Date:
Title (ful

Records Manager's Approval Signature:

ENVIRONMENTAL NEW LIBRARY RECORD INFORMATION FORM SERVICES THE CITY OF DEPARTMENT Name: Julia Pargarry

Document Date: July 1988 Guelph Waterworks Division January 19, sec J Docu 11): Guelph Gas Works Steely Author(s): Environmental Stockhiles himited Step 1: Choose one of the following sections. Step 2: Choose a corresponding subsection or create new in the space provided. GROUNDWATER GW. BOOOKS B. TRAINING MANUALS TM. ☐ Puslinch: GW.01. ☐ Textbooks: B.01. ☐ Certification: TM.01. ☐ General: GW.02. ☐ Sampling: TM.02. ☐ Technical: B.02. ☐ Arkell: GW.03. ☐ Handbooks: B.03. ☐ Health & Employment: TM.03. Technical: TM.04. □ _____: GW.**0**4. ☐ Motivational: B.04. ☐ Computer: TM.05. ☐ Dictionary: B.05. _____: TM.06. ☐ Emergency & Env: B.06. _____: B.07. HISTORICAL H MANAGEMENT M. REGULATORY R. ☐ General: R.01. Documents: H.01. ☐ General: M.01. _____: M.**02**. Records: H.02. : H.03. WATER OUALITY WO. DISTRIBUTION D. WATER CONSERVATION WC. ☐ General: WO.01. ☐ General: D.01. ☐ General: WC.01. □ : WQ.**02**. : D.02 : WC.02. PERIODICALS P. WATER UTILITY WU. DESIGN & CONSTRUCTION DC. ☐ AWWA: P.01. ☐ Various: WU.01. □ Woods: DC.**01**. ☐ Other: P.02. ☐ Eng. Reports: WU.02. ☐ Wastewater: DC.02. ☐ Master Plans: WU. 03. \Box Other: DC.03. ☐ Public Handouts: P.03. □ _____: DC.04. □ ______ P.04. : WU. 04. OPERATIONS & MAINTENANCE OM. ☐ Clythe: OM.01. Gordon: OM.06. Field Study: OM.11. ☐ Clair: OM.02. Barton: OM.07. Product: OM.12. ☐ Carter: OM.03. Gazer Mooney: OM.13. Woods: OM.08. ☐ Terraview: OM.04. Pineridge: OM.09. Admiral: OM.14. ☐ Edinburgh: OM.05. Park/Emma: OM.10. : OM.15. Hydrogeological: E.07., Torrance: E.14. ENVIRONMENTAL E. WS Aqueduct: E.08. Mill Creek: E.15. ☐ Permits: E.01. Eastview: E.16. WS Arkell: E.09. ☐ Well Level Data: E.02. ☐ Data Graphs: E.03. WS General: E.10. Puslinch: E.17. ☐ Well Info: E.04. Admiral: E.11. Membro: E.18. ☐ Aquifer: E.05. Eramosa: E.12. : E.19. ☐ Hanlon: E.13. ☐ Various Reports: E.06. VIDEOS V. ☐ Industrial: V.01. ☐ Motivational: V.02.

GUELPH GAS WORKS STUDY

PREPARED FOR
THE CITY OF GUELPH

PREPARED BY

ENVIRONMENTAL STRATEGIES LIMITED

ESL 87-907

JULY, 1988

140 Renfrew Drive, Markham, Ontario L3R 6B3 Telex 06-986278 Fax (416) 477-1456

(416) 477-8400

Professional Services in Environmental Management

Environmental Strategies Limited

July 19, 1988

ESL 87-907

Mr. R.D. Funnel, P.Eng., The City Engineer City of Guelph 59 Carden Street Guelph, Ontario N1H 3A1

Attention: Mr. K.J. Bull, P.Eng.,

Dear Sirs:

Re: Guelph Gas Works Study

We are pleased to submit our final report for this study.

The study has determined the extent of wastes associated with the former gas works. The results suggest that there is no threat to public health and safety if the wastes remain undisturbed. However, any future site development plan should include remedial measures to address these wastes.

Thank you for allowing us to be of service.

Yours truly,

ENVIRONMENTAL STRATEGIES LIMITED

Thomas J. Kewen, M.Sc. Senior Hydrogeologist

stan Kenk

TJK:tmc

TABLE OF CONTENTS

	<u>PAGE</u>
1.0 INTRODUCTION	1
2.0 PURPOSE AND SCOPE	4
3.0 GENERAL SITE DESCRIPTION	5
4.0 RESULTS AND DISCUSSION 4.1 GEOLOGY 4.2 HYDROGEOLOGY 4.3 OCCURRENCE AND OFF-SITE MIGRATION OF GAS	8 8 10
PLANT WASTES 4.3.1 Overview 4.3.2 Ground Water 4.3.3 Storm Sewers 4.3.4 Surface Water and Sediments in the Speed River	17 17 19 23
5.0 SUMMARY AND CONCLUSIONS	30
6.0 RECOMMENDATIONS	32
7.0 REFERENCES	33
LIST OF FIGURES	
FIGURE 1 LOCATION OF GUELPH GAS WORKS	2
FIGURE 2(a) HISTORICAL SITE VIEW (1955)	6
FIGURE 2(b) GAS WORKS LAYOUT (C. 1911)	7
FIGURE 3 SOIL, GROUND WATER AND SEWER MONITORING LOCATIONS	9
FIGURE 4 DEPTH OF FILL AND OVERBURDEN	11
FIGURE 5 CROSS-SECTIONS A-A' AND B-B'	. 12
FIGURE 6 BEDROCK SURFACE	13
FIGURE 7 WATER TABLE ELEVATIONS	16
FIGURE 8 OCCURRENCE OF GAS PLANT WASTES AND LEACHATE	Ξ 18
FIGURE 9 MONITORING LOCATIONS IN SPEED RIVER	24

