

# Hydrogeological Investigation Report

Proposed Residential Development 280 Clair Road West Guelph, Ontario

#### Client:

John Farley and Home Opportunities

#### Attention:

John Farley

# **Type of Document:**

**Final Report** 

# **Project Number:**

G4836-24-3

## **Project Name:**

**Proposed Residential Development** 

#### JLP Services Inc.

Geotechnical and Environmental Consultants 405 York Road, Guelph, ON N1E 3H3

# **Date Submitted:**

January 29, 2025

# **Version Control**

|                | First                                                 | Issue                                                          | Final                                                                                                             | Issue                                |
|----------------|-------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Project Number | G4836                                                 | 6-24-3                                                         | G4836-24-3                                                                                                        |                                      |
| Report Title   | Proposed Residen                                      | vestigation Report<br>tial Development,<br>st, Guelph, Ontario | Hydrogeological Investigation Report<br>Proposed Residential Development, 280<br>Clair Road West, Guelph, Ontario |                                      |
| Version Number | -                                                     | 1                                                              | 2                                                                                                                 | 2                                    |
| Remarks        | Draft I                                               | Report                                                         | Final Report                                                                                                      |                                      |
| Prepared By    | Cindy Luu, B.Sc. Jay Samarakkody,<br>M. Phil., P.Geo. |                                                                | Cindy Luu, B.Sc.                                                                                                  | Jay Samarakkody,<br>M. Phil., P.Geo. |
| Initials       | Draft I                                               | Report                                                         | CL                                                                                                                | W.                                   |
| Reviewed By    | Ajay Jayalath, N                                      | ЛВА, P.Geo., QP                                                | Ajay Jayalath, N                                                                                                  | 1BA, P.Geo., QP                      |
| Initials       | Draft I                                               | Report                                                         | ρ                                                                                                                 | J                                    |
| Date           | Septembe                                              | er 4, 2024                                                     | January                                                                                                           | 29, 2025                             |

JLP will retain the original digital file of this report for at least ten (10) years from the original issuance. JLP does not guarantee the integrity of this digital file or any modifications after the transmission to the intended recipient.



# Table of Contents

| 1. IN | NTRODUCTION                                        | 1  |
|-------|----------------------------------------------------|----|
| 1.1   | Project Description                                | 1  |
| 1.2   | PROJECT OBJECTIVES AND SCOPE OF WORK               | 1  |
| 1.3   | REVIEW OF PREVIOUS REPORTS                         | 3  |
| 2. RI | EGIONAL AND LOCAL HYDROGEOLOGY                     | 4  |
| 2.1   | REGIONAL SETTING                                   | 4  |
| 2.    | 1.1 Regional Physiology                            | 4  |
| 2.    | 1.2 Regional Geology and Hydrogeology              | 4  |
| 2.2   | VULNERABLE AREAS ASSESSMENT                        | 4  |
| 2.3   | Existing Water Wells                               | 5  |
| 2.4   | Site Setting                                       | 5  |
| 2.    | 4.1 Site Topography and Surface Water Features     | 5  |
| 2.    | 4.2 Local Geology and Hydrogeology                 | 6  |
| 3. FI | ELD INVESTIGATION RESULTS                          | 8  |
| 3.1   | MONITORING WELL NETWORK DETAILS                    | 8  |
| 3.2   | GROUNDWATER LEVEL MONITORING                       | 8  |
| 3.3   | Hydraulic Conductivity Testing                     | 10 |
| 3.    | 3.1 Single Well Response Testing                   | 10 |
| 3.    | 3.2 Summary of Hydraulic Conductivity Test Results |    |
| 3.4   | Infiltration Rate Testing Results                  | 11 |
| 3.    | 4.1 Infiltration Rate Testing                      | 11 |
| 3.5   | GROUNDWATER QUALITY                                | 12 |
| 4. D  | EWATERING RATE ASSESSMENT                          | 14 |
| 4.1   | DEWATERING RATE ESTIMATES                          | 14 |
| 4.2   | DEWATERING FLOW RATE ASSESSMENT METHODOLOGY        |    |
| 4.3   | DEWATERING RADIUS OF INFLUENCE                     |    |
| 4.4   | RESULTS OF CONSTRUCTION DEWATERING RATE ESTIMATE   |    |
| 4.5   | MECP WATER TAKING PERMIT REQUIREMENTS              |    |
| 4.    | 5.1 Construction Dewatering                        | 18 |
| 5. Eľ | NVIRONMENTAL IMPACT ASSESSMENT                     | 19 |
| 5.1   | Surface Water Features                             | 19 |
| 5.2   | POTENTIAL IMPACTS ON GROUNDWATER USERS IN THE AREA | 19 |
| 5.3   | OTHER POTENTIAL IMPACT CONSIDERATIONS              | 19 |
| 5.    | 3.1 Geotechnical Considerations                    | 19 |
| 5.    | 3.2 Groundwater Quality                            | 19 |
| 6. C  | ONCLUSIONS AND RECOMMENDATIONS                     | 20 |
| 7. CI | LOSURE                                             | 22 |
| 0 DI  | EEEDENICES                                         | 22 |



# **Figures**

Figure 1: Locality Plan

Figure 2: Surficial Geology Map

Figure 3: Bedrock Geology Map

Figures 4-1 to 4-8: Vulnerable Areas

Figure 5: MECP Water Well Record Map

Figure 6: Borehole/Monitoring Well Location Plan

Figure 7: Cross Section Plan – A-A'

Figure 8: Cross Section Plan – B-B'

Figure 9: Groundwater Contour Plan

## **List of Appendices**

Appendix A: Limitations and Use of Report

Appendix B: MECP WWR Summary Table

Appendix C: Borehole Logs

Appendix D: Single Well Response Test (SWRT)

Appendix E: Infiltration Rates

Appendix F: Construction Dewatering Rates

Appendix G: Laboratory Certificates of Analysis

Appendix H: Qualifications of Assessors



# 1. Introduction

# 1.1 Project Description

JLP Services Inc. (JLP) was retained by John Farley and Home Opportunities ("Client") to conduct a Hydrogeological Investigation for the proposed residential development located at 280 Clair Road West, Guelph, Ontario, herein referred to as the "Site" and "Subject Property".

The Site is currently vacant. The Site is an irregular-shaped parcel of land and is surrounded by parkland, an urban reserve, a high school, and industrial properties. Residential and industrial properties were noted within the near surrounding areas.

The Site location is shown in Figure 1.

As per the information presented in the drawings from Architecture Unfolded, JLP understands that the development includes approximately 960 residential units spread over thirty-one (31) cluster townhouse buildings with 318 units, two (2) apartment buildings with 16-storey and 14-storey towers and one six-storey parking structure. JLP understands that the two (2) apartment buildings will be completed with one-level of basement, the 6-storey parking structure with a partial basement and cluster townhouses will be of slab-on-grade construction. An on-grade parking lot is located on the northwestern portion of the site and associated driveway and greenspace areas are proposed throughout the site.

However, the site configuration is subject to change. Final details of the proposed development were not available for review during the preparation of this report.

JLP conducted a Geotechnical Investigation in conjunction with this study. Pertinent information gathered from the geotechnical investigation was utilized for the completion of this report.

Limitations and Use of Report (Report Terms and Conditions) are provided in Appendix A.

## 1.2 Project Objectives and Scope of Work

The main objectives of the proposed hydrogeological investigation are provided below:

- Characterize regional and site-specific hydrogeological conditions;
- Estimate construction and post-construction dewatering rates and evaluate potential dewatering related impacts;
- Evaluate permitting requirements for construction and post-construction dewatering (if applicable) activities; and,
- Preparation of a Hydrogeological Investigation report.

This hydrogeological investigation report was prepared to satisfy the Ministry of the Environment, Conservation and Parks (MECP), Grand River Conservation Authority (GRCA), and the City of Guelph.



To achieve the investigation objectives, JLP has completed the following scope of work:

#### Information Review

- Reviewed available geological and hydrogeological information for the Site including established maps and public reports;
- Reviewed the MECP and GRCA mapping on Wellhead Protection Areas (WHPA), Highly Vulnerable
  Aquifers (HVA), Significant Groundwater Recharge Areas (SGRA) and other hydrogeologically sensitive
  areas (e.g., karstic areas); and,
- Searched MECP water well records database for existing water wells within 500 m of the property boundary.

#### Field Program

- Drilled and installed seven (7) monitoring wells at selected locations on-site to a maximum depth of approximately 9 metres below ground surface (mbgs) with 3.1 m long and 50 mm diameter screens, as part of the combined drilling program;
- Developed and conducted Single Well Response Tests (SWRT) on five (5) monitoring wells installed on-site to evaluate hydraulic properties of the saturated stratigraphic units at the Site;
  - Note: two (2) monitoring wells were dry at the time of SWRT testing
- Completed four (4) rounds of groundwater level measurements at all monitoring wells after well development;
- Completed elevation survey at all monitoring wells for geodetic elevations;
- Completed six (6) in-situ infiltration rate tests at three (3) selected locations using Guelph Permeameter at 0.5 m and 1.5 m below ground surface to provide infiltration rates across the Site;
- Collected one (1) groundwater sample from a selected monitoring well for laboratory analysis and screening against the City of Guelph Sanitary and Storm Sewer By-Law criteria; and,
- Conduct one-year seasonal groundwater level monitoring program including continual water level monitoring using data loggers at five (5) selected monitoring wells.

Note: The seasonal groundwater level monitoring program is currently in progress. An addendum report will be issued when the full 12-month data has been collected.

#### **Data Evaluation**

- Evaluated the information collected during the field investigation program including, but not limited to; borehole geological information, SWRT results, groundwater level measurements, and groundwater water quality;
- Prepared site-specific surface and bedrock geological maps, Site plans, groundwater contours, and cross sections;
- Estimated construction dewatering flow rates (short-term), assessed potential impacts, and recommended mitigation measures; and,
- Evaluated requirement of MECP water taking permits (permit to take water / Environmental Activity and Sector Registry [EASR]) and discharge agreements with the relevant municipality/Region.



#### Reporting

- Prepared Hydrogeological Investigation Report which summarizes the work completed on the site to satisfy regulatory authorities having jurisdiction.
  - This report provides information on site setting, desktop review of geological and hydrogeological information, groundwater quality, results of field investigation program, and construction dewatering requirements and potential impacts on the surrounding environment.
- Preparation of technical memorandum detailing seasonal groundwater level monitoring results (manual and continual)- currently ongoing.

# 1.3 Review of Previous Reports

The following report was reviewed as part of this hydrogeological investigation:

 JLP Services Inc. (January 29, 2025). Geotechnical Investigation Report, Proposed Residential Development, 280 Clair Road West, Guelph, Ontario, prepared for John Farley and Home Opportunities.



# 2. Regional and Local Hydrogeology

# 2.1 Regional Setting

#### 2.1.1 Regional Physiology

The Site is located within a physiographic region named the Horseshoe Moraines, and a physiographic landform named as the Till Moraines.

The Horseshoe Moraines occupies an area of approximately 5,590 km<sup>2</sup> lying to the west of the highest part of the Niagara Escarpment. The "toe" of the horseshoe-shaped region lies on the highest part of the upland south of Georgian Bay at about 518 m above sea level (masl), while the two "heels" are about 274 m lower (Chapman & Putman, 2007).

Associated meltwater stream deposits give the region two main landform types; (a) irregular, stony knobs and ridges, and (b) pitted sand and gravel terraces and swampy valley floors.

#### 2.1.2 Regional Geology and Hydrogeology

The surficial geology of the subject property and surrounding area is mapped as glaciofluvial deposits (gravelly river deposits and delta topset facies) in the west to northwest, stone-poor, sandy silt to silty sand-textured till on Paleozoic terrain in the south to southeast and ice-contact stratified deposits (sand and gravel, minor silt, clay and till) in the northeast (Ontario Geological Survey, 2010). Based on the surficial geology/mapping, the Site is an intersection of glaciofluvial, ice contact and stone poor deposits.

The dominant bedrock geology of the area is mapped as Lower Silurian sandstone, shale, dolostone, and siltstone belonging to the Guelph Formation. The bedrock in the area shows potential karstic conditions.

The surficial and bedrock geology of the Site and surrounding areas are shown in Figures 2 and 3, respectively.

The Site area is located within the Ellis Creek-Speed River watershed and Hanlon Creek sub-watershed which eventually joins the Speed River. Regional groundwater flow in the area is in a northwest direction, towards the Speed River. It is expected that groundwater flow directions may vary locally from the regional flow directions due to various natural factors including local topographic and stratigraphic variations, submerged riverbeds, and engineering structures such as buildings and infrastructure.

#### 2.2 Vulnerable Areas Assessment

The site is located within the Grand River Source Protection Area. Published maps and websites for GRCA and the MECP were reviewed to identify if the Site footprint is included in any regulated areas.

It should be noted that the area of the proposed development does not fall within a GRCA regulated area.

The following regulated areas were considered during the above information search:

Wellhead Protection Areas (WHPA) – The Site area is located within Wellhead Protection Area C (WHPA-C) with a low vulnerability score of 4. The Site is located outside WHPA under the direct influence of surface water (WHPA-E).



- WHPA Q (Water Quantity) The Site area is located outside of mapped WHPA Q1/Q2 (Water Quantity).
- <u>Significant Groundwater Recharge Areas (SGRA)</u> The Site area is located within mapped SGRA, with an unspecified vulnerability score.
- <u>Highly Vulnerable Aquifer Areas</u> The Site is located outside the mapped highly vulnerable aquifer areas.
- <u>Intake Protection Zones (IPZ)</u> Intake Protection Zones are the area of water and land surrounding a municipal surface water intake. The closest Intake Protection Zone (IPZ3) is located approximately 200 m southeast of the Site.
- Paris-Galt Moraine The southern part of the Site is located within the Paris-Galt Moraine area.
- <u>Karst Areas</u> The Site is located within an area categorized as a potential karstic area.

The location of the Site in relation to vulnerable areas is shown in Figures 4-1 to 4-8.

# 2.3 Existing Water Wells

Water Well Records (WWRs) from the database maintained by the MECP were reviewed to determine the number of water wells within a 500 m buffer from the Site centroid. The locations of the MECP WWR are shown in Figure 5. A summary of the WWR is included in Appendix B.

The MECP WWR database indicates a total of 43 wells within 500 m distance from the site boundaries, including one domestic water supply well, one livestock water supply well and three observation wells located on-Site. The off-site wells are recorded as; domestic water supply wells (1), abandoned wells (6), observation/monitoring/testing wells (24), dewatering and test wells (1), municipal test wells (1) and unidentified wells (5).

The recorded water found depths ranged from approximately 3.6 to 4.9 mbgs.

The closest water supply well (for domestic use) outside the Site is located approximately 100 m away from the Site boundary. Existing water supply wells within 500 m of the Site boundary were installed from 1963 to 1977.

The Site and surrounding areas are serviced by municipal water supply.

#### 2.4 Site Setting

#### 2.4.1 Site Topography and Surface Water Features

As per elevation survey results at borehole/monitoring well locations, the surface elevation of the Site area varies from approximately 333.21 to 342.15 masl, which indicates an approximate difference of about 8.94 m between the highest and lowest elevations at borehole/monitoring well locations. The topography of the site area can be considered sloped towards the northwest across the property.

The Site is zoned as parkland (P.1) and urban reserve (UR) under the City of Guelph Zoning By-law (2023)-20790.

The Site area is located within the Ellis Creek-Speed River watershed and Hanlon Creek sub-watershed. The nearest surface water feature is a tributary of Hanlon Creek, which runs approximately 700 m northwest of the Site boundary. Available area maps show that no streams or surface waterbodies exist on-Site.



#### 2.4.2 Local Geology and Hydrogeology

A summary of subsurface soil stratigraphy at the Site is provided in the following paragraphs.

Appendix C provides geological logs for boreholes with detailed soil profiles. The borehole location plan and interpreted geological cross sections are presented in Figures 6, 7 and 8.

It should be noted that the soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling. These boundaries are intended to reflect approximate transition zones for the hydrogeological investigation and shall not be interpreted as exact planes of geological change.

Refer to the geotechnical investigation report (JLP, January 2025) for a detailed description of the subsurface soil stratigraphy at the Site.

A layer of <u>topsoil</u>, about 175 to 400mm thick, was encountered at the surface of all boreholes. The topsoil consisted of dark brown to brown silty sand, some gravel with scattered organic inclusions. The topsoil was generally dark brown in colour.

Based on visual and tactile examination of the soil samples, the topsoil was in moist condition.

It should be noted that the thickness of topsoil may vary significantly between borehole locations and should not be used to estimate the quantity of topsoil removal.

Below the topsoil in BH/MW1, BH4, BH/MW5, BH/MW8, BH/MW9, BH/MW10, BH/MW11, BH12, BH13, BH14 and BH/MW15, a discontinuous deposit of fill was encountered to depths of about 0.8 to 1.3 mbgs. In BH/MW1, BH/MW8, BH/MW9, BH/MW10, BH13 and BH14, the fill consisted of dark brown to brown silty sand, some gravel, and occasional organic inclusions. In BH4, BH/MW5, BH/MW11, BH12 and BH/MW15, the fill consisted of brown sand and gravel, some silt. Standard Penetration tests in the fill gave N-values ranging from 5 to 35 blows/300mm. The natural moisture content was found to range from 7 to 35%. The relatively high moisture content in a portion of the fill material was due to the presence of organics.

Based on visual and tactile examination of the soil samples and the test results, the silty sand fill and sand and gravel fill are considered to be in a loose to dense state of compactness and in moist condition.

The silty sand and sand and gravel fill at BH/MW1, BH4, BH/MW5, BH/MW8, BH/MW9, BH/MW10, BH/MW11, BH12, BH13, BH14 and BH/MW15 and topsoil at BH2, BH3, BH6 and BH7 were underlain by a deposit of sand and gravel to the depth of 6.1 mbgs in BH14 and to the full depth of investigation in all other boreholes at about 2.3 to 9.0 mbgs. The sand and gravel was brown in colour and contained trace to some silt inclusions and scattered sandy silt seams. Standard Penetration tests in this material gave N-values ranging from 5 to greater than 100 blows/300mm, with typical values between 27 and 65 blows/300mm. The natural moisture content was found to range between 1 and 18%, with typical values between 3 and 13.

Based on visual and tactile examination of the soil samples and the test results, the sand and gravel was typically in a compact to very dense state of compactness and in moist to wet condition.

A discontinuous layer of silt till was found at BH12 between the sand and gravel ranging from 2.4 to 3.8 mbgs and to the full depth of investigation i.e. 7.6 mbgs in BH14. The silt till was brown or grey in colour and contained trace to some sand inclusions. Standard Penetration tests in this material gave N-values ranging from 5 to 69 blows/300mm. The natural moisture content was found to range between 7 and 10%.



Based on visual and tactile examination of the soil samples and the test results, the silt till is typically in a loose to very dense state of compactness and in moist condition.

It is noted that auger refusal on probable boulder was encountered at BH/MW1, BH2, BH3, BH6, BH7, BH/MW8 and BH/MW10 at depths of about 2.3 to 7.6 mbgs.

Two (2) cross sections (Cross Section A-A' and Cross Section B-B') were prepared to show the soil stratigraphy to a depth of approximately 9.0 mbgs within the Site boundaries. Cross Section A-A' and Cross Section B-B' are provided as Figures 7 and 8, respectively.



# 3. Field Investigation Results

# 3.1 Monitoring Well Network Details

As part of the combined drilling program for geotechnical and hydrogeological investigations, fifteen (15) boreholes (BH/MW1, BH2, BH3, BH4, BH/MW5, BH6, BH7, BH/MW8, BH/MW9, BH/MW10, BH/MW11, BH12, BH13, BH14 and BH/MW15) were advanced at the Site, of which seven (7) were completed as monitoring wells (BH/MW1, BH/MW5, BH/MW8, BH/MW9, BH/MW10, BH/MW11 and BH/MW15) by JLP, (Figure 6 and Appendix C).

All monitoring wells were equipped with a 50 mm diameter PVC pipe and 3.1 metre long well screens and completed with monument style well protectors.

Table 3.1 provides a summary of monitoring well construction details.

**Table 3.1: Summary of Monitoring Well Installation Details** 

| Monitoring<br>Well ID | Northing<br>(m±) | Easting (m±) | Ground<br>Elevation<br>(masl) | Well<br>Depth<br>(mbgs) | Screen Interval<br>(masl) | Soil Formation<br>Screened |
|-----------------------|------------------|--------------|-------------------------------|-------------------------|---------------------------|----------------------------|
| BH/MW1                | 4815636.4        | 565116.9     | 341.39                        | 7.54                    | 336.9 to 333.85           | Sand and Gravel            |
| BH/MW5                | 4815554.4        | 564941.3     | 335.45                        | 6.1                     | 332.4 to 329.35           | Sand and Gravel            |
| BH/MW8                | 4815723.7        | 565062.3     | 341.21                        | 4.28                    | 339.98 to 336.93          | Sand and Gravel            |
| BH/MW9                | 4815661.0        | 564934.1     | 335.80                        | 8.73                    | 330.12 to 327.07          | Sand and Gravel            |
| BH/MW10               | 4815656.7        | 564860.1     | 335.44                        | 6.03                    | 332.46 to 329.41          | Sand and Gravel            |
| BH/MW11               | 4815746.8        | 564855.3     | 336.41                        | 7.46                    | 332.0 to 328.95           | Sand and Gravel            |
| BH/MW15               | 4815931.0        | 564864.3     | 333.21                        | 5.37                    | 330.89 to 327.84          | Sand and Gravel            |

Ontario Regulation 903 of the Ontario Water Resources Act requires that all monitoring wells and dewatering wells (if available) be decommissioned when no longer required. Well decommissioning should be completed by a licenced well contractor.

## 3.2 Groundwater Level Monitoring

As part of the current hydrogeological investigation, groundwater levels have been monitored using all wells located on-site within the property boundary. All water levels in the monitoring wells have been measured with respect to masl.

Groundwater level monitoring was carried out at the Site in four (4) full monitoring rounds from April 16, 2024, to August 11, 2024. A summary of the groundwater level monitoring results is provided in Table 3.2.



**Table 3.2: Summary of Groundwater Level Monitoring Results** 

| Monitoring<br>Well ID | Ground<br>Surface<br>Elevation<br>(masl) | Monitoring<br>Well Depth<br>(mbgs) | Monitoring<br>Well bottom<br>Elevation<br>(masl) | Units | April 16,<br>2024 | July 9,<br>2024 | July 22,<br>2024 | August<br>13, 2024 |
|-----------------------|------------------------------------------|------------------------------------|--------------------------------------------------|-------|-------------------|-----------------|------------------|--------------------|
|                       |                                          |                                    |                                                  | mbtoc | Dry               | Dry             | Dry              | 8.37               |
| BH/MW1                | 341.392                                  | 7.54                               | 333.85                                           | mbgs  | >7.54             | >7.54           | >7.54            | 7.43               |
|                       |                                          |                                    |                                                  | masl  | <333.85           | <333.85         | <333.85          | 333.96             |
|                       |                                          |                                    |                                                  | mbtoc | Dry               | 6.72            | 6.2              | 6.36               |
| BH/MW5                | 335.445                                  | 6.1                                | 329.35                                           | mbgs  | >6.1              | 5.85            | 5.33             | 5.49               |
|                       |                                          |                                    |                                                  | masl  | <329.35           | 329.60          | 330.12           | 329.96             |
|                       |                                          | 4.28                               | 336.93                                           | mbtoc | Dry               | Dry             | Dry              | Dry                |
| BH/MW8                | 341.207                                  |                                    |                                                  | mbgs  | >4.28             | >4.28           | >4.28            | >4.28              |
|                       |                                          |                                    |                                                  | masl  | <336.93           | <336.93         | <336.93          | <336.93            |
|                       |                                          |                                    |                                                  | mbtoc | 7.17              | 7.03            | 6.51             | 6.68               |
| BH/MW9 335.795        | 8.73                                     | 327.07                             | mbgs                                             | 6.35  | 6.21              | 5.69            | 5.86             |                    |
|                       |                                          |                                    |                                                  | masl  | 329.45            | 329.59          | 330.11           | 329.94             |
|                       |                                          |                                    | 329.41                                           | mbtoc | Dry               | 6.55            | 6.02             | 6.19               |
| BH/MW10               | 335.437                                  | 6.03                               |                                                  | mbgs  | >6.03             | 5.83            | 5.30             | 5.47               |
|                       |                                          |                                    |                                                  | masl  | <329.41           | 329.61          | 330.14           | 329.97             |
|                       |                                          |                                    |                                                  | mbtoc | 7.46              | 7.37            | 6.82             | 7.03               |
| BH/MW11               | 336.406                                  | 7.46                               | 328.95                                           | mbgs  | 6.90              | 6.81            | 6.26             | 6.47               |
|                       |                                          |                                    |                                                  | masl  | 329.51            | 329.60          | 330.15           | 329.94             |
|                       |                                          |                                    |                                                  | mbtoc | 4.23              | 4.31            | 3.6              | 3.97               |
| BH/MW15               | 333.209                                  | 333.209 5.37                       | 327.84                                           | mbgs  | 3.57              | 3.65            | 2.94             | 3.31               |
|                       |                                          |                                    |                                                  | masl  | 329.64            | 329.56          | 330.27           | 329.90             |

mbtoc means "meters below top of casing"

The highest groundwater elevations recorded at monitoring wells from April 16, 2023, to August 13, 2024, are provided in Table 3.3.

**Table 3.3: Highest Recorded Groundwater Elevations** 

| Monitoring<br>Well ID | Date Measured   | Highest Groundwater<br>Elevation<br>(masl) | Groundwater<br>Level<br>(mbgs) |
|-----------------------|-----------------|--------------------------------------------|--------------------------------|
| BH/MW1                | August 13, 2024 | 333.96                                     | 7.43                           |

According to the results of the groundwater level (Static Water Level) monitoring, the shallow groundwater flow direction across the Site is interpreted to be varied from northwest to southwest, towards Hanlon Creek. The groundwater flow maps may need to be updated as groundwater monitoring progresses.

One (1) groundwater contour map for the water-bearing zone up to approximately 9 mbgs is shown in Figure 9.



It should be noted that groundwater levels are expected to show seasonal fluctuations and the groundwater flow directions across the Site may change. Thus, seasonal groundwater level monitoring will be pertinent to understand seasonal groundwater level and/or flow fluctuations.

A seasonal groundwater monitoring program at the Site is currently in progress.

# 3.3 Hydraulic Conductivity Testing

#### 3.3.1 Single Well Response Testing

Single Well Response Tests (SWRT) were completed at five (5) monitoring wells (BH/MW1, BH/MW5, BH/MW10, BH/MW11, and BH/MW15) on June 8<sup>th</sup> and 9<sup>th</sup> of 2024, in order to estimate the saturated hydraulic conductivity (K) of the soil/bedrock surrounding the monitoring well screen.

All monitoring wells were developed prior to conducting SWRT testing and left for full recovery. Prior to starting SWRT testing, static groundwater level in each well was measured and the test was conducted by rapidly inserting a solid/water slug into the well. A digital data logger pre-programmed to record data at each 1 second interval was inserted in the well prior to inserting solid/water slug.

SWRT field data interpretation was completed using the Hvorslev solution provided in the AQTESOLV Pro. V.4.5 software package.

#### 3.3.2 Summary of Hydraulic Conductivity Test Results

Table 3.4 provides a summary of SWRT results completed on monitoring wells BH/MW5, BH/MW9, BH/MW10, BH/MW11 and BH/MW15.

Appendix D provides SRWT test analytical results.

**Table 3.4: Summary of Hydraulic Conductivity Test Results** 

| Monitoring                 | Depth   ` ' Scree |      | Screened Lithologic Unit | Test Type       | Estimated<br>Hydraulic |                    |
|----------------------------|-------------------|------|--------------------------|-----------------|------------------------|--------------------|
| Well ID                    | (mbgs)            | From |                          |                 | <b>7</b>               | Conductivity (m/s) |
| BH/MW5                     | 6.10              | 3.05 | 6.10                     | Sand and Gravel | SWRT – Falling Head    | 4.65E-06           |
| BH/MW9                     | 8.73              | 5.68 | 8.73                     | Sand and Gravel | SWRT – Falling Head    | 1.08E-05           |
| BH/MW10                    | 6.03              | 2.98 | 6.03                     | Sand and Gravel | SWRT – Falling Head    | 5.86E-05           |
| BH/MW11                    | 7.46              | 4.41 | 7.46                     | Sand and Gravel | SWRT – Falling Head    | 7.92E-05           |
| BH/MW15                    | 5.37              | 2.32 | 5.37                     | Sand and Gravel | SWRT – Falling Head    | 5.91E-05           |
| Highest Estimated K Value  |                   |      |                          |                 |                        | 7.92E-05           |
| Geometric Mean of K Values |                   |      |                          |                 |                        | 2.68E-05           |

The highest K value of the saturated overburden to a depth of approximately 9 mbgs is 7.92E-05 m/s and the geometric mean of the K values is 2.68E-05 m/s.



It should be noted that SWRT results provide the estimated saturated hydraulic conductivity (K) of the soil surrounding each monitoring well screen and therefore, may not represent the hydraulic conductivity of the total soil formation screened.

#### 3.4 Infiltration Rate Testing Results

## 3.4.1 Infiltration Rate Testing

Using Guelph Permeameter, JLP completed six (6) infiltration rate tests at three (3) selected locations (INF5S/D, INF10S/D and INF11S/D) within the Site area close to existing boreholes / monitoring wells BH/MW5 (INF5S/D), BH/MW10 (INF10S/D) and BH/MW11 (INF11S/D), on August 8, 2024.

Infiltration rate testing was completed by constant head well permeameter method using Guelph Permeameter.

Infiltration tests were conducted at depths of 0.5 and 1.5 mbgs at each of the above noted locations and the infiltration tests were conducted in 7 cm diameter holes. The reported water levels at these monitoring wells adjacent to the infiltration holes on August 13, 2024, were approximately 5.49 mbgs (BH/MW5 – INF5S/D), 5.47 mbgs (BH/MW10 – INF10S/D) and 6.47 mbgs (BH/MW11 – INF11S/D).

The soil types encountered within the infiltration test holes are medium to coarse grained sand and gravel with some silt (Appendix C).

Table 3.5 below provides a summary of field saturated hydraulic conductivity (Kfs) testing and design infiltration rates, as per the LID Stormwater Management Planning and Design Guide, CVC – TRCA, 2010, Appendix G. The estimated field saturated hydraulic conductivities were correlated to infiltration rates based on the relationship provided in Appendix D of the guideline.

Infiltration rate testing locations are shown in Figure 6 and infiltration rate analysis is provided in Appendix E.



**Table 3.5: Summary of Infiltration Testing Results** 

| Infiltration Test<br>Location/MW ID | Depth of<br>Hole<br>(mbgs) | Formation tested | Field Saturated Hydraulic<br>Conductivity, Kfs (cm/s) | Infiltration<br>Rate (mm/hr) |
|-------------------------------------|----------------------------|------------------|-------------------------------------------------------|------------------------------|
| Shallow Soils                       |                            |                  |                                                       |                              |
| INF5S – 0.5 mbgs                    | 0.5                        | Sand and Gravel  | 8.10E-04                                              | 81                           |
| INF10S – 0.5 mbgs                   | 0.5                        | Silty Sand       | 1.31E-03                                              | 92                           |
| INF11S – 0.5 mbgs                   | 0.5                        | Sand and Gravel  | 1.80E-03                                              | 101                          |
| Deep Soils                          |                            |                  |                                                       |                              |
| INF5D – 1.5 mbgs                    | 1.5                        | Sand and Gravel  | 1.40E-02                                              | 173                          |
| INF10D – 1.5 mbgs                   | 1.5                        | Sand and Gravel  | 5.70E-03                                              | 137                          |
| INF11D – 1.5 mbgs                   | 1.5 Sand and Gravel        |                  | 2.50E-02                                              | 202                          |
|                                     | 91                         |                  |                                                       |                              |
|                                     | 168                        |                  |                                                       |                              |
|                                     | 36                         |                  |                                                       |                              |

#### Notes:

The estimated design infiltration rate based on infiltration rate testing for the Site is 36 mm/hr., which will be used to determine the area of Low Impact Development (LID) system to mitigate the pre- vs post-development infiltration rate deficit.

Please note that the City of Guelph requires completing a monthly water balance analysis for the Site to maintain pre-development recharge rate, volume and hydroperiods at post development conditions. LID best management practices (BMP) can be proposed to mitigate the development's impact on the water balance and mimic pre-development recharge when pre- vs post-development infiltration deficit is available from a Site water balance assessment. Based on the correspondences with the civil consultant, a water balance assessment was not undertaken at this point in time.

## 3.5 Groundwater Quality

It is JLP's understanding that the dewatering effluent during the construction will be directed into a municipal drain/existing surface water body during dewatering activities.

To assess the suitability for discharging pumped groundwater into a municipal drain / existing surface water body during dewatering activities, one (1) groundwater sample was collected from monitoring well BH/MW9 on September 4, 2024, using a bailer.

Prior to the collection of the above noted groundwater samples, approximately three (3) standing well volumes of groundwater were purged from the monitoring well. The noted sample was collected unfiltered and placed into pre-cleaned laboratory-supplied vials and/or bottles provided with analytical test group specific preservatives, as required. Dedicated nitrile gloves were used during sample handling.



<sup>\*</sup>Safety Factor of 2.5 was used to calculate the design infiltration rate as per Low Impact Development Stormwater Management Planning and Design Guide, CVC – TRCA, 2010.

The groundwater samples were submitted for analysis to ALS Environmental, a CALA certified independent laboratory in Waterloo, Ontario. Analytical results are provided in Appendix G.

A summary of the pertinent results is provided in Table 5.1:

**Table 5.1: Summary of Analytical Results** 

| Parameter                    | Units | City of Guelph Storm<br>Sewer Bylaw Limit | City of Guelph<br>Sanitary Sewer Bylaw<br>Limit | Analytical Results<br>BH/MW 9<br>September 4, 2024 |
|------------------------------|-------|-------------------------------------------|-------------------------------------------------|----------------------------------------------------|
| Total Suspended Solids (TSS) | mg/L  | 15                                        | 350                                             | <u>1,310</u>                                       |
| Total Phosphorus             | mg/L  | 0.4                                       | 10                                              | <u>0.706</u>                                       |
| Total Cadmium                | mg/L  | 0.001                                     | 0.7                                             | 0.00390                                            |
| Total Copper                 | mg/L  | 0.01                                      | 2                                               | <u>0.191</u>                                       |
| Total Lead                   | mg/L  | 0.05                                      | 0.7                                             | <u>0.420</u>                                       |
| Total Zinc                   | mg/L  | 0.05                                      | 2                                               | <u>2.42</u>                                        |

Notes:

<u>underlined</u> – concentration exceeds storm sewer use bylaw criteria.

**Bolded** – concentration exceeds sanitary sewer use bylaw criteria.

When compared to the City of Guelph Storm Sewer Bylaw, the laboratory Certificate of Analysis (CofA) indicated that the concentration of Total Suspended Solids (TSS), Total Phosphorus, Total Cadmium, Total Copper, Total Lead and Total Zinc were reported above criteria limits.

When compared to City of Guelph Sanitary Sewer Bylaw, the laboratory CofA indicated that the concentration of TSS and Total Zinc were reported above criteria limits.

Laboratory CofA is provided in Appendix G.

It will be pertinent to review an Environmental Site Assessment (Phase II) and/or any other groundwater quality data/report for the Site for more information on groundwater quality.

It is expected that the concentration of TSS, turbidity and some related parameters such as total metals may exceed City of Guelph Sewer Bylaw criteria during construction dewatering activities. Therefore, it is recommended to implement a suitable treatment method such as filtration and/or decantation or any other suitable treatment method recommended by the treatment specialist/process engineer, prior to discharging groundwater during construction activities.

Groundwater quality at the site is expected to be varied with time and may not be representative of long-term groundwater quality.

Discharge from dewatering (short-term) can be directed to a municipal sewer system. The City of Guelph should be contacted prior to releasing dewatering effluent (short-term) for required approvals (permit to discharge etc.), if any.



# 4. Dewatering Rate Assessment

As per the information presented in the drawings from Architecture Unfolded, JLP understands that the development includes approximately 960 residential units spread over thirty-one (31) cluster townhouse buildings with 318 units, two (2) apartment buildings with 16-storey and 14-storey towers and one six-storey parking structure. JLP understands that the two (2) apartment buildings will be completed with one-level full basements, the 6-storey parking structure with a partial basement and cluster townhouses will be of slab-on-grade construction. An on-grade parking lot is located on the northwestern portion of the site and associated driveway and greenspace areas are proposed throughout the site.

Based on the results of the groundwater level monitoring at the subject Site, and the assumed foundation elevation, it is expected that dewatering may be required during the construction phase of the development. Therefore, construction (short-term) dewatering rate assessment is included in this report.

An assessment of expected short-term and long-term dewatering rates was completed as described below.

## 4.1 Dewatering Rate Estimates

Apartment buildings with 16-storey and 14-storey towers (Apartment Buildings A and B): Two (2) apartment buildings are proposed with one (1) level of basement with a building footprint area of approximately 1,753.4 m² (approximately 79.7 m x 22.0 m). As per Geotechnical Report (JLP, January 29, 2025), assuming that the lowest basement floor slab will be at about 3.5 to 4.0 m below the existing grade, the lowest elevation of the basements for Apartment Buildings A and B are 331.8 and 337.0 masl, respectively. The estimated seasonal highest groundwater elevation within the footprint areas of Apartment Buildings A and B are 331.0 and 334.5 masl (0.5 m above the recorded highest groundwater elevation). Since the expected seasonal highest groundwater elevation is approximately 1.3 and 2.5 m lower than the lowest basement levels for Buildings A and B, respectively, construction dewatering will not be required.

Six (6) Story Parking Structure: One (1) parking structure is proposed with one (1) level of partial basement with a building footprint area of approximately 4,622.0 m² (approximately 122.6 m x 37.7 m). As suggested in the Geotechnical Report (JLP, January 29, 2025), assuming that the lowest basement floor slab will be at about 3.5 to 4.0 m below existing grade, the lowest elevation of the basement for the Parking Structure is 332.0 masl. The estimated seasonal highest groundwater elevation within the footprint areas of the Parking Structure is 331.5 masl (0.5 m above the recorded highest groundwater elevation) and it is expected that construction dewatering will not be required.

<u>Town House Buildings:</u> JLP understands that cluster townhouses will be of slab-on-grade construction. The reported water level for most of the Site ranges between 5.3 and 7.43 mbgs. As a result, construction dewatering will not be required in these areas.

<u>Site Services:</u> The inverts of the proposed site services are not available at the time of this report. However, it is expected that the on-site sanitary sewer, storm sewer and watermain inverts will be located at depths ranging between 2 and 4 metres below the finished grades (JLP, July 25, 2024). The reported groundwater levels at the Site varied from 2.94 to 7.43 mbgs. With the exception of the reported water level at BH/MW15, reported water levels at all other monitoring wells varied from 5.30 to 7.43 mbgs. As per the available information and reported



groundwater elevations, it is expected that at the area adjacent to BH/MW15, some dewatering will be required during the installation of site services.

Please note that to estimate the requirement of construction dewatering for the Site, existing ground elevation was considered. When the site regrading plan and the final elevation for the building basements (proposed construction designs) are available for review, construction and post-construction dewatering rates may need to be updated.

Dewatering rate estimates were carried out using the methodology provided in Sections 4.2 and 4.3.

Table 4.1: Summary of In-put Data – Construction Dewatering

| Input Parameter                   | Unit                      | Site<br>Servicing | Notes                                                                                                 |
|-----------------------------------|---------------------------|-------------------|-------------------------------------------------------------------------------------------------------|
| Lowest ground surface elevation   | masl                      | -                 | Approximate ground surface elevation, based on Site Plan (2024.01.31).                                |
| Highest groundwater elevation     | masl                      | 2.44              | Highest groundwater level recorded at the Site plus 0.5 m for seasonal highest groundwater elevation. |
| Lowest basement footing elevation | masl                      | 4.0               |                                                                                                       |
| Dewatered elevation target        | masl                      | 5.0               | Short-term – Assumed 1.0 metre below site servicing invert elevation.                                 |
| Excavation for site servicing     | m <sup>2</sup><br>(m x m) | 20<br>(2 x 10)    | 10 m of underground servicing                                                                         |
| Hydraulic Conductivity (K)        | m/s                       | 2.68E-05          | Geometric mean of K values estimated for overburden                                                   |



# 4.2 Dewatering Flow Rate Assessment Methodology

#### a. Site Servicing

Linear flow to an excavation (linear source) at a distance of  $L_0$  to a fully penetrating well can be expressed using the equation (Dupuit equation) given below. This equation was used to estimate short-term (construction) dewatering rates for the project.

$$Q_w = (x1 + x2) * K * (H^2 - h^2)/Lo$$

Where:

Qw = Rate of pumping (m<sup>3</sup>/s) x<sub>1</sub> = Length of excavation (m) X<sub>2</sub> = Width of excavation (m) K = Hydraulic conductivity (m/s)

H = Aquifer Thickness/Initial Water Column Thickness (m)

h = Final Water Column Thickness (m)

Lo = Distance of influence (m)

#### Rainfall Intake

The additional volume of water will need to be removed from the excavation during and after precipitation events. As a result, the daily dewatering volume should include the removal of anticipated rainwater from the excavation to determine the total dewatering rate.

To estimate the volume of rainwater collected within the footprint area of the excavation, an assumed 15 mm/day precipitation was considered. It is the responsibility of the dewatering contractor to manage the volume from direct precipitation safely without exceeding the permitted daily dewatering and discharging rates during and after rainfall events greater than 15 mm (e.g., 2-year/100-year storm event).

As provided in the Intensity Duration Frequency (IDF) Curves (Ontario Ministry of Transportation), the recorded 2-year and 100-year storm event in the Site area are 60.1 and 132.0 mm/24-hrs, respectively.

#### 4.3 Dewatering Radius of Influence

#### Linear Flow

The radius of influence (ROI) for the construction dewatering was calculated based on Sichardt's equation. This equation is used to predict the distance at which the drawdown resulting from pumping is negligible. These empirical formulas were developed to provide flow rates assuming steady state flow, as stated below.



The estimated radius of influence (R<sub>o</sub>) of pumping based on Sichardt's formula is described as follows:

$$R_0 = C(H - h)\sqrt{(K)}$$

Where:

R<sub>o</sub> = Estimated radius of influence (m)

H = Hydraulic head in aquifer (static water level or saturated depth (m)

h = Dynamic water level (m)

K = Hydraulic conductivity (m/sec)

C = Constant (3000) for radial flow

Based on Sichardt's formula and the highest K-value, the calculated maximum theoretical zone of influence for linear flow ( $L_0$ ) is taken as  $R_0/2$ .

## 4.4 Results of Construction Dewatering Rate Estimate

For this assessment, a temporary shoring system, if required, was assumed to be included in the proposed construction plans. Should the proposed shoring system be revised, JLP should be retained to review the dewatering estimates.

Table 4.2 and Appendix F present the short term (construction) dewatering estimate. Please note that, the dewatering estimates provided in Table 4.2 will need to be revised, when the final grading plan for the proposed development and proposed basement levels for the buildings are available.

**Site Services** Description **Notes** L/day Assumed 10 m long service Dewatering Flow Rate without SF 23,470 trench kept open at a time For MECP Permitting Dewatering Flow Rate multiplied by FS of 1.5 (Qsf) 35,210 purposes Volume from 15 mm/day rainfall event (p) 300 Dewatering Flow Rate multiplied by FS of 1.5 + Precipitation of 15 For Discharge Purposes / 35,510 Agreement mm/day (Qsf+p) 10.0 Dewatering Zone of Influence from Excavation Boundary (metres)

Table 4.2: Short Term (Construction) Dewatering Estimates

The estimated dewatering rates provided in Table 4.2 should be considered conservative, which accounts for initial high dewatering rates, seasonal high groundwater elevation and any other unforeseen conditions including variation of hydraulic properties and the effect of underground servicing.

Pits (if needed) are assumed to have equal excavation depth as the main excavation, and therefore the same dewatering target; deeper pits may require extra localized dewatering and revised dewatering estimates. High dewatering rates can be expected within local areas having highly conductive soils, deeper excavations for pits etc., and it is the dewatering contractor's responsibility to install additional dewatering systems to keep the excavation floor free from ponding water during the entire dewatering period.



As described in Section 4.1, basement elevations of Bldg. A, Bldg. B, cluster town homes and Parking Structure, are approximately 0.5 to 4.5 m above the estimated highest groundwater elevation at the Site. As a result, no groundwater removal is expected during the construction phase of the project. Based on the assumed precipitation of 15 mm/day, the expected rainwater collection into individual excavations varies from approximately 3,430 to 34,300 L/day.

# 4.5 MECP Water Taking Permit Requirements

#### 4.5.1 Construction Dewatering

The Ontario Water Resources Act states that registration in the Environmental Activity and Sector Registry (EASR) with the MECP will be required for a rate of water taking between 50,000 and 400,000 L/day, during the construction period. If the rate of water taking exceeds 400,000 L/day, a Category 3 Permit to Take Water (PTTW) will be required from the MECP.

Based on the available hydrogeological information, and assuming approximately 10 long excavations for site servicing is kept open at any given time, the estimated maximum construction dewatering rate using the geometric mean of K values obtained for the overburden is 35,210 L/day (including safety factor of 1.5 and without intake from rainfall). Therefore, a permit from the MECP will not be required to facilitate the construction dewatering program for the Site.

It should be noted that the estimated dewatering rate is a conservative value, which may be higher than the dewatering rate during the later stage of dewatering.



# Environmental Impact Assessment

#### 5.1 Surface Water Features

The Site area is located within the Ellis Creek-Speed River watershed and Hanlon Creek sub-watershed. The nearest surface water feature is a tributary of Hanlon Creek, which runs approximately 700 m northwest of the Site boundary. Available area maps show that no streams exist on Site.

The estimated maximum construction dewatering zone of influence is approximately 40 m from the dewatering area. Given that a tributary of Hanlon Creek, which is the nearest surface water feature is approximately 700 m away from the Site boundary, no impacts to surface water features are expected during construction activities.

# 5.2 Potential Impacts on Groundwater Users in the Area

As per the results of the MECP WWR Database, there is one (1) water supply well (for domestic use) outside the Site and within 500m of the Site boundary. The closest water supply well outside the Site is located approximately 100 m away from the Site boundary.

Based on the locations of the proposed buildings and the limited dewatering zone of influence (maximum 10 m from the excavation boundary), dewatering related impacts are not expected during dewatering activities.

#### 5.3 Other Potential Impact Considerations

#### 5.3.1 Geotechnical Considerations

Geotechnical assessment of the potential ground settlement due to water taking (ex. settlement, soil loss, subsidence, etc.) is required to ensure that the required water taking would not have an unacceptable effect on soils and surrounding engineering structures. Since dewatering will not be required during building construction activities, no impacts are anticipated.

#### 5.3.2 Groundwater Quality

It is JLP's understanding that the dewatering effluent during construction will be directed to a Storm or sanitary sewer system owned by the City of Guelph.

When compared to the City of Guelph Storm Sewer Bylaw, the laboratory Certificate of Analysis (CofA) indicated that the concentration of Total Suspended Solids (TSS), Total Phosphorus, Total Cadmium, Total Copper, Total Lead and Total Zinc were reported above criteria limits.

When compared to City of Guelph Sanitary Sewer Bylaw, the laboratory CofA indicated that the concentration of TSS and Total Zinc were reported above criteria limits.

It is expected that the reported total metal concentration exceedances are related to high total suspended solids in water samples. Therefore, it is recommended to implement a suitable treatment method such as filtration and/or decantation or any other suitable treatment method recommended by the project treatment specialist/process engineer, prior to discharging dewatering effluent during construction.



# 6. Conclusions and Recommendations

The conclusions and recommendations provided below should be reviewed in conjunction with the entirety of the report. Any changes to the design concept may result in a modification to the recommendations provided in this report.

Based on the findings of the hydrogeological investigation, the following conclusions and recommendations are provided:

- The Site is located within a physiographic region named the Horseshoe Moraines, and physiographic landform named the Till Moraines. The Horseshoe Moraines occupies an area of approximately 5,590 km² lying to the west of the highest part of the Niagara Escarpment. The "toe" of the horseshoe-shaped region lies on the highest part of the upland south of Georgian Bay at about 518 m above sea level (masl), while the two "heels" are about 274 m lower.
- As required by the City of Guelph it is recommended to complete a water balance analysis for the Site to
  maintain predevelopment recharge rate, volume and hydroperiods at post development conditions.
  Low Impact Development (LID) best management practices (BMP) can be proposed to mitigate the
  development's impact on the water balance and mimic pre-development recharge.
- The highest static groundwater level recorded at the Site is 333.96 masl (7.43 mbgs), which was measured on August 13, 2024. It is recommended to carry out a seasonal groundwater level monitoring program to determine the seasonal highest water level at the Site.
- The highest K value of the saturated overburden to a depth of approximately 8.7 mbgs is  $7.92 \times 10^{-5}$  m/s and geometric mean of the K values is  $2.68 \times 10^{-5}$  m/s.
- When compared to the City of Guelph Storm Sewer Bylaw, the laboratory CofA indicated that the
  concentration of TSS, Total Phosphorus, Total Cadmium, Total Copper, Total Lead and Total Zinc were
  reported above criteria limits.
- When compared to City of Guelph Sanitary Sewer Bylaw, the laboratory CofA indicated that the concentration of TSS and Total Zinc were reported above criteria limits.
- Based on the assumptions outlined in this report, the estimated maximum dewatering rate for the
  proposed construction activities will be 35,510 L/day (with SF of 1.5 and stormwater intake). This daily
  rate should be used for the discharge purposes and permitting, if required.
- Based on the available hydrogeological information, and assuming approximately 10 long excavation for site servicing is kept open at any given time, the estimated maximum construction dewatering rate using the geometric mean of K values obtained for the overburden is 35,210 L/day (including safety factor of 1.5 and without intake from rainfall). Therefore, an EASR permit from the MECP will not be required to facilitate the construction dewatering program for the Site.
- Discharge from dewatering (short-term) can be directed to the municipal sewer system. The City of Guelph should be contacted prior to releasing dewatering effluent (short-term) for required approvals, if any.



- It is anticipated that the concentration of TSS, turbidity and some related parameters such as total metals may fluctuate and/or exceed City of Guelph Sewer Bylaw criteria, during construction dewatering activities. Therefore, it is recommended to implement a suitable treatment method such as filtration and/or decantation or any other suitable treatment method recommended by the project treatment specialist/process engineer, prior to discharging dewatering effluent during construction.
- The geometric mean of the estimated design infiltration rates based on the results of infiltration rate testing using Guelph Permeameter for the Site is 36 mm/hr. This rate can be used to determine the area of LID system to mitigate pre- vs post-development infiltration rate deficit when results from Site water balance assessment are available.
- Seasonal groundwater level monitoring program is currently in progress. A memorandum will be issued when the full 12-month data has been collected detailing hydrographs and groundwater elevation data.
- Regulation 903 of the Ontario Water Resources Act requires that all monitoring wells and dewatering
  wells (if available) be decommissioned when no longer required. Well decommissioning should be
  completed by a licensed well contractor.



# 7. Closure

We trust this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

PRACTISING MEMBER

3675

Sincerely,

JLP Services Inc.

Cindy Luu, B.Sc.

