-Dichloroethylene	0.05	2.5	<0.050	<0.050	NC	<0.050	<0.050	<0.050
trans-1.2-Dichloroethylene	0.05	0.75	<0.050	<0.050	NC	<0.050	<0.050	<0.050
1.2-Dichloropropane	0.05	0.085	<0.050	<0.050	NC	<0.050	<0.050	<0.050
cis-1.3-Dichloropropene	0.05	0.085	<0.030	<0.030	NC	<0.030	<0.030	<0.030
trans-1.3-Dichloropropene	0.05	0.081	<0.030	<0.030	NC	<0.030	<0.030	<0.030
Dichloropropene. 1.3-	0.05	0.081	<0.030	<0.030	NC	<0.030	<0.030	<0.030
Ethvibenzene	0.05	1.6	<0.030	<0.030	NC	<0.030	<0.030	<0.015
1 2-Dibromoethane	0.05	0.05	<0.015	<0.013	NC	<0.013	<0.013	<0.013
n-Hexane	0.05	34	<0.050	<0.050	NC	<0.050	<0.050	<0.050
Methyl Ethyl Ketone	0.05	34 44	<0.050	<0.00	NC	<0.50	<0.50	<0.00
Methyl Isobutyl Ketone	0.5	444 4.3	<0.50	<0.50	NC	<0.50	<0.50	<0.50
MTRE	0.5	4.3	<0.50	<0.50	NC	<0.50	<0.50	<0.50
Methylene Chloride	0.05	0.96	<0.135	<0.040	NC	<0.040	<0.148	<0.040
	0.05	2.2	<0.050	<0.050	NC	<0.050	<0.050	<0.050
Styrene 1.1.1.2-Tetrachloroethane	0.05	0.05	<0.050	<0.050	NC	<0.050	<0.050	<0.050
1,1,2-Tetrachloroethane	0.05	0.05	<0.050	<0.050	NC	<0.050	<0.050	<0.050
	0.05	2.3	<0.050	<0.050	NC	<0.050	<0.050	<0.050
Tetrachloroethylene					NC			
Toluene 1 1 1-Trichloroethane	0.2	6 3.4	<0.050 <0.050	<0.050 <0.050	NC	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050
1,1,1-Trichloroethane							<0.050	
	0.05	0.05	< 0.050	<0.050	NC	<0.050		< 0.050
Trichloroethylene	0.05	0.52	<0.010	<0.010	NC	<0.010	<0.010	<0.010
Trichlorofluoromethane	0.25	5.8	< 0.050	<0.050	NC	< 0.050	< 0.050	< 0.050
Vinyl chloride	0.02	0.022	<0.020	<0.020	NC	<0.020	<0.020	<0.020
Xylenes (Total)	0.05	25	< 0.050	<0.050	NC	< 0.050	< 0.050	< 0.050

Notes:

Standards from Table 1 of the MECP Sol. Ground Water and Socianent Standards for Use Under Part XV:1 of the Environmental Protection Act, April 53, 2011. O. Res. 15304 as ammedied document for Full Depth Relaxed Standards Freedomental Protection Act, April 53, 2011. O. Res. 15304 as ammedied document for Tul Depth Relaxed Condition Standards Freedomental Protection Act, April 53, 2011. O. Res. 15304 as a medied document for Tul Depth Relaxed Condition Standards Full Protection Act, April 53, 2011. O. Res. 15304 as a medied document for Tul Depth Relaxed Condition Standards Full Protection Act, April 53, 2011. O. Res. 15304 as a medied document for Tul Depth Relaxed Condition Standards Full Protection Act, April 53, 2011. April 54, 2011. Res. 15304 as a factor, as a smooth. Laboratory detection limits for the test results shown in told type exceeded the applicable standards. Al Standards and media shown in Ipot Applicable Standards. Al Standards and media shown in Ipot Applicable Standards. Al Standards and media shown in Ipot Applicable Standards. Al Standards and the standards the Applicable Standards. Al Standards and the standards and the Applicable standards. Al Standards and media shown in Ipot Applicable Standards. Al Standards and media shown in Ipot Applicable Standards. Al Standards and media shown in Ipot Applicable Standards. Al Standards and media shown in Ipot Applicable Standards. Al Standards and media shown in Ipot Applicable Standards. Al Standards and media shown in Ipot Applicable Standards. Al Standards and media shown in Ipot Applicable Standards. Al Standards and media shown in Ipot Applicable Standards. Al Standards and media shown in Ipot Applicable Standards. Al Standards and media shown in Ipot Applicable Standards. Al Standards and media shown in Ipot Applicable Standards. Al Standards and media shown in Ipot Applicable Standards. Al Standards and media shown in Ipot Applicable Standards. Al Standards and media shown in Ipot Applicable Standards. Al Standard

POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) ANALYSIS - SOIL

Phase Two Environmental Site Assessment

303, 309 and 317 Speedvale Avenue East

PARAMETERS	TABLE 1 STANDARDS RESIDENTIAL / PARKLAND / INSTITUTIONAL / INDUSTRIAL / COMMERCIAL / COMMUNITY	TABLE 2 STANDARDS RESIDENTIAL / PARKLAND / INSTITUTIONAL PROPERTY USE FINE SOILS		TP23-01	TP23-02	TP23-03	
	PROPERTY USE		21-Sep-2023	21-Sep-2022		21-Sep-2023 0.15-0.46 mbgs	21-Sep-2023
			0.46-0.76 mbgs	Field Duplicate	RPD (%)		0.55-0.85 mbgs
Acenaphthene	0.072	29	<0.050	< 0.050	NC	< 0.050	< 0.050
Acenaphthylene	0.093	0.17	< 0.050	< 0.050	NC	< 0.050	< 0.050
Anthracene	0.16	0.74	< 0.050	< 0.050	NC	< 0.050	< 0.050
Benzo(a)anthracene	0.36	0.63	<0.050	< 0.050	NC	< 0.050	<0.050
Benzo(a)pyrene	0.3	0.3	< 0.050	< 0.050	NC	< 0.050	<0.050
Benzo(b)fluoranthene	0.47	0.78	<0.050	< 0.050	NC	0.064	< 0.050
Benzo(g,h,i)perylene	0.68	7.8	< 0.050	< 0.050	NC	< 0.050	< 0.050
Benzo(k)fluoranthene	0.48	0.78	< 0.050	< 0.050	NC	< 0.050	<0.050
Chrysene	2.8	7.8	< 0.050	< 0.050	NC	< 0.050	< 0.050
Dibenzo(ah)anthracene	0.1	0.1	< 0.050	< 0.050	NC	< 0.050	<0.050
Fluoranthene	0.56	0.69	< 0.050	< 0.050	NC	0.070	< 0.050
Fluorene	0.12	69	< 0.050	< 0.050	NC	< 0.050	< 0.050
Indeno(1,2,3-cd)pyrene	0.23	0.48	< 0.050	< 0.050	NC	< 0.050	<0.050
1+2-Methylnaphthalenes	0.59	3.4	< 0.050	< 0.050	NC	< 0.050	< 0.050
1-Methylnaphthalene	0.59	3.4	< 0.030	< 0.030	NC	< 0.030	<0.030
2-Methylnaphthalene	0.59	3.4	<0.030	< 0.030	NC	< 0.030	< 0.030
Naphthalene	0.09	0.75	<0.010	<0.010	NC	<0.010	< 0.010
Phenanthrene	0.69	7.8	<0.050	< 0.050	NC	< 0.050	< 0.050
Pyrene	1	78	< 0.050	< 0.050	NC	0.055	<0.050

Notes:

-

.

Standards from Table 1 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the

Standards from Table 1 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, O. Reg. 153/04 as amended document for Full Depth Background Site Condition Standards for Residential/Parkind/Institutional/Industrial/Commercial/Community Property Use. Standards from Table 2 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, O. Reg. 153/04 as amended document for Full Depth Generic Site Condition Standards for Residential/Parkind/Institutional Property Use - Potable Groundwater Condition/Fine Textured Soil. Test results shown in body type exceeded the MECP Table 1 O. Reg. 153/04 Standards, as amended. Laboratory detection Initis for the test results shown in bold type exceeded the applicable standards. All Standards and results shown in µg/g. mbgs - metres below ground surface NG - RPD not calculable/into valid *-* paratet not analyzed Tests carried out by: ALS Environmental of Waterloo, Ontario.

-

-

-

-

MONITORING WELL FIELD DATA & ELEVATIONS - GROUNDWATER

Phase Two Environmental Site Assessment

303, 309 and 317 Speedvale Avenue East

Monitoring Well ID	Monitoring Well Diameter (inch)	Date Monitored	Elevatio	n (mASL)	Depth to Bottom of Well (mbgs)	Depth to Water (mbgs)		Interval bgs)	Bottom of Well Elevation (mASL)	Groundwater Elevation (mASL)		Interval ASL)
			Grade	Top of Pipe			Тор	Bottom			Тор	Bottom
MW23-01	2.00	9/22/2023	334.11	334.98	7.56	6.66	4.56	7.56	326.55	327.45	329.55	326.55
MW23-02	2.00	9/22/2023	333.38	334.25	5.98	5.98	2.98	5.98	327.40	327.40	330.40	327.40
MW23-03	2.00	9/22/2023	332.84	333.81	6.97	5.37	3.97	6.97	325.87	327.47	328.87	325.87
MW23-04	2.00	9/22/2023	332.49	332.30	6.15	5.25	3.15	6.15	326.34	327.24	329.34	326.34
MW23-05	2.00	9/22/2023	331.44	331.28	6.16	4.62	3.16	6.16	325.28	326.83	328.28	325.28

Notes: mbgs - metres below ground surface

mad - metres above datum

mASL - metres above sea level

n/a - not available/not applicable

PETROLEUM HYDROCARBONS (PHCs) F1 to F4 AND BTEX ANALYSIS - GROUNDWATER

Phase Two Environmental Site Assessment 303, 309 and 317 Speedvale Avenue East

PARAMETERS	TABLE 1 STANDARDS ALL TYPES OF PROPERTY USE	TABLE 2 STANDARDS ALL TYPES OF PROPERTY USE FINE SOILS	MW23-01	TRIP BLANK	MW23-03		
			29-Sep-2023	29-Sep-2023		Field Duplicate	RPD (%)
Benzene	0.5	5	<0.50	<0.50	< 0.50	<0.50	NC
Ethylbenzene	0.5	2.4	< 0.50	< 0.50	< 0.50	<0.50	NC
Toluene	0.8	24	< 0.50	< 0.50	< 0.50	<0.50	NC
Xylenes (Total)	72	300	< 0.50	< 0.50	< 0.50	<0.50	NC
F1 (C6-C10)	420	750	<25	<25	<25	<25	NC
F1-BTEX	420	750	<25	<25	<25	<25	NC
F2 (C10-C16)	150	150	<100	-	<100	<100	NC
F2-Naphth	150	150	-	-	-	-	NC
F3 (C16-C34)	500	500	<250	-	<250	<250	NC
F3-PAH	500	500	-	-	-	-	NC
F4 (C34-C50)	500	500	<250	-	<250	<250	NC
Chrom. to baseline at nC50	NA	NA	-	-	-	-	NC
F4G-SG (GHH-Silica)	500	500	-	-	-	-	NC

Notes: -

-

-- Standards from Table 1 of the MECP Soil. Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, O. Reg, 153/04 document for Full Depth Generic Site Condition Standards for All Types of Property Use. Soll of the MECP Soil. Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmential Protection Act, April 15, 2011, O. Reg, 153/04 document for Full Depth Generic Site Condition Standards for All Types of Property Use. Potable Groundwater Condition/Fire Returned Soil. Test results shown in bold type exceeded the MECP Table 10. Reg, 153/04 Standards. Test results shown in bold type exceeded the MECP Table 10. Reg, 153/04 Standards. Laboratory detection limits for the test results shown in bold type exceeded the applicable standards. All Standards and results shown in pug/L. NC - RPD not calculabelnot valid *** parameter not analyzed Tests carried out by: ALS Environmental of Waterloo, Ontario.

O.REG. 153/04 METALS AND/OR INORGANICS ANALYSIS - GROUNDWATER

Phase Two Environmental Site Assessment

303, 309 and 317 Speedvale Avenue East

PARAMETERS	TABLE 1 STANDARDS ALL TYPES OF PROPERTY USE	TABLE 2 STANDARDS ALL TYPES OF PROPERTY USE FINE SOILS	MW23-01		MW23-03	
			29-Sep-2023	29-Sep-2023	Field Duplicate	RPD (%)
Antimony (Sb)-Dissolved	1.5	6	0.22	0.26	0.25	4%
Arsenic (As)-Dissolved	13	25	0.33	0.53	0.54	2%
Barium (Ba)-Dissolved	610	1000	78.3	120	115	4%
Beryllium (Be)-Dissolved	0.5	4	<0.020	<0.020	<0.020	NC
Boron (B)-Dissolved	1700	5000	16	38	38	0
Cadmium (Cd)-Dissolved	0.5	2.7	0.0189	0.0318	0.0313	2%
Chloride (Cl)	790000	790000	199	366	429	16%
Chromium (Cr)-Dissolved	11	50	<0.50	<0.50	<0.50	NC
Chromium, Hexavalent	25	25	<0.50	<0.50	<0.50	NC
Cobalt (Co)-Dissolved	3.8	3.8	0.32	0.52	0.51	2%
Copper (Cu)-Dissolved	5	87	4.37	1.46	1.52	4%
Cyanide, Weak Acid Diss	5	66	<2.0	<2.0	<2.0	NC
Lead (Pb)-Dissolved	1.9	10	0.280	0.066	0.071	7%
Mercury (Hg)-Dissolved	0.1	1	<0.0050	< 0.0050	<0.0050	NC
Molybdenum (Mo)-Dissolved	23	70	0.590	3.51	3.36	4%
Nickel (Ni)-Dissolved	14	100	4.08	2.10	2.13	1%
Selenium (Se)-Dissolved	5	10	0.326	1.25	1.24	1%
Silver (Ag)-Dissolved	0.3	1.5	<0.010	<0.010	<0.010	NC
Sodium (Na)-Dissolved	490000	490000	134000	164000	159000	3%
Thallium (TI)-Dissolved	0.5	2	0.017	0.020	0.018	11%
Uranium (U)-Dissolved	8.9	20	1.03	0.766	0.733	4%
Vanadium (V)-Dissolved	3.9	6.2	<0.50	0.58	0.59	2%
Zinc (Zn)-Dissolved	160	1100	6.1	5.7	5.2	9%

Notes:

Standards from Table 1 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, O. Reg. 153/04 document for Full Depth Generic Site Condition Standards for All Types of Property Use.

Standards from Table 2 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, O. Reg. 153/04 document for Full Depth Generic Site Condition Standards for All Types of Property Use - Potable Groundwater Condition/Fine Textured Soil.

Test results shown in bold type exceeded the MECP Table 1 O. Reg. 153/04 Standards.

Test results shown in bold type exceeded the MECP Table 2 O. Reg. 153/04 Standards.

Laboratory detection limits for the test results shown in bold type exceeded the applicable standards.

All Standards and results shown in μ g/L. -

NC - RPD not calculable/not valid --

"-" parameter not analyzed

-Tests carried out by: ALS Environmental of Waterloo, Ontario.

VOLATILE ORGANIC COMPOUNDS (VOCs) ANALYSIS - GROUNDWATER

Phase Two Environmental Site Assessment

303, 309 and 317 Speedvale Avenue East

PARAMETERS	TABLE 1 STANDARDS ALL TYPES OF PROPERTY USE	TABLE 2 STANDARDS ALL TYPES OF PROPERTY USE FINE SOILS	MW23-01	TRIP BLANK	MW23-03		
			29-Sep-2023	29-Sep-2023	29-Sep-2023	Field Duplicate R	
Acetone	2700	2700	<20	<20	<20	<20	
Benzene	0.5	5	<0.50	<0.50	<0.50	<0.50	
Bromodichloromethane	2	16	<0.50	<0.50	<0.50	<0.50	
Bromoform	5	25	<0.50	<0.50	<0.50	<0.50	
Bromomethane	0.89	0.89	<0.50	<0.50	<0.50	<0.50	
Carbon tetrachloride	0.2	5	<0.20	<0.20	<0.20	<0.20	
Chlorobenzene	0.5	30	<0.50	<0.50	<0.50	<0.50	
Chloroform	2	22	<0.50	<0.50	<0.50	<0.50	
Dibromochloromethane	2	25	<0.50	<0.50	<0.50	<0.50	
1,2-Dichlorobenzene	0.5	3	< 0.50	<0.50	<0.50	<0.50	
1,3-Dichlorobenzene	0.5	59	<0.50	<0.50	<0.50	<0.50	
1,4-Dichlorobenzene	0.5	1	<0.50	<0.50	<0.50	<0.50	
Dichlorodifluoromethane	590	590	<0.50	<0.50	<0.50	<0.50	
1.1-Dichloroethane	0.5	5	<0.50	<0.50	<0.50	<0.50	
1.2-Dichloroethane	0.5	5	< 0.50	< 0.50	< 0.50	< 0.50	
1,1-Dichloroethylene	0.5	14	<0.50	<0.50	<0.50	<0.50	
cis-1,2-Dichloroethylene	1.6	17	< 0.50	< 0.50	< 0.50	< 0.50	
trans-1,2-Dichloroethylene	1.6	17	<0.50	<0.50	<0.50	<0.50	
1,2-Dichloropropane	0.5	5	< 0.50	< 0.50	< 0.50	< 0.50	
cis-1,3-Dichloropropene	0.5	0.5	< 0.30	< 0.30	< 0.30	< 0.30	
trans-1,3-Dichloropropene	0.5	0.5	< 0.30	< 0.30	< 0.30	< 0.30	
Dichloropropene, 1,3-	0.5	0.5	< 0.30	< 0.30	< 0.30	< 0.30	
Ethylbenzene	0.5	2.4	< 0.50	< 0.50	< 0.50	< 0.50	
1,2-Dibromoethane	0.2	0.2	<0.20	< 0.20	<0.20	<0.20	
n-Hexane	5	520	< 0.50	< 0.50	< 0.50	<0.50	
Methyl Ethyl Ketone	400	1800	<20	<20	<20	<20	
Methyl Isobutyl Ketone	640	640	<20	<20	<20	<20	
MTBE	15	15	<0.50	< 0.50	< 0.50	<0.50	
Methylene Chloride	5	50	<1.0	<1.0	<1.0	<1.0	
Styrene	0.5	5.4	<0.50	< 0.50	< 0.50	<0.50	
1,1,1,2-Tetrachloroethane	1.1	1.1	<0.50	< 0.50	< 0.50	<0.50	
1,1,2,2-Tetrachloroethane	0.5	1	<0.50	<0.50	< 0.50	<0.50	
Tetrachloroethvlene	0.5	17	<0.50	< 0.50	< 0.50	<0.50	
Toluene	0.8	24	<0.50	<0.50	<0.50	<0.50	
1.1.1-Trichloroethane	0.5	24	<0.50	<0.50	<0.50	<0.50	
1,1,2-Trichloroethane	0.5	5	<0.50	<0.50	<0.50	<0.50	
Trichloroethylene	0.5	5	<0.50	<0.50	<0.50	<0.50	
Trichlorofluoromethane	150	150	<0.50	<0.50	<0.50	<0.50	
Vinvl chloride	0.5	1.7	<0.50	<0.50	<0.50	<0.50	
,	0.5	300	< 0.50	< 0.50	<0.50	<0.50	
Xylenes (Total)	12	300	NU.50	NU.50	NU.50	NU.50	

Notes: - Standards from Table 1 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, O. Reg. 153/04 document for Full Depth Generic Site Condition Standards -

Environmental Protection Act, April 15, 2011, O. Reg. 153/04 document for Full Depth Generic Site Condition Standards for All Types of Property Use. Standards from Table 2 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, O. Reg. 153/04 document for Full Depth Generic Site Condition Standards for All Types of Property Use - Potable Groundwater Condition/Fine Textured Soil. Test results shown in bold type exceeded the MECP Table 1 O. Reg. 153/04 Standards. Test results shown in bold type exceeded the MECP Table 2 O. Reg. 153/04 Standards. -

Laboratory detection limits for the test results shown in bold type exceeded the applicable standards.

--

Laboratory detection limits for the cost of a second and and results shown in µg/L. All Standards and results shown in µg/L. ALS Environmental of Waterloo, Ontario.

RPD (%)	
NC	

Appendix D Laboratory Certificates of Analysis

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	: WT2330022	Page	: 1 of 10
Client	: Englobe Corp.	Laboratory	: ALS Environmental - Waterloo
Contact	: Jessica Godin	Account Manager	: Gayle Braun
Address	353 Bridge Street East Kitchener ON Canada N2K 2Y5	Address	: 60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	+1 519 886 6910
Project	: 02302109.001	Date Samples Received	: 19-Sep-2023 18:40
PO		Date Analysis Commenced	: 20-Sep-2023
C-O-C number	: 20-1083252	Issue Date	: 26-Sep-2023 12:54
Sampler	: TA		
Site			
Quote number	: KITCHENER/LONDON EXCESS SOIL		
No. of samples received	: 5		
No. of samples analysed	: 5		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Inorganics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Metals, Waterloo, Ontario
Niral Patel		Centralized Prep, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	VOC, Waterloo, Ontario

Page	:	2 of 10
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Summary of Guideline Breaches by Sample

SampleID/Client ID	Matrix	Analyte	Analyte Summary	Guideline	Category	Result	Limit
BH23-01 SA3	Soil/Solid	Dichloromethane		ON153/04	T2-RPI-C	<0.135	0.1 mg/kg
BH23-03 SA7	Soil/Solid	Dichloromethane		ON153/04	T2-RPI-C	<0.148	0.1 mg/kg
BH23-04 SA3	Soil/Solid	Conductivity (1:2 leachate)		ON153/04	T2-RPI-C	1.49 mS/cm	0.7 mS/cm
	Soil/Solid	Sodium adsorption ratio [SAR]		ON153/04	T2-RPI-C	11.1 -	5 -
	Soil/Solid	Conductivity (1:2 leachate)		ON153/04	T2-RPI-F	1.49 mS/cm	0.7 mS/cm
	Soil/Solid	Sodium adsorption ratio [SAR]		ON153/04	T2-RPI-F	11.1 -	5 -

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
%	percent
mg/kg	milligrams per kilogram
mg/L	milligrams per litre
mS/cm	millisiemens per centimetre
pH units	pH units

>: greater than.

<: less than.

Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable). For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

Workorder Comments

RRR: DCM LOR increased due to the potential of laboratory contamination.

Qualifiers

Qualifier	Description
RRR	Refer to report comments for issues regarding this analysis.

Page	:	4 of 10
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Mathic SoulsoidSame is an intermediate of the second of the			Client	sample ID	BH23-01 SA3	BH23-02 SA6	BH23-03 SA7	BH23-04 SA3	DUP-01	 				
initialinitialinitialinitialinitialinitialinitialinitialinitialAnalysCAS NumberMethod LasMethod LasMailMailSalilisal<	Matrix: Soil/Solid													
Analyse CAS humber Method Lab Urt WT2330022-001 WT233002-001 WT233002-001 <th< th=""><td></td><td colspan="2">Sampling date/time</td><td></td><td></td><td></td><td></td><td></td><td> </td></th<>		Sampling date/time							 					
Phylical restrictPhylical restrictPh				Sub-Matrix	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	 				
Conductivity (12 leachate)E100_UVTmStm0.1950.1050.1731.400.220MoistureE144WT%7.397.479.996.649.51pl (12 solf:CaClea)E144WT%7.397.978.117.966.649.51CyanideE384WTmg/kg<0.050	Analyte	CAS Number	Method/Lab	Unit	WT2330022-001	WT2330022-002	WT2330022-003	WT2330022-004	WT2330022-005	 				
NotistryNotistr	Physical Tests													
ph (12 solicAci2aq)pi Rumpi Rumn, 7.78.117.607.60Cyndee <td <="" colspan="4" th=""><td>Conductivity (1:2 leachate)</td><td></td><td>E100-L/WT</td><td>mS/cm</td><td>0.195</td><td>0.105</td><td>0.173</td><td>1.49</td><td>0.220</td><td> </td></td>	<td>Conductivity (1:2 leachate)</td> <td></td> <td>E100-L/WT</td> <td>mS/cm</td> <td>0.195</td> <td>0.105</td> <td>0.173</td> <td>1.49</td> <td>0.220</td> <td> </td>				Conductivity (1:2 leachate)		E100-L/WT	mS/cm	0.195	0.105	0.173	1.49	0.220	
Cyanides Cyanide, weak acid dissociable E336AWT mg/kg <0.050	Moisture		E144/WT	%	7.39	7.44	9.99	6.64	9.51	 				
Cyanido, weak acid dissociablemodesmodes<-0.050	pH (1:2 soil:CaCl2-aq)		E108A/WT	pH units	7.75	7.97	8.11	7.96	7.66	 				
Kack-Astion Extractables Kack-As	Cyanides													
Calcium, soluble ion content7440-702F444/VTmg/L8.013.244.4883.048.006.00Magnesium, soluble ion content7439-954F444/VTmg/L19.300.8551.1884.6221.88Sodium, soluble ion content17341-22F444/VTmg/L0.6790.1700.790.1100.8651.1306.800 </th <td>Cyanide, weak acid dissociable</td> <td></td> <td>E336A/WT</td> <td>mg/kg</td> <td><0.050</td> <td><0.050</td> <td><0.050</td> <td><0.050</td> <td><0.050</td> <td> </td>	Cyanide, weak acid dissociable		E336A/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	 				
Magnesium, soluble ion content7439-954R484WTmg/L1.930.0851.881.884.621.1881.881.890.4.9Sodium, soluble ion content17341-252E484WTmg/L9.6551.338.07724810.4Sodium adsorption ratio [SAR]aE484WTmg/L9.6551.338.0770.100.110.041.40MetalMatsoT400-360E40CWTmg/K0.100.010	Fixed-Ratio Extractables													
Sodulus for controlindicationindicat	Calcium, soluble ion content	7440-70-2	E484/WT	mg/L	8.01	3.24	4.88	30.4	8.00	 				
Sodium adsorption ratio [SAR]E44WTP0.790.7911.10.86MatasMatinomy7440-360E440CWTmg/kg6<0.10<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010<0.010 <td>Magnesium, soluble ion content</td> <td>7439-95-4</td> <td>E484/WT</td> <td>mg/L</td> <td>1.93</td> <td>0.85</td> <td>1.88</td> <td>4.62</td> <td>1.88</td> <td> </td>	Magnesium, soluble ion content	7439-95-4	E484/WT	mg/L	1.93	0.85	1.88	4.62	1.88	 				
Metals Metals<	Sodium, soluble ion content	17341-25-2	E484/WT	mg/L	9.65	1.33	8.07	248	10.4	 				
Artimory7440-3coE440CWTmg/kg~0.10~0.10~0.10~0.10~0.10~1.00~0.10~1.00<	Sodium adsorption ratio [SAR]		E484/WT	-	0.79	0.17	0.79	11.1	0.86	 				
AsenicTydolase MarketKurketTigket<	Metals													
BariumTAGMORBACONTMOR15.223.111.516.4BACONMORMORBerylliumTA404.17KACONTMg/s0.180.190.120.150.27BoronTA404.28KACONTMg/s0.286.95.15.505.50Boron, hot water solubleTA404.28KATONTMg/s0.12-0.10-0.100.13CarmiumTA404.39KATONTMg/s0.12-0.10-0.100.13ChroniumTA404.39KATONTMg/s0.130.2490.1540.2310.222ChobitTA404.39KACONTMg/s0.130.2490.1540.2310.223ChobitTA404.39KACONTMg/s0.130.2491.562.8003.51ChobitTA404.39KACONTMg/s0.14014.0014.0014.0014.00	Antimony	7440-36-0	E440C/WT	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	 				
BeryliumTAGOLITK40CWTmg/kg0.180.190.120.150.27Boron740428K40CWTmg/kg5.26.95.1<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0<5.0 </th <td>Arsenic</td> <td>7440-38-2</td> <td>E440C/WT</td> <td>mg/kg</td> <td>1.76</td> <td>1.91</td> <td>1.30</td> <td>2.39</td> <td>2.66</td> <td> </td>	Arsenic	7440-38-2	E440C/WT	mg/kg	1.76	1.91	1.30	2.39	2.66	 				
Boron7440428E440CWTmg/kg5.2 G6.9 G5.1 G5.5 G	Barium	7440-39-3	E440C/WT	mg/kg	15.2	23.1	11.5	16.4	26.6	 				
Boron, hot water solubleY440-428R487VTNu Na0.12<0.10	Beryllium	7440-41-7	E440C/WT	mg/kg	0.18	0.19	0.12	0.15	0.27	 				
Cadmium <t< th=""><td>Boron</td><td>7440-42-8</td><td>E440C/WT</td><td>mg/kg</td><td>5.2</td><td>6.9</td><td>5.1</td><td><5.0</td><td><5.0</td><td> </td></t<>	Boron	7440-42-8	E440C/WT	mg/kg	5.2	6.9	5.1	<5.0	<5.0	 				
ChromiumTrackerIndexerIndexerIndexerIndexerIndexerIndexerIndexerIndexerIndexerChromium74404.73E440CWTMg/kg9.738.017.007.0012.31Cobalt74404.84E440CWTMg/kg2.222.721.562.803.51Copper74404.58E440CWTMg/kg<14.0<14.0<14.0<14.0<14.0<	Boron, hot water soluble	7440-42-8	E487/WT	mg/kg	0.12	<0.10	<0.10	<0.10	0.13	 				
CobaltThe mode of the mode of	Cadmium	7440-43-9	E440C/WT	mg/kg	0.113	0.249	0.154	0.231	0.222	 				
CopperTAGOE40CWTMg/kg<14.0	Chromium	7440-47-3	E440C/WT	mg/kg	9.73	8.01	7.00	7.00	12.3	 				
Lead γ_{439929} δ^{400WT} $m_{0/kg}$ 8.35 13.4 10.4 19.5 14.0 <	Cobalt			mg/kg	2.22				3.51	 				
Mercury Mass Mode	Copper	7440-50-8	E440C/WT	mg/kg	<14.0	<14.0	<14.0	<14.0	<14.0	 				
Molybelnum YA39987 E440CWT mg/kg 0.97 0.28 0.61 0.23 0.47 Nickel Y440-200 E440CWT mg/kg 5.20 5.61 3.16 6.14 7.50 Selenium Y782-492 E440CWT mg/kg -0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <t< th=""><td>Lead</td><td>7439-92-1</td><td>E440C/WT</td><td></td><td>8.35</td><td></td><td>10.4</td><td></td><td>14.0</td><td> </td></t<>	Lead	7439-92-1	E440C/WT		8.35		10.4		14.0	 				
Nickel 7440-02-0 E440C/WT mg/kg 5.20 5.61 3.16 6.14 7.50 Selenium 7782-49-2 E440C/WT mg/kg <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	Mercury	7439-97-6	E510C/WT	mg/kg	0.0104	0.0059			0.0231	 				
Selenium 7782-49-2 E440C/WT mg/kg <0.20	Molybdenum	7439-98-7	E440C/WT	mg/kg	0.97	0.28	0.61	0.23	0.47	 				
	Nickel	7440-02-0	E440C/WT	mg/kg	5.20	5.61	3.16	6.14	7.50	 				
Silver 7440-22-4 E440C/WT mg/kg <0.10 <0.10 <0.10 <0.10 <0.10	Selenium			mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20	 				
	Silver	7440-22-4	E440C/WT	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	 				

Page	:	5 of 10
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

		Client	sample ID	BH23-01 SA3	BH23-02 SA6	BH23-03 SA7	BH23-04 SA3	DUP-01	
Matrix: Soil/Solid									
		Sampling	date/time	19-Sep-2023 13:05	19-Sep-2023 12:40	19-Sep-2023 08:55	19-Sep-2023 14:00	19-Sep-2023 00:00	
					Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	
		Method/Lab	Sub-Matrix Unit	Soil/Solid WT2330022-001	WT2330022-002	WT2330022-003	WT2330022-004	WT2330022-005	
Analyte	CAS Number	Welliou/Lab	Onn	VV12330022-001	WT2330022-002	W12330022-003	WT2330022-004	WT2330022-005	
Metals									
Thallium	7440-28-0	E440C/WT	mg/kg	<0.050	0.050	<0.050	<0.050	0.064	
Uranium	7440-61-1	E440C/WT	mg/kg	0.372	0.410	0.397	0.398	0.396	
Vanadium	7440-62-2	E440C/WT	mg/kg	16.4	14.9	12.4	15.7	25.3	
Zinc	7440-66-6	E440C/WT	mg/kg	44.4	85.0	47.1	177	78.3	
Speciated Metals									
Chromium, hexavalent [Cr VI]	18540-29-9	E532/WT	mg/kg	0.12	<0.10	<0.10	<0.10	0.14	
Volatile Organic Compounds									
Acetone	67-64-1	E611D/WT	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	
Benzene	71-43-2	E611D/WT	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
Bromodichloromethane	75-27-4	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Bromoform	75-25-2	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Bromomethane	74-83-9	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Carbon tetrachloride	56-23-5	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Chlorobenzene	108-90-7	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Chloroform	67-66-3	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Dibromochloromethane	124-48-1	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Dibromoethane, 1,2-	106-93-4	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Dichlorobenzene, 1,2-	95-50-1	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Dichlorobenzene, 1,3-	541-73-1	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Dichlorobenzene, 1,4-	106-46-7	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Dichlorodifluoromethane	75-71-8	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Dichloroethane, 1,1-	75-34-3	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Dichloroethane, 1,2-	107-06-2	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Dichloroethylene, 1,1-	75-35-4	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Dichloroethylene, cis-1,2-	156-59-2	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Dichloroethylene, trans-1,2-	156-60-5	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Dichloromethane	75-09-2	E611D/WT	mg/kg	<0.135 RRR	<0.096 RRR	<0.148 RRR	<0.090 RRR	<0.085 RRR	
Dichloropropane, 1,2-	78-87-5	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	

Page	:	6 of 10
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

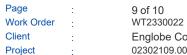
Matter of the tra		Client	sample ID	BH23-01 SA3	BH23-02 SA6	BH23-03 SA7	BH23-04 SA3	DUP-01	
Matrix: Soil/Solid		Sampling	, date/time	19-Sep-2023 13:05	19-Sep-2023 12:40	19-Sep-2023 08:55	19-Sep-2023 14:00	19-Sep-2023 00:00	
			Sub-Matrix	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	
Analyte	CAS Number		Unit	WT2330022-001	WT2330022-002	WT2330022-003	WT2330022-004	WT2330022-005	
Volatile Organic Compounds									
Dichloropropylene, cis+trans-1,3-	542-75-6	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Dichloropropylene, cis-1,3-	10061-01-5	E611D/WT	mg/kg	<0.030	<0.030	<0.030	<0.030	<0.030	
Dichloropropylene, trans-1,3-	10061-02-6	E611D/WT	mg/kg	<0.030	<0.030	<0.030	<0.030	<0.030	
Ethylbenzene	100-41-4	E611D/WT	mg/kg	<0.015	<0.015	<0.015	<0.015	<0.015	
Hexane, n-	110-54-3	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Methyl ethyl ketone [MEK]	78-93-3	E611D/WT	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	
Methyl isobutyl ketone [MIBK]	108-10-1	E611D/WT	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D/WT	mg/kg	<0.040	<0.040	<0.040	<0.040	<0.040	
Styrene	100-42-5	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Tetrachloroethane, 1,1,1,2-	630-20-6	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Tetrachloroethylene	127-18-4	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Toluene	108-88-3	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Trichloroethane, 1,1,1-	71-55-6	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Trichloroethane, 1,1,2-	79-00-5	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Trichloroethylene	79-01-6	E611D/WT	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	
Trichlorofluoromethane	75-69-4	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
Vinyl chloride	75-01-4	E611D/WT	mg/kg	<0.020	<0.020	<0.020	<0.020	<0.020	
Xylene, m+p-	179601-23-1	E611D/WT	mg/kg	<0.030	<0.030	<0.030	<0.030	<0.030	
Xylene, o-	95-47-6	E611D/WT	mg/kg	<0.030	<0.030	<0.030	<0.030	<0.030	
Xylenes, total	1330-20-7	E611D/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	
BTEX, total		E611D/WT	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	
Hydrocarbons									
F1 (C6-C10)		E581.F1/WT	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0	
F2 (C10-C16)		E601.SG-L/WT	mg/kg	<10	<10	<10	<10	<10	
F3 (C16-C34)		E601.SG-L/WT	mg/kg	<50	<50	<50	<50	<50	
F4 (C34-C50)		E601.SG-L/WT	mg/kg	<50	<50	<50	<50	<50	
F1-BTEX		EC580/WT	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0	

Page	:	7 of 10
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Matrix: Soil/Solid		Client	sample ID	BH23-01 SA3	BH23-02 SA6	BH23-03 SA7	BH23-04 SA3	DUP-01	
	Sampling date/time			19-Sep-2023 13:05	19-Sep-2023 12:40	19-Sep-2023 08:55	19-Sep-2023 14:00	19-Sep-2023 00:00	
		5	Sub-Matrix	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	
Analyte	CAS Number	Method/Lab	Unit	WT2330022-001	WT2330022-002	WT2330022-003	WT2330022-004	WT2330022-005	
Hydrocarbons									
Hydrocarbons, total (C6-C50)		EC581/WT	mg/kg	<80	<80	<80	<80	<80	
Chromatogram to baseline at nC50	n/a	E601.SG-L/WT	-	YES	YES	YES	YES	YES	
Hydrocarbons Surrogates									
Bromobenzotrifluoride, 2- (F2-F4 surrogate) 392-83-6	E601.SG-L/WT	%	85.5	87.5	84.8	85.4	86.5	
Dichlorotoluene, 3,4-	95-75-0	E581.F1/WT	%	94.8	94.4	101	96.4	93.7	
Volatile Organic Compounds Surrogates			ĺ						
Bromofluorobenzene, 4-	460-00-4	E611D/WT	%	81.8	79.7	83.4	82.3	81.8	
Difluorobenzene, 1,4-	540-36-3	E611D/WT	%	91.0	89.1	91.5	92.3	91.0	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.


Page	:	8 of 10
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Summary of Guideline Limits

Analyte	CAO Martin	Unit			-
nnaiyie	CAS Number	Unit	ON153/04	ON153/04	
			T2-RPI-C	T2-RPI-F	ŀ
Physical Tests		mS/am	0.7.00/000	0.7	
Conductivity (1:2 leachate)		mS/cm	0.7 mS/cm	0.7 mS/cm	
		%			
pH (1:2 soil:CaCl2-aq)		pH units			l
Cyanides					
Cyanide, weak acid dissociable		mg/kg	0.051 mg/kg	0.051 mg/kg	
Fixed-Ratio Extractables					
Calcium, soluble ion content	7440-70-2	mg/L			
Magnesium, soluble ion content	7439-95-4	mg/L			
Sodium adsorption ratio [SAR]		-	5 -	5 -	
Sodium, soluble ion content	17341-25-2	mg/L			
Metals					
Antimony	7440-36-0	mg/kg	7.5 mg/kg	7.5 mg/kg	
Arsenic	7440-38-2	mg/kg	18 mg/kg	18 mg/kg	
Barium	7440-39-3	mg/kg	390 mg/kg	390 mg/kg	
Beryllium	7440-41-7	mg/kg	4 mg/kg	5 mg/kg	
Boron, hot water soluble	7440-42-8	mg/kg	1.5 mg/kg	1.5 mg/kg	
Boron	7440-42-8	mg/kg	120 mg/kg	120 mg/kg	
Cadmium	7440-43-9	mg/kg	1.2 mg/kg	1.2 mg/kg	
Chromium	7440-47-3	mg/kg	160 mg/kg	160 mg/kg	
Cobalt	7440-48-4	mg/kg	22 mg/kg	22 mg/kg	
	7440-48-4	mg/kg	140 mg/kg		
Copper	7440-50-8			180 mg/kg	
Lead		mg/kg	120 mg/kg	120 mg/kg	
	7439-97-6	mg/kg	0.27 mg/kg	1.8 mg/kg	
Molybdenum	7439-98-7	mg/kg	6.9 mg/kg	6.9 mg/kg	
Nickel	7440-02-0	mg/kg	100 mg/kg	130 mg/kg	
Selenium	7782-49-2	mg/kg	2.4 mg/kg	2.4 mg/kg	
Silver	7440-22-4	mg/kg	20 mg/kg	25 mg/kg	
Thallium	7440-28-0	mg/kg	1 mg/kg	1 mg/kg	
Uranium	7440-61-1	mg/kg	23 mg/kg	23 mg/kg	
Vanadium	7440-62-2	mg/kg	86 mg/kg	86 mg/kg	
Zinc	7440-66-6	mg/kg	340 mg/kg	340 mg/kg	
Speciated Metals					
Chromium, hexavalent [Cr VI]	18540-29-9	mg/kg	8 mg/kg	10 mg/kg	
Volatile Organic Compounds					
Acetone	67-64-1	mg/kg	16 mg/kg	28 mg/kg	
Benzene	71-43-2	mg/kg	0.21 mg/kg	0.17 mg/kg	
Bromodichloromethane	75-27-4	mg/kg	1.5 mg/kg	1.9 mg/kg	
					1

Client : Englobe Corp.							(ALS)
roject : 02302109.001							
nalyte	CAS Number	Unit	ON153/04	ON153/04			
			T2-RPI-C	T2-RPI-F			
Volatile Organic Compounds - Continued							
Bromoform	75-25-2	mg/kg	0.27 mg/kg	0.26 mg/kg			
Bromomethane	74-83-9	mg/kg	0.05 mg/kg	0.05 mg/kg			
BTEX, total		mg/kg					
Carbon tetrachloride	56-23-5	mg/kg	0.05 mg/kg	0.12 mg/kg			
Chlorobenzene	108-90-7	mg/kg	2.4 mg/kg	2.7 mg/kg			
Chloroform	67-66-3	mg/kg	0.05 mg/kg	0.18 mg/kg			
Dibromochloromethane	124-48-1	mg/kg	2.3 mg/kg	2.9 mg/kg			
Dibromoethane, 1,2-	106-93-4	mg/kg	0.05 mg/kg	0.05 mg/kg			
Dichlorobenzene, 1,2-	95-50-1	mg/kg	1.2 mg/kg	1.7 mg/kg			
Dichlorobenzene, 1,3-	541-73-1	mg/kg	4.8 mg/kg	6 mg/kg			
Dichlorobenzene, 1,4-	106-46-7	mg/kg	0.083 mg/kg	0.097 mg/kg			
Dichlorodifluoromethane	75-71-8	mg/kg	16 mg/kg	25 mg/kg			
Dichloroethane, 1,1-	75-34-3	mg/kg	0.47 mg/kg	0.6 mg/kg			
Dichloroethane, 1,2-	107-06-2	mg/kg	0.05 mg/kg	0.05 mg/kg			
Dichloroethylene, 1,1-	75-35-4	mg/kg	0.05 mg/kg	0.05 mg/kg			
Dichloroethylene, cis-1,2-	156-59-2	mg/kg	1.9 mg/kg	2.5 mg/kg			
Dichloroethylene, trans-1,2-	156-60-5	mg/kg	0.084 mg/kg	0.75 mg/kg			
Dichloromethane	75-09-2	mg/kg	0.1 mg/kg	0.96 mg/kg			
Dichloropropane, 1,2-	78-87-5	mg/kg	0.05 mg/kg	0.085 mg/kg			
Dichloropropylene, cis+trans-1,3-	542-75-6	mg/kg	0.05 mg/kg	0.081 mg/kg			
Dichloropropylene, cis-1,3-	10061-01-5	mg/kg					
Dichloropropylene, trans-1,3-	10061-02-6	mg/kg					
Ethylbenzene	100-41-4	mg/kg	1.1 mg/kg	1.6 mg/kg			
Hexane, n-	110-54-3	mg/kg	2.8 mg/kg	34 mg/kg			
Methyl ethyl ketone [MEK]	78-93-3	mg/kg	16 mg/kg	44 mg/kg			
Methyl isobutyl ketone [MIBK]	108-10-1	mg/kg	1.7 mg/kg	4.3 mg/kg			
Methyl-tert-butyl ether [MTBE]	1634-04-4	mg/kg	0.75 mg/kg	1.4 mg/kg			
Styrene	100-42-5	mg/kg	0.7 mg/kg	2.2 mg/kg			
Fetrachloroethane, 1,1,1,2-	630-20-6	mg/kg	0.058 mg/kg	0.05 mg/kg			
Fetrachloroethane, 1,1,2,2-	79-34-5	mg/kg	0.05 mg/kg	0.05 mg/kg			
Tetrachloroethylene	127-18-4	mg/kg	0.28 mg/kg	2.3 mg/kg			
Toluene	108-88-3	mg/kg	2.3 mg/kg	6 mg/kg			
Frichloroethane, 1,1,1-	71-55-6	mg/kg	0.38 mg/kg	3.4 mg/kg			
richloroethane, 1,1,2-	79-00-5	mg/kg	0.05 mg/kg	0.05 mg/kg			
Frichloroethylene	79-00-5		0.061 mg/kg				
Trichlorofluoromethane	79-01-6 75-69-4	mg/kg		0.52 mg/kg			
		mg/kg	4 mg/kg	5.8 mg/kg			
Vinyl chloride	75-01-4	mg/kg	0.02 mg/kg	0.022 mg/kg			
Xylene, m+p-	179601-23-1	mg/kg					
Xylene, o-	95-47-6	mg/kg					

alsglobal.com

Page	:	10 of 10
Work Order	1	WT2330022
Client	1	Englobe Corp.
Project	1	02302109.001

Analyte	CAS Number	Unit	ON153/04 T2-RPI-C	ON153/04 T2-RPI-F			
Volatile Organic Compounds - Continued							
Xylenes, total	1330-20-7	mg/kg	3.1 mg/kg	25 mg/kg			
Hydrocarbons							
Chromatogram to baseline at nC50	n/a	-					
F1 (C6-C10)		mg/kg	55 mg/kg	65 mg/kg			
F1-BTEX		mg/kg	55 mg/kg	65 mg/kg			
F2 (C10-C16)		mg/kg	98 mg/kg	150 mg/kg			
F3 (C16-C34)		mg/kg	300 mg/kg	1300 mg/kg			
F4 (C34-C50)		mg/kg	2800 mg/kg	5600 mg/kg			
Hydrocarbons, total (C6-C50)		mg/kg					
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6	%					
Dichlorotoluene, 3,4-	95-75-0	%					
Bromofluorobenzene, 4-	460-00-4	%					
Difluorobenzene, 1,4-	540-36-3	%					

Please refer to the General Comments section for an explanation of any qualifiers detected.