LIST OF TABLES

GRO	ARY OF MONITOR CONSTRUCTION DETAILS, UND WATER ELEVATIONS AND HYDRAULIC DUCTIVITY	15
TABLE 2 SUMMA OF G	ARY OF GENERAL WATER QUALITY ANALYSIS ROUND WATER SAMPLES	20
HYD	ARY OF POLYNUCLEAR AROMATIC ROCARBON ANALYSES OF GROUND WATER PLES	22
TABLE 4 SUMMA	ARY OF ANALYSES OF SEWER WATER SAMPLES	26
TABLE 5 SUMMA OF SI	ARY OF GENERAL WATER QUALITY ANALYSES PEED RIVER SURFACE WATER SAMPLES	27
TABLE 6 SUMMA OF SI	ARY OF GENERAL WATER QUALITY ANALYSES PEED RIVER SEDIMENT SAMPLES	28
HYD	ARY OF POLYNUCLEAR AROMATIC ROCARBON ANALYSES OF SPEED RIVER IMENT SAMPLES	29
	LIST OF APPENDICES	
APPENDIX A	METHODOLOGY	
APPENDIX B	BOREHOLE AND TEST PIT LOGS	
APPENDIX C	GROUND WATER MONITOR DETAILS	
APPENDIX D	HYDRAULIC CONDUCTIVITY TEST RESULTS	
APPENDIX E	RESULTS FROM CHEMICAL ANALYSES OF GROWATER, SEWER WATER, SURFACE WATER AND SEDIMENT SAMPLES	
APPENDIX F	INSPECTION REPORT OF BASEMENT SURVEY SO OF SURREY STREET	OUTH

1.0 INTRODUCTION

The City of Guelph is currently one of the owners of the site of the former Guelph Gas Works (Figure 1). The plant operated on Fountain Street from 1871 to 1957. The plant was then dismantled. The City's portion of the site was largely unused for several years. Lately, it was redeveloped for a municipal parking lot. The remainder of the site has been used as the offices and service yard of the Union Gas Company.

The plant site is one of 40 facilities identified in a recent study of coal gasification plant waste sites in Ontario (Intera, 1987). These sites have come under increasing environmental scrutiny since many have been found to contain coal tar or other gas plant wastes.

In 1986, Gartner Lee Limited (GLL) completed an evaluation of several former landfill areas in the City of Guelph as well as the portion of the gas works site owned by the City. A geophysical survey located gas tank foundations on the site. However, the survey did not have great enough resolution to specifically identify the presence of any wastes. It was recommended that additional site studies should be undertaken.

In August 1987, Environmental Strategies Limited (ESL, a GLL company) submitted a proposal to the City to conduct these studies. The City expected that the studies would be jointly supported by the City and Union Gas. However, Union Gas proceeded independently and the studies were limited to the City's portion of the site. The scope of the studies included soil sampling and ground water monitoring at 11 separate on-site locations. This work was completed in October, 1987.

The preliminary results of the study were discussed with the Ontario Ministry of the Environment (MOE) on November 4, 1987. The MOE agreed with the nature and methodology of the work completed but indicated that the scope of the work should be expanded off-site in order to comply with the Ministry's requirements and guidelines covering provincial funding for gas works investigations. The guidelines for provincial funding had not been developed when the original work proposal had been submitted.

The scope of the off-site work was developed through several follow-up discussions between ESL, the City and the MOE. The additional work was outlined in a letter to the City on December 15, 1987. The work included ground water monitoring along Surrey and Wellington Streets and surface water and sediment sampling in the Speed River. This work was completed during late December, 1987 and January, 1988.

The present report includes the results of all field studies conducted to date by ESL.

2.0 PURPOSE AND SCOPE

The original purpose of the study was to assess the extent of gas plant wastes on-site and to provide an evaluation of their potential off-site migration. After discussion of preliminary field results with the MOE, the study was expanded to assess off-site migration of wastes and the potential presence of waste leachates in the Speed River.

The field investigations were primarily directed towards characterization of shallow ground water conditions. ESL was specifically requested by the MOE to limit boreholes and ground water monitors to shallow bedrock in order to prevent possible transport of contaminants to depth in the bedrock. The field investigations also involved sampling of surface water and sediment quality in the Speed River. The river is the ultimate receptor for shallow ground water flow and storm water sewers from the plant site.