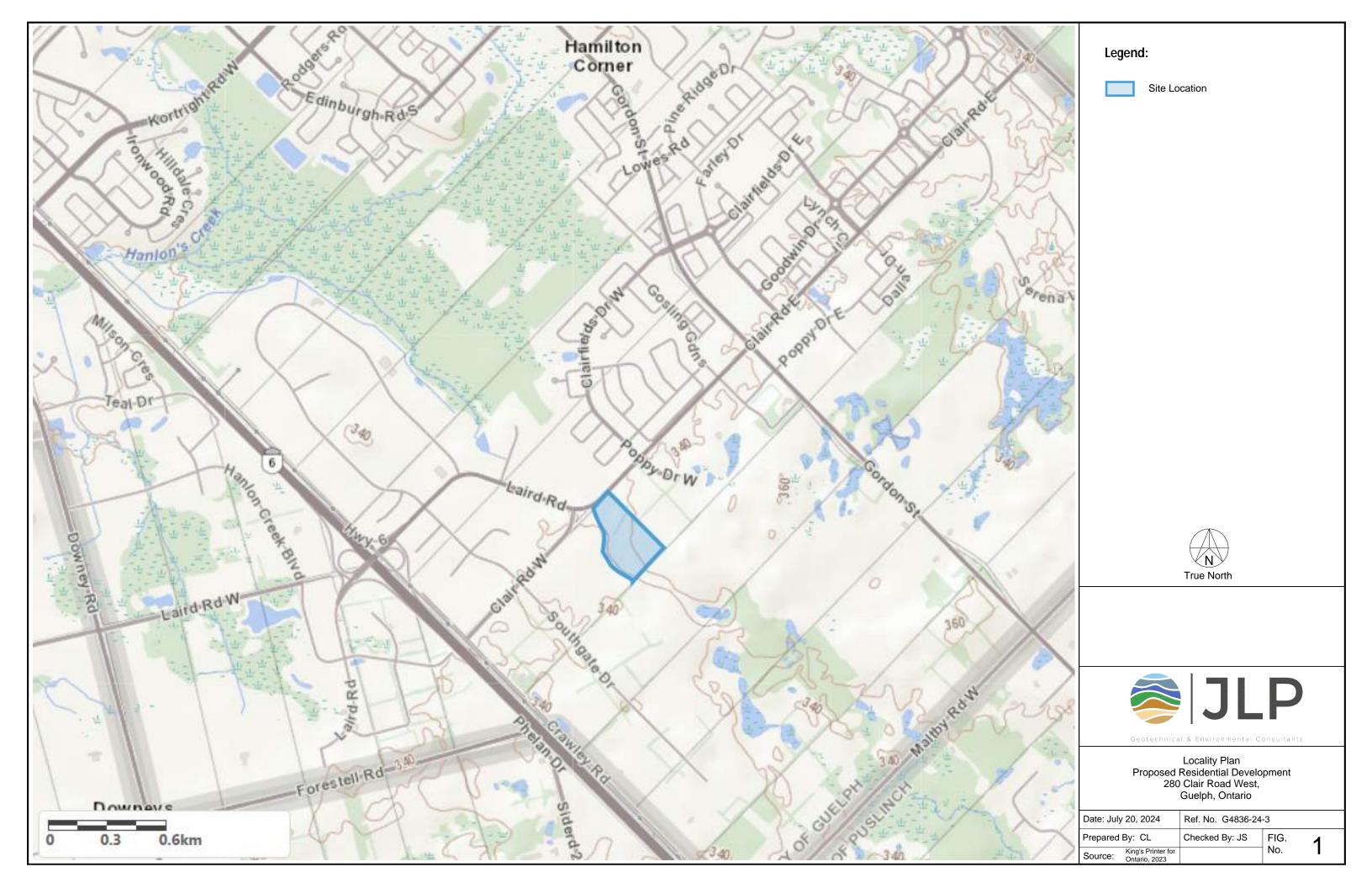
**Environmental Scientist** 

Jay Samarakkody, M.Sc., P.Geo. Senior Hydrogeologist

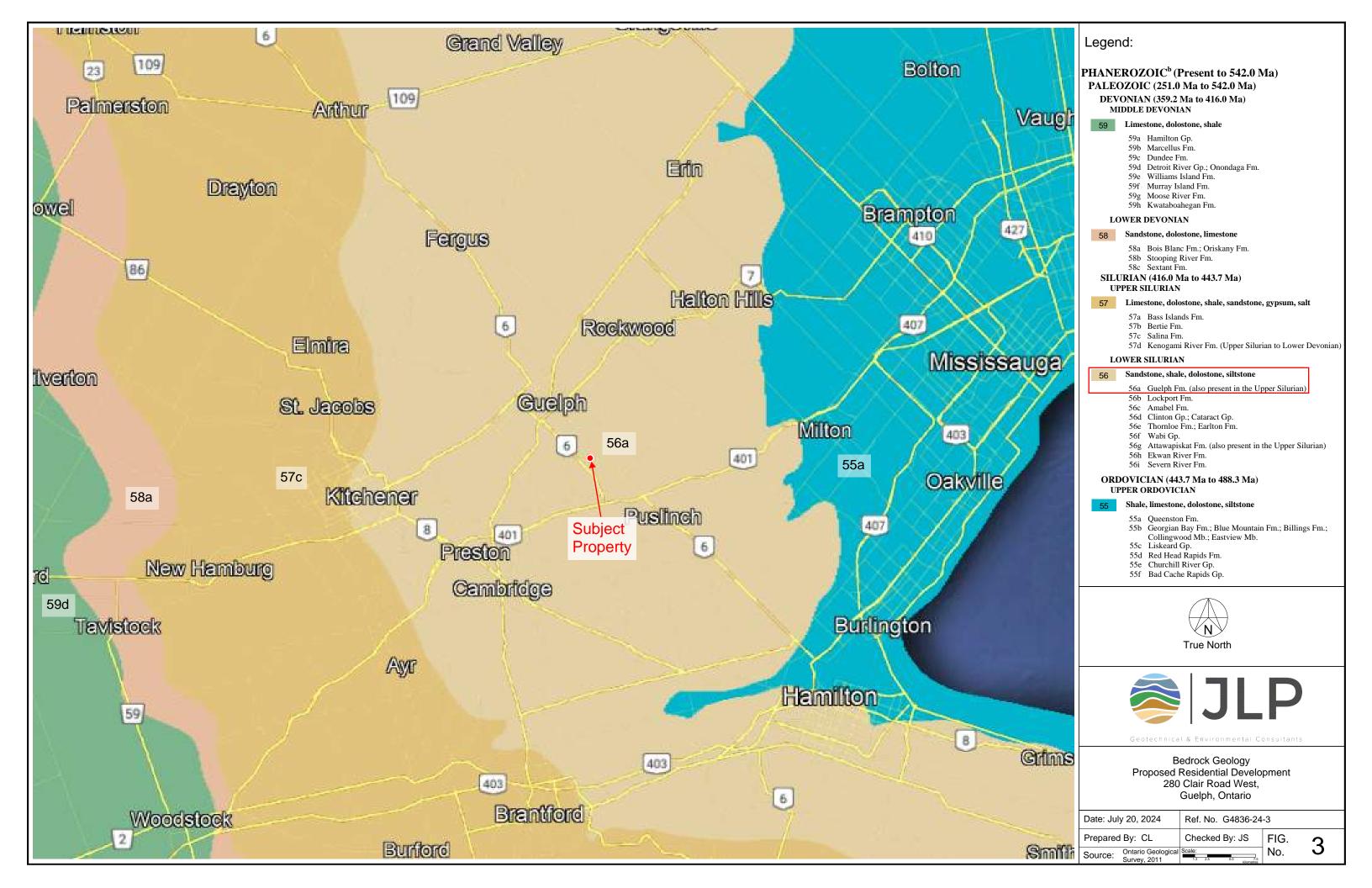
Ajay Jayalath, MBA, P.Geo., QP.

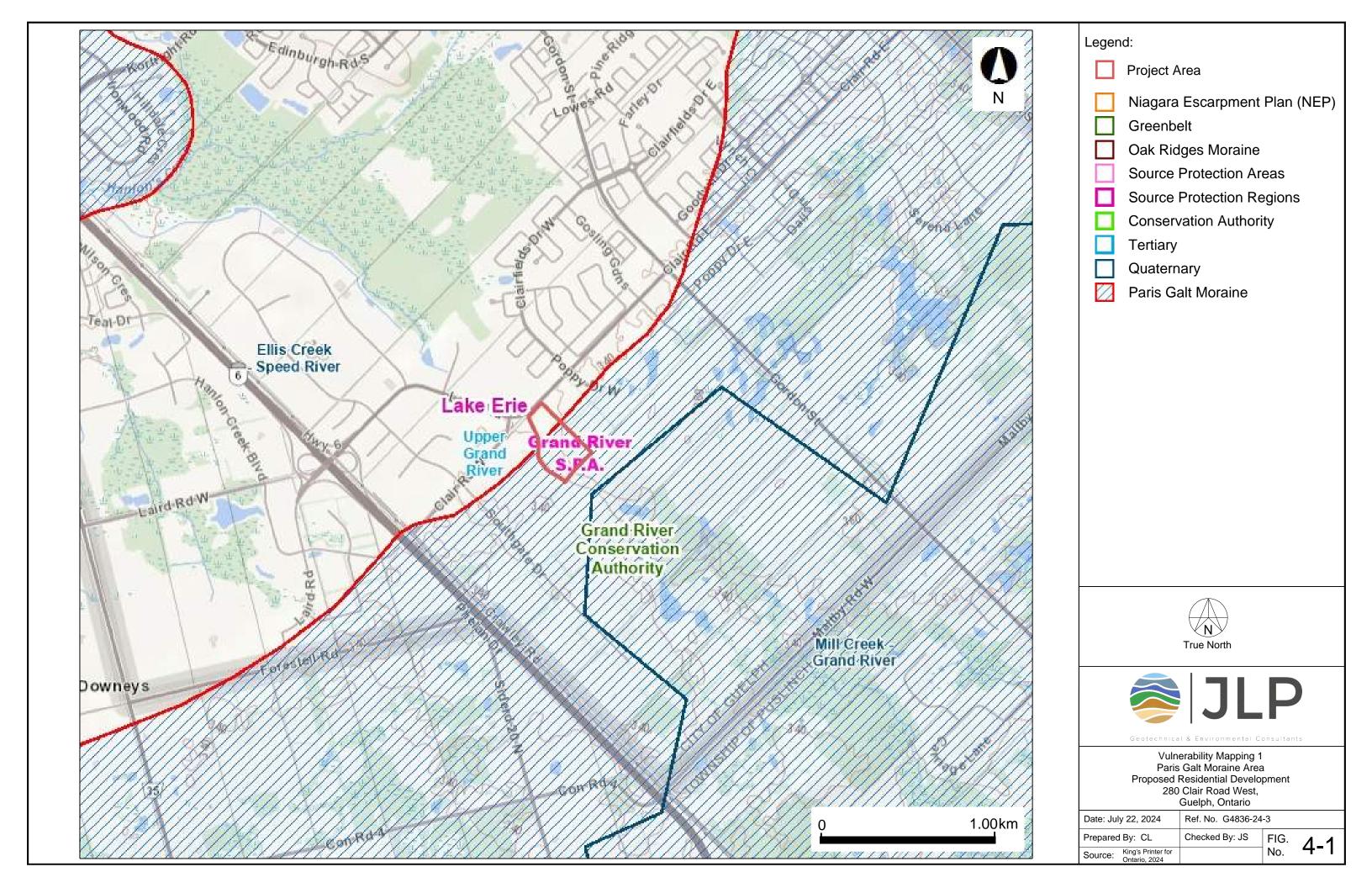
Vice President, Environmental Services

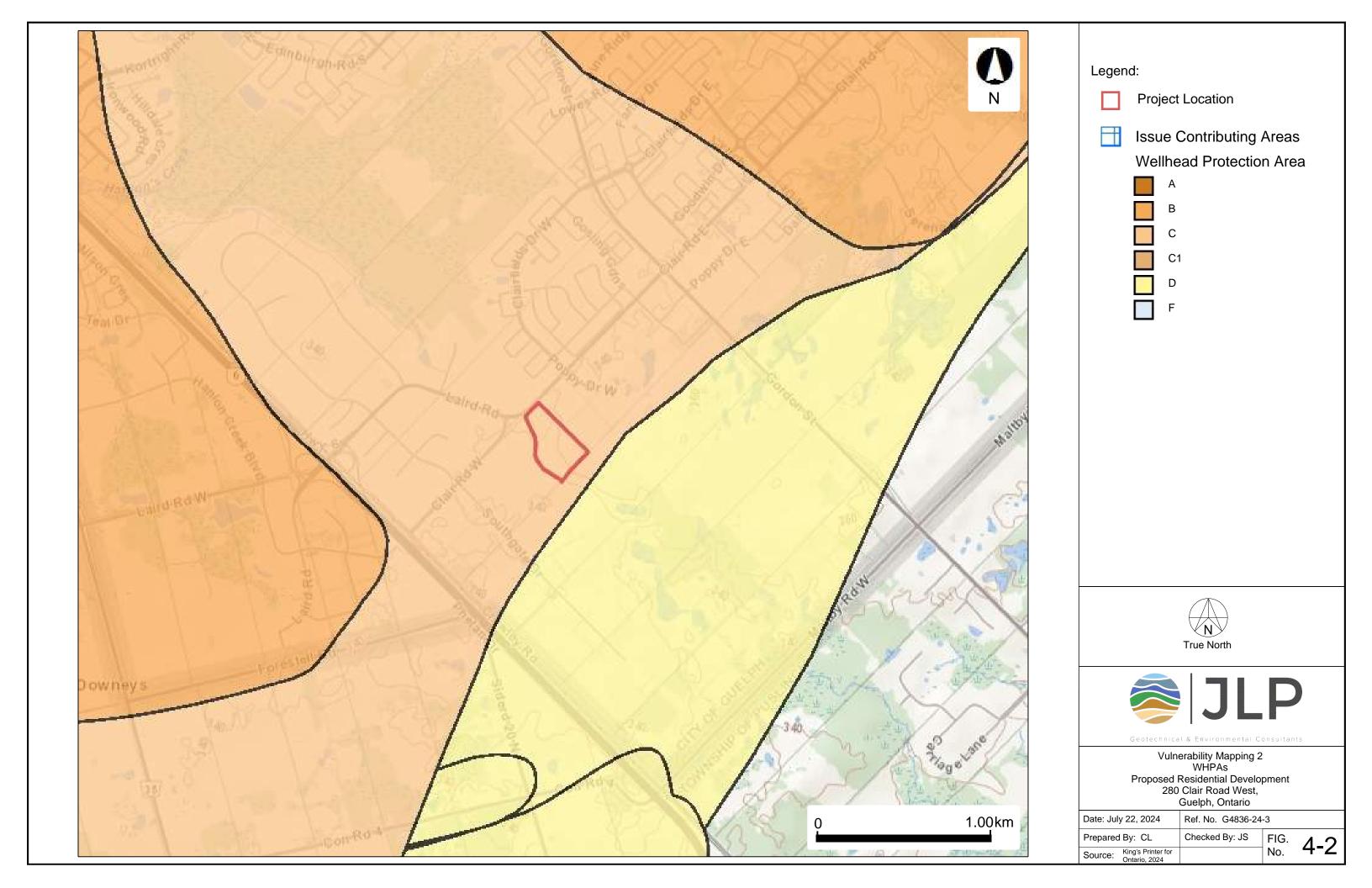


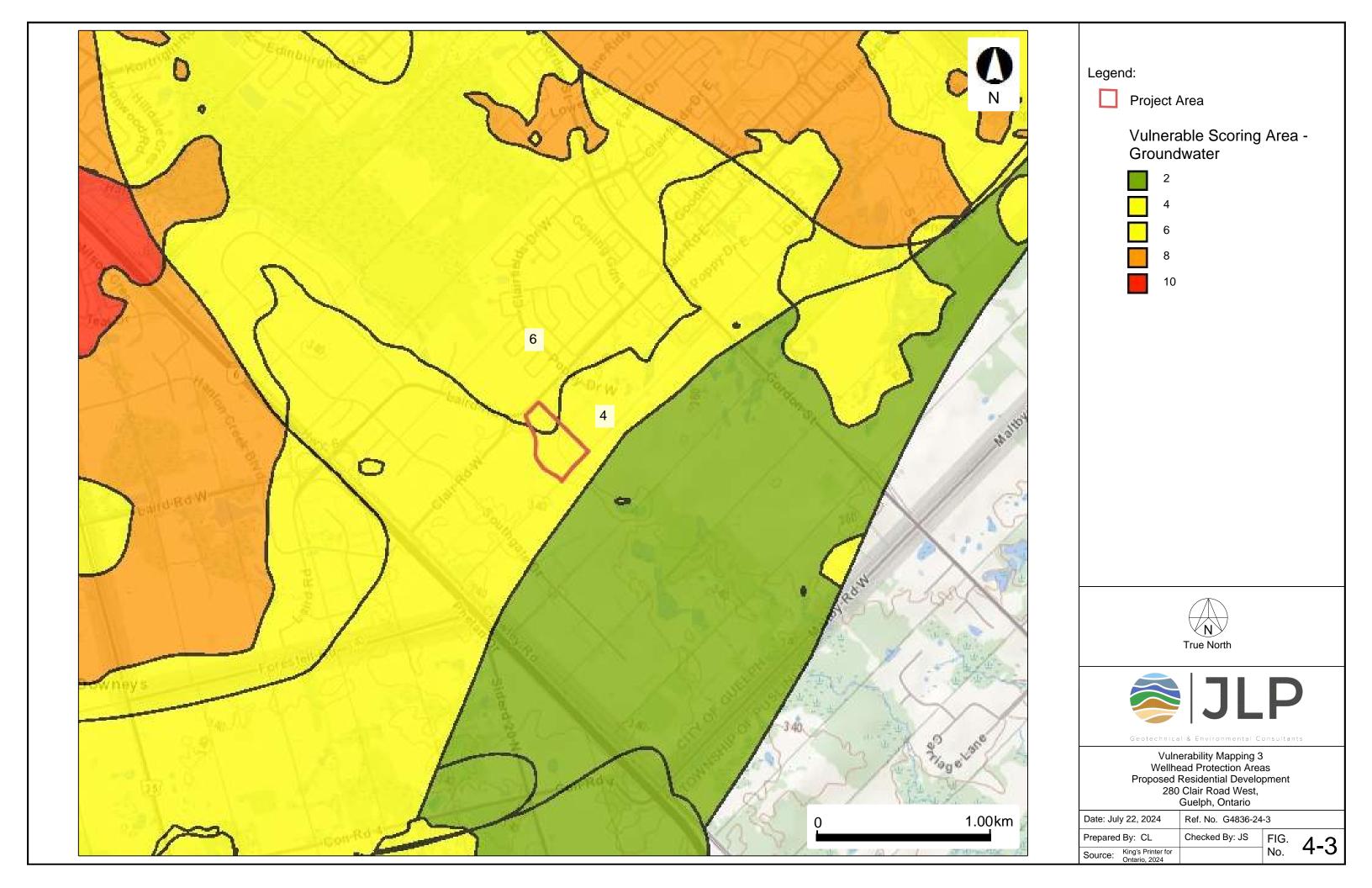

# 8. References

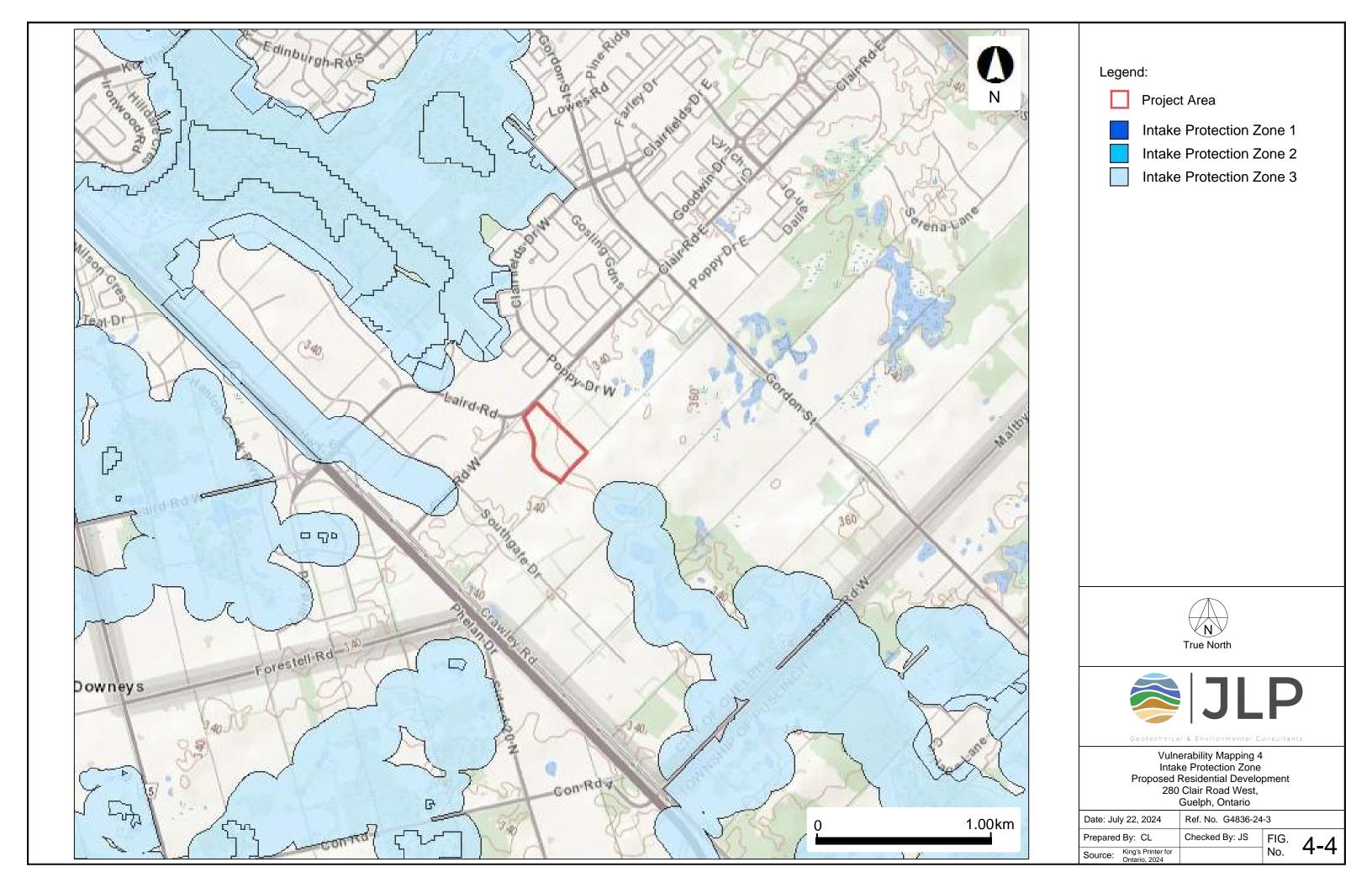
- Cashman and Preene (2013). Groundwater Lowering in Construction, 2<sup>nd</sup> Edition.
- Chapman, L.J and D.F. Putnam (1984). The Physiography of Southern Ontario, Third Edition; Ontario Geological Survey, Special Volume 2.
- City of Guelph (October 2023). Development Engineering manual, Engineering and Transportation Services
- JLP Services Inc. (January 29, 2025). Geotechnical Investigation Report, Proposed Residential Development, 280 Clair Road West, Guelph, Ontario, prepared for John Farley and Home Opportunities.
- Ministry of Northern Development and Mines (May 2012). OGS Earth. Retrieved from https://www.geologyontario.mndm.gov.on.ca/ogsearth.html
- Percolation Test Methodology and Data Analysis, Toronto and Region Conservative Authorities (TRCA), assessed to the website (<a href="https://wiki.sustainabletechnologies.ca/wiki/Percolation\_test">https://wiki.sustainabletechnologies.ca/wiki/Percolation\_test</a>) dated August 2022.
- Reynolds, W.D. (2016). A unified Per Test-Well Permeameter methodology for adsorption field investigations, Geoderma, V.264, Part A, 160-140 p.
- Reynolds, W.D., Galloway, K., and Radcliffe, D.E. (2015). "The relationship between perc time and field-saturated hydraulic conductivity for cylindrical test holes.", National Onsite Wastewater Recycling Association (NOWRA) 2015 Onsite Wastewater Mega-Conference, Virginia Beach, VA, USA, November 3-6, 2015.

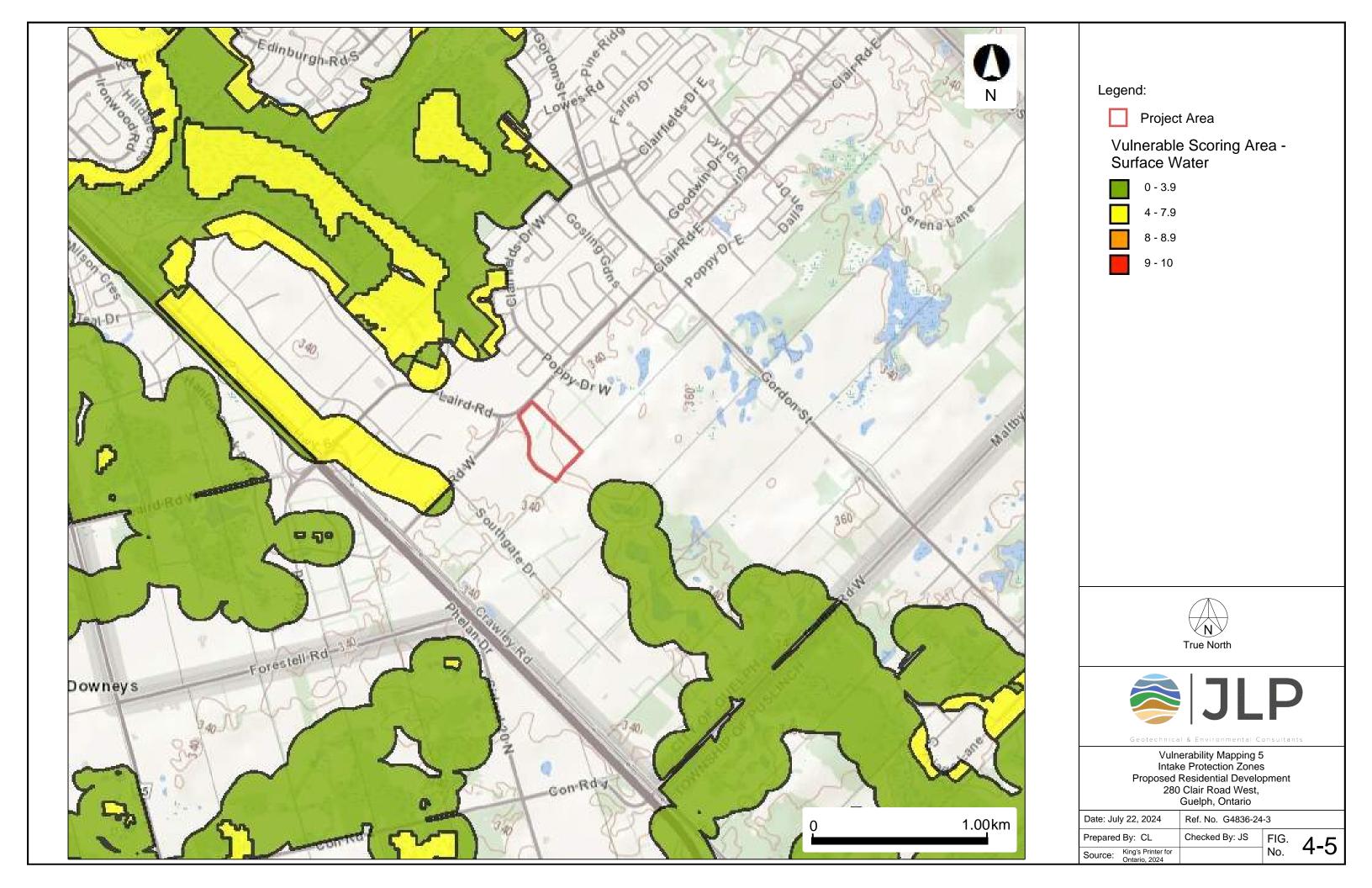


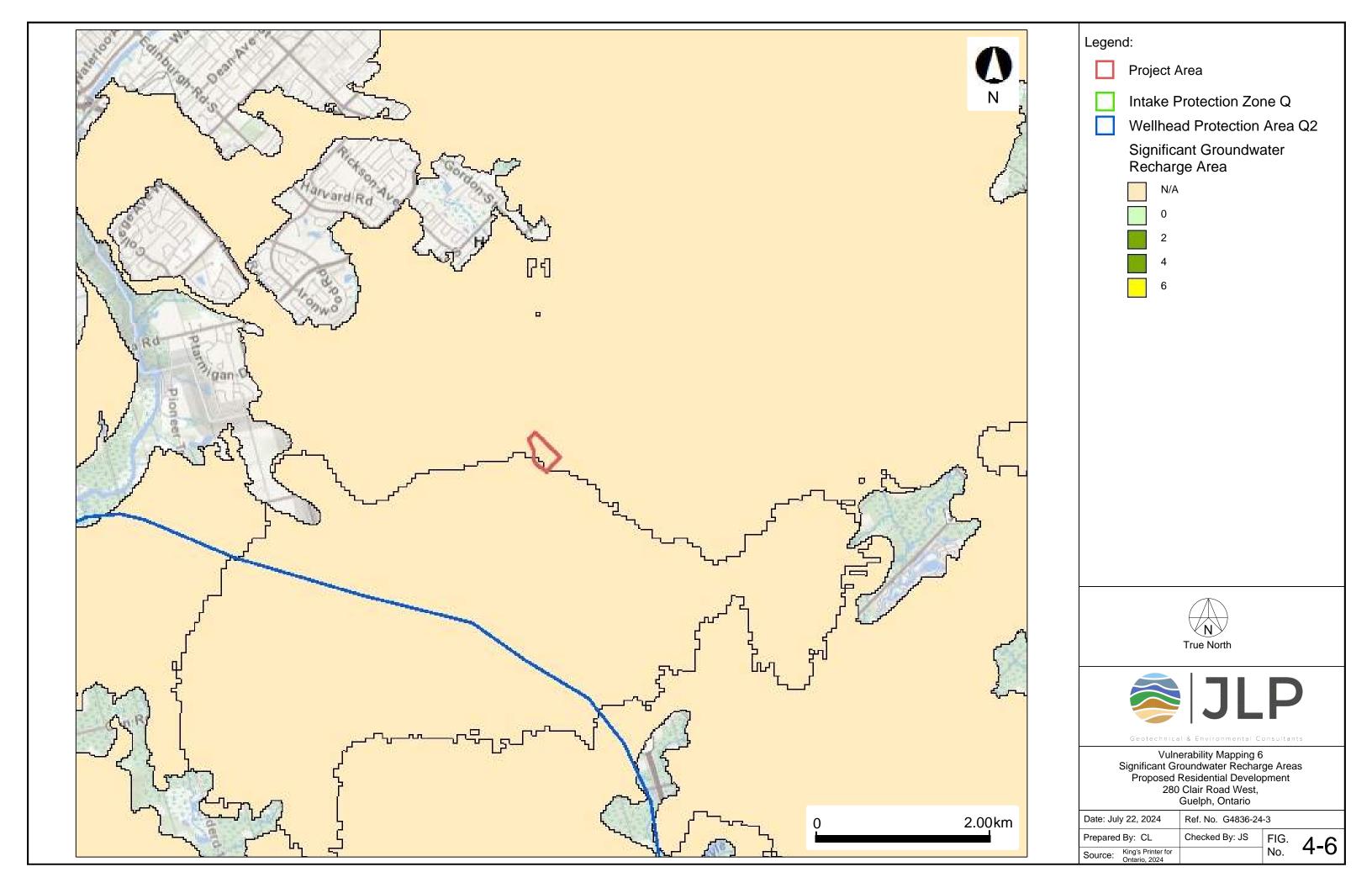


# Figures

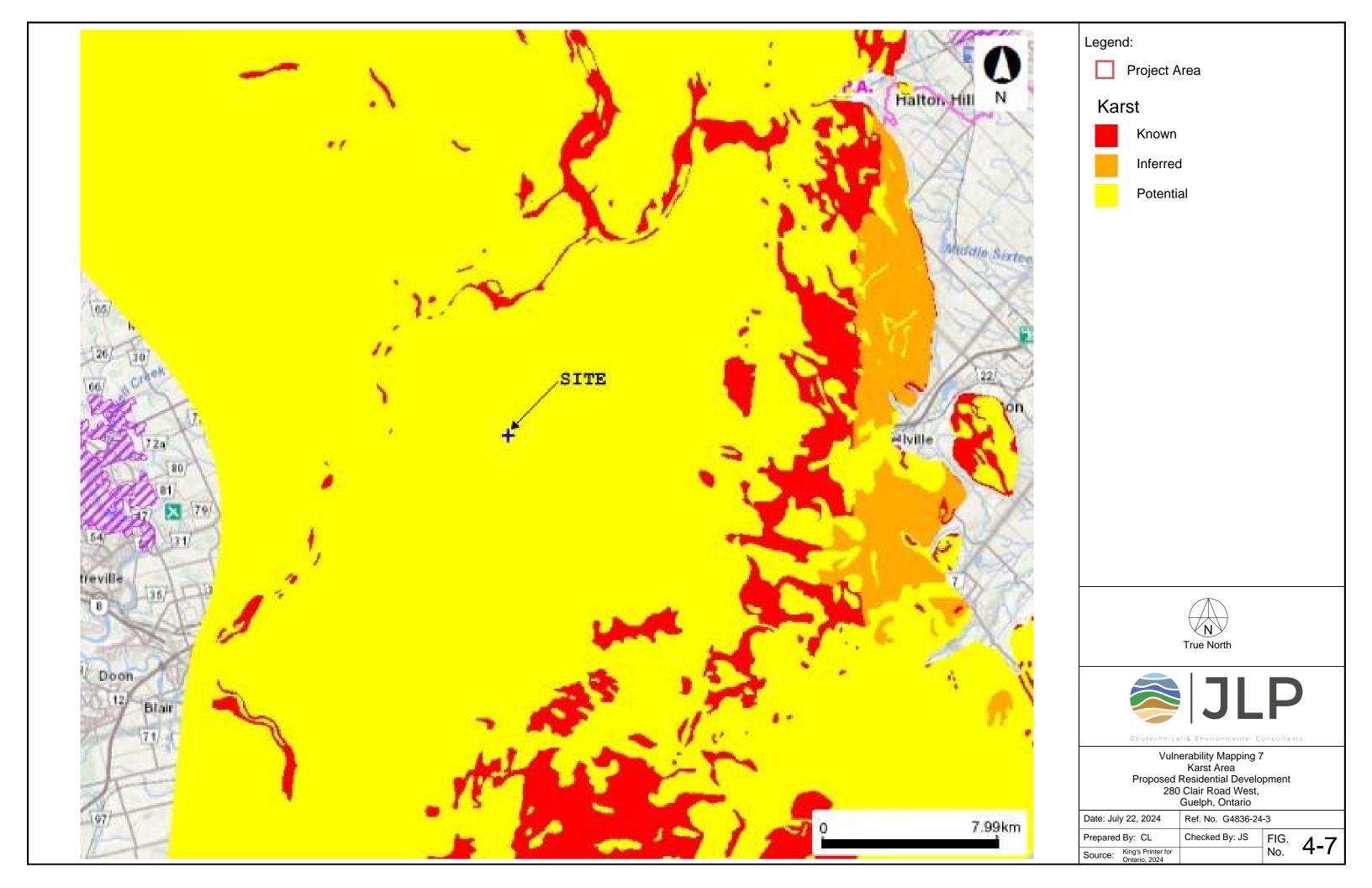


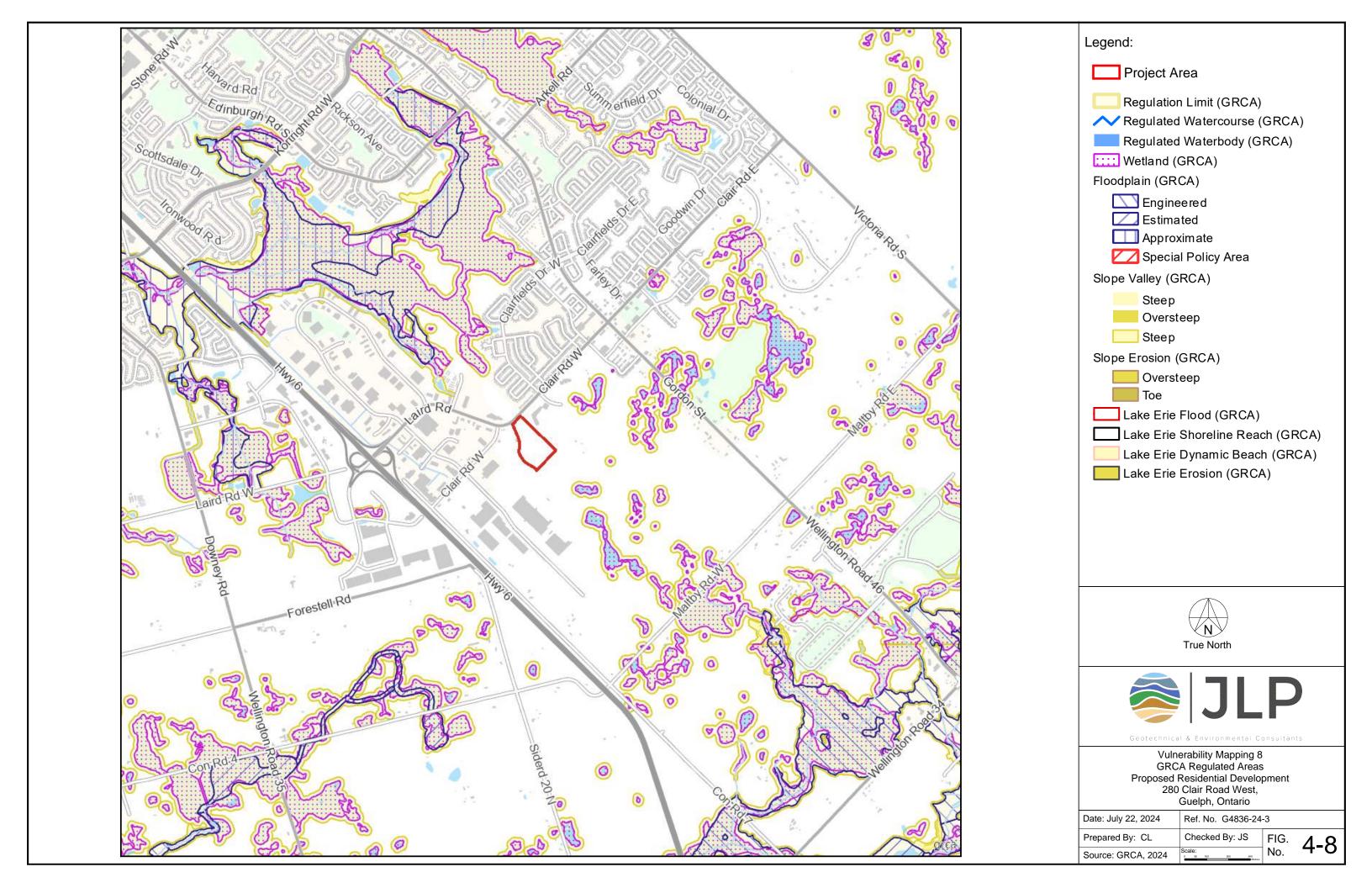



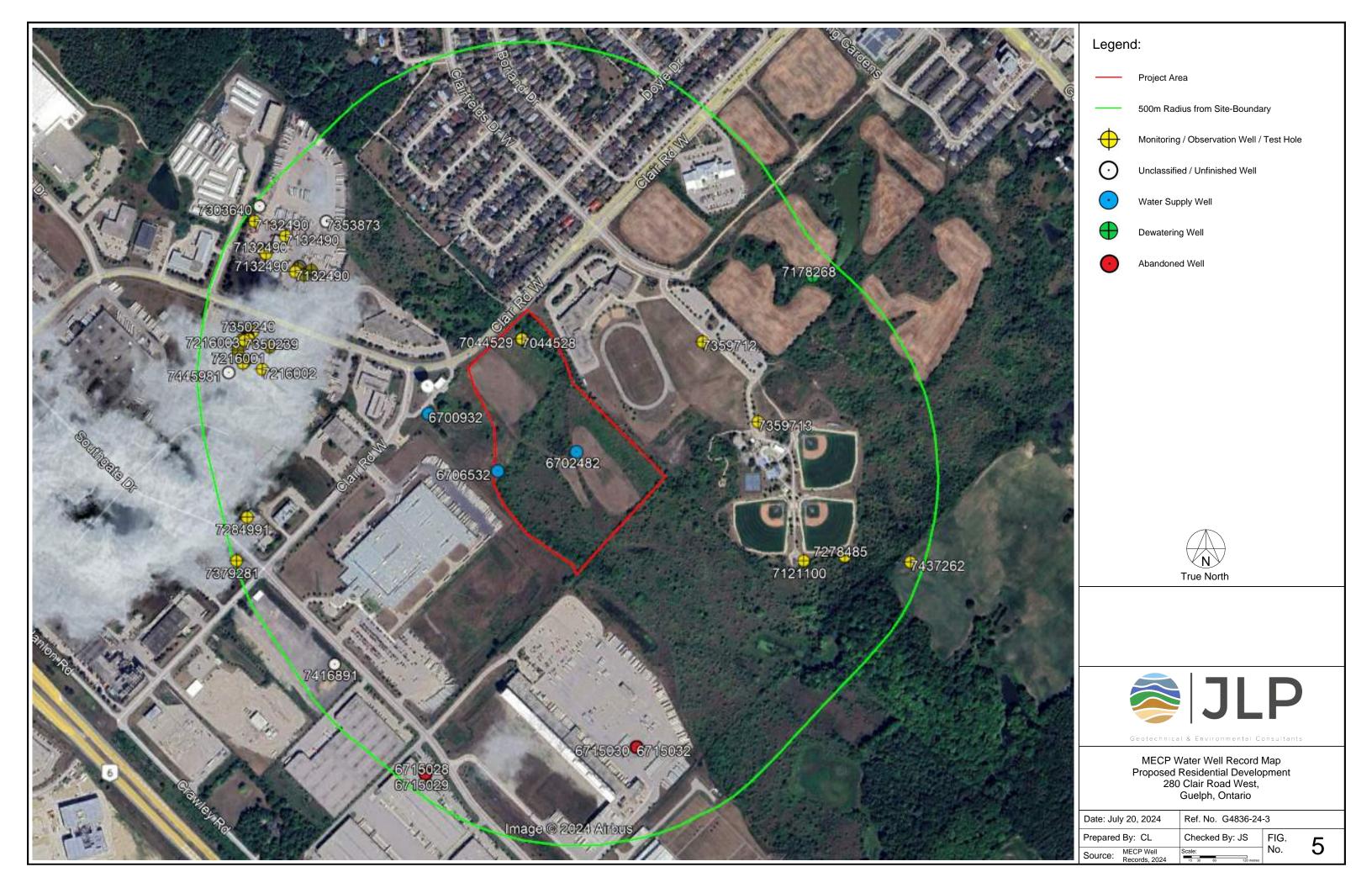



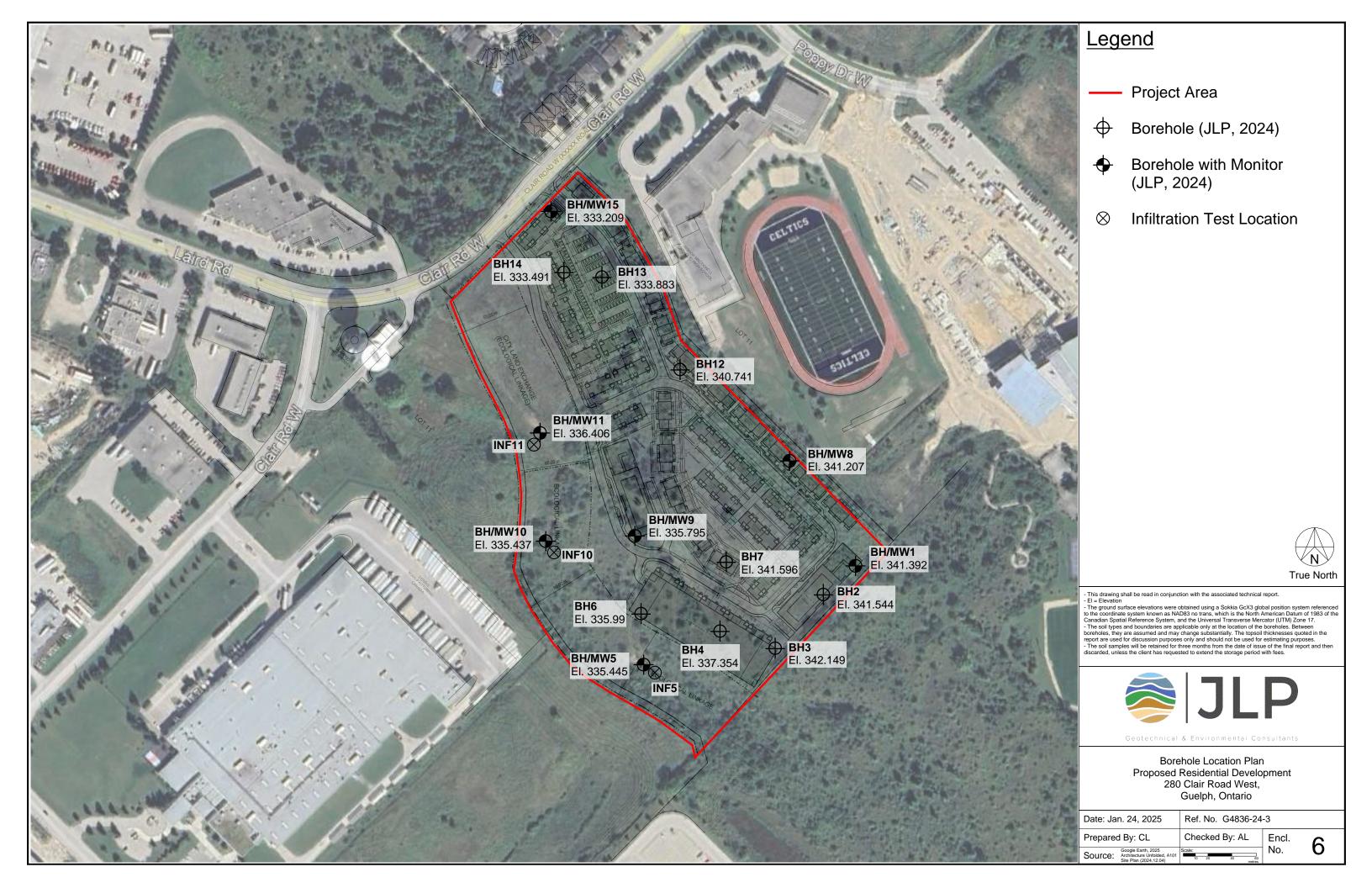



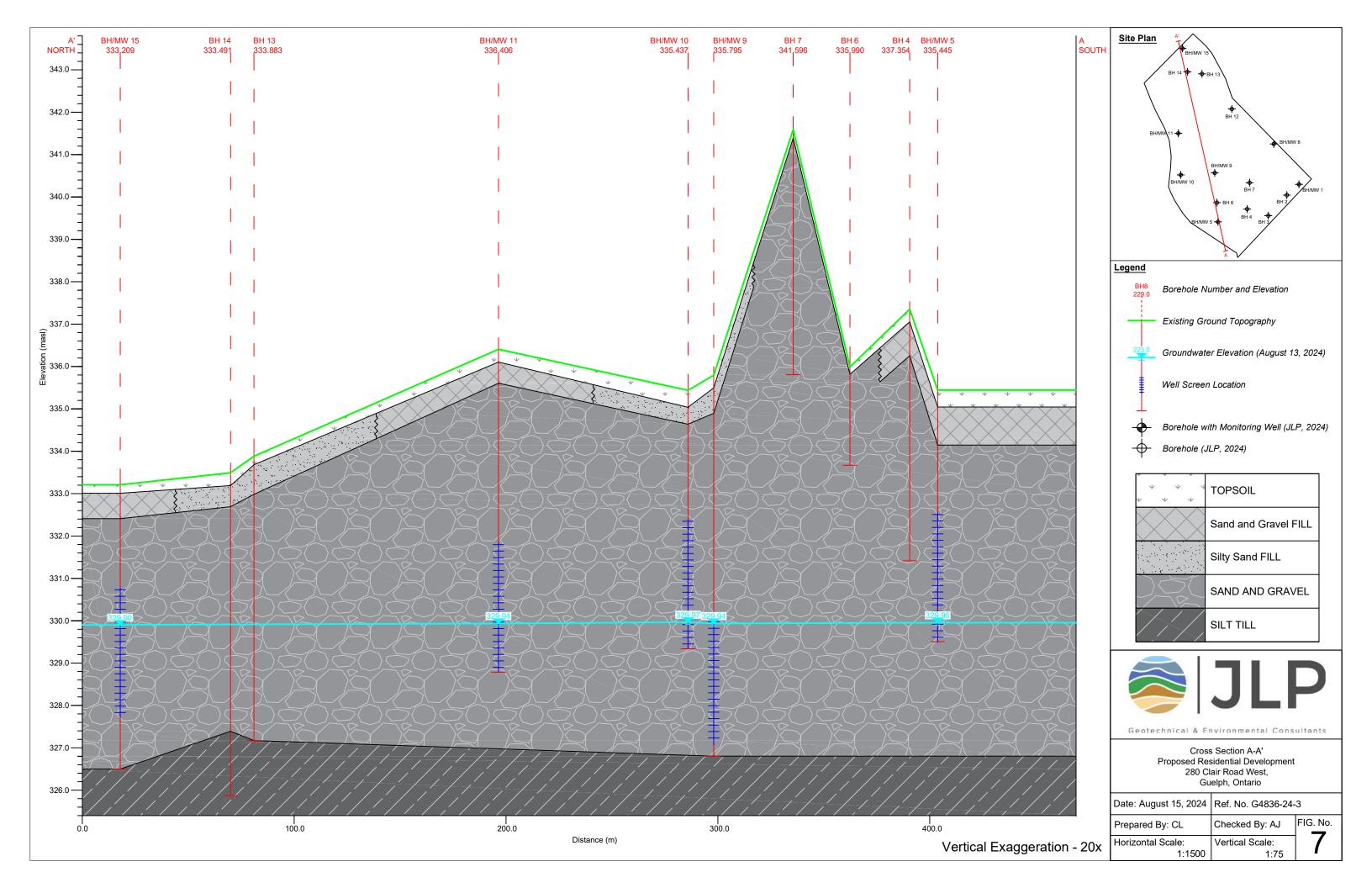



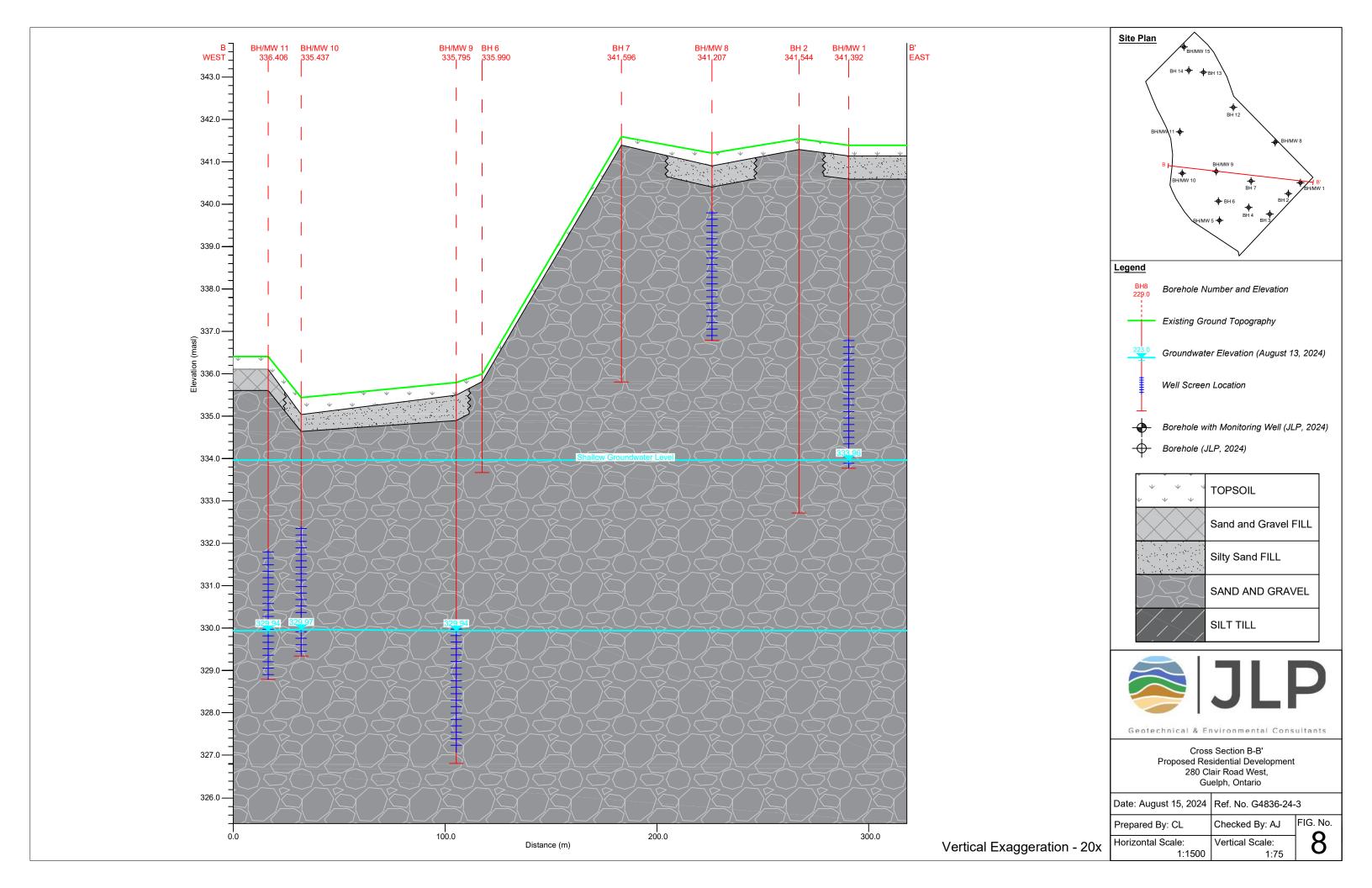



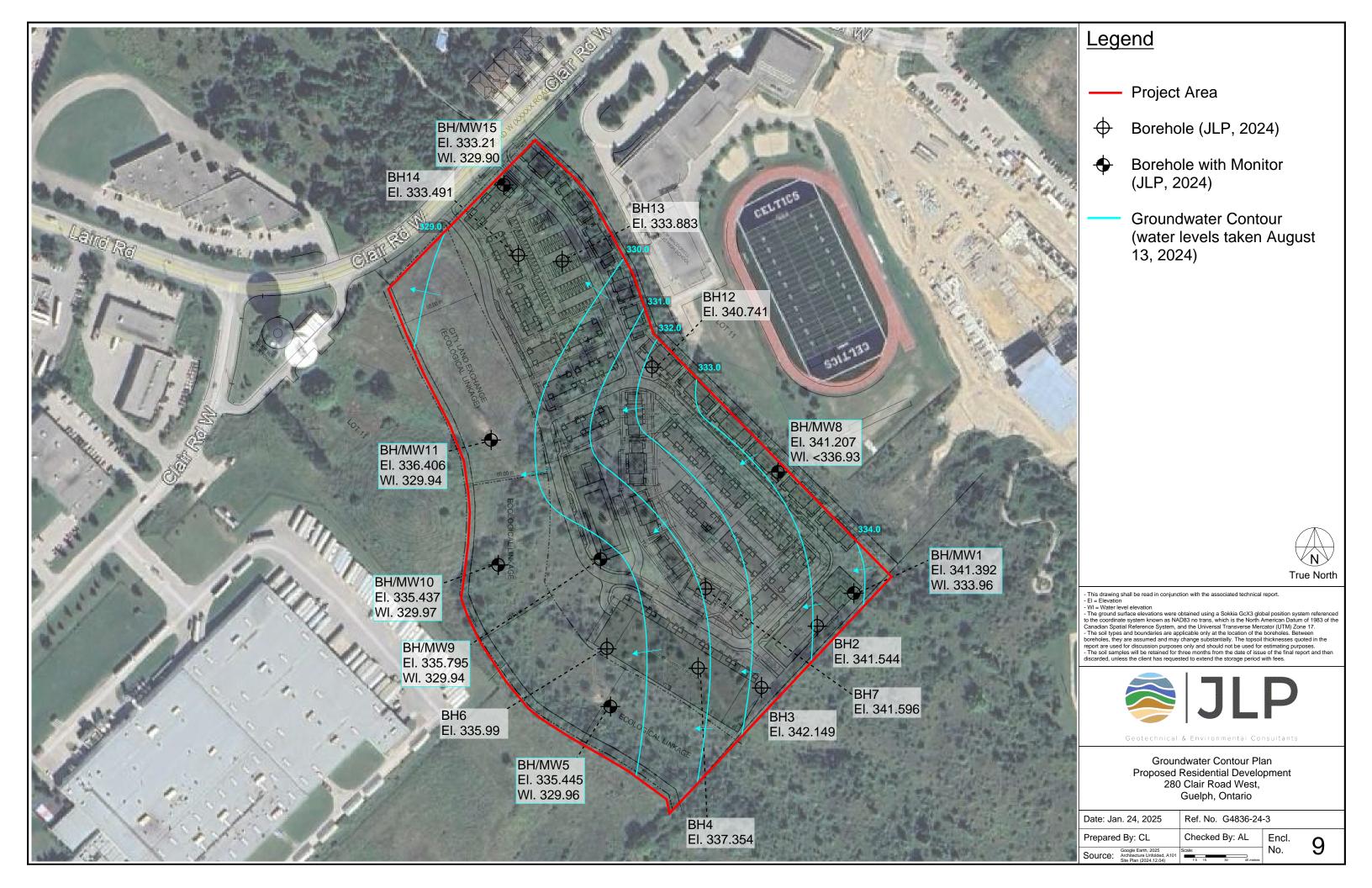














Appendix A – Limitations and Use of Report



#### REPORT TERMS AND CONDITIONS

NOTICE: THE FOLLOWING PROVISIONS SET FORTH IMPORTANT QUALIFICATIONS AND LIMITATIONS ON THE FINDINGS AND RECOMMENDATIONS IN THE REPORT AS WELL AS THE USE OF, AND RELIANCE ON, THE REPORT.