Key:

ON153/04 T2-RPI-C

T2-RPI-F

Ontario Regulation 153/04 - April 15, 2011 Standards (JUL, 2011) 153 T2-Soil-Res/Park/Inst. Property Use (Coarse)

153 T2-Soil-Res/Park/Inst. Property Use (Fine)

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	:WT2330022	Page	: 1 of 14
Client	Englobe Corp.	Laboratory	: ALS Environmental - Waterloo
Contact	: Jessica Godin	Account Manager	: Gayle Braun
Address	: 353 Bridge Street East	Address	: 60 Northland Road, Unit 1
	Kitchener ON Canada N2K 2Y5		Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	: +1 519 886 6910
Project	: 02302109.001	Date Samples Received	: 19-Sep-2023 18:40
PO	:	Issue Date	: 26-Sep-2023 12:54
C-O-C number	: 20-1083252		
Sampler	: TA		
Site			
Quote number	: KITCHENER/LONDON EXCESS SOIL		
No. of samples received	:5		
No. of samples analysed	:5		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) <u>No</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Page	:	3 of 14
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Soil/Solid					E١	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analysis		
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Cyanides : WAD Cyanide (0.01M NaOH Extraction)										
Glass soil jar/Teflon lined cap [ON MECP]										
BH23-01 SA3	E336A	19-Sep-2023	20-Sep-2023	14	1 days	✓	22-Sep-2023	14 days	2 days	✓
				days						
Cyanides : WAD Cyanide (0.01M NaOH Extraction)										
Glass soil jar/Teflon lined cap [ON MECP]										
BH23-02 SA6	E336A	19-Sep-2023	20-Sep-2023	14	1 days	✓	22-Sep-2023	14 days	2 days	✓
				days						
Cyanides : WAD Cyanide (0.01M NaOH Extraction)				1						
Glass soil jar/Teflon lined cap [ON MECP]										
BH23-03 SA7	E336A	19-Sep-2023	20-Sep-2023	14	1 days	✓	22-Sep-2023	14 days	2 days	✓
				days						
Cyanides : WAD Cyanide (0.01M NaOH Extraction)				1				1	1 1	
Glass soil jar/Teflon lined cap [ON MECP]										
BH23-04 SA3	E336A	19-Sep-2023	20-Sep-2023	14	1 days	✓	22-Sep-2023	14 days	2 days	✓
				days						
Cyanides : WAD Cyanide (0.01M NaOH Extraction)				1					I I	
Glass soil jar/Teflon lined cap [ON MECP]										
DUP-01	E336A	19-Sep-2023	20-Sep-2023	14	1 days	✓	22-Sep-2023	14 days	2 days	✓
				days						
Fixed-Ratio Extractables : Sodium Adsorption Ratio (SAR) - 1:2 Soil:Water (Dry)				1				1	1 1	
Glass soil jar/Teflon lined cap [ON MECP]										
BH23-01 SA3	E484	19-Sep-2023	22-Sep-2023	180	2 days	✓	22-Sep-2023	180	0 days	✓
				days				days		
Fixed-Ratio Extractables : Sodium Adsorption Ratio (SAR) - 1:2 Soil:Water (Dry)				1	1		1	<u> </u>	1 1	
Glass soil jar/Teflon lined cap [ON MECP]										
BH23-04 SA3	E484	19-Sep-2023	22-Sep-2023	180	2 days	1	22-Sep-2023	180	0 days	✓
			-	days				days	-	

Page :	4 of 14
Work Order :	WT2330022
Client :	Englobe Corp.
Project :	02302109.001

Commer Cleam Sample 10(a) Programmer Hotting: Times Eval Analysis Date Hotting: Times Eval Node Abdie Re Actual Eval Analysis Date Hotting: Times Eval Re Actual Medians Salars Images Re Actual Images Actual Images Actual Images Re Actual Images I	latrix: Soil/Solid					E١	/aluation: × =	Holding time exce	edance ; •	= Within	Holding Ti
Interd-Atable Should adsorption Ratio (SAR) - 1.2 Soll:Water (Dry) Rec Actual	Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	sis	
Interd-Ratio Extractables : Sodium Adsorption Ratio (SAR) - 1:2 Soli:Water (Dry) E484 19-Sep-2023 22-Sep-2023 180 3 days ✓ 22-Sep-2023 180 0 days 0 days ✓ BH23-02 SAG BH23-02 SAG Sodium Adsorption Ratio (SAR) - 1:2 Soli:Water (Dry) E484 19-Sep-2023 22-Sep-2023 180 3 days ✓ 22-Sep-2023 180 0 days ✓ BH23-02 SAG E484 19-Sep-2023 22-Sep-2023 180 3 days ✓ 22-Sep-2023 180 0 days ✓ 23-Sep-2023 180 0 days ✓ 24-Sep-2023 140 24-Sep-2023 140 24-Sep-2023 140 </th <th>Container / Client Sample ID(s)</th> <th></th> <th></th> <th>Preparation</th> <th>Holding</th> <th>g Times</th> <th>Eval</th> <th>Analysis Date</th> <th>Holding</th> <th>g Times</th> <th>Eval</th>	Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
Glass Sol E484 19-Sep-2023 22-Sep-2023 100 days 3 days ✓ 22-Sep-2023 100 days 0 days 0 days ✓ Sides Soli JarfGen lined cap [ON MECP] BH23-03 SA7 E484 19-Sep-2023 22-Sep-2023 180 days 3 days ✓ 22-Sep-2023 180 days 0 days 0 days ✓ Sides Soli JarfGen lined cap [ON MECP] BH23-03 SA7 E484 19-Sep-2023 22-Sep-2023 180 days 3 days ✓ 22-Sep-2023 180 days 0 days 0 days ✓ Sides Soli JarfGen lined cap [ON MECP] BH23-03 SA7 E484 19-Sep-2023 22-Sep-2023 180 days 3 days ✓ 22-Sep-2023 180 days 0 days 0 days ✓ Sides Soli Methanol Vial [ON MECP] BH23-01 SA3 E581.F1 19-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Sides Soli Methanol Vial [ON MECP] BH23-01 SA3 E581.F1 19-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Side Soli Methanol Vial [ON				Date	Rec	Actual			Rec	Actual	
Glass Sol E484 19-Sep-2023 22-Sep-2023 100 days 3 days ✓ 22-Sep-2023 100 days 0 days 0 days ✓ Sides Soli JarfGen lined cap [ON MECP] BH23-03 SA7 E484 19-Sep-2023 22-Sep-2023 180 days 3 days ✓ 22-Sep-2023 180 days 0 days 0 days ✓ Sides Soli JarfGen lined cap [ON MECP] BH23-03 SA7 E484 19-Sep-2023 22-Sep-2023 180 days 3 days ✓ 22-Sep-2023 180 days 0 days 0 days ✓ Sides Soli JarfGen lined cap [ON MECP] BH23-03 SA7 E484 19-Sep-2023 22-Sep-2023 180 days 3 days ✓ 22-Sep-2023 180 days 0 days 0 days ✓ Sides Soli Methanol Vial [ON MECP] BH23-01 SA3 E581.F1 19-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Sides Soli Methanol Vial [ON MECP] BH23-01 SA3 E581.F1 19-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Side Soli Methanol Vial [ON	Fixed-Ratio Extractables : Sodium Adsorption Ratio (SAR) - 1:2 Soil:Water (Dry)										
BH23-02 SAG E494 19-Sep-2023 22-Sep-2023 100 3 days ✓ 22-Sep-2023 100 0 days 0 days ✓ Ixed-Fatio Extractables : Sodium Adsorption Ratio (SAR) - 1.2 SoliWater (Dry) E484 19-Sep-2023 22-Sep-2023 100 3 days ✓ 22-Sep-2023 100 0 days 0 days ✓ Sess soli jar/Teffon lined cap (DN MECP] BH23-03 SA7 E484 19-Sep-2023 22-Sep-2023 100 3 days ✓ 22-Sep-2023 100 0 days 0 days 0 days ✓ Sess soli jar/Teffon lined cap (DN MECP] DUP-01 E484 19-Sep-2023 21-Sep-2023 140 3 days ✓ 22-Sep-2023 100 3 days ✓ 21-Sep-2023 100 3 days ✓ 21-Sep-2023 100 0 days 0 days ✓	Glass soil jar/Teflon lined cap [ON MECP]										
Non-Adsorption Ratio (SAR) - 1:2 Soli.Water (Dry) Glass soli jar/Tefion lined cap [ON MECP] BH23-43 SA7 CEAB4 19-Sep-2023 22-Sep-2023 180 days 0 days 0 BH23-43 SA7 E484 19-Sep-2023 22-Sep-2023 180 days V Soliw MECP] DUP-01 E484 19-Sep-2023 22-Sep-2023 180 days V DUP-01 E484 19-Sep-2023 22-Sep-2023 180 days V BH23-01 SA3 E581.F1 19-Sep-2023 21-Sep-2023 144 2 days V BH23-01 SA3 E581.F1 19-Sep-2023 21-Sep-2023 144 2 days V Solimethanol Vial [ON MECP] BH23-01 SA3 E581.F1 19-Sep-2023 21-Sep-2		E484	19-Sep-2023	22-Sep-2023	180	3 days	1	22-Sep-2023	180	0 days	✓
Non-Adsorption Ratio (SAR) - 1:2 Soli.Water (Dry) Glass soli jar/Tefion lined cap [ON MECP] BH23-43 SA7 CEAB4 19-Sep-2023 22-Sep-2023 180 days 0 days 0 BH23-43 SA7 E484 19-Sep-2023 22-Sep-2023 180 days V Soliw MECP] DUP-01 E484 19-Sep-2023 22-Sep-2023 180 days V DUP-01 E484 19-Sep-2023 22-Sep-2023 180 days V BH23-01 SA3 E581.F1 19-Sep-2023 21-Sep-2023 144 2 days V BH23-01 SA3 E581.F1 19-Sep-2023 21-Sep-2023 144 2 days V Solimethanol Vial [ON MECP] BH23-01 SA3 E581.F1 19-Sep-2023 21-Sep-2				-	days	-			days		
Glass Soli jar/Teffon lined cap (DN MECP] BH23-03 SA7 E484 19-Sep-2023 22-Sep-2023 180 days 3 days ✓ 22-Sep-2023 180 days 0 days ✓ bited Attitle Extractables : Soliam Adsorption Ratio (SAR) - 1.2 Soli:Water (Dry) E484 19-Sep-2023 22-Sep-2023 180 days 3 days ✓ 22-Sep-2023 180 days 0 days ✓ DUP-01 E484 19-Sep-2023 22-Sep-2023 180 days 3 days ✓ 22-Sep-2023 180 days 0 days ✓ Vptocarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ BH23-01 SA3 E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ BH23-02 SA6 E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Vptocarbons : CCME FHC : F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40	Eived Patie Extractables : Sodium Advantion Patie (SAP) 1:2 Soil: Water (Dru)					I					
BH23.03 SA7 E484 19-Sep-2023 22-Sep-2023 100 days 3 days ✓ 22-Sep-2023 100 days 0 days ✓ CKACATALIO EXTRACTABLES : Sodium Adsorption Ratio (SAF) - 1:2 Soll/Water (Dry) E484 19-Sep-2023 22-Sep-2023 100 days 3 days ✓ 22-Sep-2023 100 days 100 days 0 days </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>								1			
Ixed-Ratic Actional Sconglion Ratio (SAR) - 1/2 Solf:Water (Dry) Ixed-Ratic Actional Sconglion Ratio (SAR) - 1/2 Solf:Water (Dry) Blass soll jar/Telon lined cap (ON MECP] E484 19-Sep-2023 22-Sep-2023 140 3 days Image: Solf and Sconglion Ratio (SAR) - 1/2 Solf:Water (Dry) Glass soll jar/Telon lined cap (ON MECP] E484 19-Sep-2023 22-Sep-2023 140 3 days Image: Solf and Sconglion Ratio (SAR) - 1/2 Solf:Water (Dry) Glass soll methanol vial (ON MECP] BH23-01 SA3 E581.F1 19-Sep-2023 21-Sep-2023 14 2 days Image: Solf and Sconglion Ratio (SAR) 0 days<		F484	19-Sep-2023	22-Sen-2023	190	3 days	1	22-Sep-2023	190	0 davs	1
ixed-Ratio Extractables : Sodium Adsorption Ratio (SAR) - 1:2 Soli/Water (Dry) Glass soil jar/Terlon lined cap (ON MECP] DUP-01 E484 19-Sep-2023 22-Sep-2023 180 days 3 days ✓ 22-Sep-2023 180 days 0 days ✓ Vdroarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Vdroarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Vdroarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Vdroarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Vdroarbons : CCME PHC - F1 by Headspace GC-FID Gass soil methanol Vial [ON MECP] E581.F1 19-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Vdroarbons : CCME PHC - F		LTOT	10-000-2020	22-00p-2020		0 days	-	22-000-2020		0 days	
Glass soil jarTefion lined cap [ON MECP] E484 19-Sep-2023 22-Sep-2023 180 days 3 days ✓ 22-Sep-2023 180 days 0 days ✓ Glass soil methanol vial [ON MECP] by Hoadspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Glass soil methanol vial [ON MECP] E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Glass soil methanol vial [ON MECP] E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Glass soil methanol vial [ON MECP] E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Vdrocarbons : CCME PHC -F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ BH23-01 SA3 E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 <td></td> <td></td> <td></td> <td></td> <td>uays</td> <td></td> <td></td> <td></td> <td>uays</td> <td></td> <td></td>					uays				uays		
DUP-01 E484 19-Sep-2023 22 22-Sep-2023 180 days 0 days 0 days 0 days ydrocarbons : COME PHC - F1 by Headspace GC-FID Glass soil methanol vial [ON MECP] E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days V 21-Sep-2023 40 days 0 days V ydrocarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days V 21-Sep-2023 40 days 0 days V ydrocarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days V 21-Sep-2023 40 days 0 days V glass soil methanol vial [ON MECP] BH23-02 SA6 E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days V 21-Sep-2023 40 days 0 days V glass soil methanol vial [ON MECP] BH23-02 SA6 E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days V 21-Sep-2023 40 days 0 days V glass soil methanol vial [ON MECP] BH23-02 SA3 E581.F1 19-Sep-2023 21-Sep-2023		_	1			1					
Constrained Description Descripion <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>											
Vydrocarbons : CCME PHC - F1 by Headspace GC-FIDGlass soll methanol vial [ON MECP] BH23-01 SA3BH2:50:1 SA321-Sep-202321-Sep-202321-Sep-202340 days0 days \checkmark Glass soll methanol vial [ON MECP] BH2:302 SA6E581.F119-Sep-202321-Sep-202321-Sep-202340 days0 days \checkmark Updrocarbons : CCME PHC - F1 by Headspace GC-FIDGlass soll methanol vial [ON MECP] BH2:3:03 SA7E581.F119-Sep-202321-Sep-202321-Sep-202340 days0 days \checkmark Updrocarbons : CCME PHC - F1 by Headspace GC-FIDGlass soll methanol vial [ON MECP] BH2:3:03 SA7E581.F119-Sep-202321-Sep-2023142 days \checkmark 21-Sep-202340 days0 days \checkmark Updrocarbons : CCME PHC - F1 by Headspace GC-FIDGlass soll methanol vial [ON MECP] BH2:3:04 SA3E581.F119-Sep-202321-Sep-2023142 days \checkmark 21-Sep-2023 $40 days0 days\checkmarkUpdrocarbons : CCME PHC - F1 by Headspace GC-FIDGlass soll methanol vial [ON MECP]DUP-O1$	DUP-01	E484	19-Sep-2023	22-Sep-2023		3 days	~	22-Sep-2023		0 days	✓
Giass soil methanol vial [ON MECP] BH23-01 SA3E581.F119-Sep-202321-Sep-202314 day2 days \checkmark 21-Sep-202340 days0 days \checkmark \checkmark Vdrocarbons : COME PHC - F1 by Headspace GC-FIDE581.F119-Sep-202321-Sep-202314 days2 days \checkmark 21-Sep-202340 days0 days \checkmark					days				days		
BH23-01 SA3 E581.F1 19-Sep-2023 21-Sep-2023 14 2 days ✓ 21-Sep-2023 40 days 0 days ✓ days Vdrocarbons : CCME PHC - F1 by Headspace GC-FID BH23-02 SA6 E581.F1 19-Sep-2023 21-Sep-2023 14 2 days ✓ 21-Sep-2023 40 days 0 days 0 days ✓ Vdrocarbons : CCME PHC - F1 by Headspace GC-FID Glass soil methanol vial [ON MECP] BH23-03 SA7 E581.F1 19-Sep-2023 21-Sep-2023 14 2 days ✓ 21-Sep-2023 40 days 0 days 0 days ✓ Glass soil methanol vial [ON MECP] BH23-03 SA7 E581.F1 19-Sep-2023 21-Sep-2023 14 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Glass soil methanol vial [ON MECP] BH23-03 SA7 E581.F1 19-Sep-2023 21-Sep-2023 14 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Glass soil methanol vial [ON MECP] BH23-04 SA3 E581.F1 19-Sep-2023 21-Sep-2023 14 4 days ✓ 21-Sep-2023 40 days 0 days ✓ Udrocar	Hydrocarbons : CCME PHC - F1 by Headspace GC-FID										
Image:	Glass soil methanol vial [ON MECP]										
Value of the second se	BH23-01 SA3	E581.F1	19-Sep-2023	21-Sep-2023	14	2 days	1	21-Sep-2023	40 days	0 days	✓
Glass soil methanol vial [ON MECP] E581.F1 19-Sep-2023 21-Sep-2023 14 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Ivdrocarbons : CCME PHC - F1 by Headspace GC-FID Glass soil methanol vial [ON MECP] E581.F1 19-Sep-2023 21-Sep-2023 14 2 days ✓ 21-Sep-2023 40 days 0 days ✓ BH23-03 SA7 E581.F1 19-Sep-2023 21-Sep-2023 14 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Iydrocarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Iydrocarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Iydrocarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days ✓ 21-Sep-2023 40 days 0 days ✓ Iydrocarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days ✓ </td <td></td> <td></td> <td></td> <td></td> <td>days</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					days						
Glass soil methanol vial [ON MECP] E581.F1 19-Sep-2023 21-Sep-2023 14 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Ivdrocarbons : CCME PHC - F1 by Headspace GC-FID Glass soil methanol vial [ON MECP] E581.F1 19-Sep-2023 21-Sep-2023 14 2 days ✓ 21-Sep-2023 40 days 0 days ✓ BH23-03 SA7 E581.F1 19-Sep-2023 21-Sep-2023 14 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Iydrocarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Iydrocarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Iydrocarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days ✓ 21-Sep-2023 40 days 0 days ✓ Iydrocarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days ✓ </td <td>Hvdrocarbons : CCME PHC - F1 by Headspace GC-FID</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>	Hvdrocarbons : CCME PHC - F1 by Headspace GC-FID							1			
BH23-02 SA6 E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Vg/rocarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ BH23-03 SA7 E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Vg/rocarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Vg/rocarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days 2 days ✓ 21-Sep-2023 40 days 0 days ✓ Vg/rocarbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 days 3 days ✓ 21-Sep-2023 40 days 0 days ✓ UP-01 E581.F1 19-Sep-2023 21-Sep-2023 14 days 3 days ✓ 21-Sep-2023 40 days 0 days											
Wydrocarbons : CCME PHC - F1 by Headspace GC-FIDGlass soil methanol vial [ON MECP] BH23-03 SA7E581.F119-Sep-202321-Sep-202314 days2 days \checkmark 21-Sep-202340 days0 days \checkmark (ydrocarbons : CCME PHC - F1 by Headspace GC-FIDBH23-04 SA3E581.F119-Sep-202321-Sep-202314 days2 days \checkmark 21-Sep-202340 days0 days \checkmark (ydrocarbons : CCME PHC - F1 by Headspace GC-FIDBH23-04 SA3E581.F119-Sep-202321-Sep-202314 days2 days \checkmark 21-Sep-202340 days0 days \checkmark (ydrocarbons : CCME PHC - F1 by Headspace GC-FIDBH23-04 SA3E581.F119-Sep-202321-Sep-202314 days3 days \checkmark 21-Sep-202340 days0 days \checkmark (ydrocarbons : CCME PHC - F1 by Headspace GC-FID(Blass soil methanol vial [ON MECP] DUP-01E581.F119-Sep-202321-Sep-202314 days3 days \checkmark 21-Sep-202340 days0 days \checkmark (ydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)E581.F119-Sep-202321-Sep-202314 days3 days \checkmark 21-Sep-202340 days0 days \checkmark (ydrocarbons : CCME PHC - F2-F4 by GC-FID (Low Level)E601.SG-L19-Sep-202320-Sep-2023141 days \checkmark 22-Sep-202340 days2 days \checkmark (Bas soil jar/Teffon lined cap [ON MECP] BH23-01 SA3E601.SG-L19-Sep-202320-Sep-2023141 days \checkmark 22-		E581.F1	19-Sep-2023	21-Sep-2023	14	2 days	1	21-Sep-2023	40 days	0 days	1
Wydrocarbons : CCME PHC - F1 by Headspace GC-FIDGlass soil methanol vial [ON MECP] BH23-03 SA7E581.F119-Sep-202321-Sep-202314 days2 days \checkmark 21-Sep-202340 days0 days \checkmark (ydrocarbons : CCME PHC - F1 by Headspace GC-FIDBH23-04 SA3E581.F119-Sep-202321-Sep-202314 days2 days \checkmark 21-Sep-202340 days0 days \checkmark (ydrocarbons : CCME PHC - F1 by Headspace GC-FIDBH23-04 SA3E581.F119-Sep-202321-Sep-202314 days2 days \checkmark 21-Sep-202340 days0 days \checkmark (ydrocarbons : CCME PHC - F1 by Headspace GC-FIDBH23-04 SA3E581.F119-Sep-202321-Sep-202314 days3 days \checkmark 21-Sep-202340 days0 days \checkmark (ydrocarbons : CCME PHC - F1 by Headspace GC-FID(Blass soil methanol vial [ON MECP] DUP-01E581.F119-Sep-202321-Sep-202314 days3 days \checkmark 21-Sep-202340 days0 days \checkmark (ydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)E581.F119-Sep-202321-Sep-202314 days3 days \checkmark 21-Sep-202340 days0 days \checkmark (ydrocarbons : CCME PHC - F2-F4 by GC-FID (Low Level)E601.SG-L19-Sep-202320-Sep-2023141 days \checkmark 22-Sep-202340 days2 days \checkmark (Bas soil jar/Teffon lined cap [ON MECP] BH23-01 SA3E601.SG-L19-Sep-202320-Sep-2023141 days \checkmark 22-						,					
Glass soil methanol vial [ON MECP] BH23-03 SA7E581.F119-Sep-202321-Sep-202314 days2 daysImage: Comparison of the c					aayo						
BH23-03 SA7 E581.F1 19-Sep-2023 21-Sep-2023 14 2 days Image: Comparison of Co								1	1		
Land Construction Image: Construction <td></td> <td>E501 E1</td> <td>10 Son 2022</td> <td>21 Sam 2022</td> <td></td> <td>0 daya</td> <td></td> <td>21 Sam 2022</td> <td>10 dava</td> <td>0 dava</td> <td></td>		E501 E1	10 Son 2022	21 Sam 2022		0 daya		21 Sam 2022	10 dava	0 dava	
Wydrocarbons : CCME PHC - F1 by Headspace GC-FID Glass soil methanol vial [ON MECP] BH23-04 SA3 E581.F1 19-Sep-2023 21-Sep-2023 14 2 days ✓ 21-Sep-2023 40 days 0 days 0 days ✓ Ight carbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 3 days ✓ 21-Sep-2023 40 days 0 days ✓ Ight carbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 3 days ✓ 21-Sep-2023 40 days 0 days ✓ Ight carbons : CCME PHC - F1 by Headspace GC-FID E581.F1 19-Sep-2023 21-Sep-2023 14 3 days ✓ 21-Sep-2023 40 days 0 days ✓ Ight carbons : CCME PHCs - F2-F4 by GC-FID (Low Level) E601.SG-L 19-Sep-2023 20-Sep-2023 14 1 days ✓ 22-Sep-2023 40 days 2 days ✓ BH23-01 SA3 E601.SG-L 19-Sep-2023 20-Sep-2023 14 1 days ✓ 22-Sep-2023 40 days 2 days ✓	BH23-03 SA/	E301.F1	19-3ep-2023	21-Sep-2023		z days	•	21-Sep-2025	40 days	0 days	•
Glass soil methanol vial [ON MECP] BH23-04 SA3E581.F119-Sep-202321-Sep-202314 days2 days✓21-Sep-202340 days0 days0 days✓Ivdrocarbons : CCME PHC - F1 by Headspace GC-FIDE581.F119-Sep-202321-Sep-202314 days3 days✓21-Sep-202340 days0 days0 days✓Glass soil methanol vial [ON MECP] DUP-01E581.F119-Sep-202321-Sep-202314 days3 days✓21-Sep-202340 days0 days✓Vdrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level)E601.SG-L19-Sep-202320-Sep-2023141 days✓22-Sep-202340 days2 days✓					days						
BH23-04 SA3E581.F119-Sep-202321-Sep-202314 days2 daysImage: Comparison of the comp	Hydrocarbons : CCME PHC - F1 by Headspace GC-FID										
List of FileList of File<	Glass soil methanol vial [ON MECP]										
lydrocarbons : CCME PHC - F1 by Headspace GC-FID Glass soil methanol vial [ON MECP] DUP-01 lydrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level) Glass soil jar/Teflon lined cap [ON MECP] BH23-01 SA3 BH23-01 SA3 BH23-0	BH23-04 SA3	E581.F1	19-Sep-2023	21-Sep-2023	14	2 days	✓	21-Sep-2023	40 days	0 days	1
Glass soil methanol vial [ON MECP] DUP-01E581.F119-Sep-202321-Sep-202314 days3 days✓21-Sep-202340 days0 days✓lydrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level)Glass soil jar/Teflon lined cap [ON MECP] BH23-01 SA3E601.SG-L19-Sep-202320-Sep-2023141 days✓22-Sep-202340 days2 days✓					days						
Glass soil methanol vial [ON MECP] DUP-01E581.F119-Sep-202321-Sep-202314 days3 days✓21-Sep-202340 days0 days✓lydrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level)Glass soil jar/Teflon lined cap [ON MECP] BH23-01 SA3E601.SG-L19-Sep-202320-Sep-2023141 days✓22-Sep-202340 days2 days✓	Hydrocarbons : CCME PHC - F1 by Headspace GC-FID										
DUP-01 E581.F1 19-Sep-2023 21-Sep-2023 14 days \checkmark 21-Sep-2023 40 days 0	Glass soil methanol vial [ON MECP]										
Index Series and Series		E581.F1	19-Sep-2023	21-Sep-2023	14	3 days	1	21-Sep-2023	40 days	0 days	✓
Glass soil jar/Teflon lined cap [ON MECP] E601.SG-L 19-Sep-2023 20-Sep-2023 14 1 days ✓ 22-Sep-2023 40 days 2 days ✓					days						
Glass soil jar/Teflon lined cap [ON MECP] E601.SG-L 19-Sep-2023 20-Sep-2023 14 1 days ✓ 22-Sep-2023 40 days 2 days ✓	vdrocarbons : CCME PHCs - F2-F4 by GC-FID (I ow Level)	1	1		1	1			1		
BH23-01 SA3 E601.SG-L 19-Sep-2023 20-Sep-2023 14 1 days 🖌 22-Sep-2023 40 days 2 days 1											
		E601.SG-L	19-Sep-2023	20-Sep-2023	14	1 days	1	22-Sep-2023	40 days	2 days	1
				20 200 2020	days					u,o	

Page :	5 of 14
Work Order :	WT2330022
Client :	Englobe Corp.
Project :	02302109.001

atrix: Soil/Solid					E٧	/aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Ti	
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval	
			Date	Rec	Actual			Rec	Actual		
lydrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level)											
Glass soil jar/Teflon lined cap [ON MECP]											
BH23-02 SA6	E601.SG-L	19-Sep-2023	20-Sep-2023	14	1 days	1	22-Sep-2023	40 days	2 days	1	
			20 000 2020	days	· uujo		00p _010	.o aajo	2 00,0		
				days							
lydrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level)		1 1					1				
Glass soil jar/Teflon lined cap [ON MECP]	E004.00.1	10.0	00.0			1	00.0	40			
BH23-04 SA3	E601.SG-L	19-Sep-2023	20-Sep-2023	14	1 days	*	22-Sep-2023	40 days	2 days	1	
				days							
lydrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level)											
Glass soil jar/Teflon lined cap [ON MECP]											
BH23-03 SA7	E601.SG-L	19-Sep-2023	20-Sep-2023	14	2 days	1	22-Sep-2023	40 days	2 days	1	
				days							
lydrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level)				1				1			
Glass soil jar/Teflon lined cap [ON MECP]											
DUP-01	E601.SG-L	19-Sep-2023	20-Sep-2023	14	2 days	1	22-Sep-2023	40 days	2 days	1	
				days	, -				, -		
				dayo							
Ietals : Boron-Hot Water Extractable by ICPOES		1									
Glass soil jar/Teflon lined cap [ON MECP]	E 407	40.0	00.0		0.1	1	00.0		0	1	
BH23-01 SA3	E487	19-Sep-2023	22-Sep-2023	180	2 days	*	22-Sep-2023	180	0 days	*	
				days				days			
letals : Boron-Hot Water Extractable by ICPOES											
Glass soil jar/Teflon lined cap [ON MECP]											
BH23-02 SA6	E487	19-Sep-2023	22-Sep-2023	180	2 days	1	22-Sep-2023	180	0 days	1	
				days				days			
letals : Boron-Hot Water Extractable by ICPOES											
Glass soil jar/Teflon lined cap [ON MECP]											
BH23-04 SA3	E487	19-Sep-2023	22-Sep-2023	180	2 days	1	22-Sep-2023	180	0 days	1	
				days	, -			days	•		
				uuys				uuys			
Netals : Boron-Hot Water Extractable by ICPOES											
Glass soil jar/Teflon lined cap [ON MECP]	E 407	40.0	00.0				00.0		0.1		
BH23-03 SA7	E487	19-Sep-2023	22-Sep-2023	180	3 days	1	22-Sep-2023	180	0 days	1	
				days				days			
Netals : Boron-Hot Water Extractable by ICPOES											
Glass soil jar/Teflon lined cap [ON MECP]											
DUP-01	E487	19-Sep-2023	22-Sep-2023	180	3 days	1	22-Sep-2023	180	0 days	✓	

Page :	6 of 14
Work Order :	WT2330022
Client :	Englobe Corp.
Project :	02302109.001

Analyte Group	Method	Sampling Date	Fv	traction / Pre			Holding time exce	Analys		
Container / Client Sample ID(s)	Wiethod	Sampling Date	Preparation Date	Holding Rec		Eval	Analysis Date		g Times Actual	Eval
Metals : Mercury in Soil/Solid by CVAAS (<355 µm)										
Glass soil jar/Teflon lined cap [ON MECP] BH23-01 SA3	E510C	19-Sep-2023	21-Sep-2023	28 days	2 days	1	22-Sep-2023	28 days	3 days	1
Metals : Mercury in Soil/Solid by CVAAS (<355 μm)				1 1					1	
Glass soil jar/Teflon lined cap [ON MECP] BH23-02 SA6	E510C	19-Sep-2023	21-Sep-2023	28 days	2 days	4	22-Sep-2023	28 days	3 days	~
Metals : Mercury in Soil/Solid by CVAAS (<355 μm)										
Glass soil jar/Teflon lined cap [ON MECP] BH23-04 SA3	E510C	19-Sep-2023	21-Sep-2023	28 days	2 days	~	22-Sep-2023	28 days	3 days	*
Metals : Mercury in Soil/Solid by CVAAS (<355 μm)										
Glass soil jar/Teflon lined cap [ON MECP] BH23-03 SA7	E510C	19-Sep-2023	21-Sep-2023	28 days	3 days	√	22-Sep-2023	28 days	3 days	~
Metals : Mercury in Soil/Solid by CVAAS (<355 µm)				1 1				1		
Glass soil jar/Teflon lined cap [ON MECP] DUP-01	E510C	19-Sep-2023	21-Sep-2023	28 days	3 days	1	22-Sep-2023	28 days	3 days	1
Metals : Metals in Soil/Solid by CRC ICPMS (<355 μm)										
Glass soil jar/Teflon lined cap [ON MECP] BH23-01 SA3	E440C	19-Sep-2023	21-Sep-2023	180 days	2 days	V	22-Sep-2023	180 days	3 days	*
Metals : Metals in Soil/Solid by CRC ICPMS (<355 μm)										
Glass soil jar/Teflon lined cap [ON MECP] BH23-02 SA6	E440C	19-Sep-2023	21-Sep-2023	180 days	2 days	1	22-Sep-2023	180 days	3 days	~
Metals : Metals in Soil/Solid by CRC ICPMS (<355 µm)										
Glass soil jar/Teflon lined cap [ON MECP] BH23-04 SA3	E440C	19-Sep-2023	21-Sep-2023	180 days	2 days	~	22-Sep-2023	180 days	3 days	*
Metals : Metals in Soil/Solid by CRC ICPMS (<355 μm)										
Glass soil jar/Teflon lined cap [ON MECP] BH23-03 SA7	E440C	19-Sep-2023	21-Sep-2023	180 days	3 days	1	22-Sep-2023	180 days	3 days	1

Page :	7 of 14
Work Order :	WT2330022
Client :	Englobe Corp.
Project :	02302109.001

Analyte Group	Method	Sampling Date	Ex	traction / P	reparation			Analys	sis	
Container / Client Sample ID(s)	Method	Sumpling Date	Preparation Date		g Times Actual	Eval	Analysis Date		g Times Actual	Eval
Metals : Metals in Soil/Solid by CRC ICPMS (<355 μm)										
Glass soil jar/Teflon lined cap [ON MECP] DUP-01	E440C	19-Sep-2023	21-Sep-2023	180 days	3 days	√	22-Sep-2023	180 days	3 days	4
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)				1	1					
Glass soil jar/Teflon lined cap [ON MECP] BH23-01 SA3	E100-L	19-Sep-2023	22-Sep-2023	30 days	2 days	V	22-Sep-2023	30 days	3 days	4
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap [ON MECP] BH23-04 SA3	E100-L	19-Sep-2023	22-Sep-2023	30 days	2 days	4	22-Sep-2023	30 days	3 days	4
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap [ON MECP] BH23-02 SA6	E100-L	19-Sep-2023	22-Sep-2023	30 days	3 days	1	22-Sep-2023	30 days	3 days	1
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)				1						
Glass soil jar/Teflon lined cap [ON MECP] BH23-03 SA7	E100-L	19-Sep-2023	22-Sep-2023	30 days	3 days	V	22-Sep-2023	30 days	3 days	~
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)				1						
Glass soil jar/Teflon lined cap [ON MECP] DUP-01	E100-L	19-Sep-2023	22-Sep-2023	30 days	3 days	~	22-Sep-2023	30 days	3 days	1
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP] BH23-01 SA3	E144	19-Sep-2023					20-Sep-2023		1 days	
Physical Tests : Moisture Content by Gravimetry				1			1	1	1	
Glass soil jar/Teflon lined cap [ON MECP] BH23-02 SA6	E144	19-Sep-2023					20-Sep-2023		1 days	
Physical Tests : Moisture Content by Gravimetry							1	1	1	
Glass soil jar/Teflon lined cap [ON MECP] BH23-03 SA7	E144	19-Sep-2023					20-Sep-2023		1 days	

Page :	8 of 14
Work Order :	WT2330022
Client :	Englobe Corp.
Project :	02302109.001

/atrix: Soil/Solid					E١	/aluation: × =	Holding time exce	edance ; 🔹	<pre>< = Withir</pre>	Holding Ti
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP] BH23-04 SA3	E144	19-Sep-2023					20-Sep-2023		1 days	
Physical Tests : Moisture Content by Gravimetry				1	1					
Glass soil jar/Teflon lined cap [ON MECP] DUP-01	E144	19-Sep-2023					20-Sep-2023		2 days	
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received				1						
Glass soil jar/Teflon lined cap [ON MECP] BH23-01 SA3	E108A	19-Sep-2023	20-Sep-2023	30 days	1 days	~	22-Sep-2023	30 days	3 days	1
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap [ON MECP] BH23-02 SA6	E108A	19-Sep-2023	20-Sep-2023	30 days	1 days	~	22-Sep-2023	30 days	3 days	1
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received					1					
Glass soil jar/Teflon lined cap [ON MECP] BH23-03 SA7	E108A	19-Sep-2023	20-Sep-2023	30 days	1 days	V	22-Sep-2023	30 days	3 days	*
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap [ON MECP] BH23-04 SA3	E108A	19-Sep-2023	20-Sep-2023	30 days	1 days	~	22-Sep-2023	30 days	3 days	1
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap [ON MECP] DUP-01	E108A	19-Sep-2023	20-Sep-2023	30 days	2 days	4	22-Sep-2023	30 days	4 days	1
Speciated Metals : Hexavalent Chromium (Cr VI) by IC										
Glass soil jar/Teflon lined cap [ON MECP] BH23-01 SA3	E532	19-Sep-2023	20-Sep-2023	30 days	1 days	~	22-Sep-2023	7 days	2 days	1
Speciated Metals : Hexavalent Chromium (Cr VI) by IC										
Glass soil jar/Teflon lined cap [ON MECP] BH23-02 SA6	E532	19-Sep-2023	20-Sep-2023	30 days	1 days	4	22-Sep-2023	7 days	2 days	~

Page :	9 of 14
Work Order :	WT2330022
Client :	Englobe Corp.
Project :	02302109.001

/atrix: Soil/Solid					Ev	aluation: × =	Holding time exce	edance ; 🔹	<pre>/ = Within</pre>	Holding Tir
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Speciated Metals : Hexavalent Chromium (Cr VI) by IC										
Glass soil jar/Teflon lined cap [ON MECP]										
BH23-03 SA7	E532	19-Sep-2023	20-Sep-2023	30	1 days	1	22-Sep-2023	7 days	2 days	1
				days						
Speciated Metals : Hexavalent Chromium (Cr VI) by IC										
Glass soil jar/Teflon lined cap [ON MECP]										
BH23-04 SA3	E532	19-Sep-2023	20-Sep-2023	30	1 days	1	22-Sep-2023	7 days	2 days	~
				days						
Speciated Metals : Hexavalent Chromium (Cr VI) by IC										
Glass soil jar/Teflon lined cap [ON MECP]										
DUP-01	E532	19-Sep-2023	20-Sep-2023	30	2 days	1	22-Sep-2023	7 days	2 days	1
				days						
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS										
Glass soil methanol vial [ON MECP]										
BH23-01 SA3	E611D	19-Sep-2023	21-Sep-2023	14	2 days	1	21-Sep-2023	40 days	0 days	1
				days						
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS										
Glass soil methanol vial [ON MECP]										
BH23-02 SA6	E611D	19-Sep-2023	21-Sep-2023	14	2 days	✓	21-Sep-2023	40 days	0 days	1
				days						
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS										
Glass soil methanol vial [ON MECP]										
BH23-03 SA7	E611D	19-Sep-2023	21-Sep-2023	14	2 days	✓	21-Sep-2023	40 days	0 days	1
				days						
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS										
Glass soil methanol vial [ON MECP]										
BH23-04 SA3	E611D	19-Sep-2023	21-Sep-2023	14	2 days	✓	21-Sep-2023	40 days	0 days	1
				days						
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS										
Glass soil methanol vial [ON MECP]										
DUP-01	E611D	19-Sep-2023	21-Sep-2023	14	3 days	1	21-Sep-2023	40 days	0 days	1
				days						

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page	:	10 of 14
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Boron-Hot Water Extractable by ICPOES	E487	1143057	1	14	7.1	5.0	1
CCME PHC - F1 by Headspace GC-FID	E581.F1	1146358	1	16	6.2	5.0	1
CCME PHCs - F2-F4 by GC-FID (Low Level)	E601.SG-L	1143539	1	20	5.0	5.0	
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L	1143056	1	14	7.1	5.0	1
Hexavalent Chromium (Cr VI) by IC	E532	1143036	1	18	5.5	5.0	1
Mercury in Soil/Solid by CVAAS (<355 μm)	E510C	1143058	1	14	7.1	5.0	1
Metals in Soil/Solid by CRC ICPMS (<355 μm)	E440C	1143059	1	14	7.1	5.0	1
Moisture Content by Gravimetry	E144	1143540	1	20	5.0	5.0	1
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A	1143535	1	20	5.0	5.0	
Sodium Adsorption Ratio (SAR) - 1:2 Soil:Water (Dry)	E484	1143055	1	14	7.1	5.0	1
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1150861	2	29	6.9	5.0	1
WAD Cyanide (0.01M NaOH Extraction)	E336A	1143049	1	20	5.0	5.0	1
Laboratory Control Samples (LCS)							
Boron-Hot Water Extractable by ICPOES	E487	1143057	2	14	14.2	10.0	✓
CCME PHC - F1 by Headspace GC-FID	E581.F1	1146358	1	16	6.2	5.0	
CCME PHCs - F2-F4 by GC-FID (Low Level)	E601.SG-L	1143539	1	20	5.0	5.0	1
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L	1143056	2	14	14.2	10.0	<u> </u>
Hexavalent Chromium (Cr VI) by IC	E532	1143036	2	18	11.1	10.0	1
Mercury in Soil/Solid by CVAAS (<355 μm)	E510C	1143058	2	14	14.2	10.0	1
Metals in Soil/Solid by CRC ICPMS (<355 μm)	E440C	1143059	2	14	14.2	10.0	1
Moisture Content by Gravimetry	E144	1143540	1	20	5.0	5.0	1
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A	1143535	1	20	5.0	5.0	1
Sodium Adsorption Ratio (SAR) - 1:2 Soil:Water (Dry)	E484	1143055	2	14	14.2	10.0	1
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1150861	2	29	6.9	5.0	~
WAD Cyanide (0.01M NaOH Extraction)	E336A	1143049	1	20	5.0	5.0	1
Method Blanks (MB)							
Boron-Hot Water Extractable by ICPOES	E487	1143057	1	14	7.1	5.0	1
CCME PHC - F1 by Headspace GC-FID	E581.F1	1146358	1	16	6.2	5.0	
CCME PHCs - F2-F4 by GC-FID (Low Level)	E601.SG-L	1143539	1	20	5.0	5.0	· · ·
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L	1143056	1	14	7.1	5.0	~
Hexavalent Chromium (Cr VI) by IC	E532	1143036	1	18	5.5	5.0	
Mercury in Soil/Solid by CVAAS (<355 µm)	E510C	1143058	1	14	7.1	5.0	
Metals in Soil/Solid by CRC ICPMS (<355 µm)	E440C	1143059	1	14	7.1	5.0	
Moisture Content by Gravimetry	E144	1143540	1	20	5.0	5.0	
Sodium Adsorption Ratio (SAR) - 1:2 Soil:Water (Dry)	E484	1143055	1	14	7.1	5.0	

Page :	11 of 14
Work Order :	WT2330022
Client :	Englobe Corp.
Project :	02302109.001

Matrix: Soil/Solid	Evaluatio	n: × = QC freque	ency outside spe	ecification; 🗸 = 0	QC frequency wit	hin specificatior	
Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued							
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1150861	2	29	6.9	5.0	✓
WAD Cyanide (0.01M NaOH Extraction)	E336A	1143049	1	20	5.0	5.0	✓
Matrix Spikes (MS)							
CCME PHC - F1 by Headspace GC-FID	E581.F1	1146358	1	16	6.2	5.0	✓
CCME PHCs - F2-F4 by GC-FID (Low Level)	E601.SG-L	1143539	1	20	5.0	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1150861	2	29	6.9	5.0	✓
WAD Cyanide (0.01M NaOH Extraction)	E336A	1143049	1	20	5.0	5.0	✓

Page	:	12 of 14
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L ALS Environmental - Waterloo	Soil/Solid	CSSS Ch. 15 (mod)/APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a soil sample that has been added in a defined ratio of soil to deionized water, then shaken well and allowed to settle. Conductance is measured in the fluid that is observed in the upper layer.
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A ALS Environmental - Waterloo	Soil/Solid	MECP E3137A	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C) and is carried out in accordance with procedures described in the Analytical Protocol (prescriptive method). A minimum 10g portion of the sample, as received, is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil by centrifuging, settling, or decanting and then analyzed using a pH meter and electrode.
Moisture Content by Gravimetry	E144 ALS Environmental - Waterloo	Soil/Solid	CCME PHC in Soil - Tier 1	Moisture is measured gravimetrically by drying the sample at 105°C. Moisture content is calculated as the weight loss (due to water) divided by the wet weight of the sample, expressed as a percentage.
WAD Cyanide (0.01M NaOH Extraction)	E336A ALS Environmental - Waterloo	Soil/Solid	APHA 4500-CN I (mod)	Weak Acid Dissociable (WAD) cyanide is determined after extraction by Continuous Flow Analyzer (CFA) with in-line distillation followed by colourmetric analysis.
Metals in Soil/Solid by CRC ICPMS (<355 μm)	E440C ALS Environmental - Waterloo	Soil/Solid	EPA 6020B (mod)	This method is intended to liberate metals that may be environmentally available. Samples are dried, then sieved through a 355 µm sieve, and digested with HNO3 and HCI. Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, TI, V, W, and Zr. Silicate minerals are not solubilized. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. This method does not adequately recover elemental sulfur, and is unsuitable for assessment of elemental sulfur standards or guidelines.
Sodium Adsorption Ratio (SAR) - 1:2 Soil:Water (Dry)	E484 ALS Environmental - Waterloo	Soil/Solid	SW846 6010C	A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca and Mg are reported as per CALA requirements for calculated parameters. These individual parameters are not for comparison to any guideline.

Page	:	13 of 14
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Boron-Hot Water Extractable by ICPOES	E487 ALS Environmental -	Soil/Solid	HW EXTR, EPA 6010B	A dried solid sample is extracted with calcium chloride, the sample undergoes a heating process. After cooling the sample is filtered and analyzed by ICP/OES.
	Waterloo			Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
Mercury in Soil/Solid by CVAAS (<355 μm)	E510C ALS Environmental -	Soil/Solid	EPA 200.2/1631 Appendix (mod)	Samples are sieved through a 355 μm sieve, and digested with HNO3 and HCl, followed by CVAAS analysis.
	Waterloo			
Hexavalent Chromium (Cr VI) by IC	E532	Soil/Solid	APHA 3500-CR C	Instrumental analysis is performed by ion chromatography with UV detection.
	ALS Environmental - Waterloo			
CCME PHC - F1 by Headspace GC-FID	E581.F1	Soil/Solid	CCME PHC in Soil - Tier 1	CCME Fraction 1 (F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing
	ALS Environmental - Waterloo			VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
				Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply fully with the Reference Method for the Canada-Wide Standard for PHC. Test results are expressed on a dry weight basis. Unless qualified, all required quality control criteria of the CCME PHC method have been met, including response factor and linearity requirements.
CCME PHCs - F2-F4 by GC-FID (Low Level)	E601.SG-L	Soil/Solid	CCME PHC in Soil - Tier	Sample extracts are subjected to in-situ silica gel treatment prior to analysis by GC-FID for CCME hydrocarbon fractions (F2-F4).
	ALS Environmental -			
	Waterloo			Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply fully with the Reference Method for the Canada-Wide Standard for PHC. Test results are expressed on a dry weight basis. Unless qualified, all required quality control criteria of the CCME PHC method have been met, including response factor and linearity requirements.
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	Soil/Solid	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the
	ALS Environmental -			headspace autosampler, causing VOCs to partition between the aqueous phase and
	Waterloo			the headspace in accordance with Henry's law.
F1-BTEX	EC580	Soil/Solid	CCME PHC in Soil - Tier 1	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).
	ALS Environmental -			
	Waterloo			
Sum F1 to F4 (C6-C50)	EC581	Soil/Solid	CCME PHC in Soil - Tier 1	Hydrocarbons, total (C6-C50) is the sum of CCME Fractions F1(C6-C10), F2(C10-C16), F3(C16-C34), and F4(C34-C50). F4G-sg is not used within this calculation due to
	ALS Environmental -			overlap with other fractions.
	Waterloo			

Page	:	14 of 14
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil:Water for pH/EC	EP108 ALS Environmental -	Soil/Solid	BC WLAP METHOD: PH, ELECTROMETRIC, SOIL	The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water.
	Waterloo		OOIL	
Leach 1:2 Soil : 0.01CaCl2 - As Received for pH	EP108A	Soil/Solid	MOEE E3137A	A minimum 10g portion of the sample, as received, is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is
	ALS Environmental -			separated from the soil by centrifuging, settling or decanting and then analyzed using a
	Waterloo			pH meter and electrode.
Cyanide Extraction for CFA (0.01M NaOH)	EP333A	Soil/Solid	ON MECP E3015 (mod)	Extraction for various cyanide analysis is by rotary extraction of the soil with 0.01M Sodium Hydroxide.
	ALS Environmental -			
	Waterloo			
Digestion for Metals and Mercury(355 µm Sieve)	EP440C	Soil/Solid	EPA 200.2 (mod)	Samples are sieved through a 355 µm sieve, and digested with HNO3 and HCI. This method is intended to liberate metals that may be environmentally available.
	ALS Environmental -			
	Waterloo			
Boron-Hot Water Extractable	EP487	Soil/Solid	HW EXTR, EPA 6010B	A dried solid sample is extracted with weak calcium chloride, the sample undergoes a heating process. After cooling the sample is filtered and analyzed by ICP/OES.
	ALS Environmental -			
	Waterloo			Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011)
Preparation of Hexavalent Chromium (Cr VI) for IC	EP532	Soil/Solid	EPA 3060A	Field moist samples are digested with a sodium hydroxide/sodium carbonate solution as described in EPA 3060A.
	ALS Environmental -			
	Waterloo			
VOCs Methanol Extraction for Headspace	EP581	Soil/Solid	EPA 5035A (mod)	VOCs in samples are extracted with methanol. Extracts are then prepared in headspace
Analysis				vials and are heated and agitated on the headspace autosampler, causing VOCs to
	ALS Environmental -			partition between the aqueous phase and the headspace in accordance with Henry's
	Waterloo			law.
PHCs and PAHs Hexane-Acetone Tumbler	EP601	Soil/Solid	CCME PHC in Soil - Tier	Samples are subsampled and Petroleum Hydrocarbons (PHC) and PAHs are extracted
Extraction			1 (mod)	with 1:1 hexane:acetone using a rotary extractor.
	ALS Environmental -			
	Waterloo			

ALS Canada Ltd.