3.0 GENERAL SITE DESCRIPTION

The Guelph Gas Works was a relatively large gas manufacturing operation. It was located on Fountain Street between Wyndham, Surrey and Gorden Streets (Figure 2a). The gas works ultimately covered an area of about 1 ha. It included several process buildings and 3 gas holding tanks with a total capacity in the order of 8500 cubic metres (Figure 2b). During late 1987, the City discovered a network of underground passages connecting the process buildings in the northwestern portion of the site. These passages were partially filled with sand and did not appear to contain any wastes.

The Guelph Gas Works operated from 1871 to 1957. The manufacturing process was likely "water gas" from about 1897 (Intera, 1987). The gas works had several owners. The Guelph Gas Company owned the plant from 1871 to 1903. The plant was then sold to the Guelph Light and Heat Commission. In later years, the plant was owned by the Union Gas Company. In 1957, the plant was shut down and dismantled (Intera, 1987).

The plant site is currently owned by the City of Guelph and Union Gas. The City's portion is used for the Fountain Street Municipal Parking Lot. Union Gas owns the southwestern portion of the site and uses it for an office and service yard. The land use to the northwest and east is institutional. The land use to the south and southeast is commercial and residential (Intera, 1987).

PROJECT 87-907

Environmental Strategies Limited

4.0 RESULTS AND DISCUSSION

Field work conducted during the course of the gas plant studies included:

- geologic boreholes,
- installation, testing and sampling of ground water monitors,
- inspection of sewers and sewer bedding from the gas plant,
- sediment and surface water sampling downstream from sewer outfalls from the plant area into the Speed River.

The methodologies are outlined in Appendix A. Original field data is included in Appendices B to E. Appendix B includes borehole and test pit logs. Appendix C includes general ground water monitor details and ground water elevations. Appendix D includes hydraulic conductivity test results and Appendix E includes all analyses of water and sediment quality.

4.1 GEOLOGY

The geologic setting of the plant site was determined from soil sampling in 11 boreholes on-site and 4 boreholes and 3 test pits off-site (Figure 3). The locations of the on-site boreholes were chosen to provide areally representative information and to provide specific information in areas of potential gas plant waste residues. Previous geophysical studies (GLL, 1986) had outlined the bottom of the former Gas Holder Tank 115 (Figure 2b). The locations of the off-site boreholes were chosen to provide data to the southeast of the gas plant along the local downgradient dip of the bedrock surface.

The plant site is situated on granular deposits about 150 m northwest of the Speed River and about 6 m above the river stage. The granular materials originate from fill or from sandy glacial materials deposited along the banks of the Speed River.

PROJECT 87-907

The granular materials on-site range from 1.8 to 5.4 m thick (Figures 4 and 5). The fill is 5.4 m thick in the south corner of the site due to a local bedrock depression. The granular material beneath the plant site generally consists of brown, poorly sorted sands with some gravel. Coal cinders, slag and pitch occasionally occur in the upper metre of fill. Discoloured fill with strong hydrocarbon or ammonia odour occurs at the bedrock surface at borehole locations 5, 7, 8 and 10. The lower 4 m of fill at location 8 is saturated with tar.

The granular material in the areas investigated off-site ranges from 1.4 to 2.2 m thick. At borehole 14 and test pits 2 and 3 along Surrey Street, the upper 0.5 to 1 m of material consists of coal cinders, slag and pitch presumably associated with the plant site operations. Coal tars were not found in these materials. These test pits were specifically completed to inspect the bedding of the storm and sanitary sewer heading southwest from the site. Test pit 1 at the northeast end of Surrey Street and test pit 4 along Wyndham Street were completed to inspect the sewer bedding along the abandoned and present storm sewers heading southeast from the site. Coal tars and discoloured bedding were found at these locations.

The bedrock typically consists of a grey or yellow weathered dolomite. It has an undulating surface that dips to the south (Figures 5 and 6). A local depression in the bedrock surface at location 8 on the plant site occurs from 1.7 to 3.7 m below the surrounding bedrock. This depression appears to act as a collection point for coal tars on-site. It may be a man-made excavation rather than a natural feature.

Boreholes were completed into the bedrock at locations 6 and 7 on-site and locations 12, 13, 14 and 15 off-site. Coring of the bedrock was completed at locations 6 and 7. Noticeable weathering cracks or fractures in the bedrock were found within the upper 1.5 m at these locations. Discoloration of the bedrock and free coal tar in weathering cracks in the bedrock were found at location 7.

4.2 **HYDROGEOLOGY**

The hydrogeologic setting of the plant site was determined from 8 ground water monitors installed on-site and 4 ground water monitors installed off-site along Surrey

PROJECT 87-907

PROJECT 87:907

Environmental Strategies Limited

PROJECT 87-907

Environmental Strategies Limited

and Wellington Streets (Table 1). The methodologies are outlined in Appendix A. Ground water monitor details, ground water elevation measurements and hydraulic conductivity results are summarized in Table 1.

Shallow ground water monitors on-site were installed at the bedrock surface to determine the water table conditions and to determine potential coal tar accumulations at the bedrock surface. Two deeper monitors were completed from 1 to 2.4 m below the bedrock surface. Off-site monitors were also installed to determine water table conditions. These monitors were installed below the bedrock surface since the water table occurred at lower elevation off-site. The water table occurred from 1 to 2.5 m below ground throughout the area.