- 1. **<u>DEFINITIONS</u>**. The following capitalized terms have the following meanings:
  - (a) "Additional Investigations" means investigations that JLP has indicated to the Client should be undertaken to take into account any Out-of-Scope Requirements, but that are not otherwise specifically within the scope of investigations conducted for the purpose of the Report.
  - (b) "Applicable Laws" means and includes without limitation all applicable provincial laws, regulations, guidelines, policies, standards, protocols, and objectives administered by the Ministry of the Environment and Climate Change or any other duly-constituted governmental authority, all as in force as of the date of the Report.
  - (c) "Client" means the Client as referred to in the Report.
  - (d) "Client Information" means the information, representations, and instructions provided by the Client, the Client's representatives, and/or others and upon which the Report is based, in whole or in part.
  - (e) "Findings" means the evaluations and conclusions set forth in the Report.
  - (f) "JLP" means JLP Services Inc.
  - (g) "Out-of-Scope Requirements" means special concerns or requirements of the Client in respect of the subject matter of the Report.
  - (h) "Recommendations" mean the findings and recommendations referred to in the Report, taking into account any Out-of-Scope Requirements that were disclosed to JLP prior to the date of the Report.
  - (i) "Report" means the report to which these Terms and Conditions are attached and form part.
  - (j) "Report Documents" means the underlying documents, records, data, and files, in any medium whatsoever, generated in connection with the preparation of the Report, including without limitation, the instructions and objectives communicated to JLP by the Client, communications between JLP and the Client, and other reports, proposals, or documents prepared by JLP for the Client in connection with the Site.
  - (k) "Site" means the site in respect of which the Report was prepared.
  - (1) "Site Conditions" means Site conditions known as a result of, or reasonably imputed by, the investigations that were undertaken as of the date of the Report.
- 2. BASIS OF REPORT. The Report is based on the Site Conditions. Any changes to the Site Conditions after the date of the Report that could or will affect the Site Conditions may or will have a corresponding effect on the Recommendations. The Report does not take into account any (a) Additional Investigations that were not undertaken, or (b) Out-of-Scope Requirements that were not communicated prior to completion of the investigations that were been undertaken as of the date of the Report. Where recommended field services are referred to, they are the minimum services necessary to determine compliance of construction with Applicable Laws, generally accepted industry-standard practices, and the Recommendations.
- 3. RELIANCE & USE. The Report has been prepared only for the Site and the related design, development, building, or building assessment objectives identified by the Client. The Findings and Recommendations are based on the Site Conditions and the Client Information. In preparing the Report, JLP has relied upon the Client Information and disclaims any responsibility for any inaccuracy, misstatement, omission, unintentional misrepresentation, or other deficiency contained in the Report as a result of such reliance. Unless specifically stated otherwise, the applicability and reliability of the Findings and the Recommendations expressed in the Report are only valid to the extent that (a) there has been no material change to or variation from any of the Client Information, (b) the Client Information contains no untrue statement of a material fact, or (c) the Client Information omits no statement of a material fact necessary in order to make the Client Information not misleading.

The Report and the Findings and Recommendations are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the prior written consent of JLP, which may be arbitrarily withheld or conditioned.

RELIANCE UPON THE REPORT OR ANY OF THE DETERMINATIONS MADE HEREIN BY A THIRD PARTY WITHOUT JLP'S CONSENT IS PROHIBITED AND JLP MAKES NO REPRESENTATION, GUARANTEE, OR WARRANTY IN FAVOUR OF ANY



THIRD PARTY WITH RESPECT TO THE REPORT WHATSOEVER. JLP FULLY DISCLAIMS, AND WILL HAVE NO LIABILITY FOR, ANY LOSS, DAMAGES, OR EXPENSES WHICH ANY THIRD-PARTY MAY INCUR OR SUFFER AS A RESULT OF THE USE OF OR RELIANCE ON THIE REPORT WHERE JLP HAS NOT EXPRESSLY AUTHORIZED SAME. ANY THIRD PARTY WHO RELIES ON THE REPORT TO ANY EXTENT DOES SO AT SUCH PARTY'S OWN RISK AND COMPLETELY WAIVES ANY AND ALL CLAIMS AGAINST JLP IN CONNECTION WITH THE REPORT, REGARDLESS OF THE THEORY OF LAW (WHETHER IN CONTRACT, TORT, OR ANY THEORY OF LAW COMING INTO EXISTENCE HEREAFTER).

- 4. **STANDARD OF CARE**. The Report has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances. No other warranty, expressed or implied, is made or intended in the Report. It is intended that the Findings and Recommendations are meant to assist in reducing the Client's risk associated with environmental impairment at the Site. The Report should not be considered risk mitigation.
- 5. <u>ENTIRE REPORT</u>. The Report also includes the Report Documents. In order to properly understand the Findings and Recommendations, reference must be made to the Report in its entirety. JLP is not responsible for use by any party of a part of the Report only.
- 6. GOVERNING FORMAT. Notwithstanding that JLP may have submitted an electronic version of the Report or any document forming part of the Report, only the signed and sealed physical copy of the Report shall be deemed to be the original and in the event of any dispute or discrepancy, the physical copy shall govern. JLP makes no representation about the compatibility of its electronic or digital file format with the Client's current or future software and/or hardware systems. The documents described herein are JLP's instruments of professional service and shall not be altered without the written consent of JLP.

#### 7. **GENERAL LIMITATIONS**.

- (a) Unless specifically stated otherwise, the Report does not contain environmental consulting advice.
- (b) The Report contains no opinion or determination as to any matters governed by laws other than the laws of the Province of Ontario and the federal laws of Canada applicable therein as of the date hereof.
- (c) During any future development of the Site, conditions not observed during JLP's investigations may become apparent. If this occurs, JLP should be contacted to assess the situation and whether there is a need for additional testing.
- (d) JLP's investigations were carried out to address the intent of Applicable Laws, which are subject to change, and such changes, when coming into legal force and effect, could alter the Findings and Recommendations in a material way.
- (e) Achieving the objectives stated in the Report has required JLP to arrive at conclusions based upon the best information presently known to JLP. Current investigative methodologies do not completely eliminate the possibility of imprecise or incomplete information. Rather, they merely reduce such possibility to acceptable levels. Professional judgment was exercised in gathering and analyzing information obtained and in the formulation of the Findings. JLP does not act as an absolute insurer of the Findings and will only be responsible for gross negligence with respect thereto.
- (f) The Report may not be reproduced in whole or in part by any party other than the Client without JLP's prior written consent. All intellectual property rights in the Report are reserved to JLP.



Appendix B – MECP WWR Summary Table



| # Well    | Well ID | Distance From<br>Site Centroid<br>(m) |    | East 83     | North 83 | Location Accuracy                                          | Date<br>Received | Street                       | City       | Final Status      | 1st Use              | 2nd Use  | Depth Water<br>Found (m) | Geology   |                        |                |            |
|-----------|---------|---------------------------------------|----|-------------|----------|------------------------------------------------------------|------------------|------------------------------|------------|-------------------|----------------------|----------|--------------------------|-----------|------------------------|----------------|------------|
|           |         | (,                                    |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          | Depth (m) | Material 1             | Material 2     | Material 3 |
|           | 6702482 | 59                                    | 17 | 564980.3    | 4815700  | margin of error : 100 m - 300 m                            | 3/20/1963        |                              |            | Water Supply      | Livestock            | Domestic | 42.06                    |           | BOULDERS               | CLAY           |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | BOULDERS               | HARDPAN        |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | STONES<br>HARDPAN      | GRAVEL         |            |
| 1         |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | MEDIUM SAND            |                |            |
| (on-Site) |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | HARDPAN                |                |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | LIMESTONE              |                |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | LIMESTONE              |                |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | LIMESTONE              |                |            |
|           | 6706532 | 104                                   | 17 | 564834.3    | 4815663  | margin of error : 30 m - 100 m                             | 10/14/1977       |                              |            | Water Supply      | Domestic             |          | 54.86                    |           | CLAY                   | STONES         |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | CLAY                   | GRAVEL         |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | CLAY                   | STONES         |            |
| 2         |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           |                        | LIGHT-COLOURED |            |
| (on-Site) |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | ROCK                   | DARK-COLOURED  |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | ROCK<br>ROCK           |                |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          | 91.4      | ROCK                   | COARSE-GRAINED |            |
|           | 7044527 | 199                                   | 17 | 564876      | 4815909  | margin of error : 10 - 30 m                                | 6/7/2007         | CLAIR RD W.                  | PUSLINCH   | Observation Wells |                      |          |                          |           | SAND                   | SILTY          |            |
| 3         |         |                                       |    |             |          |                                                            | ., ,             |                              |            |                   |                      |          |                          | 42.0      |                        |                |            |
| (on-Site) |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          | 45.0      |                        |                |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          | 82.3      |                        |                |            |
|           | 7044528 | 199                                   | 17 | 564876      | 4815909  | margin of error : 10 - 30 m                                | 6/7/2007         | CLAIR RD W.                  | PUSLINCH   | Observation Wells |                      |          |                          |           | SAND                   | SILTY          |            |
| 4         |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          | 42.0      |                        |                |            |
| (on-Site) |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          | 45.0      |                        |                |            |
| 5         | 7044529 | 199                                   | 17 | 564976      | 4915000  | margin of error : 10 - 30 m                                | 6/7/2007         | CLAIR RD WEST                | DITCH      | Observation Wells |                      |          |                          | 64.1      | SAND                   | SILTY          |            |
| (on-Site) | 7044323 | 155                                   | 1/ | 304870      | 4013303  | margin of error : 10 - 30 m                                | 0,7,2007         | CEAIR RD WEST                | I OSLINCIT | Observation wens  |                      |          |                          | 33.9      | SAND                   | SILIT          |            |
| (0.110)   | 6700932 | 226                                   | 17 | 564704.3    | 4815768  | margin of error : 100 m - 300 m                            | 9/25/1967        |                              |            | Water Supply      | Domestic             |          | 19.81                    | 0.3       | TOPSOIL                |                |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | GRAVEL                 | STONES         |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | CLAY                   | GRAVEL         |            |
| 6         |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | ROCK                   |                |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | SAND                   |                |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          | 43.3      | ROCK                   |                |            |
| 7         | 6715028 | 653                                   | 17 | E 6 4 7 0 F | 401E101  | margin of error : 10 - 30 m                                | 0/10/2004        | CRAWLEY RD AND CLAIR RD WEST | GUELPH     | Abandoned-Other   | Not Used             |          |                          | 82.3      | ROCK                   |                |            |
| 8         | 6715028 | 653                                   | 17 |             |          | margin of error : 10 - 30 m<br>margin of error : 10 - 30 m |                  |                              | GUELPH     | Abandoned-Other   | Not Used<br>Not Used |          |                          |           |                        |                |            |
| 9         | 6715030 | 587                                   | 17 |             |          | margin of error : 10 - 30 m                                |                  | CRAWLEY RD AND CLAIR RD WEST |            | Abandoned-Other   | Not Used             |          |                          |           |                        |                |            |
| 10        | 6715032 | 587                                   | 17 |             |          | margin of error : 10 - 30 m                                | 9/10/2004        |                              | GUELPH     | Abandoned-Other   | Not Used             |          |                          |           |                        |                |            |
|           | 7121100 | 524                                   | 17 |             |          | margin of error : 10 - 30 m                                |                  | 1 GUELPH SOUTH BALL PARK     | Guelph     | Test Hole         | Municipal            |          | 41.15                    |           | CLAY                   | SAND           |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | CLAY                   | STONES         |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | CLAY                   | STONES         |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | GRAVEL                 | ROCK           | FRACTURED  |
| 11        |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | LIMESTONE              |                |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | LIMESTONE              |                |            |
|           |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | LIMESTONE<br>LIMESTONE |                |            |
| 1         |         |                                       |    |             |          |                                                            |                  |                              |            |                   |                      |          |                          |           | SHALE                  |                |            |

| # Well   | Well ID            | Distance From<br>Site Centroid | Zone     | East 83          | North 83  | Location Accuracy                                                | Date<br>Received | Street                              | City             | Final Status                      | 1st Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2nd Use    | Depth Water<br>Found (m) |           |               | Geology         |                |
|----------|--------------------|--------------------------------|----------|------------------|-----------|------------------------------------------------------------------|------------------|-------------------------------------|------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------|-----------|---------------|-----------------|----------------|
|          |                    | (m)                            |          |                  |           |                                                                  |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          | Depth (m) | Material 1    | Material 2      | Material 3     |
| 12       | 7132490            | 638                            | 17       | 564393           | 4816070   | margin of error : 30 m - 100 m                                   | 10/23/2009       | 405 LAIRD RD                        | Guelph           | Test Hole                         | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 3.60                     | 0.1       |               |                 |                |
| 13       | (cluster wells)    | 631                            | 17       | 564397           |           | margin of error : 10 - 30 m                                      |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           | SAND          | GRAVEL          | FILL           |
| 14       |                    | 634                            | 17       | 564395           |           | margin of error : 10 - 30 m                                      |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           | SAND          | GRAVEL          | SILT           |
| 15       |                    | 621                            | 17       | 564433           |           | margin of error : 10 - 30 m                                      |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           | SILT          | SAND            | GRAVEL         |
| 16       |                    | 567                            | 17       | 564452           |           | margin of error : 10 - 30 m                                      |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          | 5.8       | SAND          | GRAVEL          |                |
| 17       |                    | 550                            | 17       | 564468           |           | margin of error : 10 - 30 m                                      |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           |               |                 |                |
| 18       |                    | 544<br>566                     | 17       | 564482           |           | margin of error : 10 - 30 m                                      |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           |               |                 |                |
| 19<br>20 |                    | 683                            | 17<br>17 | 564457<br>564375 | 1         | margin of error : 10 - 30 m                                      |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           |               |                 |                |
|          | 7136046            | 582                            | 17       | 564361           |           | margin of error : 10 - 30 m<br>margin of error : 30 m - 100 m    | 12/16/2000       | 412 LAIRD RD.                       | Guelph           | Observation Wells                 | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                          | 5.5       | SAND          | MEDIUM GRAVEL   | PACKED         |
| 21       | 7130040            | 362                            | 1/       | 304301           | 4013003   | margin or error : 30 m - 100 m                                   | 12/10/2009       | 412 DAIND ND.                       | Gueipii          | Observation wells                 | Worldoning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                          |           | GRAVEL        | SAND            | PACKED         |
|          | 7178268            | 582                            | 17       | 565415           | 4816029   | margin of error : 30 m - 100 m                                   | 3/19/2012        | CLAIR ROAD                          | Guelph           | Test Hole                         | Dewatering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                          |           | SAND          | GRAVEL          | DENSE          |
| 22       |                    |                                |          |                  |           |                                                                  | ' '              |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           | GRAVEL        | SAND            | SILT           |
|          | 7216001            | 585                            | 17       | 564357           | 4815859   | margin of error : 30 m - 100 m                                   | 2/10/2014        | 412 LAIRD DR                        | GUELPJ           | Monitoring and Test Hole          | Monitoring and Test Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                          |           | SAND          | GRAVEL          | LOOSE          |
| 23       |                    |                                |          |                  |           |                                                                  |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          | 5.2       | SAND          | LOOSE           |                |
|          |                    |                                |          |                  |           |                                                                  |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          | 7.0       | GRAVEL        | DENSE           |                |
|          | 7216002            | 547                            | 17       | 564393           | 4815848   | margin of error : 30 m - 100 m                                   | 2/10/2014        | 412 LAIRD DR                        | GUELPH           | Monitoring and Test Hole          | Monitoring and Test Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                          |           | SAND          | GRAVEL          | LOOSE          |
| 24       |                    |                                |          |                  |           |                                                                  |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           | SAND          | LOOSE           |                |
|          |                    |                                |          |                  |           |                                                                  |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           | GRAVEL        | DENSE           |                |
|          | 7216003            | 588                            | 17       | 564367           | 4815904   | margin of error : 30 m - 100 m                                   | 2/10/2014        | 412 LAIRD ST                        | GUELPH           | Monitoring and Test Hole          | Monitoring and Test Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                          |           | SAND          | GRAVEL          | LOOSE          |
| 25       |                    |                                |          |                  |           |                                                                  |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           | SAND          | LOOSE           |                |
|          | 724 6004           | F46                            | 47       | F.C.4.400        | 4045000   |                                                                  | 2/40/2044        | 442   4100 00                       | CUELBU           | Manufacture and Took Hale         | Maritania and Task Hala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                          |           | GRAVEL        | DENSE           | 10005          |
| 26       | 7216004            | 546                            | 1/       | 564406           | 4815889   | margin of error : 30 m - 100 m                                   | 2/10/2014        | 412 LAIRD DR                        | GUELPH           | Monitoring and Test Hole          | ivionitoring and rest Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                          |           | SAND<br>SAND  | GRAVEL<br>LOOSE | LOOSE          |
| 20       |                    |                                |          |                  |           |                                                                  |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           | GRAVEL        | DENSE           |                |
| 27       | 7239559            | 566                            | 17       | 564460           | 4816040   | margin of error : 30 m - 100 m                                   | 4/8/2015         |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          | 7.0       | GIVAVEL       | DENSE           |                |
|          | 7278485            | 591                            | 17       |                  |           | margin of error : 30 m - 100 m                                   |                  | 25 POPPY DR                         | GUELPH           | Observation Wells                 | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 20.42                    | 0.6       | TOPSOIL       |                 |                |
|          |                    |                                |          |                  |           |                                                                  | '''              |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           | SAND          | SILT            |                |
|          |                    |                                |          |                  |           |                                                                  |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           | SAND          | GRAVEL          |                |
| 28       |                    |                                |          |                  |           |                                                                  |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          | 24.4      | SAND          |                 | FINE-GRAINED   |
|          |                    |                                |          |                  |           |                                                                  |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           | SAND          |                 | FINE-GRAINED   |
|          |                    |                                |          |                  |           |                                                                  |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           | SAND          | CLAY            |                |
|          |                    |                                |          |                  |           |                                                                  |                  |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           | SAND          | GRAVEL          | COARSE-GRAINED |
| 29       | 7284991            | 574                            | 17       | 564368           | 4815573   | margin of error : 30 m - 100 m                                   | 4/10/2017        | 836 SOUTHGATE DR                    | Guelph           | Monitoring and Test Hole          | Test Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring |                          |           | FILL          |                 |                |
|          | 7000510            | 500                            | 47       | =                |           |                                                                  | 1/10/2010        |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          | 10.7      | SAND          | GRAVEL          |                |
| 30       | 7303640            | 693<br>601                     | 17<br>17 | 564384<br>564347 |           | margin of error : 30 m - 100 m                                   | 1/19/2018        | 420 Laird                           | Guelph           | Monitoring and Tost Unio          | Monitoring and Tost Hala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                          | 1 1       | OTHER         |                 |                |
| 31       | 7333798            | 901                            | 1/       | 504347           | 4813883   | margin of error : 30 m - 100 m                                   | 4/15/2019        | 450 Land                            | Gueibil          | ivionitoring and rest Hole        | Monitoring and Test Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                          |           | OTHER<br>SAND | GRAVEL          |                |
|          | 7333799            | 599                            | 17       | 564355           | 4815903   | margin of error : 30 m - 100 m                                   | 4/15/2019        | 430 Laird Guelph                    | +                | Monitoring and Test Hole          | Monitoring and Test Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                          |           | OTHER         | ONAVEL          |                |
| 32       | 7555755            | 333                            |          | 50.555           | 1015505   | l l l l l l l l l l l l l l l l l l l                            | 1,13,2013        | iso zana ode.pii                    |                  | monitoring and reservoic          | With the state of |            |                          |           | SAND          | GRAVEL          |                |
| 33       | 7350239            | 595                            | 17       | 564359           | 4815901   | margin of error : 30 m - 100 m                                   | 12/24/2019       | LAIRD ROAD                          | Guelph           | Observation Wells                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          | 3.3       |               |                 |                |
| 34       | 7350240            | 586                            | 17       | 564374           |           | margin of error : 30 m - 100 m                                   |                  | LAIRD ROAD                          | Guelph           | Observation Wells                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           |               |                 |                |
| 35       | 7353873            | 582                            | 17       | 564509           |           | margin of error : 30 m - 100 m                                   | 2/21/2020        |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           |               |                 |                |
| 36       | 7359712            | 345                            | 17       | 565212           | 4815906   | margin of error : 30 m - 100 m                                   | 5/28/2020        | 25 Poppy St W                       | Guelph           | Observation Wells                 | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 13.72                    |           | TOPSOIL       |                 |                |
|          |                    |                                |          |                  |           |                                                                  | L                |                                     |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          | 15.2      |               | SAND            | GRAVEL         |
| 37       | 7359713            | 394                            | 17       | 565316           | 4815759   | margin of error : 30 m - 100 m                                   | 5/28/2020        | 25 Poppy Dr W                       | Guelph           | Observation Wells                 | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 15.24                    | 0.3       | TOPSOIL       | L               |                |
|          | 7270025            | 500                            | 1        | F.C.42.55        | 4045635   |                                                                  | 40/40/2022       | 442 L-1-d Dd                        | Contab           | Ab and an ad Other                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           | SILT          | SAND            | GRAVEL         |
| 38       | 7370925<br>7370926 | 590<br>592                     | 17<br>17 | 564365<br>564365 |           | margin of error : 30 m - 100 m<br>margin of error : 30 m - 100 m |                  | 412 Laird Road<br>412 Laird Road    | Guelph           | Abandoned-Other                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |           |               |                 |                |
| 39       | 7379281            | 592<br>617                     | 17       |                  |           | margin of error : 30 m - 100 m<br>margin of error : 30 m - 100 m |                  | 412 Laird Road<br>489 Clair Rd West | Guelph<br>Guelph | Abandoned-Other Observation Wells | Monitoring and Test Holo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                          | 0.3       | TOPSOIL       |                 | LOOSE          |
| 40       | /3/3201            | 01/                            | '/       | 304345           | 4013492   | margin of error . 50 m - 100 m                                   | 1/2//2021        | 403 Ciaii Nu West                   | Gueipii          | Observation wens                  | Monitoring and Test Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                          |           | STONES        | SAND            | HARD           |
| 41       | 7416891            | 569                            | 17       | 564534           | 1 4815302 | margin of error : 30 m - 100 m                                   | 5/10/2022        |                                     | _                | +                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          | 9.1       | 5.51425       | 5, 10           |                |
| 42       | 7437262            | 709                            | 17       | 565600           |           | margin of error : 30 m - 100 m                                   |                  | 2090 Gordon St.                     | Guelph           | Observation Wells                 | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 21.70                    | 22 R      | SAND          | GRAVEL          | HARD           |
| 43       | 7445981            | 606                            | 17       |                  |           | margin of error : 30 m - 100 m                                   | 3/15/2023        |                                     | - Cucipii        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 22.70                    |           |               |                 |                |
|          |                    |                                |          |                  | .5250 71  | 1 . 3                                                            |                  |                                     |                  | 1                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1          | ·                        |           |               | -               |                |

Appendix C – Borehole Logs



# **BORING NUMBER BH 1 (MW)**

PAGE 1 OF 1

| CLIE         | ENT .                 | John Fa        | arley and Home Opportunities                                                | PRO       | JECT NAME                   | Pro           | posed                     | Reside   | ential [ | Develo     | oment                                |              |                                               | _            |
|--------------|-----------------------|----------------|-----------------------------------------------------------------------------|-----------|-----------------------------|---------------|---------------------------|----------|----------|------------|--------------------------------------|--------------|-----------------------------------------------|--------------|
| PRC          | JECT                  | NUMBE          | G4836-24-3                                                                  | PRO       | JECT LOCA                   | TION          | 280 C                     | lair Ro  | oad W    | est, Gu    | elph, ON                             |              |                                               | _            |
| DAT          | E STA                 | RTED           | 4/3/24 <b>COMPLETED</b> 4/3/24                                              | GROUNI    | D ELEVATIO                  | N <u>34</u>   | 1.392 ı                   | n Geo    | detic    |            | HOL                                  | E SIZE       | 150m                                          | <u>1</u> m   |
| DRII         | LLING                 | CONTR          | RACTOR Arrow                                                                | GROUNI    | WATER LE                    | VELS          | :                         |          |          |            |                                      |              |                                               |              |
| DRII         | LLING                 | METHO          | CME-45 Truck                                                                |           | TTIME OF D                  |               |                           |          |          |            |                                      |              |                                               | _            |
|              |                       |                | CHECKED BY AL                                                               |           | FEND OF DE                  |               |                           |          |          |            |                                      |              |                                               | _            |
| NOT          | ES _                  |                |                                                                             | Al        | TER DRILLI                  | NG _          |                           |          |          |            |                                      |              |                                               | _            |
| ELEV.<br>(m) | DEPTH<br>(m)          | GRAPHIC<br>LOG | MATERIAL DESCRIPTION  DEPTI-                                                |           | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY (cm) | HEADSPACE<br>VAPOUR (ppm) | ANALYSIS |          | 20 4<br>PL | PT N VALUE 4<br>60 60<br>MC<br>60 60 | 80<br>LL<br> | WELL                                          | CONSTRUCTION |
| 341          | -<br>-<br>-<br>-      |                | 250mm of silty sand, some gravel, scattered organic inclusions; dark brown, | 1 1       | 1-2-3-3<br>(5)              | 41            | ND                        |          | <b>1</b> | •          |                                      |              |                                               |              |
| 340          | -<br>1<br>-           |                | no odour, no staining FILL                                                  | SS 2      | 2-5-7-9<br>(12)             | 36            | ND                        |          |          |            |                                      |              |                                               |              |
|              | 2                     | 。<br>。<br>〉    | inclusions; brown, moist,<br>no odour, no staining<br>SAND AND GRAVEL       | SS 3      | 9-8-19-31<br>(27)           | 30            | ND                        |          | •        |            |                                      |              |                                               |              |
| 339          | -<br>-<br>-<br>3      |                | compact to very dense,                                                      | SS 4      | 18-39-31-<br>34<br>(70)     | 3             | ND                        |          | •        |            |                                      |              |                                               |              |
| 338          | -<br>-<br>-<br>-<br>- |                |                                                                             | SS 5      | 19-23-20-<br>27<br>(43)     | 43            | ND                        |          | •        |            |                                      |              |                                               |              |
| 337          | <u>4</u>              | 000            |                                                                             | ≥ SS<br>6 | 50/0.08<br>50/75mm          | 0             | ND /                      |          |          |            |                                      | >>/          |                                               |              |
|              | -<br>- 5              |                |                                                                             | SS 7      | 10-7-9-6<br>(16)            | 25            | ND                        |          | • 🛦      |            |                                      |              |                                               |              |
| 336          | -<br>-<br>- 6         |                |                                                                             |           |                             |               |                           |          |          |            |                                      |              |                                               |              |
| 335          | -<br>-<br>-<br>-<br>- |                |                                                                             |           |                             |               |                           |          |          |            |                                      |              |                                               |              |
| 334          | - 7<br>-<br>-<br>-    |                | 7.6                                                                         |           |                             |               |                           |          |          |            |                                      |              |                                               |              |
|              |                       |                | End of Borehole at 7.62 mbgs Due to<br>Auger Refusal                        |           |                             |               |                           |          |          |            |                                      | ,            | <u>r.                                    </u> |              |

|              |               | JL                      | P                                                                                     |                                               |                             |               |                           | BC       | RING NU                     |       | <b>BH 2</b><br>1 OF 1 |
|--------------|---------------|-------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------|---------------|---------------------------|----------|-----------------------------|-------|-----------------------|
| CLIE         | NT _          | John Fa                 | arley and Home Opportunities                                                          |                                               |                             |               |                           |          | ential Developme            |       |                       |
| DAT          | E STA<br>LING | RTED CONTR              | ### G4836-24-3  ###################################                                   | GROUND ELEVATION 341.544 m Geodetic HOLE SIZE |                             |               |                           |          |                             |       |                       |
| LOG          | GED I         | BY M                    | CHECKED BY AL                                                                         | AT END OF DRILLING                            |                             |               |                           |          |                             |       |                       |
| ELEV.<br>(m) | DEPTH<br>(m)  | O                       | MATERIAL DESCRIPTION  DEPTH (m                                                        | SAMPLE TYPE NUMBER                            | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY (cm) | HEADSPACE<br>VAPOUR (ppm) | ANALYSIS | ▲ SPT N  20 40  PL M  20 40 | 60 80 | WELL                  |
| 341-         | -             |                         | TOPSOIL 250mm of silty sand, some gravel, scattered organic inclusions; dark brown,   | ss<br>1                                       | 4-5-9-13<br>(14)            | 41            | ND                        |          | •                           |       |                       |
| -            | 1             | 0000                    | moist, no odour, no staining  SAND AND GRAVEL medium to coarse grained; brown, moist, | SS 2                                          | 26-17-15-<br>20<br>(32)     | 25            | ND                        |          | •                           |       |                       |
| 340-         | 2             |                         | compact to very dense,<br>no odour, no staining                                       | SS<br>3                                       | 14-15-14-<br>20<br>(29)     | 36            | ND                        |          | •                           |       |                       |
| 339-<br>-    | 3             |                         |                                                                                       | SS 4                                          | 28-29-17-<br>14<br>(46)     | 41            | ND                        |          | •                           |       |                       |
| 338-         | -             |                         |                                                                                       | SS<br>5                                       | 25-50/0.08<br>50/75mm       | 0             | ND                        |          | •                           | >     |                       |
| -            | 4             | $\circ$ $\circ$ $\circ$ |                                                                                       | SS<br>6                                       | 27-46-23-<br>19<br>(69)     | 30            | ND                        |          | •                           |       |                       |
| 337-         | 5             | , O<br>, O              |                                                                                       | SS 7                                          | 25-50/0.13<br>50/125mm      | 33            | ND                        |          | •                           | >     | 2> <b>A</b>           |
| 336-<br>-    | -             |                         |                                                                                       |                                               |                             |               |                           |          |                             |       |                       |
| 335-         | 6             |                         |                                                                                       | ⊠ SS<br>8                                     | 50/0.10<br>50/100mm         | 15            | , ND                      |          | •                           | >     | >                     |

8.8

End of Borehole at 8.83 mbgs Due to Auger Refusal

JLP Services Inc., www.jlpservices.ca

333-

PAGE 1 OF 1

|                | 7.1             |             |
|----------------|-----------------|-------------|
|                | JL              | P           |
| Geotechnical & | Environmental C | onsultaves: |

| CLIE           | NT _         | John Fa        | arley and Home Opportunities                                                        | PROJECT NAME Proposed Residential Development |                             |               |                           |          |                                                     |                      |  |
|----------------|--------------|----------------|-------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------|---------------|---------------------------|----------|-----------------------------------------------------|----------------------|--|
| PRO            | JECT         | NUMBE          | <b>ER</b> <u>G4836-24-3</u>                                                         | PRO                                           | JECT LOCA                   | TION          | 280 C                     | lair Ro  | oad West, Guelph, ON                                |                      |  |
| DAT            | E STA        | RTED           | 4/3/24 <b>COMPLETED</b> 4/3/24                                                      | GROUNI                                        | D ELEVATIO                  | N <u>34</u>   | 2.149 ı                   | m Ged    | odetic HOLE SIZE 150                                | <u>0mr</u>           |  |
| DRIL           | LING         | CONTR          | RACTOR Arrow                                                                        | GROUNI                                        | WATER LE                    | VELS          | :                         |          |                                                     |                      |  |
| DRIL           | LING         | METHO          | CME-45 Truck                                                                        | A                                             | TTIME OF D                  | RILLIN        | IG                        |          |                                                     |                      |  |
| LOG            | GED E        | <b>BY</b> _M(  | CHECKED BY AL                                                                       | AT END OF DRILLING                            |                             |               |                           |          |                                                     |                      |  |
| NOT            | ES _         |                |                                                                                     | AFTER DRILLING                                |                             |               |                           |          |                                                     |                      |  |
| ELEV.<br>(m)   | DEPTH<br>(m) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION  DEPTH (m)                                                     |                                               | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY (cm) | HEADSPACE<br>VAPOUR (ppm) | ANALYSIS | A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80 | WELL<br>CONSTRUCTION |  |
| 342-           | _            |                | TOPSOIL 300mm of silty sand, some gravel, scattered organic inclusions; dark brown, | SS<br>1                                       | 2-9-10-22<br>(19)           | 36            | ND                        |          | •                                                   |                      |  |
| -<br>341-<br>- | 1            | )<br>Ø 0       | SAND AND GRAVEL                                                                     | SS 2                                          | 15-24-25-<br>36<br>(49)     | 30            | ND                        |          | •                                                   |                      |  |
| -<br>-<br>340- | 2            |                | no odour, no staining                                                               | SS<br>3                                       | 27-40-24-<br>21<br>(64)     | 30            | ND                        |          | •                                                   |                      |  |
| 3.0            | -            | Λ              | End of Borehole at 2.37 mbgs Due to<br>Auger Refusal                                | SS<br>4                                       | 50/0.08<br>50/75mm          | 0             | ND /                      |          | <u> </u>                                            |                      |  |

PAGE 1 OF 1

| -             | _           |                   |
|---------------|-------------|-------------------|
|               | J           | LP                |
| Sententaine E | Estallinami | eatel Consultants |

| PROJECT NAME Proposed Residential Development        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                          |  |  |  |  |  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| PROJECT LOCATION 280 Clair Road West, Guelph, ON     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                          |  |  |  |  |  |
| GROUND ELEVATION                                     | ON 337.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54 m Geo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | odetic HOLE SIZE 150mr                                                                                                                                                   |  |  |  |  |  |
| GROUND WATER L                                       | EVELS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                          |  |  |  |  |  |
| AT TIME OF DRILLING                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                          |  |  |  |  |  |
| AT END OF DRILLING                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                          |  |  |  |  |  |
| AFTER DRILL                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                          |  |  |  |  |  |
| SAMPLE TYPE<br>NUMBER<br>BLOW<br>COUNTS<br>(N VALUE) | RECOVERY (cm) HEADSPACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VAPOUR (ppm) ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  PL MC UL  20 40 60 80  PL MC UL  20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                             |  |  |  |  |  |
| SS 2-2-3-3<br>1 (5)                                  | 41 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                        |  |  |  |  |  |
| SS 4-6-13-20 (19)                                    | 28 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                        |  |  |  |  |  |
| SS 3 18-27-50-<br>47 (77)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                        |  |  |  |  |  |
| SS 14-28-25-<br>23 (53)                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                        |  |  |  |  |  |
| SS 23-23-31-<br>43 (54)                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                        |  |  |  |  |  |
| SS 6 21-41-43-<br>32 (84)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                        |  |  |  |  |  |
| SS 7 15-13-10-<br>25 (23)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                        |  |  |  |  |  |
| SS 8 22-17-28-<br>50 (45)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                        |  |  |  |  |  |
|                                                      | GROUND ELEVATION GROUND WATER LAT TIME OF IT AT END OF IT | GROUND ELEVATION _337.3 GROUND WATER LEVELS:  AT TIME OF DRILLING AT END OF DRILLING AFTER DRILLING    AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING   AFTER DRILLING | GROUND ELEVATION 337.354 m Geo GROUND WATER LEVELS:  AT TIME OF DRILLING AT END OF DRILLING AFTER DRILLING  AFTER DRILLING  AFTER DRILLING  (wadd) MODON NO SISA TWNP  3 |  |  |  |  |  |

# BORING NUMBER BH 5 (MW) PAGE 1 OF 1

| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -11           |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IJ            | $_{P}$ |
| Contrado de la Contra | Familiarament |        |

| CLIE         | CLIENT _ John Farley and Home Opportunities |                  |                                                                                                                         |             |         | PROJECT NAME Proposed Residential Development |               |                           |          |                                     |           |          |  |  |
|--------------|---------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------|-------------|---------|-----------------------------------------------|---------------|---------------------------|----------|-------------------------------------|-----------|----------|--|--|
| PRO          | JECT                                        | NUMB             | ER <u>G4836-24-3</u>                                                                                                    | P           | PRO.    | JECT LOCA                                     | TION          | 280 C                     | lair Ro  | oad West, Guelph                    | n, ON     |          |  |  |
| DAT          | E STA                                       | ARTED            | 4/5/24 <b>COMPLETED</b> 4/5/24                                                                                          | GRO         | UND     | ELEVATIO                                      | N <u>33</u>   | 5.445 r                   | n Geo    | detic                               | HOLE SIZE | _150m    |  |  |
| DRII         | LLING                                       | CONT             | RACTOR Arrow                                                                                                            | GRO         | UND     | WATER LE                                      | VELS          | :                         |          |                                     |           |          |  |  |
| DRII         | LLING                                       | METH             | CME-45 Truck                                                                                                            |             | ΑT      | TIME OF D                                     | RILLIN        | IG                        |          |                                     |           |          |  |  |
| LOG          | GED                                         | <b>BY</b> _M     | CHECKED BY AL                                                                                                           |             |         |                                               |               |                           |          |                                     |           |          |  |  |
| ПОТ          | ES _                                        |                  |                                                                                                                         | $ar{ar{A}}$ | AF      | TER DRILLI                                    | NG _          | 5.33 m                    | / Elev   | 330.12 m                            |           |          |  |  |
| ELEV.<br>(m) | DEPTH<br>(m)                                | GRAPHIC<br>LOG   | MATERIAL DESCRIPTION  DEPTI                                                                                             |             | NOMBEK  | BLOW<br>COUNTS<br>(N VALUE)                   | RECOVERY (cm) | HEADSPACE<br>VAPOUR (ppm) | ANALYSIS | <b>∆</b> SPT N \ 20 40  PL MC 20 40 | 60 80     | WELL     |  |  |
| 335          | -                                           | 1/ 21/           | TOPSOIL  400mm of silty sand, some gravel, scattered organic inclusions; dark brown,                                    |             | SS<br>1 | 2-3-7-6<br>(10)                               | 15            | ND                        |          | •                                   |           |          |  |  |
|              | 1                                           |                  | moist, no odour, no staining  FILL  1.3                                                                                 | 1 1 1       | SS<br>2 | 3-4-5-9<br>(9)                                | 51            | ND                        |          |                                     |           |          |  |  |
| 334          | 2                                           | ° ()             | sand and gravel, some silt; brown, moist, no odour, no staining  SAND AND GRAVEL  trace silt; brown, moist, very dense, |             | SS<br>3 | 50<br>50/100mm                                | 0             | ND                        |          | •                                   |           |          |  |  |
| 333-         | 3                                           | 。<br>)<br>。<br>) | no odour, no staining                                                                                                   |             | SS<br>4 | 35-44-50<br>(94)<br>50/75mm                   | 25            | ND                        |          | •                                   |           | <b>A</b> |  |  |
| 332-         | -                                           | 。<br>。<br>)<br>。 |                                                                                                                         |             | 5<br>5  | 40-33-50<br>(83)<br>50/50mm                   | 28            | ND                        |          | •                                   |           |          |  |  |
| 331-         | 4                                           | 。<br>。<br>)      |                                                                                                                         |             | SS<br>6 | 50<br>50/50mm                                 | 0             | ND                        |          | •                                   |           |          |  |  |
|              | 5                                           |                  |                                                                                                                         |             | SS<br>7 | 24-33-36-<br>50<br>(69)<br>50/125mm           | 38            | ND                        |          |                                     |           |          |  |  |
| 330-         | -<br>-<br>-<br>-                            | 0<br>0<br>0      | wet at 5.6 mbgs                                                                                                         | $ \Lambda $ | SS<br>8 | 19-30-25-<br>26<br>(55)                       | 41            | ND                        |          |                                     | _         |          |  |  |
|              |                                             |                  | End of Borehole at 5.94 mbgs                                                                                            |             |         |                                               |               |                           |          |                                     |           |          |  |  |

PAGE 1 OF 1

|               | J          | LP               |
|---------------|------------|------------------|
| Geotechnics 4 | Environmen | ital Consultants |

| CLIE         | LIENT John Farley and Home Opportunities |                |                                                                                   |                      | PROJECT NAME Proposed Residential Development |               |                                               |         |                                                     |           |       |  |  |
|--------------|------------------------------------------|----------------|-----------------------------------------------------------------------------------|----------------------|-----------------------------------------------|---------------|-----------------------------------------------|---------|-----------------------------------------------------|-----------|-------|--|--|
| PRO          | JECT                                     | NUMBE          | <b>ER</b> <u>G4836-24-3</u>                                                       | PRO                  | JECT LOCA                                     | TION          | 280 C                                         | lair Ro | oad West, Guelp                                     | h, ON     |       |  |  |
| DAT          | E STA                                    | RTED           | 4/4/24 <b>COMPLETED</b> 4/4/24                                                    | GROUNI               | ELEVATIO                                      | N <u>33</u>   | 5.99 m                                        | Geod    | letic                                               | HOLE SIZE | 150mn |  |  |
| DRIL         | LING                                     | CONTR          | RACTOR Arrow                                                                      | GROUND WATER LEVELS: |                                               |               |                                               |         |                                                     |           |       |  |  |
| DRIL         | LING                                     | METHO          | CME-45 Truck                                                                      | A                    | TIME OF D                                     | RILLIN        | NG                                            |         |                                                     |           |       |  |  |
| LOG          | GED I                                    | <b>BY</b> _M(  | CHECKED BY AL                                                                     | AT END OF DRILLING   |                                               |               |                                               |         |                                                     |           |       |  |  |
| NOT          | ES _                                     |                |                                                                                   | AF                   | TER DRILLI                                    | NG _          |                                               |         |                                                     |           |       |  |  |
| ELEV.<br>(m) | DEPTH<br>(m)                             | GRAPHIC<br>LOG | MATERIAL DESCRIPTION  DEPTH                                                       |                      | BLOW<br>COUNTS<br>(N VALUE)                   | RECOVERY (cm) | RECOVERY (cm) HEADSPACE VAPOUR (ppm) ANALYSIS |         | A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80 |           | WELL  |  |  |
| -            | -                                        | · O            |                                                                                   | SS<br>1              | 1-2-3-3<br>(5)                                | 18            | ND                                            |         | •                                                   |           |       |  |  |
| 335-         | 1                                        |                | moist, no odour, no staining  SAND AND GRAVEL  trace silt brown maint years dense | SS 2                 | 17-29-30-<br>44<br>(59)                       | 38            | ND                                            |         | •                                                   |           |       |  |  |
| 334-         | 2                                        |                | no odour, no staining                                                             | SS 3                 | 23-29-37-<br>41<br>(66)                       | 43            | ND                                            |         | •                                                   |           |       |  |  |
| -            | -                                        | 0. (\).9       | End of Borehole at 2.32 mbgs Due to Auger Refusal                                 | AU<br>4              | 50/0.03<br>50/25mm                            |               |                                               |         | <u> </u>                                            |           | 1     |  |  |

PAGE 1 OF 1

| - |     |
|---|-----|
|   | JIP |
| - |     |

| CLIE         | - INI        | JOHN F       | ariey and Home Opportunities                                                        | PRO                   | JECT NAME                     | Pro           | posea                     | Resid    | entiai i | Developr             | nent     |          |          | —            |
|--------------|--------------|--------------|-------------------------------------------------------------------------------------|-----------------------|-------------------------------|---------------|---------------------------|----------|----------|----------------------|----------|----------|----------|--------------|
| PRC          | JECT         | NUMBI        | ER <u>G4836-24-3</u>                                                                | PRO                   | JECT LOCA                     | TION          | 280 C                     | lair Ro  | oad W    | est, Gue             | lph, Ol  | ١        |          | _            |
| DAT          | E STA        | RTED         | 4/4/24 <b>COMPLETED</b> 4/4/24                                                      | GROUNI                | D ELEVATION                   | N <u>34</u>   | 1.596 ı                   | m Ged    | detic    |                      | _ HO     | LE SIZE  | 150r     | <u>mn</u>    |
| DRII         | LING         | CONTR        | RACTOR Arrow                                                                        | GROUNI                | WATER LE                      | VELS          | :                         |          |          |                      |          |          |          |              |
| DRII         | LING         | METHO        | CME-45 Truck                                                                        | A                     | TIME OF D                     | RILLIN        | NG                        |          |          |                      |          |          |          |              |
| LOG          | GED I        | <b>BY</b> _M | C CHECKED BY AL                                                                     | A                     | FEND OF DE                    | RILLIN        | G                         |          |          |                      |          |          |          |              |
| NOT          | ES _         |              |                                                                                     | Al                    | TER DRILLI                    | NG _          |                           |          |          |                      |          |          |          | _            |
| ELEV.<br>(m) | DEPTH<br>(m) | 0            | MATERIAL DESCRIPTION  DEPTH (m)                                                     | SAMPLE TYPE<br>NUMBER | BLOW<br>COUNTS<br>(N VALUE)   | RECOVERY (cm) | HEADSPACE<br>VAPOUR (ppm) | ANALYSIS |          | ▲ SPT 20 40 PL 20 40 | MC       | 80<br>LL | WELL     | CONSTRUCTION |
| 341          | -            |              | TOPSOIL 200mm of silty sand, some gravel, scattered organic inclusions; dark brown, | SS<br>1               | 5-15-24-26<br>(39)            | 33            | ND                        |          | •        | <b>A</b>             |          |          |          |              |
|              | 1            | 00           | SAND AND GRAVEL                                                                     | SS 2                  | 19-18-<br>50/0.13<br>50/125mm | 30            | ND                        |          | •        |                      |          | ,        | >>       |              |
| 340-         | 2            |              | trace silt, brown; moist, compact to very<br>dense,<br>no odour, no staining        | SS<br>3               | 50/0.08<br>50/75mm            | 3             | ND /                      |          | •        |                      |          | ;        | >> 🛦     |              |
| 339-         | 3            |              |                                                                                     | SS 4                  | 30-18-18-<br>15<br>(36)       | 33            | ND                        |          | •        | <b>A</b>             |          |          |          |              |
| 338-         | -            |              |                                                                                     | SS<br>5               | 10-21-23-<br>26<br>(44)       | 33            | ND                        |          | •        | )                    | <b>†</b> |          |          |              |
|              | 4            |              |                                                                                     | SS<br>6               | 21-29-21-<br>23<br>(50)       | 28            | ND                        |          | •        | /                    |          |          |          |              |
| 337-         | 5_           |              |                                                                                     | SS 7                  | 14-13-11-<br>22<br>(24)       | 38            | ND                        |          | •        |                      |          |          |          |              |
| 336-         | -            | , O<br>, O,  | 5.8                                                                                 | SS<br>8               | 40-39-50<br>(89)<br>50/150mm  | 43            | ND                        |          | •        |                      | \<br>    |          | <b>.</b> |              |
|              |              |              | End of Borehole at 5.79 mbgs Due to<br>Auger Refusal                                |                       |                               |               |                           |          |          |                      |          |          |          |              |

### **BORING NUMBER BH 8 (MW)**

PAGE 1 OF 1

| Geotechnical & Environmental Consultants   |                                               |
|--------------------------------------------|-----------------------------------------------|
| CLIENT _John Farley and Home Opportunities | PROJECT NAME Proposed Residential Development |
|                                            |                                               |

PROJECT NUMBER G4836-24-3

PROJECT LOCATION 280 Clair Road West, Guelph, ON

DATE STARTED 4/5/24

COMPLETED 4/5/24

GROUND ELEVATION 341.207 m Geodetic

HOLE SIZE 150mm

GROUND WATER LEVELS:

AT TIME OF DRILLING --
LOGGED BY SJ

CHECKED BY AL

AT END OF DRILLING --
AFTER DRILLING ---

▲ SPT N VALUE ▲ HEADSPACE VAPOUR (ppm) RECOVERY (cm) WELL CONSTRUCTION SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) GRAPHIC LOG **ANALYSIS** ELEV. (m) DEPTH (m) MATERIAL DESCRIPTION DEPTH **TOPSOIL** SS 341 0.3 1-2-4-17 36 ND 300mm of silty sand, some gravel; scattered organic inclusions, dark brown, 0.8 16-15-21no odour, no staining SS ND 25 2 340 **FILL** (36)silty sand, trace gravel, trace organic ö 0 inclusions; brown, moist, 18-30-32-SS 43 33 ND no odour, no staining (62)**SAND AND GRAVEL** 339 medium to coarse grained; brown, moist, Ø. 10-23-39-0 SS compact to very dense, ND 4 no odour, no staining (62)Ø. 15-33-44-338 SS 0 36 ND 50 5 (77)50/0.01 . O. 6 50/10mm l, O 337

End of Borehole at 4.42 mbgs Due to Auger Refusal

#### **BORING NUMBER BH 9 (MW)** PAGE 1 OF 1 CLIENT John Farley and Home Opportunities **PROJECT NAME** Proposed Residential Development PROJECT NUMBER G4836-24-3 PROJECT LOCATION 280 Clair Road West, Guelph, ON GROUND ELEVATION 335.795 m Geodetic HOLE SIZE 150mm DATE STARTED 4/4/24 COMPLETED 4/4/24 **GROUND WATER LEVELS: DRILLING CONTRACTOR** Arrow DRILLING METHOD CME-45 Truck AT TIME OF DRILLING \_---LOGGED BY MC CHECKED BY AL AT END OF DRILLING ---**NOTES ▼ AFTER DRILLING** 5.69 m / Elev 330.11 m ▲ SPT N VALUE ▲ HEADSPACE VAPOUR (ppm) WELL CONSTRUCTION SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) GRAPHIC LOG **ANALYSIS** DEPTH (m) RECOVERY ELEV. MATERIAL DESCRIPTION DEPTH **TOPSOIL** 0.3 SS 1-1-2-3 25 ND 300mm of silty sand, some gravel, scattered organic inclusions; dark brown, moist, 335 0.9 13-30-37no odour, no staining SS 38 41 ND 2 FILL (67)• (\) silty sand, trace gravel; brown, moist, O 20-34-48no odour, no staining SS 0 50/0.08 ND 334 36 3 **SAND AND GRAVEL** 50/125mm medium to coarse grained; brown, moist to wet, very dense, 34-50/0.08 ND Ö no odour, no staining 50/75mm 0 333 26-29-31-SS Ø. ND 38 37 5 0 (60)332 15-36-37-SS 46 38 ND O. 6 (73)0 32-50-SS 331 ND 50/0.13 50/125mm 0 0 20-27-32-SS 37 38 ND 8 330 (59)6 0 • 0 ø 329 0 13-12-23-SS 50 ND 9 (35)0 0 328 SS 0 5-13-16-10 35 ND 10 (29)327

End of Borehole at 8.99 mbgs

JLP Services Inc.