QUALITY CONTROL REPORT Work Order Page : 1 of 19 WT2330022 Client : Englobe Corp. Laboratory : ALS Environmental - Waterloo Account Manager Contact Jessica Godin : Gayle Braun Address Address : 353 Bridge Street East :60 Northland Road, Unit 1 Kitchener ON Canada N2K 2Y5 Waterloo, Ontario Canada N2V 2B8 Telephone Telephone :+1 519 886 6910 Project Date Samples Received : 19-Sep-2023 18:40 :02302109.001 PO Date Analysis Commenced :20-Sep-2023 :----C-O-C number Issue Date :20-1083252 :26-Sep-2023 12:59 Sampler : TA Site · ____ Quote number KITCHENER/LONDON EXCESS SOIL No. of samples received : 5 No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Waterloo Inorganics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Waterloo Metals, Waterloo, Ontario
Niral Patel		Waterloo Centralized Prep, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	Waterloo VOC, Waterloo, Ontario

Page	:	2 of 19
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page	:	3 of 19
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Soil/Solid							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	: Lot: 1143056)										
WT2328825-001	Anonymous	Conductivity (1:2 leachate)		E100-L	5.00	μS/cm	0.268 mS/cm	270	0.743%	20%	
Physical Tests (QC	: Lot: 1143535)										
WT2329799-036	Anonymous	pH (1:2 soil:CaCl2-aq)		E108A	0.10	pH units	7.70	7.72	0.259%	5%	
Physical Tests (QC	: Lot: 1143540)			İ							
WT2329799-036	Anonymous	Moisture		E144	0.25	%	4.62	4.76	3.01%	20%	
Cyanides (QC Lot:	1143049)										
WT2328825-001	Anonymous	Cyanide, weak acid dissociable		E336A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
Metals (QC Lot: 11	43055)										
WT2328825-001	Anonymous	Calcium, soluble ion content	7440-70-2	E484	0.50	mg/L	14.9	15.0	0.669%	30%	
		Magnesium, soluble ion content	7439-95-4	E484	0.50	mg/L	1.33	1.35	0.02	Diff <2x LOR	
		Sodium, soluble ion content	17341-25-2	E484	0.50	mg/L	16.3	16.4	0.612%	30%	
Metals (QC Lot: 11	43057)										
WT2328825-001	Anonymous	Boron, hot water soluble	7440-42-8	E487	0.10	mg/kg	0.10	<0.10	0.0002	Diff <2x LOR	
Metals (QC Lot: 11	43058)										
WT2328825-001	Anonymous	Mercury	7439-97-6	E510C	0.0050	mg/kg	<0.0050	<0.0050	0	Diff <2x LOR	
Metals (QC Lot: 11	43059)										
WT2328825-001	Anonymous	Antimony	7440-36-0	E440C	0.10	mg/kg	0.82	0.92	11.2%	30%	
		Arsenic	7440-38-2	E440C	0.10	mg/kg	0.85	0.88	3.24%	30%	
		Barium	7440-39-3	E440C	0.50	mg/kg	15.5	15.1	2.80%	40%	
		Beryllium	7440-41-7	E440C	0.10	mg/kg	0.12	0.12	0.002	Diff <2x LOR	
		Boron	7440-42-8	E440C	5.0	mg/kg	<5.0	<5.0	0	Diff <2x LOR	
		Cadmium	7440-43-9	E440C	0.020	mg/kg	0.031	0.033	0.002	Diff <2x LOR	
		Chromium	7440-47-3	E440C	0.50	mg/kg	8.83	6.87	24.9%	30%	
		Cobalt	7440-48-4	E440C	0.10	mg/kg	1.38	1.35	2.43%	30%	
		Copper	7440-50-8	E440C	14.0	mg/kg	<14.0	<14.0	0	Diff <2x LOR	
		Lead	7439-92-1	E440C	0.50	mg/kg	2.19	2.31	0.12	Diff <2x LOR	
		Molybdenum	7439-98-7	E440C	0.10	mg/kg	0.23	0.25	0.02	Diff <2x LOR	
		Nickel	7440-02-0	E440C	0.50	mg/kg	3.63	3.34	8.22%	30%	
		Selenium	7782-49-2	E440C	0.20	mg/kg	<0.20	<0.20	0	Diff <2x LOR	

Page	:	4 of 19
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Sub-Matrix: Soil/Solid					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Metals (QC Lot: 114	,										
WT2328825-001	Anonymous	Thallium		E440C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Uranium	7440-61-1	E440C	0.050	mg/kg	0.308	0.304	0.004	Diff <2x LOR	
		Vanadium	7440-62-2	E440C	0.20	mg/kg	10.8	12.1	11.3%	30%	
		Zinc	7440-66-6	E440C	2.0	mg/kg	22.2	20.2	9.36%	30%	
Speciated Metals(QC Lot: 1143036)										
WT2328825-001	Anonymous	Chromium, hexavalent [Cr VI]	18540-29-9	E532	0.10	mg/kg	<0.10	<0.10	0	Diff <2x LOR	
olatile Organic Co	mpounds (QC Lot: 1 [,]	146357)									
WT2329574-024	Anonymous	Acetone	67-64-1	E611D	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	
		Benzene	71-43-2	E611D	0.0050	mg/kg	<0.0050	<0.0050	0	Diff <2x LOR	
		Bromodichloromethane	75-27-4	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Bromoform	75-25-2	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Bromomethane	74-83-9	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Carbon tetrachloride	56-23-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Chlorobenzene	108-90-7	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Chloroform	67-66-3	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dibromochloromethane	124-48-1	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dibromoethane, 1,2-	106-93-4	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichlorobenzene, 1,2-	95-50-1	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichlorobenzene, 1,3-	541-73-1	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichlorobenzene, 1,4-	106-46-7	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichlorodifluoromethane	75-71-8	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloroethane, 1,1-	75-34-3	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloroethane, 1,2-	107-06-2	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloroethylene, 1,1-	75-35-4	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloroethylene, cis-1,2-	156-59-2	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloroethylene, trans-1,2-	156-60-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloromethane	75-09-2	E611D	0.045	mg/kg	<0.045	<0.045	0	Diff <2x LOR	
		Dichloropropane, 1,2-	78-87-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.030	mg/kg	<0.030	<0.030	0	Diff <2x LOR	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.030	mg/kg	<0.030	<0.030	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611D	0.015	mg/kg	<0.015	<0.015	0	Diff <2x LOR	
		Hexane, n-	110-54-3	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Methyl ethyl ketone [MEK]	78-93-3	E611D	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	
		Methyl isobutyl ketone [MIBK]		E611D	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	

Page	:	5 of 19
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	1	02302109.001

ub-Matrix: Soil/Solid							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifi
/olatile Organic Co	mpounds (QC Lot: 1	146357) - continued									
WT2329574-024	Anonymous	Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.040	mg/kg	<0.040	<0.040	0	Diff <2x LOR	
		Styrene	100-42-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Tetrachloroethylene	127-18-4	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Toluene	108-88-3	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Trichloroethane, 1,1,1-	71-55-6	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Trichloroethane, 1,1,2-	79-00-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Trichloroethylene	79-01-6	E611D	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		Trichlorofluoromethane	75-69-4	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Vinyl chloride	75-01-4	E611D	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611D	0.030	mg/kg	<0.030	<0.030	0	Diff <2x LOR	
		Xylene, o-	95-47-6	E611D	0.030	mg/kg	<0.030	<0.030	0	Diff <2x LOR	
/olatile Organic Co	mpounds (QC Lot: 1	150861)									
NT2330225-004	Anonymous	Acetone	67-64-1	E611D	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	
		Benzene	71-43-2	E611D	0.0050	mg/kg	0.241	0.241	0.117%	40%	
		Bromodichloromethane	75-27-4	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Bromoform	75-25-2	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Bromomethane	74-83-9	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Carbon tetrachloride	56-23-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Chlorobenzene	108-90-7	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Chloroform	67-66-3	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dibromochloromethane	124-48-1	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dibromoethane, 1,2-	106-93-4	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichlorobenzene, 1,2-	95-50-1	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichlorobenzene, 1,3-	541-73-1	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichlorobenzene, 1,4-	106-46-7	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichlorodifluoromethane	75-71-8	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
			75-34-3	E611D	0.050		<0.050	< 0.050	0	Diff <2x LOR	
		Dichloroethane, 1,1-	107-06-2	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloroethane, 1,2-				mg/kg					
		Dichloroethylene, 1,1-	75-35-4	E611D	0.050	mg/kg	<0.050	< 0.050	0	Diff <2x LOR	
		Dichloroethylene, cis-1,2-	156-59-2	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloroethylene, trans-1,2-	156-60-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloromethane	75-09-2	E611D	0.045	mg/kg	<0.045	<0.045	0	Diff <2x LOR	

Page	:	6 of 19
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Sub-Matrix: Soil/Solid				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Volatile Organic Co	mpounds (QC Lot: 1	150861) - continued									
WT2330225-004	Anonymous	Dichloropropane, 1,2-	78-87-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.030	mg/kg	<0.030	<0.030	0	Diff <2x LOR	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.030	mg/kg	<0.030	<0.030	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611D	0.015	mg/kg	0.278	0.279	0.202%	40%	
		Hexane, n-	110-54-3	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Methyl ethyl ketone [MEK]	78-93-3	E611D	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	
		Methyl isobutyl ketone [MIBK]	108-10-1	E611D	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.040	mg/kg	<0.040	<0.040	0	Diff <2x LOR	
		Styrene	100-42-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Tetrachloroethylene	127-18-4	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Toluene	108-88-3	E611D	0.050	mg/kg	2.18	2.18	0.142%	40%	
		Trichloroethane, 1,1,1-	71-55-6	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Trichloroethane, 1,1,2-	79-00-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Trichloroethylene	79-01-6	E611D	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		Trichlorofluoromethane	75-69-4	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Vinyl chloride	75-01-4	E611D	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611D	0.030	mg/kg	0.539	0.543	0.729%	40%	
		Xylene, o-	95-47-6	E611D	0.030	mg/kg	0.152	0.152	0.370%	40%	
lydrocarbons (QC	Lot: 1143539)										
NT2329799-036	Anonymous	F2 (C10-C16)		E601.SG-L	10	mg/kg	<10	<10	0	Diff <2x LOR	
		F3 (C16-C34)		E601.SG-L	50	mg/kg	<50	<50	0	Diff <2x LOR	
		F4 (C34-C50)		E601.SG-L	50	mg/kg	<50	<50	0	Diff <2x LOR	
lydrocarbons (QC	,				50	mallia	~5.0	~5.0			
VT2329574-024	Anonymous	F1 (C6-C10)		E581.F1	5.0	mg/kg	<5.0	<5.0	0	Diff <2x LOR	

Page	:	7 of 19
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 1143056)						
Conductivity (1:2 leachate)		E100-L	5	μS/cm	<5.00	
Physical Tests (QCLot: 1143540)					1 1	
Moisture		E144	0.25	%	<0.25	
Cyanides (QCLot: 1143049)						
Cyanide, weak acid dissociable		E336A	0.05	mg/kg	<0.050	
Metals (QCLot: 1143055)						
Calcium, soluble ion content	7440-70-2	E484	0.5	mg/L	<0.50	
Magnesium, soluble ion content	7439-95-4	E484	0.5	mg/L	<0.50	
Sodium, soluble ion content	17341-25-2	E484	0.5	mg/L	<0.50	
Metals (QCLot: 1143057)						
Boron, hot water soluble	7440-42-8	E487	0.1	mg/kg	<0.10	
/letals (QCLot: 1143058)						
Mercury	7439-97-6	E510C	0.005	mg/kg	<0.0050	
/letals (QCLot: 1143059)						
Antimony	7440-36-0	E440C	0.1	mg/kg	<0.10	
Arsenic	7440-38-2	E440C	0.1	mg/kg	<0.10	
Barium	7440-39-3	E440C	0.5	mg/kg	<0.50	
Beryllium	7440-41-7	E440C	0.1	mg/kg	<0.10	
Boron	7440-42-8	E440C	5	mg/kg	<5.0	
Cadmium	7440-43-9	E440C	0.02	mg/kg	<0.020	
Chromium	7440-47-3	E440C	0.5	mg/kg	<0.50	
Cobalt	7440-48-4	E440C	0.1	mg/kg	<0.10	
Copper	7440-50-8	E440C	0.5	mg/kg	<0.50	
Lead	7439-92-1	E440C	0.5	mg/kg	<0.50	
Molybdenum	7439-98-7	E440C	0.1	mg/kg	<0.10	
Nickel	7440-02-0	E440C	0.5	mg/kg	<0.50	
Selenium	7782-49-2	E440C	0.2	mg/kg	<0.20	
Silver	7440-22-4	E440C	0.1	mg/kg	<0.10	
Thallium	7440-28-0	E440C	0.05	mg/kg	<0.050	
Uranium	7440-61-1	E440C	0.05	mg/kg	<0.050	
Vanadium	7440-62-2	E440C	0.2	mg/kg	<0.20	
Zinc	7440-66-6	E440C	2	mg/kg	<2.0	

Page	:	8 of 19
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Sub-Matrix: Soil/Solid

	CAS Number	wethod	LOR	Unit	Result	Qualifier
Speciated Metals (QCLot: 1143036)						
Chromium, hexavalent [Cr VI]	18540-29-9	E532	0.1	mg/kg	<0.10	
Volatile Organic Compounds (QCLot: 1	146357)					
Acetone	67-64-1	E611D	0.5	mg/kg	<0.50	
Benzene	71-43-2	E611D	0.005	mg/kg	<0.0050	
Bromodichloromethane	75-27-4	E611D	0.05	mg/kg	<0.050	
Bromoform	75-25-2	E611D	0.05	mg/kg	<0.050	
Bromomethane	74-83-9	E611D	0.05	mg/kg	<0.050	
Carbon tetrachloride	56-23-5	E611D	0.05	mg/kg	<0.050	
Chlorobenzene	108-90-7	E611D	0.05	mg/kg	<0.050	
Chloroform	67-66-3	E611D	0.05	mg/kg	<0.050	
Dibromochloromethane	124-48-1	E611D	0.05	mg/kg	<0.050	
Dibromoethane, 1,2-	106-93-4	E611D	0.05	mg/kg	<0.050	
Dichlorobenzene, 1,2-	95-50-1	E611D	0.05	mg/kg	<0.050	
Dichlorobenzene, 1,3-	541-73-1	E611D	0.05	mg/kg	<0.050	
Dichlorobenzene, 1,4-	106-46-7	E611D	0.05	mg/kg	<0.050	
Dichlorodifluoromethane	75-71-8	E611D	0.05	mg/kg	<0.050	
Dichloroethane, 1,1-	75-34-3	E611D	0.05	mg/kg	<0.050	
Dichloroethane, 1,2-	107-06-2	E611D	0.05	mg/kg	<0.050	
Dichloroethylene, 1,1-	75-35-4	E611D	0.05	mg/kg	<0.050	
Dichloroethylene, cis-1,2-	156-59-2	E611D	0.05	mg/kg	<0.050	
Dichloroethylene, trans-1,2-	156-60-5	E611D	0.05	mg/kg	<0.050	
Dichloromethane	75-09-2	E611D	0.045	mg/kg	<0.045	
Dichloropropane, 1,2-	78-87-5	E611D	0.05	mg/kg	<0.050	
Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.03	mg/kg	<0.030	
Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.03	mg/kg	<0.030	
Ethylbenzene	100-41-4	E611D	0.015	mg/kg	<0.015	
Hexane, n-	110-54-3	E611D	0.05	mg/kg	<0.050	
Methyl ethyl ketone [MEK]	78-93-3	E611D	0.5	mg/kg	<0.50	
Methyl isobutyl ketone [MIBK]	108-10-1	E611D	0.5	mg/kg	<0.50	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.04	mg/kg	<0.040	
Styrene	100-42-5	E611D	0.05	mg/kg	<0.050	
Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.05	mg/kg	<0.050	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.05	mg/kg	<0.050	
Tetrachloroethylene	127-18-4	E611D	0.05	mg/kg	<0.050	
Toluene	108-88-3	E611D	0.05	mg/kg	<0.050	

Page	:	9 of 19
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Sub-Matrix: Soil/Solid

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCLo	ot: 1146357) - continued				
Trichloroethane, 1,1,1-	71-55-6 E611D	0.05	mg/kg	<0.050	
Trichloroethane, 1,1,2-	79-00-5 E611D	0.05	mg/kg	<0.050	
Trichloroethylene	79-01-6 E611D	0.01	mg/kg	<0.010	
Trichlorofluoromethane	75-69-4 E611D	0.05	mg/kg	<0.050	
Vinyl chloride	75-01-4 E611D	0.02	mg/kg	<0.020	
Xylene, m+p-	179601-23-1 E611D	0.03	mg/kg	<0.030	
Xylene, o-	95-47-6 E611D	0.03	mg/kg	<0.030	
Volatile Organic Compounds (QCLo	ot: 1150861)			1	
Acetone	67-64-1 E611D	0.5	mg/kg	<0.50	
Benzene	71-43-2 E611D	0.005	mg/kg	<0.0050	
Bromodichloromethane	75-27-4 E611D	0.05	mg/kg	<0.050	
Bromoform	75-25-2 E611D	0.05	mg/kg	<0.050	
Bromomethane	74-83-9 E611D	0.05	mg/kg	<0.050	
Carbon tetrachloride	56-23-5 E611D	0.05	mg/kg	<0.050	
Chlorobenzene	108-90-7 E611D	0.05	mg/kg	<0.050	
Chloroform	67-66-3 E611D	0.05	mg/kg	<0.050	
Dibromochloromethane	124-48-1 E611D	0.05	mg/kg	<0.050	
Dibromoethane, 1,2-	106-93-4 E611D	0.05	mg/kg	<0.050	
Dichlorobenzene, 1,2-	95-50-1 E611D	0.05	mg/kg	<0.050	
Dichlorobenzene, 1,3-	541-73-1 E611D	0.05	mg/kg	<0.050	
Dichlorobenzene, 1,4-	106-46-7 E611D	0.05	mg/kg	<0.050	
Dichlorodifluoromethane	75-71-8 E611D	0.05	mg/kg	<0.050	
Dichloroethane, 1,1-	75-34-3 E611D	0.05	mg/kg	<0.050	
Dichloroethane, 1,2-	107-06-2 E611D	0.05	mg/kg	<0.050	
Dichloroethylene, 1,1-	75-35-4 E611D	0.05	mg/kg	<0.050	
Dichloroethylene, cis-1,2-	156-59-2 E611D	0.05	mg/kg	<0.050	
Dichloroethylene, trans-1,2-	156-60-5 E611D	0.05	mg/kg	<0.050	
Dichloromethane	75-09-2 E611D	0.045	mg/kg	<0.045	
Dichloropropane, 1,2-	78-87-5 E611D	0.05	mg/kg	<0.050	
Dichloropropylene, cis-1,3-	10061-01-5 E611D	0.03	mg/kg	<0.030	
Dichloropropylene, trans-1,3-	10061-02-6 E611D	0.03	mg/kg	<0.030	
Ethylbenzene	100-41-4 E611D	0.015	mg/kg	<0.015	
Hexane, n-	110-54-3 E611D	0.05	mg/kg	<0.050	
Methyl ethyl ketone [MEK]	78-93-3 E611D	0.5	mg/kg	<0.50	
Methyl isobutyl ketone [MIBK]	108-10-1 E611D	0.5	mg/kg	<0.50	

Page	:	10 of 19
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCL	ot: 1150861) - continued				·	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.04	mg/kg	<0.040	
Styrene	100-42-5	E611D	0.05	mg/kg	<0.050	
Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.05	mg/kg	<0.050	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.05	mg/kg	<0.050	
Tetrachloroethylene	127-18-4	E611D	0.05	mg/kg	<0.050	
Toluene	108-88-3	E611D	0.05	mg/kg	<0.050	
Trichloroethane, 1,1,1-	71-55-6	E611D	0.05	mg/kg	<0.050	
Trichloroethane, 1,1,2-	79-00-5	E611D	0.05	mg/kg	<0.050	
Trichloroethylene	79-01-6	E611D	0.01	mg/kg	<0.010	
Trichlorofluoromethane	75-69-4	E611D	0.05	mg/kg	<0.050	
Vinyl chloride	75-01-4	E611D	0.02	mg/kg	<0.020	
Xylene, m+p-	179601-23-1	E611D	0.03	mg/kg	<0.030	
Xylene, o-	95-47-6	E611D	0.03	mg/kg	<0.030	
Hydrocarbons (QCLot: 1143539)					1	
F2 (C10-C16)		E601.SG-L	10	mg/kg	<10	
F3 (C16-C34)		E601.SG-L	50	mg/kg	<50	
F4 (C34-C50)		E601.SG-L	50	mg/kg	<50	
Hydrocarbons (QCLot: 1146358)					· · · · ·	
F1 (C6-C10)		E581.F1	5	mg/kg	<5.0	

Page	:	11 of 19
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie		
Physical Tests (QCLot: 1143056)											
Conductivity (1:2 leachate)		E100-L	5	μS/cm	1409 µS/cm	99.0	90.0	110			
Physical Tests (QCLot: 1143535)											
pH (1:2 soil:CaCl2-aq)		E108A		pH units	7 pH units	100	98.0	102			
Physical Tests (QCLot: 1143540)											
Moisture		E144	0.25	%	50 %	100.0	90.0	110			
Cyanides (QCLot: 1143049)											
Cyanide, weak acid dissociable		E336A	0.05	mg/kg	1.25 mg/kg	95.0	80.0	120			
Metals (QCLot: 1143055)											
Calcium, soluble ion content	7440-70-2		0.5	mg/L	300 mg/L	109	80.0	120			
Magnesium, soluble ion content	7439-95-4		0.5	mg/L	50 mg/L	106	80.0	120			
Sodium, soluble ion content	17341-25-2	E484	0.5	mg/L	50 mg/L	109	80.0	120			
Metals (QCLot: 1143057)											
Boron, hot water soluble	7440-42-8	E487	0.1	mg/kg	1.33333 mg/kg	99.7	70.0	130			
Metals (QCLot: 1143058)											
Mercury	7439-97-6	E510C	0.005	mg/kg	0.1 mg/kg	108	80.0	120			
Metals (QCLot: 1143059)											
Antimony	7440-36-0		0.1	mg/kg	100 mg/kg	106	80.0	120			
Arsenic	7440-38-2		0.1	mg/kg	100 mg/kg	112	80.0	120			
Barium	7440-39-3		0.5	mg/kg	25 mg/kg	107	80.0	120			
Beryllium	7440-41-7		0.1	mg/kg	10 mg/kg	103	80.0	120			
Boron	7440-42-8		5	mg/kg	100 mg/kg	106	80.0	120			
Cadmium	7440-43-9		0.02	mg/kg	10 mg/kg	100	80.0	120			
Chromium	7440-47-3		0.5	mg/kg	25 mg/kg	106	80.0	120			
Cobalt	7440-48-4		0.1	mg/kg	25 mg/kg	104	80.0	120			
Copper	7440-50-8		0.5	mg/kg	25 mg/kg	103	80.0	120			
Lead	7439-92-1		0.5	mg/kg	50 mg/kg	104	80.0	120			
Molybdenum	7439-98-7		0.1	mg/kg	25 mg/kg	104	80.0	120			
Nickel	7440-02-0		0.5	mg/kg	50 mg/kg	103	80.0	120			
Selenium	7782-49-2		0.2	mg/kg	100 mg/kg	110	80.0	120			
Silver	7440-22-4		0.1	mg/kg	10 mg/kg	94.3	80.0	120			
Thallium	7440-28-0	E440C	0.05	mg/kg	100 mg/kg	106	80.0	120			

Page	:	12 of 19
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Sub-Matrix: Soil/Solid					Laboratory Control Sample (LCS) Report				
					Spike	Recovery (%)	Recovery	· Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Metals (QCLot: 1143059) - continued						· · · · · ·			
Uranium	7440-61-1	E440C	0.05	mg/kg	0.5 mg/kg	101	80.0	120	
Vanadium	7440-62-2	E440C	0.2	mg/kg	50 mg/kg	108	80.0	120	
Zinc	7440-66-6	E440C	2	mg/kg	50 mg/kg	101	80.0	120	
Speciated Metals (QCLot: 1143036)									
Chromium, hexavalent [Cr VI]	18540-29-9	E532	0.1	mg/kg	0.8 mg/kg	94.5	80.0	120	
Volatile Organic Compounds (QCLot: 7	1146357)								
Acetone	67-64-1	E611D	0.5	mg/kg	3.475 mg/kg	91.6	60.0	140	
Benzene	71-43-2	E611D	0.005	mg/kg	3.475 mg/kg	89.7	70.0	130	
Bromodichloromethane	75-27-4	E611D	0.05	mg/kg	3.475 mg/kg	94.6	50.0	140	
Bromoform	75-25-2	E611D	0.05	mg/kg	3.475 mg/kg	92.3	70.0	130	
Bromomethane	74-83-9	E611D	0.05	mg/kg	3.475 mg/kg	91.7	50.0	140	
Carbon tetrachloride	56-23-5	E611D	0.05	mg/kg	3.475 mg/kg	93.9	70.0	130	
Chlorobenzene	108-90-7	E611D	0.05	mg/kg	3.475 mg/kg	93.2	70.0	130	
Chloroform	67-66-3	E611D	0.05	mg/kg	3.475 mg/kg	93.7	70.0	130	
Dibromochloromethane	124-48-1	E611D	0.05	mg/kg	3.475 mg/kg	87.7	60.0	130	
Dibromoethane, 1,2-	106-93-4	E611D	0.05	mg/kg	3.475 mg/kg	89.0	70.0	130	
Dichlorobenzene, 1,2-	95-50-1	E611D	0.05	mg/kg	3.475 mg/kg	95.5	70.0	130	
Dichlorobenzene, 1,3-	541-73-1	E611D	0.05	mg/kg	3.475 mg/kg	94.8	70.0	130	
Dichlorobenzene, 1,4-	106-46-7	E611D	0.05	mg/kg	3.475 mg/kg	94.0	70.0	130	
Dichlorodifluoromethane	75-71-8	E611D	0.05	mg/kg	3.475 mg/kg	91.4	50.0	140	
Dichloroethane, 1,1-	75-34-3		0.05	mg/kg	3.475 mg/kg	94.4	60.0	130	
Dichloroethane, 1,2-	107-06-2		0.05	mg/kg	3.475 mg/kg	89.6	60.0	130	
Dichloroethylene, 1,1-	75-35-4		0.05	mg/kg	3.475 mg/kg	93.0	60.0	130	
Dichloroethylene, cis-1,2-	156-59-2		0.05	mg/kg	3.475 mg/kg	93.4	70.0	130	
Dichloroethylene, trans-1,2-	156-60-5		0.05	mg/kg	3.475 mg/kg	92.7	60.0	130	
Dichloromethane	75-09-2		0.045	mg/kg	3.475 mg/kg	91.0	70.0	130	
Dichloropropane, 1,2-	78-87-5		0.05	mg/kg	3.475 mg/kg	92.3	70.0	130	
Dichloropropylene, cis-1,3-	10061-01-5		0.03	mg/kg	3.475 mg/kg	93.8	70.0	130	
Dichloropropylene, trans-1,3-	10061-02-6		0.03	mg/kg		93.6	70.0	130	
Ethylbenzene	100-41-4		0.015	mg/kg	3.475 mg/kg	93.6 94.9	70.0	130	
Hexane, n-	110-54-3		0.015	mg/kg	3.475 mg/kg	94.9 91.0	70.0	130	
	78-93-3		0.05		3.475 mg/kg		60.0	130	
Methyl ethyl ketone [MEK]				mg/kg	3.475 mg/kg	84.9			
Methyl isobutyl ketone [MIBK]	108-10-1		0.5	mg/kg	3.475 mg/kg	82.6	60.0	140	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E011D	0.04	mg/kg	3.475 mg/kg	96.2	70.0	130	

Page	:	13 of 19
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Sub-Matrix: Soil/Solid					Laboratory Control Sample (LCS) Report				
					Spike Recovery (%) Recovery Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLo	blatile Organic Compounds (QCLot: 1146357) - continued								
Styrene	100-42-5	E611D	0.05	mg/kg	3.475 mg/kg	91.6	70.0	130	
Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.05	mg/kg	3.475 mg/kg	93.5	60.0	130	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.05	mg/kg	3.475 mg/kg	94.3	60.0	130	
Tetrachloroethylene	127-18-4	E611D	0.05	mg/kg	3.475 mg/kg	95.5	60.0	130	
Toluene	108-88-3	E611D	0.05	mg/kg	3.475 mg/kg	91.9	70.0	130	
Trichloroethane, 1,1,1-	71-55-6	E611D	0.05	mg/kg	3.475 mg/kg	95.4	60.0	130	
Trichloroethane, 1,1,2-	79-00-5	E611D	0.05	mg/kg	3.475 mg/kg	91.1	60.0	130	
Trichloroethylene	79-01-6	E611D	0.01	mg/kg	3.475 mg/kg	93.6	60.0	130	
Trichlorofluoromethane	75-69-4	E611D	0.05	mg/kg	3.475 mg/kg	88.1	50.0	140	
Vinyl chloride	75-01-4	E611D	0.02	mg/kg	3.475 mg/kg	86.6	60.0	140	
Xylene, m+p-	179601-23-1	E611D	0.03	mg/kg	6.95 mg/kg	94.0	70.0	130	
Xylene, o-	95-47-6	E611D	0.03	mg/kg	3.475 mg/kg	94.4	70.0	130	
/olatile Organic Compounds (QCLot: 1150861)									
Acetone	67-64-1	E611D	0.5	mg/kg	3.475 mg/kg	104	60.0	140	
Benzene	71-43-2	E611D	0.005	mg/kg	3.475 mg/kg	95.7	70.0	130	
Bromodichloromethane	75-27-4	E611D	0.05	mg/kg	3.475 mg/kg	96.5	50.0	140	
Bromoform	75-25-2	E611D	0.05	mg/kg	3.475 mg/kg	85.6	70.0	130	
Bromomethane	74-83-9	E611D	0.05	mg/kg	3.475 mg/kg	95.0	50.0	140	
Carbon tetrachloride	56-23-5	E611D	0.05	mg/kg	3.475 mg/kg	93.5	70.0	130	
Chlorobenzene	108-90-7		0.05	mg/kg	3.475 mg/kg	92.6	70.0	130	
Chloroform	67-66-3		0.05	mg/kg	3.475 mg/kg	96.2	70.0	130	
Dibromochloromethane	124-48-1		0.05	mg/kg	3.475 mg/kg	89.0	60.0	130	
Dibromoethane, 1,2-	106-93-4		0.05	mg/kg	3.475 mg/kg	88.4	70.0	130	
Dichlorobenzene, 1,2-	95-50-1		0.05	mg/kg	3.475 mg/kg	92.6	70.0	130	
Dichlorobenzene, 1,3-	541-73-1		0.05	mg/kg	3.475 mg/kg	92.7	70.0	130	
Dichlorobenzene, 1,4-	106-46-7		0.05	mg/kg	3.475 mg/kg	92.3	70.0	130	
Dichlorodifluoromethane	75-71-8		0.05	mg/kg	3.475 mg/kg	58.4	50.0	140	
Dichloroethane, 1,1-		E611D	0.05	mg/kg	3.475 mg/kg	90.1	60.0	130	
Dichloroethane, 1,2-	107-06-2		0.05	mg/kg	3.475 mg/kg	90.1 96.9	60.0	130	
Dichloroethylene, 1,1-	75-35-4		0.05	mg/kg	3.475 mg/kg	96.9 95.7	60.0	130	
Dichloroethylene, cis-1,2-	156-59-2		0.05	mg/kg	3.475 mg/kg	95.7 96.9	70.0	130	
•	156-60-5		0.05	mg/kg			60.0	130	
Dichloroethylene, trans-1,2- Dichloromethane		E611D	0.05	mg/kg	3.475 mg/kg	96.7	70.0	130	
		E611D	0.045		3.475 mg/kg	98.8	70.0	130	
Dichloropropane, 1,2-				mg/kg	3.475 mg/kg	96.6			
Dichloropropylene, cis-1,3-	10061-01-5		0.03	mg/kg	3.475 mg/kg	89.8	70.0	130	
Dichloropropylene, trans-1,3-	10061-02-6	EOTID	0.03	mg/kg	3.475 mg/kg	82.2	70.0	130	

Page :	14 of 19
Work Order :	WT2330022
Client :	Englobe Corp.
Project :	02302109.001

Sub-Matrix: Soil/Solid					Laboratory Co	ontrol Sample (LCS)	Report		
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLot:	1150861) - continued								
Ethylbenzene	100-41-4	E611D	0.015	mg/kg	3.475 mg/kg	88.3	70.0	130	
Hexane, n-	110-54-3	E611D	0.05	mg/kg	3.475 mg/kg	86.2	70.0	130	
Methyl ethyl ketone [MEK]	78-93-3	E611D	0.5	mg/kg	3.475 mg/kg	95.0	60.0	140	
Methyl isobutyl ketone [MIBK]	108-10-1	E611D	0.5	mg/kg	3.475 mg/kg	93.0	60.0	140	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.04	mg/kg	3.475 mg/kg	90.3	70.0	130	
Styrene	100-42-5	E611D	0.05	mg/kg	3.475 mg/kg	92.5	70.0	130	
Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.05	mg/kg	3.475 mg/kg	90.9	60.0	130	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.05	mg/kg	3.475 mg/kg	96.2	60.0	130	
Tetrachloroethylene	127-18-4	E611D	0.05	mg/kg	3.475 mg/kg	92.4	60.0	130	
Toluene	108-88-3	E611D	0.05	mg/kg	3.475 mg/kg	91.4	70.0	130	
Trichloroethane, 1,1,1-	71-55-6	E611D	0.05	mg/kg	3.475 mg/kg	92.3	60.0	130	
Trichloroethane, 1,1,2-	79-00-5	E611D	0.05	mg/kg	3.475 mg/kg	92.0	60.0	130	
Trichloroethylene	79-01-6	E611D	0.01	mg/kg	3.475 mg/kg	95.9	60.0	130	
Trichlorofluoromethane	75-69-4	E611D	0.05	mg/kg	3.475 mg/kg	89.0	50.0	140	
Vinyl chloride	75-01-4	E611D	0.02	mg/kg	3.475 mg/kg	92.9	60.0	140	
Xylene, m+p-	179601-23-1	E611D	0.03	mg/kg	6.95 mg/kg	88.9	70.0	130	
Xylene, o-	95-47-6	E611D	0.03	mg/kg	3.475 mg/kg	93.1	70.0	130	
Hydrocarbons (QCLot: 1143539)									
F2 (C10-C16)		E601.SG-L	10	mg/kg	656.4125 mg/kg	103	70.0	130	
F3 (C16-C34)		E601.SG-L	50	mg/kg	1332.613 mg/kg	103	70.0	130	
F4 (C34-C50)		E601.SG-L	50	mg/kg	761.4625 mg/kg	103	70.0	130	
Hydrocarbons (QCLot: 1146358)									
F1 (C6-C10)		E581.F1	5	mg/kg	69.1875 mg/kg	98.5	80.0	120	

Page	:	15 of 19
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Soil/Solid			Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	/ Limits (%)	
aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
yanides (QCLo	ot: 1143049)						I		1	
VT2328825-001	Anonymous	Cyanide, weak acid dissociable		E336A	1.18 mg/kg	1.25 mg/kg	95.7	70.0	130	
olatile Organic	Compounds (QCLo	t: 1146357)								
VT2329574-024	Anonymous	Acetone	67-64-1	E611D	1.64 mg/kg	3.125 mg/kg	73.5	50.0	140	
		Benzene	71-43-2	E611D	1.62 mg/kg	3.125 mg/kg	72.7	50.0	140	
		Bromodichloromethane	75-27-4	E611D	1.65 mg/kg	3.125 mg/kg	74.0	50.0	140	
		Bromoform	75-25-2	E611D	1.68 mg/kg	3.125 mg/kg	75.3	50.0	140	
		Bromomethane	74-83-9	E611D	1.69 mg/kg	3.125 mg/kg	76.0	50.0	140	
		Carbon tetrachloride	56-23-5	E611D	1.72 mg/kg	3.125 mg/kg	77.4	50.0	140	
		Chlorobenzene	108-90-7	E611D	1.67 mg/kg	3.125 mg/kg	75.1	50.0	140	
		Chloroform	67-66-3	E611D	1.66 mg/kg	3.125 mg/kg	74.4	50.0	140	
		Dibromochloromethane	124-48-1	E611D	1.57 mg/kg	3.125 mg/kg	70.5	50.0	140	
		Dibromoethane, 1,2-	106-93-4	E611D	1.56 mg/kg	3.125 mg/kg	70.0	50.0	140	
		Dichlorobenzene, 1,2-	95-50-1	E611D	1.74 mg/kg	3.125 mg/kg	78.1	50.0	140	
		Dichlorobenzene, 1,3-	541-73-1	E611D	1.78 mg/kg	3.125 mg/kg	80.0	50.0	140	
		Dichlorobenzene, 1,4-	106-46-7	E611D	1.75 mg/kg	3.125 mg/kg	78.6	50.0	140	
		Dichlorodifluoromethane	75-71-8	E611D	1.50 mg/kg	3.125 mg/kg	67.1	50.0	140	
		Dichloroethane, 1,1-	75-34-3	E611D	1.69 mg/kg	3.125 mg/kg	76.1	50.0	140	
		Dichloroethane, 1,2-	107-06-2	E611D	1.58 mg/kg	3.125 mg/kg	71.0	50.0	140	
		Dichloroethylene, 1,1-	75-35-4	E611D	1.73 mg/kg	3.125 mg/kg	77.8	50.0	140	
		Dichloroethylene, cis-1,2-	156-59-2	E611D	1.65 mg/kg	3.125 mg/kg	73.9	50.0	140	
		Dichloroethylene, trans-1,2-	156-60-5	E611D	1.70 mg/kg	3.125 mg/kg	76.1	50.0	140	
		Dichloromethane	75-09-2	E611D	1.64 mg/kg	3.125 mg/kg	73.6	50.0	140	
		Dichloropropane, 1,2-	78-87-5	E611D	1.63 mg/kg	3.125 mg/kg	73.2	50.0	140	
		Dichloropropylene, cis-1,3-	10061-01-5	E611D	1.62 mg/kg	3.125 mg/kg	72.6	50.0	140	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	1.63 mg/kg	3.125 mg/kg	73.0	50.0	140	
		Ethylbenzene	100-41-4	E611D	1.71 mg/kg	3.125 mg/kg	76.8	50.0	140	
		Hexane, n-	110-54-3	E611D	1.68 mg/kg	3.125 mg/kg	75.5	50.0	140	
		Methyl ethyl ketone [MEK]	78-93-3	E611D	1.43 mg/kg	3.125 mg/kg	64.3	50.0	140	
		Methyl isobutyl ketone [MIBK]	108-10-1	E611D	1.34 mg/kg	3.125 mg/kg	60.1	50.0	140	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	1.79 mg/kg	3.125 mg/kg	80.5	50.0	140	
	1	Styrene	100-42-5	E611D	1.66 mg/kg	3.125 mg/kg	74.5	50.0	140	I

Page	:	16 of 19
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Sub-Matrix: Soil/Solid					Matrix Spike (MS) Report						
					Sp	ike	Recovery (%)	Recovery	Limits (%)		
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
	Compounds (QCLo	t: 1146357) - continued									
NT2329574-024	Anonymous	Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	1.68 mg/kg	3.125 mg/kg	75.7	50.0	140		
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	1.67 mg/kg	3.125 mg/kg	75.1	50.0	140		
		Tetrachloroethylene	127-18-4	E611D	1.75 mg/kg	3.125 mg/kg	78.7	50.0	140		
		Toluene	108-88-3	E611D	1.68 mg/kg	3.125 mg/kg	75.3	50.0	140		
		Trichloroethane, 1,1,1-	71-55-6	E611D	1.73 mg/kg	3.125 mg/kg	77.7	50.0	140		
		Trichloroethane, 1,1,2-	79-00-5	E611D	1.62 mg/kg	3.125 mg/kg	72.5	50.0	140		
		Trichloroethylene	79-01-6	E611D	1.66 mg/kg	3.125 mg/kg	74.6	50.0	140		
		Trichlorofluoromethane	75-69-4	E611D	1.72 mg/kg	3.125 mg/kg	77.1	50.0	140		
		Vinyl chloride	75-01-4	E611D	1.81 mg/kg	3.125 mg/kg	81.3	50.0	140		
		Xylene, m+p-	179601-23-1	E611D	3.39 mg/kg	6.25 mg/kg	76.1	50.0	140		
		Xylene, o-	95-47-6	E611D	1.69 mg/kg	3.125 mg/kg	75.8	50.0	140		
olatile Organic	Compounds (QCLo	t: 1150861)									
/T2330225-004	Anonymous	Acetone	67-64-1	E611D	2.57 mg/kg	3.125 mg/kg	125	50.0	140		
		Benzene	71-43-2	E611D	2.10 mg/kg	3.125 mg/kg	102	50.0	140		
		Bromodichloromethane	75-27-4	E611D	2.13 mg/kg	3.125 mg/kg	104	50.0	140		
		Bromoform	75-25-2	E611D	1.94 mg/kg	3.125 mg/kg	94.2	50.0	140		
		Bromomethane	74-83-9	E611D	2.07 mg/kg	3.125 mg/kg	100	50.0	140		
		Carbon tetrachloride	56-23-5	E611D	1.99 mg/kg	3.125 mg/kg	96.6	50.0	140		
		Chlorobenzene	108-90-7	E611D	2.00 mg/kg	3.125 mg/kg	97.1	50.0	140		
		Chloroform	67-66-3	E611D	2.12 mg/kg	3.125 mg/kg	103	50.0	140		
		Dibromochloromethane	124-48-1	E611D	1.98 mg/kg	3.125 mg/kg	96.2	50.0	140		
		Dibromoethane, 1,2-	106-93-4	E611D	2.02 mg/kg	3.125 mg/kg	98.2	50.0	140		
		Dichlorobenzene, 1,2-	95-50-1	E611D	2.01 mg/kg	3.125 mg/kg	97.8	50.0	140		
		Dichlorobenzene, 1,3-	541-73-1	E611D	2.02 mg/kg	3.125 mg/kg	98.4	50.0	140		
		Dichlorobenzene, 1,4-	106-46-7	E611D	2.01 mg/kg	3.125 mg/kg	97.8	50.0	140		
		Dichlorodifluoromethane	75-71-8	E611D	1.76 mg/kg	3.125 mg/kg	85.5	50.0	140		
		Dichloroethane, 1,1-	75-34-3	E611D	1.68 mg/kg	3.125 mg/kg	81.7	50.0	140		
		Dichloroethane, 1,2-	107-06-2	E611D	2.19 mg/kg	3.125 mg/kg	106	50.0	140		
		Dichloroethylene, 1,1-	75-35-4	E611D	2.05 mg/kg	3.125 mg/kg	99.5	50.0	140		
		Dichloroethylene, cis-1,2-	156-59-2	E611D	2.13 mg/kg	3.125 mg/kg	103	50.0	140		
		Dichloroethylene, trans-1,2-	156-60-5	E611D	2.09 mg/kg	3.125 mg/kg	101	50.0	140		
		Dichloromethane	75-09-2	E611D	2.18 mg/kg	3.125 mg/kg	106	50.0	140		
		Dichloropropane, 1,2-	78-87-5	E611D	2.14 mg/kg	3.125 mg/kg	104	50.0	140		
		Dichloropropylene, cis-1,3-	10061-01-5	E611D	1.94 mg/kg	3.125 mg/kg	94.2	50.0	140		
	I	Dichloropropylene, trans-1,3-	10061-02-6	E611D	l 1.80 mg/kg	3.125 mg/kg	87.3	50.0	140		

Page :	17 of 19
Work Order :	WT2330022
Client :	Englobe Corp.
Project :	02302109.001

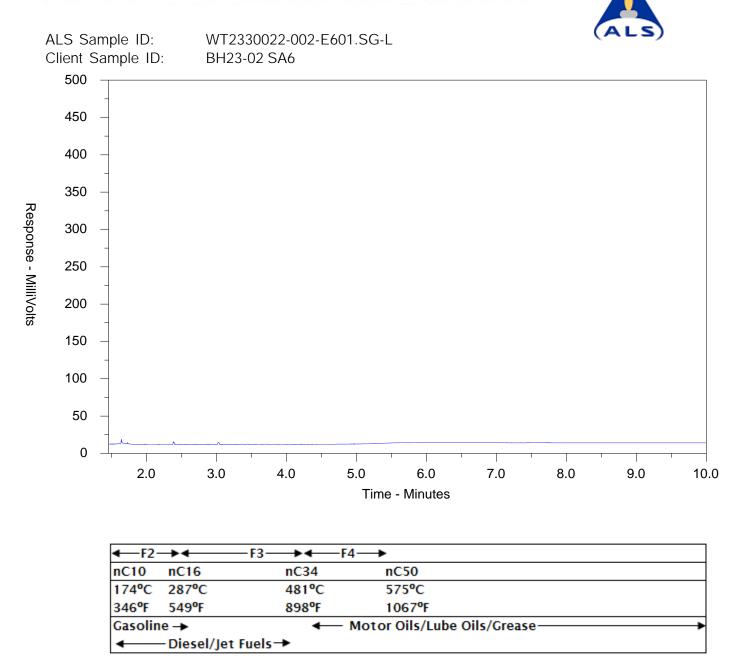
Sub-Matrix: Soil/Solid							Matrix Spil	ke (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Volatile Organic	Compounds (QCLot: 1	150861) - continued								
WT2330225-004	Anonymous	Ethylbenzene	100-41-4	E611D	1.93 mg/kg	3.125 mg/kg	93.8	50.0	140	
		Hexane, n-	110-54-3	E611D	1.56 mg/kg	3.125 mg/kg	75.6	50.0	140	
		Methyl ethyl ketone [MEK]	78-93-3	E611D	2.31 mg/kg	3.125 mg/kg	112	50.0	140	
		Methyl isobutyl ketone [MIBK]	108-10-1	E611D	2.13 mg/kg	3.125 mg/kg	104	50.0	140	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	1.93 mg/kg	3.125 mg/kg	93.7	50.0	140	
		Styrene	100-42-5	E611D	2.00 mg/kg	3.125 mg/kg	97.1	50.0	140	
		Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	1.98 mg/kg	3.125 mg/kg	96.2	50.0	140	
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	2.19 mg/kg	3.125 mg/kg	106	50.0	140	
		Tetrachloroethylene	127-18-4	E611D	1.96 mg/kg	3.125 mg/kg	95.2	50.0	140	
		Toluene	108-88-3	E611D	2.11 mg/kg	3.125 mg/kg	102	50.0	140	
		Trichloroethane, 1,1,1-	71-55-6	E611D	1.98 mg/kg	3.125 mg/kg	96.3	50.0	140	
		Trichloroethane, 1,1,2-	79-00-5	E611D	2.08 mg/kg	3.125 mg/kg	101	50.0	140	
		Trichloroethylene	79-01-6	E611D	2.06 mg/kg	3.125 mg/kg	99.8	50.0	140	
		Trichlorofluoromethane	75-69-4	E611D	1.94 mg/kg	3.125 mg/kg	94.1	50.0	140	
		Vinyl chloride	75-01-4	E611D	2.10 mg/kg	3.125 mg/kg	102	50.0	140	
		Xylene, m+p-	179601-23-1	E611D	3.88 mg/kg	6.25 mg/kg	94.3	50.0	140	
		Xylene, o-	95-47-6	E611D	2.02 mg/kg	3.125 mg/kg	98.0	50.0	140	
Hydrocarbons (C	QCLot: 1143539)									
WT2329799-036	Anonymous	F2 (C10-C16)		E601.SG-L	544 mg/kg	656.4125 mg/kg	104	60.0	140	
		F3 (C16-C34)		E601.SG-L	1120 mg/kg	1332.613 mg/kg	106	60.0	140	
		F4 (C34-C50)		E601.SG-L	615 mg/kg	761.4625 mg/kg	102	60.0	140	
Hydrocarbons (0	QCLot: 1146358)									
WT2329574-024	Anonymous	F1 (C6-C10)		E581.F1	40.4 mg/kg	62.5 mg/kg	90.6	60.0	140	

Page	:	18 of 19
Work Order	:	WT2330022
Client	:	Englobe Corp.
Project	:	02302109.001

Reference Material (RM) Report

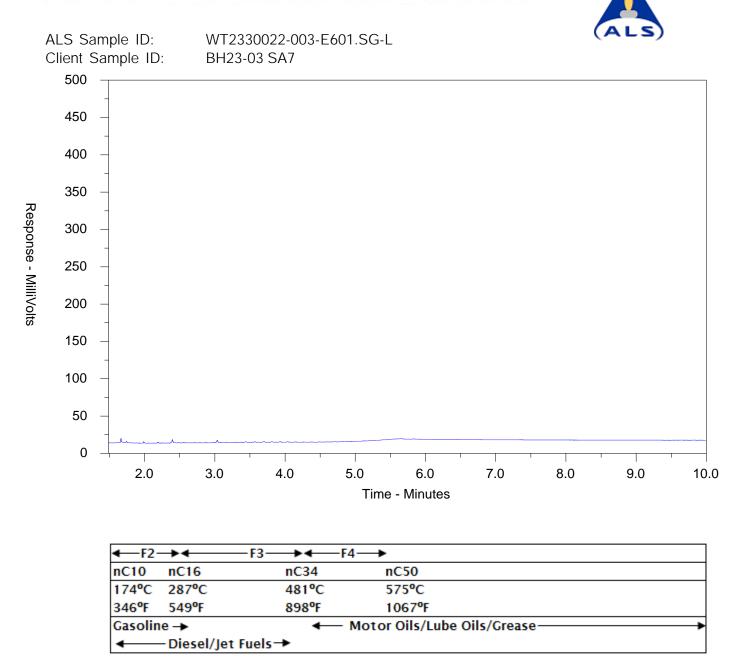
A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

ub-Matrix:					Reference Material (RM) Report					
					RM Target	Recovery (%)	Recovery	Limits (%)		
aboratory ample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier	
hysical Tests	(QCLot: 1143056)									
	RM	Conductivity (1:2 leachate)		E100-L	1725.6 µS/cm	104	70.0	130		
etals (QCLot	: 1143055)									
	RM	Calcium, soluble ion content	7440-70-2	E484	78.94 mg/L	113	70.0	130		
	RM	Magnesium, soluble ion content	7439-95-4	E484	24.16 mg/L	114	70.0	130		
	RM	Sodium, soluble ion content	17341-25-2	E484	72.46 mg/L	108	70.0	130		
etals (QCLot	: 1143057)									
	RM	Boron, hot water soluble	7440-42-8	E487	1.6542 mg/kg	94.0	60.0	140		
etals (QCLot	: 1143058)									
	RM	Mercury	7439-97-6	E510C	0.0585 mg/kg	99.7	70.0	130		
etals (QCLot	: 1143059)									
	RM	Antimony	7440-36-0	E440C	3.99 mg/kg	97.0	70.0	130		
	RM	Arsenic	7440-38-2	E440C	3.73 mg/kg	101	70.0	130		
	RM	Barium	7440-39-3	E440C	105 mg/kg	104	70.0	130		
	RM	Beryllium	7440-41-7	E440C	0.349 mg/kg	108	70.0	130		
	RM	Boron	7440-42-8	E440C	8.5 mg/kg	120	70.0	130		
	RM	Cadmium	7440-43-9	E440C	0.91 mg/kg	92.3	70.0	130		
	RM	Chromium	7440-47-3	E440C	101 mg/kg	102	70.0	130		
	RM	Cobalt	7440-48-4	E440C	6.9 mg/kg	98.6	70.0	130		
	RM	Copper	7440-50-8	E440C	123 mg/kg	106	70.0	130		
	RM	Lead	7439-92-1	E440C	267 mg/kg	101	70.0	130		
	RM	Molybdenum	7439-98-7	E440C	1.03 mg/kg	103	70.0	130		
	RM	Nickel	7440-02-0	E440C	26.7 mg/kg	96.8	70.0	130		
	RM	Silver	7440-22-4	E440C	4.06 mg/kg	125	70.0	130		
	RM	Thallium	7440-28-0	E440C	0.0786 mg/kg	98.9	70.0	130		
	RM	Uranium	7440-61-1	E440C	0.52 mg/kg	95.8	70.0	130		
	RM	Vanadium	7440-62-2	E440C	32.7 mg/kg	99.2	70.0	130		
	RM	Zinc	7440-66-6	E440C	297 mg/kg	96.1	70.0	130		


Page : Work Order : Client : Project :	19 of 19 WT233002 Englobe Co 02302109.0	orp.							ALS
Sub-Matrix:						Refere	nce Material (RM) R	eport	
					RM Target	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
Speciated Metals	(QCLot: 1143036) - co	ntinued							
	RM	Chromium, hexavalent [Cr VI]	18540-29-9	E532	172 mg/kg	85.7	70.0	130	

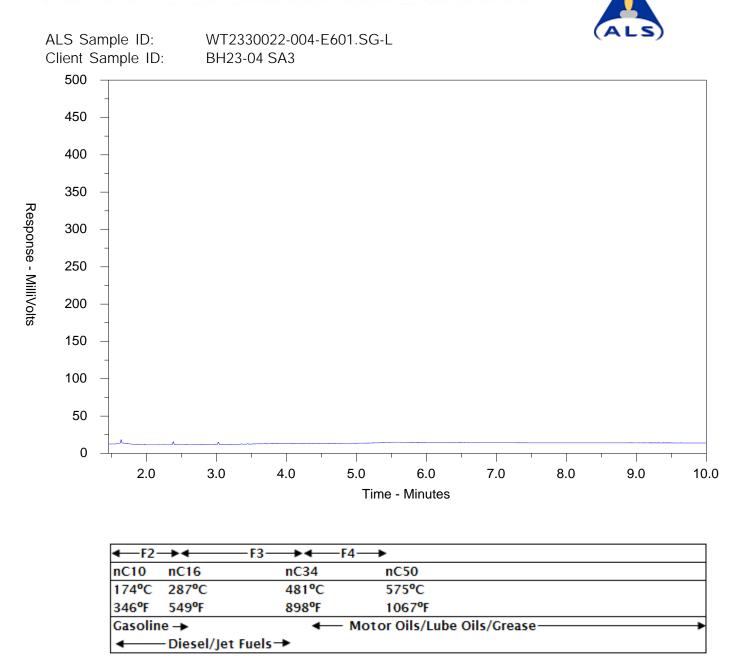
The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

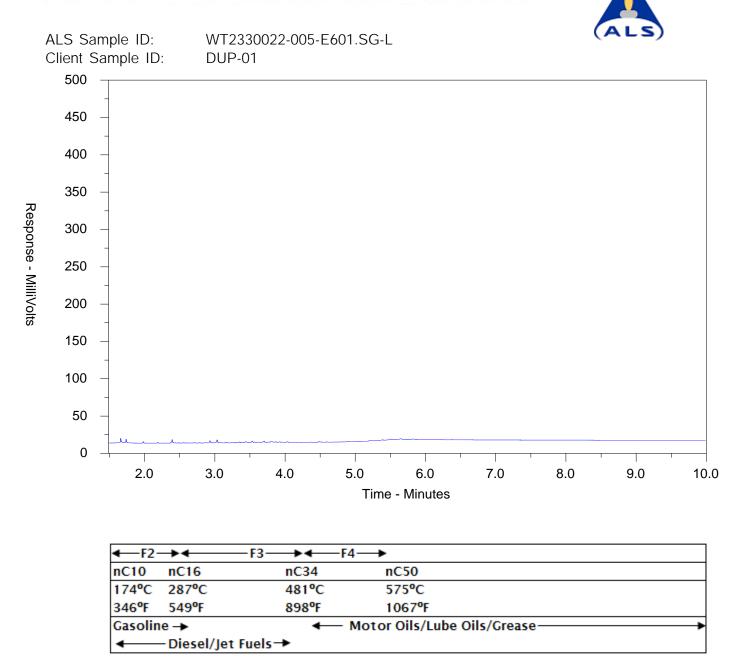
The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Chain of
Custody
(coc)
Analytical
Request
Form

coc Number: 20 - 1083252

FA

AL	
S WWW	
v.alsgloba	
.com	

Are samples for hun PES	Drinking V Are samples taken fr			ALS Sample # (ALS use only)	ALS Lab Wor	ALS Account #/ Quote # Job #: 0.2.2 PO / AFE:	Contact:	Company:		City/Province: Postal Code:	Street:	Contact: Phone:	Report To Company:	5
Are samples for human consumption user YES NO SHIPMENT RELEASE (client use) Imme: Received by: Released by: TANUE AT Mode Date: A A Date: Received by: Received by: <td< td=""><td>(client use) /stem?</td><td></td><td>BH23-02 BH23-03 DUP-01</td><td>This description will appear on the report)</td><td>ALS Lab Work Order # (ALS use only): WT23</td><td>1000 × 109.001</td><td>Project Information</td><td></td><td>Same as Report To</td><td>te</td><td>353 BNACK St. E</td><td>Jessi ca Godin 726 752 9370</td><td>ENG DOR</td><td>www.alsglobal.com</td></td<>	(client use) /stem?		BH23-02 BH23-03 DUP-01	This description will appear on the report)	ALS Lab Work Order # (ALS use only): WT23	1000 × 109.001	Project Information		Same as Report To	te	353 BNACK St. E	Jessi ca Godin 726 752 9370	ENG DOR	www.alsglobal.com
Are samples for human consumption/ user INITIAL SHIPMENT RECEPTION (ALS use only) SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (ALS use only) Released by: Time: Released by: Date: Participation Date: Refer to BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY Refer to BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY Refer to barplete all portions of this form may delay analysis. Please fit in this form LEGIBLY. By the use of this form the user achieved by COC form	Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only)		SAL SAZ JA3 J 1400 JA3 J 0:00	(dd-mmm-yy) (hh:mm) 19-09-23 1305	ALS Contact: Gaylo & Sampler: TY	Major/Minor Code: Routing Code: Requisitioner. Location:	Oil and Gas Required Fields (client use) AFECost Center. PO#	Email 1 or Fax AP-OAT OFAT OFAQUED CALP CALP	U: A	Email 3 Emain Decision	14	Compare Results to Criteria or Report - provide details below if too Select Distribution: V BYAIL I MAIL FAX	Select Report Format: ProF P Exta D EDO	The final report Reports / Recipients
Time: Received by: EC Date: S LOW - CLENT COPY the back page of the white - report copy. \$01_695	Cooling Method: I NONE LICE PAO Submission Comments identified on Sample Réceipt N Cooler Custody Seals Intact: I VS NA INITIAL COOLER TEMPERATURES %	SAMPLE RECEIPT DETAILS (ALS use only)		Son HXXXX	JMBEF MCC VOC	a of con S (Fl- S 153/04 Philos (4, SAF	Fy	NER	6	Date and Time Required for all E&P TATs: For all tests with rush TATs requested, please contact	0			Turnaround Time (TAT) Requested
CEPTION (ALS use only) CP7. 19123 TV8.9	Image: Second	ALS use only)		E	XTENDE	ES ON H	SE RE	QUIRE	D	Telephone : +1 519 886 6910		界や設		Waterioo Work Order Reference

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	: WT2330461	Page	: 1 of 9
Client	: Englobe Corp.	Laboratory	: ALS Environmental - Waterloo
Contact	: Jessica Godin	Account Manager	: Gayle Braun
Address	: 353 Bridge Street East Kitchener ON Canada N2K 2Y5	Address	: 60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	: +1 519 886 6910
Project	: 02302109.001	Date Samples Received	: 21-Sep-2023 16:20
PO	:	Date Analysis Commenced	: 23-Sep-2023
C-O-C number	: 20-1081178	Issue Date	: 28-Sep-2023 18:03
Sampler	: TA		
Site	:		
Quote number	: KITCHENER/LONDON SOIL SOA		
No. of samples received	: 4		
No. of samples analysed	: 4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Organics, Waterloo, Ontario
Nik Perkio	Inorganics Analyst	Metals, Waterloo, Ontario
Niral Patel		Centralized Prep, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	VOC, Waterloo, Ontario
Walt Kippenhuck	Supervisor - Inorganic	Inorganics, Waterloo, Ontario
Walt Kippenhuck	Supervisor - Inorganic	Metals, Waterloo, Ontario

No Breaches Found

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
%	percent
mg/kg	milligrams per kilogram
mg/L	milligrams per litre
mS/cm	millisiemens per centimetre
pH units	pH units

>: greater than.