The water table slopes to the southeast towards the Speed River (Figure 7). Shallow ground water moves in this direction. The ultimate receptor for this ground water is the Speed River. Vertically downward hydraulic gradients beneath the plant site indicates that downward ground water movement into the bedrock also occurs. The City currently operates a municipal water supply well in the bedrock approximately 1.5 km to the south of the plant site.

The water table elevations in Figure 7 were taken over several days in January since several monitor caps were frozen. Variations in the water table elevations over this period were not significant in determining the overall direction of ground water flow. A sharp drop in the water table across the retaining wall along the southern perimeter of the gas plant site suggests the wall effectively raises the water table behind it. A drop of over 2 m occurs between monitors 8 and 15 on either side of the wall.

The average rate of ground water flow through the area depends upon the hydraulic gradient, the hydraulic conductivity and the effective porosity of the granular materials and the bedrock. The saturated thickness of the granular materials off-site is generally less than 0.5 metres. The rate of flow in these materials cannot be determined from the available data. The rate of flow in the upper bedrock is approximately 50 m/a using an off-site hydraulic gradient of 0.02 m/m, a hydraulic conductivity with a geometric mean of $8 \times 10^{-6} \text{ m/s}$ and an assumed effective porosity of 10%. The rate of flow is sensitive

TABLE 1 SUMMARY OF MONITOR CONSTRUCTION DETAILS, GROUND WATER ELEVATIONS AND HYDRAULIC CONDUCTIVITY

I overburder I overburder I overburder I bedrock II overburde	en 1.4 - 2.6 en 1.1 - 2.3 4.9 - 6.1	(m) 313.36 313.42 312.20 312.89	(m/s) nm nm rr 2.0 x 10-5
I overburde I overburde I bedrock	en 1.4 - 2.6 en 1.1 - 2.3 4.9 - 6.1	313.42 312.20 312.89	LL
I overburder	4.9 - 6.1	312.20 312.89	rr
I bedrock	4.9 - 6.1	312.89	
			2.0 x 10-5
II overburde	n 1.3 - 25		
, 070, Dai aci	1.5 2.5	313.11	rr
I bedrock	2.9 - 4.1	311.98	6.4 x 10-6
II overburde	n 0.8 - 2.0	na	na
I overburde	n 1.1 - 5.3	312.50	nm
I bedrock	1.8 - 3.0	308.90	4 x 10-6
I bedrock	1.7 - 3.0	308.78	. nm
I bedrock/fi	ill 1.1 - 2.4	309.31	7 x 10-7
t fill	0.6 - 1.8	309.86	nm
	bedrock bedrock/f	bedrock 1.7 - 3.0 bedrock/fill 1.1 - 2.4	bedrock 1.7 - 3.0 308.78 bedrock/fill 1.1 - 2.4 309.31

Note: (nm) - not measurable due to low ground water elevations

(na) - not available

⁽rr) - rapid response during testing; too fast to measure

PROJECT 87-907

Environmental Strategies Limited

to the values used for each of these parameters. However, the rate is great enough to easily transport gas plant waste leachates from the site.

4.3 OCCURRENCE AND OFF-SITE MIGRATION OF GAS PLANT WASTES

4.3.1 Overview

The gas plant wastes of most interest with regard to off-site migration are associated with coal tars removed from the produced gas or spent oxides used in the purification of the gas. Coal tars are relatively immiscible and are heavier than water. They tend to "sink" through soils and migrate along lower permeability barriers such as an unweathered bedrock surface.

The major residual of coal tar on-site appears to be in the fill within the bedrock depression in the southwest corner of the site (Figure 8). This depression contains approximately 4 m of tar saturated fill. This tar had a relatively low viscosity and would be able to flow if not contained. Coal tar was detected in borehole 7 and was reported in fence post holes completed by the City along the eastern perimeter of the site (Intera, 1987). Coal tar was found in the sewer bedding beneath the abandoned storm sewer heading northeast along Surrey Street and southeast along Wyndham Street. These observations suggest that coal tar may occur downgradient from the site along the southern perimeter of the plant site.

Emulsified coal tars occur in shallow ground water at monitor location 15 across the street from the plant. Black hydrocarbon sediment was found in the sump in the basement of the apartment building across from the plant (Appendix F). However, no odours or seepage of this material in the basements were found in any of the residences along Surrey Street. There was no evidence of coal tar beneath Surrey Street in borehole 14 and test pits 2 and 3 to the south of the plant.

Phenols and polynuclear aromatic hydrocarbons (PAHs) are the leachable constituents of most interest in the coal tars. These constituents move predictably in ground water flow systems. Oxides contain leachable constituents such as ammonium and cyanide which also move predictably with ground water movement. Trace metals may be

PROJECT 87-907

Environmental Strategies Limited

leached from a variety of sources in a gas plant. Waste oxides or other gas plant wastes were not recognized in the fill on the plant site. Dissolved constituents from wastes on-site and from the coal tars beneath Surrey Street would generally be expected to move southeastward towards the Speed River. Some downward movement into the bedrock may also occur.