### **BORING NUMBER BH10 (MW)**

PAGE 1 OF 1

|                                                              | PAGE 1 OF 1                                         |
|--------------------------------------------------------------|-----------------------------------------------------|
| Geolechnical & Environmental Consultants                     |                                                     |
| CLIENT John Farley and Home Opportunities                    | PROJECT NAME Proposed Residential Development       |
| PROJECT NUMBER _G4836-24-3                                   | PROJECT LOCATION 280 Clair Road West, Guelph, ON    |
| DATE STARTED         4/5/24         COMPLETED         4/5/24 | GROUND ELEVATION 335.437 m Geodetic HOLE SIZE 150ml |
| DRILLING CONTRACTOR 3D Drilling                              | GROUND WATER LEVELS:                                |

AT TIME OF DRILLING \_---

LOGGED BY SJ CHECKED BY AL AT END OF DRILLING --
NOTES 

AT END OF DRILLING 5.30 m / Ele

▼ **AFTER DRILLING** 5.30 m / Elev 330.14 m ▲ SPT N VALUE ▲ HEADSPACE VAPOUR (ppm) RECOVERY (cm) WELL CONSTRUCTION SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) GRAPHIC LOG **ANALYSIS** ELEV. (m) DEPTH (m) MATERIAL DESCRIPTION DEPTH **TOPSOIL** SS 1-2-2-3 51 ND 400mm of silty sand, some gravel, 335 scattered organic inclusions; dark brown, 0.8 29-12-18no odour, no staining SS ND 51 2 **FILL** (30)silty sand, trace gravel; brown, moist, 334 Ö 0 no odour, no staining 15-26-25-SS ND 50 41 **SAND AND GRAVEL** o () (51)medium to coarse grained, some silt; brown, moist to wet, very dense, Ø. 17-30-47-333 0 SS no odour, no staining 43 ND 4 (77)• 0 Ø. SS 27-49-50 ND 0 5 (99)332 49-50 25 ND Ö. 0 331 SS 7 50 20 ND 0 330-Ø. 0 6

End of Borehole at 6.10 mbgs Due to Auger Refusal

JLP Services Inc., www.jlpservices.ca

DRILLING METHOD CME-45 Truck

| BORING | <b>NUMBER</b> | BH11 | (MW)   |
|--------|---------------|------|--------|
|        |               | PAGE | 1 OF 1 |
|        |               |      |        |

|                |                 |                | arley and Home Opportunities                                                                                           |              | JECT NAME                   |               | •                         |          |          | •                                            |        |
|----------------|-----------------|----------------|------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------|---------------|---------------------------|----------|----------|----------------------------------------------|--------|
|                |                 |                | ER _G4836-24-3                                                                                                         |              |                             |               |                           |          |          | t, Guelph, ON                                |        |
|                |                 |                |                                                                                                                        |              |                             |               |                           | m Geo    | odetic   | HOLE SIZE                                    | _150mi |
|                |                 |                |                                                                                                                        |              | D WATER LE                  |               |                           |          |          |                                              |        |
|                |                 |                | CME-45 Truck                                                                                                           |              |                             |               |                           |          |          |                                              |        |
|                |                 |                | CHECKED BY AL                                                                                                          |              |                             |               |                           |          |          |                                              |        |
| NOT            | ES _            |                |                                                                                                                        | - <u>⊼</u> A | FTER DRILLI                 | NG _          | 3.26 m                    | / Elev   | 330.15 r | n                                            |        |
| ELEV.<br>(m)   | DEPTH<br>(m)    | GRAPHIC<br>LOG | MATERIAL DESCRIPTION  DEPTI-                                                                                           |              | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY (cm) | HEADSPACE<br>VAPOUR (ppm) | ANALYSIS | 20<br>Pi | ▲ SPT N VALUE ▲  40 60 80  L MC LL  40 60 80 | WELL   |
| -<br>-336<br>- | -<br>-          |                | TOPSOIL  300mm of silty sand, some gravel, scattered organic inclusions; dark brown,                                   | 1            | 6-12-23-27<br>(35)          | 41            | ND                        |          | •        |                                              |        |
| -<br>-<br>-335 | 1               |                | no odour, no staining                                                                                                  | SS 2         | 45-33-23-<br>43<br>(56)     | 36            | ND                        |          | •        |                                              |        |
| -<br>-<br>-    | 2               |                | sand and gravel, trace silt; brown, moist, no odour, no staining  SAND AND GRAVEL medium to coarse grained, some silt; |              |                             |               |                           |          |          |                                              |        |
| -334<br>-<br>- | 3               |                |                                                                                                                        | SS<br>3      | 34-32-32-<br>22<br>(64)     | 53            | ND                        |          | •        | <b>A</b>                                     |        |
| -<br>-333<br>- | _               |                |                                                                                                                        | SS 4         | 14-30-23-<br>19<br>(53)     | 36            | ND                        |          | •        | •                                            |        |
| -<br>-<br>-332 | 4               | 000            |                                                                                                                        | SS<br>5      | 16-42-19-<br>33<br>(61)     | 48            | ND                        |          | •        |                                              |        |
| -<br>-<br>-    | 5               |                |                                                                                                                        | SS 6         | 18-22-41-<br>49<br>(63)     | 46            | ND                        |          | •        | <b>†</b>                                     |        |
| -331<br>-<br>- | 6               |                |                                                                                                                        |              | 11-33-27-                   |               |                           |          |          |                                              |        |
| -<br>-330<br>- | -<br>-<br>-<br> |                |                                                                                                                        | SS 7         | 28 (60)                     | 43            | ND                        |          | •        |                                              |        |
| -<br>-<br>329  | -<br>-          |                | sand seams at 7.2mbgs<br>wet 7.6                                                                                       | SS<br>8      | 20-17-18-<br>14<br>(35)     | 43            | ND                        |          | •        |                                              |        |
|                |                 |                | End of Borehole at 7.62 mbgs                                                                                           |              |                             |               |                           |          |          |                                              |        |

JLP Services Inc., www.jlpservices.ca

PAGE 1 OF 1

| -              | -11             |             |
|----------------|-----------------|-------------|
|                | JL              | Ρ.          |
| Geotechnical 4 | Environmental ( | Sanguitaets |

| CLIE                      | ENT _            | John Fa     | rley and Home Opportunities                                                                                              | PRO     | JECT NAME                   | Pro           | posed                     | Resid    | ential D | evelopn    | nent     |                            |                      |
|---------------------------|------------------|-------------|--------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------|---------------|---------------------------|----------|----------|------------|----------|----------------------------|----------------------|
| PROJECT NUMBER G4836-24-3 |                  |             | PROJECT LOCATION _280 Clair Road West, Guelph, ON                                                                        |         |                             |               |                           |          |          |            |          |                            |                      |
| DAT                       | E STA            | RTED        | 4/5/24 <b>COMPLETED</b> 4/5/24                                                                                           | GROUNI  | ELEVATIO                    | N <u>34</u>   | 0.741                     | m Ged    | detic    |            | _ HOLE   | SIZE                       | _150mm               |
| DRII                      | LLING            | CONT        | ACTOR 3D Drilling                                                                                                        | GROUNI  | WATER LE                    | VELS          | :                         |          |          |            |          |                            |                      |
| DRII                      | LLING            | METH        | CME-45 Truck                                                                                                             | A       | TIME OF D                   | RILLIN        | NG                        |          |          |            |          |                            |                      |
| LOG                       | GED              | BY S        | CHECKED BY AL                                                                                                            | A       | FEND OF DE                  | RILLIN        | G                         |          |          |            |          |                            |                      |
| тои                       | ES _             |             |                                                                                                                          | Al      | TER DRILLI                  | NG _          |                           |          |          |            |          |                            |                      |
| ELEV.<br>(m)              | DEPTH<br>(m)     | O           | MATERIAL DESCRIPTION  DEPTI                                                                                              |         | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY (cm) | HEADSPACE<br>VAPOUR (ppm) | ANALYSIS | 2        | 0 40<br>PL |          | 80<br>LL<br><b>H</b><br>80 | WELL<br>CONSTRUCTION |
|                           | <br> -<br> -     |             | TOPSOIL  225mm of silty sand, some gravel, scattered organic inclusions; dark brown,                                     | 1       | 1-4-7-7<br>(11)             | 43            | ND                        |          | •        | •          |          |                            |                      |
| 340                       | 1                | • ()        | no odour, no staining FILL                                                                                               | SS 2    | 10-26-12-<br>14<br>(38)     | 33            | ND                        |          | •        |            |          |                            |                      |
| 339                       | 2                | , O         | sand and gravel, trace silt; brown, moist, no odour, no staining  SAND AND GRAVEL some silt; brown, moist to wet, dense, | SS 3    | 17-22-20-<br>17<br>(42)     | 28            | ND                        |          | •        |            |          |                            |                      |
| 338                       | -<br>-<br>-<br>3 | ØC          | no odour, no staining 2.  SILT TILL silt, trace gravel; brown, wet,                                                      | SS 4    | 16-23-17-<br>36<br>(40)     | 25            | ND                        |          | •        | •          |          |                            |                      |
|                           | - 3<br>-<br>-    |             | no odour, no staining                                                                                                    | SS 5    | 25-29-31-<br>45<br>(60)     | 33            | ND                        |          | •        |            |          |                            |                      |
| 337                       | 4                | 。<br>。<br>) | SAND AND GRAVEL medium to coarse grained, some silt; brown, wet, dense,                                                  | SS 6    | 11-25-46-<br>20<br>(71)     | 43            | ND                        |          | •        |            | <b>\</b> |                            |                      |
| 336                       | 5                | ° 0         | no odour, no staining                                                                                                    | SS 7    | 17-31-34-<br>46/-0.17       | 33            | ND                        |          | •        |            |          | >>                         | , <b>,</b>           |
|                           | Τ                | P           | End of Borehole at 5.33 mbgs                                                                                             | SS<br>8 | 50/0.00                     |               |                           |          |          | :          | <u>;</u> | <del>&gt;</del> >          | -                    |
|                           |                  |             |                                                                                                                          | J       |                             |               |                           |          |          |            |          |                            |                      |

PAGE 1 OF 1

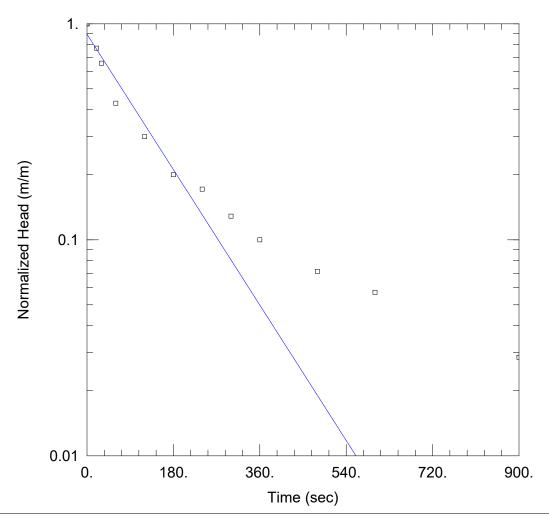
| -              | 71          |                |
|----------------|-------------|----------------|
|                | J           | _P             |
| Geotechnical & | Environment | al Consultants |

| CLIENT John Farley and Home Opportunities                                                           | PROJECT NAME Proposed Residential Development                                                                                                                                                                                |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| PROJECT NUMBER G4836-24-3                                                                           | PROJECT LOCATION 280 Clair Road West, Guelph, ON                                                                                                                                                                             |  |  |  |  |  |  |  |
| DATE STARTED         4/5/24         COMPLETED         4/5/24                                        | GROUND ELEVATION 333.883 m Geodetic HOLE SIZE 150mm                                                                                                                                                                          |  |  |  |  |  |  |  |
| DRILLING CONTRACTOR 3D Drilling                                                                     | GROUND WATER LEVELS:                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| DRILLING METHOD CME-45 Truck                                                                        | AT TIME OF DRILLING                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| LOGGED BY SJ CHECKED BY AL                                                                          | AT END OF DRILLING                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| NOTES                                                                                               | AFTER DRILLING                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| (m)                                                             | SAMPLE TYPE NUMBER NUMBER (N VALUE)  RECOVERY (cm)  ANALYSIS  ANALYSIS |  |  |  |  |  |  |  |
| TOPSOIL 200mm of silty sand, some gravel, scattered organic inclusions; dark brow moist,            | vn, \( \begin{pmatrix} 0.2 \\ 1 & 1-8-7-3 \\ 1 & (15) \end{pmatrix} & 25 \\ ND \\ \end{pmatrix} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                         |  |  |  |  |  |  |  |
| no odour, no staining  FILL silty sand, trace gravel, scattered organ                               | SS 8-15-19-23 25 ND                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| brown, moist, no odour, no staining  SAND AND GRAVEL                                                | SS 16-31-27-<br>30 (58) 33 ND                                                                                                                                                                                                |  |  |  |  |  |  |  |
| medium to coarse grained, some silt;<br>brown, moist, dense to very dense,<br>no odour, no staining | SS 31-49-50 (99) 15 ND 50/150mm                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                                                                                                     | SS 38-35-50 (85) 50/150mm 28 ND                                                                                                                                                                                              |  |  |  |  |  |  |  |
| cobbles and boulders at about 4.0mbgs                                                               | ıs IIII                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| 329- 5 )                                                                                            | SS 16-17-16-<br>6 16 (33) ND                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| 328-<br>- 6 wet at 4.6mbgs                                                                          | SS 4-4-4-11 43 ND                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|                                                                                                     | 6.7 7 (8) 43 ND                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| End of Borehole at 6.71 mbgs                                                                        |                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                                                                                                     |                                                                                                                                                                                                                              |  |  |  |  |  |  |  |

PAGE 1 OF 1

| -            |                           |
|--------------|---------------------------|
|              | JP                        |
| Control of a | Sautragmental Consultants |

| PROJECT NUMBER _ G4836-24-3 |              |                     | PROJECT NAME Proposed Residential Development PROJECT LOCATION 280 Clair Road West, Guelph, ON |                                                    |                             |               |                           |          |                                                     |  |  |
|-----------------------------|--------------|---------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|---------------|---------------------------|----------|-----------------------------------------------------|--|--|
|                             |              |                     |                                                                                                |                                                    |                             |               |                           |          | •                                                   |  |  |
|                             |              |                     |                                                                                                | GROUND ELEVATION 333.491 m Geodetic HOLE SIZE 150n |                             |               |                           |          |                                                     |  |  |
|                             |              |                     | RACTOR 3D Drilling  DD CME-45 Truck                                                            |                                                    |                             |               |                           |          |                                                     |  |  |
|                             |              |                     | CHECKED BY AL                                                                                  |                                                    |                             |               |                           |          |                                                     |  |  |
|                             |              |                     |                                                                                                |                                                    |                             |               |                           |          |                                                     |  |  |
| NOI                         |              | I                   |                                                                                                | A                                                  | TEN DRILLI                  | NG _          |                           |          |                                                     |  |  |
| (m)<br>(m)                  | DEPTH<br>(m) | GRAPHIC<br>LOG      | MATERIAL DESCRIPTION  DEPTH (m)                                                                |                                                    | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY (cm) | HEADSPACE<br>VAPOUR (ppm) | ANALYSIS | A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80 |  |  |
| 333-                        | <br> -<br> - |                     | TOPSOIL 300mm of silty sand, some gravel, scattered organic inclusions; dark brown, 0.8        | 1                                                  | 1-1-2-5<br>(3)              | 15            | ND                        |          | •                                                   |  |  |
| -<br> <br>                  | 1            | 。<br>。<br>)         | no odour, no staining FILL                                                                     | SS 2                                               | 14-26-41-<br>49<br>(67)     | 43            | ND                        |          | •                                                   |  |  |
| 332-                        | 2            |                     | no odour, no staining                                                                          | SS 3                                               | 50                          |               | ND                        |          |                                                     |  |  |
| 331-                        | 3            |                     | scattered cobbles; brown, moist, compact to very dense, no odour, no staining                  | SS 4                                               | 29-22-33-<br>34<br>(55)     | 41            | ND                        |          | •                                                   |  |  |
| 330-                        | -            |                     | cobbles and boulder at about 3.2mbgs                                                           | SS<br>5                                            | 18-50                       | 13            | ND                        |          |                                                     |  |  |
|                             | 4            | )<br><sub>0</sub> 0 |                                                                                                | SS<br>6                                            | 15-19-16-<br>12<br>(35)     | 41            | ND                        |          | •                                                   |  |  |
| 329-                        | 5            |                     |                                                                                                | SS 7                                               | 2-4-14-15<br>(18)           | 41            | ND                        |          | •                                                   |  |  |
| 328-                        | 6            |                     |                                                                                                |                                                    |                             |               |                           |          |                                                     |  |  |
| 327-                        | -<br>-<br>-  |                     | SILT TILL some sand, trace gravel; grey, wet, loose to very dense,                             | SS<br>8                                            | 1-2-3-3<br>(5)              | 25            | ND                        |          |                                                     |  |  |
| 326-                        | 7            |                     | no odour, no staining                                                                          | SS 9                                               | 16-33-36-<br>39<br>(69)     | 61            | ND                        |          | •                                                   |  |  |


# BORING NUMBER BH15 (MW) PAGE 1 OF 1

| -                | II D |
|------------------|------|
|                  | JLP  |
| Faceton balant 1 |      |

| CLIENT John Farley and Home Opportunities                    |              |                |                                                                                      | PROJECT NAME Proposed Residential Development    |                             |               |                           |          |                    |              |      |  |
|--------------------------------------------------------------|--------------|----------------|--------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------|---------------|---------------------------|----------|--------------------|--------------|------|--|
| PROJECT NUMBER _G4836-24-3                                   |              |                |                                                                                      | PROJECT LOCATION 280 Clair Road West, Guelph, ON |                             |               |                           |          |                    |              |      |  |
| DATE STARTED         4/5/24         COMPLETED         4/5/24 |              |                | GROUND ELEVATION 333.209 m Geodetic HOLE SIZE                                        |                                                  |                             |               |                           |          |                    | <u>150mn</u> |      |  |
| DRILLING CONTRACTOR 3D Drilling                              |              |                | GROUND WATER LEVELS:                                                                 |                                                  |                             |               |                           |          |                    |              |      |  |
| DRILLING METHOD CME-45 Truck                                 |              |                | AT TIME OF DRILLING                                                                  |                                                  |                             |               |                           |          |                    |              |      |  |
| LOGGED BY SJ CHECKED BY AL                                   |              |                | AT END OF DRILLING                                                                   |                                                  |                             |               |                           |          |                    |              |      |  |
| NOT                                                          | ES _         |                |                                                                                      | ₹ AF                                             | TER DRILLI                  | NG _          | 2.94 m                    | / Elev   | / 330.27 m         |              |      |  |
| ELEV.<br>(m)                                                 | DEPTH<br>(m) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION  DEPTI-                                                         |                                                  | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY (cm) | HEADSPACE<br>VAPOUR (ppm) | ANALYSIS | 20 40  PL MM 20 40 | 60 80        | WELL |  |
| 333-                                                         | -            |                | TOPSOIL  200mm of silty sand, some gravel, scattered organic inclusions; dark brown, | 1                                                | 1-4-6-12<br>(10)            | 15            | ND                        |          | •                  |              | П    |  |
| 332-                                                         | 1            |                | moist, no odour, no staining  FILL and and gravel, trace silt; brown, maint          | SS 2                                             | 20-14-28-<br>27<br>(42)     | 18            | ND                        |          | •                  |              |      |  |
|                                                              | 2            |                | no odour, no staining                                                                | SS 3                                             | 44-50                       | 15            | ND                        |          |                    |              |      |  |
| 331-                                                         | 3            |                |                                                                                      | SS 4                                             | 25-31-25-<br>27<br>(56)     | 48            | ND                        |          | •                  |              |      |  |
| 330-                                                         |              |                |                                                                                      | SS<br>5                                          | 36-37-39-<br>27<br>(76)     | 48            | ND                        |          | •                  |              |      |  |
| 329-                                                         | 4            | )              | wet at 3.8 mbgs                                                                      | SS 6                                             | 7-15-11-13<br>(26)          | 30            | ND                        |          | •                  |              |      |  |
| 328-                                                         | 5            |                |                                                                                      | SS 7                                             | 14-14-21-<br>26<br>(35)     | 20            | ND                        |          | •                  |              |      |  |
| 327-                                                         | 6            |                | sand seams at 6.10mbgs                                                               | √ ss                                             | 1-1-1-2                     |               |                           |          |                    |              |      |  |
| -                                                            | _            | 0 0            | End of Borehole at 6.71 mbgs                                                         | 8                                                | (2)                         |               | ND                        |          | •                  |              |      |  |
|                                                              |              |                |                                                                                      |                                                  |                             |               |                           |          |                    |              |      |  |

Appendix D – Single Well Response Test (SWRT)





Data Set: C:\...\BHMW 5.aqt

Date: <u>07/30/24</u> Time: <u>12:34:47</u>

#### PROJECT INFORMATION

Company: JLP Services Inc.

Client: John Farley & Home Opport.

Project: G4836-24-3

Location: 280 Clair Rd W, Guelph

Test Well: BH/MW 5
Test Date: July 8, 2024

#### **AQUIFER DATA**

Saturated Thickness: 2.95 m Anisotropy Ratio (Kz/Kr): 1.

#### WELL DATA (BH/MW 5)

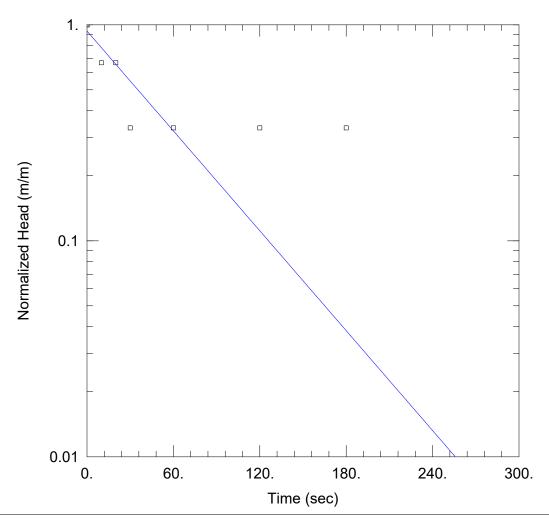
Initial Displacement: 0.7 m

Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m

Static Water Column Height: 2.95 m

Screen Length: 3. m Well Radius: 0.0254 m


#### SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 4.647E-6 m/sec

y0 = 0.6265 m



Data Set: C:\...\BHMW 9.aqt

Date: 07/30/24 Time: 12:28:16

#### PROJECT INFORMATION

Company: JLP Services Inc.

Client: John Farley & Home Opport.

Project: G4836-24-3

Location: 280 Clair Rd W, Guelph

Test Well: BH/MW 9 Test Date: July 8, 2024

#### AQUIFER DATA

Saturated Thickness: 2.82 m Anisotropy Ratio (Kz/Kr): 1.

#### WELL DATA (BH/MW 9)

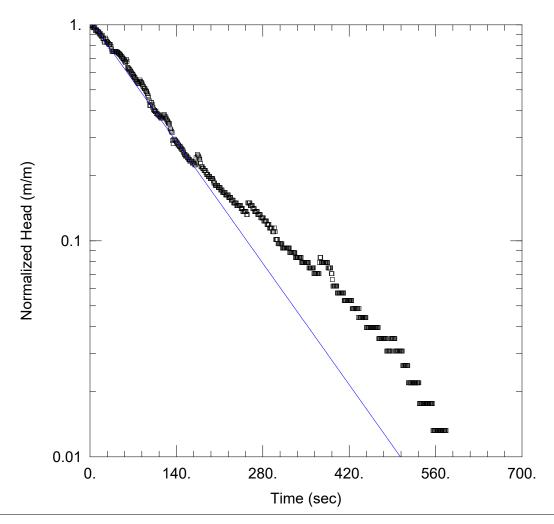
Initial Displacement: 0.03 m

Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m

Static Water Column Height: 2.82 m

Screen Length: 3. m Well Radius: 0.0254 m


#### **SOLUTION**

Aquifer Model: Unconfined

K = 1.076E-5 m/sec

Solution Method: Hvorslev

y0 = 0.02807 m



Data Set: C:\...\BHMW 10.aqt

Date: 07/30/24 Time: 12:20:30

#### PROJECT INFORMATION

Company: JLP Services Inc.

Client: John Farley & Home Opport.

Project: G4836-24-3

Location: 280 Clair Rd W, Guelph

Test Well: BH/MW 10 Test Date: July 8, 2024

#### **AQUIFER DATA**

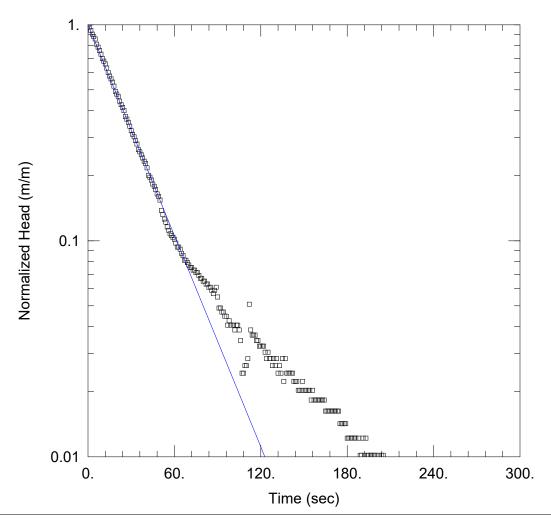
Saturated Thickness: 0.27 m Anisotropy Ratio (Kz/Kr): 1.

#### WELL DATA (BH/MW 10)

Initial Displacement: 0.681 m

Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m


Static Water Column Height: 0.27 m

Screen Length: 3. m Well Radius: 0.0254 m

#### **SOLUTION**

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 5.856E-5 m/secy0 = 0.7149 m



Data Set: C:\...\BHMW 11.aqt

Date: 07/30/24 Time: 12:14:35

#### PROJECT INFORMATION

Company: JLP Services Inc.

Client: John Farley & Home Opport.

Project: G4836-24-3

Location: 280 Clair Rd W, Guelph

Test Well: BH/MW 11 Test Date: July 8, 2024

#### **AQUIFER DATA**

Saturated Thickness: 0.81 m Anisotropy Ratio (Kz/Kr): 1.

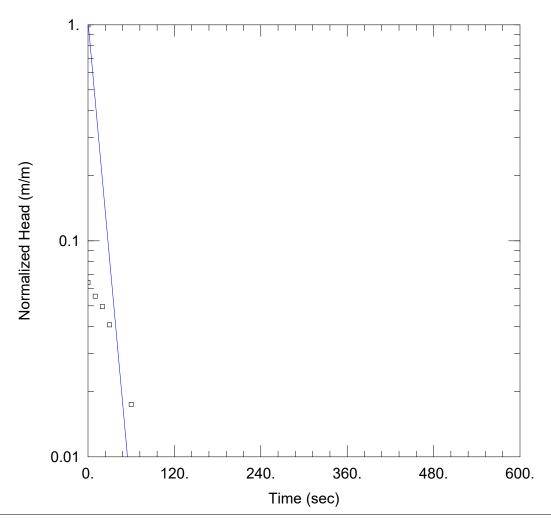
#### WELL DATA (BH/MW 11)

Initial Displacement: 1.476 m
Total Well Penetration Depth: 3. m

Static Water Column Height: 0.81 m

Casing Radius: 0.0254 m

Screen Length: 3. m Well Radius: 0.0254 m


#### **SOLUTION**

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 7.915E-5 m/sec

y0 = 1.481 m



Data Set: C:\...\BHMW 15.aqt

Date: 07/30/24 Time: 12:42:28

#### PROJECT INFORMATION

Company: JLP Services Inc.

Client: John Farley & Home Opport.

Project: G4836-24-3

Location: 280 Clair Rd W, Guelph

Test Well: BH/MW 15
Test Date: July 8, 2024

#### **AQUIFER DATA**

Saturated Thickness: 2.45 m Anisotropy Ratio (Kz/Kr): 1.

#### WELL DATA (BH/MW 15)

Initial Displacement: 3.43 m

m Static Water Column Height: 2.45 m oth: 3. m Screen Length: 3. m

Total Well Penetration Depth: 3. m Casing Radius: 0.0254 m

Well Radius: 0.0254 m

#### SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 5.911E-5 m/sec

y0 = 3.58 m

Appendix E – Infiltration Rates



#### **Appendix E**

#### **Infiltration Test Data Analysis**

Location: 280 Clair Road West, Guelph, Ontario

Project Number: G4836-24-3 Test Date: 8-Aug-24

| Test Location     | Co-efficient of<br>Permeability<br>(K <sub>fs</sub> )<br>(cm/s) | Infiltration<br>Rate (IR)<br>(mm/hr) | Discrete<br>Design<br>Infiltration<br>Rate<br>(mm/hr) | Percolation Time<br>(T-Time) (min/cm) | Design Percolation (T) Time (min/cm) |
|-------------------|-----------------------------------------------------------------|--------------------------------------|-------------------------------------------------------|---------------------------------------|--------------------------------------|
| Shallow Soils     |                                                                 |                                      |                                                       |                                       |                                      |
| INF5S - 0.5 mbgs  | 8.1E-04                                                         | 81                                   | 32.4                                                  | 7.4                                   | 19                                   |
| INF10S - 0.5 mbgs | 1.31E-03                                                        | 92                                   | 36.8                                                  | 6.5                                   | 16                                   |
| INF11S - 0.5 mbgs | 1.8E-03                                                         | 101                                  | 40.2                                                  | 6.0                                   | 15                                   |
| Deep Soils        |                                                                 | _                                    |                                                       |                                       |                                      |
| INF5D - 1.5 mbgs  | 1.4E-02                                                         | 173                                  | 69.2                                                  |                                       |                                      |
| INF10D - 1.5 mbgs | 5.7E-03                                                         | 137                                  | 54.6                                                  |                                       |                                      |
| INF11D - 1.5 mbgs | 2.5E-02                                                         | 202                                  | 80.8                                                  |                                       |                                      |
|                   |                                                                 |                                      |                                                       |                                       |                                      |

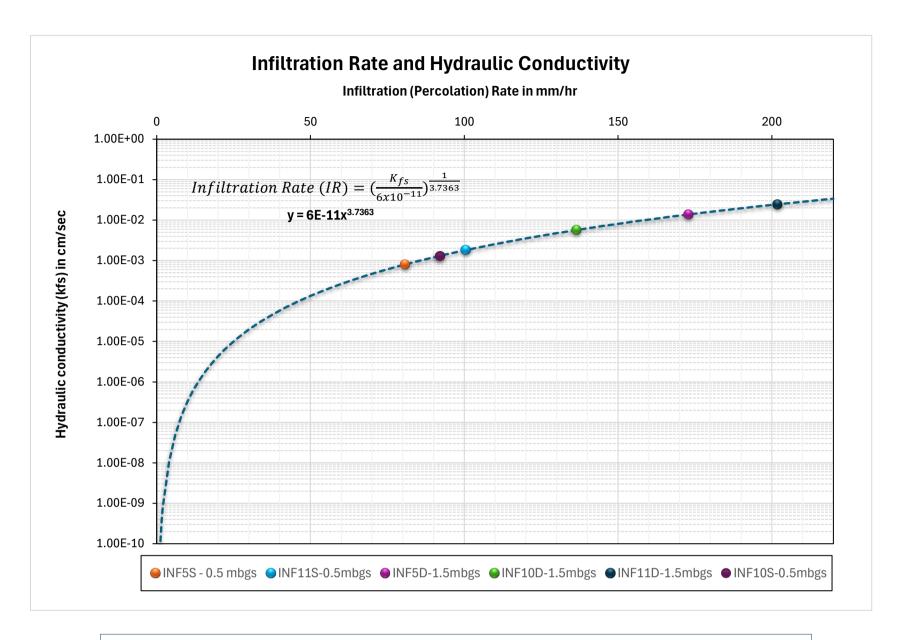
| Soil Unit                | Geometric Mean<br>of K<br>(cm/s) | Geo-Mean<br>Infiltration<br>Rate (IR)<br>(mm/hr) | Ratio - Geo-<br>mean of<br>Infiltration<br>Rates | Safety Correction<br>Factor (SCF) |
|--------------------------|----------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------|
| Shallow Soils (0.5 mbgs) | 1.24E-03                         | 91                                               | 0.5                                              | 2.5                               |
| Deep Soils (1.5 mbgs)    | 1.25E-02                         | 168                                              | 0.5                                              | 2.5                               |

| Geo-Mean of Design<br>Infiltration Rates<br>(mm/hr) | Geo-mean of Design Percolation (T) Times (min/cm) |
|-----------------------------------------------------|---------------------------------------------------|
| 36                                                  | 17                                                |

#### Note:

Infiltration Rate (IR) =  $(\frac{K_{\square}}{6x10^{-11}})^{\frac{1}{3.7363}}$ Design Infiltration Rate (DIR) =  $\frac{IR}{SCF}$ 

| Safety Correction Factors (SCF) for<br>Design Infiltration Rate** |                             |  |  |
|-------------------------------------------------------------------|-----------------------------|--|--|
| Ratio of Mean<br>Measured<br>Infiltration                         | Safety Correction<br>Factor |  |  |
| =1</td <td>2.5</td>                                               | 2.5                         |  |  |
| 1.1 to 4.0                                                        | 3.5                         |  |  |
| 4.1 to 8.0                                                        | 4.5                         |  |  |
| 8.1 to 16                                                         | 6.5                         |  |  |
| 16.1 or greater                                                   | 8.5                         |  |  |


Kfs: field saturated hydraulic conductivity (cm/sec)

IR: infiltration rate (mm/hr)

DIR: design infiltration rate (mm/hr)

<sup>\*</sup> Assumed approximately 1.5 m below the test elevation

<sup>\*\*</sup>SCF: Safety Correction Factor (based on the chart recommended by CVC and TRCA, 2010)



Source: Ontario Ministry of Municipal Affairs and Housing. 1997. Supplementary Guidelines to the Ontario Building Code 1997. SG-6 Percolation Time and Soil Descriptions. Toronto, Ontario



C0.01 0.736

C0.04 0.763

C0.12 0.72

C0.36 0.72

C 0.72

R 0.800

Q 0.47

pi 3.142

# SOLMOISTURE Guelph Permeameter Calculations

*Q* = 0.4696

 $K_{f_{\pi}} =$  7.58E-04 cm/sec

 $\phi_m = \frac{6.31E-03}{(cm^2/min^2)}$ 

4.55E-02 cm/min

1.79E-02 inch/min

**2.98E-04** inch/sec

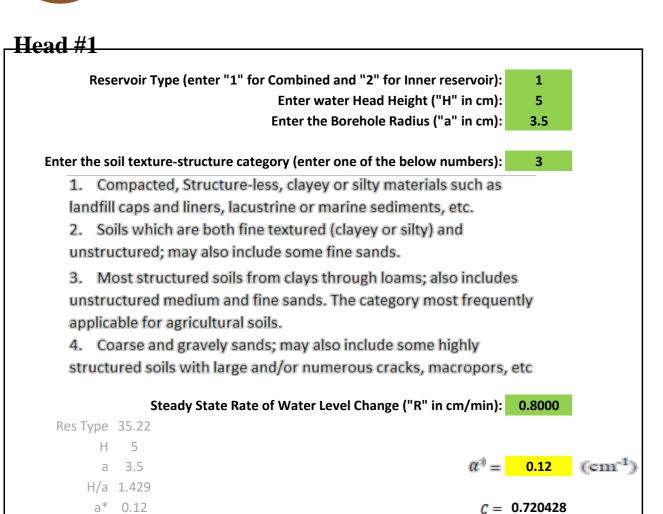
**7.58E-06** m/sec

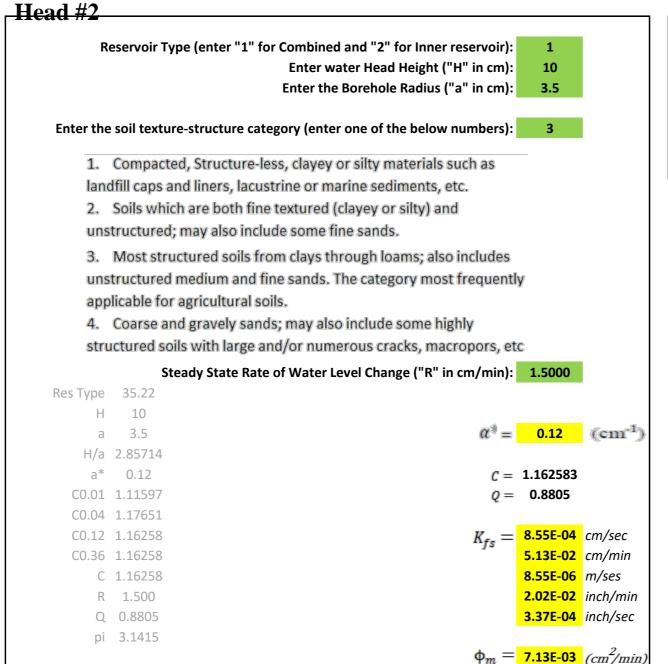
Input Result

Support: ali@soilmoisture.com

<u>Average</u>

 $K_{fs} = 8.06$ E-04 cm/sec


4.84E-02 cm/min


**1.91E-02** inch/min

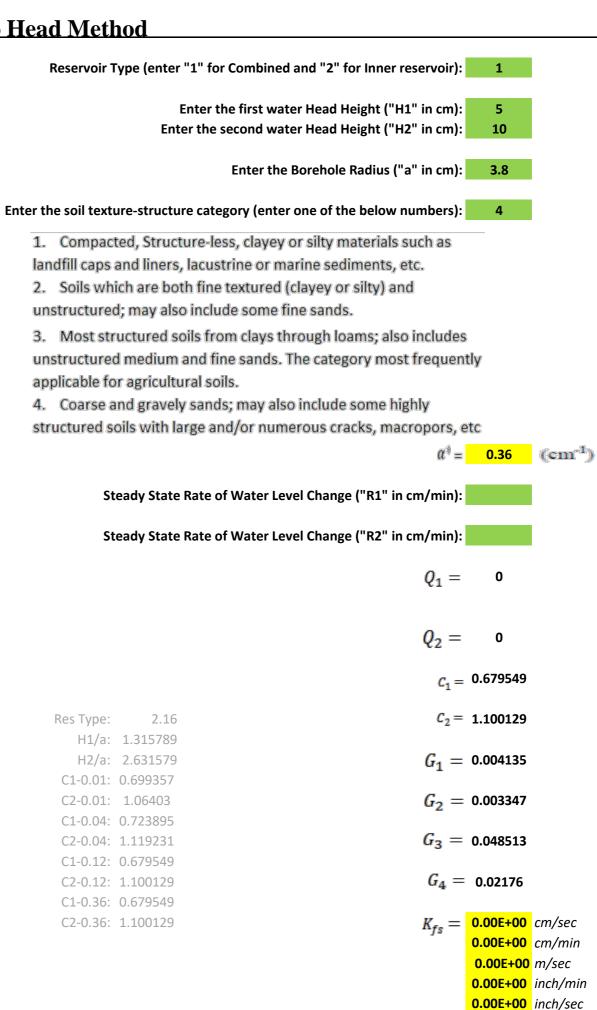
**3.18E-04** inch/sec

**8.06E-06** m/s

 $\phi_m = \frac{6.72\text{E-03}}{(cm^2/min)}$ 



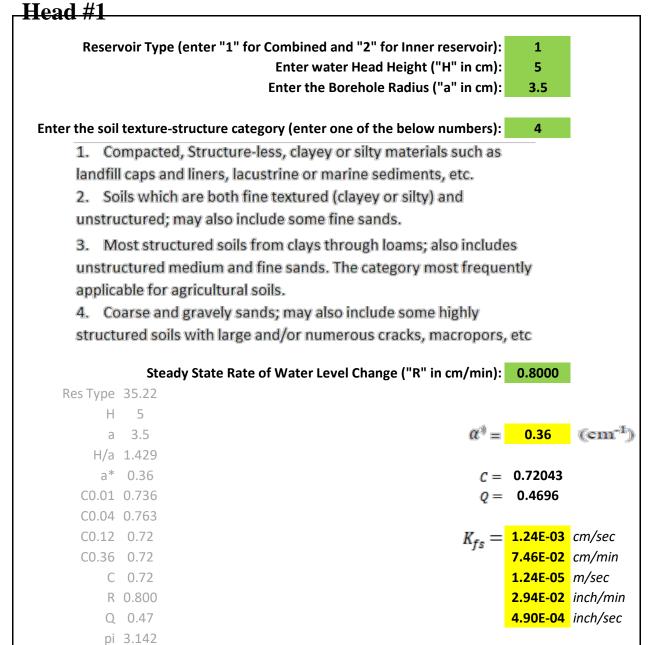


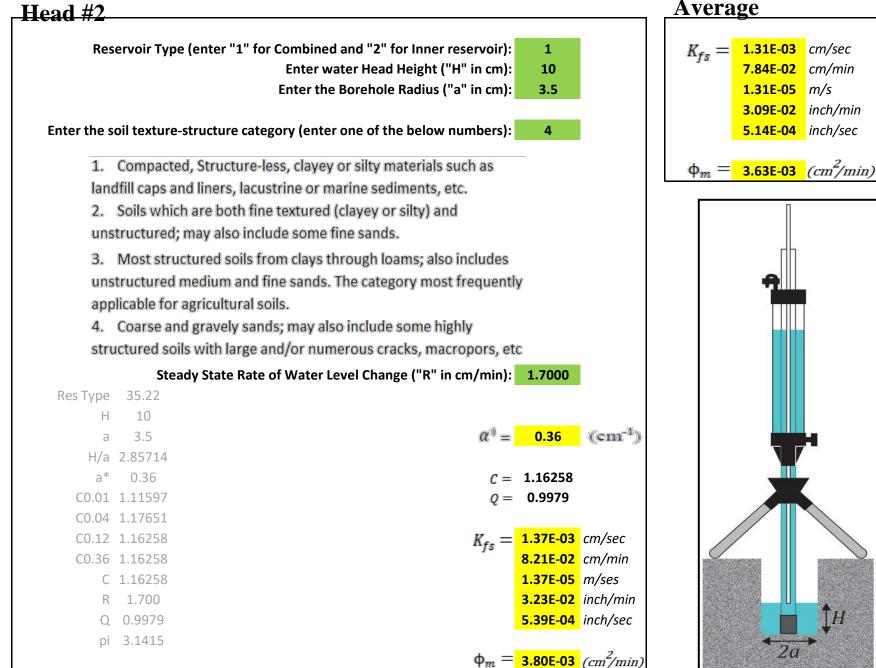

Calculation formulas related to shape factor (C). Where  $H_1$  is the first water head height (cm),  $H_2$  is the second water head height (cm), a is borehole radius (cm) and  $\alpha^*$  is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only  $C_1$  needs to be calculated while for two-head method,  $C_1$  and  $C_2$  are calculated (Zang et al., 1998).

| Soil Texture-Structure Category                                                                                                                                   | α*(cm-1) | Shape Factor                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.                                       | 0.01     | $C_1 = \left(\frac{\frac{H_1/_a}{2.102 + 0.118(^{H_1}/_a)}\right)^{0.655}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.102 + 0.118(^{H_2}/_a)}\right)^{0.655}$               |
| Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.                                                          | 0.04     | $C_1 = \left(\frac{\frac{H_1/_a}{1.992 + 0.091(\frac{H_1/_a}{a})}\right)^{0.683}$ $C_2 = \left(\frac{\frac{H_2/_a}{1.992 + 0.091(\frac{H_2}{a})}\right)^{0.683}$    |
| Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils. | 0.12     | $C_1 = \left(\frac{\frac{H_1/_a}{2.074 + 0.093(\frac{H_1/_a}{a})}\right)^{0.754}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.074 + 0.093(\frac{H_2/_a}{a})}\right)^{0.754}$ |
| Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.                                      | 0.36     | $C_1 = \left(\frac{\frac{H_1/_a}{2.074 + 0.093(\frac{H_1/_a}{a})}\right)^{0.754}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.074 + 0.093(\frac{H_2/_a}{a})}\right)^{0.754}$ |

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s),  $K_{f,s}$  is Soil saturated hydraulic conductivity (cm/s),  $\Phi_m$  is Soil matric flux potential (cm<sup>2</sup>/s),  $a^*$  is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm), H1 is the first head of water established in borehole (cm), H2 is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).

| One Head,<br>Combined Reservoir | $Q_1 = \overline{R}_1 \times 35.22$                                     | $K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$                                                                                                                                                                                                                                                    |
|---------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| One Head,<br>Inner Reservoir    | $Q_1 = \bar{R}_1 \times 2.16$                                           | $\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$                                                                                                                                                                                                                                                                        |
| Two Head,<br>Combined Reservoir | $Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$ | $G_{1} = \frac{H_{2}C_{1}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{fs} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ |
| Two Head,<br>Inner Reservoir    | $Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$             | $G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\Phi_m = G_3Q_1 - G_4Q_2$                                                                                                                                                                                                                                   |


# Two Head Method



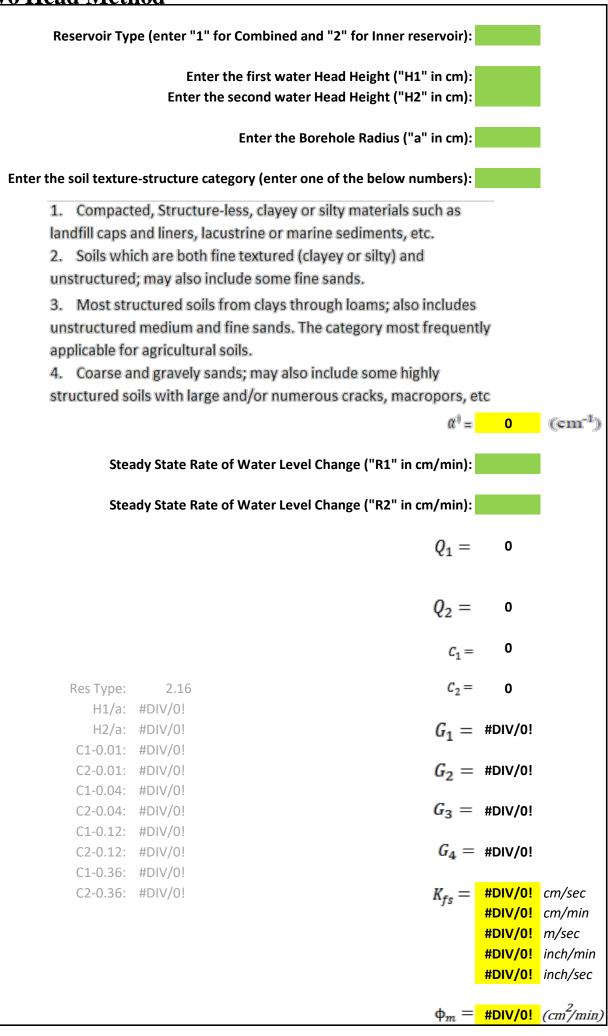

 $\phi_m = 0.00E + 00 (cm^2/min)$ 





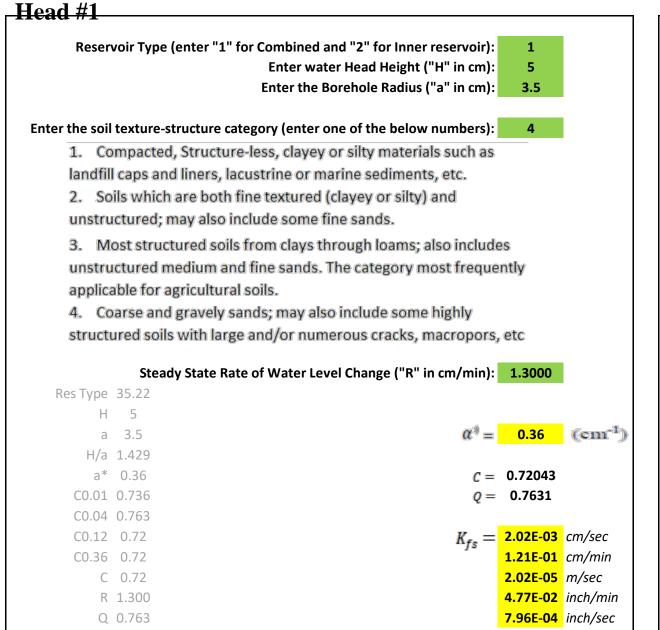


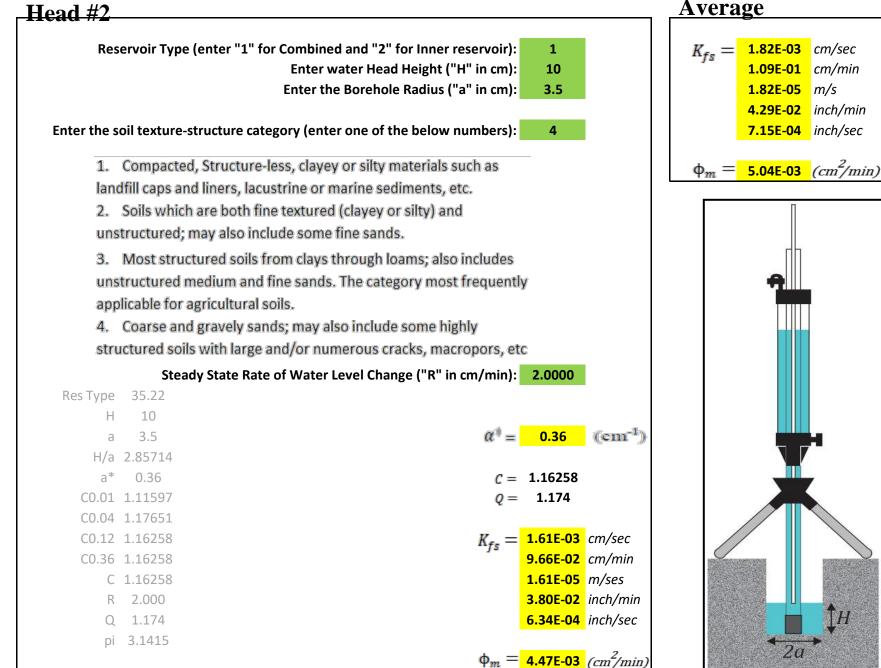



Calculation formulas related to shape factor (C). Where  $H_1$  is the first water head height (cm),  $H_2$  is the second water head height (cm), a is borehole radius (cm) and a\* is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only  $C_1$  needs to be calculated while for two-head method,  $C_1$  and  $C_2$  are calculated (Zang) et al., 1998).

 $\phi_m = \frac{3.45E-03}{(cm^2/min)}$ 

| Soil Texture-Structure Category                                                                                                                                   | α*(cm-1) | Shape Factor                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.                                       | 0.01     | $C_1 = \left(\frac{\frac{H_1/_a}{2.102 + 0.118(^{H_1}/_a)}\right)^{0.655}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.102 + 0.118(^{H_2}/_a)}\right)^{0.655}$               |
| Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.                                                          | 0.04     | $C_1 = \left(\frac{\frac{H_1/_a}{1.992 + 0.091(^{H_1}/_a)}\right)^{0.683}$ $C_2 = \left(\frac{\frac{H_2/_a}{1.992 + 0.091(^{H_2}/_a)}\right)^{0.683}$               |
| Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils. | 0.12     | $C_1 = \left(\frac{\frac{H_1/_a}{2.074 + 0.093\binom{H_1/_a}{a}}\right)^{0.754}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.074 + 0.093\binom{H_2/_a}{a}}\right)^{0.754}$   |
| Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.                                      | 0.36     | $C_1 = \left(\frac{\frac{H_1/_a}{2.074 + 0.093 \binom{H_1/_a}{a}}\right)^{0.754}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.074 + 0.093 \binom{H_2/_a}{a}}\right)^{0.754}$ |


Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s),  $K_{fs}$  is Soil saturated hydraulic conductivity (cm/s),  $\Phi_m$  is Soil matric flux potential (cm<sup>2</sup>/s),  $a^*$  is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm),  $H_1$  is the first head of water established in borehole (cm),  $H_2$  is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).


| One Head,<br>Combined Reservoir | $Q_1 = \bar{R}_1 \times 35.22$                                          | $K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$                                                                                                                                                                                                                                                    |
|---------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| One Head,<br>Inner Reservoir    | $Q_1 = \bar{R}_1 \times 2.16$                                           | $\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$                                                                                                                                                                                                                                                                        |
| Two Head,<br>Combined Reservoir | $Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$ | $G_{1} = \frac{H_{2}C_{1}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{fs} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ |
| Two Head,<br>Inner Reservoir    | $Q_1 = \overline{R}_1 \times 2.16$ $Q_2 = \overline{R}_2 \times 2.16$   | $G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi (2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\Phi_m = G_3Q_1 - G_4Q_2$                                                                                                                                                                                                                                  |



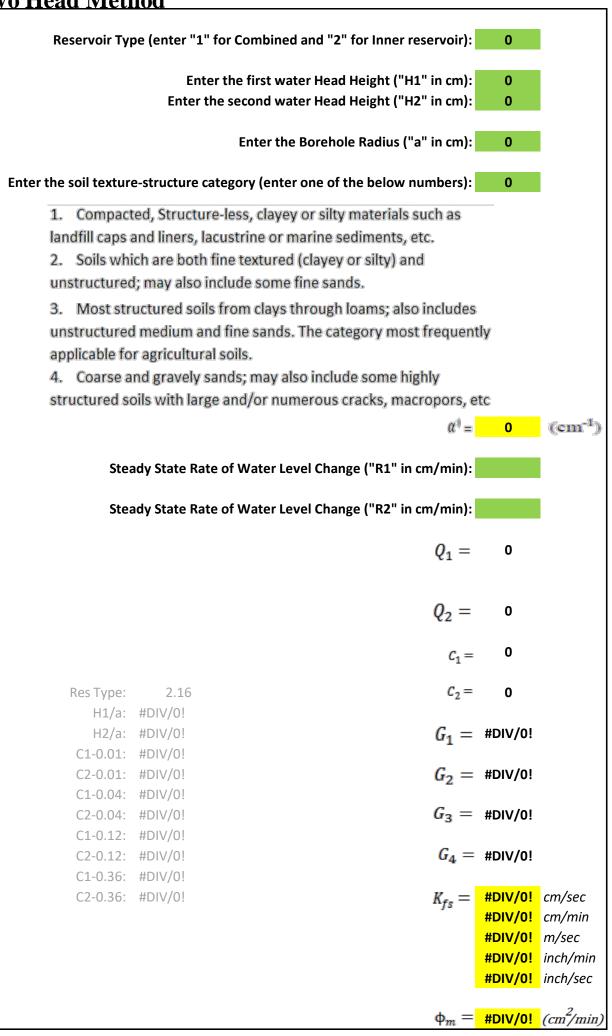






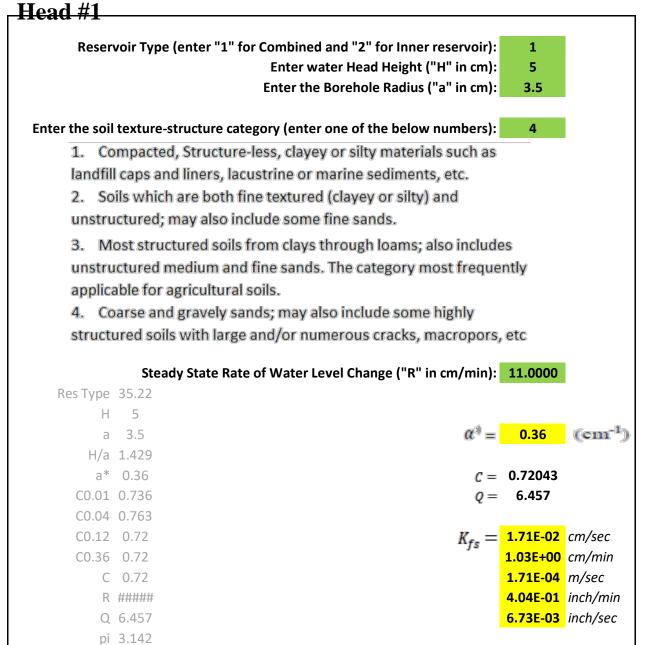


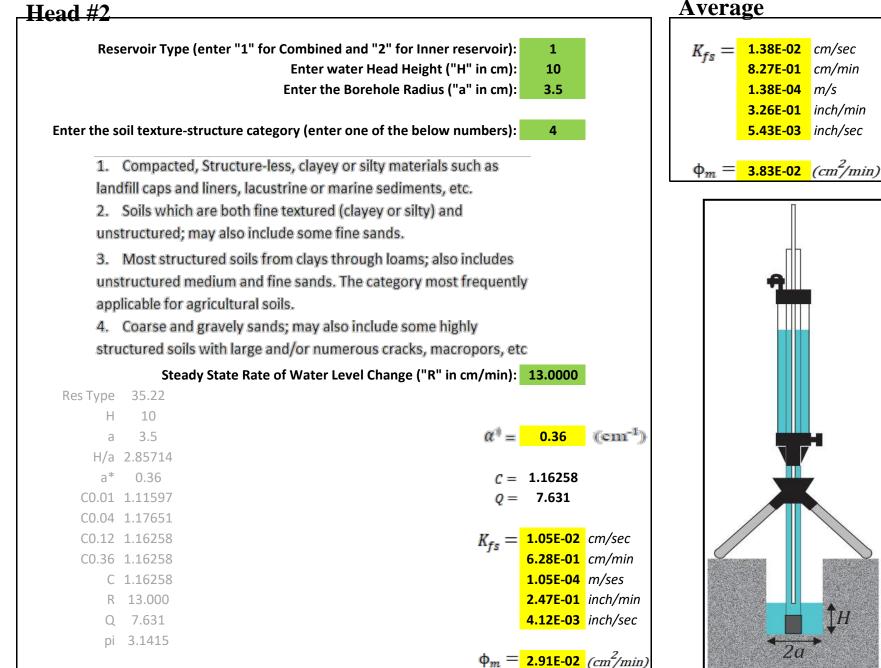
Calculation formulas related to shape factor (C). Where  $H_1$  is the first water head height (cm),  $H_2$  is the second water head height (cm), a is borehole radius (cm) and a is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only  $C_1$  needs to be calculated while for two-head method,  $C_1$  and  $C_2$  are calculated (Zang et al., 1998).