<: less than.

Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable). For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

Page	:	3 of 9
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Analytical Results Evaluation

		Client	sample ID	TP23-01	TP23-02	TP23-03	DUP-02	 	
Matrix: Soil/Solid									
		Sampling	ı date/time	21-Sep-2023 10:10	21-Sep-2023 10:30	21-Sep-2023 11:00	21-Sep-2023 00:00	 	
		5	Sub-Matrix	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	 	
Analyte	CAS Number	Method/Lab	Unit	WT2330461-001	WT2330461-002	WT2330461-003	WT2330461-004	 	
Physical Tests									
Conductivity (1:2 leachate)		E100-L/WT	mS/cm	0.110	0.235	0.134		 	
Moisture		E144/WT	%	8.48	15.8	10.0	8.85	 	
pH (1:2 soil:CaCl2-aq)		E108A/WT	pH units	7.67	7.36	7.53		 	
Cyanides									
Cyanide, weak acid dissociable		E336A/WT	mg/kg	<0.050	<0.050	<0.050		 	
Fixed-Ratio Extractables									
Calcium, soluble ion content	7440-70-2	E484/WT	mg/L	5.07	15.7	7.22		 	
Magnesium, soluble ion content	7439-95-4	E484/WT	mg/L	0.72	2.62	1.05		 	
Sodium, soluble ion content	17341-25-2	E484/WT	mg/L	0.97	2.51	1.46		 	
Sodium adsorption ratio [SAR]		E484/WT	-	0.11	0.15	0.13		 	
Metals									
Antimony	7440-36-0	E440C/WT	mg/kg	<0.10	0.28	<0.10		 	
Arsenic	7440-38-2	E440C/WT	mg/kg	2.30	4.17	3.12		 	
Barium	7440-39-3	E440C/WT	mg/kg	29.6	50.5	38.8		 	
Beryllium	7440-41-7	E440C/WT	mg/kg	0.29	0.42	0.36		 	
Boron	7440-42-8	E440C/WT	mg/kg	6.8	8.0	6.6		 	
Boron, hot water soluble	7440-42-8	E487/WT	mg/kg	<0.10	0.47	0.11		 	
Cadmium	7440-43-9	E440C/WT	mg/kg	0.317	0.561	0.389		 	
Chromium	7440-47-3	E440C/WT	mg/kg	10.4	17.2	13.4		 	
Cobalt	7440-48-4		mg/kg	3.50	4.90	4.33		 	
Copper	7440-50-8		mg/kg	8.82	18.0	9.88		 	
Lead	7439-92-1		mg/kg	18.5	48.5	37.4		 	
Mercury	7439-97-6	E510C/WT	mg/kg	0.0165	0.0967	0.0236		 	
Molybdenum	7439-98-7	E440C/WT	mg/kg	0.20	0.57	0.30		 	
Nickel	7440-02-0	E440C/WT	mg/kg	7.42	10.3	8.57		 	
Selenium	7782-49-2	E440C/WT	mg/kg	<0.20	0.23	<0.20		 	
Silver	7440-22-4	E440C/WT	mg/kg	<0.10	0.10	<0.10		 	
-									

Page	:	4 of 9
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Analytical Results Evaluation

		Client	sample ID	TP23-01	TP23-02	TP23-03	DUP-02	 	
Matrix: Soil/Solid		_							
		Sampling	ı date/time	21-Sep-2023 10:10	21-Sep-2023 10:30	21-Sep-2023 11:00	21-Sep-2023 00:00	 	
		5	Sub-Matrix	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	 	
Analyte	CAS Number	Method/Lab	Unit	WT2330461-001	WT2330461-002	WT2330461-003	WT2330461-004	 	
Metals									
Thallium	7440-28-0	E440C/WT	mg/kg	0.066	0.099	0.079		 	
Uranium	7440-61-1	E440C/WT	mg/kg	0.458	0.497	0.589		 	
Vanadium	7440-62-2	E440C/WT	mg/kg	18.8	28.4	29.1		 	
Zinc	7440-66-6	E440C/WT	mg/kg	114	176	124		 	
Speciated Metals									
Chromium, hexavalent [Cr VI]	18540-29-9	E532/WT	mg/kg	<0.10	<0.10	0.12		 	
Volatile Organic Compounds									
Benzene	71-43-2	E611A/WT	mg/kg	<0.0050	<0.0050	<0.0050		 	
Ethylbenzene	100-41-4	E611A/WT	mg/kg	<0.015	<0.015	<0.015		 	
Toluene	108-88-3	E611A/WT	mg/kg	<0.050	<0.050	<0.050		 	
Xylene, m+p-	179601-23-1	E611A/WT	mg/kg	<0.030	<0.030	<0.030		 	
Xylene, o-	95-47-6	E611A/WT	mg/kg	<0.030	<0.030	<0.030		 	
Xylenes, total	1330-20-7	E611A/WT	mg/kg	<0.050	<0.050	<0.050		 	
BTEX, total		E611A/WT	mg/kg	<0.10	<0.10	<0.10		 	
Hydrocarbons									
F1 (C6-C10)		E581.F1/WT	mg/kg	<5.0	<5.0	<5.0		 	
F2 (C10-C16)		E601.SG-L/WT	mg/kg	<10	<10	<10		 	
F3 (C16-C34)		E601.SG-L/WT	mg/kg	<50	<50	<50		 	
F4 (C34-C50)		E601.SG-L/WT	mg/kg	<50	<50	<50		 	
F1-BTEX		EC580/WT	mg/kg	<5.0	<5.0	<5.0		 	
F2-Naphthalene		EC600/WT	mg/kg	<25	<25	<25		 	
F3-PAH	n/a	EC600/WT	mg/kg	<50	<50	<50		 	
Hydrocarbons, total (C6-C50)		EC581/WT	mg/kg	<80	<80	<80		 	
Chromatogram to baseline at nC50	n/a	E601.SG-L/WT	-	YES	YES	YES		 	
Hydrocarbons Surrogates									
Bromobenzotrifluoride, 2- (F2-F4 surrogate	e) 392-83-6	E601.SG-L/WT	%	96.4	95.1	95.3		 	
Dichlorotoluene, 3,4-	95-75-0	E581.F1/WT	%	75.8	78.4	66.3		 	
Volatile Organic Compounds Surrogates									

Page	:	5 of 9
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Analytical Results Evaluation

		Client	sample ID	TP23-01	TP23-02	TP23-03	DUP-02	 	
Matrix: Soil/Solid									
		Sampling	date/time	21-Sep-2023	21-Sep-2023	21-Sep-2023	21-Sep-2023	 	
				10:10	10:30	11:00	00:00		
			Sub-Matrix	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	 	
Analyte	CAS Number	Method/Lab	Unit	WT2330461-001	WT2330461-002	WT2330461-003	WT2330461-004	 	
Volatile Organic Compounds Surrogates									
Bromofluorobenzene, 4-	460-00-4	E611A/WT	%	66.5	69.6	64.0		 	
Difluorobenzene, 1,4-	540-36-3	E611A/WT	%	96.5	101	93.9		 	
Polycyclic Aromatic Hydrocarbons									
Acenaphthene	83-32-9	E641A/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	 	
Acenaphthylene	208-96-8	E641A/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	 	
Anthracene	120-12-7	E641A/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	 	
Benz(a)anthracene	56-55-3	E641A/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	 	
Benzo(a)pyrene	50-32-8	E641A/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	 	
Benzo(b+j)fluoranthene	n/a	E641A/WT	mg/kg	<0.050	0.064	<0.050	<0.050	 	
Benzo(g,h,i)perylene	191-24-2	E641A/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	 	
Benzo(k)fluoranthene	207-08-9	E641A/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	 	
Chrysene	218-01-9	E641A/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	 	
Dibenz(a,h)anthracene	53-70-3	E641A/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	 	
Fluoranthene	206-44-0	E641A/WT	mg/kg	<0.050	0.070	<0.050	<0.050	 	
Fluorene	86-73-7	E641A/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	 	
Indeno(1,2,3-c,d)pyrene	193-39-5	E641A/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	 	
Methylnaphthalene, 1-	90-12-0	E641A/WT	mg/kg	<0.030	<0.030	<0.030	<0.030	 	
Methylnaphthalene, 1+2-		E641A/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	 	
Methylnaphthalene, 2-	91-57-6	E641A/WT	mg/kg	<0.030	<0.030	<0.030	<0.030	 	
Naphthalene	91-20-3	E641A/WT	mg/kg	<0.010	<0.010	<0.010	<0.010	 	
Phenanthrene	85-01-8	E641A/WT	mg/kg	<0.050	<0.050	<0.050	<0.050	 	
Pyrene	129-00-0	E641A/WT	mg/kg	<0.050	0.055	<0.050	<0.050	 	
Polycyclic Aromatic Hydrocarbons Surro	gates								
Acridine-d9	34749-75-2	E641A/WT	%	95.7	94.8	91.1	91.1	 	
Chrysene-d12	1719-03-5	E641A/WT	%	89.3	87.0	84.8	85.7	 	
Naphthalene-d8	1146-65-2	E641A/WT	%	102	102	98.8	99.7	 	
Phenanthrene-d10	1517-22-2	E641A/WT	%	100	97.9	95.6	95.9	 	

1	6 of 9
1	WT2330461
1	Englobe Corp.
1	02302109.001
	:

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page	:	7 of 9
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Summary of Guideline Limits

Analyte	CAS Number	Unit	ON153/04	ON153/04	Г
			T2-RPI-C	T2-RPI-F	
Physical Tests					
Conductivity (1:2 leachate)		mS/cm	0.7 mS/cm	0.7 mS/cm	
Moisture		%			
pH (1:2 soil:CaCl2-aq)		pH units			
Cyanides					
Cyanide, weak acid dissociable		mg/kg	0.051 mg/kg	0.051 mg/kg	
Fixed-Ratio Extractables		0.0			
Calcium, soluble ion content	7440-70-2	mg/L			
Magnesium, soluble ion content	7439-95-4	mg/L			
Sodium adsorption ratio [SAR]		-	5 -	5 -	
Sodium, soluble ion content	17341-25-2	mg/L			
Metals					
Antimony	7440-36-0	mg/kg	7.5 mg/kg	7.5 mg/kg	
Arsenic	7440-38-2	mg/kg	18 mg/kg	18 mg/kg	
Barium	7440-39-3	mg/kg	390 mg/kg	390 mg/kg	
Beryllium	7440-33-3	mg/kg			
Boron, hot water soluble	7440-41-7	mg/kg	4 mg/kg	5 mg/kg	
Boron	7440-42-8		1.5 mg/kg	1.5 mg/kg	
		mg/kg	120 mg/kg	120 mg/kg	
Cadmium	7440-43-9	mg/kg	1.2 mg/kg	1.2 mg/kg	
Chromium	7440-47-3	mg/kg	160 mg/kg	160 mg/kg	
Cobalt	7440-48-4	mg/kg	22 mg/kg	22 mg/kg	
Copper	7440-50-8	mg/kg	140 mg/kg	180 mg/kg	
Lead	7439-92-1	mg/kg	120 mg/kg	120 mg/kg	
Mercury	7439-97-6	mg/kg	0.27 mg/kg	1.8 mg/kg	
Molybdenum	7439-98-7	mg/kg	6.9 mg/kg	6.9 mg/kg	
Nickel	7440-02-0	mg/kg	100 mg/kg	130 mg/kg	
Selenium	7782-49-2	mg/kg	2.4 mg/kg	2.4 mg/kg	
Silver	7440-22-4	mg/kg	20 mg/kg	25 mg/kg	
Thallium	7440-28-0	mg/kg	1 mg/kg	1 mg/kg	
Uranium	7440-61-1	mg/kg	23 mg/kg	23 mg/kg	
Vanadium	7440-62-2	mg/kg	86 mg/kg	86 mg/kg	
Zinc	7440-66-6	mg/kg	340 mg/kg	340 mg/kg	
Speciated Metals					
Chromium, hexavalent [Cr VI]	18540-29-9	mg/kg	8 mg/kg	10 mg/kg	
Volatile Organic Compounds					
Benzene	71-43-2	mg/kg	0.21 mg/kg	0.17 mg/kg	
BTEX, total		mg/kg			
Ethylbenzene	100-41-4	mg/kg	1.1 mg/kg	1.6 mg/kg	
	100 11 1				1

Page : 8 of 9 Nork Order : WT2330461						A
Client Englobe Corp.						(ALS)
Project : 02302109.001						
Analyte	CAS Number	Unit	ON153/04	ON153/04		
			T2-RPI-C	T2-RPI-F		
/olatile Organic Compounds - Continued					· · · · · · · · · · · · · · · · · · ·	
Toluene	108-88-3	mg/kg	2.3 mg/kg	6 mg/kg		
Xylene, m+p-	179601-23-1	mg/kg				
Xylene, o-	95-47-6	mg/kg				
Xylenes, total	1330-20-7	mg/kg	3.1 mg/kg	25 mg/kg		
lydrocarbons					i i i i i i i i i i i i i i i i i i i	
Chromatogram to baseline at nC50	n/a	-				
F1 (C6-C10)		mg/kg	55 mg/kg	65 mg/kg		
F1-BTEX		mg/kg	55 mg/kg	65 mg/kg		
F2 (C10-C16)		mg/kg	98 mg/kg	150 mg/kg		
F2-Naphthalene		mg/kg				
F3 (C16-C34)		mg/kg	300 mg/kg	1300 mg/kg		
F3-PAH	n/a	mg/kg				
F4 (C34-C50)		mg/kg	2800 mg/kg	5600 mg/kg		
Hydrocarbons, total (C6-C50)		mg/kg				
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6	%				
Dichlorotoluene, 3,4-	95-75-0	%				
Bromofluorobenzene, 4-	460-00-4	%				
Difluorobenzene, 1,4-	540-36-3	%				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	83-32-9	mg/kg	7.9 mg/kg	29 mg/kg		
Acenaphthylene	208-96-8	mg/kg	0.15 mg/kg	0.17 mg/kg		
Anthracene	120-12-7	mg/kg	0.67 mg/kg	0.74 mg/kg		
Benz(a)anthracene	56-55-3	mg/kg	0.5 mg/kg	0.63 mg/kg		
Benzo(a)pyrene	50-32-8	mg/kg	0.3 mg/kg	0.3 mg/kg		
Benzo(b+j)fluoranthene	n/a	mg/kg	0.78 mg/kg	0.78 mg/kg		
Benzo(g,h,i)perylene	191-24-2	mg/kg	6.6 mg/kg	7.8 mg/kg		
Benzo(k)fluoranthene	207-08-9	mg/kg	0.78 mg/kg	0.78 mg/kg		
Chrysene	218-01-9	mg/kg	7 mg/kg	7.8 mg/kg		
Dibenz(a,h)anthracene	53-70-3	mg/kg	0.1 mg/kg	0.1 mg/kg		
Fluoranthene	206-44-0	mg/kg	0.69 mg/kg	0.69 mg/kg		
Fluorene	86-73-7	mg/kg	62 mg/kg	69 mg/kg		
Indeno(1,2,3-c,d)pyrene	193-39-5	mg/kg	0.38 mg/kg	0.48 mg/kg		
Methylnaphthalene, 1+2-		mg/kg	0.99 mg/kg	3.4 mg/kg		
Methylnaphthalene, 1-	90-12-0	mg/kg	0.99 mg/kg	3.4 mg/kg		
Methylnaphthalene, 2-	91-57-6	mg/kg	0.99 mg/kg	3.4 mg/kg		
Naphthalene	91-20-3	mg/kg	0.6 mg/kg	0.75 mg/kg		
Phenanthrene	85-01-8	mg/kg	6.2 mg/kg	7.8 mg/kg		
Pyrene	129-00-0	mg/kg	78 mg/kg	78 mg/kg		
Acridine-d9	34749-75-2	%				

Page	:	9 of 9
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Analyte	CAS Number	Unit	ON153/04 T2-RPI-C	ON153/04 T2-RPI-F			
Polycyclic Aromatic Hydrocarbons Surrogates - Continued							
Chrysene-d12	1719-03-5	%					
Naphthalene-d8	1146-65-2	%					
Phenanthrene-d10	1517-22-2	%					

Please refer to the General Comments section for an explanation of any qualifiers detected.

Key:

ON153/04	Ontario Regulation 153/04 - April 15, 2011 Standards (JUL, 2011)
T2-RPI-C	153 T2-Soil-Res/Park/Inst. Property Use (Coarse)
T2-RPI-F	153 T2-Soil-Res/Park/Inst. Property Use (Fine)

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	:WT2330461	Page	: 1 of 12
Client	Englobe Corp.	Laboratory	: ALS Environmental - Waterloo
Contact	: Jessica Godin	Account Manager	: Gayle Braun
Address	353 Bridge Street East	Address	: 60 Northland Road, Unit 1
	Kitchener ON Canada N2K 2Y5		Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	: +1 519 886 6910
Project	: 02302109.001	Date Samples Received	: 21-Sep-2023 16:20
PO	:	Issue Date	: 28-Sep-2023 17:41
C-O-C number	: 20-1081178		
Sampler	: TA		
Site	:		
Quote number	: KITCHENER/LONDON SOIL SOA		
No. of samples received	:4		
No. of samples analysed	:4		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) <u>No</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Page	:	3 of 12
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

/latrix: Soil/Solid					E٧	aluation: × =	Holding time exce	edance ; 🔹	<pre>/ = Within</pre>	Holding Tin
Analyte Group	Method	Sampling Date	Ext	traction / Preparation				Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Cyanides : WAD Cyanide (0.01M NaOH Extraction)										
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-01	E336A	21-Sep-2023	23-Sep-2023	14	2 days	1	25-Sep-2023	14 days	2 days	1
				days						
Cyanides : WAD Cyanide (0.01M NaOH Extraction)										
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-02	E336A	21-Sep-2023	23-Sep-2023	14	2 days	1	25-Sep-2023	14 days	2 days	1
				days						
Cyanides : WAD Cyanide (0.01M NaOH Extraction)										
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-03	E336A	21-Sep-2023	23-Sep-2023	14	2 days	1	25-Sep-2023	14 days	2 days	1
				days						
Fixed-Ratio Extractables : Sodium Adsorption Ratio (SAR) - 1:2 Soil:Water (Dry)										
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-01	E484	21-Sep-2023	27-Sep-2023	180	6 days	✓	27-Sep-2023	180	0 days	1
				days				days		
Fixed-Ratio Extractables : Sodium Adsorption Ratio (SAR) - 1:2 Soil:Water (Dry)										
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-02	E484	21-Sep-2023	27-Sep-2023	180	6 days	1	27-Sep-2023	180	0 days	1
				days				days		
Fixed-Ratio Extractables : Sodium Adsorption Ratio (SAR) - 1:2 Soil:Water (Dry)										
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-03	E484	21-Sep-2023	27-Sep-2023	180	6 days	1	27-Sep-2023	180	0 days	✓
				days				days		
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID										
Glass soil methanol vial [ON MECP]										
TP23-01	E581.F1	21-Sep-2023	24-Sep-2023	14	3 days	1	25-Sep-2023	40 days	1 days	1
				days						

Page :	4 of 12
Work Order	WT2330461
Client :	Englobe Corp.
Project :	02302109.001

Analyte Group	Method	Sampling Date	Ev.	traction / Pr	renaration			-		
Container / Client Sample ID(s)	Methoa	Sampling Date	Preparation Date		g Times Actual	Eval	Analysis Date	Analys Holding Rec	ns Times Actual	Eval
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID							1			
Glass soil methanol vial [ON MECP] TP23-02	E581.F1	21-Sep-2023	24-Sep-2023	14 days	3 days	4	25-Sep-2023	40 days	1 days	~
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID		1		-			1			
Glass soil methanol vial [ON MECP] TP23-03	E581.F1	21-Sep-2023	24-Sep-2023	14 days	3 days	4	25-Sep-2023	40 days	1 days	~
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level)							•			
Glass soil jar/Teflon lined cap [ON MECP] TP23-01	E601.SG-L	21-Sep-2023	25-Sep-2023	14 days	4 days	4	27-Sep-2023	40 days	2 days	1
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level)										
Glass soil jar/Teflon lined cap [ON MECP] TP23-02	E601.SG-L	21-Sep-2023	25-Sep-2023	14 days	4 days	~	27-Sep-2023	40 days	2 days	~
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level)								1		
Glass soil jar/Teflon lined cap [ON MECP] TP23-03	E601.SG-L	21-Sep-2023	25-Sep-2023	14 days	4 days	V	27-Sep-2023	40 days	2 days	~
Netals : Boron-Hot Water Extractable by ICPOES										
Glass soil jar/Teflon lined cap [ON MECP] TP23-01	E487	21-Sep-2023	27-Sep-2023	180 days	6 days	~	27-Sep-2023	180 days	0 days	1
Metals : Boron-Hot Water Extractable by ICPOES										
Glass soil jar/Teflon lined cap [ON MECP] TP23-02	E487	21-Sep-2023	27-Sep-2023	180 days	6 days	4	27-Sep-2023	180 days	0 days	1
Netals : Boron-Hot Water Extractable by ICPOES										
Glass soil jar/Teflon lined cap [ON MECP] TP23-03	E487	21-Sep-2023	27-Sep-2023	180 days	6 days	√	27-Sep-2023	180 days	0 days	1
Metals : Mercury in Soil/Solid by CVAAS (<355 μm)										
Glass soil jar/Teflon lined cap [ON MECP] TP23-01	E510C	21-Sep-2023	26-Sep-2023	28 days	6 days	~	27-Sep-2023	28 days	6 days	~

Page :	5	of 12
Work Order	V	VT2330461
Client :	E	nglobe Corp.
Project :	0	2302109.001

Matrix: Soil/Solid					Ev	aluation: × =	Holding time exce	edance ; •	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	paration Holding Times Eval		Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual	
Metals : Mercury in Soil/Solid by CVAAS (<355 μm)										
Glass soil jar/Teflon lined cap [ON MECP]		1								
TP23-02	E510C	21-Sep-2023	26-Sep-2023	28 days	6 days	1	27-Sep-2023	28 days	6 days	1
Metals : Mercury in Soil/Solid by CVAAS (<355 μm)				1	1			1	1	
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-03	E510C	21-Sep-2023	26-Sep-2023	28 days	6 days	1	27-Sep-2023	28 days	6 days	1
Metals : Metals in Soil/Solid by CRC ICPMS (<355 μm)										
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-01	E440C	21-Sep-2023	26-Sep-2023	180	6 days	✓	27-Sep-2023	180	6 days	✓
				days				days		
Metals : Metals in Soil/Solid by CRC ICPMS (<355 μm)									1	
Glass soil jar/Teflon lined cap [ON MECP]		1								
TP23-02	E440C	21-Sep-2023	26-Sep-2023	180	6 days	1	27-Sep-2023	180	6 days	1
		· ·		days			1	days		
Metals : Metals in Soil/Solid by CRC ICPMS (<355 μm)										
Glass soil jar/Teflon lined cap [ON MECP]		1					1			
TP23-03	E440C	21-Sep-2023	26-Sep-2023	180	6 days	1	27-Sep-2023	180	6 days	1
TF 25-05	LHHOO	21-060-2020	20-069-2020		0 days	•	27-069-2020		0 days	•
				days				days		
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)				1				1		
Glass soil jar/Teflon lined cap [ON MECP]	F (00)					,				,
TP23-01	E100-L	21-Sep-2023	27-Sep-2023	30	6 days	1	27-Sep-2023	30 days	6 days	1
				days						
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-02	E100-L	21-Sep-2023	27-Sep-2023	30	6 days	✓	27-Sep-2023	30 days	6 days	✓
				days						
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	·									
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-03	E100-L	21-Sep-2023	27-Sep-2023	30	6 days	✓	27-Sep-2023	30 days	6 days	✓
				days	-			-		
Physical Tests : Moisture Content by Gravimetry		1			I		I	1	I	
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-01	E144	21-Sep-2023					24-Sep-2023		3 days	
		cop 2020					21000-2020		U Guyo	

Page :	6 of 12
Work Order :	WT2330461
Client :	Englobe Corp.
Project :	02302109.001

Matrix: Soil/Solid					E١	valuation: × =	Holding time excee	edance ; •	<pre>/ = Within</pre>	Holding Ti
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-02	E144	21-Sep-2023					24-Sep-2023		3 days	
									·	
Divisional Tanta - Maintena Constant Inc. One in star										
Physical Tests : Moisture Content by Gravimetry Glass soil jar/Teflon lined cap [ON MECP]										
TP23-03	E144	21-Sep-2023					24-Sep-2023		3 days	
1F 25-05		21-060-2020					24-069-2020		5 days	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP]	E144	21 San 2022					24 San 2022		1 days	
DUP-02	E144	21-Sep-2023					24-Sep-2023		4 days	
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-01	E108A	21-Sep-2023	25-Sep-2023	30	4 days	1	27-Sep-2023	30 days	6 days	1
				days						
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-02	E108A	21-Sep-2023	25-Sep-2023	30	4 days	1	27-Sep-2023	30 days	6 days	✓
				days						
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received								1		
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-03	E108A	21-Sep-2023	25-Sep-2023	30	4 days	1	27-Sep-2023	30 days	6 days	1
				days	,		· ·	,	,	
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS				, ,						
Glass soil jar/Teflon lined cap [ON MECP]							1			
	E641A	21-Sep-2023	25-Sep-2023	60	4 days	1	25-Sep-2023	40 days	0 days	1
501-02	204177	21-000-2020	20-000-2020	days	4 duys	-	20-00p-2020	40 day5	0 days	
				uays						
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS							1			
Glass soil jar/Teflon lined cap [ON MECP]	E644A	01 84- 0000	05 Car 0000		1 daur	1	05 Sec. 0000	10 d	0 deve	1
TP23-01	E641A	21-Sep-2023	25-Sep-2023	60	4 days	*	25-Sep-2023	40 days	0 days	•
				days						
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-02	E641A	21-Sep-2023	25-Sep-2023	60	4 days	1	25-Sep-2023	40 days	0 days	1
				days						

Page :	7 of 12
Work Order :	WT2330461
Client :	Englobe Corp.
Project :	02302109.001

/atrix: Soil/Solid					Eva	aluation: × =	Holding time exce	edance ; 🔹	<pre>/ = Within</pre>	Holding Ti
Analyte Group	Method	Sampling Date	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date Ho	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-03	E641A	21-Sep-2023	25-Sep-2023	60	4 days	1	25-Sep-2023	40 days	0 days	1
				days						
Speciated Metals : Hexavalent Chromium (Cr VI) by IC										
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-01	E532	21-Sep-2023	23-Sep-2023	30	2 days	✓	25-Sep-2023	7 days	2 days	✓
				days						
Speciated Metals : Hexavalent Chromium (Cr VI) by IC										
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-02	E532	21-Sep-2023	23-Sep-2023	30	2 days	1	25-Sep-2023	7 days	2 days	✓
				days						
Speciated Metals : Hexavalent Chromium (Cr VI) by IC										
Glass soil jar/Teflon lined cap [ON MECP]										
TP23-03	E532	21-Sep-2023	23-Sep-2023	30	2 days	1	25-Sep-2023	7 days	2 days	1
				days						
Volatile Organic Compounds : BTEX by Headspace GC-MS										
Glass soil methanol vial [ON MECP]										
TP23-01	E611A	21-Sep-2023	24-Sep-2023	14	3 days	✓	25-Sep-2023	40 days	1 days	1
				days						
Volatile Organic Compounds : BTEX by Headspace GC-MS										
Glass soil methanol vial [ON MECP]										
TP23-02	E611A	21-Sep-2023	24-Sep-2023	14	3 days	1	25-Sep-2023	40 days	1 days	✓
				days						
Volatile Organic Compounds : BTEX by Headspace GC-MS										
Glass soil methanol vial [ON MECP]										
TP23-03	E611A	21-Sep-2023	24-Sep-2023	14	3 days	1	25-Sep-2023	40 days	1 days	✓
				days						

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page	:	8 of 12
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type							
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Frequency (%) Expected	Evaluation
Laboratory Duplicates (DUP)							
Boron-Hot Water Extractable by ICPOES	E487	1151161	1	10	10.0	5.0	✓
BTEX by Headspace GC-MS	E611A	1151058	1	19	5.2	5.0	
CCME PHC - F1 by Headspace GC-FID	E581.F1	1151059	1	19	5.2	5.0	
CCME PHCs - F2-F4 by GC-FID (Low Level)	E601.SG-L	1150965	1	18	5.5	5.0	
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L	1151157	1	12	8.3	5.0	1
Hexavalent Chromium (Cr VI) by IC	E532	1149690	1	18	5.5	5.0	
Mercury in Soil/Solid by CVAAS (<355 µm)	E510C	1151160	1	3	33.3	5.0	1
Metals in Soil/Solid by CRC ICPMS (<355 μm)	E440C	1151159	1	9	11.1	5.0	1
Moisture Content by Gravimetry	E144	1151165	1	20	5.0	5.0	~
PAHs by Hex:Ace GC-MS	E641A	1150966	1	14	7.1	5.0	
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A	1151154	1	20	5.0	5.0	1
Sodium Adsorption Ratio (SAR) - 1:2 Soil:Water (Dry)	E484	1151158	1	12	8.3	5.0	✓
WAD Cyanide (0.01M NaOH Extraction)	E336A	1149689	1	18	5.5	5.0	1
Laboratory Control Samples (LCS)							
Boron-Hot Water Extractable by ICPOES	E487	1151161	2	10	20.0	10.0	1
BTEX by Headspace GC-MS	E611A	1151058	1	19	5.2	5.0	1
CCME PHC - F1 by Headspace GC-FID	E581.F1	1151059	1	19	5.2	5.0	1
CCME PHCs - F2-F4 by GC-FID (Low Level)	E601.SG-L	1150965	1	18	5.5	5.0	1
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L	1151157	2	12	16.6	10.0	1
Hexavalent Chromium (Cr VI) by IC	E532	1149690	2	18	11.1	10.0	✓
Mercury in Soil/Solid by CVAAS (<355 μm)	E510C	1151160	2	3	66.6	10.0	✓
Metals in Soil/Solid by CRC ICPMS (<355 μm)	E440C	1151159	2	9	22.2	10.0	✓
Moisture Content by Gravimetry	E144	1151165	1	20	5.0	5.0	✓
PAHs by Hex:Ace GC-MS	E641A	1150966	1	14	7.1	5.0	✓
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A	1151154	1	20	5.0	5.0	✓
Sodium Adsorption Ratio (SAR) - 1:2 Soil:Water (Dry)	E484	1151158	2	12	16.6	10.0	✓
WAD Cyanide (0.01M NaOH Extraction)	E336A	1149689	1	18	5.5	5.0	1
Method Blanks (MB)							
Boron-Hot Water Extractable by ICPOES	E487	1151161	1	10	10.0	5.0	1
BTEX by Headspace GC-MS	E611A	1151058	1	19	5.2	5.0	✓
CCME PHC - F1 by Headspace GC-FID	E581.F1	1151059	1	19	5.2	5.0	✓
CCME PHCs - F2-F4 by GC-FID (Low Level)	E601.SG-L	1150965	1	18	5.5	5.0	✓
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L	1151157	1	12	8.3	5.0	✓
Hexavalent Chromium (Cr VI) by IC	E532	1149690	1	18	5.5	5.0	✓
Mercury in Soil/Solid by CVAAS (<355 μm)	E510C	1151160	1	3	33.3	5.0	1

Page	:	9 of 12
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	1	02302109.001

Matrix: Soil/Solid		Evaluatio	n: × = QC frequ	ency outside spe	ecification; 🗸 = 0	QC frequency wit	thin specification
Quality Control Sample Type					Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued							
Metals in Soil/Solid by CRC ICPMS (<355 μm)	E440C	1151159	1	9	11.1	5.0	1
Moisture Content by Gravimetry	E144	1151165	1	20	5.0	5.0	✓
PAHs by Hex:Ace GC-MS	E641A	1150966	1	14	7.1	5.0	✓
Sodium Adsorption Ratio (SAR) - 1:2 Soil:Water (Dry)	E484	1151158	1	12	8.3	5.0	✓
WAD Cyanide (0.01M NaOH Extraction)	E336A	1149689	1	18	5.5	5.0	✓
Matrix Spikes (MS)							
BTEX by Headspace GC-MS	E611A	1151058	1	19	5.2	5.0	✓
CCME PHC - F1 by Headspace GC-FID	E581.F1	1151059	1	19	5.2	5.0	✓
CCME PHCs - F2-F4 by GC-FID (Low Level)	E601.SG-L	1150965	1	18	5.5	5.0	~
PAHs by Hex:Ace GC-MS	E641A	1150966	1	14	7.1	5.0	✓
WAD Cyanide (0.01M NaOH Extraction)	E336A	1149689	1	18	5.5	5.0	~

Page	:	10 of 12
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L ALS Environmental - Waterloo	Soil/Solid	CSSS Ch. 15 (mod)/APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a soil sample that has been added in a defined ratio of soil to deionized water, then shaken well and allowed to settle. Conductance is measured in the fluid that is observed in the upper layer.
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A ALS Environmental - Waterloo	Soil/Solid	MECP E3137A	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C) and is carried out in accordance with procedures described in the Analytical Protocol (prescriptive method). A minimum 10g portion of the sample, as received, is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil by centrifuging, settling, or decanting and then analyzed using a pH meter and electrode.
Moisture Content by Gravimetry	E144 ALS Environmental - Waterloo	Soil/Solid	CCME PHC in Soil - Tier 1	Moisture is measured gravimetrically by drying the sample at 105°C. Moisture content is calculated as the weight loss (due to water) divided by the wet weight of the sample, expressed as a percentage.
WAD Cyanide (0.01M NaOH Extraction)	E336A ALS Environmental - Waterloo	Soil/Solid	APHA 4500-CN I (mod)	Weak Acid Dissociable (WAD) cyanide is determined after extraction by Continuous Flow Analyzer (CFA) with in-line distillation followed by colourmetric analysis.
Metals in Soil/Solid by CRC ICPMS (<355 μm)	E440C ALS Environmental - Waterloo	Soil/Solid	EPA 6020B (mod)	This method is intended to liberate metals that may be environmentally available. Samples are dried, then sieved through a 355 µm sieve, and digested with HNO3 and HCI. Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, TI, V, W, and Zr. Silicate minerals are not solubilized. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. This method does not adequately recover elemental sulfur, and is unsuitable for assessment of elemental sulfur standards or guidelines. Analysis is by Collision/Reaction Cell ICPMS.
Sodium Adsorption Ratio (SAR) - 1:2 Soil:Water (Dry)	E484 ALS Environmental - Waterloo	Soil/Solid	SW846 6010C	A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca and Mg are reported as per CALA requirements for calculated parameters. These individual parameters are not for comparison to any guideline.

Page	:	11 of 12
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Boron-Hot Water Extractable by ICPOES	E487	Soil/Solid	HW EXTR, EPA 6010B	A dried solid sample is extracted with calcium chloride, the sample undergoes a heating process. After cooling the sample is filtered and analyzed by ICP/OES.
	ALS Environmental -			
	Waterloo			Analysis conducted in accordance with the Protocol for Analytical Methods Used in the
				Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1,
				2011).
Mercury in Soil/Solid by CVAAS (<355 µm)	E510C	Soil/Solid	EPA 200.2/1631	Samples are sieved through a 355 μm sieve, and digested with HNO3 and HCl, followed
			Appendix (mod)	by CVAAS analysis.
	ALS Environmental -			
Hexavalent Chromium (Cr VI) by IC	Waterloo	Soil/Solid	APHA 3500-CR C	Instrumental analysis is performed by ion chromatography with UV detection.
	E532	301/30110	AFHA 3300-CK C	instrumental analysis is performed by for chromatography with ov detection.
	ALS Environmental -			
	Waterloo			
CCME PHC - F1 by Headspace GC-FID	E581.F1	Soil/Solid	CCME PHC in Soil - Tier	CCME Fraction 1 (F1) is analyzed by static headspace GC-FID. Samples are prepared in
			1	headspace vials and are heated and agitated on the headspace autosampler, causing
	ALS Environmental -			VOCs to partition between the aqueous phase and the headspace in accordance with
	Waterloo			Henry's law.
				Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply
				fully with the Reference Method for the Canada-Wide Standard for PHC. Test results
				are expressed on a dry weight basis. Unless qualified, all required quality control
				criteria of the CCME PHC method have been met, including response factor and linearity
CCME PHCs - F2-F4 by GC-FID (Low Level)	5004 00 1	Soil/Solid		requirements.
COME PHOS - F2-F4 by GC-FID (Low Level)	E601.SG-L	3011/3011u	CCME PHC in Soil - Tier	Sample extracts are subjected to in-situ silica gel treatment prior to analysis by GC-FID
	ALS Environmental -		1	for CCME hydrocarbon fractions (F2-F4).
	Waterloo			Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply
	Waterlee			fully with the Reference Method for the Canada-Wide Standard for PHC. Test results
				are expressed on a dry weight basis. Unless qualified, all required quality control
				criteria of the CCME PHC method have been met, including response factor and linearity
				requirements.
BTEX by Headspace GC-MS	E611A	Soil/Solid	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS.
				Samples are prepared in headspace vials and are heated and agitated on the
	ALS Environmental -			headspace autosampler, causing VOCs to partition between the aqueous phase and
	Waterloo			the headspace in accordance with Henry's law.
PAHs by Hex:Ace GC-MS	E641A	Soil/Solid	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are extracted with hexane/acetone and
				analyzed by GC-MS. If reported, IACR (index of additive cancer risk, unitless) and
	ALS Environmental -			B(a)P toxic potency equivalent (in soil concentration units) are calculated as per CCME
F1-BTEX	Waterloo	Soil/Solid		PAH Soil Quality Guidelines fact sheet (2010) or ABT1.
	EC580	3011/30110	CCME PHC in Soil - Tier	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene,
	ALS Environmental -			ethylbenzene and xylenes (BTEX).
	Waterloo			
	Hatonoo		1	1]

Page	:	12 of 12
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Sum F1 to F4 (C6-C50)	EC581	Soil/Solid	CCME PHC in Soil - Tier	Hydrocarbons, total (C6-C50) is the sum of CCME Fractions F1(C6-C10), F2(C10-C16), F3(C16-C34), and F4(C34-C50). F4G-sg is not used within this calculation due to
	ALS Environmental -			overlap with other fractions.
	Waterloo			
F2 to F3 minus PAH	EC600	Soil/Solid	CCME PHC in Soil - Tier	F2-PAH = CCME Fraction 2 (C10-C16) minus Naphthalene F3-PAH = CCME Fraction 3 (C16-C34) minus select Polycyclic Aromatic Hydrocarbons
	ALS Environmental -			(PAH) as per CCME Soil Tier 1
	Waterloo			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil:Water for pH/EC	EP108	Soil/Solid	BC WLAP METHOD: PH. ELECTROMETRIC.	The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water.
	ALS Environmental -		SOIL	
	Waterloo		0012	
Leach 1:2 Soil : 0.01CaCl2 - As Received for	EP108A	Soil/Solid	MOEE E3137A	A minimum 10g portion of the sample, as received, is extracted with 20mL of 0.01M
рН				calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is
	ALS Environmental -			separated from the soil by centrifuging, settling or decanting and then analyzed using a
	Waterloo	Call/Callid		pH meter and electrode.
Cyanide Extraction for CFA (0.01M NaOH)	EP333A	Soil/Solid	ON MECP E3015 (mod)	Extraction for various cyanide analysis is by rotary extraction of the soil with 0.01M Sodium Hydroxide.
	ALS Environmental -			
	Waterloo			
Digestion for Metals and Mercury (355 μm Sieve)	EP440C	Soil/Solid	EPA 200.2 (mod)	Samples are sieved through a 355 µm sieve, and digested with HNO3 and HCI. This method is intended to liberate metals that may be environmentally available.
	ALS Environmental -			
	Waterloo			
Boron-Hot Water Extractable	EP487	Soil/Solid	HW EXTR, EPA 6010B	A dried solid sample is extracted with weak calcium chloride, the sample undergoes a heating process. After cooling the sample is filtered and analyzed by ICP/OES.
	ALS Environmental -			
	Waterloo			Analysis conducted in accordance with the Protocol for Analytical Methods Used in the
				Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011)
Preparation of Hexavalent Chromium (Cr VI) for IC	EP532	Soil/Solid	EPA 3060A	Field moist samples are digested with a sodium hydroxide/sodium carbonate solution as described in EPA 3060A.
	ALS Environmental -			
	Waterloo			
VOCs Methanol Extraction for Headspace	EP581	Soil/Solid	EPA 5035A (mod)	VOCs in samples are extracted with methanol. Extracts are then prepared in headspace
Analysis				vials and are heated and agitated on the headspace autosampler, causing VOCs to
	ALS Environmental -			partition between the aqueous phase and the headspace in accordance with Henry's
	Waterloo	0.11/0.11/		law.
PHCs and PAHs Hexane-Acetone Tumbler	EP601	Soil/Solid	CCME PHC in Soil - Tier	Samples are subsampled and Petroleum Hydrocarbons (PHC) and PAHs are extracted
Extraction	ALS Environmental -		1 (mod)	with 1:1 hexane:acetone using a rotary extractor.
	ALS Environmental - Waterloo			
	Waterioo			1

ALS Canada Ltd.