Another on-site source of waste leachates, perhaps not directly involved in the gas plant operation, was detected in the northwest corner of the site. Three small storage tanks used to exist in this area (Figure 2b). Strong gasoline odours were noted at the bedrock surface in borehole 10.

4.3.2 Ground Water

Ground water sampling was conducted to provide an indication of ground water quality beneath the plant site and to the southeast and southwest of the site (Figure 8). The full suite of ground water analyses included phenols, ammonium, cyanide, ICP metals and polynuclear aromatic hydrocarbons (PAHs). A phased analytical program was conducted. The analyses conducted on each sample varied according to the location of the monitor sampled, the accessibility of the monitors during winter conditions and the volume of water in the monitors.

Sampling methodologies are outlined in Appendix A. The original laboratory results and complete quality assurance analyses from Barringer Magenta Laboratories and NOVALAB Ltd. are included in Appendix C. The results are summarized in Tables 2 to 7.

Phenols were used as the most general indicator of poor quality ground waters associated with the gas plant. Phenol analyses are available for ground water samples from monitors 5-I, 6-I, 6-II, 7-I, 7-II, 8-I, 12-I, 13-I, 14-I and 15-I (Table 2). The highest phenol concentration detected was 27,600 ug/L in monitor 8-I in the south corner perimeter of the plant site. Free coal tar was found in this monitor. Lesser concentrations were detected in off-site monitors 12-I and 15-I. Monitor 15-I is 15 m south of the plant and had a phenol concentration of 254 ug/L. Monitor 12-I is the furthest downgradient monitor from the plant, approximately 80 m from the plant, and

TABLE 2 SUMMARY OF GENERAL WATER QUALITY ANALYSIS OF GROUND WATER SAMPLES

								HOLLING ON STILE	5	_			NO. THOS	FIGHT LONG OIN SOUNE!	.NE 1 31.	MONITORS ON WELLINGTON	3 011 #[[LINGION	<u>.</u>
					OVERBURDEN	URDEN	[8	BEDROCK		; ; ; ; ; ;	BEDROCK	 	 	BEDROCK	OCK	
CONSTITUENT ODWO		(P) 0M00	FIELD BLANK	5-1	LAB REPEAT 6-II		'B EAT	8-1	6-1	7-1	FIELD	LAB REPEAT	14-I	FIELD DUP	15-I		FIELD	13-I	LAB
General Contaminant Indicators	nt Indicate)rs				 				1 1 1 1 1 1 1 1 1 1						II II II II II II II	11 11 13 13 11 11 11	it CC H H H H H H H H H H H H H H H H H H	
PHENOL AMMONIUM (unionized)mg/L CYANIDE (total) ug/L	ng/L Ng/L Ng/L	2 200(c)	0.09 5	₹ ' '	∀''	↔ 1 1	⊽''	27600	∀''	254 26.1 2680	26.1 2950	28.2 2500	0.77 14		30	0.73 110	811	₽''	∵''
Dissolved Metals																			
SILVER		0.05	0,000	1	1		•	•	1	0.007	ı	0.005	0.007	0.013		0.011	ı	1	•
ALUMINUM BORON	mg/L Al	5.0	0.02	1 1			1 1	1 1	1 . 1	0.01		<0.01 0.097	<0.01 0.188	<0.01 0.196	1 1	<0.01 0.136	t I		
BARIUM		1.0	<0.005	ı	1		•	1	ı	0.019	ı	0.019	0.098	0.098	1	0.110	ı	•	•
BEKILLIUM CAI CIIIM	mg/L Be		<0.0005				ı	ı	V 1	0.0005		<0.0005) [0 :	1	0 .	1		•
CADMIUM		0.005	\$0.05 0.01	1 1						<0.01 <0.01	ı	.0.0y	<0.01 <0.01	0.01	: 1	, 165 <0.01	1 1		
COBALT		•	<0.05	•	1			ı	•	<0.05		<0.05	<0.05	<0.05	1	<0.05	1	1	•
CHKUMIUM		0.05	<0.01 60.01	•	•				1	0.02	ı	0.01	0.03	0.03	ı	0.03	1	•	'
IRON	mg/L cu mg/L Fe	0.3	<0.08 <0.01	1 1	1, 1 1 1					2.96		2.85	0.022	0.023	1 1	0.08 0.08	1 1	1 1	
POTASSIUM			0.7	•	1		1	t	1.	10.1	-1	9.6	12.1	12.1	•	10.3		•	•
GNESTUM	mg/L Mg	0	0.0 6.0	1			ı		ı	26.3	1	26.8	60.3	60.4	ı	69.1	ı	1	'
MOLYBDENUM		6.0	<0.01	1 1			l t	1 1	1 1	0.2		<0.07 <0.2	0.13	0.12	. ,	0.40	1 1	1 I	' '
SODIUM			<0.5	1			ı		ı	534	1	540	297	301	1	545	1	•	'
NICKEL	mg/L Ni		<0.05	1	1		1	•	ı	<0.05	•	<0.05	<0.05	90.0	•	<0.05	•	•	'
PHOSPHORUS			<0.5	ı	ı			•	•	0.7	ı	0.7	<0.5	<0.5	*	<0.5		1	•
LEAD		0.02	<0.05	1.			,	1	ı	<0.05		<0.05	<0.05	<0.05	1	<0.05	1	•	ı
SILICON			<0.05	ı	1		,	1	•	5.53	. •	5.41	4.37	4.59	•	5.95	•	ı	1
STRONTIUM	mg/L Sr		<0.001	ı	•				ı	0.138	ı	0.129	0.519	0.518	•	0.548	ı	1	•
THORIUM	mg/L Th		0.08	ı			•	ı	ı	<0.05	ı	<0.05	<0.05	<0.05		<0.05	•	ŧ	1
TITANIUM	mg/L Ti		<0.005	ı	•		ı	•	ı	0.071	ı	0.069	<0.005	<0.005	ı	<0.005	ı	ı	,
VANADIUM	Mg/L V		0.007	1		,	1	ı		0.034		0.027	0.012	0.012	•	0.012	•	•	1
ZINC	mg/L Zn	2.0	<0.01	ı			,	ı	ı	0.0 3		<0.01 0.01	0.04	0.04	1	0.03	•	•	1
														F C .					