 $\phi_m = \frac{5.61E-03}{(cm^2/min)}$ 

pi 3.142

| Soil Texture-Structure Category                                                                                                                                   | α*(cm-1) | Shape Factor                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.                                       | 0.01     | $C_1 = \left(\frac{\frac{H_1/_a}{2.102 + 0.118(^{H_1}/_a)}\right)^{0.655}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.102 + 0.118(^{H_2}/_a)}\right)^{0.655}$               |
| Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.                                                          | 0.04     | $C_1 = \left(\frac{\frac{H_1/_a}{1.992 + 0.091(^{H_1}/_a)}\right)^{0.683}$ $C_2 = \left(\frac{\frac{H_2/_a}{1.992 + 0.091(^{H_2}/_a)}\right)^{0.683}$               |
| Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils. | 0.12     | $C_1 = \left(\frac{\frac{H_1/_a}{2.074 + 0.093 \binom{H_1/_a}{a}}\right)^{0.754}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.074 + 0.093 \binom{H_2/_a}{a}}\right)^{0.754}$ |
| Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.                                      | 0.36     | $C_1 = \left(\frac{\frac{H_1/_a}{2.074 + 0.093 \binom{H_1/_a}{a}}\right)^{0.754}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.074 + 0.093 \binom{H_2/_a}{a}}\right)^{0.754}$ |


Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s),  $K_{fs}$  is Soil saturated hydraulic conductivity (cm/s),  $\Phi_m$  is Soil matric flux potential (cm<sup>2</sup>/s),  $a^*$  is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm),  $H_1$  is the first head of water established in borehole (cm),  $H_2$  is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).


| One Head,<br>Combined Reservoir | $Q_1 = \bar{R}_1 \times 35.22$                                        | $K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$                                                                                                                                                                                                                                                    |
|---------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| One Head,<br>Inner Reservoir    | $Q_1 = \bar{R}_1 \times 2.16$                                         | $\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$                                                                                                                                                                                                                                                                        |
| Two Head,<br>Combined Reservoir | $Q_1 = \bar{R}_1 \times 35.22$ $Q_2 = \bar{R}_2 \times 35.22$         | $G_{1} = \frac{H_{2}C_{1}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{fs} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ |
| Two Head,<br>Inner Reservoir    | $Q_1 = \overline{R}_1 \times 2.16$ $Q_2 = \overline{R}_2 \times 2.16$ | $G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi (2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\Phi_m = G_3Q_1 - G_4Q_2$                                                                                                                                                                                                                                  |

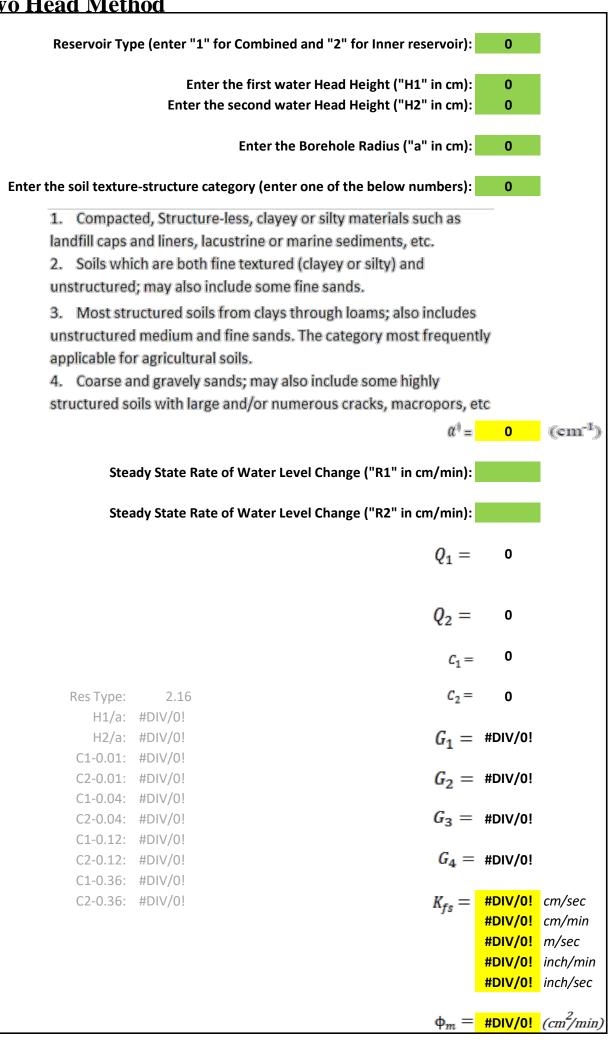






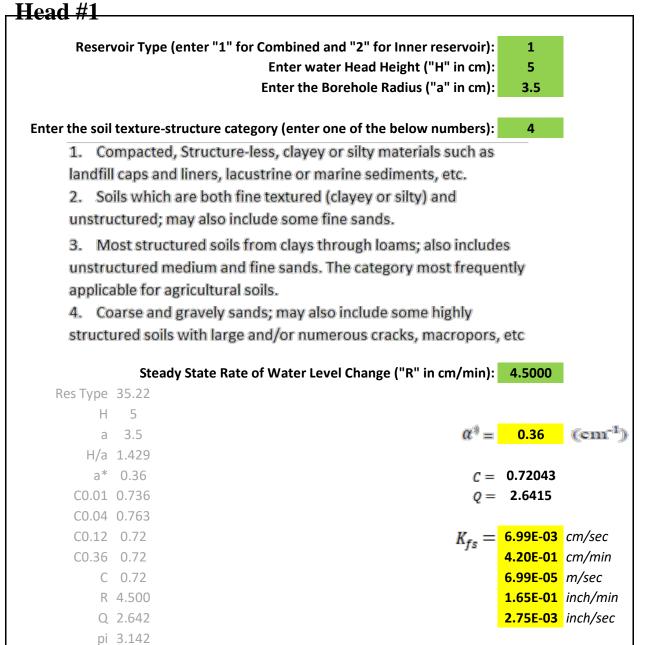


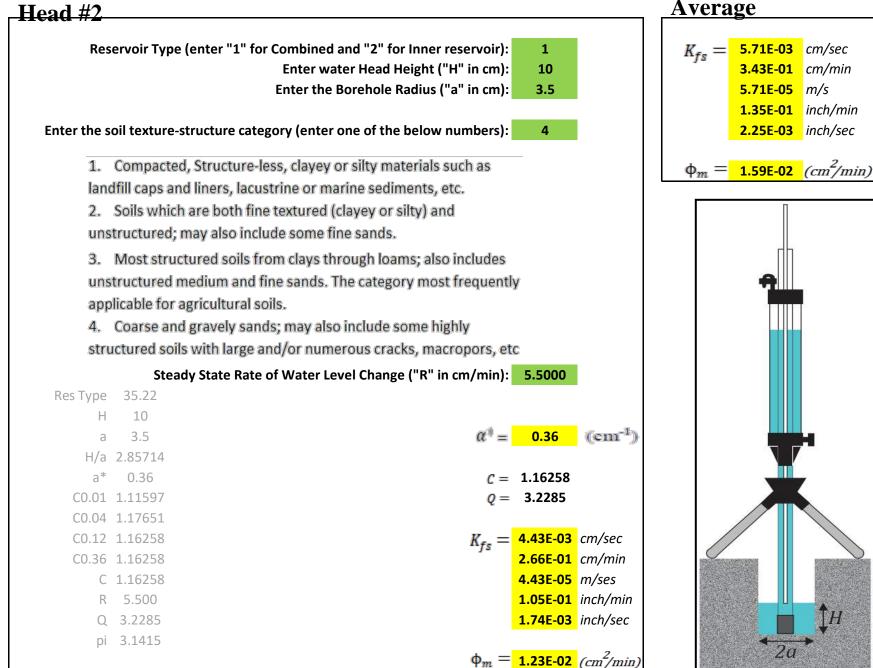



Calculation formulas related to shape factor (C). Where  $H_1$  is the first water head height (cm),  $H_2$  is the second water head height (cm), a is borehole radius (cm) and α\* is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only  $C_1$  needs to be calculated while for two-head method,  $C_1$  and  $C_2$  are calculated (Zang et al., 1998).

 $\phi_m = \frac{4.75E-02}{(cm^2/min)}$ 

| Soil Texture-Structure Category                                                                                                                                   | α*(cm-1) | Shape Factor                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.                                       | 0.01     | $C_1 = \left(\frac{\frac{H_1/_a}{2.102 + 0.118(^{H_1}/_a)}\right)^{0.655}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.102 + 0.118(^{H_2}/_a)}\right)^{0.655}$               |
| Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.                                                          | 0.04     | $C_1 = \left(\frac{\frac{H_1/_a}{1.992 + 0.091(^{H_1}/_a)}\right)^{0.683}$ $C_2 = \left(\frac{\frac{H_2/_a}{1.992 + 0.091(^{H_2}/_a)}\right)^{0.683}$               |
| Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils. | 0.12     | $C_1 = \left(\frac{\frac{H_1/_a}{2.074 + 0.093\binom{H_1/_a}{a}}\right)^{0.754}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.074 + 0.093\binom{H_2/_a}{a}}\right)^{0.754}$   |
| Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.                                      | 0.36     | $C_1 = \left(\frac{\frac{H_1/_a}{2.074 + 0.093 \binom{H_1/_a}{a}}\right)^{0.754}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.074 + 0.093 \binom{H_2/_a}{a}}\right)^{0.754}$ |


Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s),  $K_{fs}$  is Soil saturated hydraulic conductivity (cm/s),  $\Phi_m$  is Soil matric flux potential (cm<sup>2</sup>/s),  $a^*$  is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm),  $H_1$  is the first head of water established in borehole (cm),  $H_2$  is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).


| One Head,<br>Combined Reservoir | $Q_1 = \bar{R}_1 \times 35.22$                                        | $K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$                                                                                                                                                                                                                                                    |
|---------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| One Head,<br>Inner Reservoir    | $Q_1 = \bar{R}_1 \times 2.16$                                         | $\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$                                                                                                                                                                                                                                                                        |
| Two Head,<br>Combined Reservoir | $Q_1 = \bar{R}_1 \times 35.22$ $Q_2 = \bar{R}_2 \times 35.22$         | $G_{1} = \frac{H_{2}C_{1}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{fs} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ |
| Two Head,<br>Inner Reservoir    | $Q_1 = \overline{R}_1 \times 2.16$ $Q_2 = \overline{R}_2 \times 2.16$ | $G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi (2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\Phi_m = G_3Q_1 - G_4Q_2$                                                                                                                                                                                                                                  |

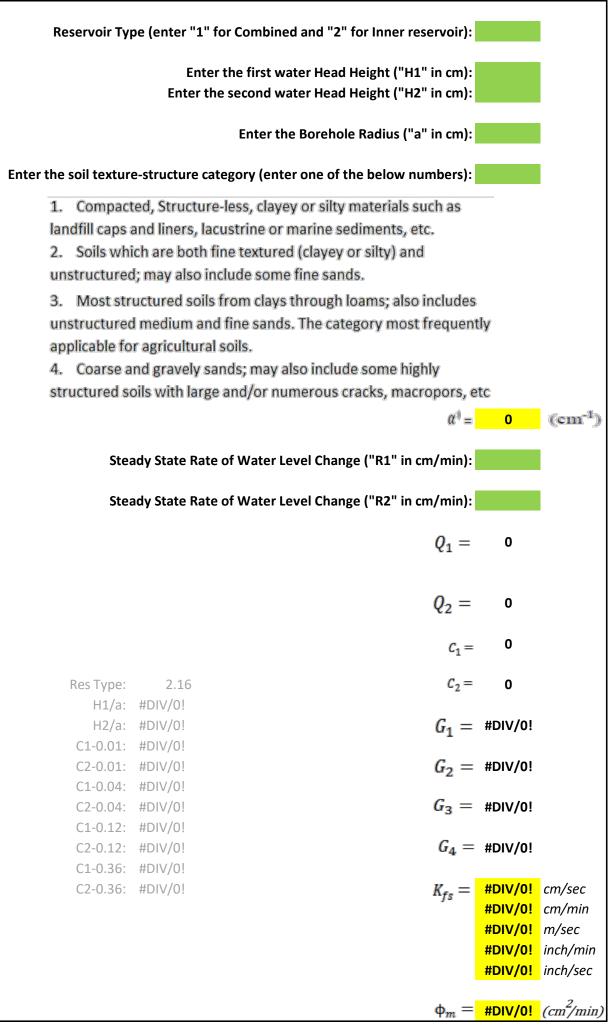






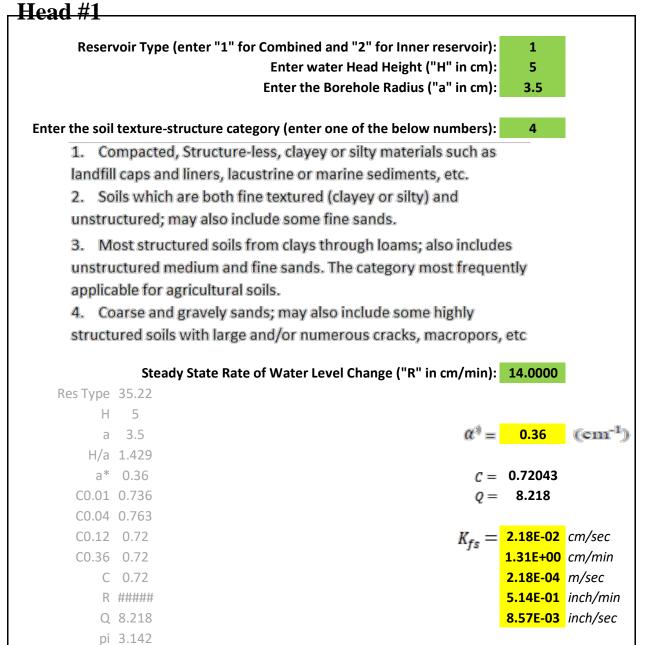


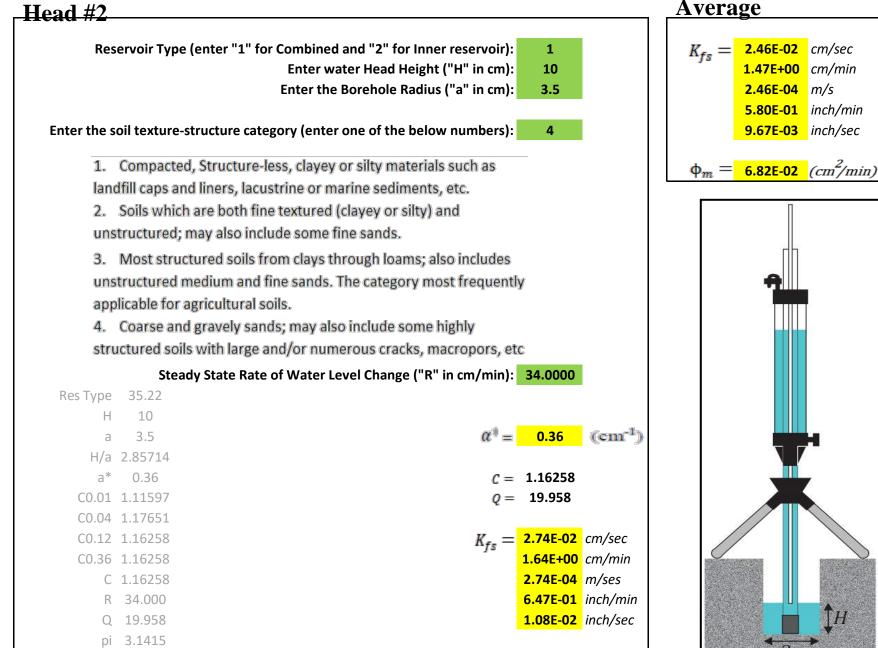



Calculation formulas related to shape factor (C). Where  $H_1$  is the first water head height (cm),  $H_2$  is the second water head height (cm), a is borehole radius (cm) and a\* is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only  $C_1$  needs to be calculated while for two-head method,  $C_1$  and  $C_2$  are calculated (Zang) et al., 1998).

 $\phi_m = \frac{1.94\text{E-02}}{(cm^2/min)}$ 

| Soil Texture-Structure Category                                                                                                                                   | α*(cm <sup>-1</sup> ) | Shape Factor                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.                                       | 0.01                  | $C_1 = \left(\frac{H_1/_a}{2.102 + 0.118(^{H_1}/_a)}\right)^{0.655}$ $C_2 = \left(\frac{H_2/_a}{2.102 + 0.118(^{H_2}/_a)}\right)^{0.655}$                           |
| Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.                                                          | 0.04                  | $C_1 = \left(\frac{\frac{H_1/_a}{1.992 + 0.091(^{H_1}/_a)}\right)^{0.683}$ $C_2 = \left(\frac{\frac{H_2/_a}{1.992 + 0.091(^{H_2}/_a)}\right)^{0.683}$               |
| Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils. | 0.12                  | $C_1 = \left(\frac{\frac{H_1/_a}{2.074 + 0.093(\frac{H_1/_a}{a})}\right)^{0.754}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.074 + 0.093(\frac{H_2/_a}{a})}\right)^{0.754}$ |
| Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.                                      | 0.36                  | $C_1 = \left(\frac{\frac{H_1/_a}{2.074 + 0.093(^{H_1}/_a)}\right)^{0.754}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.074 + 0.093(^{H_2}/_a)}\right)^{0.754}$               |


Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s),  $K_{fs}$  is Soil saturated hydraulic conductivity (cm/s),  $\Phi_m$  is Soil matric flux potential (cm<sup>2</sup>/s),  $a^*$  is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm),  $H_1$  is the first head of water established in borehole (cm),  $H_2$  is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).


| One Head,<br>Combined Reservoir | $Q_1 = \bar{R}_1 \times 35.22$                                | $K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$                                                                                                                                                                                                                                                                        |
|---------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| One Head,<br>Inner Reservoir    | $Q_1 = \bar{R}_1 \times 2.16$                                 | $\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$                                                                                                                                                                                                                                                                                            |
| Two Head,<br>Combined Reservoir | $Q_1 = \bar{R}_1 \times 35.22$ $Q_2 = \bar{R}_2 \times 35.22$ | $G_{1} = \frac{H_{2}C_{1}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + \alpha^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + \alpha^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{fs} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + \alpha^{2}C_{2})C_{1}}{2\pi(2H_{1}H_{2}(H_{2} - H_{1}) + \alpha^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ |
| Two Head,<br>Inner Reservoir    | $Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$   | $G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi (2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\Phi_m = G_3Q_1 - G_4Q_2$                                                                                                                                                                                                                                                      |



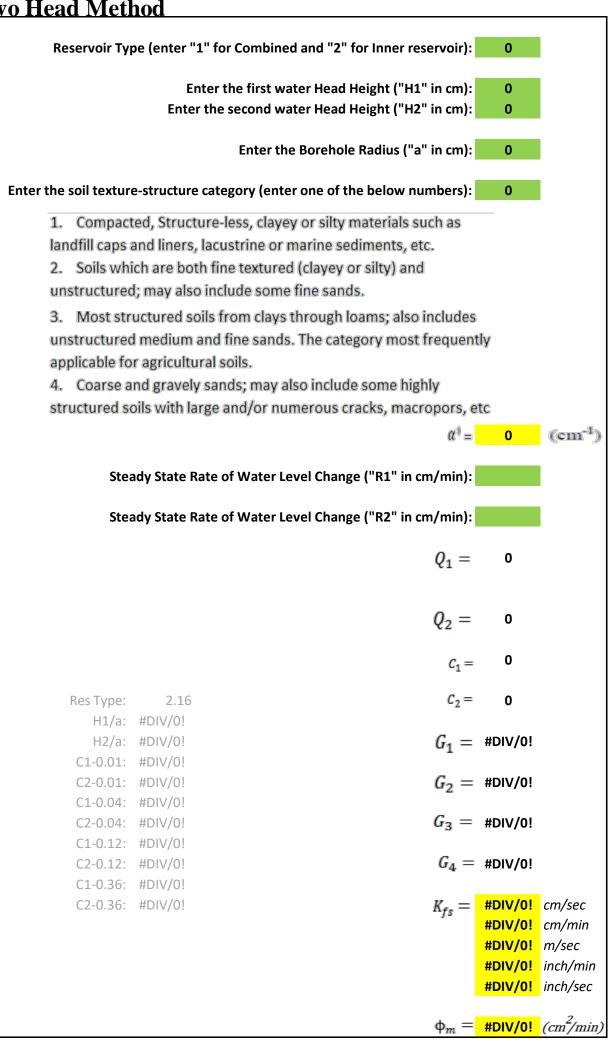








Calculation formulas related to shape factor (C). Where  $H_1$  is the first water head height (cm),  $H_2$  is the second water head height (cm), a is borehole radius (cm) and α\* is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only  $C_1$  needs to be calculated while for two-head method,  $C_1$  and  $C_2$  are calculated (Zang et al., 1998).


 $\phi_m = \frac{6.04E-02}{(cm^2/min)}$ 

| Soil Texture-Structure Category                                                                                                                                   | α*(cm-1) | Shape Factor                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.                                       | 0.01     | $C_1 = \left(\frac{\frac{H_1/_a}{2.102 + 0.118(\frac{H_1}/_a)}\right)^{0.655}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.102 + 0.118(\frac{H_2}/_a)}\right)^{0.655}$       |
| Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.                                                          | 0.04     | $C_1 = \left(\frac{\frac{H_1/_a}{1.992 + 0.091(^{H_1}/_a)}\right)^{0.683}$ $C_2 = \left(\frac{\frac{H_2/_a}{1.992 + 0.091(^{H_2}/_a)}\right)^{0.683}$               |
| Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils. | 0.12     | $C_1 = \left(\frac{\frac{H_1/_a}{2.074 + 0.093\binom{H_1/_a}{a}}\right)^{0.754}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.074 + 0.093\binom{H_2/_a}{a}}\right)^{0.754}$   |
| Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.                                      | 0.36     | $C_1 = \left(\frac{\frac{H_1/_a}{2.074 + 0.093 \binom{H_1/_a}{a}}\right)^{0.754}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.074 + 0.093 \binom{H_2/_a}{a}}\right)^{0.754}$ |

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s),  $K_{fs}$  is Soil saturated hydraulic conductivity (cm/s),  $\Phi_m$  is Soil matric flux potential (cm<sup>2</sup>/s),  $a^*$  is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm),  $H_1$  is the first head of water established in borehole (cm),  $H_2$  is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).

 $\phi_m = \frac{7.60E-02}{(cm^2/min)}$ 

| One Head,<br>Combined Reservoir | $Q_1 = \bar{R}_1 \times 35.22$                                          | $K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$                                                                                                                                                                                                                                                    |
|---------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| One Head,<br>Inner Reservoir    | $Q_1 = \bar{R}_1 \times 2.16$                                           | $\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$                                                                                                                                                                                                                                                                        |
| Two Head,<br>Combined Reservoir | $Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$ | $G_{1} = \frac{H_{2}C_{1}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{fs} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ |
| Two Head,<br>Inner Reservoir    | $Q_1 = \overline{R}_1 \times 2.16$ $Q_2 = \overline{R}_2 \times 2.16$   | $G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi (2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\Phi_m = G_3Q_1 - G_4Q_2$                                                                                                                                                                                                                                  |



Appendix F – Construction Dewatering Rates



#### **Appendix F**

#### **Dewatering Flow Rate Estimates - Short-Term**

280 Clair Road W, Guelph, Ontario

Table F-2: Short-Term Dewatering Rates for Servicing

| Parameters                                                           | Unit | Value    |
|----------------------------------------------------------------------|------|----------|
| Ground Elevation / Lowest Finished Flow Elevation                    | masl |          |
| Highest Groundwater Elevation (1.0 m above highest recorded)         | mbgs | 2.44     |
| Lowest Invert Elevation                                              | mbgs | 4.00     |
| Dewatered Elevation Target                                           | mbgs | 5.00     |
| Top of the Water-Bearing Zone                                        | mbgs | 2.44     |
| Base of the Water-Bearing Zone (assumed 3 m lowest invert)           | mbgs | 7.00     |
| Height of Water Table Above the Base of Water-Bearing Zone (H)       | m    | 4.56     |
| Height of Dewatering Target Above the Base of Water-Bearing Zone (h) | m    | 2.00     |
| Hydraulic Conductivity (K)                                           | m/s  | 2.68E-05 |
| Length of Excavation $(x_1)$                                         | m    | 10.00    |
| Width of Excavation (x <sub>2</sub> )                                | m    | 2.00     |

| Radius of Influence                                                  | Unit | Value    |
|----------------------------------------------------------------------|------|----------|
| Method to Calculate Radius of Influence                              | -    | Sichardt |
| Radius of Influence from Sides of Excavation                         | m    | 39.76    |
| Distance to Linear Source from Sides of excavation (L <sub>0</sub> ) | m    | 19.88    |

| Dewatering Rates                                               | Unit  | Value  |
|----------------------------------------------------------------|-------|--------|
| Dewatering Flow Rate (unconfined linear) (Q)                   | L/day | 23,470 |
| Factor of Safety (F <sub>s</sub> )                             | -     | 1.50   |
| Dewatering Flow Rate (multiplied by factor of safety) $Q_{FS}$ | L/day | 35,210 |
| Assumed Precipitation Event                                    | L/day | 15     |
| Volume from Precipitation                                      | L/day | 300    |
| Total Volume (GW Discharge Discharge withh SF + Precipitation) | L/day | 35,510 |

#### Lamina Flow from an Unconfined Aquifer to a Fully-Penetrating Excavation

$$Q_w = xK(H^2 - h^2)/Lo$$

(Based on the Dupuit Equation)

$$R_s = C(H - h)\sqrt{(K)}$$

Where:

Qw = Rate of Pumping  $(m^3/s)$ 

 $x_1$  = Length of Excavation (m)

 $x_2$  = Width of Excavation (m)

K = Hydraulic Conductivity (m/s)

 $L_0$  = Distance to Line Source, assumed  $R_0/2$  (m)

R = Radius of Influence (R<sub>0</sub>)

H = Aquifer Thickness / Initial Water Column Thickness (m)

h = Final Water Column Thickness (m)

C = Constant (3000)

Appendix G – Laboratory Certificates of Analysis



#### ALS Canada Ltd.



#### **CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)**

Address

**Work Order** : WT2426295 Page : 1 of 13

Client Laboratory · ALS Environmental - Waterloo : JLP Services Inc.

Contact : Ajay Jayalath **Account Manager** : Andrew Martin

> : 405 York Road : 60 Northland Road, Unit 1 Guelph ON Canada N1E 3H3

Waterloo, Ontario Canada N2V 2B8

Telephone : 519 763 3101 Telephone : +1 519 886 6910 Project **Date Samples Received** : G4836 : 06-Sep-2024 17:35 PO **Date Analysis Commenced** : 07-Sep-2024

: ----: 23-1122592 : 16-Sep-2024 17:32 C-O-C number Issue Date

Sampler : Client Site : ----

Quote number : 2024 SOA

No. of samples received : 1 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

#### **Signatories**

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

| Signatories        | Position                                       | Laboratory Department             |
|--------------------|------------------------------------------------|-----------------------------------|
| Amaninder Dhillon  | Team Lead - Semi-Volatile Instrumentation      | Organics, Waterloo, Ontario       |
| Andrea Armstrong   | Department Manager - Air Quality and Volatiles | VOC, Waterloo, Ontario            |
| Brooke Miller      | Laboratory Analyst                             | Inorganics, Edmonton, Alberta     |
| Greg Pokocky       | Manager - Inorganics                           | Inorganics, Waterloo, Ontario     |
| Greg Pokocky       | Manager - Inorganics                           | Metals, Waterloo, Ontario         |
| Hannah Lewis       | Inorganics Analyst                             | Inorganics, Waterloo, Ontario     |
| Jeremy Gingras     | Supervisor - Semi-Volatile Instrumentation     | Organics, Waterloo, Ontario       |
| Kim Jensen         | Department Manager - Metals                    | Metals, Burnaby, British Columbia |
| Rachel Cameron     | Supervisor - Semi-Volatile Extractions         | Organics, Waterloo, Ontario       |
| Stephanie Pinheiro | Team Leader - LCMS                             | LCMS, Waterloo, Ontario           |
| Walt Kippenhuck    | Supervisor - Inorganic                         | Inorganics, Waterloo, Ontario     |
| Zeba Patel         | Analyst                                        | Microbiology, Waterloo, Ontario   |
|                    |                                                |                                   |



 Page
 :
 3 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

Project : G4836

#### **Summary of Guideline Breaches by Sample**

| SampleID/Client ID | Matrix | Analyte                       | Analyte Summary | Guideline | Category | Result       | Limit      |
|--------------------|--------|-------------------------------|-----------------|-----------|----------|--------------|------------|
| BH/MW9             | Water  | Solids, total suspended [TSS] |                 | COGSUB    | SAN      | 1310 mg/L    | 350 mg/L   |
|                    | Water  | Zinc, total                   |                 | COGSUB    | SAN      | 2.42 mg/L    | 2 mg/L     |
|                    | Water  | Solids, total suspended [TSS] |                 | COGSUB    | STM      | 1310 mg/L    | 15 mg/L    |
|                    | Water  | Phosphorus, total             |                 | COGSUB    | STM      | 0.706 mg/L   | 0.4 mg/L   |
|                    | Water  | Cadmium, total                |                 | COGSUB    | STM      | 0.00390 mg/L | 0.001 mg/L |
|                    | Water  | Copper, total                 |                 | COGSUB    | STM      | 0.191 mg/L   | 0.01 mg/L  |
|                    | Water  | Lead, total                   |                 | COGSUB    | STM      | 0.420 mg/L   | 0.05 mg/L  |
|                    | Water  | Zinc, total                   |                 | COGSUB    | STM      | 2.42 mg/L    | 0.05 mg/L  |

#### **General Comments**

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key: LOR: Limit of Reporting (detection limit).

| Unit      | Description                                  |
|-----------|----------------------------------------------|
| μg/L      | micrograms per litre                         |
| CFU/100mL | colony forming units per hundred millilitres |
| mg/L      | milligrams per litre                         |
| pH units  | pH units                                     |

 Page
 :
 4 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.



Project : G4836

>: greater than.

<: less than.

Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable). For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

#### **Qualifiers**

| Description                                                                                            |
|--------------------------------------------------------------------------------------------------------|
| Limit of Reporting for BOD was increased to account for the largest volume of sample                   |
| tested.                                                                                                |
| Detection Limit adjusted for required dilution.                                                        |
| Detection Limit Raised: Dilution required due to high concentration of test analyte(s).                |
| Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity). |
| Parameter exceeded recommended holding time prior to analysis.                                         |
|                                                                                                        |

 Page
 :
 5 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

Project : G4836

| Client sample ID                         |            |             |               | BH/MW9               | <br> | <br> | <br> |
|------------------------------------------|------------|-------------|---------------|----------------------|------|------|------|
| Matrix: Groundwater                      |            |             |               |                      |      |      |      |
| Sampling date/time                       |            |             |               | 04-Sep-2024<br>00:00 | <br> | <br> | <br> |
|                                          |            |             | Sub-Matrix    | Groundwater          | <br> | <br> | <br> |
| Analyte                                  | CAS Number | Method/Lab  | Unit          | WT2426295-001        | <br> | <br> | <br> |
| Physical Tests                           |            |             |               |                      |      |      |      |
| pH                                       |            | E108/WT     | pH units      | 7.84                 | <br> | <br> | <br> |
| Solids, total suspended [TSS]            |            | E160/WT     | mg/L          | 1310 DLHC            | <br> | <br> | <br> |
| Anions and Nutrients                     |            |             |               |                      |      |      |      |
| Chloride                                 | 16887-00-6 | E235.CI/WT  | mg/L          | 17.4                 | <br> | <br> | <br> |
| Fluoride                                 | 16984-48-8 | E235.F/WT   | mg/L          | 0.056                | <br> | <br> | <br> |
| Kjeldahl nitrogen, total [TKN]           |            | E318/WT     | mg/L          | 0.515                | <br> | <br> | <br> |
| Phosphorus, total                        | 7723-14-0  | E372-U/WT   | mg/L          | 0.706                | <br> | <br> | <br> |
| Sulfate (as SO4)                         | 14808-79-8 | E235.SO4/WT | mg/L          | 12.7                 | <br> | <br> | <br> |
| Cyanides                                 |            |             |               |                      |      |      |      |
| Cyanide, strong acid dissociable (Total) |            | E333/WT     | mg/L          | <0.0020              | <br> | <br> | <br> |
| Total Sulfides                           |            |             |               |                      |      |      |      |
| Sulfide, total (as H2S)                  | 7783-06-4  | E396/WT     | mg/L          | <0.019               | <br> | <br> | <br> |
| Sulfide, total (as S)                    | 18496-25-8 | E396/WT     | mg/L          | <0.018               | <br> | <br> | <br> |
| Microbiological Tests                    |            |             |               |                      |      |      |      |
| Coliforms, thermotolerant [fecal]        |            | E012.FC/WT  | CFU/100<br>mL | Not DLM,<br>Detected | <br> | <br> | <br> |
| Total Metals                             |            |             |               |                      |      |      |      |
| Aluminum, total                          | 7429-90-5  | E420/WT     | mg/L          | 12.2 DLHC            | <br> | <br> | <br> |
| Antimony, total                          | 7440-36-0  | E420/WT     | mg/L          | <0.00100 DLHC        | <br> | <br> | <br> |
| Arsenic, total                           | 7440-38-2  | E420/WT     | mg/L          | 0.0410 DLHC          | <br> | <br> | <br> |
| Bismuth, total                           | 7440-69-9  | E420/WT     | mg/L          | <0.000500 DLHC       | <br> | <br> | <br> |
| Cadmium, total                           | 7440-43-9  | E420/WT     | mg/L          | 0.00390 DLHC         | <br> | <br> | <br> |
| Chromium, total                          | 7440-47-3  | E420/WT     | mg/L          | 0.0270 DLHC          | <br> | <br> | <br> |
| Cobalt, total                            | 7440-48-4  | E420/WT     | mg/L          | 0.0376 DLHC          | <br> | <br> | <br> |
| Copper, total                            | 7440-50-8  | E420/WT     | mg/L          | 0.191 DLHC           | <br> | <br> | <br> |
| Gold, total                              | 7440-57-5  | E462.PM/VA  | μg/L          | <0.040 DLA           | <br> | <br> | <br> |
| Iron, total                              | 7439-89-6  | E420/WT     | mg/L          | 47.6 DLHC            | <br> | <br> | <br> |

 Page
 :
 6 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

Project : G4836

| Allalytical Nesults Evaluatio              |            |              |           |                      |      |      |      |
|--------------------------------------------|------------|--------------|-----------|----------------------|------|------|------|
| Matrix: Groundwater                        |            | Client sa    | ample ID  | BH/MW9               | <br> | <br> | <br> |
|                                            |            | Sampling o   | late/time | 04-Sep-2024<br>00:00 | <br> | <br> | <br> |
|                                            |            | Su           | ıb-Matrix | Groundwater          | <br> | <br> | <br> |
| Analyte                                    | CAS Number | 1            | Unit      | WT2426295-001        | <br> | <br> | <br> |
| Total Metals                               |            |              |           |                      |      |      |      |
| Lead, total                                | 7439-92-1  | E420/WT      | mg/L      | 0.420 DLHC           | <br> | <br> | <br> |
| Manganese, total                           | 7439-96-5  | E420/WT      | mg/L      | 2.69 DLHC            | <br> | <br> | <br> |
| Mercury, total                             | 7439-97-6  | E508/WT      | mg/L      | 0.0000083            | <br> | <br> | <br> |
| Molybdenum, total                          | 7439-98-7  | E420/WT      | mg/L      | 0.00206 DLHC         | <br> | <br> | <br> |
| Nickel, total                              | 7440-02-0  | E420/WT      | mg/L      | 0.0382 DLHC          | <br> | <br> | <br> |
| Selenium, total                            | 7782-49-2  | E420/WT      | mg/L      | <0.000500 DLHC       | <br> | <br> | <br> |
| Silver, total                              | 7440-22-4  | E420/WT      | mg/L      | 0.000745 DLHC        | <br> | <br> | <br> |
| Tin, total                                 | 7440-31-5  | E420/WT      | mg/L      | 0.00170 DLHC         | <br> | <br> | <br> |
| Titanium, total                            | 7440-32-6  | E420/WT      | mg/L      | 0.458 DLHC           | <br> | <br> | <br> |
| Vanadium, total                            | 7440-62-2  | E420/WT      | mg/L      | 0.0340 DLHC          | <br> | <br> | <br> |
| Zinc, total                                | 7440-66-6  | E420/WT      | mg/L      | 2.42 DLHC            | <br> | <br> | <br> |
| Platinum, total                            | 7440-06-4  | E462.PM/VA   | μg/L      | <0.040 DLA           | <br> | <br> | <br> |
| Rhodium, total                             | 7440-16-6  | E462.PM/VA   | μg/L      | <0.0100 DLA          | <br> | <br> | <br> |
| Speciated Metals                           |            |              |           |                      |      |      |      |
| Chromium, hexavalent [Cr VI], total        | 18540-29-9 | E532/WT      | mg/L      | <0.00050             | <br> | <br> | <br> |
| Aggregate Organics                         |            |              |           |                      |      |      |      |
| Biochemical oxygen demand [BOD]            |            | E550/WT      | mg/L      | <3.0 BODL            | <br> | <br> | <br> |
| Chemical oxygen demand [COD]               |            | E559-L/WT    | mg/L      | 38                   | <br> | <br> | <br> |
| Oil & grease (gravimetric)                 |            | E567/WT      | mg/L      | <5.0                 | <br> | <br> | <br> |
| Oil & grease, animal/vegetable (gravimetri | ic)        | EC567A.SG/WT | mg/L      | <5.0                 | <br> | <br> | <br> |
| Oil & grease, mineral (gravimetric)        |            | E567SG/WT    | mg/L      | <5.0                 | <br> | <br> | <br> |
| Phenols, total (4AAP)                      |            | E562/EO      | mg/L      | <0.0010              | <br> | <br> | <br> |
| Volatile Organic Compounds                 |            |              |           |                      |      |      |      |
| Benzene                                    | 71-43-2    | E611D/WT     | μg/L      | <0.50                | <br> | <br> | <br> |
| Chloroform                                 | 67-66-3    | E611D/WT     | μg/L      | <0.50                | <br> | <br> | <br> |
| Dichlorobenzene, 1,2-                      | 95-50-1    | E611D/WT     | μg/L      | <0.50                | <br> | <br> | <br> |
| Dichlorobenzene, 1,4-                      | 106-46-7   | E611D/WT     | μg/L      | <0.50                | <br> | <br> | <br> |
| Dichloroethylene, cis-1,2-                 | 156-59-2   | E611D/WT     | μg/L      | <0.50                | <br> | <br> | <br> |
|                                            |            |              |           |                      |      |      |      |

 Page
 :
 7 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

Project : G4836

| Analytical Results Evalue         | ation       |            | _         |                      |          |      |      |
|-----------------------------------|-------------|------------|-----------|----------------------|----------|------|------|
| Matrix: Groundwater               |             | Client sa  | ample ID  | BH/MW9               | <br>     | <br> | <br> |
|                                   |             | Sampling o | date/time | 04-Sep-2024<br>00:00 | <br>     | <br> | <br> |
|                                   |             | Su         | ıb-Matrix | Groundwater          | <br>     | <br> | <br> |
| Analyte                           | CAS Number  |            | Unit      | WT2426295-001        | <br>     | <br> | <br> |
| Volatile Organic Compounds        |             |            |           |                      | -517/518 |      |      |
| Dichloromethane                   | 75-09-2     | E611D/WT   | μg/L      | <1.0                 | <br>     | <br> | <br> |
| Dichloropropylene, trans-1,3-     | 10061-02-6  | E611D/WT   | μg/L      | <0.30                | <br>     | <br> | <br> |
| Ethylbenzene                      | 100-41-4    | E611D/WT   | μg/L      | <0.50                | <br>     | <br> | <br> |
| Tetrachloroethane, 1,1,2,2-       | 79-34-5     | E611D/WT   | μg/L      | <0.50                | <br>     | <br> | <br> |
| Tetrachloroethylene               | 127-18-4    | E611D/WT   | μg/L      | <0.50                | <br>     | <br> | <br> |
| Toluene                           | 108-88-3    | E611D/WT   | μg/L      | <0.50                | <br>     | <br> | <br> |
| Trichloroethylene                 | 79-01-6     | E611D/WT   | μg/L      | <0.50                | <br>     | <br> | <br> |
| Xylene, m+p-                      | 179601-23-1 | E611D/WT   | μg/L      | <0.40                | <br>     | <br> | <br> |
| Xylene, o-                        | 95-47-6     | E611D/WT   | μg/L      | <0.30                | <br>     | <br> | <br> |
| Xylenes, total                    | 1330-20-7   | E611D/WT   | μg/L      | <0.50                | <br>     | <br> | <br> |
| Volatile Organic Compounds Surrog | ates        |            |           |                      |          |      |      |
| Bromofluorobenzene, 4-            | 460-00-4    | E611D/WT   | %         | 101                  | <br>     | <br> | <br> |
| Difluorobenzene, 1,4-             | 540-36-3    | E611D/WT   | %         | 96.8                 | <br>     | <br> | <br> |
| Polycyclic Aromatic Hydrocarbons  |             |            |           |                      |          |      |      |
| Anthracene                        | 120-12-7    | E641A-L/WT | mg/L      | <0.000010            | <br>     | <br> | <br> |
| Benz(a)anthracene                 | 56-55-3     | E641A-L/WT | mg/L      | <0.000010            | <br>     | <br> | <br> |
| Benzo(a)pyrene                    | 50-32-8     | E641A-L/WT | mg/L      | <0.0000050           | <br>     | <br> | <br> |
| Benzo(b+j)fluoranthene            | n/a         | E641A-L/WT | mg/L      | <0.000010            | <br>     | <br> | <br> |
| Benzo(e)pyrene                    | 192-97-2    | E641A-L/WT | mg/L      | <0.000010            | <br>     | <br> | <br> |
| Benzo(g,h,i)perylene              | 191-24-2    | E641A-L/WT | mg/L      | <0.000010            | <br>     | <br> | <br> |
| Benzo(k)fluoranthene              | 207-08-9    | E641A-L/WT | mg/L      | <0.000010            | <br>     | <br> | <br> |
| Chrysene                          | 218-01-9    | E641A-L/WT | mg/L      | <0.000010            | <br>     | <br> | <br> |
| Dibenz(a,h)acridine               | 226-36-8    | E642D/WT   | mg/L      | <0.000050            | <br>     | <br> | <br> |
| Dibenz(a,h)anthracene             | 53-70-3     | E641A-L/WT | mg/L      | <0.0000050           | <br>     | <br> | <br> |
| Dibenz(a,j)acridine               | 224-42-0    | E642D/WT   | mg/L      | <0.000050            | <br>     | <br> | <br> |
| Dibenzo(a,i)pyrene                | 189-55-9    | E642D/WT   | mg/L      | <0.000050            | <br>     | <br> | <br> |
| Dibenzo(c,g)carbazole, 7H-        | 194-59-2    | E642D/WT   | mg/L      | <0.000050            | <br>     | <br> | <br> |
| Dinitropyrene, 1,3-               | 75321-20-9  | E642D/WT   | mg/L      | <0.0010              | <br>     | <br> | <br> |
|                                   |             |            |           |                      |          |      |      |

 Page
 :
 8 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

Project : G4836

|                                       |            | Client     | sample ID  | BH/MW9               | <br>                   | <br> | <br> |
|---------------------------------------|------------|------------|------------|----------------------|------------------------|------|------|
| Matrix: Groundwater                   |            |            |            | Bi i/iii VV3         | <br>                   | <br> | <br> |
|                                       |            | Sampling   | date/time  | 04-Sep-2024<br>00:00 | <br>                   | <br> | <br> |
|                                       |            | S          | Sub-Matrix | Groundwater          | <br>                   | <br> | <br> |
| Analyte                               | CAS Number | Method/Lab | Unit       | WT2426295-001        | <br>                   | <br> | <br> |
| Polycyclic Aromatic Hydrocarbons      |            |            |            |                      | - 5 (7 7 1 7 1 7 1 7 1 |      |      |
| Dinitropyrene, 1,6-                   | 42397-64-8 | E642D/WT   | mg/L       | <0.0010              | <br>                   | <br> | <br> |
| Dinitropyrene, 1,8-                   | 42397-65-9 | E642D/WT   | mg/L       | <0.0010              | <br>                   | <br> | <br> |
| Fluoranthene                          | 206-44-0   | E641A-L/WT | mg/L       | <0.000010            | <br>                   | <br> | <br> |
| Indeno(1,2,3-c,d)pyrene               | 193-39-5   | E641A-L/WT | mg/L       | <0.000010            | <br>                   | <br> | <br> |
| Methylcholanthrene, 3-                | 56-49-5    | E642D/WT   | mg/L       | <0.000050            | <br>                   | <br> | <br> |
| Perylene                              | 198-55-0   | E641A-L/WT | mg/L       | <0.000010            | <br>                   | <br> | <br> |
| Phenanthrene                          | 85-01-8    | E641A-L/WT | mg/L       | <0.000010            | <br>                   | <br> | <br> |
| Pyrene                                | 129-00-0   | E641A-L/WT | mg/L       | 0.000011             | <br>                   | <br> | <br> |
| PAHs, total (ON Sewer Use)            | n/a        | EC640A/WT  | mg/L       | <0.00175             | <br>                   | <br> | <br> |
| Polycyclic Aromatic Hydrocarbons Surr | rogates    |            |            |                      |                        |      |      |
| Chrysene-d12                          | 1719-03-5  | E641A-L/WT | %          | 133                  | <br>                   | <br> | <br> |
| Naphthalene-d8                        | 1146-65-2  | E641A-L/WT | %          | 100                  | <br>                   | <br> | <br> |
| Phenanthrene-d10                      | 1517-22-2  | E641A-L/WT | %          | 120                  | <br>                   | <br> | <br> |
| Terphenyl-d14, p-                     | 1718-51-0  | E642D/WT   | %          | 48.7                 | <br>                   | <br> | <br> |
| Phthalate Esters                      |            |            |            |                      |                        |      |      |
| bis(2-Ethylhexyl) phthalate [DEHP]    | 117-81-7   | E625A/WT   | μg/L       | <0.60                | <br>                   | <br> | <br> |
| Di-n-butyl phthalate                  | 84-74-2    | E625A/WT   | μg/L       | <1.0                 | <br>                   | <br> | <br> |
| Semi-Volatile Organics                |            |            |            |                      |                        |      |      |
| Dichlorobenzidine, 3,3'-              | 91-94-1    | E625A/WT   | μg/L       | <0.40                | <br>                   | <br> | <br> |
| Semi-Volatile Organics Surrogates     |            |            |            |                      |                        |      |      |
| Fluorobiphenyl, 2-                    | 321-60-8   | E625A/WT   | %          | 82.2                 | <br>                   | <br> | <br> |
| Nitrobenzene-d5                       | 4165-60-0  | E625A/WT   | %          | 101                  | <br>                   | <br> | <br> |
| Terphenyl-d14, p-                     | 1718-51-0  | E625A/WT   | %          | 89.6                 | <br>                   | <br> | <br> |
| Chlorinated Phenolics                 |            |            |            |                      |                        |      |      |
| Pentachlorophenol [PCP]               | 87-86-5    | E625A/WT   | μg/L       | <0.50                | <br>                   | <br> | <br> |
| Phenolics Surrogates                  |            |            |            |                      |                        |      |      |
| Tribromophenol, 2,4,6-                | 118-79-6   | E625A/WT   | %          | 87.5                 | <br>                   | <br> | <br> |

 Page
 :
 9 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

Project : G4836

#### Analytical Results Evaluation

| Analytical Results Evaluation        | )II        |            |            |                      |      |      |      |
|--------------------------------------|------------|------------|------------|----------------------|------|------|------|
| Matrix: Groundwater                  |            | Client     | sample ID  | BH/MW9               | <br> | <br> | <br> |
| Walls. Groundwater                   |            | Sampling   | date/time  | 04-Sep-2024<br>00:00 | <br> | <br> | <br> |
|                                      |            | S          | Sub-Matrix | Groundwater          | <br> | <br> | <br> |
| Analyte                              | CAS Number | Method/Lab | Unit       | WT2426295-001        | <br> | <br> | <br> |
| Nonyiphenois                         |            |            |            |                      |      |      |      |
| Nonylphenol [NP]                     | 84852-15-3 | E749A/WT   | μg/L       | <0.40                | <br> | <br> | <br> |
| Nonylphenol diethoxylate [NP2EO]     | 20427-84-3 | E749B/WT   | μg/L       | <0.10                | <br> | <br> | <br> |
| Nonylphenol ethoxylates, mono+di     | n/a        | E749B/WT   | μg/L       | <2.0                 | <br> | <br> | <br> |
| Nonylphenol monoethoxylate [NP1EO]   | 27986-36-3 | E749B/WT   | μg/L       | <0.40                | <br> | <br> | <br> |
| Organochlorine Pesticides            |            |            |            |                      |      |      |      |
| Aldrin                               | 309-00-2   | E660F/WT   | μg/L       | <0.0080              | <br> | <br> | <br> |
| Chlordane, cis- (alpha)              | 5103-71-9  | E660F/WT   | μg/L       | <0.0080              | <br> | <br> | <br> |
| Chlordane, total                     | 57-74-9    | E660F/WT   | μg/L       | <0.011               | <br> | <br> | <br> |
| Chlordane, trans- (gamma)            | 5103-74-2  | E660F/WT   | μg/L       | <0.0080              | <br> | <br> | <br> |
| DDD, 2,4'-                           | 53-19-0    | E660F/WT   | μg/L       | <0.0040              | <br> | <br> | <br> |
| DDD, 4,4'-                           | 72-54-8    | E660F/WT   | μg/L       | <0.0040              | <br> | <br> | <br> |
| DDD, total                           |            | E660F/WT   | μg/L       | <0.0060              | <br> | <br> | <br> |
| DDE, 2,4'-                           | 3424-82-6  | E660F/WT   | μg/L       | <0.0040              | <br> | <br> | <br> |
| DDE, 4,4'-                           | 72-55-9    | E660F/WT   | μg/L       | <0.0040              | <br> | <br> | <br> |
| DDE, total                           |            | E660F/WT   | μg/L       | <0.0060              | <br> | <br> | <br> |
| DDT, 2,4'-                           | 789-02-6   | E660F/WT   | μg/L       | <0.0040              | <br> | <br> | <br> |
| DDT, 4,4'-                           | 50-29-3    | E660F/WT   | μg/L       | <0.0040              | <br> | <br> | <br> |
| DDT, total                           |            | E660F/WT   | μg/L       | <0.0060              | <br> | <br> | <br> |
| Dieldrin                             | 60-57-1    | E660F/WT   | μg/L       | <0.0080              | <br> | <br> | <br> |
| Hexachlorocyclohexane, gamma-        | 58-89-9    | E660F/WT   | μg/L       | <0.0080              | <br> | <br> | <br> |
| Mirex                                | 2385-85-5  | E660F/WT   | μg/L       | <0.0080              | <br> | <br> | <br> |
| Aldrin + Dieldrin                    |            | E660F/WT   | μg/L       | <0.011               | <br> | <br> | <br> |
| DDT + metabolites, total             |            | E660F/WT   | μg/L       | <0.010               | <br> | <br> | <br> |
| Organochlorine Pesticides Surrogates |            |            |            |                      |      |      |      |
| Decachlorobiphenyl                   | 2051-24-3  | E660F/WT   | %          | 88.2                 | <br> | <br> | <br> |
| Tetrachloro-m-xylene                 | 877-09-8   | E660F/WT   | %          | 105                  | <br> | <br> | <br> |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

 Page
 :
 10 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

Project : G4836

#### **Summary of Guideline Limits**

| Analyte                                  | CAS Number | Unit      | COGSUB<br>SAN | COGSUB<br>STM  |          |  |  |
|------------------------------------------|------------|-----------|---------------|----------------|----------|--|--|
| Physical Tests                           |            |           |               |                |          |  |  |
| pH                                       |            | pH units  | 6 - 9.5 pH    | 6 - 9 pH units |          |  |  |
|                                          |            |           | units         |                |          |  |  |
| Solids, total suspended [TSS]            |            | mg/L      | 350 mg/L      | 15 mg/L        |          |  |  |
| Anions and Nutrients                     |            |           |               |                |          |  |  |
| Chloride                                 | 16887-00-6 | mg/L      | 1500 mg/L     |                |          |  |  |
| Fluoride                                 | 16984-48-8 | mg/L      | 10 mg/L       |                |          |  |  |
| Kjeldahl nitrogen, total [TKN]           |            | mg/L      | 100 mg/L      |                |          |  |  |
| Phosphorus, total                        | 7723-14-0  | mg/L      | 10 mg/L       | 0.4 mg/L       |          |  |  |
| Sulfate (as SO4)                         | 14808-79-8 | mg/L      | 1500 mg/L     |                |          |  |  |
| Cyanides                                 |            |           |               | 1 55151        |          |  |  |
| Cyanide, strong acid dissociable (Total) |            | mg/L      | 1.2 mg/L      |                |          |  |  |
| Total Sulfides                           |            |           |               |                | MISSEL I |  |  |
| Sulfide, total (as H2S)                  | 7783-06-4  | mg/L      | 0.5 mg/L      |                |          |  |  |
| Sulfide, total (as S)                    | 18496-25-8 | mg/L      |               |                |          |  |  |
| Microbiological Tests                    |            |           |               |                |          |  |  |
| Coliforms, thermotolerant [fecal]        |            | CFU/100mL |               | 200            |          |  |  |
|                                          |            |           |               | CFU/100mL      |          |  |  |
| Total Metals                             |            |           |               |                |          |  |  |
| Aluminum, total                          | 7429-90-5  | mg/L      | 50 mg/L       |                |          |  |  |
| Antimony, total                          | 7440-36-0  | mg/L      | 5 mg/L        |                |          |  |  |
| Arsenic, total                           | 7440-38-2  | mg/L      | 1 mg/L        |                |          |  |  |
| Bismuth, total                           | 7440-69-9  | mg/L      | 5 mg/L        |                |          |  |  |
| Cadmium, total                           | 7440-43-9  | mg/L      | 0.7 mg/L      | 0.001 mg/L     |          |  |  |
| Chromium, total                          | 7440-47-3  | mg/L      | 2.8 mg/L      | 0.2 mg/L       |          |  |  |
| Cobalt, total                            | 7440-48-4  | mg/L      | 5 mg/L        |                |          |  |  |
| Copper, total                            | 7440-50-8  | mg/L      | 2 mg/L        | 0.01 mg/L      |          |  |  |
| Gold, total                              | 7440-57-5  | μg/L      | 5000 μg/L     |                |          |  |  |
| Iron, total                              | 7439-89-6  | mg/L      | 50 mg/L       |                |          |  |  |
| Lead, total                              | 7439-92-1  | mg/L      | 0.7 mg/L      | 0.05 mg/L      |          |  |  |
| Manganese, total                         | 7439-96-5  | mg/L      | 5 mg/L        |                |          |  |  |
| Mercury, total                           | 7439-97-6  | mg/L      | 0.01 mg/L     | 0.001 mg/L     |          |  |  |
| Molybdenum, total                        | 7439-98-7  | mg/L      | 5 mg/L        |                |          |  |  |
| Nickel, total                            | 7440-02-0  | mg/L      | 2 mg/L        | 0.05 mg/L      |          |  |  |
| Platinum, total                          | 7440-06-4  | μg/L      | 5000 μg/L     |                |          |  |  |
| Rhodium, total                           | 7440-16-6  | μg/L      | 5000 μg/L     |                |          |  |  |
| Selenium, total                          | 7782-49-2  | mg/L      | 0.8 mg/L      |                |          |  |  |
| Silver, total                            | 7440-22-4  | mg/L      | 0.4 mg/L      |                |          |  |  |

 Page
 :
 11 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.