QUALITY CONTROL REPORT Work Order Page : 1 of 15 WT2330461 Client : Englobe Corp. Laboratory : ALS Environmental - Waterloo Account Manager Contact Jessica Godin : Gayle Braun Address Address : 353 Bridge Street East :60 Northland Road, Unit 1 Kitchener ON Canada N2K 2Y5 Waterloo, Ontario Canada N2V 2B8 Telephone Telephone :+1 519 886 6910 Project Date Samples Received :21-Sep-2023 16:20 :02302109.001 PO Date Analysis Commenced :23-Sep-2023 :----C-O-C number Issue Date :20-1081178 :28-Sep-2023 17:58 Sampler : TA Site · ____ Quote number KITCHENER/LONDON SOIL SOA No. of samples received :4 No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Waterloo Organics, Waterloo, Ontario
Nik Perkio	Inorganics Analyst	Waterloo Metals, Waterloo, Ontario
Niral Patel		Waterloo Centralized Prep, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	Waterloo VOC, Waterloo, Ontario
Walt Kippenhuck	Supervisor - Inorganic	Waterloo Inorganics, Waterloo, Ontario
Walt Kippenhuck	Supervisor - Inorganic	Waterloo Metals, Waterloo, Ontario

Page :	2 of 15
Work Order :	WT2330461
Client :	Englobe Corp.
Project :	02302109.001

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page	:	3 of 15
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Soil/Solid							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	: Lot: 1151154)										
EO2308578-010	Anonymous	pH (1:2 soil:CaCl2-aq)		E108A	0.10	pH units	5.97	5.96	0.168%	5%	
Physical Tests (QC	Lot: 1151157)										
WT2330375-003	Anonymous	Conductivity (1:2 leachate)		E100-L	5.00	μS/cm	0.0851 mS/cm	84.6	0.589%	20%	
Physical Tests (QC	Lot: 1151165)										
WT2330241-012	Anonymous	Moisture		E144	0.25	%	16.6	15.6	5.90%	20%	
Cyanides (QC Lot:	1149689)										
WT2330383-001	Anonymous	Cyanide, weak acid dissociable		E336A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
Metals (QC Lot: 11	51158)										
WT2330375-003	Anonymous	Calcium, soluble ion content	7440-70-2	E484	0.50	mg/L	2.20	2.20	0	Diff <2x LOR	
		Magnesium, soluble ion content	7439-95-4	E484	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
		Sodium, soluble ion content	17341-25-2	E484	0.50	mg/L	1.95	1.91	0.04	Diff <2x LOR	
Metals (QC Lot: 11	51159)										
WT2330461-001	TP23-01	Antimony	7440-36-0	E440C	0.10	mg/kg	<0.10	<0.10	0	Diff <2x LOR	
		Arsenic	7440-38-2	E440C	0.10	mg/kg	2.30	2.29	0.591%	30%	
		Barium	7440-39-3	E440C	0.50	mg/kg	29.6	28.3	4.38%	40%	
		Beryllium	7440-41-7	E440C	0.10	mg/kg	0.29	0.27	0.02	Diff <2x LOR	
		Boron	7440-42-8	E440C	5.0	mg/kg	6.8	6.4	0.4	Diff <2x LOR	
		Cadmium	7440-43-9	E440C	0.020	mg/kg	0.317	0.338	6.20%	30%	
		Chromium	7440-47-3	E440C	0.50	mg/kg	10.4	10.1	2.83%	30%	
		Cobalt	7440-48-4	E440C	0.10	mg/kg	3.50	3.54	1.09%	30%	
		Copper	7440-50-8	E440C	0.50	mg/kg	8.82	8.70	1.40%	30%	
		Lead	7439-92-1	E440C	0.50	mg/kg	18.5	17.9	3.41%	40%	
		Molybdenum	7439-98-7	E440C	0.10	mg/kg	0.20	0.28	0.07	Diff <2x LOR	
		Nickel	7440-02-0	E440C	0.50	mg/kg	7.42	7.32	1.34%	30%	
		Selenium	7782-49-2	E440C	0.20	mg/kg	<0.20	<0.20	0	Diff <2x LOR	
		Silver	7440-22-4	E440C	0.10	mg/kg	<0.10	<0.10	0	Diff <2x LOR	
		Thallium	7440-28-0	E440C	0.050	mg/kg	0.066	0.060	0.006	Diff <2x LOR	
		Uranium	7440-61-1	E440C	0.050	mg/kg	0.458	0.463	0.978%	30%	
		Vanadium	7440-62-2	E440C	0.20	mg/kg	18.8	19.4	3.19%	30%	
		Zinc	7440-66-6	E440C	2.0	mg/kg	114	109	3.69%	30%	

Page	:	4 of 15
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Sub-Matrix: Soil/Solid				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Metals (QC Lot: 11											
WT2330461-001	TP23-01	Mercury	7439-97-6	E510C	0.0050	mg/kg	0.0165	0.0142	0.0023	Diff <2x LOR	
Metals (QC Lot: 11	51161)				i i i i i i i i i i i i i i i i i i i						
WT2330461-002	TP23-02	Boron, hot water soluble	7440-42-8	E487	0.10	mg/kg	0.47	0.59	23.1%	40%	
Speciated Metals (QC Lot: 1149690)										
WT2330383-001	Anonymous	Chromium, hexavalent [Cr VI]	18540-29-9	E532	0.10	mg/kg	<0.10	<0.10	0	Diff <2x LOR	
Volatile Organic Co	ompounds (QC Lot: 11	151058)									
WT2330430-001	Anonymous	Benzene	71-43-2	E611A	0.0050	mg/kg	<0.0050	<0.0050	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611A	0.015	mg/kg	<0.015	<0.015	0	Diff <2x LOR	
		Toluene	108-88-3	E611A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611A	0.030	mg/kg	<0.030	<0.030	0	Diff <2x LOR	
		Xylene, o-	95-47-6	E611A	0.030	mg/kg	<0.030	<0.030	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 1150965)										
WT2330337-025	Anonymous	F2 (C10-C16)		E601.SG-L	10	mg/kg	<10	<10	0	Diff <2x LOR	
		F3 (C16-C34)		E601.SG-L	50	mg/kg	<50	<50	0	Diff <2x LOR	
		F4 (C34-C50)		E601.SG-L	50	mg/kg	<50	<50	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 1151059)										
WT2330430-001	Anonymous	F1 (C6-C10)		E581.F1	5.0	mg/kg	<5.0	<5.0	0	Diff <2x LOR	
Polycyclic Aromati	c Hydrocarbons (QC I	Lot: 1150966)									
WT2330337-025	Anonymous	Acenaphthene	83-32-9	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		riconapriationo	00 02 0		0.050						
		Acenaphthylene	208-96-8	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
				E641A E641A		mg/kg mg/kg	<0.050 <0.050				
		Acenaphthylene	208-96-8		0.050			<0.050	0	Diff <2x LOR	
		Acenaphthylene Anthracene	208-96-8 120-12-7	E641A	0.050 0.050	mg/kg	<0.050	<0.050 <0.050	0 0	Diff <2x LOR Diff <2x LOR	
		Acenaphthylene Anthracene Benz(a)anthracene	208-96-8 120-12-7 56-55-3	E641A E641A	0.050 0.050 0.050	mg/kg mg/kg	<0.050 <0.050	<0.050 <0.050 <0.050	0 0 0	Diff <2x LOR Diff <2x LOR Diff <2x LOR	
		Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	208-96-8 120-12-7 56-55-3 50-32-8	E641A E641A E641A	0.050 0.050 0.050 0.050	mg/kg mg/kg mg/kg	<0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.050	0 0 0 0	Diff <2x LOR Diff <2x LOR Diff <2x LOR Diff <2x LOR	
		Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b+j)fluoranthene	208-96-8 120-12-7 56-55-3 50-32-8 n/a	E641A E641A E641A E641A	0.050 0.050 0.050 0.050 0.050	mg/kg mg/kg mg/kg mg/kg	<0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.050 <0.050	0 0 0 0	Diff <2x LOR Diff <2x LOR Diff <2x LOR Diff <2x LOR Diff <2x LOR	
		Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b+j)fluoranthene Benzo(g,h,i)perylene	208-96-8 120-12-7 56-55-3 50-32-8 n/a 191-24-2	E641A E641A E641A E641A E641A	0.050 0.050 0.050 0.050 0.050 0.050	mg/kg mg/kg mg/kg mg/kg	<0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050	0 0 0 0 0	Diff <2x LOR Diff <2x LOR Diff <2x LOR Diff <2x LOR Diff <2x LOR Diff <2x LOR	
		Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b+j)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	208-96-8 120-12-7 56-55-3 50-32-8 n/a 191-24-2 207-08-9	E641A E641A E641A E641A E641A E641A	0.050 0.050 0.050 0.050 0.050 0.050 0.050	mg/kg mg/kg mg/kg mg/kg mg/kg	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	0 0 0 0 0 0 0	Diff <2x LOR Diff <2x LOR Diff <2x LOR Diff <2x LOR Diff <2x LOR Diff <2x LOR Diff <2x LOR	
		Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b+j)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	208-96-8 120-12-7 56-55-3 50-32-8 n/a 191-24-2 207-08-9 218-01-9	E641A E641A E641A E641A E641A E641A E641A	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	0 0 0 0 0 0 0 0	Diff <2x LOR Diff <2x LOR	
		Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b+j)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	208-96-8 120-12-7 56-55-3 50-32-8 n/a 191-24-2 207-08-9 218-01-9 53-70-3	E641A E641A E641A E641A E641A E641A E641A	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	0 0 0 0 0 0 0 0 0	Diff <2x LOR Diff <2x LOR	
		Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b+j)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	208-96-8 120-12-7 56-55-3 50-32-8 n/a 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0	E641A E641A E641A E641A E641A E641A E641A E641A	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050		Diff <2x LOR Diff <2x LOR	
		Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b+j)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Indeno(1,2,3-c,d)pyrene	208-96-8 120-12-7 56-55-3 50-32-8 n/a 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7	E641A E641A E641A E641A E641A E641A E641A E641A E641A	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	0 0 0 0 0 0 0 0 0 0 0 0 0 0	Diff <2x LOR Diff <2x LOR	
		Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b+j)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	208-96-8 120-12-7 56-55-3 50-32-8 n/a 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	E641A E641A E641A E641A E641A E641A E641A E641A E641A E641A	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Diff <2x LOR Diff <2x LOR	

Page	:	5 of 15
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Sub-Matrix: Soil/Solid							Labora	tory Duplicate (DU	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Polycyclic Aromatic	Hydrocarbons (QC Lot:	1150966) - continued									
WT2330337-025	Anonymous	Phenanthrene	85-01-8	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Pyrene	129-00-0	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	

Page	:	6 of 15
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

alyte	CAS Number	Method	LOR	Unit	Result	Qualifier
ysical Tests (QCLot: 1151157)						
Conductivity (1:2 leachate)		E100-L	5	μS/cm	<5.00	
ysical Tests (QCLot: 1151165)						
Moisture		E144	0.25	%	<0.25	
yanides (QCLot: 1149689)			,			
Cyanide, weak acid dissociable		E336A	0.05	mg/kg	<0.050	
etals (QCLot: 1151158)						
Calcium, soluble ion content	7440-70-2	E484	0.5	mg/L	<0.50	
Magnesium, soluble ion content	7439-95-4	E484	0.5	mg/L	<0.50	
Sodium, soluble ion content	17341-25-2	E484	0.5	mg/L	<0.50	
etals (QCLot: 1151159)						
Antimony	7440-36-0	E440C	0.1	mg/kg	<0.10	
Arsenic	7440-38-2	E440C	0.1	mg/kg	<0.10	
Barium	7440-39-3	E440C	0.5	mg/kg	<0.50	
Beryllium	7440-41-7	E440C	0.1	mg/kg	<0.10	
Boron	7440-42-8	E440C	5	mg/kg	<5.0	
Cadmium	7440-43-9	E440C	0.02	mg/kg	<0.020	
Chromium	7440-47-3	E440C	0.5	mg/kg	<0.50	
Cobalt	7440-48-4	E440C	0.1	mg/kg	<0.10	
Copper	7440-50-8	E440C	0.5	mg/kg	<0.50	
Lead	7439-92-1	E440C	0.5	mg/kg	<0.50	
Molybdenum	7439-98-7	E440C	0.1	mg/kg	<0.10	
Nickel	7440-02-0	E440C	0.5	mg/kg	<0.50	
Selenium	7782-49-2	E440C	0.2	mg/kg	<0.20	
Silver	7440-22-4	E440C	0.1	mg/kg	<0.10	
Thallium	7440-28-0	E440C	0.05	mg/kg	<0.050	
Uranium	7440-61-1	E440C	0.05	mg/kg	<0.050	
Vanadium	7440-62-2	E440C	0.2	mg/kg	<0.20	
Zinc	7440-66-6	E440C	2	mg/kg	<2.0	
etals (QCLot: 1151160)						
Mercury	7439-97-6	E510C	0.005	mg/kg	<0.0050	
etals (QCLot: 1151161)						
Boron, hot water soluble	7440-42-8	E487	0.1	mg/kg	<0.10	

Page	:	7 of 15
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Speciated Metals (QCLot: 1149690)						
Chromium, hexavalent [Cr VI]	18540-29-9	E532	0.1	mg/kg	<0.10	
Volatile Organic Compounds (QCLot:	1151058)					
Benzene	71-43-2	E611A	0.005	mg/kg	<0.0050	
Ethylbenzene	100-41-4	E611A	0.015	mg/kg	<0.015	
Toluene	108-88-3	E611A	0.05	mg/kg	<0.050	
Xylene, m+p-	179601-23-1	E611A	0.03	mg/kg	<0.030	
Xylene, o-	95-47-6	E611A	0.03	mg/kg	<0.030	
Hydrocarbons (QCLot: 1150965)						
F2 (C10-C16)		E601.SG-L	10	mg/kg	<10	
F3 (C16-C34)		E601.SG-L	50	mg/kg	<50	
F4 (C34-C50)		E601.SG-L	50	mg/kg	<50	
Hydrocarbons (QCLot: 1151059)						
F1 (C6-C10)		E581.F1	5	mg/kg	<5.0	
Polycyclic Aromatic Hydrocarbons (Q	CLot: 1150966)					
Acenaphthene	83-32-9	E641A	0.05	mg/kg	<0.050	
Acenaphthylene	208-96-8	E641A	0.05	mg/kg	<0.050	
Anthracene	120-12-7	E641A	0.05	mg/kg	<0.050	
Benz(a)anthracene	56-55-3	E641A	0.05	mg/kg	<0.050	
Benzo(a)pyrene	50-32-8	E641A	0.05	mg/kg	<0.050	
Benzo(b+j)fluoranthene	n/a	E641A	0.05	mg/kg	<0.050	
Benzo(g,h,i)perylene	191-24-2	E641A	0.05	mg/kg	<0.050	
Benzo(k)fluoranthene	207-08-9	E641A	0.05	mg/kg	<0.050	
Chrysene	218-01-9	E641A	0.05	mg/kg	<0.050	
Dibenz(a,h)anthracene	53-70-3	E641A	0.05	mg/kg	<0.050	
Fluoranthene	206-44-0	E641A	0.05	mg/kg	<0.050	
Fluorene	86-73-7	E641A	0.05	mg/kg	<0.050	
Indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.05	mg/kg	<0.050	
Methylnaphthalene, 1-	90-12-0	E641A	0.03	mg/kg	<0.030	
Methylnaphthalene, 2-	91-57-6	E641A	0.03	mg/kg	<0.030	
Naphthalene	91-20-3	E641A	0.01	mg/kg	<0.010	
Phenanthrene	85-01-8	E641A	0.05	mg/kg	<0.050	
Pyrene	129-00-0	E641A	0.05	mg/kg	<0.050	

Page	1	8 of 15
Work Order	1	WT2330461
Client	1	Englobe Corp.
Project	:	02302109.001

Page	:	9 of 15
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Physical Tosts (QCLot: 1151154) Physical Tosts (QCLot: 1151157) Physical Tosts (QCLot: 1151157) Conductive QCall 5 µS(m) 1409 µS(m) 90.0 102 - Physical Tosts (QCLot: 1151157) - 500 µS(m) 1409 µS(m) 90.0 110 - Physical Tosts (QCLot: 1151165) - 5 ½S(m) 1409 µS(m) 90.0 110 - Conductive (Y12 leachaby) - E144 0.25 % 50.7% 99.5 90.0 110 - Conducts work and dissociable - E356A 0.05 mg/h 300 mg/L 104 80.0 120 - Conduct, work and dissociable - E356A 0.55 mg/L 800 mg/L 104 80.0 120 - Conduct, work and dissociable - E484 0.5 mg/L 50 mg/L 104 80.0 120 - Conduct, work and dissociable - - - - - - - - -	Sub-Matrix: Soil/Solid				Laboratory Control Sample (LCS) Report					
Markan Markan Parka Markan Contention Markan Contentin Markan Contention Markan Con							Recovery (%)	Recovery	Limits (%)	
pH (12 soc)2c02-a) pH units 7 pH units 09.7 09.00 01.02 0.02 Physical Tests (QCLot: 1151167) E100-1 5 pKirm 140a gKm 080.0 01.00 110 Physical Tests (QCLot: 1151165) E100-1 5 pKirm 50.% 50.% 58.0% 80.0 110 0 0 Cyanidos (QCLot: 1151168) E144 0.05 mg/hq 1.25 mg/hq 88.0 80.0 120.0 <th< th=""><th>Analyte</th><th>CAS Number</th><th>Method</th><th>LOR</th><th>Unit</th><th>Concentration</th><th>LCS</th><th>Low</th><th>High</th><th>Qualifie</th></th<>	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie
HI (12 auCla Cla Au)E 100.4E 100.4P HuñsT P Huñs100 P 30100.0101.0101.0101.0P P P P P P P P P P P P P P P P P P P	Physical Tests (QCLot: 1151154)									
Condury (r.2 leachate)Tol-15yB/cm1409 yB/cm010000.00100<			E108A		pH units	7 pH units	99.7	98.0	102	
Condury (r.2 leachate)Tol-15yB/cm1409 yB/cm010000.00100<	Physical Tests (QCLot: 1151157)							· · · · · · · · · · · · · · · · · · ·		
Molsture E144 0.25 % 50 % 99.5 91.0 110 Cyanides (QCL ot: 1149689)			E100-L	5	μS/cm	1409 µS/cm	100	90.0	110	
Molsure E144 0.25 % 50 % 99.5 90.0 110 Cyanides (QCLot. 1149689)	Physical Tests (QCLot: 1151165)									
Cyanide, weak and diasociableE38A0.05mg/kg1.25 mg/kg88.580.012091.00Matais (QCLot: 1151165)Caldum, soluble ion content7440-702E4440.5mg/L300 mg/L10180.0012091.00Magnesium, soluble ion content7349.52E4440.5mg/L50 mg/L10180.0012091.00Solum, soluble ion content7340.52E4420.5mg/L50 mg/L10180.0012091.00Matais (QCLot: 1151159)E440C0.1mg/kg100 mg/kg101.080.0012091.00Areacic7440-38E440C0.5mg/kg100 mg/kg10180.0012091.00Baruim7440-38E440C0.1mg/kg100 mg/kg10180.0012091.00Baruim7440-38E440C0.5mg/kg100 mg/kg10180.0012091.00Baruim7440-43E440C0.1mg/kg100 mg/kg91.8080.0012091.00Baruim7440-43E440C0.5mg/kg100 mg/kg10180.00120.0091.00Communic7440-43E440C0.5mg/kg100 mg/kg10180.00120.0091.00Communic7440-43E440C0.5mg/kg25 mg/kg101.0080.00120.0091.00Communic740-43E440C0.5mg/kg25 mg/kg101.008			E144	0.25	%	50 %	99.5	90.0	110	
Cyanida, weak acid diasociableFishA0.05mg/kg1.25 mg/kg88.580.012091.00Matals (OCL:1 111155)300 mg/L10480.0120Calcian, soluble ion content7440.7x2E4440.5mg/L50 mg/L10180.0120Sadum, soluble ion content7341.52E4440.5mg/L50 mg/L10180.0120Magnesiun, soluble ion content7440.38E440C0.1mg/kg100 mg/kg101.080.0120Areanic7440.38E440C0.1mg/kg100 mg/kg101.080.0120Barlum7440.38E440C0.5mg/kg100 mg/kg101.080.0120Barlum7440.38E440C0.5mg/kg100 mg/kg98.680.00120Barlum7440.43E440C0.5mg/kg100 mg/kg97.880.00120Commun7440.43E440C0.5mg/kg100 mg/kg10180.0120Barlum7440.43E440C0.5mg/kg100 mg/kg10180.0120Commun7440.43E440C0.5mg/kg100 mg/kg10180.0120Commun7440.43E440C0.5mg/										
Motal No. No. No. No. No. No. Motal 740-70-2 E48.4 0.5 mg/L 300 mg/L 104 80.0 120 Magesium, soluble ion content 7439-95-4 E48.4 0.5 mg/L 50 mg/L 101 80.0 120 Sodum, soluble ion content 7339-85-4 E48.4 0.5 mg/L 50 mg/L 101 80.0 120 Matal (QCL.ot: 1151163) <td< td=""><td>Cyanides (QCLot: 1149689)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Cyanides (QCLot: 1149689)									
Calcium, soluble ion content7440-70-2E840.5mg/L300 mg/L10480.0120-Magnesium, soluble ion content7439-8264840.5mg/L50 mg/L10180.0120-Sodium, soluble ion content17341-82E4840.5mg/L50 mg/L10180.0120-Matris (CCL0: 1151159)Antenory740-380E40C0.1mg/kg100 mg/kg100.080.0120-Arsenic740-382E40C0.1mg/kg100 mg/kg11080.0120-Barum740-383E40C0.5mg/kg100 mg/kg91.080.0120-Barum740-434E40C0.5mg/kg100 mg/kg96.680.0120-Barum740-434E440C0.5mg/kg100 mg/kg97.880.0120-Barum740-434E440C0.5mg/kg10 mg/kg97.880.0120-Cadmin740-434E440C0.5mg/kg10 mg/kg10180.0120-Cadmin740-435E440C0.5mg/kg10 mg/kg10180.0120-Cadmin740-434E440C0.5mg/kg10 mg/kg10480.0120-Cadmin740-435E440C0.5mg/kg10 mg/kg10480.0120-Cadmin740-424E440C0.5 <td>Cyanide, weak acid dissociable</td> <td> </td> <td>E336A</td> <td>0.05</td> <td>mg/kg</td> <td>1.25 mg/kg</td> <td>89.5</td> <td>80.0</td> <td>120</td> <td></td>	Cyanide, weak acid dissociable		E336A	0.05	mg/kg	1.25 mg/kg	89.5	80.0	120	
Calcium, soluble ion content 7440-702 E844 0.5 mg/L 300 mg/L 104 80.0 120 - Magnesium, soluble ion content 743-954 E484 0.5 mg/L 50 mg/L 101 80.0 120 - Matris (CCL01: 1151159) 50 mg/L 50 mg/L 101 80.0 120 - Artenic 7440-380 E440C 0.1 mg/kg 100 mg/kg 100.0 80.0 120 - Artenic 7440-380 E440C 0.1 mg/kg 100 mg/kg 100.0 80.0 120 - Barium 7440-382 E440C 0.1 mg/kg 100 mg/kg 91.0 80.0 120 - Barium 7440-433 E440C 0.1 mg/kg 100 mg/kg 98.6 80.0 120 - Boron 7440-433 E440C 0.1 mg/kg 10 mg/kg 91.0 80.0 120 - Cadmium 7404-43 E440C										
Magnesium, soluble ion content T439-54 E484 0.5 mg/L 50 mg/L 101 80.0 120 Sodium, soluble ion content 17341-25- E484 0.5 mg/L 50 mg/L 101 80.0 120 Matter COLL 1151159 80.0 80.0 120 80.0 120	Metals (QCLot: 1151158)									
Sodium, soluble ion content 17341-252 E484 0.5 mgL 5 omgL 101 80.0 120 - Mattais (QCLot: 115159) Antimony 740-36-0 E40C 0.1 mg/kg 100 mg/kg 100.0 80.0 120 - Arsenic 740-38-2 E40C 0.1 mg/kg 100 mg/kg 100.0 80.0 120 - Barlum 740-38-3 E40C 0.1 mg/kg 100 mg/kg 101 80.0 120 - Barlum 740-34-3 E40C 0.5 mg/kg 100 mg/kg 98.6 80.0 120 - Barlum 740-41-7 E40C 0.1 mg/kg 100 mg/kg 97.8 80.0 120 - Cadmium 740-42-8 E40C 0.02 mg/kg 100 mg/kg 101 80.0 120 - Cadmium 740-47.3 E40C 0.5 mg/kg 25 mg/kg 106 80.0 120 -	Calcium, soluble ion content	7440-70-2	E484	0.5	mg/L	300 mg/L	104	80.0	120	
Matals (QCLot: 1151159) 7440-36-0 E440C 0.1 mg/kg 100 mg/kg 100.0 80.0 120	Magnesium, soluble ion content	7439-95-4	E484	0.5	mg/L	50 mg/L	101	80.0	120	
Animony7440-30E440C0.1mg/kg100 mg/kg100.080.0120-Arsenic7440-32E440C0.1mg/kg100 mg/kg11080.00120-Barlum7440-33E440C0.5mg/kg10 mg/kg11180.00120-Barlum7440-47E440C0.5mg/kg10 mg/kg97.880.00120-Barlum7440-43E440C0.2mg/kg10 mg/kg10180.00120-Cadmium7440-43E440C0.2mg/kg10 mg/kg10180.00120-Cadmium7440-43E440C0.2mg/kg25 mg/kg10680.00120-Cobalt7440-43E440C0.5mg/kg25 mg/kg10680.00120-Cobalt7404-73E440C0.5mg/kg25 mg/kg10480.00120-Cobalt7404-74E440C0.5mg/kg25 mg/kg10480.00120-Cobalt7404-74E440C0.5mg/kg50 mg/kg10180.00120-Cobalt7404-74E440C0.5mg/kg50 mg/kg10180.00120-Cobalt7404-74E440C0.5mg/kg50 mg/kg10180.00120-Selenium7404-74E440C0.5mg/kg100 mg/kg10180.00120- </td <td>Sodium, soluble ion content</td> <td>17341-25-2</td> <td>E484</td> <td>0.5</td> <td>mg/L</td> <td>50 mg/L</td> <td>101</td> <td>80.0</td> <td>120</td> <td></td>	Sodium, soluble ion content	17341-25-2	E484	0.5	mg/L	50 mg/L	101	80.0	120	
Animony7440-30E440C0.1mg/kg100 mg/kg100.080.0120-Arsenic7440-32E440C0.1mg/kg100 mg/kg11080.00120-Barlum7440-33E440C0.5mg/kg10 mg/kg11180.00120-Barlum7440-47E440C0.5mg/kg10 mg/kg97.880.00120-Barlum7440-43E440C0.2mg/kg10 mg/kg10180.00120-Cadmium7440-43E440C0.2mg/kg10 mg/kg10180.00120-Cadmium7440-43E440C0.2mg/kg25 mg/kg10680.00120-Cobalt7440-43E440C0.5mg/kg25 mg/kg10680.00120-Cobalt7404-73E440C0.5mg/kg25 mg/kg10480.00120-Cobalt7404-74E440C0.5mg/kg25 mg/kg10480.00120-Cobalt7404-74E440C0.5mg/kg50 mg/kg10180.00120-Cobalt7404-74E440C0.5mg/kg50 mg/kg10180.00120-Cobalt7404-74E440C0.5mg/kg50 mg/kg10180.00120-Selenium7404-74E440C0.5mg/kg100 mg/kg10180.00120- </td <td>Metals (QCLot: 1151159)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Metals (QCLot: 1151159)									
Barium T440-393 E440C 0.5 mg/kg 10 mg/kg 11 m 80.0 120 120 Beryllium 7440-417 E440C 0.1 mg/kg 10 mg/kg 98.6 80.0 120 - Boron 7440-428 E440C 5 mg/kg 10 mg/kg 97.8 80.0 120 - Cadmium 7440-435 E440C 0.02 mg/kg 10 mg/kg 101 80.0 120 - Chomium 7440-473 E440C 0.02 mg/kg 25 mg/kg 106 80.0 120 - Cobalt 7440-473 E440C 0.1 mg/kg 25 mg/kg 106 80.0 120 - Cobalt 7440-458 E440C 0.5 mg/kg 25 mg/kg 104 80.0 120 - Cobalt 7440-52 E440C 0.5 mg/kg 25 mg/kg 101 80.0 120 - Nolybdenum 7439-92 E4		7440-36-0	E440C	0.1	mg/kg	100 mg/kg	100.0	80.0	120	
Beryllium T440417 E440C 0.1 mg/kg 10.0 mg/kg 98.6 80.0 120 120 Boron 740424 E440C 5 mg/kg 100mg/kg 98.6 80.0 120 - Cadmium 740434 E440C 0.02 mg/kg 10mg/kg 97.8 80.0 120 - Chromium 740443 E440C 0.02 mg/kg 10mg/kg 101 80.0 120 - Cobalt 7440444 E440C 0.5 mg/kg 25mg/kg 106 80.0 120 - Cobalt 7440454 E440C 0.5 mg/kg 25mg/kg 106 80.0 120 - Cobalt 7440454 E440C 0.5 mg/kg 25mg/kg 104 80.0 120 - Lead 7439492 E440C 0.5 mg/kg 50 mg/kg 101 80.0 120 - Nickel 7404020 E440C <	Arsenic	7440-38-2	E440C	0.1	mg/kg	100 mg/kg	110	80.0	120	
BaronTotalBaronTotalTotalBaronTotalBaronCadmium7440-439E440C 0.02 mg/kg $100 mg/kg$ 97.8 80.0 120 $-$ Cadmium7440-473E440C 0.02 mg/kg $25 mg/kg$ 106 80.0 120 $-$ Cabalt7440-484E440C 0.1 mg/kg $25 mg/kg$ 106 80.0 120 $-$ Cabalt7440-484E440C 0.1 mg/kg $25 mg/kg$ 104 80.0 120 $-$ Capper7440-508E440C 0.5 mg/kg $25 mg/kg$ 104 80.0 120 $-$ Lead7439-827E440C 0.5 mg/kg $50 mg/kg$ 104 80.0 120 $-$ Nickel7490-208E440C 0.5 mg/kg $50 mg/kg$ 104 80.0 120 $-$ Nickel7490-209E440C 0.5 mg/kg $50 mg/kg$ 104 80.0 120 $-$ Silver740-249E440C 0.5 mg/kg $50 mg/kg$ 104 80.0 120 $-$ Silver740-249E440C 0.2 mg/kg $100 mg/kg$ 92.1 80.0 120 $-$ Silver740-249E440C 0.5 mg/kg $100 mg/kg$ 92.1 80.0 120 $-$ Thallium740-249E440C 0.5 mg/kg $100 mg/kg$ 92.1 80.0 120 $-$	Barium	7440-39-3	E440C	0.5	mg/kg	25 mg/kg	111	80.0	120	
Cadmium T440439 E440C 0.02 mg/kg 10 mg/k	Beryllium	7440-41-7	E440C	0.1	mg/kg	10 mg/kg	98.6	80.0	120	
Chromium T440-47-3 E440C 0.5 mg/kg 25 mg/kg 106 80.0 120	Boron	7440-42-8	E440C	5	mg/kg	100 mg/kg	97.8	80.0	120	
Cobalt T440-48- E40C 0.1 mg/kg 25 mg/kg 106 80.0 120 - Copper 7440-88 E40C 0.5 mg/kg 25 mg/kg 104 80.0 120 - Lead 7439-82 E440C 0.5 mg/kg 25 mg/kg 102 80.0 120 - Molybdenum 7439-82 E440C 0.5 mg/kg 25 mg/kg 101 80.0 120 - Nickel 7440-020 E440C 0.5 mg/kg 25 mg/kg 101 80.0 120 - Steinium 7440-20 E440C 0.5 mg/kg 50 mg/kg 104 80.0 120 - Stiver 7440-22 E440C 0.2 mg/kg 100 mg/kg 92.1 80.0 120 - Stiver 7440-22 E440C 0.05 mg/kg 100 mg/kg 92.1 80.0 120 - Uranium 7440-24 E440C	Cadmium	7440-43-9	E440C	0.02	mg/kg	10 mg/kg	101	80.0	120	
Copper The form The form <ththe form<="" th=""> The form <t< td=""><td>Chromium</td><td>7440-47-3</td><td>E440C</td><td>0.5</td><td>mg/kg</td><td>25 mg/kg</td><td>106</td><td>80.0</td><td>120</td><td></td></t<></ththe>	Chromium	7440-47-3	E440C	0.5	mg/kg	25 mg/kg	106	80.0	120	
Lead Y439-92 E440C 0.5 mg/kg 50 mg/kg 102 80.0 120	Cobalt	7440-48-4	E440C	0.1	mg/kg	25 mg/kg	106	80.0	120	
Molybdenum 7439-87 E440C 0.1 mg/kg 25 mg/kg 101 80.0 120	Copper	7440-50-8	E440C	0.5	mg/kg	25 mg/kg	104	80.0	120	
Nickel 7440-020 E440C 0.5 mg/kg 50 mg/kg 104 80.0 120 Selenium 7782-492 E440C 0.2 mg/kg 100 mg/kg 106 80.0 120 Silver 7440-22-4 E440C 0.1 mg/kg 100 mg/kg 92.1 80.0 120 Thallium 7440-82-0 E440C 0.05 mg/kg 100 mg/kg 99.2 80.0 120 Jranium 7440-61-1 E440C 0.05 mg/kg 0.5 mg/kg 104 80.0 120 Jranium 7440-61-2 E440C 0.05 mg/kg 100 mg/kg 99.2 80.0 120 Jranium 7440-61-2 E440C 0.05 mg/kg 0.5 mg/kg 104 80.0 120 Jranium 7440-62-2 E440C 0.2 mg/kg 50 mg/kg 104 80.0 120 Jranium 7440-62-2 E440C 0.2 mg/kg 50 mg/kg 104 80.0 120	Lead	7439-92-1	E440C	0.5	mg/kg	50 mg/kg	102	80.0	120	
Selenium 7782-49-2 E440C 0.2 mg/kg 100 mg/kg 106 80.0 120	Molybdenum	7439-98-7	E440C	0.1	mg/kg	25 mg/kg	101	80.0	120	
Silver 7440-22-4 E440C 0.1 mg/kg 10 mg/kg 92.1 80.0 120	Nickel	7440-02-0	E440C	0.5	mg/kg	50 mg/kg	104	80.0	120	
Thallium 7440-8-0 E440C 0.05 mg/kg 100 mg/kg 99.2 80.0 120 Jranium 7440-61-1 E440C 0.05 mg/kg 0.5 mg/kg 104 80.0 120 Vanadium 7440-62-2 E440C 0.2 mg/kg 50 mg/kg 107 80.0 120	Selenium	7782-49-2	E440C	0.2	mg/kg	100 mg/kg	106	80.0	120	
Jranium 7440-61-1 E440C 0.05 mg/kg 0.5 mg/kg 104 80.0 120 Vanadium 7440-62-2 E440C 0.2 mg/kg 50 mg/kg 107 80.0 120	Silver	7440-22-4	E440C	0.1	mg/kg	10 mg/kg	92.1	80.0	120	
Vanadium 7440-62-2 E440C 0.2 mg/kg 50 mg/kg 107 80.0 120	Thallium	7440-28-0	E440C	0.05	mg/kg	100 mg/kg	99.2	80.0	120	
	Jranium	7440-61-1	E440C	0.05	mg/kg	0.5 mg/kg	104	80.0	120	
Zinc 7440-66-6 E440C 2 mg/kg 50 mg/kg 102 80.0 120	Vanadium	7440-62-2	E440C	0.2	mg/kg	50 mg/kg	107	80.0	120	
	Zinc	7440-66-6	E440C	2	mg/kg	50 mg/kg	102	80.0	120	

Page	:	10 of 15
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	1	02302109.001

Sub-Matrix: Soil/Solid					Laboratory Control Sample (LCS) Report					
				Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Metals (QCLot: 1151160) - continued										
Mercury	7439-97-6	E510C	0.005	mg/kg	0.1 mg/kg	107	80.0	120		
Metals (QCLot: 1151161)										
Boron, hot water soluble	7440-42-8	E487	0.1	mg/kg	1.33333 mg/kg	99.8	70.0	130		
Speciated Metals (QCLot: 1149690)										
Chromium, hexavalent [Cr VI]	18540-29-9	E532	0.1	mg/kg	0.8 mg/kg	92.1	80.0	120		
Volatile Organic Compounds (QCLot: 11	51058)									
Benzene	71-43-2	E611A	0.005	mg/kg	3.475 mg/kg	106	70.0	130		
Ethylbenzene	100-41-4	E611A	0.015	mg/kg	3.475 mg/kg	93.7	70.0	130		
Toluene	108-88-3	E611A	0.05	mg/kg	3.475 mg/kg	94.1	70.0	130		
Xylene, m+p-	179601-23-1	E611A	0.03	mg/kg	6.95 mg/kg	98.0	70.0	130		
Xylene, o-	95-47-6	E611A	0.03	mg/kg	3.475 mg/kg	97.6	70.0	130		
Hydrocarbons (QCLot: 1150965)										
F2 (C10-C16)		E601.SG-L	10	mg/kg	656.4125 mg/kg	108	70.0	130		
F3 (C16-C34)		E601.SG-L	50	mg/kg	1332.613 mg/kg	110	70.0	130		
F4 (C34-C50)		E601.SG-L	50	mg/kg	761.4625 mg/kg	102	70.0	130		
Hydrocarbons (QCLot: 1151059)										
F1 (C6-C10)		E581.F1	5	mg/kg	69.1875 mg/kg	91.5	80.0	120		
Polycyclic Aromatic Hydrocarbons (QCL	ot: 1150966)					1 1				
Acenaphthene	83-32-9	E641A	0.05	mg/kg	0.5 mg/kg	88.0	60.0	130		
Acenaphthylene	208-96-8	E641A	0.05	mg/kg	0.5 mg/kg	88.4	60.0	130		
Anthracene	120-12-7	E641A	0.05	mg/kg	0.5 mg/kg	90.1	60.0	130		
Benz(a)anthracene	56-55-3	E641A	0.05	mg/kg	0.5 mg/kg	91.2	60.0	130		
Benzo(a)pyrene	50-32-8	E641A	0.05	mg/kg	0.5 mg/kg	89.8	60.0	130		
Benzo(b+j)fluoranthene	n/a	E641A	0.05	mg/kg	0.5 mg/kg	95.7	60.0	130		
Benzo(g,h,i)perylene	191-24-2	E641A	0.05	mg/kg	0.5 mg/kg	94.1	60.0	130		
Benzo(k)fluoranthene	207-08-9	E641A	0.05	mg/kg	0.5 mg/kg	91.2	60.0	130		
Chrysene	218-01-9	E641A	0.05	mg/kg	0.5 mg/kg	84.5	60.0	130		
Dibenz(a,h)anthracene	53-70-3	E641A	0.05	mg/kg	0.5 mg/kg	94.0	60.0	130		
Fluoranthene	206-44-0	E641A	0.05	mg/kg	0.5 mg/kg	92.0	60.0	130		
Fluorene	86-73-7	E641A	0.05	mg/kg	0.5 mg/kg	93.0	60.0	130		
Indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.05	mg/kg	0.5 mg/kg	96.3	60.0	130		
Methylnaphthalene, 1-		E641A	0.03	mg/kg	0.5 mg/kg	74.3	60.0	130		

Page :	11 of 15
Work Order :	WT2330461
Client :	Englobe Corp.
Project :	02302109.001

Sub-Matrix: Soil/Solid					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Polycyclic Aromatic Hydrocarbon	s (QCLot: 1150966) - continu	ed								
Methylnaphthalene, 2-	91-57-6	E641A	0.03	mg/kg	0.5 mg/kg	80.0	60.0	130		
Naphthalene	91-20-3	E641A	0.01	mg/kg	0.5 mg/kg	71.9	60.0	130		
Phenanthrene	85-01-8	E641A	0.05	mg/kg	0.5 mg/kg	89.8	60.0	130		
Pyrene	129-00-0	E641A	0.05	mg/kg	0.5 mg/kg	90.2	60.0	130		

Page :	12 of 15
Work Order :	WT2330461
Client :	Englobe Corp.
Project :	02302109.001

Matrix Spike (MS) Report

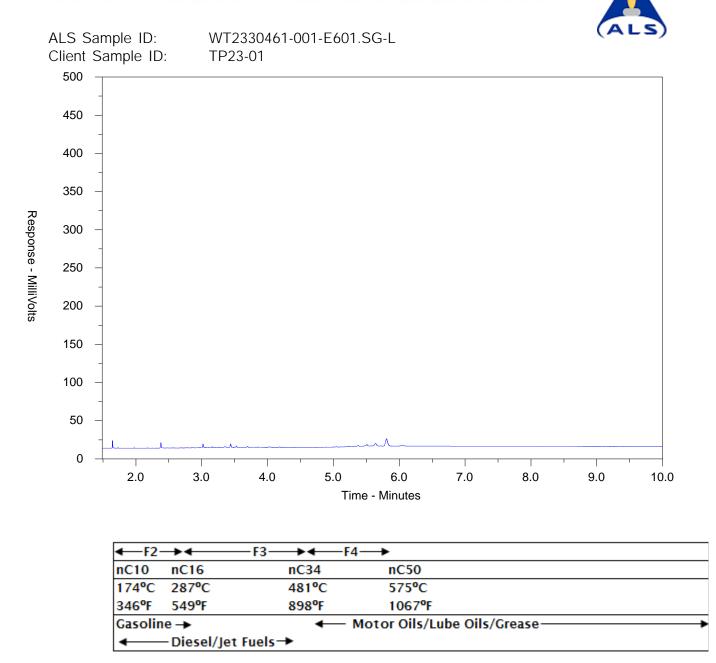
A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Soil/Solid		Matrix Spike (MS) Report								
			Sp	oike	Recovery (%) Reco		Limits (%)			
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Cyanides (QCLo	ot: 1149689)						I I			
WT2330383-001	Anonymous	Cyanide, weak acid dissociable		E336A	1.12 mg/kg	1.25 mg/kg	90.2	70.0	130	
/olatile Organic	Compounds (QCLo	t: 1151058)					· · · · ·			
WT2330430-001	Anonymous	Benzene	71-43-2	E611A	2.66 mg/kg	3.125 mg/kg	108	60.0	140	
		Ethylbenzene	100-41-4	E611A	2.33 mg/kg	3.125 mg/kg	94.5	60.0	140	
		Toluene	108-88-3	E611A	2.31 mg/kg	3.125 mg/kg	94.0	60.0	140	
		Xylene, m+p-	179601-23-1	E611A	4.80 mg/kg	6.25 mg/kg	97.5	60.0	140	
		Xylene, o-	95-47-6	E611A	2.41 mg/kg	3.125 mg/kg	98.0	60.0	140	
lydrocarbons (QCLot: 1150965)									
WT2330337-025	Anonymous	F2 (C10-C16)		E601.SG-L	568 mg/kg	656.4125 mg/kg	108	60.0	140	
		F3 (C16-C34)		E601.SG-L	1160 mg/kg	1332.613 mg/kg	109	60.0	140	
		F4 (C34-C50)		E601.SG-L	615 mg/kg	761.4625 mg/kg	101	60.0	140	
lydrocarbons (QCLot: 1151059)									
WT2330430-001	Anonymous	F1 (C6-C10)		E581.F1	45.8 mg/kg	62.5 mg/kg	93.1	60.0	140	
Polycyclic Arom	atic Hydrocarbons(QCLot: 1150966)					II			
WT2330337-025	Anonymous	Acenaphthene	83-32-9	E641A	0.360 mg/kg	0.5 mg/kg	90.3	50.0	140	
		Acenaphthylene	208-96-8	E641A	0.362 mg/kg	0.5 mg/kg	90.8	50.0	140	
		Anthracene	120-12-7	E641A	0.358 mg/kg	0.5 mg/kg	89.8	50.0	140	
		Benz(a)anthracene	56-55-3	E641A	0.358 mg/kg	0.5 mg/kg	89.8	50.0	140	
		Benzo(a)pyrene	50-32-8	E641A	0.352 mg/kg	0.5 mg/kg	88.1	50.0	140	
		Benzo(b+j)fluoranthene	n/a	E641A	0.381 mg/kg	0.5 mg/kg	95.4	50.0	140	
		Benzo(g,h,i)perylene	191-24-2	E641A	0.362 mg/kg	0.5 mg/kg	90.6	50.0	140	
		Benzo(k)fluoranthene	207-08-9	E641A	0.361 mg/kg	0.5 mg/kg	90.5	50.0	140	
		Chrysene	218-01-9	E641A	0.339 mg/kg	0.5 mg/kg	84.8	50.0	140	
		Dibenz(a,h)anthracene	53-70-3	E641A	0.367 mg/kg	0.5 mg/kg	91.8	50.0	140	
		Fluoranthene	206-44-0	E641A	0.362 mg/kg	0.5 mg/kg	90.7	50.0	140	
		Fluorene	86-73-7	E641A	0.366 mg/kg	0.5 mg/kg	91.8	50.0	140	
		Indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.368 mg/kg	0.5 mg/kg	92.2	50.0	140	
		Methylnaphthalene, 1-	90-12-0	E641A	0.336 mg/kg	0.5 mg/kg	84.2	50.0	140	
		Methylnaphthalene, 2-	91-57-6	E641A	0.369 mg/kg	0.5 mg/kg	92.5	50.0	140	
		Naphthalene	91-20-3	E641A	0.351 mg/kg	0.5 mg/kg	87.9	50.0	140	·

Page	:	13 of 15
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

Sub-Matrix: Soil/Soli	d						Matrix Spil	ke (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Polycyclic Aroma	tic Hydrocarbons (QCL	ot: 1150966) - continued								
WT2330337-025	Anonymous	Phenanthrene	85-01-8	E641A	0.358 mg/kg	0.5 mg/kg	89.6	50.0	140	
		Pyrene	129-00-0	E641A	0.357 mg/kg	0.5 mg/kg	89.4	50.0	140	

Page	:	14 of 15
Work Order	:	WT2330461
Client	:	Englobe Corp.
Project	:	02302109.001

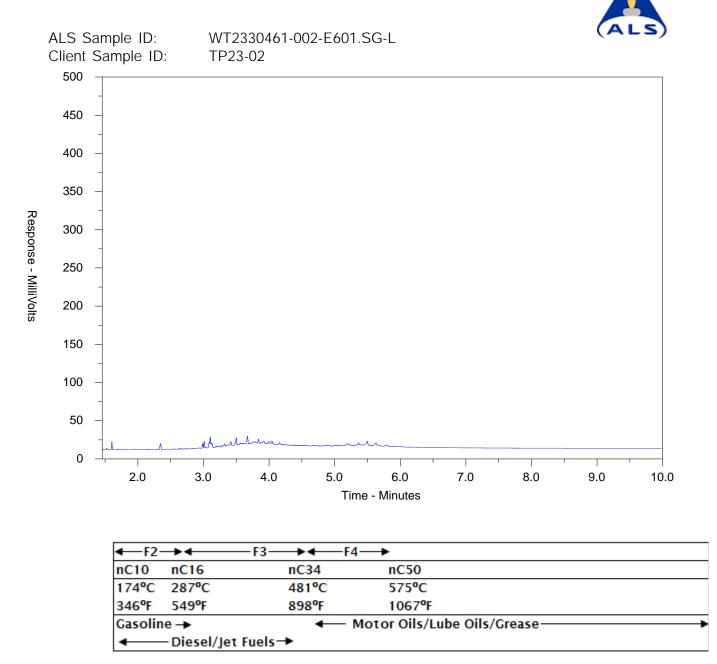

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

ub-Matrix:			Referen	ce Material (RM) Re	eport				
					RM Target	Recovery (%)	Recovery	Limits (%)	
aboratory ample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
hysical Tests	(QCLot: 1151157)								
	RM	Conductivity (1:2 leachate)		E100-L	1725.6 µS/cm	110	70.0	130	
letals (QCLot	: 1151158)				İ				
	RM	Calcium, soluble ion content	7440-70-2	E484	78.94 mg/L	117	70.0	130	
	RM	Magnesium, soluble ion content	7439-95-4	E484	24.16 mg/L	120	70.0	130	
	RM	Sodium, soluble ion content	17341-25-2	E484	72.46 mg/L	112	70.0	130	
etals (QCLot	: 1151159)								
	RM	Antimony	7440-36-0	E440C	3.99 mg/kg	121	70.0	130	
	RM	Arsenic	7440-38-2	E440C	3.73 mg/kg	105	70.0	130	
	RM	Barium	7440-39-3	E440C	105 mg/kg	112	70.0	130	
	RM	Beryllium	7440-41-7	E440C	0.349 mg/kg	107	70.0	130	
	RM	Boron	7440-42-8	E440C	8.5 mg/kg	124	70.0	130	
	RM	Cadmium	7440-43-9	E440C	0.91 mg/kg	112	70.0	130	
	RM	Chromium	7440-47-3	E440C	101 mg/kg	107	70.0	130	
	RM	Cobalt	7440-48-4	E440C	6.9 mg/kg	104	70.0	130	
	RM	Copper	7440-50-8	E440C	123 mg/kg	114	70.0	130	
	RM	Lead	7439-92-1	E440C	267 mg/kg	106	70.0	130	
	RM	Molybdenum	7439-98-7	E440C	1.03 mg/kg	105	70.0	130	
	RM	Nickel	7440-02-0	E440C	26.7 mg/kg	104	70.0	130	
	RM	Silver	7440-22-4	E440C	4.06 mg/kg	95.2	70.0	130	
	RM	Thallium	7440-28-0	E440C	0.0786 mg/kg	102	70.0	130	
	RM	Uranium	7440-61-1	E440C	0.52 mg/kg	103	70.0	130	
	RM	Vanadium	7440-62-2	E440C	32.7 mg/kg	105	70.0	130	
	RM	Zinc	7440-66-6	E440C	297 mg/kg	99.0	70.0	130	
etals (QCLot	: 1151160)							1	1
	RM	Mercury	7439-97-6	E510C	0.0585 mg/kg	104	70.0	130	
etals (QCLot	: 1151161)								
	RM	Boron, hot water soluble	7440-42-8	E487	1.6542 mg/kg	103	60.0	140	
peciated Met	als (QCLot: 1149690)					I		1	-

Page : Work Order : Client : Project :	15 of 15 WT233046 Englobe C 02302109.	orp.							ALS
Sub-Matrix:						Refere	nce Material (RM) Re	eport	
					RM Target	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
Speciated Metals	(QCLot: 1149690) - cc	ontinued							
	RM	Chromium, hexavalent [Cr VI]	18540-29-9	E532	172 mg/kg	90.0	70.0	130	

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

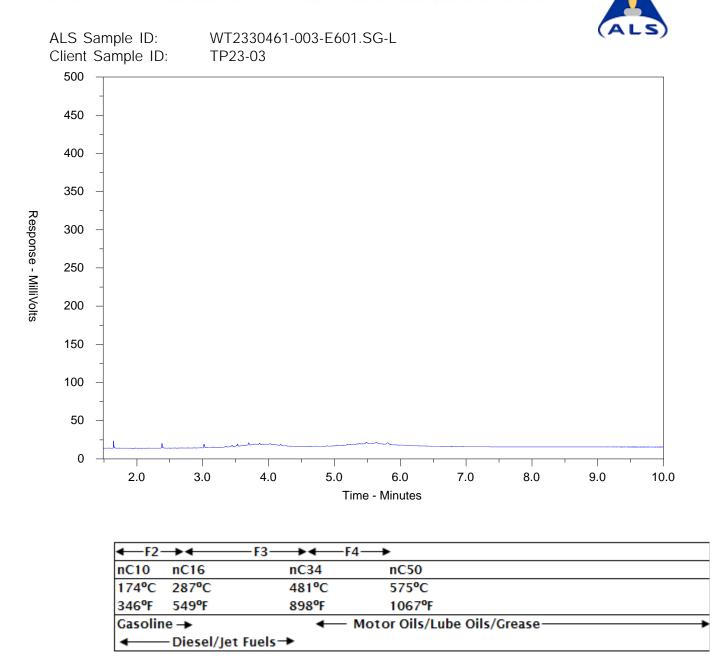

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizin hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of commo petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary betwee samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, th sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <u>www.alsglobal.com</u>.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizin hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of commo petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary betwee samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, th sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <u>www.alsglobal.com</u>.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizin hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of commo petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary betwee samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, th sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <u>www.alsglobal.com</u>.