Notes:

ဇ 🕰 ပ

(-) indicates not analysed ODWO - Ontario Drinking Water Objectives Objective for free cyanide rather than total cyanide

had a phenol concentration of 3 ug/L. Phenols were not detected in off-site monitors 13-I and 14-I.

Ammonium and cyanide are other specific indicators of ground water affected by gas plant operations. Analyses for these constituents are available for monitors 7-I, 12-I and 14-I (Table 2). The highest ammonium concentration of 26 mg/L and the highest cyanide concentration of 2680 ug/L were detected in monitor 7-I on-site. Much lower concentrations of both constituents were found in the off-site monitors 12-I and 14-I. Monitor 12-I is downgradient from the plant site. Monitor 14-I is not downgradient and may receive its dissolved constituents from the plant site fill along Surrey Street to the southwest of the plant. Trace metals were analysed in samples from monitors 7-I, 12-I and 14-I (Table 2). Anomalous but not uncommon concentrations of iron and manganese were detected. Metal concentrations (other than calcium, magnesium, sodium and potassium) generally occurred at very low levels, often less than the analytical limits of detection.

PAH analyses are available from monitors 7-I, 12-I and 15-I (Table 3). Elevated concentrations of a variety of PAH constituents occur in both monitors 7-I and 15-I. The concentrations are well in excess of the individual solubilities of these constituents and suggest the presence of emulsified coal tar in the samples analysed. Monitor 8-I contains obvious free coal tar and was not sampled. Monitor 12-I is the furthest downgradient monitor from the gas plant and had a total PAH concentration of 13.4 ug/L. The three constituents detected in this monitor were acenapthene, fluorene and napthalene. These constituents have the highest individual solubilities of the PAH constituents in coal tars.

The ground water quality sampling detected gas plant leachate along Surrey Street adjacent to the plant and downgradient to the southeast of the plant. Cyanide, ammonia, phenols and PAHs were each detected in ground water monitor 12-I, the furthest downgradient monitor from the plant site. All concentrations, except napthalene, were greatly reduced compared to concentrations in monitor 15-I adjacent to the plant site. Cyanide concentrations were the least reduced. Phenol and PAH concentrations were the most reduced. These changes are consistent with the general

TABLE 3 SUMMARY OF POLYNUCLEAR AROMATIC HYDROCARBON ANALYSES OF GROUND WATER SAMPLES

CONSTITUENT			MDL(b)		ON-SITE	SURRE		WELLINGTON ST
					BEDROCK	BEDR	DCK.	BEDROCK
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			*********	FIELD BLANK	7-I	14 - I	15-1	12-1
ACENAPHTHENE	ug/L		0.05	nd	15	nd	230	11
ACENAPHTHYLENE	ug/L		0.05	nd	290	nd -	540	nd
ANTHRACENE	ug/L		0.05	nd	7.8	nd ·	110	nd
BENZO(A) ANTHRACENE	ug/L		0.05	. nd	0.1	nd .	78	. nd
ABENZO(B) + BENZO(K) FLUORANTHENE	ug/L		0.05	nd	nd v	nd ·	47	nd
BENZO(A) PYRENE	ug/L	1.0	0.05	nd	nd	nd	58	nd .
BENZO(GHI) PERYLENE	ug/L		0.1	nd	nd ·	nd ·	38	nd
CHRYSENE	ug/L		0.05	nd	0.06	nd	49	nd
DIBENZ(A,H) ANTHRACENE	ug/L		0.1	nd	nd	nd	5.9	nd
FLUORANTHENE	ug/L		0.05	nd	3.3	. nd	240	nd
FLUORENE	ug/L		0.05	nd	56	nd	200	1
INDENO (1,2,3-CD) PYRENE	ug/L		0.1	nd	· nd	nd	25	nd
NAPTHALENE	ug/L		0.05	· nd	270	nd	1	1.4
PHENANTHRENE	ug/L		0.05	nd	55	nd	670	nd
PYRENE	ug/L		0.05	nd	2.5	nd	250	nd ·

Notes (a) MOE - Ontario Ministry of the Environment Working Guideline - pers. comm. with U. Sibbul

⁽b) MDL - Method Detection Limit (10 x higher for monitor 15-I)



ground water mobility of these constituents. The concentration of constituents at monitor 12-I slightly exceeded the Ontario Drinking Water Objectives (ODWO) for phenols. The concentration of cyanide is less then the ODWO assuming that the cyanide detected only has a small proportion of free cyanide. Objectives for ammonia and PAHs are not established.