Project : G4836

| Project : G4836                              |             |      |               |               |  | 1 |   |
|----------------------------------------------|-------------|------|---------------|---------------|--|---|---|
| Analyte                                      | CAS Number  | Unit | COGSUB<br>SAN | COGSUB<br>STM |  |   |   |
| Total Metals - Continued                     |             |      | JAN           | STWI          |  |   |   |
| Tin, total                                   | 7440-31-5   | mg/L | 5 mg/L        |               |  | I | 1 |
| Titanium, total                              | 7440-32-6   | mg/L | 5 mg/L        |               |  |   |   |
| Vanadium, total                              | 7440-62-2   | mg/L | 5 mg/L        |               |  |   |   |
| Zinc, total                                  | 7440-66-6   | mg/L | 2 mg/L        | 0.05 mg/L     |  |   |   |
| Speciated Metals                             |             |      |               |               |  |   |   |
| Chromium, hexavalent [Cr VI], total          | 18540-29-9  | mg/L | 2 mg/L        |               |  |   | T |
| Aggregate Organics                           |             |      |               |               |  |   |   |
| Biochemical oxygen demand [BOD]              |             | mg/L | 300 mg/L      | 15 mg/L       |  |   |   |
| Chemical oxygen demand [COD]                 |             | mg/L | 600 mg/L      |               |  |   |   |
| Oil & grease (gravimetric)                   |             | mg/L |               |               |  |   |   |
| Oil & grease, animal/vegetable (gravimetric) |             | mg/L | 100 mg/L      |               |  |   |   |
| Oil & grease, mineral (gravimetric)          |             | mg/L | 15 mg/L       |               |  |   |   |
| Phenols, total (4AAP)                        |             | mg/L | 0.1 mg/L      | 0.02 mg/L     |  |   |   |
| /olatile Organic Compounds                   |             |      |               |               |  |   |   |
| Benzene                                      | 71-43-2     | μg/L | 10 μg/L       |               |  |   |   |
| Chloroform                                   | 67-66-3     | μg/L | 40 μg/L       |               |  |   |   |
| Dichlorobenzene, 1,2-                        | 95-50-1     | μg/L | 50 μg/L       |               |  |   |   |
| Dichlorobenzene, 1,4-                        | 106-46-7    | μg/L | 80 μg/L       |               |  |   |   |
| Dichloroethylene, cis-1,2-                   | 156-59-2    | μg/L |               |               |  |   |   |
| Dichloromethane                              | 75-09-2     | μg/L | 90 μg/L       |               |  |   |   |
| Dichloropropylene, trans-1,3-                | 10061-02-6  | μg/L | 140 μg/L      |               |  |   |   |
| Ethylbenzene                                 | 100-41-4    | μg/L | 60 μg/L       |               |  |   |   |
| Tetrachloroethane, 1,1,2,2-                  | 79-34-5     | μg/L |               |               |  |   |   |
| Tetrachloroethylene                          | 127-18-4    | μg/L | 60 μg/L       |               |  |   |   |
| Toluene                                      | 108-88-3    | μg/L | 20 μg/L       |               |  |   |   |
| Trichloroethylene                            | 79-01-6     | μg/L | 50 μg/L       |               |  |   |   |
| Xylene, m+p-                                 | 179601-23-1 | μg/L |               |               |  |   |   |
| Xylene, o-                                   | 95-47-6     | μg/L |               |               |  |   |   |
| Xylenes, total                               | 1330-20-7   | μg/L | 300 μg/L      |               |  |   |   |
| /olatile Organic Compounds Surrogates        |             |      |               |               |  |   |   |
| Bromofluorobenzene, 4-                       | 460-00-4    | %    |               |               |  |   |   |
| Difluorobenzene, 1,4-                        | 540-36-3    | %    |               |               |  |   |   |
| Polycyclic Aromatic Hydrocarbons             |             |      |               |               |  |   |   |
| Anthracene                                   | 120-12-7    | mg/L |               |               |  |   |   |
| Benz(a)anthracene                            | 56-55-3     | mg/L |               |               |  |   |   |
| Benzo(a)pyrene                               | 50-32-8     | mg/L |               |               |  |   |   |
| Benzo(b+j)fluoranthene                       | n/a         | mg/L |               |               |  |   |   |
| Benzo(e)pyrene                               | 192-97-2    | mg/L |               |               |  |   |   |
| Benzo(g,h,i)perylene                         | 191-24-2    | mg/L |               |               |  |   |   |

 Page
 :
 12 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

Project : G4836

| 1 G4030                                                           |             |               |              |        | 1 | 1 | - II | 1 |
|-------------------------------------------------------------------|-------------|---------------|--------------|--------|---|---|------|---|
| Analyte                                                           | CAS Number  | Unit          | COGSUB       | COGSUB |   |   |      |   |
|                                                                   |             |               | SAN          | STM    |   | 1 |      | 1 |
| Polycyclic Aromatic Hydrocarbons - Continued Benzo(k)fluoranthene | 207-08-9    |               |              |        | 1 |   |      | 1 |
| • •                                                               |             | mg/L          |              |        |   |   |      |   |
| Chrysene                                                          | 218-01-9    | mg/L          |              |        |   |   |      |   |
| Dibenz(a,h)acridine                                               | 226-36-8    | mg/L          |              |        |   |   |      |   |
| Dibenz(a,h)anthracene                                             | 53-70-3     | mg/L          |              |        |   |   |      |   |
| Dibenz(a,j)acridine                                               | 224-42-0    | mg/L          |              |        |   |   |      |   |
| Dibenzo(a,i)pyrene                                                | 189-55-9    | mg/L          |              |        |   |   |      |   |
| Dibenzo(c,g)carbazole, 7H-                                        | 194-59-2    | mg/L          |              |        |   |   |      |   |
| Dinitropyrene, 1,3-                                               | 75321-20-9  | mg/L          |              |        |   |   |      |   |
| Dinitropyrene, 1,6-                                               | 42397-64-8  | mg/L          |              |        |   |   |      |   |
| Dinitropyrene, 1,8-                                               | 42397-65-9  | mg/L          |              |        |   |   |      |   |
| Fluoranthene                                                      | 206-44-0    | mg/L          |              |        |   |   |      |   |
| Indeno(1,2,3-c,d)pyrene                                           | 193-39-5    | mg/L          |              |        |   |   |      |   |
| Methylcholanthrene, 3-                                            | 56-49-5     | mg/L          |              |        |   |   |      |   |
| PAHs, total (ON Sewer Use)                                        | n/a         | mg/L          | 0.005 mg/L   |        |   |   |      |   |
| Perylene                                                          | 198-55-0    | mg/L          |              |        |   |   |      |   |
| Phenanthrene                                                      | 85-01-8     | mg/L          |              |        |   |   |      |   |
| Pyrene                                                            | 129-00-0    | mg/L          |              |        |   |   |      |   |
| Chrysene-d12                                                      | 1719-03-5   | %             |              |        |   |   |      |   |
| Naphthalene-d8                                                    | 1146-65-2   | %             |              |        |   |   |      |   |
| Phenanthrene-d10                                                  | 1517-22-2   | %             |              |        |   |   |      |   |
| Terphenyl-d14, p-                                                 | 1718-51-0   | %             |              |        |   |   |      |   |
| Phthalate Esters                                                  |             |               |              |        |   |   |      |   |
| bis(2-Ethylhexyl) phthalate [DEHP]                                | 117-81-7    | μg/L          | 12 μg/L      |        |   |   |      |   |
| Di-n-butyl phthalate                                              | 84-74-2     | μg/L          | 80 μg/L      |        |   |   |      |   |
| Semi-Volatile Organics                                            |             |               |              |        |   |   |      |   |
| Dichlorobenzidine, 3,3'-                                          | 91-94-1     | μg/L          | 2 μg/L       |        |   |   |      |   |
| Semi-Volatile Organics Surrogates                                 |             |               |              |        |   |   |      | • |
| Fluorobiphenyl, 2-                                                | 321-60-8    | %             |              |        |   |   |      |   |
| Nitrobenzene-d5                                                   | 4165-60-0   | %             |              |        |   |   |      |   |
| Terphenyl-d14, p-                                                 | 1718-51-0   | %             |              |        |   |   |      |   |
| Chlorinated Phenolics                                             |             |               |              |        |   |   |      | • |
| Pentachlorophenol [PCP]                                           | 87-86-5     | μg/L          |              |        |   |   |      |   |
| Tribromophenol, 2,4,6-                                            | 118-79-6    | %             |              |        |   |   |      |   |
| lonylphenols                                                      |             |               |              |        |   |   |      | 1 |
| Nonylphenol [NP]                                                  | 84852-15-3  | μg/L          | 20 μg/L      |        |   |   |      |   |
| Nonylphenol diethoxylate [NP2EO]                                  | 20427-84-3  | μg/L          | _0 μg/L      |        |   |   |      |   |
| Nonylphenol ethoxylates, mono+di                                  | n/a         | μg/L          | <br>200 μg/L |        |   |   |      |   |
| Nonylphenol monoethoxylate [NP1EO]                                | 27986-36-3  | μg/L          | 200 μg/L<br> |        |   |   |      |   |
| Organochlorine Pesticides                                         | 21 900-00-3 | μ <u>γ</u> /∟ |              |        |   |   |      | I |
| organochionne Pesticides                                          |             |               |              |        |   |   |      |   |

Page 13 of 13 Work Order WT2426295

JLP Services Inc. Client G4836 Project



| Analyte                               | CAS Number | Unit | COGSUB<br>SAN | COGSUB<br>STM |  |  |  |
|---------------------------------------|------------|------|---------------|---------------|--|--|--|
| Organochlorine Pesticides - Continued |            |      |               |               |  |  |  |
| Aldrin + Dieldrin                     |            | μg/L | 0.2 μg/L      |               |  |  |  |
| Aldrin                                | 309-00-2   | μg/L |               |               |  |  |  |
| Chlordane, cis- (alpha)               | 5103-71-9  | μg/L |               |               |  |  |  |
| Chlordane, total                      | 57-74-9    | μg/L | 100 μg/L      |               |  |  |  |
| Chlordane, trans- (gamma)             | 5103-74-2  | μg/L |               |               |  |  |  |
| DDD, 2,4'-                            | 53-19-0    | μg/L |               |               |  |  |  |
| DDD, 4,4'-                            | 72-54-8    | μg/L |               |               |  |  |  |
| DDD, total                            |            | μg/L |               |               |  |  |  |
| DDE, 2,4'-                            | 3424-82-6  | μg/L |               |               |  |  |  |
| DDE, 4,4'-                            | 72-55-9    | μg/L |               |               |  |  |  |
| DDE, total                            |            | μg/L |               |               |  |  |  |
| DDT + metabolites, total              |            | μg/L | 0.1 μg/L      |               |  |  |  |
| DDT, 2,4'-                            | 789-02-6   | μg/L |               |               |  |  |  |
| DDT, 4,4'-                            | 50-29-3    | μg/L |               |               |  |  |  |
| DDT, total                            |            | μg/L | 0.1 μg/L      |               |  |  |  |
| Dieldrin                              | 60-57-1    | μg/L |               |               |  |  |  |
| Hexachlorocyclohexane, gamma-         | 58-89-9    | μg/L | 100 μg/L      |               |  |  |  |
| Mirex                                 | 2385-85-5  | μg/L | 100 μg/L      |               |  |  |  |
| Decachlorobiphenyl                    | 2051-24-3  | %    |               |               |  |  |  |
| Tetrachloro-m-xylene                  | 877-09-8   | %    |               |               |  |  |  |

Please refer to the General Comments section for an explanation of any qualifiers detected.

Key:

Ontario Guelph Sanitary and Storm Sewer By-Law (2024-20911) COGSUB

> Ontario City of Guelph Sanitary Sewer Use By-Law (2024-20911) SAN

STM Ontario City of Guelph Storm Sewer Use By-Law (2024-20911)



#### **QUALITY CONTROL INTERPRETIVE REPORT**

**Work Order** :WT2426295 Page : 1 of 13

Client JLP Services Inc. Laboratory : ALS Environmental - Waterloo

Contact : Ajay Jayalath **Account Manager** : Andrew Martin

Address Address :405 York Road : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone :519 763 3101 Telephone : +1 519 886 6910 Project : G4836 **Date Samples Received** : 06-Sep-2024 17:35

: 16-Sep-2024 17:32

PO Issue Date C-O-C number :23-1122592 Sampler : Client

Site

No. of samples received :1 No. of samples analysed :1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

#### Key

Quote number

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

Guelph ON Canada N1E 3H3

:2024 SOA

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

#### **Workorder Comments**

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

# **Summary of Outliers**

#### **Outliers: Quality Control Samples**

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

#### Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

#### **Outliers : Analysis Holding Time Compliance (Breaches)**

• Analysis Holding Time Outliers exist - please see following pages for full details.

#### **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers occur - please see following pages for full details.

 Page
 :
 3 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

Project : G4836

#### **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

| Matrix: Water                                                           |         |               |             |               | Ev        | /aluation: × = | Holding time exce | edance ; • | = Within | Holding Tim |
|-------------------------------------------------------------------------|---------|---------------|-------------|---------------|-----------|----------------|-------------------|------------|----------|-------------|
| Analyte Group : Analytical Method                                       | Method  | Sampling Date | Ext         | raction / Pre | eparation |                |                   | Analys     | is       |             |
| Container / Client Sample ID(s)                                         |         |               | Preparation | Holding       | g Times   | Eval           | Analysis Date     | Holding    | Times    | Eval        |
|                                                                         |         |               | Date        | Rec           | Actual    |                |                   | Rec        | Actual   |             |
| Aggregate Organics : Biochemical Oxygen Demand - 5 day                  |         |               |             |               |           |                |                   |            |          |             |
| HDPE [BOD HT-4d]                                                        |         |               |             |               |           |                |                   |            |          |             |
| BH/MW9                                                                  | E550    | 04-Sep-2024   |             |               |           |                | 07-Sep-2024       | 4 days     | 3 days   | ✓           |
|                                                                         |         |               |             |               |           |                |                   |            |          |             |
| Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level) |         |               |             |               |           |                |                   |            |          |             |
| Amber glass total (sulfuric acid) [ON MECP] BH/MW9                      | E559-L  | 04-Sep-2024   |             |               |           |                | 09-Sep-2024       | 28 days    | 5 days   | 1           |
| DI I/MVV9                                                               | L339-L  | 04-06p-2024   |             |               |           |                | 09-3ep-2024       | 20 days    | Juays    | •           |
| Aggregate Organics : Mineral Oil & Grease by Gravimetry                 |         |               |             |               |           |                |                   |            |          |             |
| Amber glass (hydrochloric acid)                                         |         |               |             |               |           |                |                   |            |          |             |
| BH/MW9                                                                  | E567SG  | 04-Sep-2024   | 12-Sep-2024 | 28            | 9 days    | ✓              | 12-Sep-2024       | 28 days    | 9 days   | ✓           |
|                                                                         |         |               |             | days          |           |                |                   |            |          |             |
| Aggregate Organics : Oil & Grease by Gravimetry                         |         |               |             |               |           |                |                   |            |          |             |
| Amber glass (hydrochloric acid)                                         |         |               |             |               |           |                |                   |            |          |             |
| BH/MW9                                                                  | E567    | 04-Sep-2024   | 12-Sep-2024 |               | 9 days    | ✓              | 12-Sep-2024       | 28 days    | 9 days   | ✓           |
|                                                                         |         |               |             | days          |           |                |                   |            |          |             |
| Aggregate Organics : Phenols (4AAP) in Water by Colorimetry             |         |               |             |               |           |                |                   |            |          |             |
| Amber glass total (sulfuric acid) [ON MECP]                             | E562    | 04.0 0004     | 10.00001    |               | 7         | <b>√</b>       | 40.0 0004         | 00 1       | 7 1      | <b>√</b>    |
| BH/MW9                                                                  | E302    | 04-Sep-2024   | 10-Sep-2024 |               | 7 days    | •              | 10-Sep-2024       | 28 days    | 7 days   | •           |
|                                                                         |         |               |             | days          |           |                |                   |            |          |             |
| Anions and Nutrients : Chloride in Water by IC                          |         |               |             |               |           |                | I                 |            |          |             |
| HDPE [ON MECP] BH/MW9                                                   | E235.CI | 04-Sep-2024   | 11-Sep-2024 | 28            | 8 days    | <b>√</b>       | 12-Sep-2024       | 28 days    | 8 days   | ✓           |
| DITINIVA                                                                | 2200.01 | 04-0cp-2024   | 11-00p-2024 | days          | o days    | ,              | 12-00p-2024       | 20 days    | o days   | •           |
| Anions and Nutrients : Fluoride in Water by IC                          |         |               |             |               |           |                |                   |            |          |             |
| HDPE [ON MECP]                                                          |         |               |             |               |           |                |                   |            |          |             |
| BH/MW9                                                                  | E235.F  | 04-Sep-2024   | 11-Sep-2024 | 28            | 8 days    | ✓              | 12-Sep-2024       | 28 days    | 8 days   | ✓           |
|                                                                         |         |               |             | days          | _         |                | ·                 |            | ,        |             |
|                                                                         | 1       |               |             | _             |           |                |                   |            |          |             |

 Page
 :
 4 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

Project : G4836

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

| Date   Date   Rec   Actual   Rec   Actual   Rec   Actual   Rec   Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Matrix: Water                                                                 |          |               |             |               | L\        | aluation. • - | Holding time exce | euanice , • | - vviti iii i | Holding Till |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------|---------------|-------------|---------------|-----------|---------------|-------------------|-------------|---------------|--------------|
| Anions and Nutrients : Sulfate in Water by IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyte Group : Analytical Method                                             | Method   | Sampling Date | Ext         | traction / Pr | eparation |               |                   | Analys      | is            |              |
| Anions and Nutrients : Sulfate in Water by IC HDPE [ON MECP] BH/NW9 E235.SO4 04-Sep-2024 11-Sep-2024 28 8 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Container / Client Sample ID(s)                                               |          |               | Preparation | Holding       | g Times   | Eval          | Analysis Date     | Holding     | Times         | Eval         |
| HOPE   GO MECP    BH/M/W9   E35.504   04-Sep-2024   11-Sep-2024   28   8 days   ✓   12-Sep-2024   28 days   8 days   ✓   ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |          |               | Date        | Rec           | Actual    |               |                   | Rec         | Actual        |              |
| BH/M/W9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Anions and Nutrients : Sulfate in Water by IC                                 |          |               |             |               |           |               |                   |             |               |              |
| Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)  Amber glass total (sulfuric acid) [ON MECP] BH/MW9  E318  04-Sep-2024  13-Sep-2024  28 9 days  13-Sep-2024  28 days  10 days   Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)  Amber glass total (sulfuric acid) [ON MECP] BH/MW9  E372-U  04-Sep-2024  12-Sep-2024  28 9 days  13-Sep-2024  28 days  9 days   Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)  Amber glass Teffon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP] BH/MW9  E625A  04-Sep-2024  12-Sep-2024  12-Sep-2024  14 8 days  12-Sep-2024  40 days  0 days   Cyanidas : Total Cyanida  UV-inhibited HDPE - total (sodium hydroxide) BH/MW9  E333  04-Sep-2024  11-Sep-2024  11-Sep-2024  14 8 days  11-Sep-2024  14 days  8 days  Amaber glass Teffon lined cap - Lotal Sulform (MF-mFC)  Sterile HDPE (Sodium thiosulphate) [ON MECP] BH/MW9  E012-FC  04-Sep-2024  04-Sep-2024  04-Sep-2024  04-Sep-2024  04-Sep-2024  11-Sep-2024  14 8 days  11-Sep-2024  14 days  8 days  Amaber glass Teffon lined cap - LCMS BH/MW9  E749B  04-Sep-2024  04-Sep-2024  7 days  5 days  09-Sep-2024  7 days  09-Sep-2024  7 days  04-Sep-2024  7 days  15-Sep-2024  16-Sep-2024  17-Sep-2024  17-Sep-2024  18-Sep-2024  18-Sep-2024  18-Sep-2024  19-Sep-2024  11-Sep-2024  1 | HDPE [ON MECP]                                                                |          |               |             |               |           |               |                   |             |               |              |
| Amions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)  Amber glass total (sulfuric acid) (ON MECP] BH/MW9  E318  04-Sep-2024  13-Sep-2024  28 9 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BH/MW9                                                                        | E235.SO4 | 04-Sep-2024   | 11-Sep-2024 | 28            | 8 days    | ✓             | 12-Sep-2024       | 28 days     | 8 days        | ✓            |
| Ambor glass total (sulfuric acid) [ON MECP]   E318   04-Sep-2024   13-Sep-2024   28   3 days   ✓   13-Sep-2024   28 days   10 days   ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |          |               |             | days          |           |               |                   |             |               |              |
| Ramber glass total (sulfuric acid) [ON MECP]   E318   04-Sep-2024   13-Sep-2024   28   3 days   13-Sep-2024   28 days   10 d   | Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)    |          |               |             |               |           |               |                   |             |               |              |
| Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)  Amber glass total (sulfuric acid) [ON MECP] BH/M/W9  BE372-U  04-Sep-2024  28 days  9 days  11-Sep-2024  11-Sep-2024  11-Sep-2024  11-Sep-2024  11-Sep-2024  11- | Amber glass total (sulfuric acid) [ON MECP]                                   |          |               |             |               |           |               |                   |             |               |              |
| Amber glass total (sulfuric acid) [ON MECP] BH/M/W9  E372-U  04-Sep-2024  12-Sep-2024  28 days  9 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BH/MW9                                                                        | E318     | 04-Sep-2024   | 13-Sep-2024 | 28            | 9 days    | ✓             | 13-Sep-2024       | 28 days     | 10 days       | ✓            |
| ## Amber glass total (sulfuric acid) [ON MECP]  ## BH/M/Y9  ## BH/ |                                                                               |          |               |             | days          |           |               |                   |             |               |              |
| ## Amber glass total (sulfuric acid) [ON MECP]  ## BH/MW9  ## BH/M | Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)          |          |               |             |               |           |               |                   |             |               |              |
| Chlorinated Phenolics : BNA (Routine List) by GC-MS-MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |          |               |             |               |           |               |                   |             |               |              |
| Chlorinated Phenolics : BNA (Routine List) by GC-MS-MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BH/MW9                                                                        | E372-U   | 04-Sep-2024   | 12-Sep-2024 | 28            | 9 days    | ✓             | 13-Sep-2024       | 28 days     | 9 days        | ✓            |
| Amber glass/Teffon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP] BH/MW9 E625A 04-Sep-2024 12-Sep-2024 14 days  Cyanides: Total Cyanide  UV-inhibited HDPE - total (sodium hydroxide) BH/MW9 E333 04-Sep-2024 11-Sep-2024 14 days E333 04-Sep-2024 11-Sep-2024 14 days E348 E348 E358 E358 E358 E358 E358 E358 E358 E35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |          |               |             | days          |           |               |                   |             |               |              |
| Amber glass/Teffon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]  BH/MW9  E625A  04-Sep-2024  12-Sep-2024  14  8 days  11-Sep-2024  14  8 days  11-Sep-2024  14  8 days  11-Sep-2024  14  8 days  11-Sep-2024  11-Sep-202 | Chlorinated Phenolics : BNA (Routine List) by GC-MS-MS                        |          |               |             |               |           |               |                   |             |               |              |
| Cyanides : Total Cyanide   UV-inhibited HDPE - total (sodium hydroxide)   E333   04-Sep-2024   11-Sep-2024   14   days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   8 days   V   11-Sep-2024   14 days   |                                                                               |          |               |             |               |           |               |                   |             |               |              |
| Cyanides : Total Cyanide  UV-Inhibited HDPE - total (sodium hydroxide) BH/MW9  E333  04-Sep-2024  11-Sep-2024  11-Sep-2024  14 days  Wicrobiological Tests : Thermotolerant (Fecal) Coliform (MF-mFC)  Sterile HDPE (Sodium thiosulphate) [ON MECP] BH/MW9  E012.FC  04-Sep-2024   Amber glass/Teflon lined cap - LCMS BH/MW9  E749B  04-Sep-2024  O9-Sep-2024  T days  T      | BH/MW9                                                                        | E625A    | 04-Sep-2024   | 12-Sep-2024 | 14            | 8 days    | ✓             | 12-Sep-2024       | 40 days     | 0 days        | ✓            |
| Wicrobiological Tests : Thermotolerant (Fecal) Coliform (MF-mFC)  Sterile HDPE (Sodium thiosulphate) [ON MECP]  BH/MW9  BH/MW9  BO12.FC  O4-Sep-2024  Mo4-Sep-2024  Mo4-Se |                                                                               |          |               |             | days          |           |               |                   |             |               |              |
| Wicrobiological Tests : Thermotolerant (Fecal) Coliform (MF-mFC)  Sterile HDPE (Sodium thiosulphate) [ON MECP]  BH/MW9  E012.FC  O4-Sep-2024  O4-Sep | Cvanides : Total Cvanide                                                      |          |               |             |               |           |               |                   |             |               |              |
| Microbiological Tests : Thermotolerant (Fecal) Coliform (MF-mFC)  Sterile HDPE (Sodium thiosulphate) [ON MECP] BH/MW9  E012.FC  O4-Sep-2024   O7-Sep-2024  Amber glass/Teflon lined cap - LCMS BH/MW9  E749B  O4-Sep-2024  O9-Sep-2024  O9-     | •                                                                             |          |               |             |               |           |               |                   |             |               |              |
| Microbiological Tests: Thermotolerant (Fecal) Coliform (MF-mFC)  Sterile HDPE (Sodium thiosulphate) [ON MECP] BH/MW9  E012.FC  04-Sep-2024  BH/MW9  E012.FC  04-Sep-2024  BH/MW9  E012.FC  04-Sep-2024  BH/MW9  O7-Sep-2024  48 hrs BF/ rs EHT  Nonylphenols: Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode  E749B  04-Sep-2024  O9-Sep-2024  7 days  5 days  O9-Sep-2024  7 days  O9-Sep-2024  7 days  O9-Sep-2024  7 days  O9-Sep-2024  7 days  O9-Sep-2024                | BH/MW9                                                                        | E333     | 04-Sep-2024   | 11-Sep-2024 | 14            | 8 days    | ✓             | 11-Sep-2024       | 14 days     | 8 days        | ✓            |
| Sterile HDPE (Sodium thiosulphate) [ON MECP] BH/MW9  E012.FC  04-Sep-2024   Nonylphenols: Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode  E749B  04-Sep-2024  09-Sep-2024  7 days  5 days   Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode  E749A  04-Sep-2024  09-Sep-2024  7 days  5 days   Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode  E749A  04-Sep-2024  09-Sep-2024  7 days  5 days   Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode  E749A  04-Sep-2024  09-Sep-2024  7 days  5 days   Og-Sep-2024  7 days  Og-Sep-2024  7 days  Og-Sep-2024  7 days  Og-Sep-2024  Og-Sep-202                          |                                                                               |          |               |             | days          |           |               |                   |             |               |              |
| Sterile HDPE (Sodium thiosulphate) [ON MECP] BH/MW9  E012.FC  04-Sep-2024   Nonylphenols: Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode  E749B  04-Sep-2024  09-Sep-2024  7 days  5 days   Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode  E749A  04-Sep-2024  09-Sep-2024  7 days  5 days   Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode  E749A  04-Sep-2024  09-Sep-2024  7 days  5 days   Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode  E749A  04-Sep-2024  09-Sep-2024  7 days  5 days   Og-Sep-2024  7 days  Og-Sep-2024  7 days  Og-Sep-2024  7 days  Og-Sep-2024  Og-Sep-202                          | Microbiological Tests : Thermotolerant (Fecal) Coliform (MF-mFC)              |          |               |             |               |           |               |                   |             |               |              |
| Nonylphenols : Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode  Amber glass/Teflon lined cap - LCMS BH/MW9  E749B  O4-Sep-2024  O9-Sep-2024  T days  T days |                                                                               |          |               |             |               |           |               |                   |             |               |              |
| Nonylphenols: Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode  E749B 04-Sep-2024 09-Sep-2024 7 days 5 days    Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode  E749A 04-Sep-2024 09-Sep-2024 7 days 5 days    Og-Sep-2024 7 days 0 days    Og-Sep-2024 | BH/MW9                                                                        | E012.FC  | 04-Sep-2024   |             |               |           |               | 07-Sep-2024       | 48 hrs      | 87 hrs        | æ            |
| Amber glass/Teflon lined cap - LCMS BH/MW9  E749B  04-Sep-2024  09-Sep-2024  7 days  5 days  ✓  09-Sep-2024  7 days  09-Sep-2024  7 days  0 days  ✓  Nonylphenols: Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode  E749A  04-Sep-2024  09-Sep-2024  7 days  5 days  ✓  09-Sep-2024  7 days  09-Sep-2024  09- |                                                                               |          |               |             |               |           |               |                   |             |               | EHTL         |
| Amber glass/Teflon lined cap - LCMS BH/MW9  E749B  04-Sep-2024  09-Sep-2024  7 days  5 days  ✓  09-Sep-2024  7 days  09-Sep-2024  7 days  0 days  ✓  Nonylphenols: Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode  E749A  04-Sep-2024  09-Sep-2024  7 days  5 days  ✓  09-Sep-2024  7 days  09-Sep-2024  09- | Nonylphenols : Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode     |          |               |             |               |           |               |                   |             |               |              |
| Nonylphenols: Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode  E749A 04-Sep-2024 09-Sep-2024 7 days 5 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |          |               |             |               |           |               |                   |             |               |              |
| Nonylphenols : Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode  Amber glass/Teflon lined cap - LCMS BH/MW9  E749A  04-Sep-2024  09-Sep-2024  7 days  5 days  ✓  09-Sep-2024  7 days  09-Sep-2024  7 days  0 days  ✓  Organochlorine Pesticides : OCP Analysis by GC-MS-MS or GC-MS  Amber glass/Teflon lined cap [ON MECP]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BH/MW9                                                                        | E749B    | 04-Sep-2024   | 09-Sep-2024 | 7 days        | 5 days    | ✓             | 09-Sep-2024       | 7 days      | 0 days        | ✓            |
| Amber glass/Teflon lined cap - LCMS BH/MW9  E749A  04-Sep-2024  09-Sep-2024  7 days  5 days  109-Sep-2024  7 days  0 days  109-Sep-2024  109-S |                                                                               |          |               |             |               |           |               |                   |             |               |              |
| Amber glass/Teflon lined cap - LCMS BH/MW9 E749A 04-Sep-2024 09-Sep-2024 7 days 5 days ✓ 09-Sep-2024 7 days 0 days ✓ Organochlorine Pesticides: OCP Analysis by GC-MS-MS or GC-MS Amber glass/Teflon lined cap [ON MECP]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nonylphenols: Nonylphenol, Octylphenol and BPA in Water by I C-MS-MS Negative | ve Mode  |               |             |               |           |               |                   |             |               |              |
| BH/MW9  E749A  04-Sep-2024  09-Sep-2024  7 days  5 days  ✓  09-Sep-2024  7 days  0 days  ✓  Organochlorine Pesticides: OCP Analysis by GC-MS-MS or GC-MS  Amber glass/Teflon lined cap [ON MECP]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               | - mode   |               |             |               |           |               |                   |             |               |              |
| Organochlorine Pesticides : OCP Analysis by GC-MS-MS or GC-MS  Amber glass/Teflon lined cap [ON MECP]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                                                             | E749A    | 04-Sep-2024   | 09-Sep-2024 | 7 days        | 5 days    | ✓             | 09-Sep-2024       | 7 days      | 0 days        | ✓            |
| Amber glass/Teflon lined cap [ON MECP]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |          |               | ·           |               |           |               |                   |             | 1             |              |
| Amber glass/Teflon lined cap [ON MECP]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Organochlorine Posticides : OCP Analysis by GC-MS-MS or GC-MS                 |          |               |             |               |           |               |                   |             |               |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |          |               |             |               |           |               |                   |             |               |              |
| BH/MW9   10-Sep-2024   10-Sep-2024   14   7 days   ✓   12-Sep-2024   40 days   2 days   ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BH/MW9                                                                        | E660F    | 04-Sep-2024   | 10-Sep-2024 | 14            | 7 days    | 1             | 12-Sep-2024       | 40 days     | 2 days        | 1            |
| days days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               |          |               |             |               |           |               |                   | , 5         | ,-            |              |

 Page
 :
 5 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

Project : G4836

Matrix: Water Evaluation: **×** = Holding time exceedance; ✓ = Within Holding Time

| Philalate Esters : BNA (Routine List) by GC-MS-MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Matrix: Water                                                                |         |               |             |               |            | aluation. • – | Holding time exce | cuarioc , . | - vvicinii | riolaling rilli |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------|---------------|-------------|---------------|------------|---------------|-------------------|-------------|------------|-----------------|
| Philalate Seters : BNA (Routine Liet) by GC-MS-MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analyte Group : Analytical Method                                            | Method  | Sampling Date | Ext         | traction / Pr | reparation |               |                   | Analys      | is         |                 |
| Phthalate Esters : BNA (Routine List) by GC-MS-MS   Amber glass/Teflon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]   E625A   04-Sep-2024   12-Sep-2024   14   8 days     12-Sep-2024   40 days   0 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Container / Client Sample ID(s)                                              |         |               | Preparation | Holding       | g Times    | Eval          | Analysis Date     | Holding     | g Times    | Eval            |
| Amber glass/Teffon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]   E625A   04-Sep-2024   12-Sep-2024   14   8 days   ✓   12-Sep-2024   40 days   0 days   ✓   0 days   ○ 0 days   |                                                                              |         |               | Date        | Rec           | Actual     |               |                   | Rec         | Actual     |                 |
| BHMW9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Phthalate Esters : BNA (Routine List) by GC-MS-MS                            |         |               |             |               |            |               |                   |             |            |                 |
| Hope   Con MeCP    BH/MW9   E108    04-Sep-2024    11-Sep-2024    14    8 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Amber glass/Teflon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]    |         |               |             |               |            |               |                   |             |            |                 |
| Physical Tests : pH by Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BH/MW9                                                                       | E625A   | 04-Sep-2024   | 12-Sep-2024 | 14            | 8 days     | ✓             | 12-Sep-2024       | 40 days     | 0 days     | ✓               |
| HDPE [ON MECP]   E108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |         |               |             | days          |            |               |                   |             |            |                 |
| BH/MW9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Physical Tests : pH by Meter                                                 |         |               |             |               |            |               |                   |             |            |                 |
| Description     | HDPE [ON MECP]                                                               |         |               |             |               |            |               |                   |             |            |                 |
| Physical Tests: TSS by Gravimetry         HDPE [ON MECP]         E160         04-Sep-2024            07-Sep-2024         7 days         4 days           Polycyclic Aromatic Hydrocarbons: PAHs (ON Special List) by GC-MS         Amber glass/Teffon lined cap [ON MECP]         E642D         04-Sep-2024         09-Sep-2024         14 days         6 days         ✓         10-Sep-2024         40 days         1 days           Polycyclic Aromatic Hydrocarbons: PAHs in Water by Hexane LVI GC-MS (Low Level)         E642D         04-Sep-2024         11-Sep-2024         14 days         8 days         ✓         10-Sep-2024         40 days         1 days           Polycyclic Aromatic Hydrocarbons: PAHs in Water by Hexane LVI GC-MS (Low Level)         E641A-L         04-Sep-2024         11-Sep-2024         14 days         8 days         ✓         12-Sep-2024         40 days         1 days           BH/MW9         E641A-L         04-Sep-2024         11-Sep-2024         14 days         8 days         ✓         12-Sep-2024         40 days         ✓           Semi-Volatile Organics: BNA (Routine List) by GC-MS-MS         E625A         04-Sep-2024         12-Sep-2024         14 days         8 days         ✓         12-Sep-2024         40 days         ✓           BH/MW9         E625A         04-Sep-2024         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BH/MW9                                                                       | E108    | 04-Sep-2024   | 11-Sep-2024 | 14            | 8 days     | ✓             | 12-Sep-2024       | 14 days     | 8 days     | ✓               |
| HDPE [ON MECP]   BH/MW9   E160   04-Sep-2024         07-Sep-2024   7 days   4 days         07-Sep-2024   7 days   4 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |         |               |             | days          |            |               |                   |             |            |                 |
| BH/MW9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Physical Tests : TSS by Gravimetry                                           |         |               |             |               |            |               |                   |             |            |                 |
| Polycyclic Aromatic Hydrocarbons : PAHs (ON Special List) by GC-MS  Amber glass/Teflon lined cap [ON MECP] BH/MW9  E642D  04-Sep-2024  09-Sep-2024  14 6 days  7 10-Sep-2024  40 days  1 days | HDPE [ON MECP]                                                               |         |               |             |               |            |               |                   |             |            |                 |
| Amber glass/Teflon lined cap [ON MECP]         E642D         04-Sep-2024         09-Sep-2024         14 days         6 days         ✓         10-Sep-2024         40 days         1 days           Polycyclic Aromatic Hydrocarbons : PAHs in Water by Hexane LVI GC-MS (Low Level)           Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP]         E641A-L         04-Sep-2024         11-Sep-2024         14 days         8 days         ✓         12-Sep-2024         40 days         1 days           Semi-Volatile Organics : BNA (Routine List) by GC-MS-MS           Amber glass/Teflon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]         E625A         04-Sep-2024         12-Sep-2024         14 days         8 days         ✓         12-Sep-2024         40 days         0 days           Speciated Metals : Total Hexavalent Chromium (Cr VI) by IC           HDPE - total (NaOH+Buf) [ON MECP]         E532         04-Sep-2024           10-Sep-2024         28 days         6 days           Total Metals : Total Metals : Total Metals : Total Metals to Total Metals : Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BH/MW9                                                                       | E160    | 04-Sep-2024   |             |               |            |               | 07-Sep-2024       | 7 days      | 4 days     | ✓               |
| Amber glass/Teflon lined cap [ON MECP]         E642D         04-Sep-2024         09-Sep-2024         14 days         6 days         ✓         10-Sep-2024         40 days         1 days           Polycyclic Aromatic Hydrocarbons : PAHs in Water by Hexane LVI GC-MS (Low Level)           Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP]         E641A-L         04-Sep-2024         11-Sep-2024         14 days         8 days         ✓         12-Sep-2024         40 days         1 days           Semi-Volatile Organics : BNA (Routine List) by GC-MS-MS           Amber glass/Teflon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]         E625A         04-Sep-2024         12-Sep-2024         14 days         8 days         ✓         12-Sep-2024         40 days         0 days           Speciated Metals : Total Hexavalent Chromium (Cr VI) by IC           H/MW9         E532         04-Sep-2024           10-Sep-2024         28 days         6 days           Total Metals : Tot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                              |         |               |             |               |            |               |                   |             |            |                 |
| BH/MW9   E642D   04-Sep-2024   14   days   6 days   ✓   10-Sep-2024   40 days   1   | Polycyclic Aromatic Hydrocarbons : PAHs (ON Special List) by GC-MS           |         |               |             |               |            |               |                   |             |            |                 |
| Polycyclic Aromatic Hydrocarbons : PAHs in Water by Hexane LVI GC-MS (Low Level)   Amber glass/Teffon lined cap (sodium bisulfate) [ON MECP]   E641A-L   04-Sep-2024   11-Sep-2024   14   days   40 days   1 da   | Amber glass/Teflon lined cap [ON MECP]                                       |         |               |             |               |            |               |                   |             |            |                 |
| Polycyclic Aromatic Hydrocarbons: PAHs in Water by Hexane LVI GC-MS (Low Level)  Amber glass/Tefion lined cap (sodium bisulfate) [ON MECP]  BH/MW9  E641A-L  04-Sep-2024  11-Sep-2024  14 8 days  12-Sep-2024  40 days  1 days  Semi-Volatile Organics: BNA (Routine List) by GC-MS-MS  Amber glass/Tefion lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]  BH/MW9  E625A  04-Sep-2024  12-Sep-2024  14 8 days  12-Sep-2024  40 days  0 days  Speciated Metals: Total Hexavalent Chromium (Cr VI) by IC  HDPE - total (NaOH+Buf) [ON MECP]  BH/MW9  E532  04-Sep-2024   10-Sep-2024  28 days  6 days  Total Metals: Total Mercury in Water by CVAAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BH/MW9                                                                       | E642D   | 04-Sep-2024   | 09-Sep-2024 | 14            | 6 days     | ✓             | 10-Sep-2024       | 40 days     | 1 days     | ✓               |
| Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP]  BH/MW9  E641A-L  04-Sep-2024  11-Sep-2024  14  days  V  12-Sep-2024  40 days  1 days  Semi-Volatile Organics: BNA (Routine List) by GC-MS-MS  Amber glass/Teflon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]  BH/MW9  E625A  04-Sep-2024  12-Sep-2024  14  8 days  V  12-Sep-2024  40 days  0 days  Odays  Speciated Metals: Total Hexavalent Chromium (Cr VI) by IC  HDPE - total (NaOH+Buf) [ON MECP]  BH/MW9  E532  04-Sep-2024    10-Sep-2024  28 days  6 days  Total Metals: Total Mercury in Water by CVAAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |         |               |             | days          |            |               |                   |             |            |                 |
| Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP]       E641A-L       04-Sep-2024       11-Sep-2024       14 8 days ✓       12-Sep-2024       40 days       1 days         Semi-Volatile Organics : BNA (Routine List) by GC-MS-MS       Amber glass/Teflon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]         BH/MW9       E625A       04-Sep-2024       12-Sep-2024       14 8 days ✓       12-Sep-2024       40 days       0 days         Speciated Metals : Total Hexavalent Chromium (Cr VI) by IC         HDPE - total (NaOH+Buf) [ON MECP]         BH/MW9       E532       04-Sep-2024         10-Sep-2024       28 days       6 days         Total Mercury in Water by CVAAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Polycyclic Aromatic Hydrocarbons : PAHs in Water by Hexane LVI GC-MS (Low Le | vel)    |               |             |               |            |               |                   |             |            |                 |
| Semi-Volatile Organics : BNA (Routine List) by GC-MS-MS  Amber glass/Teflon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]  BH/MW9  E625A  04-Sep-2024  12-Sep-2024  14  8 days  12-Sep-2024  40 days  0 days  Total Metals : Total Mercury in Water by CVAAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |         |               |             |               |            |               |                   |             |            |                 |
| Semi-Volatile Organics : BNA (Routine List) by GC-MS-MS  Amber glass/Teflon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]  BH/MW9  E625A  04-Sep-2024  12-Sep-2024  14  8 days  12-Sep-2024  40 days  0 days  Speciated Metals : Total Hexavalent Chromium (Cr VI) by IC  HDPE - total (NaOH+Buf) [ON MECP]  BH/MW9  E532  04-Sep-2024   10-Sep-2024  28 days  6 days  Total Metals : Total Mercury in Water by CVAAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BH/MW9                                                                       | E641A-L | 04-Sep-2024   | 11-Sep-2024 | 14            | 8 days     | ✓             | 12-Sep-2024       | 40 days     | 1 days     | ✓               |
| Amber glass/Teflon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]  BH/MW9  E625A  04-Sep-2024  12-Sep-2024  14 8 days  ✓  12-Sep-2024  40 days  0 days  Speciated Metals: Total Hexavalent Chromium (Cr VI) by IC  HDPE - total (NaOH+Buf) [ON MECP]  BH/MW9  E532  04-Sep-2024  ——  10-Sep-2024  28 days  6 days  Total Metals: Total Mercury in Water by CVAAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              |         |               |             | days          |            |               |                   |             |            |                 |
| BH/MW9  E625A  04-Sep-2024  12-Sep-2024  14  8 days  ✓  12-Sep-2024  40 days  0 days  Speciated Metals: Total Hexavalent Chromium (Cr VI) by IC  HDPE - total (NaOH+Buf) [ON MECP]  BH/MW9  E532  04-Sep-2024   Total Metals: Total Mercury in Water by CVAAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Semi-Volatile Organics : BNA (Routine List) by GC-MS-MS                      |         |               |             |               |            |               |                   |             |            |                 |
| Speciated Metals: Total Hexavalent Chromium (Cr VI) by IC  HDPE - total (NaOH+Buf) [ON MECP]  BH/MW9  E532  04-Sep-2024   Total Metals: Total Mercury in Water by CVAAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Amber glass/Teflon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]    |         |               |             |               |            |               |                   |             |            |                 |
| Speciated Metals: Total Hexavalent Chromium (Cr VI) by IC  HDPE - total (NaOH+Buf) [ON MECP]  BH/MW9  E532  04-Sep-2024   Total Metals: Total Mercury in Water by CVAAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BH/MW9                                                                       | E625A   | 04-Sep-2024   | 12-Sep-2024 | 14            | 8 days     | ✓             | 12-Sep-2024       | 40 days     | 0 days     | ✓               |
| HDPE - total (NaOH+Buf) [ON MECP]   BH/MW9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |         |               |             | days          |            |               |                   |             |            |                 |
| BH/MW9 E532 04-Sep-2024 10-Sep-2024 28 days 6 days  Total Metals : Total Mercury in Water by CVAAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Speciated Metals : Total Hexavalent Chromium (Cr VI) by IC                   |         |               |             |               |            |               |                   |             |            |                 |
| Total Metals : Total Mercury in Water by CVAAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HDPE - total (NaOH+Buf) [ON MECP]                                            |         |               |             |               |            |               |                   |             |            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BH/MW9                                                                       | E532    | 04-Sep-2024   |             |               |            |               | 10-Sep-2024       | 28 days     | 6 days     | ✓               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              |         |               |             |               |            |               |                   |             |            |                 |
| Glass vial total (hydrochloric acid) [ON MECP]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Metals : Total Mercury in Water by CVAAS                               |         |               |             |               |            |               |                   |             |            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Glass vial total (hydrochloric acid) [ON MECP]                               |         |               |             |               |            |               |                   |             |            |                 |
| BH/MW9 E508 04-Sep-2024 11-Sep-2024 28 7 days ✓ 13-Sep-2024 28 days 9 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BH/MW9                                                                       | E508    | 04-Sep-2024   | 11-Sep-2024 | 28            | 7 days     | ✓             | 13-Sep-2024       | 28 days     | 9 days     | ✓               |
| days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |         |               |             | days          |            |               |                   |             |            |                 |
| Total Metals : Total Metals in Water by CRC ICPMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Metals : Total Metals in Water by CRC ICPMS                            |         |               |             |               |            |               |                   |             |            |                 |
| HDPE total (nitric acid)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              |         |               |             |               |            |               |                   |             |            |                 |
| BH/MW9 E420 04-Sep-2024 09-Sep-2024 180 5 days ✓ 09-Sep-2024 180 5 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BH/MW9                                                                       | E420    | 04-Sep-2024   | 09-Sep-2024 | 180           | 5 days     | ✓             | 09-Sep-2024       | 180         | 5 days     | ✓               |
| days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |         |               |             | days          |            |               |                   | days        |            |                 |

 Page
 :
 6 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

Project : G4836



Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

|                                                                            |         |               |             |              |           |      | 9             |         |         | 9    |
|----------------------------------------------------------------------------|---------|---------------|-------------|--------------|-----------|------|---------------|---------|---------|------|
| Analyte Group : Analytical Method                                          | Method  | Sampling Date | Ext         | raction / Pr | eparation |      |               | Analys  | sis     |      |
| Container / Client Sample ID(s)                                            |         |               | Preparation | Holding      | g Times   | Eval | Analysis Date | Holding | g Times | Eval |
|                                                                            |         |               | Date        | Rec          | Actual    |      |               | Rec     | Actual  |      |
| Total Metals : Total Precious Metals in Water by Triple Quad ICPMS         |         |               |             |              |           |      |               |         |         |      |
| HDPE total (nitric acid)                                                   |         |               |             |              |           |      |               |         |         |      |
| BH/MW9                                                                     | E462.PM | 04-Sep-2024   | 11-Sep-2024 | 180          | 8 days    | ✓    | 13-Sep-2024   | 180     | 10 days | ✓    |
|                                                                            |         |               |             | days         |           |      |               | days    |         |      |
| Total Sulfides : Total Sulfide by Colourimetry (Manual)                    |         |               |             |              |           |      |               |         |         |      |
| HDPE total (zinc acetate+sodium hydroxide)                                 |         |               |             |              |           |      |               |         |         |      |
| BH/MW9                                                                     | E396    | 04-Sep-2024   |             |              |           |      | 10-Sep-2024   | 7 days  | 7 days  | ✓    |
|                                                                            |         |               |             |              |           |      |               |         |         |      |
| Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS |         |               |             |              |           |      |               |         |         |      |
| Glass vial (sodium bisulfate)                                              |         |               |             |              |           |      |               |         |         |      |
| BH/MW9                                                                     | E611D   | 04-Sep-2024   | 12-Sep-2024 | 14           | 8 days    | ✓    | 12-Sep-2024   | 14 days | 8 days  | ✓    |
|                                                                            |         |               |             | days         |           |      |               |         |         |      |

#### **Legend & Qualifier Definitions**

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

Rec. HT: ALS recommended hold time (see units).