D	
5	
WWW.	

isglobal.com

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 20

Environmental Division Waterloo Work Order Reference WT2330461

Page

		= 11
5		
1		
2	2	
	2	

-	
elep	-
ephon	_
ne	
+	-2
- 5	-
519	- 22
88	- 62
60	-
910	1

phone : +	
-	
519	0100
886	-
691	1
-	

Date and Time Required for all E&P TATs:

For all tests with rush TATs requested, please contact your AM to confirm availability.

Analysis Request

1 day [E] if received by 3pm M-F - 100% rish surcharge minimum Saff& bay [E2] if received by 10am M-S - 200% rish surcharge. Additional may apply to rish requests on weekends, statutory iolidays and non-routine 4 day [P4] If received by 3pm M-F - 20% rush surcharge minimum 2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum 3 day [P3] If received by 3pm M-F - 25% rush surcharge minimum

Routine [R] if received by 3pm M-F - no surcharges apply

Time (TAT) Requested

Reports / Recipients

Select Report Format: POF V EXA. BOD (DIGITAL) Merge OC/OCI Reports with COA VES NO UNA Compare Results to Criteria of Report - provide details below if box checked Select Distribution: V BVAIL MAIL FAX	Company address below will appear on the final report	0120 127 0270	KING (DODIN	Chalope
The Post of Byte and Boo (Dicatral)	Select Distribution:	õ	Morge QC/QCI Reports	Select Report Format:
V EXA D EDO (DIGITAL) V15 D NO D NA Provide details below if box checked MAIL D FAX	BMAIL	of Report	with COA	T POF
	MUL FAX	- provide details below if box checker	VYB D NO DNA	BY BYCE D EDD (DIGITAL

chalope Contact and company name below will appear on the final report

Report To

Phone:

Contact: Company:

	Hodal Ibili an in indea un used a second a second a second	10dai initi initi initi	Select Distribution: Distribution: Distribution:
Street:	35.3 BADSISTE	ISTE	
City/Province:	Kitchener Jon	N.	Email Plan & Ola and All Enhult
Postal Code:	SI		Email 3 101 101 101 101 101 10 10 10 10 10 10 1
Invoice To	Same as Report To	N LI NE LI NO	
	Copy of Invoice with Report	TO YES INO	Salart Invoire Distribution
Company-		1	CONSCIENTING STANDARDIN.
company.			Email 1 or Fax AD-ONT DODG who rate no
Contact:			Email 2

Project Information	
ALS Account # / Quote #	AFE/Cost Center
100 # 02002109.001	Major/Minor Code:
PO / AFE:	Requisitioner:

Contact: Company

SD:

(ALS use only)

010-02

223 223

P23-0

ALS Sample #

Sample Identification and/or Coordinates

MG ALS Contact:

Saille B

Sampler:

Z

Date

21-09-23 (dd-mmm-yy)

1030

8

r C F

<

1 4 4

2

4

4

<

(hh:mm)

Sample Type C

0

OiRea

45

SAMPLES ON HOLD

EXTENDED STORAGE REQUIRED SUSPECTED HAZARD (see notes

Time

Location: Requisitioner:

(This description will appear on the report)

10 2

ALS Lab Work Order # (ALS use only):

REFER

ACK PAGE

Released by 1 pullin

Swy

2

Hand

SHIPMENT RELEASE (client use)

Are samples for human consumption/ use?

O YES O NO

Are samples taken from a Regulated DW System?

C YES

No

0. Reg 153104 Table 2

KP1

Cooler Custody Seals Intact: VES

VES ONA

Sample Custody Seals Infact:

U YES

COOLING INITIATED ON D

FINAL COOLER TEMPERATURES °C

THE THAT

ubmission Comments identified on Sample Receipt Notification:

Cooling Method:

I NONE

ICE ICE

SAMPLE RECEIPT DETAILS (ALS use only)

☐ ICE PACKS ☐ FROZEN

Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only)

Drinking Water (DW) Samples¹ (client use)

Failure to Somplete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy

. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form

ALS LOCATIONS AND SAMPLING INFORMATION

Sapt. 21

2023

Time:

Received by:

INITIAL SHIPMENT RECEPTION (ALS use only)

Date:

WHITE - LABORATORY COPY

YELLOW - CLIENT COPY Time:

US-211 SOL-748EC

Receiv

FINAL SHIPMENT RECEPTION (ALS use only)

Date:

12/103

Tyme: 20

Oil and Gas Required Fields (client use) PO#

Indicate Filtered (F), Pr

ed (P) or Filtered and Preserved (F/P) below

Routing Code:

FU

+ inorganius pH, JAR, E

NUMBER OF CONTAINERS

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	: WT2331569	Page	: 1 of 10
Client	: Englobe Corp.	Laboratory	: ALS Environmental - Waterloo
Contact	: Jessica Godin	Account Manager	: Gayle Braun
Address	: 353 Bridge Street East Kitchener ON Canada N2K 2Y5	Address	: 60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	: +1 519 886 6910
Project	: 02302109.001	Date Samples Received	: 02-Oct-2023 08:30
PO	:	Date Analysis Commenced	: 02-Oct-2023
C-O-C number	: 20-1083259	Issue Date	: 10-Oct-2023 14:19
Sampler	: AG		
Site	:		
Quote number	: KITCHENER/LONDON GW SOA		
No. of samples received	: 4		
No. of samples analysed	: 4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Greg Pokocky	Manager - Inorganics	Inorganics, Waterloo, Ontario
Greg Pokocky	Manager - Inorganics	Metals, Waterloo, Ontario
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Inorganics, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	VOC, Waterloo, Ontario

No Breaches Found

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
µg/L	micrograms per litre
mg/L	milligrams per litre
mS/cm	millisiemens per centimetre
pH units	pH units

>: greater than.

<: less than.

Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable). For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

Page	:	3 of 10
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.

Page	:	4 of 10
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

		Client	sample ID	MW23-01	MW23-03	DUP23-01	TRIP BLANK	 	
Matrix: Water	-								
	Sampling date/time			29-Sep-2023 18:15	29-Sep-2023 17:00	29-Sep-2023 00:00	29-Sep-2023 00:00	 	
			Sub-Matrix	Water	Water	Water	Water	 	
Analyte	CAS Number	Method/Lab	Unit	WT2331569-001	WT2331569-002	WT2331569-003	WT2331569-004	 	
, mayte									
Physical Tests									
Conductivity		E100/WT	mS/cm	2.18	2.07	2.23		 	
рН		E108/WT	pH units	7.55	7.52	7.65		 	
Anions and Nutrients									
Chloride	16887-00-6	E235.CI/WT	mg/L	199 DLDS	366 DLDS	429 DLDS		 	
Cyanides									
Cyanide, weak acid dissociable		E336/WT	µg/L	<2.0	<2.0	<2.0		 	
Dissolved Metals									
Antimony, dissolved	7440-36-0	E421/WT	µg/L	0.22	0.26	0.25		 	
Arsenic, dissolved	7440-38-2	E421/WT	µg/L	0.33	0.53	0.54		 	
Barium, dissolved	7440-39-3	E421/WT	µg/L	78.3	120	115		 	
Beryllium, dissolved	7440-41-7	E421/WT	µg/L	<0.020	<0.020	<0.020		 	
Boron, dissolved	7440-42-8	E421/WT	µg/L	16	38	38		 	
Cadmium, dissolved	7440-43-9	E421/WT	µg/L	0.0189	0.0318	0.0313		 	
Chromium, dissolved	7440-47-3	E421/WT	µg/L	<0.50	<0.50	<0.50		 	
Cobalt, dissolved	7440-48-4	E421/WT	µg/L	0.32	0.52	0.51		 	
Copper, dissolved	7440-50-8	E421/WT	µg/L	4.37	1.46	1.52		 	
Lead, dissolved	7439-92-1	E421/WT	µg/L	0.280	0.066	0.071		 	
Mercury, dissolved	7439-97-6	E509/WT	µg/L	<0.0050	<0.0050	<0.0050		 	
Molybdenum, dissolved	7439-98-7	E421/WT	µg/L	0.590	3.51	3.36		 	
Nickel, dissolved	7440-02-0	E421/WT	µg/L	4.08	2.10	2.13		 	
Selenium, dissolved	7782-49-2	E421/WT	µg/L	0.326	1.25	1.24		 	
Silver, dissolved	-	E421/WT	µg/L	<0.010	<0.010	<0.010		 	
Sodium, dissolved	7440-23-5		µg/L	134000	164000	159000		 	
Thallium, dissolved	7440-28-0	E421/WT	µg/L	0.017	0.020	0.018		 	
Uranium, dissolved	7440-61-1	E421/WT	µg/L	1.03	0.766	0.733		 	
Vanadium, dissolved	7440-62-2	E421/WT	µg/L	<0.50	0.58	0.59		 	
Zinc, dissolved	7440-66-6	E421/WT	µg/L	6.1	5.7	5.2		 	

Page	:	5 of 10
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

		Client	sample ID	MW23-01	MW23-03	DUP23-01	TRIP BLANK	 	
Matrix: Water	-								
	Sampling date/time		29-Sep-2023 18:15	29-Sep-2023 17:00	29-Sep-2023 00:00	29-Sep-2023 00:00	 		
		5	Sub-Matrix	Water	Water	Water	Water	 	
Analyte	CAS Number	Method/Lab	Unit	WT2331569-001	WT2331569-002	WT2331569-003	WT2331569-004	 	
Dissolved Metals			<u> </u>						
Dissolved mercury filtration location		EP509/WT	-	Field	Field	Field		 	
Dissolved metals filtration location		EP421/WT	-	Field	Field	Field		 	
Speciated Metals									
Chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A/WT	µg/L	<0.50	<0.50	<0.50		 	
Volatile Organic Compounds								•	
Acetone	67-64-1	E611D/WT	µg/L	<20	<20	<20	<20	 	
Benzene	71-43-2	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Bromodichloromethane	75-27-4	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Bromoform	75-25-2	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Bromomethane	74-83-9	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Carbon tetrachloride	56-23-5	E611D/WT	µg/L	<0.20	<0.20	<0.20	<0.20	 	
Chlorobenzene	108-90-7	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Chloroform	67-66-3	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Dibromochloromethane	124-48-1	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Dibromoethane, 1,2-	106-93-4	E611D/WT	µg/L	<0.20	<0.20	<0.20	<0.20	 	
Dichlorobenzene, 1,2-	95-50-1	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Dichlorobenzene, 1,3-	541-73-1	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Dichlorobenzene, 1,4-	106-46-7	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Dichlorodifluoromethane	75-71-8	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Dichloroethane, 1,1-	75-34-3	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Dichloroethane, 1,2-	107-06-2	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Dichloroethylene, 1,1-	75-35-4	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Dichloroethylene, cis-1,2-	156-59-2	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Dichloroethylene, trans-1,2-	156-60-5		µg/L	<0.50	<0.50	<0.50	<0.50	 	
Dichloromethane		E611D/WT	µg/L	<1.0	<1.0	<1.0	<1.0	 	
Dichloropropane, 1,2-	78-87-5	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Dichloropropylene, cis+trans-1,3-	542-75-6		µg/L	<0.50	<0.50	<0.50	<0.50	 	
Dichloropropylene, cis-1,3-	10061-01-5	E611D/WT	µg/L	<0.30	<0.30	<0.30	<0.30	 	

Page	:	6 of 10
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

		Client	sample ID	MW23-01	MW23-03	DUP23-01	TRIP BLANK	 	
Matrix: Water								 	
	Sampling date/time		29-Sep-2023 18:15	29-Sep-2023 17:00	29-Sep-2023 00:00	29-Sep-2023 00:00	 		
		5	Sub-Matrix	Water	Water	Water	Water	 	
Analyte	CAS Number	Method/Lab	Unit	WT2331569-001	WT2331569-002	WT2331569-003	WT2331569-004	 	
Volatile Organic Compounds									
Dichloropropylene, trans-1,3-	10061-02-6	E611D/WT	µg/L	<0.30	<0.30	<0.30	<0.30	 	
Ethylbenzene	100-41-4	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Hexane, n-	110-54-3	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Methyl ethyl ketone [MEK]	78-93-3	E611D/WT	µg/L	<20	<20	<20	<20	 	
Methyl isobutyl ketone [MIBK]	108-10-1	E611D/WT	µg/L	<20	<20	<20	<20	 	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Styrene	100-42-5	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Tetrachloroethane, 1,1,1,2-	630-20-6	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Tetrachloroethylene	127-18-4	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Toluene	108-88-3	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Trichloroethane, 1,1,1-	71-55-6	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Trichloroethane, 1,1,2-	79-00-5	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Trichloroethylene	79-01-6	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Trichlorofluoromethane	75-69-4	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Vinyl chloride	75-01-4	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
Xylene, m+p-	179601-23-1	E611D/WT	µg/L	<0.40	<0.40	<0.40	<0.40	 	
Xylene, o-	95-47-6	E611D/WT	µg/L	<0.30	<0.30	<0.30	<0.30	 	
Xylenes, total	1330-20-7	E611D/WT	µg/L	<0.50	<0.50	<0.50	<0.50	 	
BTEX, total		E611D/WT	µg/L	<1.0	<1.0	<1.0	<1.0	 	
Hydrocarbons									
F1 (C6-C10)		E581.F1-L/WT	µg/L	<25	<25	<25	<25	 	
F2 (C10-C16)		E601.SG/WT	µg/L	<100	<100	<100		 	
F3 (C16-C34)		E601.SG/WT	µg/L	<250	<250	<250		 	
F4 (C34-C50)		E601.SG/WT	µg/L	<250	<250	<250		 	
F1-BTEX		EC580/WT	µg/L	<25	<25	<25	<25	 	
Hydrocarbons, total (C6-C50)		EC581SG/WT	µg/L	<370	<370	<370		 	
Chromatogram to baseline at nC50	n/a	E601.SG/WT	-	YES	YES	YES		 	

Page	:	7 of 10
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

Matrix: Water		Client	sample ID	MW23-01	MW23-03	DUP23-01	TRIP BLANK	 	
	Sampling date/time			29-Sep-2023 18:15	29-Sep-2023 17:00	29-Sep-2023 00:00	29-Sep-2023 00:00	 	
- Sub-Matrix				Water	Water	Water	Water	 	
Analyte	CAS Number	Method/Lab	Unit	WT2331569-001	WT2331569-002	WT2331569-003	WT2331569-004	 	
Hydrocarbons Surrogates									
Bromobenzotrifluoride, 2- (F2-F4 surrogate) 392-83-6	E601.SG/WT	%	75.7	76.8	74.5		 	
Dichlorotoluene, 3,4-	95-75-0	E581.F1-L/WT	%	84.8	86.9	87.7	105	 	
Volatile Organic Compounds Surrogates									
Bromofluorobenzene, 4-	460-00-4	E611D/WT	%	93.2	93.0	93.2	91.7	 	
Difluorobenzene, 1,4-	540-36-3	E611D/WT	%	94.1	94.4	94.5	100	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page	:	8 of 10
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

Summary of Guideline Limits

Analyte	CAS Number	Unit	ON153/04 T2-GW-C-All	ON153/04 T2-GW-F-All		
Physical Tests			12-011-0-741	12-011-1-41	1 1	
Conductivity		mS/cm				1
pH		pH units				
Anions and Nutrients					1 1	
Chloride	16887-00-6	mg/L	790 mg/L	790 mg/L		1
Cyanides					1 1	
Cyanide, weak acid dissociable		µg/L	66 µg/L	66 µg/L		1
Dissolved Metals		P.3			1 1	
Antimony, dissolved	7440-36-0	µg/L	6 µg/L	6 µg/L		
Arsenic, dissolved	7440-38-2	µg/L	25 µg/L	25 µg/L		
Barium, dissolved	7440-39-3	μg/L	1000 µg/L	1000 µg/L		
Beryllium, dissolved	7440-41-7	µg/L	4 μg/L	4 µg/L		
Boron, dissolved	7440-42-8	μg/L	5000 µg/L	5000 μg/L		
Cadmium, dissolved	7440-43-9	μg/L	2.7 µg/L	2.7 μg/L		
Chromium, dissolved	7440-47-3	µg/L	50 µg/L	50 µg/L		
Cobalt, dissolved	7440-48-4	µg/L	3.8 µg/L	3.8 µg/L		
Copper, dissolved	7440-50-8	µg/L	87 µg/L	87 µg/L		
Dissolved mercury filtration location		-				
Dissolved metals filtration location		-				
Lead, dissolved	7439-92-1	µg/L	10 µg/L	10 µg/L		
Mercury, dissolved	7439-97-6	µg/L	0.29 µg/L	1 µg/L		
Molybdenum, dissolved	7439-98-7	µg/L	70 µg/L	70 µg/L		
Nickel, dissolved	7440-02-0	µg/L	100 µg/L	100 µg/L		
Selenium, dissolved	7782-49-2	µg/L	10 µg/L	10 µg/L		
Silver, dissolved	7440-22-4	µg/L	1.5 μg/L	1.5 µg/L		
Sodium, dissolved	7440-23-5	µg/L	490000 µg/L	490000 µg/L		
Thallium, dissolved	7440-28-0	µg/L	2 µg/L	2 µg/L		
Uranium, dissolved	7440-61-1	µg/L	20 µg/L	20 µg/L		
Vanadium, dissolved	7440-62-2	µg/L	6.2 μg/L	6.2 μg/L		
Zinc, dissolved	7440-66-6	µg/L	1100 µg/L	1100 µg/L		
Speciated Metals						
Chromium, hexavalent [Cr VI], dissolved	18540-29-9	µg/L	25 µg/L	25 µg/L		
/olatile Organic Compounds						
Acetone	67-64-1	µg/L	2700 µg/L	2700 μg/L		
Benzene	71-43-2	µg/L	5 µg/L	5 µg/L		
Bromodichloromethane	75-27-4	µg/L	16 µg/L	16 µg/L		
Bromoform	75-25-2	µg/L	25 µg/L	25 µg/L		
Bromomethane	74-83-9	µg/L	0.89 µg/L	0.89 µg/L		

Analyte	CAS Number	Unit	ON153/04	ON153/04			
			T2-GW-C-All	T2-GW-F-All			
olatile Organic Compounds - Continued			1				
BTEX, total		µg/L					
Carbon tetrachloride	56-23-5	µg/L	0.79 µg/L	5 µg/L			
Chlorobenzene	108-90-7	µg/L	30 µg/L	30 µg/L			
Chloroform	67-66-3	µg/L	2.4 µg/L	22 µg/L			
Dibromochloromethane	124-48-1	µg/L	25 µg/L	25 µg/L			
Dibromoethane, 1,2-	106-93-4	µg/L	0.2 μg/L	0.2 μg/L			
Dichlorobenzene, 1,2-	95-50-1	µg/L	3 µg/L	3 µg/L			
Dichlorobenzene, 1,3-	541-73-1	µg/L	59 µg/L	59 µg/L			
Dichlorobenzene, 1,4-	106-46-7	µg/L	1 µg/L	1 µg/L			
Dichlorodifluoromethane	75-71-8	µg/L	590 µg/L	590 µg/L			
Dichloroethane, 1,1-	75-34-3	µg/L	5 µg/L	5 µg/L			
Dichloroethane, 1,2-	107-06-2	µg/L	1.6 µg/L	5 µg/L			
Dichloroethylene, 1,1-	75-35-4	µg/L	1.6 µg/L	14 µg/L			
Dichloroethylene, cis-1,2-	156-59-2	µg/L	1.6 µg/L	17 μg/L			
Dichloroethylene, trans-1,2-	156-60-5	µg/L	1.6 µg/L	17 µg/L			
Dichloromethane	75-09-2	µg/L	50 µg/L	50 µg/L			
Dichloropropane, 1,2-	78-87-5	µg/L	5 µg/L	5 µg/L			
Dichloropropylene, cis+trans-1,3-	542-75-6	µg/L	0.5 µg/L	0.5 µg/L			
Dichloropropylene, cis-1,3-	10061-01-5	µg/L					
Dichloropropylene, trans-1,3-	10061-02-6	µg/L					
Ethylbenzene	100-41-4	µg/L	2.4 µg/L	2.4 µg/L			
Hexane, n-	110-54-3	µg/L	51 µg/L	520 μg/L			
Methyl ethyl ketone [MEK]	78-93-3	µg/L	1800 µg/L	1800 µg/L			
Methyl isobutyl ketone [MIBK]	108-10-1	µg/L	640 μg/L	640 µg/L			
Methyl-tert-butyl ether [MTBE]	1634-04-4	µg/L	15 µg/L	15 µg/L			
Styrene	100-42-5	µg/L	5.4 µg/L	5.4 µg/L			
Tetrachloroethane, 1,1,1,2-	630-20-6	µg/L	1.1 µg/L	1.1 μg/L			
Tetrachloroethane, 1,1,2,2-	79-34-5	µg/L	1 µg/L	1 µg/L			
Tetrachloroethylene	127-18-4	µg/L	1.6 µg/L	17 µg/L			
Toluene	108-88-3	µg/L	24 µg/L	24 µg/L			
Trichloroethane, 1,1,1-	71-55-6	µg/L	200 µg/L	200 µg/L			
Trichloroethane, 1,1,2-	79-00-5	µg/L	4.7 µg/L	5 µg/L			
Trichloroethylene	79-01-6	µg/L	1.6 µg/L	5 µg/L			
Trichlorofluoromethane	75-69-4	µg/L	150 µg/L	150 µg/L			
Vinyl chloride	75-01-4	μg/L	0.5 μg/L	1.7 μg/L			
Xylene, m+p-	179601-23-1	µg/L					
Xylene, o-	95-47-6	μg/L					
Yulanaa tatal	1000 00 7		000 //				

300 µg/L

300 µg/L

1330-20-7

µg/L

Page

Client

Xylenes, total

Hydrocarbons

Page	:	10 of 10
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

Analyte	CAS Number	Unit	ON153/04 T2-GW-C-All	ON153/04 T2-GW-F-All			
Hydrocarbons - Continued							
Chromatogram to baseline at nC50	n/a	-					
F1 (C6-C10)		µg/L	750 μg/L	750 μg/L			
F1-BTEX		µg/L	750 μg/L	750 μg/L			
F2 (C10-C16)		µg/L	150 μg/L	150 µg/L			
F3 (C16-C34)		µg/L	500 μg/L	500 µg/L			
F4 (C34-C50)		µg/L	500 μg/L	500 µg/L			
Hydrocarbons, total (C6-C50)		µg/L					
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6	%					
Dichlorotoluene, 3,4-	95-75-0	%					
Bromofluorobenzene, 4-	460-00-4	%					
Difluorobenzene, 1,4-	540-36-3	%					

Please refer to the General Comments section for an explanation of any qualifiers detected.

Key:

ON153/04

ļ	Ontario Regulation 153/04 - April 15, 2011 Standards (JUL, 2011)
T2-GW-C-All	153 T2-Ground Water (Coarse Soil)-All Types of Property Use
T2-GW-F-All	153 T2-Ground Water (Fine Soil)-All Types of Property Use

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	WT2331569	Page	: 1 of 10
Client	Englobe Corp.	Laboratory	: ALS Environmental - Waterloo
Contact	Jessica Godin	Account Manager	: Gayle Braun
Address	: 353 Bridge Street East	Address	: 60 Northland Road, Unit 1
	Kitchener ON Canada N2K 2Y5		Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	: +1 519 886 6910
Project	: 02302109.001	Date Samples Received	: 02-Oct-2023 08:30
PO	:	Issue Date	: 10-Oct-2023 14:19
C-O-C number	: 20-1083259		
Sampler	: AG		
Site	:		
Quote number	: KITCHENER/LONDON GW SOA		
No. of samples received	:4		
No. of samples analysed	:4		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) <u>No</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Page	:	3 of 10
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E١	/aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP]										
MW23-01	E235.Cl	29-Sep-2023	03-Oct-2023	28	4 days	1	03-Oct-2023	28 days	4 days	✓
				days						
Anions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP]										
MW23-03	E235.Cl	29-Sep-2023	03-Oct-2023	28	4 days	1	03-Oct-2023	28 days	4 days	✓
				days						
Anions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP]										
DUP23-01	E235.Cl	29-Sep-2023	03-Oct-2023	28	4 days	1	03-Oct-2023	28 days	5 days	✓
				days						
Cyanides : WAD Cyanide										
HDPE - total (sodium hydroxide)										
MW23-01	E336	29-Sep-2023	04-Oct-2023	14	5 days	✓	04-Oct-2023	14 days	5 days	1
				days						
Cyanides : WAD Cyanide										
HDPE - total (sodium hydroxide)										
MW23-03	E336	29-Sep-2023	04-Oct-2023	14	5 days	1	04-Oct-2023	14 days	5 days	1
				days						
Cyanides : WAD Cyanide	_									
HDPE - total (sodium hydroxide)										
DUP23-01	E336	29-Sep-2023	04-Oct-2023	14	6 days	1	04-Oct-2023	14 days	6 days	1
				days						
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
MW23-01	E509	29-Sep-2023	02-Oct-2023	28	3 days	1	02-Oct-2023	28 days	3 days	1
				days						

aluation: **X** = Holding time exceedance : ... = Within Holding Tim

Page :	4 of 10
Work Order :	WT2331569
Client :	Englobe Corp.
Project :	02302109.001

fatrix: Water					Ev	aluation: × =	Holding time excee	edance ; •	= Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	, Times	Eval
			, Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
MW23-03	E509	29-Sep-2023	02-Oct-2023	28	3 days	✓	02-Oct-2023	28 days	3 days	✓
				days						
Dissolved Metals : Dissolved Mercury in Water by CVAAS		1 1		-			1			
Glass vial dissolved (hydrochloric acid)										
DUP23-01	E509	29-Sep-2023	02-Oct-2023	28	4 days	1	02-Oct-2023	28 days	4 days	1
20.2001				days	, -				·	
				dayo						
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS		1 1								
HDPE dissolved (nitric acid) MW23-01	E421	29-Sep-2023	02-Oct-2023	100	3 days	1	02-Oct-2023	100	3 days	1
WW23-01	E42 I	29-3ep-2023	02-001-2023	180	Suays	•	02-061-2023	180	5 uays	•
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
MW23-03	E421	29-Sep-2023	02-Oct-2023	180	3 days	✓	02-Oct-2023	180	3 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
DUP23-01	E421	29-Sep-2023	02-Oct-2023	180	4 days	✓	02-Oct-2023	180	4 days	✓
				days				days		
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)				1	1 1				11	
Glass vial (sodium bisulfate)										
DUP23-01	E581.F1-L	29-Sep-2023	03-Oct-2023	14	4 days	1	03-Oct-2023	14 days	4 days	1
				days	-				-	
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)		1 1		, ,						
Glass vial (sodium bisulfate)		1 1								
MW23-01	E581.F1-L	29-Sep-2023	03-Oct-2023	14	4 days	1	03-Oct-2023	14 days	4 days	1
1010723-01	L301.1 1-L	23-0ep-2023	05-001-2025	days	4 days	•	00-001-2020	14 days	4 uays	•
				uays						
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)		1 1					1			
Glass vial (sodium bisulfate)		00.0.0000	00.0.4.0000							,
MW23-03	E581.F1-L	29-Sep-2023	03-Oct-2023	14	4 days	4	03-Oct-2023	14 days	4 days	1
				days						
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)										
Glass vial (sodium bisulfate)										
TRIP BLANK	E581.F1-L	29-Sep-2023	04-Oct-2023	14	5 days	✓	04-Oct-2023	14 days	5 days	✓
IRIF DEANR								,		

Page :	5 of 10
Work Order :	WT2331569
Client :	Englobe Corp.
Project :	02302109.001

atrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Ti
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analysis		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Hydrocarbons : Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID				1				1		
Amber glass/Teflon lined cap (sodium bisulfate)										
MW23-01	E601.SG	29-Sep-2023	02-Oct-2023	14	3 days	1	06-Oct-2023	40 days	4 days	✓
				days					-	
lydrocarbons : Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID				,						
Amber glass/Teflon lined cap (sodium bisulfate)							1			
MW23-03	E601.SG	29-Sep-2023	02-Oct-2023	14	3 days	1	06-Oct-2023	40 days	4 days	1
1010723-03	2001.00	23-060-2023	02-001-2020		5 days		00-001-2020	40 days	4 uays	
				days						
Hydrocarbons : Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID				1	1					
Amber glass/Teflon lined cap (sodium bisulfate)										
DUP23-01	E601.SG	29-Sep-2023	02-Oct-2023	14	4 days	1	06-Oct-2023	40 days	4 days	1
				days						
Physical Tests : Conductivity in Water										
HDPE [ON MECP]										
DUP23-01	E100	29-Sep-2023	03-Oct-2023	28	4 days	1	03-Oct-2023	28 days	4 days	✓
				days						
Physical Tests : Conductivity in Water								1		
HDPE [ON MECP]										
MW23-01	E100	29-Sep-2023	03-Oct-2023	28	4 days	1	03-Oct-2023	28 days	4 days	✓
				days						
Physical Tests : Conductivity in Water								1		
HDPE [ON MECP]										
MW23-03	E100	29-Sep-2023	03-Oct-2023	28	4 days	1	03-Oct-2023	28 days	4 days	1
				days					-	
Physical Tests : pH by Meter				· · ·	1		1			
HDPE [ON MECP]										
DUP23-01	E108	29-Sep-2023	03-Oct-2023	14	4 days	1	03-Oct-2023	14 days	4 days	1
00123-01	LIUU	20-000-2020	00-001-2020	days	4 days	-	00-001-2020	14 duys	4 duy5	•
				uays						
Physical Tests : pH by Meter										
HDPE [ON MECP]	E100	00.0	00.0.1.0000		4.1	1	00.0.1.0000	44.1.		1
MW23-01	E108	29-Sep-2023	03-Oct-2023	14	4 days	*	03-Oct-2023	14 days	4 days	•
				days						
Physical Tests : pH by Meter										
HDPE [ON MECP]										
MW23-03	E108	29-Sep-2023	03-Oct-2023	14	4 days	✓	03-Oct-2023	14 days	4 days	✓
				days						

Page :	6 of 10
Work Order	WT2331569
Client :	Englobe Corp.
Project :	02302109.001

Matrix: Water					E٧	aluation: × =	Holding time exce	edance ; ៴	<pre>< = Within</pre>	Holding Ti
Analyte Group	Method	thod Sampling Date Extraction / Preparation				Analys	ilysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Speciated Metals : Dissolved Hexavalent Chromium (Cr VI) by IC										
HDPE - dissolved (NaOH+Buf) [ON MECP]										
DUP23-01	E532A	29-Sep-2023					03-Oct-2023	28 days	4 days	1
Speciated Metals : Dissolved Hexavalent Chromium (Cr VI) by IC										
HDPE - dissolved (NaOH+Buf) [ON MECP]										
MW23-01	E532A	29-Sep-2023					03-Oct-2023	28 days	4 days	1
Speciated Metals : Dissolved Hexavalent Chromium (Cr VI) by IC							1			
HDPE - dissolved (NaOH+Buf) [ON MECP]										
MW23-03	E532A	29-Sep-2023					03-Oct-2023	28 days	4 days	1
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS										
Glass vial (sodium bisulfate)	50445					,				,
DUP23-01	E611D	29-Sep-2023	03-Oct-2023	14	4 days	1	03-Oct-2023	14 days	4 days	1
				days						
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS		1		1			1			
Glass vial (sodium bisulfate) MW23-01	E611D	29-Sep-2023	03-Oct-2023	14	4 days	1	03-Oct-2023	14 days	4 days	1
1010723-01	LOTID	29-06p-2020	00-001-2020	days	4 days	•	00-001-2020	14 days	4 days	•
Valatila Ormania Compoundo - VOCo (Footore Consta List) hu Usadances CC NC				days						
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS Glass vial (sodium bisulfate)		1 1					1			
MW23-03	E611D	29-Sep-2023	03-Oct-2023	14	4 days	1	03-Oct-2023	14 days	4 days	1
		·		days	Ĵ			,	Ĵ	
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS							I			
Glass vial (sodium bisulfate)										
TRIP BLANK	E611D	29-Sep-2023	04-Oct-2023	14	5 days	1	04-Oct-2023	14 days	5 days	1
				days						

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page	7 of 10
Work Order	WT2331569
Client	Englobe Corp.
Project	02302109.001

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type							
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	1168023	2	20	10.0	5.0	✓
Chloride in Water by IC	E235.Cl	1165086	1	9	11.1	5.0	<u> </u>
Conductivity in Water	E100	1165091	1	5	20.0	5.0	<u> </u>
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	1165144	1	5	20.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	1164701	1	8	12.5	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	1164449	1	18	5.5	5.0	1
pH by Meter	E108	1165090	1	18	5.5	5.0	1
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1168022	3	39	7.6	5.0	✓
WAD Cyanide	E336	1167376	1	8	12.5	5.0	1
Laboratory Control Samples (LCS)							
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	1168023	2	20	10.0	5.0	1
Chloride in Water by IC	E235.Cl	1165086	1	9	11.1	5.0	
Conductivity in Water	E100	1165091	1	5	20.0	5.0	- -
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	1165144	1	5	20.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	1164701	1	8	12.5	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	1164449	1	18	5.5	5.0	✓
pH by Meter	E108	1165090	1	18	5.5	5.0	1
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	1164560	1	19	5.2	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1168022	2	39	5.1	5.0	✓
WAD Cyanide	E336	1167376	1	8	12.5	5.0	✓
Method Blanks (MB)							
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	1168023	2	20	10.0	5.0	1
Chloride in Water by IC	E235.Cl	1165086	1	9	11.1	5.0	1
Conductivity in Water	E100	1165091	1	5	20.0	5.0	1
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	1165144	1	5	20.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	1164701	1	8	12.5	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1164449	1	18	5.5	5.0	✓
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	1164560	1	19	5.2	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1168022	2	39	5.1	5.0	✓
WAD Cyanide	E336	1167376	1	8	12.5	5.0	✓
Matrix Spikes (MS)							
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	1168023	2	20	10.0	5.0	1
Chloride in Water by IC	E235.Cl	1165086	1	9	11.1	5.0	
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	1165144	1	5	20.0	5.0	
Dissolved Mercury in Water by CVAAS	E509	1164701	1	8	12.5	5.0	

Page	:	8 of 10
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

Matrix: Water	Evaluation	on: * = QC frequency outside specification; \checkmark = QC frequency within specification					
Quality Control Sample Type			Count Frequency (%)				
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS) - Continued							
Dissolved Metals in Water by CRC ICPMS	E421	1164449	1	18	5.5	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1168022	2	39	5.1	5.0	\checkmark
WAD Cyanide	E336	1167376	1	8	12.5	5.0	✓

Page	:	9 of 10
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is
				measured by immersion of a conductivity cell with platinum electrodes into a water
	ALS Environmental -			sample. Conductivity measurements are temperature-compensated to 25°C.
	Waterloo			
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
				at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	ALS Environmental -			pH should be measured in the field within the recommended 15 minute hold time.
	Waterloo			
Chloride in Water by IC	E235.Cl	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Waterloo			
WAD Cyanide	E336	Water	APHA 4500-CN I (mod)	Weak Acid Dissociable (WAD) cyanide is determined by Continuous Flow Analyzer (CFA) with in-line distillation followed by colourmetric analysis.
	ALS Environmental -			(
	Waterloo			
Dissolved Metals in Water by CRC ICPMS	E421	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS.
	ALS Environmental -			
	Waterloo			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
Dissolved Mercury in Water by CVAAS	E509	Water	APHA 3030B/EPA	Water samples are filtered (0.45 um), preserved with HCI, then undergo a cold-oxidation
			1631E (mod)	using bromine monochloride prior to reduction with stannous chloride, and analyzed by
	ALS Environmental -			CVAAS.
	Waterloo			
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	Water	APHA 3500-Cr C (Ion Chromatography)	Hexavalent Chromium is measured by Ion chromatography-Post column reaction and UV detection.
	ALS Environmental -		omoniatography)	
	Waterloo			sample pretreatment involved field or lab filtration following by sample preservation.
CCME PHC - F1 by Headspace GC-FID (Low	E581.F1-L	Water	CCME PHC in Soil - Tier	CCME Fraction 1 (F1) is analyzed by static headspace GC-FID. Samples are prepared in
Level)	2001		1 (mod)	headspace vials and are heated and agitated on the headspace autosampler, causing
	ALS Environmental -		. (VOCs to partition between the aqueous phase and the headspace in accordance with
	Waterloo			Henry's law.
				Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply
				fully with the Reference Method for the Canada-Wide Standard for PHC. Unless
				qualified, all required quality control criteria of the CCME PHC method have been met,
				including response factor and linearity requirements.

Page	:	10 of 10
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG ALS Environmental - Waterloo	Water	CCME PHC in Soil - Tier 1 (mod)	Sample extracts are subjected to in-situ silica gel treatment prior to analysis by GC-FID for CCME hydrocarbon fractions (F2-F4). Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply fully with the Reference Method for the Canada-Wide Standard for PHC. Unless qualified, all required quality control criteria of the CCME PHC method have been met, including response factor and linearity requirements.
VOCs (Eastern Canada List) by Headspace GC-MS	E611D ALS Environmental - Waterloo	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
F1-BTEX	EC580 ALS Environmental - Waterloo	Water	CCME PHC in Soil - Tier 1	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).
SUM F1 to F4 where F2-F4 is SG treated	EC581SG ALS Environmental - Waterloo	Water	CCME PHC in Soil - Tier 1	Hydrocarbons, total (C6-C50) is the sum of CCME Fraction F1(C6-C10), F2(C10-C16), F3(C16-C34), and F4(C34-C50), where F2-F4 have been treated with silica gel. F4G-sg is not used within this calculation due to overlap with other fractions.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	EP421 ALS Environmental - Waterloo	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	ALS Environmental - Waterloo	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
VOCs Preparation for Headspace Analysis	EP581 ALS Environmental - Waterloo	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the GC/MS-FID system.
PHCs and PAHs Hexane Extraction	EP601 ALS Environmental - Waterloo	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.

ALS Canada Ltd.

QUALITY CONTROL REPORT Work Order Page : 1 of 18 WT2331569 Client : Englobe Corp. Laboratory : ALS Environmental - Waterloo Jessica Godin Account Manager : Gayle Braun Contact Address Address : 353 Bridge Street East :60 Northland Road, Unit 1 Kitchener ON Canada N2K 2Y5 Waterloo, Ontario Canada N2V 2B8 Telephone Telephone :+1 519 886 6910 Project Date Samples Received :02-Oct-2023 08:30 :02302109.001 PO Date Analysis Commenced :02-Oct-2023 :----C-O-C number Issue Date :20-1083259 : 10-Oct-2023 14:19 Sampler : AG Site · ____ Quote number KITCHENER/LONDON GW SOA No. of samples received :4 No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Greg Pokocky	Manager - Inorganics	Waterloo Inorganics, Waterloo, Ontario
Greg Pokocky	Manager - Inorganics	Waterloo Metals, Waterloo, Ontario
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Waterloo Inorganics, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	Waterloo VOC, Waterloo, Ontario

Page :	2 of 18
Work Order :	WT2331569
Client :	Englobe Corp.
Project :	02302109.001

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page :	3 of 18
Work Order	WT2331569
Client :	Englobe Corp.
Project :	02302109.001

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC											
VT2331569-001	MW23-01	рН		E108	0.10	pH units	7.55	7.59	0.528%	4%	
Physical Tests (QC											
NT2331569-001	MW23-01	Conductivity		E100	1.0	μS/cm	2.18 mS/cm	2190	0.458%	10%	
nions and Nutrien	ts (QC Lot: 1165086)										
VT2331306-001	Anonymous	Chloride	16887-00-6	E235.Cl	0.50	mg/L	25.0	24.8	0.504%	20%	
yanides (QC Lot:	1167376)										
VP2324357-003	Anonymous	Cyanide, weak acid dissociable		E336	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 1164449)										
WT2331477-002	Anonymous	Antimony, dissolved	7440-36-0	E421	0.00100	mg/L	<1.00 µg/L	<0.00100	0	Diff <2x LOR	
		Arsenic, dissolved	7440-38-2	E421	0.00100	mg/L	<1.00 µg/L	<0.00100	0	Diff <2x LOR	
		Barium, dissolved	7440-39-3	E421	0.00100	mg/L	98.2 µg/L	0.0999	1.71%	20%	
		Beryllium, dissolved	7440-41-7	E421	0.000200	mg/L	<0.200 µg/L	<0.000200	0	Diff <2x LOR	
		Boron, dissolved	7440-42-8	E421	0.100	mg/L	142 µg/L	0.138	0.004	Diff <2x LOR	
		Cadmium, dissolved	7440-43-9	E421	0.0000500	mg/L	<0.0500 µg/L	<0.0000500	0	Diff <2x LOR	
		Chromium, dissolved	7440-47-3	E421	0.00500	mg/L	<5.00 µg/L	<0.00500	0	Diff <2x LOR	
		Cobalt, dissolved	7440-48-4	E421	0.00100	mg/L	<1.00 µg/L	<0.00100	0	Diff <2x LOR	
		Copper, dissolved	7440-50-8	E421	0.00200	mg/L	<2.00 µg/L	<0.00200	0	Diff <2x LOR	
		Lead, dissolved	7439-92-1	E421	0.000500	mg/L	<0.500 µg/L	<0.000500	0	Diff <2x LOR	
		Molybdenum, dissolved	7439-98-7	E421	0.000500	mg/L	0.963 µg/L	0.00106	0.000096	Diff <2x LOR	
		Nickel, dissolved	7440-02-0	E421	0.00500	mg/L	<5.00 µg/L	<0.00500	0	Diff <2x LOR	
		Selenium, dissolved	7782-49-2	E421	0.000500	mg/L	1.71 µg/L	0.00194	0.000225	Diff <2x LOR	
		Silver, dissolved	7440-22-4	E421	0.000100	mg/L	<0.100 µg/L	<0.000100	0	Diff <2x LOR	
		Sodium, dissolved	7440-23-5	E421	0.500	mg/L	730000 µg/L	734	0.547%	20%	
		Thallium, dissolved	7440-28-0	E421	0.000100	mg/L	<0.100 µg/L	<0.000100	0	Diff <2x LOR	
		Uranium, dissolved	7440-61-1	E421	0.000100	mg/L	2.54 µg/L	0.00243	4.28%	20%	
		Vanadium, dissolved	7440-62-2	E421	0.00500	mg/L	<5.00 µg/L	<0.00500	0	Diff <2x LOR	
		Zinc, dissolved	7440-66-6	E421	0.0100	mg/L	<10.0 µg/L	<0.0100	0	Diff <2x LOR	
issolved Metals (0	QC Lot: 1164701)								I	1	
VT2331407-004	Anonymous	Mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0050 µg/L	<0.000050	0	Diff <2x LOR	

Page	:	4 of 18
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	1	02302109.001

Sub-Matrix: Water			Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Speciated Metals (QC Lot: 1165144) - c	ontinued			·						
WT2331569-001	MW23-01	Chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.00050	mg/L	<0.50 µg/L	<0.00050	0	Diff <2x LOR	
Volatile Organic Co	ompounds (QC Lot: 1										
WT2331562-001	Anonymous	Acetone	67-64-1	E611D	20	µg/L	<20	<20	0	Diff <2x LOR	
		Benzene	71-43-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Bromodichloromethane	75-27-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Bromoform	75-25-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Bromomethane	74-83-9	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Carbon tetrachloride	56-23-5	E611D	0.20	µg/L	<0.20	<0.20	0	Diff <2x LOR	
		Chlorobenzene	108-90-7	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Chloroform	67-66-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dibromochloromethane	124-48-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dibromoethane, 1,2-	106-93-4	E611D	0.20	µg/L	<0.20	<0.20	0	Diff <2x LOR	
		Dichlorobenzene, 1,2-	95-50-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorobenzene, 1,3-	541-73-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorobenzene, 1,4-	106-46-7	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorodifluoromethane	75-71-8	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethane, 1,1-	75-34-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethane, 1,2-	107-06-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethylene, 1,1-	75-35-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethylene, trans-1,2-	156-60-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloromethane	75-09-2	E611D	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		Dichloropropane, 1,2-	78-87-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Hexane, n-	110-54-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	<20	<20	0	Diff <2x LOR	
		Methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	µg/L	<20	<20	0	Diff <2x LOR	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Styrene	100-42-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethylene	127-18-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	

Page	:	5 of 18
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Volatile Organic Co	mpounds (QC Lot: 1	165127) - continued									
WT2331562-001	Anonymous	Toluene	108-88-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichloroethane, 1,1,1-	71-55-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichloroethane, 1,1,2-	79-00-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichloroethylene	79-01-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichlorofluoromethane	75-69-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Vinyl chloride	75-01-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611D	0.40	µg/L	<0.40	<0.40	0	Diff <2x LOR	
		Xylene, o-	95-47-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
/olatile Organic Co	mpounds (QC Lot: 1	168022)									
WT2331542-001	Anonymous	Dichloroethylene, trans-1,2-	156-60-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
WT2331542-001	Anonymous	Acetone	67-64-1	E611D	20	µg/L	<20	<20	0	Diff <2x LOR	
		Benzene	71-43-2	E611D	0.50	µg/L	19.0	19.6	2.85%	30%	
		Bromodichloromethane	75-27-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Bromoform	75-25-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Bromomethane	74-83-9	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Carbon tetrachloride	56-23-5	E611D	0.20	µg/L	<0.20	<0.20	0	Diff <2x LOR	
		Chlorobenzene	108-90-7	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Chloroform	67-66-3	E611D	2.00	µg/L	<2.00	<2.00	0	Diff <2x LOR	
		Dibromochloromethane	124-48-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dibromoethane, 1,2-	106-93-4	E611D	0.20	µg/L	<0.20	<0.20	0	Diff <2x LOR	
		Dichlorobenzene, 1,2-	95-50-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorobenzene, 1,3-	541-73-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorobenzene, 1,4-	106-46-7	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorodifluoromethane	75-71-8	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethane, 1,1-	75-34-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethane, 1,2-	107-06-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethylene, 1,1-	75-35-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	μg/L	1.01	1.03	0.02	Diff <2x LOR	
		Dichloromethane	75-09-2	E611D	6.0	μg/L	<6.0	<6.0	0	Diff <2x LOR	
		Dichloropropane, 1,2-	78-87-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	μg/L	<0.30	< 0.30	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611D	0.50	μg/L	34.6	36.0	3.82%	30%	
		Hexane, n-	110-54-3	E611D	0.50	μg/L	7.53	7.67	1.84%	30%	

Page	:	6 of 18
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project :		02302109.001

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
/olatile Organic Co	mpounds (QC Lot: 11	68022) - continued	·								
WT2331542-001	Anonymous	Methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	<20	<20	0	Diff <2x LOR	
		Methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	µg/L	<20	<20	0	Diff <2x LOR	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Styrene	100-42-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethylene	127-18-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Toluene	108-88-3	E611D	0.50	µg/L	5.35	5.56	3.85%	30%	
		Trichloroethane, 1,1,1-	71-55-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichloroethane, 1,1,2-	79-00-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichloroethylene	79-01-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichlorofluoromethane	75-69-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Vinyl chloride	75-01-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611D	0.40	µg/L	43.2	44.5	3.15%	30%	
		Xylene, o-	95-47-6	E611D	0.30	µg/L	21.8	22.7	4.09%	30%	
lydrocarbons (QC	Lot: 1165128)										
VT2331562-001	Anonymous	F1 (C6-C10)		E581.F1-L	25	μg/L	<25	<25	0	Diff <2x LOR	
lydrocarbons (QC	Lot: 1168023)										
VT2331542-001	Anonymous	F1 (C6-C10)		E581.F1-L	25	µg/L	322	369	13.7%	30%	

Page	:	7 of 18
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

nalyte	CAS Number Method	LOR	Unit	Result	Qualifier
hysical Tests (QCLot: 1165091)					
Conductivity	E100	1	µS/cm	1.5	
nions and Nutrients (QCLot: 116508	6)				
Chloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
yanides (QCLot: 1167376)					
Cyanide, weak acid dissociable	E336	0.002	mg/L	<0.0020	
issolved Metals (QCLot: 1164449)					
Antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
Arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
Barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
Beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
Boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
Cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.000050	
Chromium, dissolved	7440-47-3 E421	0.0005	mg/L	<0.00050	
Cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
Copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
Lead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
Molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
Nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
Selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
Silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
Sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
Thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
Uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
Vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
Zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
issolved Metals (QCLot: 1164701)					
Mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	
peciated Metals (QCLot: 1165144)					
Chromium, hexavalent [Cr VI], dissolved	18540-29-9 E532A	0.0005	mg/L	<0.00050	
volatile Organic Compounds (QCLot:	1165127)				
Acetone	67-64-1 E611D	20	μg/L	<20	
Benzene	71-43-2 E611D	0.5	μg/L	<0.50	

Page :	8 of 18
Work Order :	WT2331569
Client :	Englobe Corp.
Project :	02302109.001