### 4.3.3 Storm Sewers

Storm sewer outfalls from the gas plant into the Speed River occur in two areas (Figure 9). The earliest municipal records indicate that the plant was originally serviced by a 24" storm sewer that ran southeast along Wyndham Street to the Speed River. This sewer joined a 30" sewer south of Wellington Street and discharged into the river about 60 m from the present Wyndham Street Bridge. In 1929, a separate 9" sewer was constructed to serve only the plant. This sewer was constructed alongside the existing 24" sewer and emptied directly into the river. Between 1943 and 1952, the 24" sewer was realigned south of Wellington Street and emptied into a new 36" outfall.

Coal tars were found inside the 9" pipe and in the sewer bedding beneath the 9" and 24" storm sewers in test pit 4 about half way between the plant and the river. The bedding was found to contain coal tar. It is possible that coal tars may be found further southeast along this bedding towards the river. A sanitary sewer running southeast along the centre of Wyndham Street was not investigated.

The other storm sewer serving the gas plant was constructed in 1924 and runs southwest from the plant along Surrey Street. The sewer is still in operation and discharges into the Speed River just downstream from the present McCrae Boulevard Bridge, approximately 700 m southwest of the plant. Former residents in the area report that tarry sediments accumulated near the outfall of this sewer but it is believed they were disturbed and probably removed from the river during a channel improvement project completed by the Grand River Conservation Authority during the 1960's.

During 1986, the City detected coal tar seeping into the Surrey Street sewer from a sewer connection serving the Union Gas portion of the plant site and sealed the connection. Tarry sediments were not found in the Surrey Street sewer during





inspection in the present study. Coal tars were also not found in the sewer bedding of the Surrey Street sewer in test pits 2 and 3. Test pit 2 also exposed the sewer bedding of the sanitary sewer along Surrey Street and did not encounter any coal tar in this bedding.

The present loading of dissolved gas plant constituents into the river was assessed by sewer water sampling of the Surrey Street sewer from a manhole at the corner of Surrey and Gordon Streets (Table 4). The concentration of phenols was 16 ug/L. PAHs were not detected.

### 4.3.4 Surface Water and Sediments in the Speed River

One surface water sample and two sediment samples were collected from the Speed River downstream from each of the sewer outfall areas described above. The surface water at the river sampling location to the southeast of the plant is also downstream of the reach of the river that receives present ground water flow from the gas plant.

The surface water samples were analysed for the same suite of constituents as the ground water analyses discussed in Section 4.3.2. These include phenol, ammonium, cyanide, dissolved metals and PAHs. Only cyanide was detected in the surface water samples (Table 5). To the southeast of the plant, the cyanide concentration was 6 to 10 ug/L (as total). The Ontario Provincial Water Quality Objective (PWQO) for cyanide (as free) is 5 ug/L. The PWQO is likely not exceeded assuming that the cyanide detected only has a small proportion of free cyanide. These samples were collected during the low flow period in winter. Cyanide concentrations in higher flow periods would be lower. To the southwest of the gas plant, the cyanide concentration in the surface water was 1 ug/L (as total).

The sediment samples were analysed for oil and grease, metals and PAHs. None of these analyses detected unusual concentrations specifically related to gas plant discharges into the river (Table 6). PAH concentrations only ranged from 2.2 to 15.4 ug/g (Table 7).



# TABLE 4 SUMMARY OF ANALYSES OF SEWER WATER SAMPLES

CONSTITUENT		MOE(a)	MDL(b)	SAMPLE S-1, SURREY STREET (c)
PHENOLS	ug/L		<b>25</b> 222222222	16
POLYNUCLEUR AROMATICS				
	ug/L		0.2	nd
ACENAPHTHYLENE	ug/L		0.2	nd
ANTHRACENE	ug/L		0.2	nd
BENZO(A) ANTHRACENE	ug/L		0.4	nd
ABENZO(B) + BENZO(K) FLUORANTHENE	ug/L		0.4	nd nd
BENZO(A) PYRENE	ug/L	1.0	0.8	nd
BENZO(GHI) PERYLENE	ug/L		0.8	·· nd
CHRYSENE	ug/L		0.4	nd
DIBENZ(A,H) ANTHRACENE	ug/L		0.8	nd
FLUORANTHENE	ug/L		0.2	nd .
FLUORENE	ug/L		0.2	. nd
INDENO (1,2,3-CD) PYRENE	ug/L		0.8	nd ·
NAPTHALENE	ug/L		0.2	nd .
PHENANTHRENE	ug/L		0.2	nd
PYRENE	ug/L		0.2	nd