 Page
 :
 7 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

Project : G4836



# **Quality Control Parameter Frequency Compliance**

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

| Matrix: Water                                                       |          | Evaluatio | on: × = QC frequ | ency outside spe | ecification; ✓ = 0 | QC frequency wit | thin specification |  |
|---------------------------------------------------------------------|----------|-----------|------------------|------------------|--------------------|------------------|--------------------|--|
| Quality Control Sample Type                                         |          |           | Co               | Count            |                    | Frequency (%)    |                    |  |
| Analytical Methods                                                  | Method   | QC Lot #  | QC               | Regular          | Actual             | Expected         | Evaluation         |  |
| Laboratory Duplicates (DUP)                                         |          |           |                  |                  |                    |                  |                    |  |
| Biochemical Oxygen Demand - 5 day                                   | E550     | 1638935   | 1                | 19               | 5.2                | 5.0              | 1                  |  |
| Chemical Oxygen Demand by Colourimetry (Low Level)                  | E559-L   | 1640046   | 1                | 8                | 12.5               | 5.0              | 1                  |  |
| Chloride in Water by IC                                             | E235.CI  | 1645824   | 1                | 11               | 9.0                | 5.0              | 1                  |  |
| Fluoride in Water by IC                                             | E235.F   | 1645826   | 1                | 11               | 9.0                | 5.0              | 1                  |  |
| Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode          | E749B    | 1639975   | 1                | 20               | 5.0                | 5.0              | 1                  |  |
| Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode | E749A    | 1639974   | 1                | 20               | 5.0                | 5.0              | 1                  |  |
| pH by Meter                                                         | E108     | 1645823   | 1                | 13               | 7.6                | 5.0              | 1                  |  |
| Phenols (4AAP) in Water by Colorimetry                              | E562     | 1642513   | 1                | 20               | 5.0                | 5.0              | <u>-</u>           |  |
| Sulfate in Water by IC                                              | E235.SO4 | 1645825   | 1                | 10               | 10.0               | 5.0              | 1                  |  |
| Thermotolerant (Fecal) Coliform (MF-mFC)                            | E012.FC  | 1639120   | 0                | 2                | 0.0                | 5.0              | x                  |  |
| Total Cyanide                                                       | E333     | 1646031   | 1                | 15               | 6.6                | 5.0              | 1                  |  |
| Total Hexavalent Chromium (Cr VI) by IC                             | E532     | 1640808   | 1                | 20               | 5.0                | 5.0              | 1                  |  |
| Total Kjeldahl Nitrogen by Fluorescence (Low Level)                 | E318     | 1645796   | 1                | 12               | 8.3                | 5.0              | 1                  |  |
| Total Mercury in Water by CVAAS                                     | E508     | 1644198   | 1                | 18               | 5.5                | 5.0              | 1                  |  |
| Total Metals in Water by CRC ICPMS                                  | E420     | 1639779   | 1                | 14               | 7.1                | 5.0              | 1                  |  |
| Total Phosphorus by Colourimetry (0.002 mg/L)                       | E372-U   | 1645797   | 1                | 20               | 5.0                | 5.0              | 1                  |  |
| Total Precious Metals in Water by Triple Quad ICPMS                 | E462.PM  | 1644725   | 1                | 6                | 16.6               | 5.0              | ✓                  |  |
| Total Sulfide by Colourimetry (Manual)                              | E396     | 1642657   | 1                | 13               | 7.6                | 5.0              | 1                  |  |
| TSS by Gravimetry                                                   | E160     | 1638709   | 1                | 16               | 6.2                | 4.7              | 1                  |  |
| VOCs (Eastern Canada List) by Headspace GC-MS                       | E611D    | 1646710   | 1                | 31               | 3.2                | 5.0              | JC .               |  |
| Laboratory Control Samples (LCS)                                    |          |           |                  |                  |                    |                  |                    |  |
| Biochemical Oxygen Demand - 5 day                                   | E550     | 1638935   | 1                | 19               | 5.2                | 5.0              | 1                  |  |
| BNA (Routine List) by GC-MS-MS                                      | E625A    | 1646309   | 1                | 20               | 5.0                | 5.0              | ✓                  |  |
| Chemical Oxygen Demand by Colourimetry (Low Level)                  | E559-L   | 1640046   | 1                | 8                | 12.5               | 5.0              | 1                  |  |
| Chloride in Water by IC                                             | E235.CI  | 1645824   | 1                | 11               | 9.0                | 5.0              | 1                  |  |
| Fluoride in Water by IC                                             | E235.F   | 1645826   | 1                | 11               | 9.0                | 5.0              | 1                  |  |
| Mineral Oil & Grease by Gravimetry                                  | E567SG   | 1643753   | 1                | 10               | 10.0               | 5.0              | ✓                  |  |
| Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode          | E749B    | 1639975   | 1                | 20               | 5.0                | 5.0              | 1                  |  |
| Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode | E749A    | 1639974   | 1                | 20               | 5.0                | 5.0              | 1                  |  |
| OCP Analysis by GC-MS-MS or GC-MS                                   | E660F    | 1642795   | 1                | 9                | 11.1               | 5.0              | 1                  |  |
| Oil & Grease by Gravimetry                                          | E567     | 1643752   | 1                | 18               | 5.5                | 5.0              | <b>√</b>           |  |
| PAHs (ON Special List) by GC-MS                                     | E642D    | 1640717   | 1                | 5                | 20.0               | 5.0              | 1                  |  |
| PAHs in Water by Hexane LVI GC-MS (Low Level)                       | E641A-L  | 1644150   | 1                | 1                | 100.0              | 5.0              | 1                  |  |
| pH by Meter                                                         | E108     | 1645823   | 1                | 13               | 7.6                | 5.0              | 1                  |  |
| Phenols (4AAP) in Water by Colorimetry                              | E562     | 1642513   | 1                | 20               | 5.0                | 5.0              | 1                  |  |
| Sulfate in Water by IC                                              | E235.SO4 | 1645825   | 1                | 10               | 10.0               | 5.0              | ✓                  |  |

 Page
 :
 8 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

Project : G4836



| Matrix: Water Quality Control Sample Type                                |          |          |    | Count      |        | ecification; ✓ = QC frequency within s<br>Frequency (%) |            |  |
|--------------------------------------------------------------------------|----------|----------|----|------------|--------|---------------------------------------------------------|------------|--|
| Analytical Methods                                                       | Method   | QC Lot # | QC | Regular    | Actual | Expected                                                | Evaluation |  |
|                                                                          | Wictiod  | QO LOT # |    | - rioganar | Hotaur | Expedied                                                |            |  |
| Laboratory Control Samples (LCS) - Continued Total Cyanide               | F222     | 1646031  | 1  | 15         | 6.6    | 5.0                                                     |            |  |
| Total Hexavalent Chromium (Cr VI) by IC                                  | E333     | 1640808  | 1  | 20         | 5.0    | 5.0                                                     | <u>√</u>   |  |
| , , ,                                                                    | E532     | 1645796  | 1  | 12         | 8.3    | 5.0                                                     | <u>√</u>   |  |
| Total Kjeldahl Nitrogen by Fluorescence (Low Level)                      | E318     |          |    |            |        | 1 1                                                     | <u>√</u>   |  |
| Total Mercury in Water by CVAAS                                          | E508     | 1644198  | 1  | 18         | 5.5    | 5.0                                                     | <u>√</u>   |  |
| Total Metals in Water by CRC ICPMS                                       | E420     | 1639779  | 1  | 14         | 7.1    | 5.0                                                     | <u>√</u>   |  |
| Total Phosphorus by Colourimetry (0.002 mg/L)                            | E372-U   | 1645797  | 1  | 20         | 5.0    | 5.0                                                     | <u>√</u>   |  |
| Total Precious Metals in Water by Triple Quad ICPMS                      | E462.PM  | 1644725  | 1  | 6          | 16.6   | 5.0                                                     | ✓          |  |
| Total Sulfide by Colourimetry (Manual)                                   | E396     | 1642657  | 1  | 13         | 7.6    | 5.0                                                     | ✓          |  |
| TSS by Gravimetry                                                        | E160     | 1638709  | 1  | 16         | 6.2    | 4.7                                                     | <b>√</b>   |  |
| VOCs (Eastern Canada List) by Headspace GC-MS                            | E611D    | 1646710  | 2  | 31         | 6.4    | 5.0                                                     | ✓          |  |
| Method Blanks (MB)                                                       |          |          |    |            |        |                                                         |            |  |
| Biochemical Oxygen Demand - 5 day                                        | E550     | 1638935  | 1  | 19         | 5.2    | 5.0                                                     | ✓          |  |
| BNA (Routine List) by GC-MS-MS                                           | E625A    | 1646309  | 1  | 20         | 5.0    | 5.0                                                     | ✓          |  |
| Chemical Oxygen Demand by Colourimetry (Low Level)                       | E559-L   | 1640046  | 1  | 8          | 12.5   | 5.0                                                     | ✓          |  |
| Chloride in Water by IC                                                  | E235.CI  | 1645824  | 1  | 11         | 9.0    | 5.0                                                     | ✓          |  |
| Fluoride in Water by IC                                                  | E235.F   | 1645826  | 1  | 11         | 9.0    | 5.0                                                     | ✓          |  |
| Mineral Oil & Grease by Gravimetry                                       | E567SG   | 1643753  | 1  | 10         | 10.0   | 5.0                                                     | ✓          |  |
| Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode               | E749B    | 1639975  | 1  | 20         | 5.0    | 5.0                                                     | ✓          |  |
| Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode      | E749A    | 1639974  | 1  | 20         | 5.0    | 5.0                                                     | <b>√</b>   |  |
| OCP Analysis by GC-MS-MS or GC-MS                                        | E660F    | 1642795  | 1  | 9          | 11.1   | 5.0                                                     | <b>√</b>   |  |
| Oil & Grease by Gravimetry                                               | E567     | 1643752  | 1  | 18         | 5.5    | 5.0                                                     | <u>√</u>   |  |
| PAHs (ON Special List) by GC-MS                                          | E642D    | 1640717  | 1  | 5          | 20.0   | 5.0                                                     |            |  |
| PAHs in Water by Hexane LVI GC-MS (Low Level)                            | E641A-L  | 1644150  | 1  | 1          | 100.0  | 5.0                                                     | <u> </u>   |  |
| Phenols (4AAP) in Water by Colorimetry                                   | E562     | 1642513  | 1  | 20         | 5.0    | 5.0                                                     | <u> </u>   |  |
| Sulfate in Water by IC                                                   | E235.SO4 | 1645825  | 1  | 10         | 10.0   | 5.0                                                     | <u> </u>   |  |
| Thermotolerant (Fecal) Coliform (MF-mFC)                                 | E012.FC  | 1639120  | 1  | 2          | 50.0   | 5.0                                                     |            |  |
| Total Cyanide                                                            | E333     | 1646031  | 1  | 15         | 6.6    | 5.0                                                     | <u> </u>   |  |
| Total Hexavalent Chromium (Cr VI) by IC                                  | E532     | 1640808  | 1  | 20         | 5.0    | 5.0                                                     | <u> </u>   |  |
| Total Kjeldahl Nitrogen by Fluorescence (Low Level)                      | E318     | 1645796  | 1  | 12         | 8.3    | 5.0                                                     | <u> </u>   |  |
| Total Mercury in Water by CVAAS                                          | E508     | 1644198  | 1  | 18         | 5.5    | 5.0                                                     | <u> </u>   |  |
| Total Metals in Water by CRC ICPMS                                       | E420     | 1639779  | 1  | 14         | 7.1    | 5.0                                                     | <u> </u>   |  |
| Total Phosphorus by Colourimetry (0.002 mg/L)                            | E372-U   | 1645797  | 1  | 20         | 5.0    | 5.0                                                     | <u> </u>   |  |
| Total Precious Metals in Water by Triple Quad ICPMS                      | E462.PM  | 1644725  | 1  | 6          | 16.6   | 5.0                                                     | <u> </u>   |  |
| Total Sulfide by Colourimetry (Manual)                                   | E396     | 1642657  | 1  | 13         | 7.6    | 5.0                                                     | <u>√</u>   |  |
| TSS by Gravimetry                                                        | E160     | 1638709  | 1  | 16         | 6.2    | 4.7                                                     | <u>√</u>   |  |
| VOCs (Eastern Canada List) by Headspace GC-MS                            | E611D    | 1646710  | 2  | 31         | 6.4    | 5.0                                                     | <u>√</u>   |  |
| , , , , ,                                                                | EOLID    | 1040710  |    | 31         | 0.4    | 5.0                                                     | <b>▼</b>   |  |
| Matrix Spikes (MS)  Chemical Ovugan Persond by Colourimetry (Levy Level) | 5550.1   | 1640046  | 1  |            | 10.5   | F.0                                                     |            |  |
| Chemical Oxygen Demand by Colourimetry (Low Level)                       | E559-L   | 1640046  | 1  | 8          | 12.5   | 5.0                                                     | <u>√</u>   |  |
| Chloride in Water by IC                                                  | E235.CI  | 1645824  | 1  | 11         | 9.0    | 5.0                                                     | ✓          |  |

 Page
 :
 9 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

Project : G4836



| Matrix: <b>Water</b> Evaluation: <b>×</b> = <i>QC frequency outside specification</i> ; ✓ = <i>QC frequency within specification</i> |          |          |    |         |               |          | thin specification |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----|---------|---------------|----------|--------------------|
| Quality Control Sample Type                                                                                                          |          |          | Co | ount    | Frequency (%) |          |                    |
| Analytical Methods                                                                                                                   | Method   | QC Lot # | QC | Regular | Actual        | Expected | Evaluation         |
| Matrix Spikes (MS) - Continued                                                                                                       |          |          |    |         |               |          |                    |
| Fluoride in Water by IC                                                                                                              | E235.F   | 1645826  | 1  | 11      | 9.0           | 5.0      | ✓                  |
| Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode                                                                           | E749B    | 1639975  | 1  | 20      | 5.0           | 5.0      | ✓                  |
| Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode                                                                  | E749A    | 1639974  | 1  | 20      | 5.0           | 5.0      | ✓                  |
| Phenols (4AAP) in Water by Colorimetry                                                                                               | E562     | 1642513  | 1  | 20      | 5.0           | 5.0      | ✓                  |
| Sulfate in Water by IC                                                                                                               | E235.SO4 | 1645825  | 1  | 10      | 10.0          | 5.0      | ✓                  |
| Total Cyanide                                                                                                                        | E333     | 1646031  | 1  | 15      | 6.6           | 5.0      | ✓                  |
| Total Hexavalent Chromium (Cr VI) by IC                                                                                              | E532     | 1640808  | 1  | 20      | 5.0           | 5.0      | ✓                  |
| Total Kjeldahl Nitrogen by Fluorescence (Low Level)                                                                                  | E318     | 1645796  | 1  | 12      | 8.3           | 5.0      | ✓                  |
| Total Mercury in Water by CVAAS                                                                                                      | E508     | 1644198  | 1  | 18      | 5.5           | 5.0      | ✓                  |
| Total Metals in Water by CRC ICPMS                                                                                                   | E420     | 1639779  | 1  | 14      | 7.1           | 5.0      | ✓                  |
| Total Phosphorus by Colourimetry (0.002 mg/L)                                                                                        | E372-U   | 1645797  | 1  | 20      | 5.0           | 5.0      | ✓                  |
| Total Precious Metals in Water by Triple Quad ICPMS                                                                                  | E462.PM  | 1644725  | 1  | 6       | 16.6          | 5.0      | ✓                  |
| Total Sulfide by Colourimetry (Manual)                                                                                               | E396     | 1642657  | 1  | 13      | 7.6           | 5.0      | ✓                  |
| VOCs (Eastern Canada List) by Headspace GC-MS                                                                                        | E611D    | 1646710  | 1  | 31      | 3.2           | 5.0      | se                 |

 Page
 :
 10 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

Project : G4836



#### **Methodology References and Summaries**

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

| Analytical Methods                           | Method / Lab        | Matrix  | Method Reference         | Method Descriptions                                                                                                                                                                 |
|----------------------------------------------|---------------------|---------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thermotolerant (Fecal) Coliform (MF-mFC)     | E012.FC             | Water   | APHA 9222 D (mod)        | Following filtration (0.45 $\mu$ m), and incubation at 44.5 $\pm$ 0.2°C for 22-26 hours, colonies exhibiting characteristic morphology of the target organism are enumerated and    |
|                                              | ALS Environmental - |         |                          | confirmed.                                                                                                                                                                          |
| 111 14 /                                     | Waterloo            | ) A ( ( | ADUA 4500 H ( 1)         |                                                                                                                                                                                     |
| pH by Meter                                  | E108                | Water   | APHA 4500-H (mod)        | pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,         |
|                                              | ALS Environmental - |         |                          | pH should be measured in the field within the recommended 15 minute hold time.                                                                                                      |
|                                              | Waterloo            |         |                          |                                                                                                                                                                                     |
| TSS by Gravimetry                            | E160                | Water   | APHA 2540 D (mod)        | Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the |
|                                              | ALS Environmental - |         |                          | filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,                                                                                              |
|                                              | Waterloo            |         |                          | brackish waters) may produce a positive bias by this method. Alternate analysis                                                                                                     |
|                                              |                     |         |                          | methods are available for these types of samples.                                                                                                                                   |
| Chloride in Water by IC                      | E235.Cl             | Water   | EPA 300.1 (mod)          | Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.                                                                                          |
|                                              | ALS Environmental - |         |                          |                                                                                                                                                                                     |
|                                              | Waterloo            |         |                          |                                                                                                                                                                                     |
| Fluoride in Water by IC                      | E235.F              | Water   | EPA 300.1 (mod)          | Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.                                                                                          |
|                                              | ALS Environmental - |         |                          |                                                                                                                                                                                     |
|                                              | Waterloo            |         |                          |                                                                                                                                                                                     |
| Sulfate in Water by IC                       | E235.SO4            | Water   | EPA 300.1 (mod)          | Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.                                                                                         |
|                                              | ALS Environmental - |         |                          |                                                                                                                                                                                     |
|                                              | Waterloo            |         |                          |                                                                                                                                                                                     |
| Total Kjeldahl Nitrogen by Fluorescence (Low | E318                | Water   | Method Fialab 100,       | TKN in water is determined by automated continuous flow analysis with membrane                                                                                                      |
| Level)                                       |                     |         | 2018                     | diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).                                                                                               |
|                                              | ALS Environmental - |         |                          | This method is approved under US EPA 40 CFR Part 136 (May 2021).                                                                                                                    |
| Total Cyanida                                | Waterloo            | Water   | ICO 14403 (mad)          | T. I                                                                                                                                                                                |
| Total Cyanide                                | E333                | vvater  | ISO 14403 (mod)          | Total or Strong Acid Dissociable (SAD) Cyanide is determined by Continuous Flow Analyzer (CFA) with in-line UV digestion followed by colourmetric analysis.                         |
|                                              | ALS Environmental - |         |                          |                                                                                                                                                                                     |
|                                              | Waterloo            |         |                          | Method Limitation: High levels of thiocyanate (SCN) may cause positive interference (up to 0.5% of SCN concentration).                                                              |
| Total Phosphorus by Colourimetry (0.002      | E372-U              | Water   | APHA 4500-P E (mod).     | Total Phosphorus is determined colourimetrically using a discrete analyzer after heated                                                                                             |
| ing/L/                                       | ALS Environmental - |         |                          | persunate digestion of the sample.                                                                                                                                                  |
|                                              | Waterloo            |         |                          |                                                                                                                                                                                     |
| mg/L)                                        | ALS Environmental - | vvater  | 74 FIA 4000-F E (IIIOU). | persulfate digestion of the sample.                                                                                                                                                 |

 Page
 :
 11 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

Project : G4836

| Analytical Methods                                  | Method / Lab                            | Matrix | Method Reference                          | Method Descriptions                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------|-----------------------------------------|--------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Sulfide by Colourimetry (Manual)              | E396  ALS Environmental -  Waterloo     | Water  | APHA 4500-S2 D<br>(mod)                   | Total Sulfide is determined by spectrophotometer using the methlyene blue colourimetric method. Results expressed "as H2S" if reported represent the maximum possible H2S concentration based on the total sulfide concentration in the sample.  The H2S calculation converts Total Sulphide as (S2-) and reports it as Total Sulphide as |
| Total Metals in Water by CRC ICPMS                  | E420  ALS Environmental -  Waterloo     | Water  | EPA 200.2/6020B<br>(mod)                  | (H2S).  Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.  Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.                                                                                                           |
| Total Precious Metals in Water by Triple Quad ICPMS | E462.PM  ALS Environmental -  Vancouver | Water  | EPA 200.2/6020B<br>(mod)                  | Water samples are digested with nitric and hydrochloric acids, and analyzed by Triple Quadrupole ICPMS.                                                                                                                                                                                                                                   |
| Total Mercury in Water by CVAAS                     | E508  ALS Environmental -  Waterloo     | Water  | EPA 1631E (mod)                           | Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS                                                                                                                                                                                                        |
| Total Hexavalent Chromium (Cr VI) by IC             | E532  ALS Environmental -  Waterloo     | Water  | APHA 3500-Cr C (Ion<br>Chromatography)    | Hexavalent Chromium is measured by Ion chromatography-Post column reaction and UV detection.  Results are based on an un-filtered, field-preserved sample.                                                                                                                                                                                |
| Biochemical Oxygen Demand - 5 day                   | E550  ALS Environmental - Waterloo      | Water  | APHA 5210 B (mod)                         | Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter.  Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.                                                                      |
| Chemical Oxygen Demand by Colourimetry (Low Level)  | E559-L  ALS Environmental -  Waterloo   | Water  | APHA 5220 D (mod)                         | Samples are analyzed using the closed reflux colourimetric method.                                                                                                                                                                                                                                                                        |
| Phenols (4AAP) in Water by Colorimetry              | E562  ALS Environmental - Edmonton      | Water  | EPA 9066                                  | This automated method is based on the distillation of phenol and subsequent reaction of the distillate with alkaline ferricyanide (K3Fe(CN)6) and 4-amino-antipyrine (4-AAP) to form a red complex which is measured colorimetrically.                                                                                                    |
| Oil & Grease by Gravimetry                          | E567  ALS Environmental -  Waterloo     | Water  | BC MOE Lab Manual<br>(Oil & Grease) (mod) | The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.                                                                                                                                                                                       |
| Mineral Oil & Grease by Gravimetry                  | E567SG  ALS Environmental -  Waterloo   | Water  | BC MOE Lab Manual<br>(Oil & Grease) (mod) | The entire water sample is extracted with hexane, followed by silica gel treatment after which the extract is evaporated to dryness. The residue is then weighed to determine Mineral Oil and Grease.                                                                                                                                     |

 Page
 :
 12 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

| Analytical Methods                                                  | Method / Lab        | Matrix | Method Reference    | Method Descriptions                                                                                                                                  |
|---------------------------------------------------------------------|---------------------|--------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| VOCs (Eastern Canada List) by Headspace<br>GC-MS                    | E611D               | Water  | EPA 8260D (mod)     | Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the |
|                                                                     | ALS Environmental - |        |                     | headspace autosampler, causing VOCs to partition between the aqueous phase and                                                                       |
|                                                                     | Waterloo            |        |                     | the headspace in accordance with Henry's law.                                                                                                        |
| BNA (Routine List) by GC-MS-MS                                      | E625A               | Water  | EPA 8270E (mod)     | BNA are analyzed by GC-MS-MS.                                                                                                                        |
|                                                                     | ALS Environmental - |        |                     |                                                                                                                                                      |
|                                                                     | Waterloo            |        |                     |                                                                                                                                                      |
| PAHs in Water by Hexane LVI GC-MS (Low Level)                       | E641A-L             | Water  | EPA 8270E (mod)     | Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volume injection (LVI) GC-MS.                                                          |
|                                                                     | ALS Environmental - |        |                     |                                                                                                                                                      |
|                                                                     | Waterloo            |        |                     |                                                                                                                                                      |
| PAHs (ON Special List) by GC-MS                                     | E642D               | Water  | EPA 8270E (mod)     | Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by GC-MS.                                                                                       |
|                                                                     | ALS Environmental - |        |                     |                                                                                                                                                      |
|                                                                     | Waterloo            |        |                     |                                                                                                                                                      |
| OCP Analysis by GC-MS-MS or GC-MS                                   | E660F               | Water  | EPA 8270E (mod)     | Pesticides are analyzed by GC-MS-MS or GC-MS                                                                                                         |
|                                                                     | ALS Environmental - |        |                     |                                                                                                                                                      |
|                                                                     | Waterloo            |        |                     |                                                                                                                                                      |
| Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode | E749A               | Water  | ASTM D7485-16 (mod) | An aliquot of 5.0 mL of sample is spiked with internal standards and analyzed by Direct Aqueous Injection and LC-MS-MS-Negative mode.                |
|                                                                     | ALS Environmental - |        |                     |                                                                                                                                                      |
|                                                                     | Waterloo            |        |                     |                                                                                                                                                      |
| Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode          | E749B               | Water  | ASTM D7485-16 (mod) | An aliquot of 5.0 mL of sample is spiked with internal standards and analyzed by Direct Aqueous Injection and LC-MS-MS.                              |
|                                                                     | ALS Environmental - |        |                     |                                                                                                                                                      |
| Asimal 8 Venetalla Cit 8 Conservator                                | Waterloo            | Water  | APHA 5520 (mod)     |                                                                                                                                                      |
| Animal & Vegetable Oil & Grease by                                  | EC567A.SG           | vvalei | AFTIA 3320 (IIIOU)  | Animal & vegetable oil and grease is calculated as follows: Oil & Grease (gravimetric) minus Mineral Oil & Grease (gravimetric)                      |
| Gravimetry                                                          | ALS Environmental - |        |                     | minus Minerai Oli & Grease (gravimetric)                                                                                                             |
|                                                                     | Waterloo            |        |                     |                                                                                                                                                      |
| Total PAH (Ontario Sewer Use Extended List)                         | EC640A              | Water  | Calculation (Sum of | Total PAH (Ontario Sewer Use) is the sum of the following PAHs: anthracene,                                                                          |
|                                                                     | 20040/1             |        | the Squares)        | benz(a)anthracene, benzo(a)pyrene, benzo(b+j)fluoranthene, benzo(g,h,i)perylene,                                                                     |
|                                                                     | ALS Environmental - |        | tilo oqualoo)       | benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene,                                                                                 |
|                                                                     | Waterloo            |        |                     | indeno(1,2,3-c,d)pyrene, phenanthrene, pyrene, benzo(e)pyrene, perylene,                                                                             |
|                                                                     |                     |        |                     | 3-methylcholanthrene, 1,3-dinitropyrene, 1,6-dinitropyrene, 1,8-dinitropyrene,                                                                       |
|                                                                     |                     |        |                     | 7H-dibenzo(c,g)carbazole, dibenzo(a,i)pyrene, dibenz(a,j)acridine, and                                                                               |
|                                                                     |                     |        |                     | dibenz(a,h)acridine. When the PAH is less than LOR, zero is used for calculation.                                                                    |
| Preparation Methods                                                 | Method / Lab        | Matrix | Method Reference    | Method Descriptions                                                                                                                                  |

 Page
 :
 13 of 13

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.



| Preparation Methods                        | Method / Lab        | Matrix | Method Reference     | Method Descriptions                                                                                                                                              |
|--------------------------------------------|---------------------|--------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digestion for TKN in water                 | EP318               | Water  | APHA 4500-Norg D     | Samples are digested at high temperature using Sulfuric Acid with Copper catalyst,                                                                               |
|                                            |                     |        | (mod)                | which converts organic nitrogen sources to Ammonia, which is then quantified by the                                                                              |
|                                            | ALS Environmental - |        |                      | analytical method as TKN. This method is unsuitable for samples containing high levels                                                                           |
|                                            | Waterloo            |        |                      | of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be                                                                            |
|                                            |                     |        |                      | biased low.                                                                                                                                                      |
| Digestion for Total Phosphorus in water    | EP372               | Water  | APHA 4500-P E (mod). | Samples are heated with a persulfate digestion reagent.                                                                                                          |
|                                            | ALS Environmental - |        |                      |                                                                                                                                                                  |
|                                            | Waterloo            |        |                      |                                                                                                                                                                  |
| Oil & Grease Extraction for Gravimetry     | EP567               | Water  | BC MOE Lab Manual    | The entire water sample is extracted with hexane by liquid-liquid extraction.                                                                                    |
|                                            |                     |        | (Oil & Grease) (mod) |                                                                                                                                                                  |
|                                            | ALS Environmental - |        |                      |                                                                                                                                                                  |
|                                            | Waterloo            |        |                      |                                                                                                                                                                  |
| VOCs Preparation for Headspace Analysis    | EP581               | Water  | EPA 5021A (mod)      | Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into a GC-MS-FID. |
|                                            | ALS Environmental - |        |                      | 7                                                                                                                                                                |
|                                            | Waterloo            |        |                      |                                                                                                                                                                  |
| PHCs and PAHs Hexane Extraction            | EP601               | Water  | EPA 3511 (mod)       | Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are                                                                                    |
|                                            |                     |        |                      | extracted using a hexane liquid-liquid extraction.                                                                                                               |
|                                            | ALS Environmental - |        |                      |                                                                                                                                                                  |
|                                            | Waterloo            |        |                      |                                                                                                                                                                  |
| BNA Extraction                             | EP625               | Water  | EPA 3510C (mod)      | SVOCs are extracted from aqueous sample using DCM liquid-liquid extraction.                                                                                      |
|                                            | ALS Environmental - |        |                      |                                                                                                                                                                  |
|                                            | Waterloo            |        |                      |                                                                                                                                                                  |
| PAHs DCM Extraction                        | EP642               | Water  | EPA 3510C (mod)      | PAH are extracted from aqueous sample using DCM liquid-liquid extraction.                                                                                        |
|                                            | ALS Environmental - |        |                      |                                                                                                                                                                  |
|                                            | Waterloo            |        |                      |                                                                                                                                                                  |
| Pesticides, PCB, and Neutral Extractable   | EP660               | Water  | EPA 3511 (mod)       | Samples are extracted from aqueous sample using an organic solvent liquid-liquid                                                                                 |
| Chlorinated Hydrocarbons Extraction        | LF 000              | Water  | Li 7 (00 i i (iiiou) | extraction.                                                                                                                                                      |
| Chilorinated Trydrocarbons Extraction      | ALS Environmental - |        |                      | CAU doubli.                                                                                                                                                      |
|                                            | Waterloo            |        |                      |                                                                                                                                                                  |
| Preparation of Nonylphenol and Nonylphenol | EP749               | Water  | ASTM D7485-16 (mod)  | An aliquot of 5.0 mL of sample is spiked with internal standards and analyzed by Direct                                                                          |
| Ethoxylates                                |                     |        | , ,                  | Aqueous Injection and LC-MS/MS.                                                                                                                                  |
| ĺ                                          | ALS Environmental - |        |                      | , , , , , , , , , , , , , , , , , , , ,                                                                                                                          |
|                                            | Waterloo            |        |                      |                                                                                                                                                                  |

# ALS Canada Ltd.



# **QUALITY CONTROL REPORT**

Work Order : WT2426295

Client : JLP Services Inc.
Contact : Ajay Jayalath
Address : 405 York Road

Guelph ON Canada N1E 3H3

Telephone : 519 763 3101

Project : G4836 PO :----

C-O-C number : 23-1122592
Sampler : Client
Site :----

Quote number : 2024 SOA

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 17

Laboratory : ALS Environmental - Waterloo

Account Manager ; Andrew Martin

Address : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone :+1 519 886 6910

Date Samples Received :06-Sep-2024 17:35

Date Analysis Commenced : 07-Sep-2024

Issue Date : 16-Sep-2024 17:31

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

| Signatories        | Position                                       | Laboratory Department                       |
|--------------------|------------------------------------------------|---------------------------------------------|
| Amaninder Dhillon  | Team Lead - Semi-Volatile Instrumentation      | Waterloo Organics, Waterloo, Ontario        |
| Andrea Armstrong   | Department Manager - Air Quality and Volatiles | Waterloo VOC, Waterloo, Ontario             |
| Brooke Miller      | Laboratory Analyst                             | Edmonton Inorganics, Edmonton, Alberta      |
| Greg Pokocky       | Manager - Inorganics                           | Waterloo Inorganics, Waterloo, Ontario      |
| Greg Pokocky       | Manager - Inorganics                           | Waterloo Metals, Waterloo, Ontario          |
| Hannah Lewis       | Inorganics Analyst                             | Waterloo Inorganics, Waterloo, Ontario      |
| Jeremy Gingras     | Supervisor - Semi-Volatile Instrumentation     | Waterloo Organics, Waterloo, Ontario        |
| Kim Jensen         | Department Manager - Metals                    | Vancouver Metals, Burnaby, British Columbia |
| Rachel Cameron     | Supervisor - Semi-Volatile Extractions         | Waterloo Organics, Waterloo, Ontario        |
| Stephanie Pinheiro | Team Leader - LCMS                             | Waterloo LCMS, Waterloo, Ontario            |
| Walt Kippenhuck    | Supervisor - Inorganic                         | Waterloo Inorganics, Waterloo, Ontario      |
| Zeba Patel         | Analyst                                        | Waterloo Microbiology, Waterloo, Ontario    |

Page : 2 of 17

Work Order: WT2426295
Client: JLP Services Inc.

Project : G4836



#### **General Comments**

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

# = Indicates a QC result that did not meet the ALS DQO.

#### **Workorder Comments**

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 :
 3 of 17

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

Project : G4836

### Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

| Sub-Matrix: Water    |                       |                                                                      |                                                               |                                      |                                                    |                                      | Labora                                               | tory Duplicate (D                                    | UP) Report                               |                                                                               |           |
|----------------------|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------|----------------------------------------------------|--------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------|-----------|
| Laboratory sample ID | Client sample ID      | Analyte                                                              | CAS Number                                                    | Method                               | LOR                                                | Unit                                 | Original<br>Result                                   | Duplicate<br>Result                                  | RPD(%) or<br>Difference                  | Duplicate<br>Limits                                                           | Qualifier |
| Physical Tests (QC   | C Lot: 1638709)       |                                                                      |                                                               |                                      |                                                    |                                      |                                                      |                                                      |                                          |                                                                               |           |
| WT2426034-001        | Anonymous             | Solids, total suspended [TSS]                                        |                                                               | E160                                 | 3.0                                                | mg/L                                 | <3.0                                                 | <3.0                                                 | 0                                        | Diff <2x LOR                                                                  |           |
| Physical Tests (QC   | C Lot: 1645823)       |                                                                      |                                                               |                                      |                                                    |                                      |                                                      |                                                      |                                          |                                                                               |           |
| HA2402138-001        | Anonymous             | pH                                                                   |                                                               | E108                                 | 0.10                                               | pH units                             | 5.75                                                 | 5.70                                                 | 0.873%                                   | 4%                                                                            |           |
| Anions and Nutrien   | nts (QC Lot: 1645797) |                                                                      |                                                               |                                      |                                                    |                                      |                                                      |                                                      |                                          |                                                                               |           |
| WT2426129-001        | Anonymous             | Phosphorus, total                                                    | 7723-14-0                                                     | E372-U                               | 0.0200                                             | mg/L                                 | 2.41                                                 | 2.40                                                 | 0.744%                                   | 20%                                                                           |           |
| Anions and Nutrien   | nts (QC Lot: 1645824) |                                                                      |                                                               |                                      |                                                    |                                      |                                                      |                                                      |                                          |                                                                               |           |
| WT2426544-002        | Anonymous             | Chloride                                                             | 16887-00-6                                                    | E235.CI                              | 0.50                                               | mg/L                                 | 18.4                                                 | 18.7                                                 | 1.26%                                    | 20%                                                                           |           |
| Anions and Nutrien   | nts (QC Lot: 1645825) |                                                                      |                                                               |                                      |                                                    |                                      |                                                      |                                                      |                                          |                                                                               |           |
| WT2426544-002        | Anonymous             | Sulfate (as SO4)                                                     | 14808-79-8                                                    | E235.SO4                             | 0.30                                               | mg/L                                 | 29.7                                                 | 30.2                                                 | 1.86%                                    | 20%                                                                           |           |
| Anions and Nutrien   | nts (QC Lot: 1645826) |                                                                      |                                                               |                                      |                                                    |                                      |                                                      |                                                      |                                          |                                                                               |           |
| WT2426544-002        | Anonymous             | Fluoride                                                             | 16984-48-8                                                    | E235.F                               | 0.020                                              | mg/L                                 | 0.621                                                | 0.642                                                | 3.36%                                    | 20%                                                                           |           |
| Cyanides (QC Lot:    | 1646031)              |                                                                      |                                                               |                                      |                                                    |                                      |                                                      |                                                      |                                          |                                                                               |           |
| TY2409732-001        | Anonymous             | Cyanide, strong acid dissociable (Total)                             |                                                               | E333                                 | 0.0020                                             | mg/L                                 | <0.0020                                              | <0.0020                                              | 0                                        | Diff <2x LOR                                                                  |           |
| Total Sulfides (QC   | Lot: 1642657)         |                                                                      |                                                               |                                      |                                                    |                                      |                                                      |                                                      |                                          |                                                                               |           |
| WT2425894-001        | Anonymous             | Sulfide, total (as S)                                                | 18496-25-8                                                    | E396                                 | 0.018                                              | mg/L                                 | <0.018                                               | <0.018                                               | 0                                        | Diff <2x LOR                                                                  |           |
| Total Metals (QC L   | ot: 1639779)          |                                                                      |                                                               |                                      |                                                    |                                      |                                                      |                                                      |                                          |                                                                               |           |
| WP2421461-002        | Anonymous             | Aluminum, total                                                      | 7429-90-5                                                     | E420                                 | 0.0030                                             | mg/L                                 | 0.484                                                | 0.491                                                | 1.29%                                    | 20%                                                                           |           |
|                      |                       | Antimony, total                                                      | 7440-36-0                                                     | E420                                 | 0.00010                                            | mg/L                                 | 0.00019                                              | 0.00019                                              | 0.0000001                                | Diff <2x LOR                                                                  |           |
|                      |                       | Arsenic, total                                                       | 7440-38-2                                                     | E420                                 | 0.00010                                            | mg/L                                 | 0.00117                                              | 0.00121                                              | 2.91%                                    | 20%                                                                           |           |
|                      |                       | Bismuth, total                                                       | 7440-69-9                                                     | E420                                 | 0.000050                                           | mg/L                                 | <0.000050                                            | <0.000050                                            | 0                                        | Diff <2x LOR                                                                  |           |
|                      |                       | Cadmium, total                                                       | 7440-43-9                                                     | E420                                 | 0.0000050                                          | mg/L                                 | <0.0000050                                           | <0.0000050                                           | 0                                        | Diff <2x LOR                                                                  |           |
|                      |                       |                                                                      |                                                               |                                      |                                                    |                                      |                                                      |                                                      |                                          |                                                                               |           |
|                      |                       | Chromium, total                                                      | 7440-47-3                                                     | E420                                 | 0.00050                                            | mg/L                                 | <0.00050                                             | 0.00143                                              | 0.00093                                  | Diff <2x LOR                                                                  |           |
|                      |                       | Chromium, total Cobalt, total                                        | 7440-47-3<br>7440-48-4                                        | E420<br>E420                         | 0.00050<br>0.00010                                 | mg/L<br>mg/L                         | <0.00050<br><0.00010                                 | 0.00143<br><0.00010                                  | 0.00093                                  | Diff <2x LOR Diff <2x LOR                                                     |           |
|                      |                       |                                                                      |                                                               |                                      |                                                    |                                      |                                                      |                                                      |                                          |                                                                               |           |
|                      |                       | Cobalt, total                                                        | 7440-48-4                                                     | E420                                 | 0.00010                                            | mg/L                                 | <0.00010                                             | <0.00010                                             | 0                                        | Diff <2x LOR                                                                  |           |
|                      |                       | Cobalt, total Copper, total                                          | 7440-48-4<br>7440-50-8                                        | E420<br>E420                         | 0.00010<br>0.00050                                 | mg/L<br>mg/L                         | <0.00010<br>0.00256                                  | <0.00010<br>0.00263                                  | 0<br>0.00006                             | Diff <2x LOR                                                                  |           |
|                      |                       | Cobalt, total Copper, total Iron, total                              | 7440-48-4<br>7440-50-8<br>7439-89-6                           | E420<br>E420<br>E420                 | 0.00010<br>0.00050<br>0.010                        | mg/L<br>mg/L<br>mg/L                 | <0.00010<br>0.00256<br><0.010                        | <0.00010<br>0.00263<br><0.010                        | 0<br>0.00006<br>0                        | Diff <2x LOR Diff <2x LOR Diff <2x LOR                                        |           |
|                      |                       | Cobalt, total Copper, total Iron, total Lead, total                  | 7440-48-4<br>7440-50-8<br>7439-89-6<br>7439-92-1              | E420<br>E420<br>E420<br>E420         | 0.00010<br>0.00050<br>0.010<br>0.000050            | mg/L<br>mg/L<br>mg/L<br>mg/L         | <0.00010<br>0.00256<br><0.010<br>0.000063            | <0.00010<br>0.00263<br><0.010<br>0.000062            | 0<br>0.00006<br>0<br>0.0000009           | Diff <2x LOR Diff <2x LOR Diff <2x LOR Diff <2x LOR                           |           |
|                      |                       | Cobalt, total Copper, total Iron, total Lead, total Manganese, total | 7440-48-4<br>7440-50-8<br>7439-89-6<br>7439-92-1<br>7439-96-5 | E420<br>E420<br>E420<br>E420<br>E420 | 0.00010<br>0.00050<br>0.010<br>0.000050<br>0.00010 | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L | <0.00010<br>0.00256<br><0.010<br>0.000063<br>0.00101 | <0.00010<br>0.00263<br><0.010<br>0.000062<br>0.00092 | 0<br>0.00006<br>0<br>0.000009<br>0.00009 | Diff <2x LOR |           |

 Page
 :
 4 of 17

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

| Sub-Matrix: Water    |                        |                                     |             |         |           |      | Laboratory Duplicate (DUP) Report |                     |                         |                     |           |  |  |
|----------------------|------------------------|-------------------------------------|-------------|---------|-----------|------|-----------------------------------|---------------------|-------------------------|---------------------|-----------|--|--|
| Laboratory sample ID | Client sample ID       | Analyte                             | CAS Number  | Method  | LOR       | Unit | Original<br>Result                | Duplicate<br>Result | RPD(%) or<br>Difference | Duplicate<br>Limits | Qualifier |  |  |
| Total Metals (QC Lo  | ot: 1639779) - continu | ed ed                               |             |         |           |      |                                   |                     |                         |                     |           |  |  |
| WP2421461-002        | Anonymous              | Silver, total                       | 7440-22-4   | E420    | 0.000010  | mg/L | <0.000010                         | <0.000010           | 0                       | Diff <2x LOR        |           |  |  |
|                      |                        | Tin, total                          | 7440-31-5   | E420    | 0.00010   | mg/L | <0.00010                          | <0.00010            | 0                       | Diff <2x LOR        |           |  |  |
|                      |                        | Titanium, total                     | 7440-32-6   | E420    | 0.00030   | mg/L | <0.00030                          | <0.00030            | 0                       | Diff <2x LOR        |           |  |  |
|                      |                        | Vanadium, total                     | 7440-62-2   | E420    | 0.00050   | mg/L | 0.00101                           | 0.00105             | 0.00004                 | Diff <2x LOR        |           |  |  |
|                      |                        | Zinc, total                         | 7440-66-6   | E420    | 0.0030    | mg/L | <0.0030                           | <0.0030             | 0                       | Diff <2x LOR        |           |  |  |
| Total Metals (QC Lo  | ot: 1644198)           |                                     |             |         |           |      |                                   |                     |                         |                     |           |  |  |
| BF2400302-001        | Anonymous              | Mercury, total                      | 7439-97-6   | E508    | 0.0000050 | mg/L | <0.0000050                        | <0.0000050          | 0                       | Diff <2x LOR        |           |  |  |
| Total Metals (QC Lo  | ot: 1644725)           |                                     |             |         |           |      |                                   |                     |                         |                     |           |  |  |
| TY2409914-001        | Anonymous              | Gold, total                         | 7440-57-5   | E462.PM | 0.020     | μg/L | <0.020                            | <0.020              | 0                       | Diff <2x LOR        |           |  |  |
|                      |                        | Platinum, total                     | 7440-06-4   | E462.PM | 0.020     | μg/L | <0.020                            | <0.020              | 0                       | Diff <2x LOR        |           |  |  |
|                      |                        | Rhodium, total                      | 7440-16-6   | E462.PM | 0.0050    | μg/L | <0.0050                           | <0.0050             | 0                       | Diff <2x LOR        |           |  |  |
| Speciated Metals (   | QC Lot: 1640808)       |                                     |             |         |           |      |                                   |                     |                         |                     |           |  |  |
| VA24C2332-001        | Anonymous              | Chromium, hexavalent [Cr VI], total | 18540-29-9  | E532    | 0.00050   | mg/L | <0.00050                          | <0.00050            | 0                       | Diff <2x LOR        |           |  |  |
| Aggregate Organics   | (QC Lot: 1638935)      |                                     |             |         |           |      |                                   |                     |                         |                     |           |  |  |
| WT2426024-002        | Anonymous              | Biochemical oxygen demand [BOD]     |             | E550    | 2.0       | mg/L | <2.0                              | <2.0                | 0.0%                    | 30%                 |           |  |  |
| Aggregate Organics   | (QC Lot: 1640046)      |                                     |             |         |           |      |                                   |                     |                         |                     |           |  |  |
| WT2426110-001        | Anonymous              | Chemical oxygen demand [COD]        |             | E559-L  | 10        | mg/L | 495                               | 496                 | 0.383%                  | 20%                 |           |  |  |
| Aggregate Organics   | (QC Lot: 1642513)      |                                     |             |         |           |      |                                   |                     |                         |                     |           |  |  |
| EO2407797-015        | Anonymous              | Phenols, total (4AAP)               |             | E562    | 0.0010    | mg/L | <0.0010                           | <0.0010             | 0                       | Diff <2x LOR        |           |  |  |
| Volatile Organic Co  | mpounds (QC Lot: 16    | 346710)                             |             |         |           |      |                                   |                     |                         |                     |           |  |  |
| TY2409850-001        | Anonymous              | Benzene                             | 71-43-2     | E611D   | 0.50      | μg/L | <0.50                             | <0.50               | 0                       | Diff <2x LOR        |           |  |  |
|                      |                        | Chloroform                          | 67-66-3     | E611D   | 0.50      | μg/L | <0.50                             | <0.50               | 0                       | Diff <2x LOR        |           |  |  |
|                      |                        | Dichlorobenzene, 1,2-               | 95-50-1     | E611D   | 0.50      | μg/L | <0.50                             | <0.50               | 0                       | Diff <2x LOR        |           |  |  |
|                      |                        | Dichlorobenzene, 1,4-               | 106-46-7    | E611D   | 0.50      | μg/L | <0.50                             | <0.50               | 0                       | Diff <2x LOR        |           |  |  |
|                      |                        | Dichloroethylene, cis-1,2-          | 156-59-2    | E611D   | 0.50      | μg/L | <0.50                             | <0.50               | 0                       | Diff <2x LOR        |           |  |  |
|                      |                        | Dichloromethane                     | 75-09-2     | E611D   | 1.0       | μg/L | <1.0                              | <1.0                | 0                       | Diff <2x LOR        |           |  |  |
|                      |                        | Dichloropropylene, trans-1,3-       | 10061-02-6  | E611D   | 0.30      | μg/L | <0.30                             | <0.30               | 0                       | Diff <2x LOR        |           |  |  |
|                      |                        | Ethylbenzene                        | 100-41-4    | E611D   | 0.50      | μg/L | <0.50                             | <0.50               | 0                       | Diff <2x LOR        |           |  |  |
|                      |                        | Tetrachloroethane, 1,1,2,2-         | 79-34-5     | E611D   | 0.50      | μg/L | <0.50                             | <0.50               | 0                       | Diff <2x LOR        |           |  |  |
|                      |                        | Tetrachloroethylene                 | 127-18-4    | E611D   | 0.50      | μg/L | <0.50                             | <0.50               | 0                       | Diff <2x LOR        |           |  |  |
|                      |                        | Toluene                             | 108-88-3    | E611D   | 0.50      | μg/L | <0.50                             | <0.50               | 0                       | Diff <2x LOR        |           |  |  |
|                      |                        | Trichloroethylene                   | 79-01-6     | E611D   | 0.50      | μg/L | <0.50                             | <0.50               | 0                       | Diff <2x LOR        |           |  |  |
|                      | 1                      | ·                                   |             |         | 1 1       | . 3  |                                   |                     |                         |                     |           |  |  |
|                      |                        | Xylene, m+p-                        | 179601-23-1 | E611D   | 0.40      | μg/L | < 0.40                            | < 0.40              | 0                       | Diff <2x LOR        |           |  |  |

 Page
 :
 5 of 17

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.



| Sub-Matrix: Water    |                  |                                       |            |        |      | Laboratory Duplicate (DUP) Report |                    |                     |                         |                     |           |  |
|----------------------|------------------|---------------------------------------|------------|--------|------|-----------------------------------|--------------------|---------------------|-------------------------|---------------------|-----------|--|
| Laboratory sample ID | Client sample ID | Analyte                               | CAS Number | Method | LOR  | Unit                              | Original<br>Result | Duplicate<br>Result | RPD(%) or<br>Difference | Duplicate<br>Limits | Qualifier |  |
| Nonylphenols (QC I   | Lot: 1639974)    |                                       |            |        |      |                                   |                    |                     |                         |                     |           |  |
| VA24C3191-001        | Anonymous        | Nonylphenol [NP]                      | 84852-15-3 | E749A  | 0.44 | μg/L                              | <0.44              | <0.44               | 0                       | Diff <2x LOR        |           |  |
| Nonylphenols (QC I   | Lot: 1639975)    |                                       |            |        |      |                                   |                    |                     |                         |                     |           |  |
| VA24C3191-001        | Anonymous        | Nonylphenol diethoxylate [NP2EO]      | 20427-84-3 | E749B  | 0.12 | μg/L                              | <0.12              | <0.12               | 0                       | Diff <2x LOR        |           |  |
|                      |                  | Nonylphenol monoethoxylate<br>[NP1EO] | 27986-36-3 | E749B  | 0.40 | μg/L                              | <0.40              | <0.40               | 0                       | Diff <2x LOR        |           |  |

 Page
 :
 6 of 17

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

Project : G4836

# Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

| Analyte                                  | CAS Number Metho  | d   | LOR      | Unit      | Result     | Qualifier |
|------------------------------------------|-------------------|-----|----------|-----------|------------|-----------|
| hysical Tests (QCLot: 1638709)           |                   |     |          |           |            |           |
| Solids, total suspended [TSS]            | E160              |     | 3        | mg/L      | <3.0       |           |
| nions and Nutrients (QCLot: 1645796)     |                   |     |          |           |            |           |
| Kjeldahl nitrogen, total [TKN]           | E318              |     | 0.05     | mg/L      | <0.050     |           |
| Anions and Nutrients (QCLot: 1645797)    |                   |     |          |           |            |           |
| Phosphorus, total                        | 7723-14-0 E372-U  | J   | 0.002    | mg/L      | <0.0020    |           |
| nions and Nutrients (QCLot: 1645824)     |                   |     |          |           |            |           |
| Chloride                                 | 16887-00-6 E235.0 | CI  | 0.5      | mg/L      | <0.50      |           |
| nions and Nutrients (QCLot: 1645825)     |                   |     |          |           |            |           |
| Sulfate (as SO4)                         | 14808-79-8 E235.S | 604 | 0.3      | mg/L      | <0.30      |           |
| Anions and Nutrients (QCLot: 1645826)    |                   |     |          |           |            |           |
| Fluoride                                 | 16984-48-8 E235.F |     | 0.02     | mg/L      | <0.020     |           |
| Syanides (QCLot: 1646031)                |                   |     |          |           |            |           |
| Cyanide, strong acid dissociable (Total) | E333              |     | 0.002    | mg/L      | <0.0020    |           |
| otal Sulfides (QCLot: 1642657)           |                   |     |          |           |            |           |
| Sulfide, total (as S)                    | 18496-25-8 E396   |     | 0.018    | mg/L      | <0.018     |           |
| Microbiological Tests (QCLot: 1639120)   |                   |     |          |           |            |           |
| Coliforms, thermotolerant [fecal]        | E012.F            | -C  | 1        | CFU/100mL | <1         |           |
| otal Metals (QCLot: 1639779)             |                   |     |          |           |            |           |
| Aluminum, total                          | 7429-90-5 E420    |     | 0.003    | mg/L      | <0.0030    |           |
| Antimony, total                          | 7440-36-0 E420    |     | 0.0001   | mg/L      | <0.00010   |           |
| Arsenic, total                           | 7440-38-2 E420    |     | 0.0001   | mg/L      | <0.00010   |           |
| Bismuth, total                           | 7440-69-9 E420    |     | 0.00005  | mg/L      | <0.000050  |           |
| Cadmium, total                           | 7440-43-9 E420    |     | 0.000005 | mg/L      | <0.0000050 |           |
| Chromium, total                          | 7440-47-3 E420    |     | 0.0005   | mg/L      | <0.00050   |           |
| Cobalt, total                            | 7440-48-4 E420    |     | 0.0001   | mg/L      | <0.00010   |           |
| Copper, total                            | 7440-50-8 E420    |     | 0.0005   | mg/L      | <0.00050   |           |
| Iron, total                              | 7439-89-6 E420    |     | 0.01     | mg/L      | <0.010     |           |
| Lead, total                              | 7439-92-1 E420    |     | 0.00005  | mg/L      | <0.000050  |           |
| Manganese, total                         | 7439-96-5 E420    |     | 0.0001   | mg/L      | <0.00010   |           |
| Molybdenum, total                        | 7439-98-7 E420    |     | 0.00005  | mg/L      | <0.000050  |           |
| Nickel, total                            | 7440-02-0 E420    |     | 0.0005   | mg/L      | <0.00050   |           |
| Selenium, total                          | 7782-49-2 E420    |     | 0.00005  | mg/L      | <0.000050  |           |

 Page
 :
 7 of 17

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

Project : G4836



| Analyte                                | CAS Number | Method  | LOR      | Unit | Result     | Qualifier |
|----------------------------------------|------------|---------|----------|------|------------|-----------|
| Total Metals (QCLot: 1639779) - contin | nued       |         |          |      |            |           |
| Silver, total                          | 7440-22-4  | E420    | 0.00001  | mg/L | <0.000010  |           |
| Tin, total                             | 7440-31-5  | E420    | 0.0001   | mg/L | <0.00010   |           |
| Titanium, total                        | 7440-32-6  | E420    | 0.0003   | mg/L | <0.00030   |           |
| Vanadium, total                        | 7440-62-2  | E420    | 0.0005   | mg/L | <0.00050   |           |
| Zinc, total                            | 7440-66-6  | E420    | 0.003    | mg/L | <0.0030    |           |
| Total Metals (QCLot: 1644198)          |            |         |          |      |            |           |
| Mercury, total                         | 7439-97-6  | E508    | 0.000005 | mg/L | <0.0000050 |           |
| Total Metals (QCLot: 1644725)          |            |         |          |      |            |           |
| Gold, total                            | 7440-57-5  | E462.PM | 0.02     | μg/L | <0.020     |           |
| Platinum, total                        | 7440-06-4  | E462.PM | 0.02     | μg/L | <0.020     |           |
| Rhodium, total                         | 7440-16-6  | E462.PM | 0.005    | μg/L | <0.0050    |           |
| Speciated Metals (QCLot: 1640808)      |            |         |          |      |            |           |
| Chromium, hexavalent [Cr VI], total    | 18540-29-9 | E532    | 0.0005   | mg/L | <0.00050   |           |
| Aggregate Organics (QCLot: 1638935)    |            |         |          |      |            |           |
| Biochemical oxygen demand [BOD]        |            | E550    | 2        | mg/L | <2.0       |           |
| Aggregate Organics (QCLot: 1640046)    |            |         |          |      |            |           |
| Chemical oxygen demand [COD]           |            | E559-L  | 10       | mg/L | <10        |           |
| Aggregate Organics (QCLot: 1642513)    |            |         |          |      |            |           |
| Phenols, total (4AAP)                  |            | E562    | 0.001    | mg/L | <0.0010    |           |
| Aggregate Organics (QCLot: 1643752)    |            |         |          |      |            |           |
| Oil & grease (gravimetric)             |            | E567    | 5        | mg/L | <5.0       |           |
| Aggregate Organics (QCLot: 1643753)    |            |         |          |      |            |           |
| Oil & grease, mineral (gravimetric)    |            | E567SG  | 5        | mg/L | <5.0       |           |
| Volatile Organic Compounds (QCLot:     | 1646710)   |         |          |      |            |           |
| Benzene                                | 71-43-2    | E611D   | 0.5      | μg/L | <0.50      |           |
| Chloroform                             | 67-66-3    | E611D   | 0.5      | μg/L | <0.50      |           |
| Dichlorobenzene, 1,2-                  | 95-50-1    | E611D   | 0.5      | μg/L | <0.50      |           |
| Dichlorobenzene, 1,4-                  | 106-46-7   | E611D   | 0.5      | μg/L | <0.50      |           |
| Dichloroethylene, cis-1,2-             | 156-59-2   | E611D   | 0.5      | μg/L | <0.50      |           |
| Dichloromethane                        | 75-09-2    | E611D   | 1        | μg/L | <1.0       |           |
| Dichloropropylene, trans-1,3-          | 10061-02-6 | E611D   | 0.3      | μg/L | <0.30      |           |
| Ethylbenzene                           | 100-41-4   | E611D   | 0.5      | μg/L | <0.50      |           |
| Tetrachloroethane, 1,1,2,2-            | 79-34-5    | E611D   | 0.5      | μg/L | <0.50      |           |
| Tetrachloroethylene                    | 127-18-4   | E611D   | 0.5      | μg/L | <0.50      |           |
| Toluene                                | 108-88-3   | E611D   | 0.5      | μg/L | <0.50      |           |
| I .                                    |            | I       | I        | I    | l          |           |