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCLo	ot: 1165127) - continued					
Bromodichloromethane	75-27-4	E611D	0.5	µg/L	<0.50	
Bromoform	75-25-2	E611D	0.5	µg/L	<0.50	
Bromomethane	74-83-9	E611D	0.5	µg/L	<0.50	
Carbon tetrachloride	56-23-5	E611D	0.2	µg/L	<0.20	
Chlorobenzene	108-90-7	E611D	0.5	µg/L	<0.50	
Chloroform	67-66-3	E611D	0.5	µg/L	<0.50	
Dibromochloromethane	124-48-1	E611D	0.5	µg/L	<0.50	
Dibromoethane, 1,2-	106-93-4	E611D	0.2	µg/L	<0.20	
Dichlorobenzene, 1,2-	95-50-1	E611D	0.5	µg/L	<0.50	
Dichlorobenzene, 1,3-	541-73-1	E611D	0.5	µg/L	<0.50	
Dichlorobenzene, 1,4-	106-46-7	E611D	0.5	µg/L	<0.50	
Dichlorodifluoromethane	75-71-8	E611D	0.5	µg/L	<0.50	
Dichloroethane, 1,1-	75-34-3	E611D	0.5	µg/L	<0.50	
Dichloroethane, 1,2-	107-06-2	E611D	0.5	µg/L	<0.50	
Dichloroethylene, 1,1-	75-35-4	E611D	0.5	µg/L	<0.50	
Dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	µg/L	<0.50	
Dichloroethylene, trans-1,2-	156-60-5	E611D	0.5	µg/L	<0.50	
Dichloromethane	75-09-2	E611D	1	µg/L	<1.0	
Dichloropropane, 1,2-	78-87-5	E611D	0.5	µg/L	<0.50	
Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.3	µg/L	<0.30	
Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	µg/L	<0.30	
Ethylbenzene	100-41-4	E611D	0.5	µg/L	<0.50	
Hexane, n-	110-54-3	E611D	0.5	µg/L	<0.50	
Methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	<20	
Methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	µg/L	<20	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.5	µg/L	<0.50	
Styrene	100-42-5	E611D	0.5	µg/L	<0.50	
Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.5	µg/L	<0.50	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	µg/L	<0.50	
Tetrachloroethylene	127-18-4	E611D	0.5	µg/L	<0.50	
Toluene	108-88-3	E611D	0.5	µg/L	<0.50	
Trichloroethane, 1,1,1-	71-55-6	E611D	0.5	µg/L	<0.50	
Trichloroethane, 1,1,2-	79-00-5	E611D	0.5	µg/L	<0.50	
Trichloroethylene	79-01-6	E611D	0.5	µg/L	<0.50	
Trichlorofluoromethane	75-69-4	E611D	0.5	µg/L	<0.50	

Page	:	9 of 18
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

Sub-Matrix: Water

Analyte	CAS Number	Method	 LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCLot: 1165127) - continued					
Vinyl chloride	75-01-4	E611D	0.5	µg/L	<0.50	
Xylene, m+p-	179601-23-1	E611D	0.4	µg/L	<0.40	
Xylene, o-	95-47-6	E611D	0.3	µg/L	<0.30	
Volatile Organic Compounds(QCLot: 1168022)					
Acetone	67-64-1	E611D	20	µg/L	<20	
Benzene	71-43-2	E611D	0.5	µg/L	<0.50	
Bromodichloromethane	75-27-4	E611D	0.5	µg/L	<0.50	
Bromoform	75-25-2	E611D	0.5	µg/L	<0.50	
Bromomethane	74-83-9	E611D	0.5	µg/L	<0.50	
Carbon tetrachloride	56-23-5	E611D	0.2	µg/L	<0.20	
Chlorobenzene	108-90-7	E611D	0.5	µg/L	<0.50	
Chloroform	67-66-3	E611D	0.5	µg/L	<0.50	
Dibromochloromethane	124-48-1	E611D	0.5	µg/L	<0.50	
Dibromoethane, 1,2-	106-93-4	E611D	0.2	µg/L	<0.20	
Dichlorobenzene, 1,2-	95-50-1	E611D	0.5	µg/L	<0.50	
Dichlorobenzene, 1,3-	541-73-1	E611D	0.5	µg/L	<0.50	
Dichlorobenzene, 1,4-	106-46-7	E611D	0.5	µg/L	<0.50	
Dichlorodifluoromethane	75-71-8	E611D	0.5	µg/L	<0.50	
Dichloroethane, 1,1-	75-34-3	E611D	0.5	µg/L	<0.50	
Dichloroethane, 1,2-	107-06-2	E611D	0.5	µg/L	<0.50	
Dichloroethylene, 1,1-	75-35-4	E611D	0.5	µg/L	<0.50	
Dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	µg/L	<0.50	
Dichloroethylene, trans-1,2-	156-60-5	E611D	0.5	µg/L	<0.50	
Dichloromethane	75-09-2	E611D	1	µg/L	<1.0	
Dichloropropane, 1,2-	78-87-5	E611D	0.5	µg/L	<0.50	
Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.3	µg/L	<0.30	
Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	µg/L	<0.30	
Ethylbenzene	100-41-4	E611D	0.5	µg/L	<0.50	
Hexane, n-	110-54-3	E611D	0.5	µg/L	<0.50	
Methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	<20	
Methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	µg/L	<20	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.5	µg/L	<0.50	
Styrene	100-42-5	E611D	0.5	µg/L	<0.50	
Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.5	µg/L	<0.50	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	µg/L	<0.50	

Page	:	10 of 18
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCL	ot: 1168022) - continued					
Tetrachloroethylene	127-18-4	E611D	0.5	µg/L	<0.50	
Toluene	108-88-3	E611D	0.5	µg/L	<0.50	
Trichloroethane, 1,1,1-	71-55-6	E611D	0.5	µg/L	<0.50	
Trichloroethane, 1,1,2-	79-00-5	E611D	0.5	µg/L	<0.50	
Trichloroethylene	79-01-6	E611D	0.5	µg/L	<0.50	
Trichlorofluoromethane	75-69-4	E611D	0.5	µg/L	<0.50	
Vinyl chloride	75-01-4	E611D	0.5	µg/L	<0.50	
Xylene, m+p-	179601-23-1	E611D	0.4	µg/L	<0.40	
Xylene, o-	95-47-6	E611D	0.3	µg/L	<0.30	
Hydrocarbons (QCLot: 1164560)						
F2 (C10-C16)		E601.SG	100	µg/L	<100	
F3 (C16-C34)		E601.SG	250	µg/L	<250	
F4 (C34-C50)		E601.SG	250	µg/L	<250	
Hydrocarbons (QCLot: 1165128)						
F1 (C6-C10)		E581.F1-L	25	µg/L	<25	
Hydrocarbons (QCLot: 1168023)			·			
F1 (C6-C10)		E581.F1-L	25	µg/L	<25	

Page	:	11 of 18
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number Me	ethod	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 1165090)										
pH	E1	108		pH units	7 pH units	101	98.0	102		
Physical Tests (QCLot: 1165091)										
Conductivity	E1	100	1	µS/cm	1409 µS/cm	102	90.0	110		
Anions and Nutrients (QCLot: 1165086)										
Chloride	16887-00-6 E2	235.Cl	0.5	mg/L	100 mg/L	99.8	90.0	110		
Cyanides (QCLot: 1167376)										
Cyanide, weak acid dissociable	E3	336	0.002	mg/L	0.125 mg/L	101	80.0	120		
Dissolved Metals (QCLot: 1164449)										
Antimony, dissolved	7440-36-0 E4		0.0001	mg/L	0.05 mg/L	101	80.0	120		
Arsenic, dissolved	7440-38-2 E4		0.0001	mg/L	0.05 mg/L	107	80.0	120		
Barium, dissolved	7440-39-3 E4		0.0001	mg/L	0.0125 mg/L	102	80.0	120		
Beryllium, dissolved	7440-41-7 E4		0.00002	mg/L	0.005 mg/L	94.9	80.0	120		
Boron, dissolved	7440-42-8 E4		0.01	mg/L	0.05 mg/L	93.8	80.0	120		
Cadmium, dissolved	7440-43-9 E4		0.000005	mg/L	0.005 mg/L	101	80.0	120		
Chromium, dissolved	7440-47-3 E4		0.0005	mg/L	0.0125 mg/L	102	80.0	120		
Cobalt, dissolved	7440-48-4 E4		0.0001	mg/L	0.0125 mg/L	102	80.0	120		
Copper, dissolved	7440-50-8 E4		0.0002	mg/L	0.0125 mg/L	102	80.0	120		
Lead, dissolved	7439-92-1 E4		0.00005	mg/L	0.025 mg/L	94.0	80.0	120		
Molybdenum, dissolved	7439-98-7 E4		0.00005	mg/L	0.0125 mg/L	97.2	80.0	120		
Nickel, dissolved	7440-02-0 E4		0.0005	mg/L	0.025 mg/L	100	80.0	120		
Selenium, dissolved	7782-49-2 E4		0.00005	mg/L	0.05 mg/L	101	80.0	120		
Silver, dissolved	7440-22-4 E4	421	0.00001	mg/L	0.005 mg/L	91.1	80.0	120		
Sodium, dissolved	7440-23-5 E4		0.05	mg/L	2.5 mg/L	111	80.0	120		
Thallium, dissolved	7440-28-0 E4		0.00001	mg/L	0.05 mg/L	99.7	80.0	120		
Jranium, dissolved	7440-61-1 E4	421	0.00001	mg/L	0.00025 mg/L	88.9	80.0	120		
Vanadium, dissolved	7440-62-2 E4		0.0005	mg/L	0.025 mg/L	103	80.0	120		
Zinc, dissolved	7440-66-6 E4	121	0.001	mg/L	0.025 mg/L	107	80.0	120		
Mercury, dissolved	7439-97-6 E5	509	0.000005	mg/L	0.0001 mg/L	86.2	80.0	120		

Page :	12 of 18
Work Order :	WT2331569
Client :	Englobe Corp.
Project :	02302109.001

Sub-Matrix: Water						Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number Meth	hod	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Speciated Metals (QCLot: 1165144) - con	tinued										
Chromium, hexavalent [Cr VI], dissolved	18540-29-9 E532	2A	0.0005	mg/L	0.025 mg/L	94.4	80.0	120			
Volatile Organic Compounds (QCLot: 116	55127)					·					
Acetone	67-64-1 E61	1D	20	µg/L	100 µg/L	117	70.0	130			
Benzene	71-43-2 E61 ⁻	1D	0.5	µg/L	100 µg/L	111	70.0	130			
Bromodichloromethane	75-27-4 E61 ⁻	1D	0.5	µg/L	100 µg/L	114	70.0	130			
Bromoform	75-25-2 E61 ⁻	1D	0.5	µg/L	100 µg/L	108	70.0	130			
Bromomethane	74-83-9 E61 ⁻	1D	0.5	µg/L	100 µg/L	114	60.0	140			
Carbon tetrachloride	56-23-5 E61	1D	0.2	μg/L	100 µg/L	116	70.0	130			
Chlorobenzene	108-90-7 E61 ⁻	1D	0.5	µg/L	100 µg/L	106	70.0	130			
Chloroform	67-66-3 E61 ⁻	1D	0.5	μg/L	100 µg/L	114	70.0	130			
Dibromochloromethane	124-48-1 E61 ⁻	1D	0.5	µg/L	100 µg/L	111	70.0	130			
Dibromoethane, 1,2-	106-93-4 E61	1D	0.2	µg/L	100 µg/L	102	70.0	130			
Dichlorobenzene, 1,2-	95-50-1 E61 ⁻	1D	0.5	µg/L	100 µg/L	110	70.0	130			
Dichlorobenzene, 1,3-	541-73-1 E61	1D	0.5	µg/L	100 µg/L	112	70.0	130			
Dichlorobenzene, 1,4-	106-46-7 E61	1D	0.5	µg/L	100 µg/L	111	70.0	130			
Dichlorodifluoromethane	75-71-8 E61 ⁻	1D	0.5	µg/L	100 µg/L	90.6	60.0	140			
Dichloroethane, 1,1-	75-34-3 E61 ⁻	1D	0.5	µg/L	100 µg/L	107	70.0	130			
Dichloroethane, 1,2-	107-06-2 E61 ⁻	1D	0.5	µg/L	100 µg/L	111	70.0	130			
Dichloroethylene, 1,1-	75-35-4 E61 ⁻	1D	0.5	µg/L	100 µg/L	115	70.0	130			
Dichloroethylene, cis-1,2-	156-59-2 E61 ⁻	1D	0.5	µg/L	100 µg/L	112	70.0	130			
Dichloroethylene, trans-1,2-	156-60-5 E61 ⁻	1D	0.5	µg/L	100 µg/L	118	70.0	130			
Dichloromethane	75-09-2 E61 ⁻	1D	1	µg/L	100 µg/L	116	70.0	130			
Dichloropropane, 1,2-	78-87-5 E61 ⁻	1D	0.5	µg/L	100 µg/L	111	70.0	130			
Dichloropropylene, cis-1,3-	10061-01-5 E61 ⁻	1D	0.3	µg/L	100 µg/L	98.5	70.0	130			
Dichloropropylene, trans-1,3-	10061-02-6 E61 ⁻	1D	0.3	µg/L	100 µg/L	93.1	70.0	130			
Ethylbenzene	100-41-4 E61 ⁻	1D	0.5	µg/L	100 µg/L	103	70.0	130			
Hexane, n-	110-54-3 E61 ⁻	1D	0.5	µg/L	100 µg/L	114	70.0	130			
Methyl ethyl ketone [MEK]	78-93-3 E61 ⁻	1D	20	µg/L	100 µg/L	99.8	70.0	130			
Methyl isobutyl ketone [MIBK]	108-10-1 E61 ⁻	1D	20	µg/L	100 µg/L	91.0	70.0	130			
Methyl-tert-butyl ether [MTBE]	1634-04-4 E61 ⁻	1D	0.5	µg/L	100 µg/L	104	70.0	130			
Styrene	100-42-5 E61 ⁻	1D	0.5	µg/L	100 µg/L	107	70.0	130			
Tetrachloroethane, 1,1,1,2-	630-20-6 E61 ⁻	1D	0.5	μg/L	100 µg/L	111	70.0	130			
Tetrachloroethane, 1,1,2,2-	79-34-5 E61 ⁻	1D	0.5	µg/L	100 µg/L	118	70.0	130			
Tetrachloroethylene	127-18-4 E61 ⁻	1D	0.5	μg/L	100 µg/L	118	70.0	130			
Toluene	108-88-3 E61	1D	0.5	μg/L	100 µg/L	110	70.0	130			

Page :	13 of 18
Work Order :	WT2331569
Client :	Englobe Corp.
Project :	02302109.001

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Volatile Organic Compounds (QCLot:	1165127) - continued									
Trichloroethane, 1,1,1-	71-55-6	E611D	0.5	μg/L	100 µg/L	107	70.0	130		
Trichloroethane, 1,1,2-	79-00-5	E611D	0.5	μg/L	100 µg/L	106	70.0	130		
Trichloroethylene	79-01-6	E611D	0.5	µg/L	100 µg/L	115	70.0	130		
Trichlorofluoromethane	75-69-4	E611D	0.5	µg/L	100 µg/L	111	60.0	140		
Vinyl chloride	75-01-4	E611D	0.5	µg/L	100 µg/L	115	60.0	140		
Xylene, m+p-	179601-23-1	E611D	0.4	µg/L	200 µg/L	108	70.0	130		
Xylene, o-	95-47-6	E611D	0.3	µg/L	100 µg/L	109	70.0	130		
Volatile Organic Compounds (QCLot:	1168022)									
Acetone	67-64-1	E611D	20	μg/L	100 µg/L	92.9	70.0	130		
Benzene	71-43-2	E611D	0.5	µg/L	100 µg/L	102	70.0	130		
Bromodichloromethane	75-27-4	E611D	0.5	µg/L	100 µg/L	96.2	70.0	130		
Bromoform	75-25-2	E611D	0.5	μg/L	100 µg/L	79.7	70.0	130		
Bromomethane	74-83-9	E611D	0.5	µg/L	100 µg/L	96.9	60.0	140		
Carbon tetrachloride	56-23-5	E611D	0.2	µg/L	100 µg/L	92.0	70.0	130		
Chlorobenzene	108-90-7	E611D	0.5	µg/L	100 µg/L	101	70.0	130		
Chloroform	67-66-3	E611D	0.5	µg/L	100 µg/L	95.0	70.0	130		
Dibromochloromethane	124-48-1	E611D	0.5	µg/L	100 µg/L	85.2	70.0	130		
Dibromoethane, 1,2-	106-93-4	E611D	0.2	µg/L	100 µg/L	83.5	70.0	130		
Dichlorobenzene, 1,2-	95-50-1	E611D	0.5	µg/L	100 µg/L	98.5	70.0	130		
Dichlorobenzene, 1,3-	541-73-1	E611D	0.5	µg/L	100 µg/L	102	70.0	130		
Dichlorobenzene, 1,4-	106-46-7	E611D	0.5	µg/L	100 µg/L	96.0	70.0	130		
Dichlorodifluoromethane	75-71-8	E611D	0.5	µg/L	100 µg/L	72.6	60.0	140		
Dichloroethane, 1,1-	75-34-3	E611D	0.5	µg/L	100 µg/L	101	70.0	130		
Dichloroethane, 1,2-	107-06-2	E611D	0.5	µg/L	100 µg/L	97.0	70.0	130		
Dichloroethylene, 1,1-	75-35-4	E611D	0.5	µg/L	100 µg/L	97.7	70.0	130		
Dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	µg/L	100 µg/L	96.2	70.0	130		
Dichloroethylene, trans-1,2-	156-60-5	E611D	0.5	µg/L	100 µg/L	101	70.0	130		
Dichloromethane	75-09-2	E611D	1	µg/L	100 µg/L	94.9	70.0	130		
Dichloropropane, 1,2-	78-87-5	E611D	0.5	µg/L	100 µg/L	96.5	70.0	130		
Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.3	µg/L	100 µg/L	92.1	70.0	130		
Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	µg/L	100 µg/L	86.2	70.0	130		
Ethylbenzene	100-41-4	E611D	0.5	µg/L	100 µg/L	104	70.0	130		
Hexane, n-	110-54-3	E611D	0.5	µg/L	100 µg/L	100	70.0	130		
Methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	100 µg/L	87.5	70.0	130		
Methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	µg/L	100 µg/L	70.9	70.0	130		
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.5	μg/L	100 µg/L	96.9	70.0	130		

Page :	14 of 18
Work Order :	WT2331569
Client :	Englobe Corp.
Project :	02302109.001

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	/ Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLot:	1168022) - continued								
Styrene	100-42-5	E611D	0.5	µg/L	100 µg/L	101	70.0	130	
Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.5	µg/L	100 µg/L	88.7	70.0	130	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	μg/L	100 µg/L	92.1	70.0	130	
Tetrachloroethylene	127-18-4	E611D	0.5	µg/L	100 µg/L	106	70.0	130	
Toluene	108-88-3	E611D	0.5	µg/L	100 µg/L	101	70.0	130	
Trichloroethane, 1,1,1-	71-55-6	E611D	0.5	µg/L	100 µg/L	95.2	70.0	130	
Trichloroethane, 1,1,2-	79-00-5	E611D	0.5	µg/L	100 µg/L	89.0	70.0	130	
Trichloroethylene	79-01-6	E611D	0.5	µg/L	100 µg/L	102	70.0	130	
Trichlorofluoromethane	75-69-4	E611D	0.5	µg/L	100 µg/L	91.8	60.0	140	
Vinyl chloride	75-01-4	E611D	0.5	µg/L	100 µg/L	96.3	60.0	140	
Xylene, m+p-	179601-23-1	E611D	0.4	µg/L	200 µg/L	95.2	70.0	130	
Xylene, o-	95-47-6	E611D	0.3	µg/L	100 µg/L	92.1	70.0	130	
Hydrocarbons (QCLot: 1164560)									
F2 (C10-C16)		E601.SG	100	µg/L	3685.12 µg/L	99.3	70.0	130	
F3 (C16-C34)		E601.SG	250	µg/L	7481.33 µg/L	99.3	70.0	130	
F4 (C34-C50)		E601.SG	250	µg/L	4274.88 μg/L	84.2	70.0	130	
Hydrocarbons (QCLot: 1165128)									
F1 (C6-C10)		E581.F1-L	25	µg/L	2000 µg/L	92.6	80.0	120	
Hydrocarbons (QCLot: 1168023)									
F1 (C6-C10)		E581.F1-L	25	µg/L	2000 µg/L	105	80.0	120	

Page :	15 of 18
Work Order :	WT2331569
Client :	Englobe Corp.
Project :	02302109.001

Matrix Spike (MS) Report

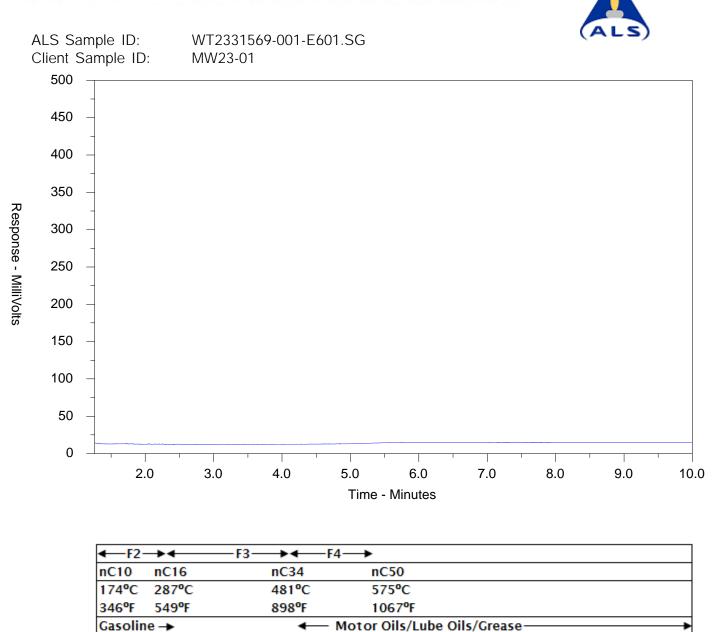
A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

ub-Matrix: Water							Matrix Spike	e (MS) Report		
			Sp	ike	Recovery (%)	Recovery	Limits (%)			
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	ents (QCLot: 11650	86)								
WT2331306-001	Anonymous	Chloride	16887-00-6	E235.CI	100 mg/L	100 mg/L	100	75.0	125	
yanides (QCLo	t: 1167376)						1			
NP2324357-003	Anonymous	Cyanide, weak acid dissociable		E336	0.142 mg/L	0.125 mg/L	113	75.0	125	
issolved Metals	(QCLot: 1164449)									1
WT2331477-004	Anonymous	Antimony, dissolved	7440-36-0	E421	0.0530 mg/L	0.05 mg/L	106	70.0	130	
		Arsenic, dissolved	7440-38-2	E421	0.0567 mg/L	0.05 mg/L	113	70.0	130	
		Barium, dissolved	7440-39-3	E421	ND mg/L	0.0125 mg/L	ND	70.0	130	
		Beryllium, dissolved	7440-41-7	E421	0.00486 mg/L	0.005 mg/L	97.2	70.0	130	
		Boron, dissolved	7440-42-8	E421	ND mg/L	0.05 mg/L	ND	70.0	130	
		Cadmium, dissolved	7440-43-9	E421	0.00510 mg/L	0.005 mg/L	102	70.0	130	
		Chromium, dissolved	7440-47-3	E421	0.0130 mg/L	0.0125 mg/L	104	70.0	130	
		Cobalt, dissolved	7440-48-4	E421	0.0126 mg/L	0.0125 mg/L	100	70.0	130	
		Copper, dissolved	7440-50-8	E421	0.0122 mg/L	0.0125 mg/L	97.6	70.0	130	
		Lead, dissolved	7439-92-1	E421	0.0226 mg/L	0.025 mg/L	90.3	70.0	130	
		Molybdenum, dissolved	7439-98-7	E421	0.0128 mg/L	0.0125 mg/L	102	70.0	130	
		Nickel, dissolved	7440-02-0	E421	0.0243 mg/L	0.025 mg/L	97.3	70.0	130	
		Selenium, dissolved	7782-49-2	E421	0.0552 mg/L	0.05 mg/L	110	70.0	130	
		Silver, dissolved	7440-22-4	E421	0.00439 mg/L	0.005 mg/L	87.8	70.0	130	
		Sodium, dissolved	7440-23-5	E421	ND mg/L	2.5 mg/L	ND	70.0	130	
		Thallium, dissolved	7440-28-0	E421	0.0475 mg/L	0.05 mg/L	94.9	70.0	130	
		Uranium, dissolved	7440-61-1	E421	0.000219 mg/L	0.00025 mg/L	87.5	70.0	130	
		Vanadium, dissolved	7440-62-2	E421	0.0270 mg/L	0.025 mg/L	108	70.0	130	
		Zinc, dissolved	7440-66-6	E421	0.0252 mg/L	0.025 mg/L	101	70.0	130	
issolved Metals	(QCLot: 1164701)									
WT2331407-005	Anonymous	Mercury, dissolved	7439-97-6	E509	0.0000865 mg/L	0.0001 mg/L	86.5	70.0	130	
peciated Metals	(QCLot: 1165144)						· · · · ·			
VT2331569-001	MW23-01	Chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.0382 mg/L	0.04 mg/L	95.5	70.0	130	
olatile Organic	Compounds (QCLo	t: 1165127)								
NT2331562-001	Anonymous	Acetone	67-64-1	E611D	119 µg/L	100 µg/L	119	60.0	140	

Page	:	16 of 18
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

Sub-Matrix: Water				Matrix Spike (MS) Report						
			Spi	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	Compounds (QCLo	t: 1165127) - continued							1	1
WT2331562-001	Anonymous	Benzene	71-43-2	E611D	104 µg/L	100 µg/L	104	60.0	140	
		Bromodichloromethane	75-27-4	E611D	109 µg/L	100 µg/L	109	60.0	140	
		Bromoform	75-25-2	E611D	105 µg/L	100 µg/L	105	60.0	140	
		Bromomethane	74-83-9	E611D	105 µg/L	100 µg/L	105	60.0	140	
		Carbon tetrachloride	56-23-5	E611D	106 µg/L	100 µg/L	106	60.0	140	
		Chlorobenzene	108-90-7	E611D	97.3 µg/L	100 µg/L	97.3	60.0	140	
		Chloroform	67-66-3	E611D	108 µg/L	100 µg/L	108	60.0	140	
		Dibromochloromethane	124-48-1	E611D	107 µg/L	100 µg/L	107	60.0	140	
		Dibromoethane, 1,2-	106-93-4	E611D	99.0 µg/L	100 µg/L	99.0	60.0	140	
		Dichlorobenzene, 1,2-	95-50-1	E611D	101 µg/L	100 µg/L	101	60.0	140	
		Dichlorobenzene, 1,3-	541-73-1	E611D	101 µg/L	100 µg/L	101	60.0	140	
		Dichlorobenzene, 1,4-	106-46-7	E611D	100 µg/L	100 µg/L	100	60.0	140	
		Dichlorodifluoromethane	75-71-8	E611D	77.0 µg/L	100 µg/L	77.0	60.0	140	
		Dichloroethane, 1,1-	75-34-3	E611D	98.4 µg/L	100 µg/L	98.4	60.0	140	
		Dichloroethane, 1,2-	107-06-2	E611D	110 µg/L	100 µg/L	110	60.0	140	
		Dichloroethylene, 1,1-	75-35-4	E611D	104 µg/L	100 µg/L	104	60.0	140	
		Dichloroethylene, cis-1,2-	156-59-2	E611D	107 µg/L	100 µg/L	107	60.0	140	
		Dichloroethylene, trans-1,2-	156-60-5	E611D	108 µg/L	100 µg/L	108	60.0	140	
		Dichloromethane	75-09-2	E611D	111 µg/L	100 µg/L	111	60.0	140	
		Dichloropropane, 1,2-	78-87-5	E611D	106 µg/L	100 µg/L	106	60.0	140	
		Dichloropropylene, cis-1,3-	10061-01-5	E611D	92.6 µg/L	100 µg/L	92.6	60.0	140	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	87.0 µg/L	100 µg/L	87.0	60.0	140	
		Ethylbenzene	100-41-4	E611D	91.6 µg/L	100 µg/L	91.6	60.0	140	
		Hexane, n-	110-54-3	E611D	99.2 µg/L	100 µg/L	99.2	60.0	140	
		Methyl ethyl ketone [MEK]	78-93-3	E611D	105 µg/L	100 µg/L	105	60.0	140	
		Methyl isobutyl ketone [MIBK]	108-10-1	E611D	93 µg/L	100 µg/L	92.6	60.0	140	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	97.0 µg/L	100 µg/L	97.0	60.0	140	
		Styrene	100-42-5	E611D	97.1 µg/L	100 µg/L	97.1	60.0	140	
		Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	103 µg/L	100 µg/L	103	60.0	140	
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	116 µg/L	100 µg/L	116	60.0	140	
		Tetrachloroethylene	127-18-4	E611D	104 µg/L	100 µg/L	104	60.0	140	
		Toluene	108-88-3	E611D	96.6 µg/L	100 µg/L	96.6	60.0	140	
		Trichloroethane, 1,1,1-	71-55-6	E611D	97.8 µg/L	100 µg/L	97.8	60.0	140	
		Trichloroethane, 1,1,2-	79-00-5	E611D	103 µg/L	100 µg/L	103	60.0	140	
		Trichloroethylene	79-01-6	E611D	105 µg/L	100 µg/L	105	60.0	140	

Page	:	17 of 18
Work Order	:	WT2331569
Client	:	Englobe Corp.
Project	:	02302109.001

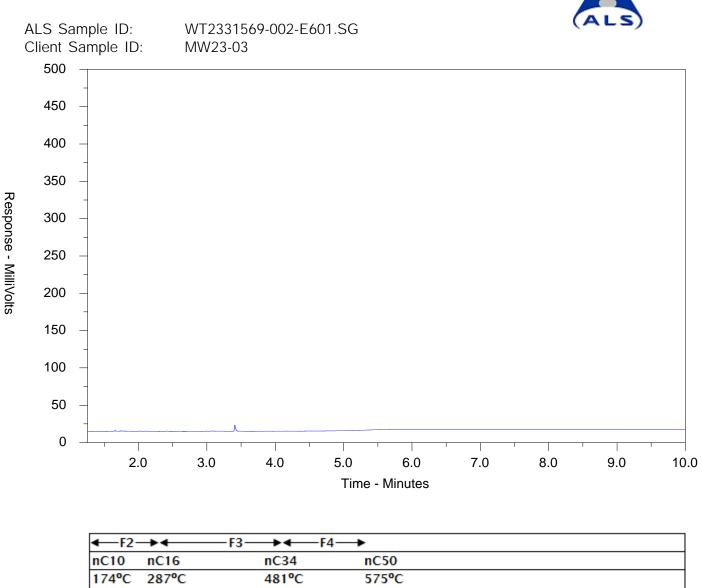

Sub-Matrix: Water				Matrix Spike (MS) Report											
				Spi	ike	Recovery (%)	Recovery								
	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier					
ID Volatile Organic Compounds (QCLot: 1165127) - continued WT2331682-001 Anonymous Trichioroflucomethane 75-69-4 E611D 99.5 µg/L 100 µg/L 99.5 60.0 140 - WT2331682-001 Anonymous Trichioroflucomethane 75-69-4 E611D 192 µg/L 100 µg/L 102 µg/L 60.0 140 - Values, m-p- 176601-23-1 E611D 192 µg/L 200 µg/L 99.5 60.0 140 - Volatile Organic Compounds (QCLot: 1168022) Sylene, o- 95-67-6 E611D 103 µg/L 100 µg/L 103 60.0 140 - WT2331542-001 Anonymous Acetone 67-64-1 E611D 103 µg/L 100 µg/L 100 µg/L 60.0 140 - Bromodichloromethane 75-25-2 E611D 103 µg/L 100 µg/L 100 µg/L 80.6 60.0 140 - Bromodichloromethane 75-82-2 E611D 80.6 µg/L 100 µg/L 80.6 60.0 140 -															
WT2331562-001	Anonymous	Trichlorofluoromethane	75-69-4	E611D	99.5 µg/L	100 µg/L	99.5	60.0	140						
		Vinyl chloride	75-01-4	E611D	102 µg/L	100 µg/L	102	60.0	140						
		Xylene, m+p-	179601-23-1	E611D	192 µg/L	200 µg/L	96.3	60.0	140						
		Xylene, o-	95-47-6	E611D	99.1 µg/L	100 µg/L	99.1	60.0	140						
Volatile Organic	Compounds (QCLo	t: 1168022)								1					
WT2331542-001	Anonymous	Acetone	67-64-1	E611D	103 µg/L	100 µg/L	103	60.0	140						
		Benzene	71-43-2	E611D			105	60.0	140						
		Bromodichloromethane	75-27-4	E611D	100 µg/L	100 µg/L	100	60.0	140						
		Bromoform	75-25-2	E611D	80.6 µg/L	100 µg/L	80.6	60.0	140						
	Bromomethane	74-83-9	E611D	97.8 µg/L	100 µg/L	97.8	60.0	140							
		Carbon tetrachloride	56-23-5	E611D	88.0 µg/L	100 µg/L	88.0	60.0	140						
	Chlorobenzene	108-90-7	E611D	104 µg/L	100 µg/L	104	60.0	140							
	Chloroform	67-66-3	E611D	96.6 µg/L	100 µg/L	96.6	60.0	140							
	Dibromochloromethane	124-48-1	E611D	87.2 μg/L	100 µg/L	87.2	60.0	140							
	Dibromoethane, 1,2-	106-93-4	E611D	89.6 µg/L	100 µg/L	89.6	60.0	140							
	Dichlorobenzene, 1,2-	95-50-1	E611D	99.8 µg/L	100 µg/L	99.8	60.0	140							
		Dichlorobenzene, 1,3-	541-73-1	E611D	101 µg/L	100 µg/L	101	60.0	140						
		Dichlorobenzene, 1,4-	106-46-7	E611D	94.7 µg/L	100 µg/L	94.7	60.0	140						
		Dichlorodifluoromethane	75-71-8	E611D	67.0 µg/L	100 µg/L	67.0	60.0	140						
		Dichloroethane, 1,1-	75-34-3	E611D	102 µg/L	100 µg/L	102	60.0	140						
		Dichloroethane, 1,2-	107-06-2	E611D	106 µg/L	100 µg/L	106	60.0	140						
		Dichloroethylene, 1,1-	75-35-4	E611D	95.4 µg/L	100 µg/L	95.4	60.0	140						
		Dichloroethylene, cis-1,2-	156-59-2	E611D	98.5 µg/L	100 µg/L	98.5	60.0	140						
		Dichloroethylene, trans-1,2-	156-60-5	E611D	111 µg/L	100 µg/L	111	60.0	140						
		Dichloromethane	75-09-2	E611D	94.5 µg/L	100 µg/L	94.5	60.0	140						
		Dichloropropane, 1,2-	78-87-5	E611D	101 µg/L	100 µg/L	101	60.0	140						
		Dichloropropylene, cis-1,3-	10061-01-5	E611D	89.2 µg/L	100 µg/L	89.2	60.0	140						
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	78.3 µg/L	100 µg/L	78.3	60.0	140						
		Ethylbenzene	100-41-4	E611D	104 µg/L	100 µg/L	104	60.0	140						
		Hexane, n-	110-54-3	E611D	96.2 µg/L	100 µg/L	96.2	60.0	140						
		Methyl ethyl ketone [MEK]	78-93-3	E611D	94 µg/L	100 µg/L	94.4	60.0	140						
		Methyl isobutyl ketone [MIBK]	108-10-1	E611D	77 µg/L	100 µg/L	76.6	60.0	140						
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	99.3 µg/L	100 µg/L	99.3	60.0	140						
		Styrene	100-42-5	E611D	102 µg/L	100 µg/L	102	60.0	140						
	1	Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	88.2 µg/L	100 µg/L	88.2	60.0	140						

Page :	18 of 18
Work Order :	WT2331569
Client :	Englobe Corp.
Project :	02302109.001

Sub-Matrix: Water			Matrix Spike (MS) Report												
					Spi	ke	Recovery (%)	Recovery							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier					
Volatile Organic	Compounds (QCLot: 1	168022) - continued													
WT2331542-001	Anonymous	Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	98.6 µg/L	100 µg/L	98.6	60.0	140						
		Tetrachloroethylene	127-18-4	E611D	102 µg/L	100 µg/L	102	60.0	140						
		Toluene	108-88-3	E611D	101 µg/L	100 µg/L	101	60.0	140						
		Trichloroethane, 1,1,1-	71-55-6	E611D	89.0 µg/L	100 µg/L	89.0	60.0	140						
		Trichloroethane, 1,1,2-	79-00-5	E611D	95.5 µg/L	100 µg/L	95.5	60.0	140						
		Trichloroethylene	79-01-6	E611D	102 µg/L	100 µg/L	102	60.0	140						
		Trichlorofluoromethane	75-69-4	E611D	87.5 µg/L	100 µg/L	87.5	60.0	140						
		Vinyl chloride	75-01-4	E611D	93.6 µg/L	100 µg/L	93.6	60.0	140						
		Xylene, m+p-	179601-23-1	E611D	190 µg/L	200 µg/L	95.1	60.0	140						
		Xylene, o-	95-47-6	E611D	95.3 µg/L	100 µg/L	95.3	60.0	140						
Hydrocarbons (C	QCLot: 1165128)									·					
WT2331562-001	Anonymous	F1 (C6-C10)		E581.F1-L	1680 µg/L	2000 µg/L	84.0	60.0	140						
lydrocarbons (C	QCLot: 1168023)														
WT2331542-001	Anonymous	F1 (C6-C10)		E581.F1-L	1740 µg/L	2000 µg/L	87.1	60.0	140						

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

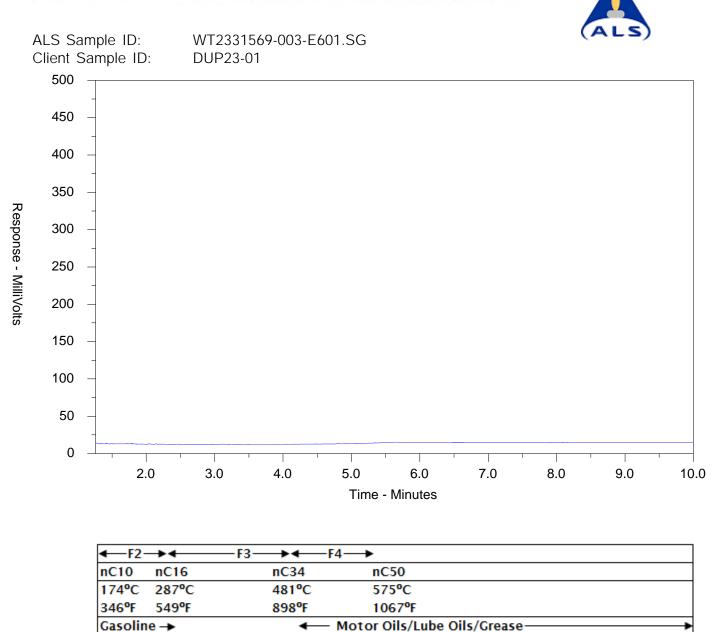
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <u>www.alsglobal.com</u>.

Diesel/Jet Fuels→

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

174°C 287°C	481°C	575°C									
346°F 549°F	898°F	1067°F									
Gasoline 🔶	< N	Notor Oils/Lube Oils/Grease									
← Diesel/Jet F	← Diesel/Jet Fuels→										


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <u>www.alsglobal.com</u>.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

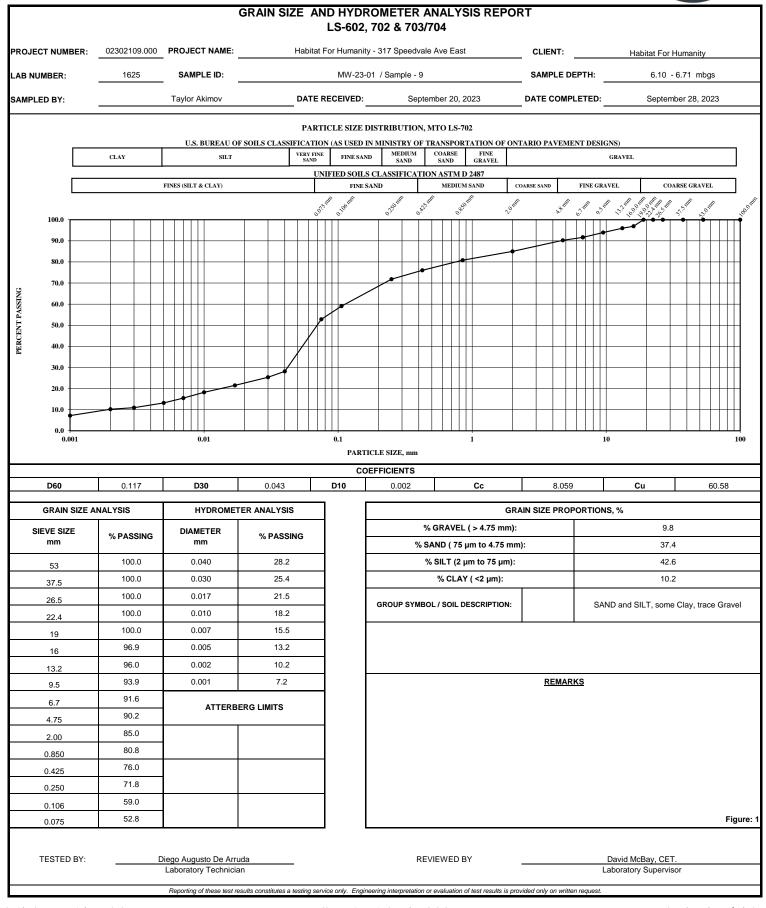
Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <u>www.alsglobal.com</u>.

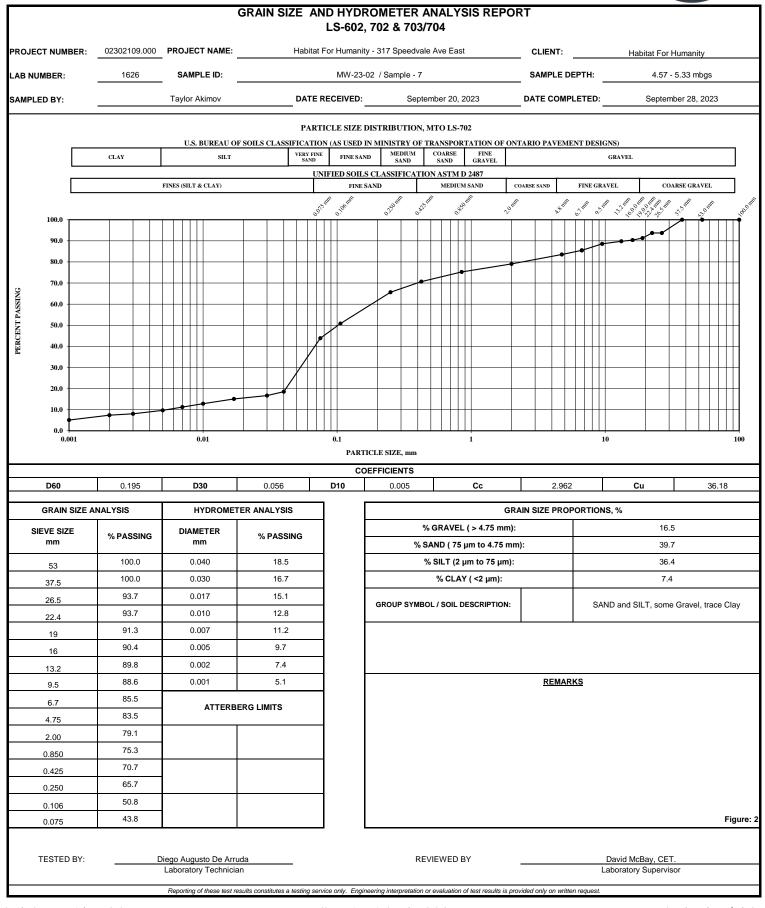
Diesel/Jet Fuels→

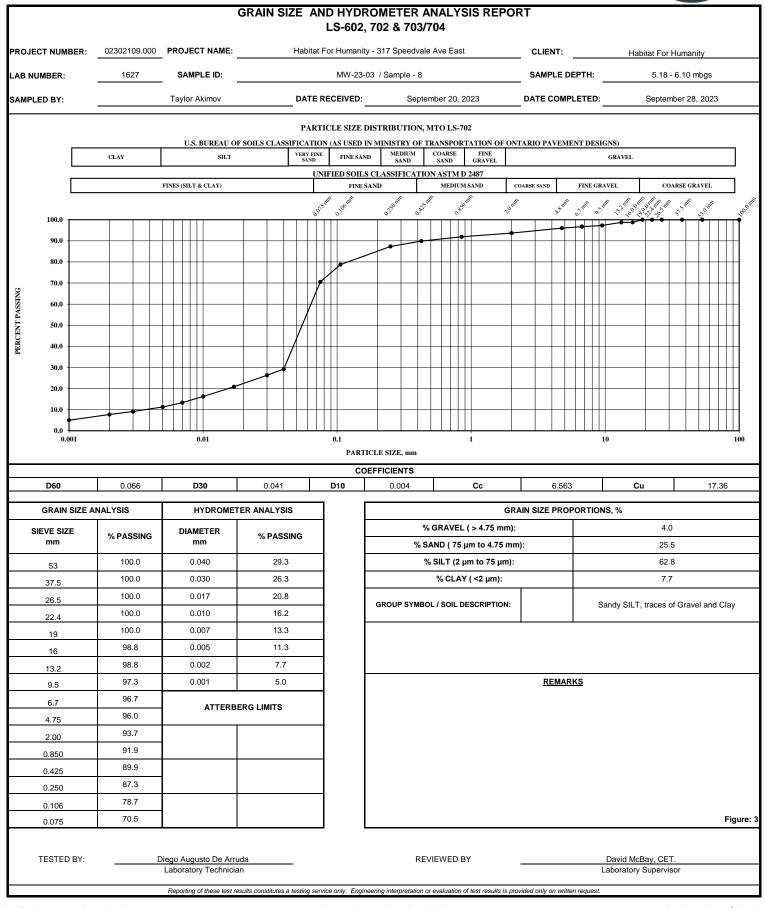
Chain o
n of Custody
y (COC)
/ Analytica
Reques
t Form

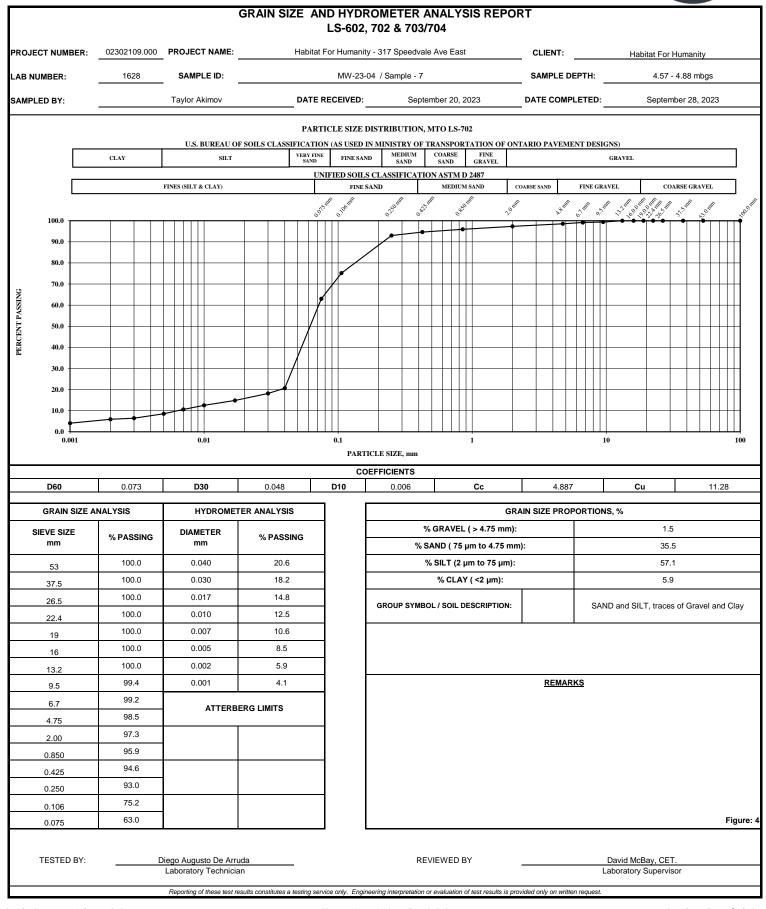
Canada Toll Free: 1 800 668 9878 COC Number: 20 - 1083259 Page 1 of 1

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW - CLIENT COPY	Released by: Atta		Are samples for hun	Are samples take	Drinkin			1000	1 10				1 1 10 10 10		ALS Sample # (ALS use only)	ALS Lab Wor	LSD:	PO / AFE:	Job#: 23	ALS Account # / Quote #	Contact:	Company:		Invoice To	Postal Code:	City/Province:	2	Phone:	Contact:	indavi in
REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	They and Date: Sep So , 2023	SHIPMENT REL	Are samples for human consumption/ use?	Are samples taken from a Regulated DW System?	Drinking Water (DW) Samples ¹ (client use)			A LAN A LAN				Dup23-01	MW23-03		Sample Identification and/or Coordinates (This description will appear on the report)	ALS Lab Work Order # (ALS use only): WID2			2302109.001		Project Information		Copy of Invoice with Report Yes	Same as Report To		Kitchener on	ear	226752 9370	that be Conp.	Contract and contributive training manufacture and the main technic
1	12023 Time: 15:30		standards	Compare to Table 2 RPI	Notes / Speci								State of the state		and/or Coordinates ppear on the report)	331569	and the second						ON [] NO	THE PARTY	e	report		State of the state	I UII DIG III GI ISPORT
	Received by:		unds.	et Ta	fy Limits for result (F			-								ALS Contact:	Location:	Requisitioner:	Major/Minor Code:	AFE/Cost Center:	Email 2	Email 1 or Fax	Select Invoice Distribution:		Email 3	Email 1 or Fax	Select Distribution:	Compare Resul	Merge QC/QCI Report	
W		INITIAL SHIPME		able 2	t evaluation by select (Excel COC only)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100		A DAY AND A DAY			Ł		71-560-23	Date (dd-mmm-yy)	shelle				in mine one resolution	il and Gas Remuir	ap-onto		Invoice	0	Email 1 or Fax Jessner . god where n	n: N BMAIL	ts to Criteria on Report	Merge QC/QCI Reports with COA	date -
WHITE - LABORATORY COPY	Date:	INITIAL SHIPMENT RECEPTION (ALS use only)		RPI	Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only)	and second and		1		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, ea	NA	17:00	-	Time (hh.mm)	sampler: AG			Routing Code:	PO#	Oil and Gas Required Fields (client use)	Email 1 or Fax op - on the england corp.	BY BMAIL O MAIL O FAX	Invoice Recipients		esp.		rovide details below	D BYCR D	
	Real Providence	LS use only)		14	below							*		GW	Sample Type	וע		1 1 N		lac	-	sp.can	FAX		0	adobe con	FAX	box checked	NO INA	
YELLOW - CLIENT COPY	Time:		Cooler	Submis	Cooling							2	2	F		MBER	-	-	-	-	-	-			Da	A Same			A day	
T COPY	Rece		INITIAL	sion Com	Cooling Method:	-	-	10		11			K	X	V	CS CS	4	- 1	-1	24		5			le and Time	day [E2] If a	[E] If recei	[P3] If rec [P2] if rec	(P4) if rece	
	Received by:		UDUER CUSOOY SEAIS INIACE	ified	I NONE					M N N		X		X	O.I Me	CS CS Reg tels	15: 2'I	3/1	34	nic	ST	Indicate Filtered (F), Preserved (P) or Fillered and		For all tests wit	Date and Time Required for all E&P TATs:	Same day [E2] if received by 10am M-S - 200% rush surcharge. Additi may apply to rush requests on weekends, statutory holidays and non-rou	1 day [E] if received by 3pm M-F - 100% rush surcharge minimum	3 day [P3] If received by 3pm M-F - 25% rush surcharge minimum 2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum	Routine [R] if received by 3pm M-F - no surcharges apply 4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum	
	A	FINAL S	ATURES °C	on Sample	AMPLE RE											1		-			1), Preserved	1	h rush TATs r	&P TATS:	S - 200% rus s, statutory h	100% rush si	25% rush s	no surcharg 20% rush su	
	Date -	SHIPMENT R	L NA Sa	Receipt Noti	SAMPLE RECEIPT DETAILS (ALS use only)					1						1				-		(P) or Filtered an	Analysis Red	For all tests with rush TATs requested, please co		h surcharge. Addi blidays and non-ro	urcharge minimu	urcharge minimu urcharge minimu	es apply rcharge minimun	
	()	ECEPTION (-O-3	fication:	ROZEN	- International				1 23					1	1		-			1			1 2		84			W	
	xt-23	FINAL SHIPMENT RECEPTION (ALS use only)	Final cooler temperatures *	V Scale Intent						1.000									5		-	Telephone : +1 519 886 6910	I II YAPA			5		WT2331569	Waterloo Work Order F	
00 10	00	V)	APERATURES °C		COOLING INITIATED					1			-		SAI	APLE	so	NI	но	LD		86 6910	11-12			ŝ		315	Reference	מו ניויום
NE DUA	Ŵ				TATED								-		1	ENDED	-	-										69	n)	SION
TO FRO	U.		NA					1					1		SUS	PECTE	DH	474	PD	1000										

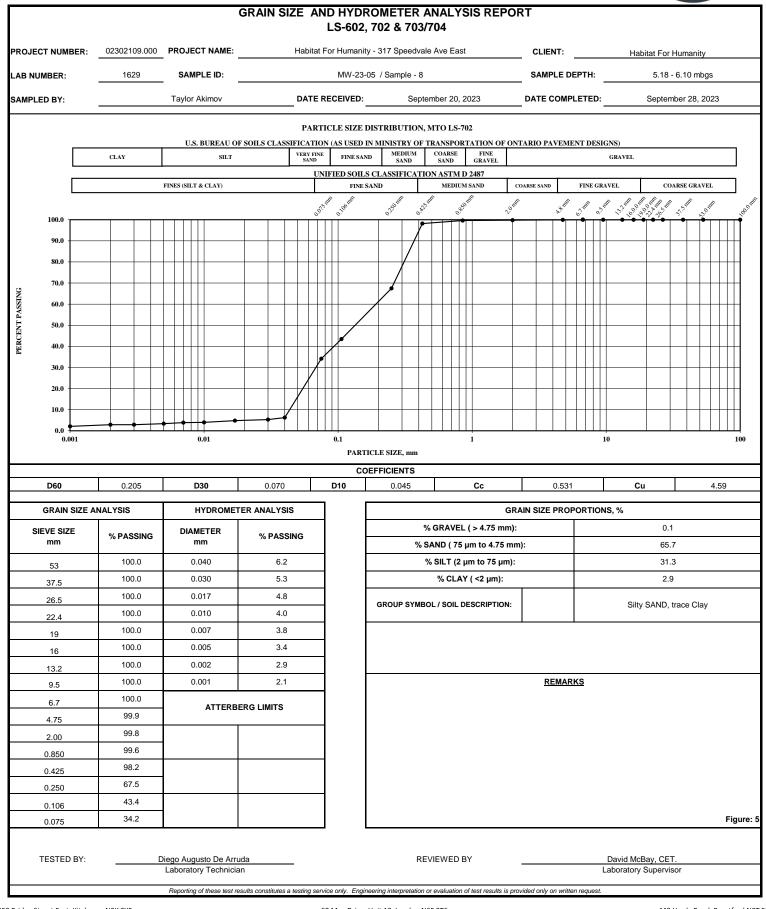

Appendix E Grain Size Distribution Results


englobe


englobe



englobe



Appendix F Qualifications of the Assessors

Kevin Bailey M.A.Sc., P.Eng, QP_{ESA} Team Lead - Environmental

Mr. Kevin Bailey is an Environmental Engineer with seven (7) years of experience in contaminated site investigations and hydrogeological investigations. Mr. Bailey is an Environmental Engineer at Englobe and is responsible for conducting historical research to identify and evaluate potentially contaminating activities (PCAs), conducting data gap analysis and developing investigation work plans to assess environmental quality of soils, sediment, surface water, landfill leachate, and groundwater as per Ontario Regulation (O.Reg.) 153/04 (as amended) and Canadian Council of Ministers of the Environment (CCME) guidelines. Mr. Bailey also compiles and maintains QA/QC of field investigation data, assists in the remedial options analysis, remedial action plan development, remediation cost estimates development under the guidance of Senior Project Team Members, and supports the preparation of Environmental Site Assessment (ESA) and landfill contaminant management reports.