 Page
 :
 8 of 17

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

 Project
 :
 G4836

ALS

| nalyte                          | CAS Number               | Method  | LOR   | Unit | Result  | Qualifier |
|---------------------------------|--------------------------|---------|-------|------|---------|-----------|
| olatile Organic Compounds (QCLo | ot: 1646710) - continued |         |       |      |         |           |
| Trichloroethylene               | 79-01-6                  | E611D   | 0.5   | μg/L | <0.50   |           |
| Xylene, m+p-                    | 179601-23-1              | E611D   | 0.4   | μg/L | <0.40   |           |
| Xylene, o-                      | 95-47-6                  | E611D   | 0.3   | μg/L | <0.30   |           |
| olatile Organic Compounds (QCL  | ot: 1649419)             |         |       |      |         |           |
| Benzene                         | 71-43-2                  | E611D   | 0.5   | μg/L | <0.50   |           |
| Chloroform                      | 67-66-3                  | E611D   | 0.5   | μg/L | <0.50   |           |
| Dichlorobenzene, 1,2-           | 95-50-1                  | E611D   | 0.5   | μg/L | <0.50   |           |
| Dichlorobenzene, 1,4-           | 106-46-7                 | E611D   | 0.5   | μg/L | <0.50   |           |
| Dichloroethylene, cis-1,2-      | 156-59-2                 | E611D   | 0.5   | μg/L | <0.50   |           |
| Dichloromethane                 | 75-09-2                  | E611D   | 1     | μg/L | <1.0    |           |
| Dichloropropylene, trans-1,3-   | 10061-02-6               | E611D   | 0.3   | μg/L | <0.30   |           |
| Ethylbenzene                    | 100-41-4                 | E611D   | 0.5   | μg/L | <0.50   |           |
| Tetrachloroethane, 1,1,2,2-     | 79-34-5                  | E611D   | 0.5   | μg/L | <0.50   |           |
| Tetrachloroethylene             | 127-18-4                 | E611D   | 0.5   | μg/L | <0.50   |           |
| Toluene                         | 108-88-3                 | E611D   | 0.5   | μg/L | <0.50   |           |
| Trichloroethylene               | 79-01-6                  | E611D   | 0.5   | μg/L | <0.50   |           |
| Xylene, m+p-                    | 179601-23-1              | E611D   | 0.4   | μg/L | <0.40   |           |
| Xylene, o-                      | 95-47-6                  | E611D   | 0.3   | μg/L | <0.30   |           |
| olycyclic Aromatic Hydrocarbons | (QCLot: 1640717)         |         |       |      |         |           |
| Dibenz(a,h)acridine             | 226-36-8                 | E642D   | 0.05  | μg/L | <0.050  |           |
| Dibenz(a,j)acridine             | 224-42-0                 | E642D   | 0.05  | μg/L | <0.050  |           |
| Dibenzo(a,i)pyrene              | 189-55-9                 | E642D   | 0.05  | μg/L | <0.050  |           |
| Dibenzo(c,g)carbazole, 7H-      | 194-59-2                 | E642D   | 0.05  | μg/L | <0.050  |           |
| Dinitropyrene, 1,3-             | 75321-20-9               | E642D   | 1     | μg/L | <1.0    |           |
| Dinitropyrene, 1,6-             | 42397-64-8               | E642D   | 1     | μg/L | <1.0    |           |
| Dinitropyrene, 1,8-             | 42397-65-9               | E642D   | 1     | μg/L | <1.0    |           |
| Methylcholanthrene, 3-          | 56-49-5                  | E642D   | 0.05  | μg/L | <0.050  |           |
| olycyclic Aromatic Hydrocarbons | (QCLot: 1644150)         |         |       |      |         |           |
| Anthracene                      |                          | E641A-L | 0.01  | μg/L | <0.010  |           |
| Benz(a)anthracene               | 56-55-3                  | E641A-L | 0.01  | μg/L | <0.010  |           |
| Benzo(a)pyrene                  | 50-32-8                  | E641A-L | 0.005 | μg/L | <0.0050 |           |
| Benzo(b+j)fluoranthene          | n/a                      | E641A-L | 0.01  | μg/L | <0.010  |           |
| Benzo(e)pyrene                  | 192-97-2                 | E641A-L | 0.01  | μg/L | <0.010  |           |
| Benzo(g,h,i)perylene            | 191-24-2                 | E641A-L | 0.01  | μg/L | <0.010  |           |
| Benzo(k)fluoranthene            | 207-08-9                 | E641A-L | 0.01  | μg/L | <0.010  |           |

 Page
 :
 9 of 17

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

 Project
 :
 G4836

ALS

| Analyte                                | CAS Number Method         | LOR   | Unit | Result  | Qualifier |
|----------------------------------------|---------------------------|-------|------|---------|-----------|
| Polycyclic Aromatic Hydrocarbons (QCI  | _ot: 1644150) - continued |       |      |         |           |
| Chrysene                               | 218-01-9 E641A-L          | 0.01  | μg/L | <0.010  |           |
| Dibenz(a,h)anthracene                  | 53-70-3 E641A-L           | 0.005 | μg/L | <0.0050 |           |
| Fluoranthene                           | 206-44-0 E641A-L          | 0.01  | μg/L | <0.010  |           |
| Indeno(1,2,3-c,d)pyrene                | 193-39-5 E641A-L          | 0.01  | μg/L | <0.010  |           |
| Perylene                               | 198-55-0 E641A-L          | 0.01  | μg/L | <0.010  |           |
| Phenanthrene                           | 85-01-8 E641A-L           | 0.01  | μg/L | <0.010  |           |
| Pyrene                                 | 129-00-0 E641A-L          | 0.01  | μg/L | <0.010  |           |
| Phthalate Esters (QCLot: 1646309)      |                           |       |      |         |           |
| bis(2-Ethylhexyl) phthalate [DEHP]     | 117-81-7 E625A            | 0.6   | μg/L | <0.60   |           |
| Di-n-butyl phthalate                   | 84-74-2 E625A             | 1     | μg/L | <1.0    |           |
| Semi-Volatile Organics (QCLot: 1646309 |                           |       |      |         |           |
| Dichlorobenzidine, 3,3'-               | 91-94-1 E625A             | 0.4   | μg/L | <0.40   |           |
| Chlorinated Phenolics (QCLot: 1646309) |                           |       |      |         |           |
| Pentachlorophenol [PCP]                | 87-86-5 E625A             | 0.5   | μg/L | <0.50   |           |
| Nonylphenols (QCLot: 1639974)          |                           |       |      |         |           |
| Nonylphenol [NP]                       | 84852-15-3 E749A          | 0.4   | μg/L | <0.40   |           |
| Nonylphenols (QCLot: 1639975)          |                           |       |      |         |           |
| Nonylphenol diethoxylate [NP2EO]       | 20427-84-3 E749B          | 0.1   | μg/L | <0.10   |           |
| Nonylphenol monoethoxylate [NP1EO]     | 27986-36-3 E749B          | 0.4   | μg/L | <0.40   |           |
| Organochlorine Pesticides (QCLot: 1642 | 2795)                     |       |      |         |           |
| Aldrin                                 | 309-00-2 E660F            | 0.008 | μg/L | <0.0080 |           |
| Chlordane, cis- (alpha)                | 5103-71-9 E660F           | 0.008 | μg/L | <0.0080 |           |
| Chlordane, trans- (gamma)              | 5103-74-2 E660F           | 0.008 | μg/L | <0.0080 |           |
| DDD, 2,4'-                             | 53-19-0 E660F             | 0.004 | μg/L | <0.0040 |           |
| DDD, 4,4'-                             | 72-54-8 E660F             | 0.004 | μg/L | <0.0040 |           |
| DDE, 2,4'-                             | 3424-82-6 E660F           | 0.004 | μg/L | <0.0040 |           |
| DDE, 4,4'-                             | 72-55-9 E660F             | 0.004 | μg/L | <0.0040 |           |
| DDT, 2,4'-                             | 789-02-6 E660F            | 0.004 | μg/L | <0.0040 |           |
| DDT, 4,4'-                             | 50-29-3 E660F             | 0.004 | μg/L | <0.0040 |           |
| Dieldrin                               | 60-57-1 E660F             | 0.008 | μg/L | <0.0080 |           |
| Hexachlorocyclohexane, gamma-          | 58-89-9 E660F             | 0.008 | μg/L | <0.0080 |           |
| Mirex                                  | 2385-85-5 E660F           | 0.008 | μg/L | <0.0080 |           |

 Page
 :
 10 of 17

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

 Page
 :
 11 of 17

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

Project : G4836



# Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

| Sub-Matrix: Water                        |                        |          |                 |              |                        | Laboratory Co | ntrol Sample (LCS) |            |          |
|------------------------------------------|------------------------|----------|-----------------|--------------|------------------------|---------------|--------------------|------------|----------|
|                                          |                        |          |                 |              | Spike                  | Recovery (%)  | Recovery           | Limits (%) |          |
| Analyte                                  | CAS Number             | Method   | LOR             | Unit         | Target Concentration   | LCS           | Low                | High       | Qualifie |
| Physical Tests (QCLot: 1638709)          |                        |          |                 |              |                        |               |                    |            |          |
| Solids, total suspended [TSS]            |                        | E160     | 3               | mg/L         | 150 mg/L               | 107           | 85.0               | 115        |          |
| Physical Tests (QCLot: 1645823)          |                        |          |                 |              |                        |               |                    |            |          |
| рН                                       |                        | E108     |                 | pH units     | 7 pH units             | 101           | 98.0               | 102        |          |
|                                          |                        |          |                 |              |                        |               |                    |            |          |
| Anions and Nutrients (QCLot: 1645796)    |                        |          |                 |              |                        |               |                    |            |          |
| Kjeldahl nitrogen, total [TKN]           |                        | E318     | 0.05            | mg/L         | 4 mg/L                 | 116           | 75.0               | 125        |          |
| Anions and Nutrients (QCLot: 1645797)    |                        |          |                 |              |                        |               |                    |            |          |
| Phosphorus, total                        | 7723-14-0              | E372-U   | 0.002           | mg/L         | 0.333 mg/L             | 97.6          | 80.0               | 120        |          |
| Anions and Nutrients (QCLot: 1645824)    |                        |          |                 |              |                        |               |                    |            |          |
| Chloride                                 | 16887-00-6             | E235.CI  | 0.5             | mg/L         | 100 mg/L               | 100           | 90.0               | 110        |          |
| Anions and Nutrients (QCLot: 1645825)    |                        |          |                 |              |                        |               |                    |            |          |
| Sulfate (as SO4)                         | 14808-79-8             | E235.SO4 | 0.3             | mg/L         | 100 mg/L               | 102           | 90.0               | 110        |          |
| Anions and Nutrients (QCLot: 1645826)    |                        |          |                 |              |                        |               |                    |            |          |
| Fluoride                                 | 16984-48-8             | E235.F   | 0.02            | mg/L         | 1 mg/L                 | 102           | 90.0               | 110        |          |
|                                          |                        |          |                 |              |                        |               |                    |            |          |
| Cyanides (QCLot: 1646031)                |                        |          |                 |              |                        |               |                    |            |          |
| Cyanide, strong acid dissociable (Total) |                        | E333     | 0.002           | mg/L         | 0.25 mg/L              | 94.5          | 80.0               | 120        |          |
|                                          |                        |          |                 |              |                        |               |                    |            |          |
| Total Sulfides (QCLot: 1642657)          |                        |          |                 |              |                        |               |                    |            |          |
| Sulfide, total (as S)                    | 18496-25-8             | E396     | 0.018           | mg/L         | 0.1 mg/L               | 91.0          | 75.0               | 125        |          |
|                                          |                        |          |                 |              |                        |               |                    |            |          |
| Total Metals (QCLot: 1639779)            | 7400.00.5              | E400     | 0.000           | "            | 0.4                    | 05.4          | 20.0               | 400        |          |
| Aluminum, total                          | 7429-90-5<br>7440-36-0 |          | 0.003<br>0.0001 | mg/L         | 0.1 mg/L               | 95.4<br>103   | 80.0<br>80.0       | 120<br>120 |          |
| Antimony, total<br>Arsenic, total        | 7440-36-0              |          | 0.0001          | mg/L         | 0.05 mg/L<br>0.05 mg/L | 103           | 80.0               | 120        |          |
| ,                                        | 7440-36-2              |          | 0.0001          | mg/L         | 0.05 mg/L              | 100           | 80.0               | 120        |          |
| Bismuth, total<br>Cadmium, total         | 7440-09-9              |          | 0.00005         | mg/L<br>mg/L | 0.005 mg/L             | 100           | 80.0               | 120        |          |
| Cadmium, total                           | 7440-43-9              |          | 0.0005          | mg/L         | 0.003 mg/L             | 100           | 80.0               | 120        |          |
| Cobalt, total                            | 7440-47-3              |          | 0.0003          | mg/L         | 0.012 mg/L             | 103           | 80.0               | 120        |          |
| Copper, total                            | 7440-50-8              |          | 0.0005          | mg/L         | 0.012 mg/L             | 102           | 80.0               | 120        |          |
| Iron, total                              | 7439-89-6              |          | 0.01            | mg/L         | 0.05 mg/L              | 101           | 80.0               | 120        |          |
| Lead, total                              | 7439-03-0              |          | 0.00005         | mg/L         | 0.025 mg/L             | 104           | 80.0               | 120        |          |
| Manganese, total                         | 7439-96-5              |          | 0.0003          | mg/L         | 0.012 mg/L             | 99.6          | 80.0               | 120        |          |
| ivialigatioso, total                     | 1433-80-3              | L720     | 0.0001          | my/L         | 0.012 Hig/L            | 33.0          | 00.0               | 120        |          |

 Page
 :
 12 of 17

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.



| Sub-Matrix: Water                        | Laboratory Control Sample (LCS) Report |         |          |        |                      |              |          |            |           |
|------------------------------------------|----------------------------------------|---------|----------|--------|----------------------|--------------|----------|------------|-----------|
|                                          |                                        |         |          |        | Spike                | Recovery (%) | Recovery | Limits (%) |           |
| Analyte                                  | CAS Number                             | Method  | LOR      | Unit   | Target Concentration | LCS          | Low      | High       | Qualifier |
| Total Metals (QCLot: 1639779) - continue | ed                                     |         |          |        |                      |              |          |            |           |
| Molybdenum, total                        | 7439-98-7                              | E420    | 0.00005  | mg/L   | 0.012 mg/L           | 99.7         | 0.08     | 120        |           |
| Nickel, total                            | 7440-02-0                              | E420    | 0.0005   | mg/L   | 0.025 mg/L           | 101          | 80.0     | 120        |           |
| Selenium, total                          | 7782-49-2                              | E420    | 0.00005  | mg/L   | 0.05 mg/L            | 102          | 80.0     | 120        |           |
| Silver, total                            | 7440-22-4                              | E420    | 0.00001  | mg/L   | 0.005 mg/L           | 94.2         | 80.0     | 120        |           |
| Tin, total                               | 7440-31-5                              | E420    | 0.0001   | mg/L   | 0.025 mg/L           | 102          | 80.0     | 120        |           |
| Titanium, total                          | 7440-32-6                              | E420    | 0.0003   | mg/L   | 0.012 mg/L           | 100          | 80.0     | 120        |           |
| Vanadium, total                          | 7440-62-2                              | E420    | 0.0005   | mg/L   | 0.025 mg/L           | 102          | 80.0     | 120        |           |
| Zinc, total                              | 7440-66-6                              | E420    | 0.003    | mg/L   | 0.025 mg/L           | 100          | 80.0     | 120        |           |
| Total Metals (QCLot: 1644198)            |                                        |         |          |        |                      |              |          |            |           |
| Mercury, total                           | 7439-97-6                              | E508    | 0.000005 | mg/L   | 0 mg/L               | 99.0         | 80.0     | 120        |           |
| Total Metals (QCLot: 1644725)            |                                        |         |          |        |                      |              |          |            |           |
| Gold, total                              | 7440-57-5                              | E462.PM | 0.02     | μg/L   | 10 μg/L              | 93.9         | 80.0     | 120        |           |
| Platinum, total                          | 7440-06-4                              | E462.PM | 0.02     | μg/L   | 10 μg/L              | 99.9         | 80.0     | 120        |           |
| Rhodium, total                           | 7440-16-6                              | E462.PM | 0.005    | μg/L   | 10 μg/L              | 98.1         | 80.0     | 120        |           |
| Speciated Metals (QCLot: 1640808)        |                                        |         |          |        |                      |              |          |            |           |
| Chromium, hexavalent [Cr VI], total      | 18540-29-9                             | E532    | 0.0005   | mg/L   | 0.025 mg/L           | 99.9         | 80.0     | 120        |           |
| Aggregate Organics (QCLot: 1638935)      |                                        |         |          | 111111 |                      |              |          |            |           |
| Biochemical oxygen demand [BOD]          |                                        | E550    | 2        | mg/L   | 198 mg/L             | 100          | 85.0     | 115        |           |
| Aggregate Organics (QCLot: 1640046)      |                                        |         |          |        |                      |              |          |            |           |
| Chemical oxygen demand [COD]             |                                        | E559-L  | 10       | mg/L   | 100 mg/L             | 110          | 85.0     | 115        |           |
| Aggregate Organics (QCLot: 1642513)      |                                        |         |          |        |                      |              |          |            |           |
| Phenols, total (4AAP)                    |                                        | E562    | 0.001    | mg/L   | 0.02 mg/L            | 101          | 85.0     | 115        |           |
| Aggregate Organics (QCLot: 1643752)      |                                        |         |          |        |                      |              |          |            |           |
| Oil & grease (gravimetric)               |                                        | E567    | 5        | mg/L   | 200 mg/L             | 90.6         | 70.0     | 130        |           |
| Aggregate Organics (QCLot: 1643753)      |                                        |         |          |        |                      |              |          |            |           |
| Oil & grease, mineral (gravimetric)      |                                        | E567SG  | 5        | mg/L   | 100 mg/L             | 80.4         | 70.0     | 130        |           |
| Volatile Organic Compounds (QCLot: 164   |                                        |         |          |        |                      |              |          |            |           |
| Benzene                                  | 71-43-2                                | E611D   | 0.5      | μg/L   | 100 μg/L             | 101          | 70.0     | 130        |           |
| Chloroform                               | 67-66-3                                | E611D   | 0.5      | μg/L   | 100 μg/L             | 111          | 70.0     | 130        |           |
| Dichlorobenzene, 1,2-                    | 95-50-1                                | E611D   | 0.5      | μg/L   | 100 µg/L             | 104          | 70.0     | 130        |           |
| Dichlorobenzene, 1,4-                    | 106-46-7                               | E611D   | 0.5      | μg/L   | 100 μg/L             | 103          | 70.0     | 130        |           |
| Dichloroethylene, cis-1,2-               | 156-59-2                               | E611D   | 0.5      | μg/L   | 100 μg/L             | 108          | 70.0     | 130        |           |
| Dichloromethane                          | 75-09-2                                | E611D   | 1        | μg/L   | 100 μg/L             | 111          | 70.0     | 130        |           |

 Page
 :
 13 of 17

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.



| Sub-Matrix: Water                        |                 |         |      |          | Laboratory Control Sample (LCS) Report |                                                      |                      |            |           |  |  |  |
|------------------------------------------|-----------------|---------|------|----------|----------------------------------------|------------------------------------------------------|----------------------|------------|-----------|--|--|--|
|                                          |                 |         |      |          | Spike                                  | Recovery (%)                                         | Recovery             | Limits (%) |           |  |  |  |
| Analyte                                  | CAS Number      | Method  | LOR  | Unit     | Target Concentration                   | LCS                                                  | Low                  | High       | Qualifier |  |  |  |
| Volatile Organic Compounds (QCLot: 16467 | 10) - continued |         |      |          |                                        |                                                      |                      |            |           |  |  |  |
| Dichloropropylene, trans-1,3-            | 10061-02-6      | E611D   | 0.3  | μg/L     | 100 μg/L                               | 107                                                  | 70.0                 | 130        |           |  |  |  |
| Ethylbenzene                             | 100-41-4        | E611D   | 0.5  | μg/L     | 100 μg/L                               | 98.0                                                 | 70.0                 | 130        |           |  |  |  |
| Tetrachloroethane, 1,1,2,2-              | 79-34-5         | E611D   | 0.5  | μg/L     | 100 μg/L                               | 114                                                  | 70.0                 | 130        |           |  |  |  |
| Tetrachloroethylene                      | 127-18-4        | E611D   | 0.5  | μg/L     | 100 μg/L                               | 106                                                  | 70.0                 | 130        |           |  |  |  |
| Toluene                                  | 108-88-3        | E611D   | 0.5  | μg/L     | 100 μg/L                               | 98.3                                                 | 70.0                 | 130        |           |  |  |  |
| Trichloroethylene                        | 79-01-6         | E611D   | 0.5  | μg/L     | 100 μg/L                               | 109                                                  | 70.0                 | 130        |           |  |  |  |
| Xylene, m+p-                             | 179601-23-1     | E611D   | 0.4  | μg/L     | 200 μg/L                               | 101                                                  | 70.0                 | 130        |           |  |  |  |
| Xylene, o-                               | 95-47-6         | E611D   | 0.3  | μg/L     | 100 μg/L                               | 99.6                                                 | 70.0                 | 130        |           |  |  |  |
| Volatile Organic Compounds (QCLot: 16494 | 19)             |         |      |          |                                        |                                                      |                      |            |           |  |  |  |
| Benzene                                  | 71-43-2         | E611D   | 0.5  | μg/L     | 100 μg/L                               | 92.7                                                 | 70.0                 | 130        |           |  |  |  |
| Chloroform                               | 67-66-3         | E611D   | 0.5  | μg/L     | 100 μg/L                               | 93.6<br>97.4<br>96.5<br>88.1<br>88.9<br>89.7<br>95.2 | 70.0                 | 130        |           |  |  |  |
| Dichlorobenzene, 1,2-                    | 95-50-1         | E611D   | 0.5  | μg/L     | 100 μg/L<br>100 μg/L                   |                                                      | 70.0<br>70.0<br>70.0 | 130        |           |  |  |  |
| Dichlorobenzene, 1,4-                    | 106-46-7        | E611D   | 0.5  | μg/L     |                                        |                                                      |                      | 130        |           |  |  |  |
| Dichloroethylene, cis-1,2-               | 156-59-2        | E611D   | 0.5  | μg/L     | 100 μg/L                               |                                                      |                      | 130        |           |  |  |  |
| Dichloromethane                          | 75-09-2         | E611D   | 1    | μg/L     | 100 µg/L<br>100 µg/L<br>100 µg/L       |                                                      | 70.0                 | 130        |           |  |  |  |
| Dichloropropylene, trans-1,3-            | 10061-02-6      | E611D   | 0.3  | μg/L     |                                        |                                                      | 70.0<br>70.0         | 130<br>130 |           |  |  |  |
| Ethylbenzene                             | 100-41-4        | E611D   | 0.5  | μg/L     |                                        |                                                      |                      |            |           |  |  |  |
| Tetrachloroethane, 1,1,2,2-              | 79-34-5         | E611D   | 0.5  | μg/L     | 100 μg/L                               | 84.4                                                 | 70.0                 | 130        |           |  |  |  |
| Tetrachloroethylene                      | 127-18-4        | E611D   | 0.5  | μg/L     | 100 μg/L                               | 110                                                  | 70.0                 | 130        |           |  |  |  |
| Toluene                                  | 108-88-3        | E611D   | 0.5  | μg/L     | 100 μg/L                               | 94.5                                                 | 70.0                 | 130        |           |  |  |  |
| Trichloroethylene                        | 79-01-6         | E611D   | 0.5  | μg/L     | 100 μg/L                               | 106                                                  | 70.0                 | 130        |           |  |  |  |
| Xylene, m+p-                             | 179601-23-1     | E611D   | 0.4  | μg/L     | 200 μg/L                               | 95.6                                                 | 70.0                 | 130        |           |  |  |  |
| Xylene, o-                               | 95-47-6         | E611D   | 0.3  | μg/L     | 100 μg/L                               | 95.1                                                 | 70.0                 | 130        |           |  |  |  |
|                                          |                 |         |      |          |                                        |                                                      |                      |            |           |  |  |  |
| Polycyclic Aromatic Hydrocarbons (QCLot: |                 | E0.40D  | 0.05 | ,        | 4.0 #                                  | 07.7                                                 | 00.0                 | 400        |           |  |  |  |
| Dibenz(a,h)acridine                      | 226-36-8        |         | 0.05 | μg/L     | 1.6 μg/L                               | 87.7                                                 | 60.0                 | 130        |           |  |  |  |
| Dibenz(a,j)acridine                      | 224-42-0        |         | 0.05 | μg/L     | 1.6 μg/L                               | 90.3                                                 | 60.0                 | 130        |           |  |  |  |
| Dibenzo(a,i)pyrene                       | 189-55-9        |         | 0.05 | μg/L<br> | 1.6 μg/L                               | 67.0                                                 | 60.0                 | 130        |           |  |  |  |
| Dibenzo(c,g)carbazole, 7H-               | 194-59-2        |         | 0.05 | μg/L     | 1.6 μg/L                               | 91.8                                                 | 60.0                 | 130        |           |  |  |  |
| Dinitropyrene, 1,3-                      | 75321-20-9      |         | 1    | μg/L     | 1.6 μg/L                               | 102                                                  | 60.0                 | 130        |           |  |  |  |
| Dinitropyrene, 1,6-                      | 42397-64-8      |         | 1    | μg/L     | 1.6 μg/L                               | 89.3                                                 | 60.0                 | 130        |           |  |  |  |
| Dinitropyrene, 1,8-                      | 42397-65-9      |         | 1    | μg/L     | 1.6 μg/L                               | 85.0                                                 | 60.0                 | 130        |           |  |  |  |
| Methylcholanthrene, 3-                   | 56-49-5         | E642D   | 0.05 | μg/L     | 1.6 μg/L                               | 121                                                  | 60.0                 | 130        |           |  |  |  |
| Polycyclic Aromatic Hydrocarbons (QCLot: |                 | -       |      |          |                                        |                                                      |                      |            |           |  |  |  |
| Anthracene                               | 120-12-7        |         | 0.01 | μg/L<br> | 0.526 μg/L                             | 91.4                                                 | 50.0                 | 140        |           |  |  |  |
| Benz(a)anthracene                        | 56-55-3         | E641A-L | 0.01 | μg/L     | 0.526 μg/L                             | 103                                                  | 50.0                 | 140        |           |  |  |  |

 Page
 :
 14 of 17

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.



| Sub-Matrix: Water                                               |                        |         |       |              |                      | Laboratory Co | ontrol Sample (LCS) | Report     |          |
|-----------------------------------------------------------------|------------------------|---------|-------|--------------|----------------------|---------------|---------------------|------------|----------|
|                                                                 |                        |         |       |              | Spike                | Recovery (%)  | Recovery            | Limits (%) |          |
| Analyte                                                         | CAS Number             | Method  | LOR   | Unit         | Target Concentration | LCS           | Low                 | High       | Qualifie |
| Polycyclic Aromatic Hydrocarbons (QCL                           | ot: 1644150) - continu | ied     |       |              |                      |               |                     |            |          |
| Benzo(a)pyrene                                                  | 50-32-8                | E641A-L | 0.005 | μg/L         | 0.526 μg/L           | 98.6          | 50.0                | 140        |          |
| Benzo(b+j)fluoranthene                                          | n/a                    | E641A-L | 0.01  | μg/L         | 0.526 μg/L           | 95.1          | 50.0                | 140        |          |
| Benzo(e)pyrene                                                  | 192-97-2               | E641A-L | 0.01  | μg/L         | 0.526 μg/L           | 91.9          | 50.0                | 140        |          |
| Benzo(g,h,i)perylene                                            | 191-24-2               | E641A-L | 0.01  | μg/L<br>μg/L | 0.526 μg/L           | 93.0          | 50.0                | 140        |          |
| Benzo(k)fluoranthene                                            | 207-08-9               | E641A-L | 0.01  |              | 0.526 μg/L           | 80.4          | 50.0                | 140        |          |
| Chrysene                                                        | 218-01-9               | E641A-L | 0.01  | μg/L         | 0.526 μg/L           | 102           | 50.0                | 140        |          |
| Dibenz(a,h)anthracene                                           | 53-70-3                | E641A-L | 0.005 | μg/L         | 0.526 μg/L           | 88.0          | 50.0                | 140        |          |
| Fluoranthene                                                    | 206-44-0               | E641A-L | 0.01  | μg/L         | 0.526 μg/L           | 105           | 50.0                | 140        |          |
| Indeno(1,2,3-c,d)pyrene                                         | 193-39-5               | E641A-L | 0.01  | μg/L         | 0.526 μg/L           | 112           | 50.0                | 140        |          |
| Perylene                                                        | 198-55-0               | E641A-L | 0.01  | μg/L         | 0.526 μg/L           | 103           | 50.0                | 140        |          |
| Phenanthrene                                                    | 85-01-8                | E641A-L | 0.01  | μg/L         | 0.526 μg/L           | 101           | 50.0                | 140        |          |
| Pyrene                                                          | 129-00-0               | E641A-L | 0.01  | μg/L         | 0.526 μg/L           | 106           | 50.0                | 140        |          |
|                                                                 |                        |         |       |              |                      |               |                     |            |          |
| Phthalate Esters (QCLot: 1646309)                               |                        |         |       |              |                      |               |                     |            |          |
| bis(2-Ethylhexyl) phthalate [DEHP]                              | 117-81-7               | E625A   | 0.6   | μg/L         | 33.7 μg/L            | 103           | 50.0                | 140        |          |
| Di-n-butyl phthalate                                            | 84-74-2                | E625A   | 1     | μg/L         | 33.7 μg/L            | 93.2          | 50.0                | 140        |          |
|                                                                 |                        |         |       |              |                      |               |                     |            |          |
| Semi-Volatile Organics (QCLot: 1646309)                         |                        |         |       |              |                      |               |                     |            |          |
| Dichlorobenzidine, 3,3'-                                        | 91-94-1                | E625A   | 0.4   | μg/L         | 8.42 μg/L            | 88.7          | 50.0                | 140        |          |
|                                                                 |                        |         |       |              |                      |               |                     |            |          |
| Chlorinated Phenolics (QCLot: 1646309)                          |                        |         |       |              |                      |               |                     |            |          |
| Pentachlorophenol [PCP]                                         | 87-86-5                | E625A   | 0.5   | μg/L         | 25.3 μg/L            | 87.9          | 65.0                | 130        |          |
|                                                                 |                        |         |       |              |                      |               |                     |            |          |
| Nonylphenols (QCLot: 1639974)                                   |                        |         |       |              |                      |               |                     |            | I        |
| Nonylphenol [NP]                                                | 84852-15-3             | E749A   | 0.4   | μg/L         | 10 μg/L              | 103           | 60.0                | 140        |          |
|                                                                 |                        |         |       |              |                      |               |                     |            | 1        |
| Nonylphenols (QCLot: 1639975)  Nonylphenol diethoxylate [NP2EO] | 20427-84-3             | E749B   | 0.1   | μg/L         | 2 μg/L               | 96.9          | 60.0                | 140        |          |
| Nonylphenol monoethoxylate [NP1E0]                              | 27986-36-3             |         | 0.4   | μg/L         | 10 μg/L              | 99.7          | 60.0                | 140        |          |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                             |                        |         |       | 10           | 10                   |               |                     |            |          |
| Organischlering Rostigides (OCL et. 4040)                       | 705)                   |         |       |              |                      |               |                     |            |          |
| Organochlorine Pesticides (QCLot: 1642) Aldrin                  | <b>795)</b> 309-00-2   | E660F   | 0.008 | μg/L         | 0.2 μg/L             | 73.8          | 50.0                | 150        |          |
| Chlordane, cis- (alpha)                                         | 5103-71-9              |         | 0.008 | μg/L         | 0.2 μg/L             | 114           | 50.0                | 150        |          |
| Chlordane, trans- (gamma)                                       | 5103-74-2              |         | 0.008 | μg/L         | 0.2 μg/L             | 104           | 50.0                | 150        |          |
| DDD, 2,4'-                                                      | 53-19-0                |         | 0.004 | μg/L         | 0.2 μg/L             | 89.6          | 50.0                | 150        |          |
|                                                                 | 72-54-8                |         | 0.004 |              |                      | 146           | 50.0                | 150        |          |
| DDD, 4,4'-                                                      |                        |         |       | μg/L         | 0.2 μg/L             |               |                     |            |          |
| DDE, 2,4'-                                                      | 3424-82-6              | ±00UF   | 0.004 | μg/L         | 0.2 μg/L             | 109           | 50.0                | 150        |          |

 Page
 :
 15 of 17

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

ALS

| Sub-Matrix: Water                          |             | Laboratory Control Sample (LCS) Report |       |      |                      |      |          |      |           |
|--------------------------------------------|-------------|----------------------------------------|-------|------|----------------------|------|----------|------|-----------|
|                                            |             |                                        |       |      | Spike Recovery (%)   |      | Recovery |      |           |
| Analyte                                    | CAS Number  | Method                                 | LOR   | Unit | Target Concentration | LCS  | Low      | High | Qualifier |
| Organochlorine Pesticides (QCLot: 1642795) | - continued |                                        |       |      |                      |      |          |      |           |
| DDE, 4,4'-                                 | 72-55-9     | E660F                                  | 0.004 | μg/L | 0.2 μg/L             | 96.5 | 50.0     | 150  |           |
| DDT, 2,4'-                                 | 789-02-6    | E660F                                  | 0.004 | μg/L | 0.2 μg/L             | 97.5 | 50.0     | 150  |           |
| DDT, 4,4'-                                 | 50-29-3     | E660F                                  | 0.004 | μg/L | 0.2 μg/L             | 110  | 50.0 150 |      |           |
| Dieldrin                                   | 60-57-1     | E660F                                  | 0.008 | μg/L | 0.2 μg/L             | 96.2 | 50.0     | 150  |           |
| Hexachlorocyclohexane, gamma-              | 58-89-9     | E660F                                  | 0.008 | μg/L | 0.2 μg/L             | 105  | 50.0     | 150  |           |
| Mirex                                      | 2385-85-5   | E660F                                  | 0.008 | μg/L | 0.2 μg/L             | 89.2 | 50.0     | 150  |           |
|                                            |             |                                        |       |      |                      |      |          |      |           |

 Page
 :
 16 of 17

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.

Client : JLP Ser
Project : G4836



### Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

| Sub-Matrix: Water    |                        |                                          |            |          |                            |                          | Matrix Spike | e (MS) Report |            |           |
|----------------------|------------------------|------------------------------------------|------------|----------|----------------------------|--------------------------|--------------|---------------|------------|-----------|
|                      |                        |                                          |            |          | Spil                       | ke                       | Recovery (%) | Recovery      | Limits (%) |           |
| Laboratory sample II | D Client sample ID     | Analyte                                  | CAS Number | Method   | Concentration              | Target                   | MS           | Low           | High       | Qualifier |
| Anions and Nutr      | ients (QCLot: 1645796) |                                          |            |          |                            |                          |              |               |            |           |
| WT2426129-002        | Anonymous              | Kjeldahl nitrogen, total [TKN]           |            | E318     |                            |                          |              | 70.0          | 130        |           |
| Anions and Nutr      | ients (QCLot: 1645797) |                                          |            |          |                            |                          |              |               |            |           |
| WT2426129-001        | Anonymous              | Phosphorus, total                        | 7723-14-0  | E372-U   | ND mg/L                    |                          | ND           | 70.0          | 130        |           |
| Anions and Nutr      | ients (QCLot: 1645824) |                                          |            |          |                            |                          |              |               |            |           |
| WT2426544-002        | Anonymous              | Chloride                                 | 16887-00-6 | E235.CI  | 107 mg/L                   | 100 mg/L                 | 107          | 75.0          | 125        |           |
| Anions and Nutr      | ients (QCLot: 1645825) |                                          |            |          |                            |                          |              |               |            |           |
| WT2426544-002        | Anonymous              | Sulfate (as SO4)                         | 14808-79-8 | E235.SO4 | 106 mg/L                   | 100 mg/L                 | 106          | 75.0          | 125        |           |
| Anions and Nutr      | ients (QCLot: 1645826) |                                          |            |          |                            |                          |              |               |            |           |
| WT2426544-002        | Anonymous              | Fluoride                                 | 16984-48-8 | E235.F   | 1.10 mg/L                  | 1 mg/L                   | 110          | 75.0          | 125        |           |
| Cyanides (QCLo       | ot: 1646031)           |                                          |            |          |                            |                          |              |               |            |           |
| TY2409732-001        | Anonymous              | Cyanide, strong acid dissociable (Total) |            | E333     | 0.219 mg/L                 | 0.25 mg/L                | 87.6         | 75.0          | 125        |           |
| Total Sulfides (C    | QCLot: 1642657)        |                                          |            |          |                            |                          |              |               |            |           |
| WT2425894-001        | Anonymous              | Sulfide, total (as S)                    | 18496-25-8 | E396     | 0.070 mg/L                 | 0.1 mg/L                 | 70.0         | 65.0          | 135        |           |
| Total Metals (QC     | CLot: 1639779)         |                                          |            |          |                            |                          |              |               |            |           |
| WP2421461-003        | Anonymous              | Aluminum, total                          | 7429-90-5  | E420     | ND mg/L                    |                          | ND           | 70.0          | 130        |           |
|                      |                        | Antimony, total                          | 7440-36-0  | E420     | 0.0532 mg/L                | 0.05 mg/L                | 106          | 70.0          | 130        |           |
|                      |                        | Arsenic, total                           | 7440-38-2  | E420     | 0.0533 mg/L                | 0.05 mg/L                | 106          | 70.0          | 130        |           |
|                      |                        | Bismuth, total                           | 7440-69-9  | E420     | 0.0467 mg/L                | 0.05 mg/L                | 93.4         | 70.0          | 130        |           |
|                      |                        | Cadmium, total                           | 7440-43-9  | E420     | 0.00485 mg/L               | 0.005 mg/L               | 97.1         | 70.0          | 130        |           |
|                      |                        | Chromium, total                          | 7440-47-3  | E420     | 0.0129 mg/L                | 0.012 mg/L               | 103          | 70.0          | 130        |           |
|                      |                        | Cobalt, total                            | 7440-48-4  | E420     | 0.0127 mg/L                | 0.012 mg/L               | 102          | 70.0          | 130        |           |
|                      |                        | Copper, total                            | 7440-50-8  | E420     | ND mg/L                    |                          | ND           | 70.0          | 130        |           |
|                      |                        | Iron, total                              | 7439-89-6  | E420     | 0.050 mg/L                 | 0.05 mg/L                | 99.3         | 70.0          | 130        |           |
|                      |                        | Lead, total                              | 7439-92-1  | E420     | 0.0239 mg/L                | 0.025 mg/L               | 95.7         | 70.0          | 130        |           |
|                      |                        | Manganese, total                         | 7439-96-5  | E420     | 0.0125 mg/L                | 0.012 mg/L               | 100          | 70.0          | 130        |           |
|                      |                        | Molybdenum, total                        | 7439-98-7  | E420     | 0.0123 mg/L<br>0.0134 mg/L | 0.012 mg/L               | 107          | 70.0          | 130        |           |
|                      |                        | Nickel, total                            | 7440-02-0  | E420     | ,                          | 0.012 mg/L<br>0.025 mg/L | 98.1         | 70.0          | 130        |           |
|                      |                        | ' '                                      |            |          | 0.0245 mg/L                | -                        |              |               |            |           |
|                      |                        | Selenium, total                          | 7782-49-2  | E420     | 0.0501 mg/L                | 0.05 mg/L                | 100          | 70.0          | 130        |           |
|                      |                        | Silver, total                            | 7440-22-4  | E420     | 0.00445 mg/L               | 0.005 mg/L               | 89.0         | 70.0          | 130        |           |
|                      |                        | Tin, total                               | 7440-31-5  | E420     | 0.0256 mg/L                | 0.025 mg/L               | 103          | 70.0          | 130        |           |
|                      |                        | Titanium, total                          | 7440-32-6  | E420     | 0.0132 mg/L                | 0.012 mg/L               | 106          | 70.0          | 130        |           |
|                      |                        | Vanadium, total                          | 7440-62-2  | E420     | 0.0268 mg/L                | 0.025 mg/L               | 107          | 70.0          | 130        |           |
|                      |                        | Zinc, total                              | 7440-66-6  | E420     | 0.0228 mg/L                | 0.025 mg/L               | 91.4         | 70.0          | 130        |           |
| Total Metals (QC     | CLot: 1644198)         |                                          |            |          |                            |                          |              |               |            |           |
| BF2400302-002        | Anonymous              | Mercury, total                           | 7439-97-6  | E508     | 0.0000871 mg/L             | 0 mg/L                   | 87.1         | 70.0          | 130        |           |

 Page
 :
 17 of 17

 Work Order
 :
 WT2426295

 Client
 :
 JLP Services Inc.



| Sub-Matrix: Water       |                      |                                     |             |         |               |           | Matrix Spi   | ke (MS) Report |              |           |
|-------------------------|----------------------|-------------------------------------|-------------|---------|---------------|-----------|--------------|----------------|--------------|-----------|
|                         |                      |                                     |             |         | Spi           | ike       | Recovery (%) | Recovery       | / Limits (%) |           |
| Laboratory sample ID    | Client sample ID     | Analyte                             | CAS Number  | Method  | Concentration | Target    | MS           | Low            | High         | Qualifier |
| Total Metals (QC        | Lot: 1644725)        |                                     |             |         |               |           |              |                |              |           |
| TY2409914-002           | Anonymous            | Gold, total                         | 7440-57-5   | E462.PM | 0.903 μg/L    | 1 μg/L    | 90.3         | 70.0           | 130          |           |
|                         |                      | Platinum, total                     | 7440-06-4   | E462.PM | 1.02 µg/L     | 1 μg/L    | 102          | 70.0           | 130          |           |
|                         |                      | Rhodium, total                      | 7440-16-6   | E462.PM | 0.994 μg/L    | 1 μg/L    | 99.4         | 70.0           | 130          |           |
| <b>Speciated Metals</b> | (QCLot: 1640808)     |                                     |             |         |               |           |              |                |              |           |
| VA24C2332-001           | Anonymous            | Chromium, hexavalent [Cr VI], total | 18540-29-9  | E532    | 0.0401 mg/L   | 0.04 mg/L | 100          | 70.0           | 130          |           |
| Aggregate Organ         | ics (QCLot: 1640046) |                                     |             |         |               |           |              |                |              |           |
| WT2426110-001           | Anonymous            | Chemical oxygen demand [COD]        |             | E559-L  | ND mg/L       |           | ND           | 75.0           | 125          |           |
| Aggregate Organ         | ics (QCLot: 1642513) |                                     |             |         |               |           |              |                |              |           |
| EO2407797-016           | Anonymous            | Phenols, total (4AAP)               |             | E562    | 0.0200 mg/L   | 0.02 mg/L | 100.0        | 75.0           | 125          |           |
| Volatile Organic (      | Compounds (QCLot: 1  | 646710)                             |             |         |               |           |              |                |              |           |
| TY2409850-001           | Anonymous            | Benzene                             | 71-43-2     | E611D   | 101 μg/L      | 100 μg/L  | 101          | 60.0           | 140          |           |
|                         |                      | Chloroform                          | 67-66-3     | E611D   | 110 µg/L      | 100 μg/L  | 110          | 60.0           | 140          |           |
|                         |                      | Dichlorobenzene, 1,2-               | 95-50-1     | E611D   | 102 μg/L      | 100 μg/L  | 102          | 60.0           | 140          |           |
|                         |                      | Dichlorobenzene, 1,4-               | 106-46-7    | E611D   | 102 μg/L      | 100 μg/L  | 102          | 60.0           | 140          |           |
|                         |                      | Dichloroethylene, cis-1,2-          | 156-59-2    | E611D   | 106 μg/L      | 100 μg/L  | 106          | 60.0           | 140          |           |
|                         |                      | Dichloromethane                     | 75-09-2     | E611D   | 108 μg/L      | 100 μg/L  | 108          | 60.0           | 140          |           |
|                         |                      | Dichloropropylene, trans-1,3-       | 10061-02-6  | E611D   | 105 μg/L      | 100 μg/L  | 105          | 60.0           | 140          |           |
|                         |                      | Ethylbenzene                        | 100-41-4    | E611D   | 97.8 μg/L     | 100 μg/L  | 97.8         | 60.0           | 140          |           |
|                         |                      | Tetrachloroethane, 1,1,2,2-         | 79-34-5     | E611D   | 109 μg/L      | 100 μg/L  | 109          | 60.0           | 140          |           |
|                         |                      | Tetrachloroethylene                 | 127-18-4    | E611D   | 108 μg/L      | 100 μg/L  | 108          | 60.0           | 140          |           |
|                         |                      | Toluene                             | 108-88-3    | E611D   | 97.4 μg/L     | 100 μg/L  | 97.4         | 60.0           | 140          |           |
|                         |                      | Trichloroethylene                   | 79-01-6     | E611D   | 110 μg/L      | 100 μg/L  | 110          | 60.0           | 140          |           |
|                         |                      | Xylene, m+p-                        | 179601-23-1 | E611D   | 203 μg/L      | 200 μg/L  | 101          | 60.0           | 140          |           |
|                         |                      | Xylene, o-                          | 95-47-6     | E611D   | 99.0 μg/L     | 100 μg/L  | 99.0         | 60.0           | 140          |           |
| Nonylphenols (C         | (CLot: 1639974)      |                                     |             |         |               |           |              |                |              |           |
| VA24C3191-001           | Anonymous            | Nonylphenol [NP]                    | 84852-15-3  | E749A   | 8.95 µg/L     | 10 μg/L   | 89.5         | 50.0           | 140          |           |
| Nonylphenols (C         | CLot: 1639975)       |                                     |             |         |               |           |              |                |              |           |
| VA24C3191-001           | Anonymous            | Nonylphenol diethoxylate [NP2EO]    | 20427-84-3  | E749B   | 1.86 μg/L     | 2 μg/L    | 93.0         | 50.0           | 140          |           |
|                         |                      | Nonylphenol monoethoxylate [NP1EO]  | 27986-36-3  | E749B   | 9.97 µg/L     | 10 μg/L   | 99.7         | 50.0           | 140          |           |



Canada Toll Free: 1 800 668 9878

| (              |                                                                |                                                                              |       |                                                                    | Wat          |
|----------------|----------------------------------------------------------------|------------------------------------------------------------------------------|-------|--------------------------------------------------------------------|--------------|
| Report To      | Contact and company name below will appear on the final report | Reports / Recipients                                                         |       | Turnaround Time (TAT) Requested                                    |              |
| Company:       | JLP Services Inc.                                              | Select Report Format: Y FOF DEXCEL WEDO (DIGITAL)                            | Roa   | Routine [R] if received by 3pm M-F - no surcharges apply           | <            |
| Contact:       | Ajay Jayalath                                                  | Merge QC/QCI Reports with COA                                                | 1     | 4 day [P4] If received by 3pm M-F - 20% rush surcharge minimu      |              |
| Phone:         | 519 763 3101                                                   | Compare Results to Criteria on Report - provide details below if box checked | 7 2 0 | 2 day [P2] if received by 3pm M-F - 50% rush surcharge minimi      |              |
|                | Company address below will appear on the final report          | Select Distribution: PMAIL MAIL FAX                                          | I d   | 1 day [E] If received by 3pm M-F - 100% rush surcharge minim       |              |
| Street:        | 405 York Rd.                                                   | Email 1 or Fax ajay . jaya alah @TLPSeyvices. Ca                             | D San | Same day [EZ] if received by 10am M-S - 200% rush surcharge.       |              |
| City/Province: | Givelph ON                                                     | Email 2 morgan, chronolog @ 1105011 ces.ca                                   |       | Additional fees may apply to rush requests on weeker               |              |
| Postal Code:   | NIE 3H3                                                        | Email 3 Cindy. Lun ) 1pservices, ca                                          |       | Date and Time Required for all E&P TATs:                           |              |
| Invoice To     | Same as Report To                                              | Invoice Recipients                                                           |       | For all tests with rush TATs requested, please                     | Telepho      |
|                | Copy of Invoice with Report                                    | Select Invoice Distribution: FAX                                             |       | Analysis Ru                                                        |              |
| Company:       |                                                                | Email 1 or Fax accounting @ sipservices. Ca                                  | RS    | Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/ | reserved (F/ |

Job / Project#: 64836

PO / AFE:

(ALS use only)

BHMWG

ALS Lab Work Order # (ALS use only): W/ 12426295 F4

ALS Contact:

Requisitioner.

AFE/Cost Certer: Vajor/Minor Code:

Oil and Gas

Sample Identification and/or Coordinates (This description will appear on the report)

ALS Client Code / QUOTE #: JLP MUN

**Project Information** 

**Environmental Division** NT2426295



ne: +1.519 886 6910

|                    | VITIAL SHIPMEN                           |     |                                |                              | AND DESCRIPTION OF THE PERSONS ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASS | aluation by selected COC only)                              |   | 1            |   | Act of the last |   | Sep. 4 | Date<br>(dd-mmm-yy) | Martin Martin | A STREET OF |                   |           | and Gas Require                      | CCOUNTY                                                                   |
|--------------------|------------------------------------------|-----|--------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---|--------------|---|-----------------|---|--------|---------------------|---------------|-------------|-------------------|-----------|--------------------------------------|---------------------------------------------------------------------------|
| Date:              | NITIAL SHIPMENT RECEPTION (ALS use only) |     |                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aluation by selecting from drop-down below<br>sel COC only) |   | 187          |   |                 |   | AH     | Time<br>(hh:mm)     | Sampler:      |             | Routing Code:     | PO#       | and Gas Required Fields (client use) | cconting@ sibservices. Co                                                 |
|                    | LS use only)                             |     |                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | below                                                       |   | Carlo San    |   |                 |   | GIM    | Sample Type         |               |             |                   |           | ise)                                 | lices. Ca                                                                 |
| Time:              |                                          |     | 1                              | Coole                        | Cooli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |   | 1            | 1 | 3               |   | 25     |                     | BER (         |             |                   |           |                                      | ERS                                                                       |
|                    |                                          |     | INITIAL C                      | Cooler Custody Seals Intact: | Cooling Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |   | The National |   |                 |   | ×      | Sal                 | ntory<br>wer  | By-         | 16<br>S-L         | ipl<br>to | 1 + 1                                |                                                                           |
| Received by        |                                          |     | INITIAL COOLER TEMPERATURES °C | als Intact:                  | NONE [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SA                                                          |   | 13           |   |                 |   |        |                     |               |             |                   |           |                                      | Indicate Filtered (F                                                      |
|                    | FINAL SHI                                |     | TURES °C                       | YES                          | ICE Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MPLE RECE                                                   |   |              |   |                 |   |        |                     |               |             |                   |           |                                      | ), Preserved (P)                                                          |
| Date               | PMEN                                     |     |                                | NA                           | ICE PACKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IPT DI                                                      |   | 1            |   |                 |   | 133    | 99                  |               |             |                   |           |                                      | or Filter                                                                 |
| Date: 0 _ 10 - 2 - | FINAL SHIPMENT RECEPTION (ALS use only)  | 9.2 | FINALCO                        | Sample Custody Seals Intact: | CKS ROZEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLE RECEIPT DETAILS (ALS use only)                       |   |              |   |                 |   |        |                     |               |             | The second second |           | The same and                         | Indicate Filtered (F), Preserved (P) or Filtered and Preserved (FP) below |
| 7                  | use only)                                |     | FINAL COOLER TEMPERATURES °C   | eals Intact:                 | COOLING INITIATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ıly)                                                        |   |              |   |                 |   |        | E 5 7               |               |             |                   |           |                                      | OW                                                                        |
| 7.                 |                                          |     | RES °C                         | YES                          | INITIAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             |   |              |   |                 | П |        | SAM                 | PLES C        | N HC        | LD                |           |                                      |                                                                           |
|                    |                                          |     | П                              | NA                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | Н |              |   | -               |   |        |                     | NDED S        |             |                   | 191170    |                                      | CONTRACT.                                                                 |
| ñ                  |                                          |     |                                | Þ                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |   |              |   |                 |   |        | SUSF                | PECTED        | HAZA        | RD                | (se       | ee n                                 | otes                                                                      |

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION
Failure to complete all portions of this form may delay arelystis. Plane 401 1-15 INFORMATION Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy WHITE - LABORATORY COPY YELLOW - CLIENT COPY

Received by:

INITIAL S

Are samples for human consumption/ use?

L YES

× ×

SHIPMENT RELEASE (client use)

□ YES

N

Are samples taken from a Regulated DW System?

Drinking Water (DW) Samples (client use)

Notes / Specify Limits for result evaluation

(Excel COC o

05-715 066-835 OR-796 B-916 GC-729 N-202 L-714 MM-070 CN-100 SC-930 VW-006 Appendix H – Qualifications of Assessors



## Cindy Luu, B.Sc.

Cindy has a Bachelor of Science in Biomedical Sciences from the University of Waterloo. She then completed a graduate certificate program in Environmental Engineering Applications from Conestoga College.

Cindy is responsible for environmental reporting, including Phase I and II Environmental Site Assessments, due diligence reports, excess soil management, environmental monitoring and investigations, regulatory compliance and regulations.

# Ajay Jayalath, MBA, P.Geo., QP

Mr. Jayalath graduated from University of Toronto with a Bachelor of Science in Environmental Geoscience, specializing in Urban Geoscience and Hydrogeology. He then obtained a Master's of Science degree from the University of Toronto in Environmental Science and a MBA from the DeGroote School of Business, McMaster University.

Mr. Jayalath has over fifteen years of environmental investigations experience in the geo-environmental field. Mr. Jayalath has worked on numerous remediation projects including the design and application of in-situ and ex-situ remediation projects. In addition, he has been involved in over fifty Phase I and II Environmental Site Assessments, from conducting field work to the reporting and project management phases.

His current responsibilities include the management of the environmental groups, including the site assessment, hydrogeological, air quality, hazardous materials, and risk assessment teams. As part of his responsibilities, Mr. Jayalath's role is to ensure the environmental operations are completed in a timely manner to client satisfaction. Mr. Jayalath oversees various contracts for nationwide clients and routinely coordinates with the regional offices to ensure project and contract performance.

# Jay Samarakkody, B.Sc., M.Phil., P. Geo.

Mr. Samarakkody is a Senior Hydrogeologist graduated from the University of Peradeniya, Sri Lanka with a Bachelor of Science in Geology, and a Master of Philosophy in Hydrogeology. He completed a Post Graduate diploma in Environmental Engineering Applications at Conestoga College in Kitchener, Ontario.

Mr. Samarakkody has over forty years of overall experience including over twenty years in Canada, completing numerous hydrogeology related projects for public and private sector clients, mainly in the province of Ontario.

His core expertise includes overall management of variety of hydrogeology related projects, well developed hydrogeological technical expertise, water balance studies, numerical groundwater modelling, client engagement and management, project team management, staff development in technical fields, report writing and peer reviewing. He has a thorough knowledge of applicable federal, provincial and municipal Acts and Regulations.