Mr. Bailey completes hydrogeological investigations to support property developments through the assessment of water taking quantity / quality, preparation, private drinking water assessments, assessment of side-wide water balance, assessment for low-impact development (LID) stormwater management, and preparation and submission of permitting applications.

Mr. Bailey is experienced in Phase I and Phase II ESAs, site remediation projects, and hydrogeological investigation projects for a variety of clients including municipalities, provincial and federal departments and crown corporations.

Mr. Bailey has extensive knowledge of both Canadian Standards Association (CSA) and Ministry of the Environment, Conservation and Parks (MECP) O.Reg. 153/04 as amended, Phase I and Phase II ESA reporting Standards. He is familiar with the CCME remediation standards for soil, groundwater, and sediments. He is experienced in applying CCME and Federal Interim Groundwater Quality Guidelines in evaluating analytical data representing the environmental quality of soil, groundwater, sediment, and surface water.

Professional experience

ENVIRONMENTAL AND HYDROGEOLOGICAL INVESTIGATIONS

City of Guelph - Alice Street and Stevenson Street South Hydrogeological Investigation and Construction Monitoring, Guelph, Ontario (2021)

Project manager for a hydrogeological investigation and construction monitoring supporting watermain repairs near the corner of Alice Street

Profession

Team Lead, Environment Project Manager Environmental Engineer

Education

- 2013 Master of Applied Science in Chemical Engineering, University of Waterloo
- 2011 Bachelor of Applied Science in Chemical Engineering, University of Waterloo

Professional associations

Member with Professional Engineers of Ontario, license 100224647 (since January, 2018)

Languages

English

and Stevenson Street South, Guelph, ON. Project completed on an emergency basis after unanticipated groundwater conditions were identified at the commencement of construction activities associated with watermain repairs. Included emergency site meeting to review current site conditions, review of historical environmental reports associated with several known contaminated sites immediately adjacent to construction works, completion of hydrogeological testing and groundwater sampling using available existing monitoring wells in proximity to the site, liaison with MECP and stakeholders from the adjacent properties with respect to limiting the migration of immediately adjacent contaminant plumes, and construction monitoring (groundwater levels and water quality) within existing and newly installed monitoring wells in close proximity to the construction works to monitor adjacent plume migration. Included the preparation of a Water Taking and Discharge Plan documenting the hydrogeological investigation, and obtaining an EASR application for construction water taking.

City of Guelph - Speedvale Avenue West Reconstruction Geotechnical / Environmental / Hydrogeological Investigation, Guelph, Ontario (2021 - 2022)

Project engineer for combined geotechnical, environmental, and hydrogeological investigation for road reconstruction (storm, sewer, watermain) for a 890 m span of Speedvale Avenue West, Guelph, ON (Phase 3) between Imperial Rd. N. and Elmira Rd. N. Included Assessment of Past Uses and Soil Analysis Plan, advancement of boreholes and installation of monitoring wells, chemical testing and analysis, groundwater sampling and hydrogeological testing. Preparation and submission of soil characterization report, hydrogeological report and technical study for road reconstruction recommendations. Included tender and construction support as well as documentation and submission on behalf of the city of for a PTTW Category 3 submission.

City of Hamilton - 55 Queenston Road Geotechnical / Environmental / Hydrogeological Investigation, Hamilton, Ontario (2018 - 2022)

Project manager for combined geotechnical, environmental (Phase One ESA, Phase Two ESA, Remedial Action Plan), and hydrogeological investigation to support the redevelopment of the former commercial development to a mid-rise low-income housing development. In 2018, Englobe completed a Phase One ESA, Phase Two ESA and geotechnical investigation at the site. The subsurface investigation included the advancement of seven (7) boreholes (with five (5) monitoring wells), with bedrock coring occurring in four (4) of the boreholes. In April 2020 and July 2021, supplemental Phase Two ESAs were completed to delineate contaminates of concern (COCs) identified at the site in soils and groundwater. The Supplemental Phase Two ESAs included the advancement of 27 additional boreholes and 15 monitoring wells. Englobe developed a Remedial Action Plan (RAP) which documented remedial requirements to address the identified COCs at the site.

In November 2021, Englobe completed a Hydrogeological Investigation to determine water taking and permitting requirements during forthcoming remedial activities. Englobe prepared a Water Taking and Discharge Plan based on the results of the Hydrogeological Investigation, which formed the basis of the procurement of a water taking EASR for remediation related water takings.

Region of Waterloo - South Boundary Road 2B and East Boundary Road Extensions, Cambridge / Township of North Dumfries, Ontario (2021-2022)

Project engineer for combined geotechnical and pavement, environmental (O. Reg 406/19 excess soils management), and hydrogeological investigations and groundwater monitoring program for South Boundary Road Phase 2 expansion (2300 m stretch between Franklin Blvd. to Dundas Street South [MTO Hwy 8]) and East Boundary Road Phase 1 expansion (600 m stretch between Hwy 8 to to Wesley Blvd.). Geo-investigations were characterization and recommendations expansion of new 4-lane Regional Road at the south end of Cambridge, ON. Project scope included Assessment of Past Use Report, advancement of boreholes and monitoring well installations through agricultural lands / cross-streets, environmental soil / water chemical testing and analysis, groundwater sampling and long-term monitoring and hydrogeological testing. Preparation and submission of geotechnical and pavement design report, environmental soil characterization report, and hydrogeological reports for road construction engineering recommendations.

Region of Waterloo - Ainslie Street South (Regional Road No. 24) Reconstruction, Cambridge, Ontario (2021)

Project manager and technical lead for combined geotechnical, environmental (O.Reg 406/19 excess soils management), and hydrogeological investigation for road reconstruction (storm, sewer, watermain) for a 1100 m span of Ainslie Street South (Regional Road No. 24) through downtown Galt in Cambridge, ON between Park Hill Rd. E. to Concession St. Included Assessment of Past Use Report, advancement of 22 x boreholes with bedrock coring and characterization, environmental chemical testing and analysis, groundwater sampling and hydrogeological testing. Preparation and submission of geotechnical and pavement design report, environmental soil characterization report, and hydrogeological report for road reconstruction recommendations.

City of Guelph - York Road Phase 3 Reconstruction Geotechnical / Environmental / Hydrogeological Investigation, Guelph, Ontario (2019 - 2021)

Project engineer for combined geotechnical, environmental, and hydrogeological investigation for road reconstruction (storm, sewer, watermain) for a 500 m span of York Road, Guelph, ON (Phase 3) between Stevenson St. S. to Victoria Rd. N. Included limited Phase I environmental screening, advancement of boreholes, chemical testing and analysis, groundwater sampling and hydrogeological testing. Preparation and submission of geotechnical and limited environmental report, hydrogeological report and technical study, environmental soil management plan of surplus impacted soils, dewatering and documentation for a PTTW Category 3 submission.

AECOM / Metrolinx - Aldershot GO Station Renovation and South Parking Lot Expansion - Stage 1 and Stage 2, Burlington, ON (2017 - 2020)

Project engineer for two stages of combined geotechnical, environmental, and hydrogeological investigation for the Metrolinx Aldershot GO station parking lot expansion and renovations of existing facilities. Stage 1 scope of work included advancing boreholes outside and inside the active CN Rail / GO train corridor to support design for grade raise and parking lot pavement, installation of new bus loops and canopies, generator/utility foundation pads, and two new elevator pits for accessibility options for active GO commuter platforms. Included preparation and submission of geotechnical / environmental (limited Phase II) / hydrogeological report. Stage 2 included supplementary geotechnical investigation for long-term settlement assessment of the south parking lot mass area filling, as well as an environmental soil management program and hydrogeological investigation (PTTW Category 3) for the earth works at the south site.

AECOM / Defense Construction Canada - Geotechnical and Hydrogeological Investigation for Boxcar Road Culvert at CFB Trenton, ON (2019 - 2020)

Project engineer for geotechnical investigation for box culvert / bridge replacements for Boxcar Road at CFB Trenton, Ontario for the Canadian Forces. Project scope included completing geotechnical / hydrogeological investigation with borehole drilling, monitoring well installations and hydrogeological field testing, site survey, laboratory testing, and geotechnical and hydrogeological assessment and analysis of site soils and groundwater. Geotechnical / Hydrogeological recommendations included; guidance on shallow and deep foundations, lateral earth pressures for structural design, excavation, surface water and ground water control, soil re-use, and pavement structure design for rehabilitated structures. Included a follow-up supplementary pavement investigation for additional roadway / driveway connections for CFB Trenton firetruck access.

City of Ottawa - Springfield Road Watermain Replacement Hydrogeological Investigation and Permit to Take Water Application, Ottawa, Ontario (2018-2019)

Project Engineer responsible for the completion of a hydrogeological investigation and Permit to Take Water (PTTW) application for a watermain replacement at Springfield Road and Beechwood Avenue in Ottawa, Ontario. The hydrogeological investigation included the completion of short duration recovery tests within groundwater monitoring wells using submersible pumps and electronic data loggers. Mr. Bailey estimated hydraulic conductivity using the recovery test data, and prepared a Hydrogeological Investigation Report which provided groundwater taking estimates during construction through the development of a groundwater flow model. Mr. Bailey was responsible for the preparation of the PTTW application for the proposed water taking.

City of Guelph - York Road Phase 2 Reconstruction Geotechnical / Environmental / Hydrogeological

Investigation, Guelph, Ontario (2017 - 2018)

Project engineer for combined geotechnical, environmental, and hydrogeological investigation for road reconstruction (storm, sewer, watermain) for a 500 m span of York Road, Guelph, ON between Ontario St. and Stevenson St. Included limited Phase I environmental screening, advancement of boreholes, chemical testing and analysis, groundwater sampling and hydrogeological testing. Preparation and submission of geotechnical / environmental / hydrogeological report for road reconstruction recommendations, including excavation/backfill, management and removal of surplus impacted soils, dewatering and documentation for an EASR permit, granular soil re-use and pavement design.

ENVIRONMENTAL SITE ASSESSMENT / CONTAMINATED SITE INVESTIGATIONS

City of Guelph - Sanitary Sewer Spill Response, York Road Construction Site, Guelph, Ontario (2019)

Project Engineer responsible for providing emergency spill response services for a sewage release at a watermain and trunk sewer installation construction site on York Road in Guelph, ON. Mr. Bailey was responsible for attending the initial response to the spill, liaising with the City of Guelph's environmental consultant, the collection of surface water samples at sewage outfall locations to the adjacent Eramosa River, the collection of groundwater and soil samples, date evaluation, and recommendations for continued monitoring of the Eramosa River

Willoughby Historical Museum - Underground Storage Tank (UST) Removal and Remediation, 9935 Niagara Parkway, Niagara Falls (2019)

Project Manager who provided environmental consulting services for the decommissioning and removal of a fuel oil UST, along with the remediation of hydrocarbon impacted soils. He oversaw the decommissioning and removal of the UST, directed the contractor in the removal of impacted soils, and collected soil samples from the final limits of the excavation.

Lakehead Psychiatric Hospital - Phase II ESA and Remediation Options Feasibility Study, 580 Algoma Street North, Thunder Bay, Ontario (2018-2019)

Project Engineer who assisted in the completion of a Phase II ESA for the former Lakehead Psychiatric Hospital, a 58hectare parcel of land in Thunder Bay, ON. The Phase II ESA supported the planned divestment of the property. The Phase II ESA work program included drilling 39 boreholes and installation of 22 monitoring wells to investigate 20 areas of potential environmental concern (APECs) at the Site. The Phase II ESA identified 5 areas of environmental concern (AECs) which had contaminant concentrations greater than the applicable standards. Mr. Bailey evaluated the remedial options for each AEC and provided recommendations for remediation, additional contaminant delineation, or completion of a Risk Assessment, as appropriate.

National Research Council - Phase I and II ESAs, National Research Council Site Redevelopment, 455 Wanaki Road, Ottawa, Ontario (2018 - 2019)

Project Engineer who completed a Phase I ESA and Phase II ESA to support the redevelopment of former National Research Council (NRC) lands adjacent to the former Canadian Forces Base Rockcliffe in Ottawa, ON. After the completion of the ESAs, Mr. Bailey prepared a Conceptual Site Model (CSM) as well as the remaining supporting documents and successfully filed a Record of Site Condition with the Ministry of the Environment.

Former Ministry of Natural Resources Fire Base, Remedial Options Analysis, Kenogamisis Lake, Ontario (2018)

Environmental Engineer who evaluated the remedial options for soil and groundwater contamination at a Former Ministry of Natural Resources Fire Base. He screened in-situ and ex-situ remedial options, and risk management measures using Federal remediation screening tools and evaluated through assigned remediation criteria/factors, and completed the report summarizing the remedial options analysis and completed costing for four evaluated options.

Defence Construction Canada, Contaminated Groundwater Treatment Plant Design Brief, CFB Trenton, Ontario (2018)

Environmental Engineer who helped with the design brief for the treatment of chlorinated volatile organic compounds within sump water, completed a preliminary description and sizing of the treatment system, which included process steps including flow equalisation and pre-treatment, air stripping, and liquid and vapour phase granular activated carbon

adsorption and helped in the completion of a Class A cost-estimate for the treatment system.

Ontario Provincial Police, Ontario Police College, Underground Storage Tank Removal, Aylmer, Ontario (2018)

Environmental Engineer who completed field work for a preliminary soil and groundwater sampling program prior to the removal of an underground storage tank. He also completed a report summarizing the findings of the soil and groundwater sampling program and aided in the preparation of technical specifications and probable costing for the construction tender for the tank removal activities.

Defence Construction Canada (DCC), Experimental Proving Ground, Phase I ESA, Suffield, Alberta (2017 - 2018)

Environmental Engineer who completed a comprehensive Phase I ESA of the entire Experimental Proving Ground (EPG), occupying approximately 499 km2 at CFB Suffield. The Phase I ESA included over 50 contaminated sites used for the defensive testing, storage and disposal of chemical and biological warfare agents and munitions. He completed a report summarizing the current environmental condition of these sites as well as their level of advancement within the Federal Contaminated Sites Action Plan (FSCAP). He also completed the National Classification System for Contaminated Sites (NCSCS) scoring for eight (8) of these sites and a geo-environmental database linking pertinent site information to a geographic information system.

Career path

Since 2022	Englobe Corp., Kitchener, ON
	Team Lead, Environment, Southwestern Ontario (Current)
2018-2021	DST, a Division of Englobe Corp., Waterloo, Ontario Environmental Engineer, Project Manager
2017 - 2018	DST Consulting Engineers Inc., Waterloo, Ontario Environmental Engineer, Project Manager
2015-2017	S2S Environmental Inc., Pickering, Ontario Project Scientist, Environmental Site Assessments

Professional training and development

2017 Record of Site Condition: Getting it Right from Aerial to Zoning, APGO, Toronto

Taylor Akimov Environmental Technician

Miss Taylor Akimov joined Englobe Corp. in June 2021 as an Environmental Technician in our Kitchener, Ontario office. Miss Akimov graduated Environmental Technology from Fleming College in 2017.

Taylor has 2 years of previous water treatment and sampling experience. Her responsibilities have included maintenance and sampling of the treatment systems as well as submitting the samples to ALS for analytical testing.

With Englobe her responsibilities have included completing and reporting on Phase I and II Environmental Site Assessments (ESA), Hydrogeological Investigations, Geotechnical Investigations, Long Term Groundwater Monitoring, Excess Soils, and Excavations. Taylor is also involved in project coordination including the preparation of Health and Safety Documents, and coordinating with field technicians, traffic control, drillers, private and public locators, and Clients.

Professional experience

PHASE I AND II ENVIRONMENTAL SITE ASSESSMENTS (ESA)

Private Client- Phase I & II, 226 Ingersoll Road, Woodstock, Ontario, (June to July 2021)

Field Technician responsible for field work. Fieldwork consisted of the initial Phase I site visit, advancement of environmental boreholes, installation of groundwater monitoring wells, development and sampling of groundwater, sampling of soil for analytical environmental testing, analyzing results and preparing reports. Analysis of the laboratory results identified contamination on site, which was recommended to be excavated. Excavation took place in August 2021.

Private Client- Phase II ESA, Arrowdale Park, Brantford, Ontario (July to August 2021)

Fieldwork consisted of the advancement of environmental boreholes, installation of groundwater monitoring wells, sampling of soil and groundwater for analytical environmental testing, and collection of GPS coordinates.

Private Retail Liquor Stores

- Phase II ESA, Blind River, Ontario, (July 2021)

Phase II Environmental Site Assessment in Blind River, Ontario. Responsible for carrying out field work. Fieldwork consisted of the advancement of environmental boreholes, installation of groundwater monitoring wells, development and sampling of groundwater, and collection of surface water for drilling activities.

Years of experience

Profession

Environmental Technician

Education

2017 – Environmental Technology, Fleming College, Lindsay, ON

2016 – Environmental Technician, Fleming College, Lindsay, ON

Languages

English

- Phase II ESA, Gananoque, Ontario, (September 2021)

Phase II Environmental Site Assessment in Gananoque, Ontario. Responsible for field work such as; sampling of groundwater, submission of laboratory samples for analysis.

Hydro One- Phase II ESA, Tiverton, Ontario, (September 2021)

Phase II Environmental Site Assessment at electricity distribution stations (DS) and transmission stations (TS) in Ontario, operated by the provincial distributor of electricity. Responsible for carrying out fieldwork, submission of lab samples, analyzing results. Fieldwork included the advancement of environmental boreholes, installation of groundwater monitoring wells, development and sampling of groundwater, sampling of soil for analytical environmental testing, collection of bedrock cores for geotechnical assessment, surveying of borehole locations and supervising well decommissioning.

Private Client- Four Phase I ESAs, Brantford, Paris, Woodstock, Ontario, (September 2021), One Phase II Environmental Site Assessment (January 2022)

Field Technician responsible for site investigations and inspections. Project is currently and historically commercial. This project was completed as part of due diligence requirements for the Site. Taylor completed the Phase I ESA which identified any potential environmental concerns in connection with current and/or historical activities at the site and surrounding areas. The Phase I ESAs identified a few areas of potential concern throughout the Paris location. Taylor completed the Phase II ESA in Paris in January 2022. The field work included advancement of environmental boreholes, installation of groundwater monitoring wells, and sampling of soil for analytical environmental testing.

Canadian Tire- Environmental Soil and Groundwater Assessment, Fergus and Georgetown, Ontario (October 2021)

Field Technician responsible for carrying out fieldwork, and submission of lab samples. Fieldwork included the advancement of environmental boreholes, installation of groundwater monitoring wells, development and sampling of groundwater, and sampling of soil for analytical environmental testing.

Haven Properties- Phase II ESA, and Supplemental Phase II ESA, Sheppard Avenue, Toronto, Ontario (February 2022, August 2022)

Taylor was responsible for supervising private locates, carrying out field work and submission of lab samples. The advancement of environmental boreholes, installation of groundwater monitoring wells, development and sampling of groundwater, and sampling soil for analytical environmental testing was completed during the field work. Taylor returned to the site for a supplemental Phase II in August. Taylor was in charge of supervising the field work, groundwater development and sampling, soil sampling and submitting samples for analytical environmental testing.

Private Client- Phase II ESA, Mill and Charles Street, Baden, Ontario (March 2022)

Field Technician responsible for supervising private locates, field work, and submission of lab samples. Field work involved the advancement of environmental boreholes, installation of groundwater monitoring wells, sampling soil, developing and sampling groundwater for analytical testing, collecting GPS coordinates, and surveying the borehole locations with a laser level. Taylor was also responsible for analyzing the analytical results, and preparing the report.

Private Client - Phase I ESA and Groundwater Sampling, Trenton, Ontario (August 2022)

Field Technician responsible for the initial Phase I Site visit, and groundwater sampling of 3 monitoring wells, installed during a previous Englobe investigation in 2017. Taylor was responsible for submitting the groundwater samples for laboratory analysis.

Red Lobster - Phase I ESA, Barrie, Brampton, and Kitchener, Ontario (August, and October 2022)

Taylor was responsible for the Phase I ESA site visit which identified any potential environmental concerns in connection with current and/or historical activities at the site and surrounding areas.

Private Client- Phase II ESA, King Street, St. Jacobs, Ontario (October 2022)

Field Technician responsible for supervising private locates, field work, and submission of lab samples. Field work involved the advancement of environmental boreholes, installation of groundwater monitoring wells, sampling soil, developing and sampling groundwater for analytical testing. Taylor was also responsible for analyzing the analytical results, and preparing the report.

Various Phase I and Phase One ESAs, Hamilton, Toronto, Wingham, Paris, Brantford, Goderich, Maryhill, and Kettle Point, Ontario (Throughout 2021, 2022, and 2023)

Taylor completed the Phase I ESAs which identified any potential environmental concerns in connection with current and/or historical activities at the site and surrounding areas.

Private Client- Phase II ESA, Otonabee Drive, Kitchener, Ontario (October and November 2022)

Taylor was the field technician responsible for supervising the advancement of 25 environmental boreholes, developing and sampling the groundwater, analyzing the results and preparing the report.

Private Client - Phase II ESA, Guelph Street, Kitchener, Ontario (March 2023)

Ms. Akimov was the field technician responsible for supervising private locates, and the advancement of 4 boreholes.

LONG TERM GROUNDWATER MONITORING

Activa Trussler, Kitchener, Ontario (Multiple events throughout 2021, 2022 and 2023)

One of the Field Technicians responsible for completing quarterly groundwater monitoring. Field activities include manually measuring water levels in all 23 monitoring wells, and 5 mini piezometers, collection of groundwater samples for environmental analytical testing, and collection of water level data from electric pressure transducers installed within select monitoring wells.

Hardy Road, Brantford, Ontario (Multiple events throughout 2021, 2022 and 2023)

One of the Field Technicians responsible for completing quarterly groundwater monitoring. Groundwater monitoring includes manually measuring water levels in all 25 monitoring wells/mini-piezometers located on-Site, as well as downloading water level data from electronic pressure transducers installed within six of the monitoring wells.

Barrel Yards, Waterloo, Ontario (Multiple events throughout 2021, 2022 and 2023)

One of the Field Technicians responsible for completing monthly groundwater monitoring. Field activities include manually measuring water levels in all 6 monitoring wells, and collection of groundwater samples for environmental analytical testing.

Hidden Valley, Kitchener, Ontario (Multiple events throughout 2021, 2022 and 2023

One of the Field Technicians responsible for completing monthly groundwater monitoring including manually measuring water levels in all 10 monitoring wells/mini-piezometers

Bishopsgate, Brantford, Ontario (March, June 2022, March 2023)

One of the Field Technicians responsible for completing quarterly groundwater monitoring events. Monitoring events include manually measuring water levels in all 4 monitoring wells.

EXCESS SOILS (O.REG. 406/19)

County of Brant, Ontario (Multiple events throughout 2022 and 2023)

Taylor was the Field Technician responsible for collecting in-situ and ex-situ soil samples on various days, and coordinating with the operator on site. Taylor also submitted the soil samples to the laboratory for analysis.

City of Brantford, Dogford Park and Charing Cross, Brantford, Ontario (August, and September 2022)

Taylor was responsible for instructing the mobilization of 3 test pits at Dogford Park, and 3 test pits at Charing Cross, for

reconstruction for the City of Brantford. Soil was submitted for laboratory analysis by Taylor.

Woolwich Township - Barnswallow Drive, Elmira, Ontario (October, November 2022)

Taylor was the field technician responsible for supervising the drilling of 19 boreholes on Barnswallow Drive, from Church Street to First Street. Taylor collected soil samples and submitted them for laboratory analysis.

Region of Waterloo - Fischer-Hallman Road/Bearinger Road, Waterloo, Ontario (November 2022)

Taylor was responsible for supervising the drilling of 25 boreholes on Fischer-Hallman/Bearinger Road from Columbia to Pineridge Road, and submitting the soil samples for analysis.

Woolwich Township - Arthur Street, Elmira, Ontario (December 2022)

Field Technician in charge of supervising the drilling of 11 boreholes on Arthur Street from South Street to Kenning Place, and submitting the soil samples for analysis.

City of Cambridge c/o IBI Group - Blenheim Road, Cambridge, Ontario (May 2023)

Ms. Akimov was in charge of supervising the drilling of 8 boreholes on Blenheim Road, and submitting the soil for analysis.

Municipality of Kincardine - Concession 5 Road, Kincardine, Ontario (May 2023)

Taylor was in charge of supervising the drilling of 5 boreholes on Concession 5 Road, between Sideroad 10 and Sideroad 15 North, and submitting the soil samples for analysis.

EXCAVATION

Private Client, Woodlawn Road West, Guelph, Ontario (November 2021)

Field Technician in charge of overseeing three test pit locations, while collecting representative soil samples from each test pit location. Other tasks include supervising Underground Storage Tank pulls, collecting sidewall and floor samples to be analyzed, documenting locations of samples collected, and preparing report.

Haven Properties, Beachwood Road, Wasaga Beach, Ontario (February 2022)

Field Technician in charge of extending the excavation in support of pump and treat activities. Taylor collected soil samples to be analyzed, and documented the size and location of the excavation.

Private Client - Talbot Line, Wallacetown, Ontario (March 2023)

Taylor was in charge of supervising the excavation, screening soil samples, and submitting samples for laboratory analysis.

HYDROGEOLOGICAL INVESTIGATIONS

Private Client - Various Hydrogeology Tests, John Street, Otterville, Ontario (March 2022)

Field Technician assisting with a hydrogeological investigation. Fieldwork included solid slug testing, pump testing, and hydraulic slug testing. Taylor was responsible for assisting in conducting falling and rising head K-tests with the above mentioned materials, and collecting data using Solonist Leveloggers. Taylor returned to the Site at a later date to complete groundwater sampling within all of the monitoring well locations, and again to collect samples from the discharge point of the dewatering system.

Aquafor Beech Limited - Short Duration Recovery Tests, Victoria Green Stormwater Management Pond, Innisfil, Ontario (May 2022)

Field Technician responsible for conducting two short duration rising head hydraulic conductivity tests (K-tests) within the monitoring wells on Site in support of the proposed stormwater pond cleanout/retrofit. Tests were completed using a submersible pump, while collecting water levels during recovery manually and using Solonist Leveloggers. Taylor also completed a laser level survey of the monitoring well, and borehole locations on Site.

Private Client - Infiltration Testing, 111 Sherwood Drive, Brantford, Ontario (May 2022)

Field Technician responsible for conducting three infiltration tests for a proposed infiltration system at 111 Sherwood Drive. Field work included directing the drill crew to advance boreholes to the bottom of the proposed infiltration system, and conducting constant head permeameter testing with an Aardvark Permeameter, in three borehole locations. Field

borehole logs were completed to determine if further investigation was required in the deeper elevations of the boreholes (If less permeable soils was encountered).

Mobilinx - Hydraulic Conductivity Testing, Hurontario-407, Mississauga, Ontario (June 2022)

Field Technician responsible for conducting falling head hydrogeological tests to determine the hydraulic conductivity with solid slugs and solnist leveloggers. Water levels were monitored manually as well as with the solnist levelogger. This hydrogeological investigation was in support of the proposed LRT development.

Aquafor Beech Limited - Infiltration Testing, 1111 Davis Drive, Newmarket, Ontario (June, July 2022)

Field Technician responsible for conducting 8 infiltration tests for a proposed infiltration system. The Field work included directing the drill crew to advance boreholes to the bottom of the proposed infiltration system, and conducting constant head permeameter testing with an Aardvark Permeameter, in four borehole locations, at various depths.

Private Client - Hydraulic Conductivity Testing, Industrial Drive, Elmira, Ontario (August 2022)

Taylor was the field technician responsible for conducting 2 hydraulic slug tests, and one short duration recovery test on various wellpoints within the dewatering system. Field work was completed in support of the dewatering during road construction activities on Industrial Drive. Taylor also completed two rounds of groundwater sampling, collected from the discharge point of the dewatering set up.

Aquafor Beech Limited - Hydraulic Conductivity Testing and Groundwater sampling at 5 Proposed SWMPs (Idlewood Greenway, Millwood Park, Countryside Park, Countryhill Park, and Sandrock Hydro Corridor), Kitchener, Ontario (August, September 2022)

Taylor and Jessica completed hydraulic conductivity testing and groundwater sampling at 5 locations throughout Kitchener in support of the proposed Storm Water Management Ponds. Fieldwork included solid slug testing, pump testing and groundwater sampling. Taylor was responsible for conducting falling and rising head K-tests with the above mentioned materials, collecting data using Solonist Leveloggers, and submitting groundwater samples for analysis.

Private Client - Hydraulic Conductivity Testing, Butler Pit, Cambridge, Ontario (December 2022, January 2023)

Field Technician responsible for supervising private locates, well development, conducting 6 hydraulic conductivity tests, and groundwater sampling on 4 of the 10 monitoring wells.

WalterFedy - Hydraulic Conductivity Testing, Foundry Street, Baden, Ontario (February 2023)

Field Technician responsible for well development, conducting 4 hydraulic conductivity tests, groundwater sampling on 2 of the 4 monitoring wells. Taylor was also responsible for assisting with the hydrogeological assessment report.

AECOM Canada Ltd. c/o Metrolinx (April and May 2023)

Ms. Akimov was in charge of completing hydraulic conductivity testing in all 7 monitoring wells, and groundwater sampling 4 of the 7 monitoring wells. The work included conducting falling and rising head K-tests, submitting groundwater samples for analysis, and assisting with the Hydrogeological Assessment Report.

OTHER

Laurier Brantford YMCA - Indoor Air Quality & Sump Water Sampling, and Vapour Mitigation System Inspections, Brantford, ON (Various events in 2022 and 2023)

Taylor completed environmental sampling to fulfill the requirements of the selected Risk Management Measures listed within the Certificate of Property Use (CPU) at the Laurier Brantford YMCA. Taylor assisted Field Technician Maxine in completing quarterly indoor air quality (IAQ) sampling, semi-annual sump water sampling, and semi-annual inspections of the Soil Vapour Intrusion Mitigation System (SVIMS) and related components.

City of Brantford - Sediment Thickness Evaluation & Sampling, Holmedale Canal, Brantford, Ontario (June and July 2022) Taylor completed environmental sediment sampling to support the dredging of the Holmedale Canal. Taylor and Russell measured the center, west and east sides of the canal throughout 23 cross sections to determine the sediment thickness in the canal, before the removal of sediment. Thirteen sediment samples (including field duplicates) were submitted for laboratory analysis.

Region of Waterloo International Airport - Fish Rescue and Relocation, Randall Drain, Breslau, Ontario (August 2022) Taylor assisted Matt in successfully relocating the fish species located within the dammed area of Randall Drain, during dewatering activities. The work was completed in support of a culvert installation, and road reconstruction.

Canadian Tire - Phase I ESA in support of Domestic Water Threat Report, Fergus, Ontario (October 2022) Taylor was responsible for the Phase I ESA site visit which identified any potential threats to the drinking water in connection with current and/or historical activities at the site and surrounding areas.

Career path

Since 2021	Englobe Corp., Kitchener, Ontario
	Environmental Technician
2017-2020	Loch Island Lodge, Dubreuilville, Ontario
	Water Technician

Professional training and development

2021	Emergency First Aid CPR C + AED
2021	WHMIS 2015
2021	Hydro One Station Safety Awareness Training
2021	Utility Infrastructure Awareness Training
2017	MOECC Operator-In-Training in Water Treatment, Water Distribution, Wastewater Treatment and Wastewater Collection
2016	Ontario Benthos Biomonitoring Network (OBBN)
2016	Wetland Evaluation Certification
2016	Pleasure Craft Operator Card

Jessica Godin M.E.Sc., EIT Engineering Intern - Environment

Ms. Jessica Godin joined Englobe Corp as an Engineering Intern on the Environmental team in Englobe's Kitchener office. She graduated Chemical Engineering in 2015, and completed her Masters in Environmental/Green Engineering at the University of Western Ontario in 2022. She has two years of previous experience in a manufacturing environment for the development of a quality management system and coordinating new product launches with production staff, as well as one year of previous experience in an asphalt and materials testing laboratory.

With Englobe, Jessica has conducted geotechnical, environmental and hydrogeological investigations along with multidisciplinary investigations combining all three disciplines. Her responsibilities have included completing Environmental Site Assessments, collection of groundwater, indoor air and soil samples, and technical report writing along with the preparation of reports and deliverables. Finally, Jessica is involved in project coordinating including the preparation of Health and Safety Documents and coordinating with field technicians, traffic control, drillers, and public and private locators.

Professional experience

PHASE I AND II ENVIRONMENTAL SITE ASSESSMENTS (ESA)

House of Friendship - Supplemental Phase II Environmental Site Assessment - 40/42 Eby Street South, Kitchener, Ontario (2022)

Project Coordinator and Field Technician responsible for supervising private locates and GPR scan, field work, and submission of lab samples. Field work involved the advancement of environmental boreholes, installation of a groundwater monitoring well, sampling soil, developing and sampling groundwater for analytical testing, collecting GPS coordinates, and surveying the borehole locations with an RTK unit. Project Coordinator tasks included coordinating sub-contractors; preparing Health and Safety Plan; and communicating with the Client.

Private Client - Phase I, 1673 Huron Rd, Kitchener, Ontario, (2022)

Responsible for a Phase I Environmental Site Assessment (Phase I ESA) report for the request of due diligence purposes prior to the potential purchase of residential land. Tasks included a site visit; interview with the Site contact; and a review of the ERIS report, Fire Insurance Plans, other insurance products, past reports, aerial photos, environmental databases and on-site and off-site activities to evaluate potential on-and off-Site environmental concerns.

Profession

Engineering Intern - Environment

Education

2015 – Bachelor of Engineering Science in Chemical Engineering. University of Western Ontario, London, Ontario

2022 – Masters of Engineering Science in Chemical Engineering -Environmental/Green Engineering, University of Western Ontario, London, Ontario

Languages

English

Private Client - Phase I ESA, 131 Gage Ave, Kitchener, Ontario

(2022)

Responsible for a Phase I Environmental Site Assessment (Phase I ESA) report for the request of due diligence purposes prior to the potential sale of industrial land. Tasks included a site visit; interview with the Site contact; and a review of the ERIS report, Fire Insurance Plans, other insurance products, past reports, aerial photos, environmental databases and onsite and off-site activities to evaluate potential on-and off-Site environmental concerns.

McCowan & Associates Ltd. - Phase II Environmental Site Assessment - 2380 Walker Rd, Windsor, Ontario (2022)

Responsible for a Phase II Environmental Site Assessment (Phase II ESA) report for the request of due diligence purposes prior to the potential sale of the commercial property. Tasks included reviewing field notes for the drilling and groundwater sampling, reviewing laboratory analytical results for both soil and groundwater; preparing tables of the analytical result; comparing analytical results to applicable standards; and preparing the Phase II ESA report.

EXCESS SOIL UNDER ONTARION REGULATION 406/19 (AS AMENDED)

Regional Municipality of Waterloo - Arthur Street Reconstruction, Elmira, Ontario (2022)

Responsible for the Assessment of Past Uses (APU) and Hydrogeological reports prior to the proposed Arthur Street Reconstruction project. Tasks included review of field notes and photos of the property, a review of the ERIS report, aerial photos, environmental databases and on-site and off-site activities to evaluate potential on- and off-Site environmental concerns. Jessica coordinated with project managers and field staff to complete hydrogeological monitoring and testing to determine dewatering requirements in support of required permitting.

Township of Woolwich - Barnswallow Drive, Elmira, Ontario (2022)

Assisted Field Technician Taylor in the collection of soil samples from 19 boreholes and submitted for analysis.

Hydro One Networks Inc. - Assessment of Past Uses, Eugenia TS, Eugenia, Ontario (2022)

Responsible for the Assessment of Past Uses (APU) report prior to the proposed upgrades at the Eugenia Transmission Station. Tasks included review of field notes and photos of the property, a review of the ERIS report, aerial photos, environmental databases and on-site and off-site activities to evaluate potential on- and off-Site environmental concerns.

Hydro One Networks Inc. - Assessment of Past Uses, Next Star TS, Windsor, Ontario (2022)

Responsible for the Assessment of Past Uses (APU) report prior to the proposed upgrades at the Next Transmission Station. Tasks included review of field notes and photos of the property, a review of the ERIS report, aerial photos, and environmental databases to evaluate potential on- and off-Site environmental concerns.

Hydro One Networks Inc. - Assessment of Past Uses, Mississagi TS, Mississagi, Ontario (2022)

Responsible for the Assessment of Past Uses (APU) report prior to the proposed upgrades at the Mississagi Transmission Station. Tasks included review of field notes and photos of the property, a review of the ERIS report, aerial photos, environmental databases and on-site and off-site activities to evaluate potential on-and off-Site environmental concerns.

Private Client - Assessment of Past Uses, Blenheim Rd. Cambridge, Ontario (June 2022)

Responsible for the Assessment of Past Uses (APU) Site Visit. Jessica assisted Field Technician Maxine to take photos and notes of the properties located along Blenheim Road in support of the Blenheim Road Reconstruction.

HYDROGEOLOGICAL INVESTIGATIONS

Aquafor Beech Ltd. - Geotechnical and Hydrogeological Investigation for 5 Stormwater Management Facilities, Kitchener, Ontario (2022)

Project Coordinator and Field Technician for a geotechnical and limited environmental investigation in support of the proposed 5 stormwater management facilities in the City of Kitchener. Project Coordinator tasks included coordinating sub-contractors; preparing Traffic Control Plan; and preparing Health and Safety Plan. Field tasks included assisting

Environmental Professional Maxine in supervising a drill crew to advance 3-6 boreholes across five sites; collecting soil samples; logging soil descriptions; supervising the installation of monitoring wells. Responsibilities for hydrogeological investigation involved sampling soil and groundwater; monitoring groundwater level; completing in-situ hydraulic conductivity testing using a short-duration recovery method (Slug Test); and preparation of reports summarizing analytical results.

Hydro One Networks Inc. - Hydrogeological Testing at Hanover TS, Hanover, Ontario (2022)

Responsible for a hydrogeological investigation in support of construction dewatering and Environmental Activity and Sector Registry (EASR) application associated with the proposed improvements to the Hanover Transmission Station. Tasks included assisting with conducting short duration falling and raising head hydraulic conductivity test (K-test) for 3 monitoring wells using solid slugs while collecting data using Solonist Leveloggers; monitoring groundwater level; surveying using a Spectra Laser Level; reviewing field notes for the drilling and groundwater sampling, reviewing laboratory analytical results for groundwater; and preparation of a report summarizing analytical results.

Private Client - Infiltration Testing at 111 Sherwood Dr., Brantford, Ontario (2022)

Responsible for a hydrogeological investigation in support of the design of a Low Impact Development (LID) stormwater management features at 111 Sherwood Drive in Brantford, Ontario. Tasks included reviewing infiltration data; reviewing field borehole logs; and preparing a report summarizing the results.

LONG TERM MONITORING

Activa Trussler, Kitchener, Ontario (June 2022)

One of the Field Technicians responsible for completing quarterly groundwater monitoring. Field activities include manually measuring water levels in all 23 monitoring wells, and 5 mini piezometers, collection of groundwater samples for environmental analytical testing, and collection of water level data from electric pressure transducers installed within select monitoring wells.

Barrel Yards, Waterloo, Ontario (June, July 2022)

One of the Field Technicians responsible for completing monthly groundwater monitoring. Field activities include manually measuring water levels in all 6 monitoring wells, and collection of groundwater samples for environmental analytical testing.

Hidden Valley, Kitchener, Ontario (June, July 2022)

One of the Field Technicians responsible for completing monthly groundwater monitoring including manually measuring water levels in all 10 monitoring wells/mini-piezometers

Bishopsgate, Brantford, Ontario (June, September 2022)

One of the Field Technicians responsible for completing quarterly groundwater monitoring events. Monitoring events include manually measuring water levels in all 4 monitoring wells.

Laurier Brantford YMCA - Indoor Air Quality & Sump Water Sampling, and Vapour Mitigation System Inspections, Brantford, ON (June, September, December 2022)

Jessica completed environmental sampling to fulfill the requirements of the selected Risk Management Measures listed within the Certificate of Property Use (CPU) at the Laurier Brantford YMCA. Tasks included completing quarterly indoor air quality (IAQ) sampling using evacuated canisters equipped with 24-hour regulator, semi-annual sump water sampling, and semi-annual inspections of the Soil Vapour Intrusion Mitigation System (SVIMS) and related components.

Career path

Since 2022	Englobe Corp, Kitchener, Ontario Engineering Intern - Environment
2021	The University of Western Ontario Teaching Assistant
2017-2019	Theta TTS, Barrie, Ontario Quality Coordinator
2015-2017	Miller Paving, Markham, Ontario Laboratory Technician

Professional training and development

2022	Workplace Hazardous Materials Information Systems (WHMIS), 2015

2022 Hydro One Station Safety Awareness Training

Prizes and scholarships

2015 1st Place, Capstone Design Project, Environmental and Waste Treatment Category, The University of Western Ontario

Computer skills

Microsoft Office (Word, Excel, PowerPoint, Access, Project and Outlook), Deltek Vantagepoint, Google Earth Pro.

Appendix G Statement of Limitations

STATEMENT OF LIMITATIONS

This report (hereinafter, the "**Report**") was prepared by Englobe Corp. (hereinafter the "**Company**") and is provided for the sole and exclusive use and benefit of Habitat for Humanity Wellington Dufferin Guelph. (the "**Client**"). Ownership in and copyright for the contents of the Report belong to the Company.

No other person is authorized to rely on, use, copy, duplicate, reproduce or disseminate this Report, in whole or in part and for any reason whatsoever, without the express prior written consent of the Company. Any person using this Report, other than the person(s) to whom it is directly addressed, does so entirely at its own risk. The Company assumes no responsibility or liability in connection with decisions made or actions taken based on the Report, or the observations and/or comments contained within the Report. Others with interest in the site and/or subject matter of this Report should undertake their own investigations and studies to determine how or if they or their plans could be affected.

This Report should be considered in its entirety; selecting specific portions of the Report may result in the misinterpretation of the content.

The work performed by the Company was carried out in accordance with the terms and conditions specified in the *Professional Services Agreement* between the Company and the Client, in accordance with currently accepted engineering standards and practices and in a manner consistent with the level of skill, care and competence ordinarily exercised by members of the same profession currently practicing under similar conditions and like circumstances in the same jurisdiction in which the services were provided. Standards, guidelines and practices may change over time; those which were applied to produce this Report may be obsolete or unacceptable at a later date.

The findings, recommendations, suggestions, or opinions expressed in this Report reflect the Company's best professional judgment based on observations and/or information reasonably available at the time the work was performed, as appropriate for the scope, work schedule and budgetary constraints established by the Client. No other warranty or representation, expressed or implied, is included in this Report including, but not limited to, that the Report deals with all issues potentially applicable to the site and/or that the Report deals with any and all of the important features of the site, except as expressly provided in the scope of work.

This Report has been prepared for the specific site, development, building, design or building assessment objectives and/or purposes that were described to the Company by the Client. The applicability and reliability of the content of this Report, subject to the limitations provided herein, are only valid to the extent that there has been no material alteration or variation thereto, and the Company expressly disclaims any obligation to update the Report. However, the Company reserves the right to amend or supplement this Report based on additional information, documentation or evidence made available to it.

The Company makes no representation concerning the legal significance of its findings, nor as to the present or future value of the property, or its fitness for a particular purpose and hereby disclaims any responsibility or liability for consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

Since the passage of time, natural occurrences, and direct or indirect human intervention may affect the views, conclusions and recommendations (if any) provided in this Report, it is intended for immediate use.

This Statement of Limitations forms an integral part of the Report.

In preparing this Report, the Company has relied in good faith on information provided by others and has assumed that such information is factual, accurate and complete. The Company accepts no responsibility or liability for any deficiency, misstatement or inaccuracy in this Report resulting from the information provided, concealed or not fully disclosed by those individuals.

Any description of the site and its physical setting documented in this Report is presented for informational purposes only, to provide the reader a better understanding of the site and scope of work. Any topographic benchmarks and elevations are primarily to establish relative elevation differences between sampling locations and should not be used for other purposes such as grading, excavation, planning, development, or similar purposes.

Any results from laboratory or other subcontractors reported herein have been carried out by others, and the Company cannot warrant their accuracy.