Notes (a) MOE - Ontario Ministry of the Environment Working Guideline - pers. comm. with U. Sibbul

⁽b) MDL - Method Detection Limit

⁽c) nd - not detected



# TABLE 5 SUMMARY OF GENERAL WATER QUALITY ANALYSES OF SPEED RIVER SURFACE WATER SAMPLES

CONSTITUENT		PWQO(a)	•	tream of Sewer heast of Gas Pla	Sample Downstream of Sewer Outfall Southwest of Gas Pla
General Contaminant I		*********	1	Lab Repeat	2
PHENOL	ug/L	1	<1	<1	<1
AMMONIUM (unionized)	mg/L N	0.02	0.01	0.01	0.01
CYANIDE (total)	ug/L	5 (b)	10	6	1
Dissolved Metals					
SILVER	mg/L Ag	0.0001	<0.005	<0.005	0.005
ALUMI NUM	mg/L Al		0.05	0.06	0.04
BORON	mg/L B		0.018	0.017	0.018
BARIUM	mg/L Ba		0.017	0.017	0.018
BERYLLIUM	mg/L Be	0.011(c)		0.0007	<0.0005
CALCIUM	mg/L Ca		67.9	66.7	66.8
CADMIUM	mg/L Cd	0.0002	<0.01	<0.01	<0.01
COBALT	mg/L Co		<0.05	<0.05	<0.05
CHROMIUM	mg/L Cr	0.100	0.03	0.03	0.02
COPPER	mg/L Cu	0.005	<0.008	<0.008	<0.008
IRON	mg/L Fe	0.300	0.15	0.14	0.14
POTASSIUM	mg/L K		1.5	1.5	-1.3
MAGNESIUM	mg/L Mg		20.2	20	20.5
MANGANESE	mg/L Mn		0.03	0.03	0.03
MOLYBDENUM	mg/L Mo		<0.2	<0.02	<0.2
SODIUM	mg/L Na		11.2	11.2	13.4
NICKEL	mg/L Ni	0.025	<0.05	<0.05	<0.05
PHOSPHORUS	mg/L P		<0.5	<0.5	<0.5
LEAD	mg/L Pb	0.025	0.05	0.05	<0.05
SILICON	mg/L Si		1.21	1.18	1.24
STRONTIUM	mg/L Sr		0.155	0.155	0.16
THORIUM	mg/L Th		0.18	0.18	0.15
TITANIUM	mg/L Ti		<0.005	<0.005	<0.005
VANAD I UM	mg/L V.		0.005	0.008	0.005
ZINC	mg/L Zn	0.030	0.02	0.01	0.02
ZIRCONIUM	mg/L Zr		<0.05	<0.05	<0.05

Notes (a) PWQO - Ontario Ministry of the Environment Provincial Water Quality Objectives

⁽b) Objectives for free cyanide rather than total cyanide

⁽c) Objective for unfiltered water with hardness less than 75 mg/L CaCO3; objective increases for harder water



# TABLE 6 SUMMARY OF GENERAL WATER QUALITY ANALYSES OF SPEED RIVER SEDIMENT SAMPLES

CONSTITUENT		Sou	theast of Gas		Samples Downstream of Sewer Outfa Southwest of Gas Plant			
General Contaminan	Indicator	A	Lab Repeat	B	C	D		
OIL & GREASE	ppm	3280	3280	6000	6000	3540		
Total Metals					•			
SILVER	ppm Ag	<0.5	<0.5	<0.5	<0.5	<0.5		
ALUMINUM	ppm Al	27300	30500	33500	23600	31300		
BORON	ppm B							
BARIUM	ppm Ba	242	277	316	234	302		
BERYLLIUM	ppm Be	0 <b>.7</b> 5	0.85	0.9	0.88	0.87		
CALCIUM	ppm Ca	128000	139000	128000	190000	130000		
CADIUM	ppm Cd	<1	<1	<1	: <1	<1		
COBALT	ррт Со	<5	- 6	9	12	8		
CHROMIUM	ррт Сг	54	57	55	52	52		
COPPER	ррт Си	30	- 31	65	50	. 30		
IRON	ppm Fe	36400	36100	23300	18100	20300		
POTASSIUM	ррт К	8300	9500	11000	7800	10200		
MAGNESIUM	ppm Mg	54400	56800	48000	31300	45600		
MANGANESE	ppm Mn	964	997	1600	1490	968		
MOLYBDENUM	ppm Mo	20	20	20	20	. 20		
SODIUM	ррт Ма	7900	9000	8500	3800	9600		
NICKEL	ppm Ni	11	16	18	19	15		
PHOSPHORUS	ppm P	630	680	1170	1400	740		
LEAD	ppm Pb	180	160	195	195	145		
SILICON	ppm Si							
STRONTIUM	ppm Sr	185	205	201	245	213		
THORIUM	ppm Th	24	27	24	23	28		
TITANIUM	ppm Ti	4960	4380	2100	1280	2530		
VANAD I UM	ppm V	67	64	43	38	42		
ZINC ·	ppm Zn	209	261	97	. 877	48		
ZIRCONIUM	ppm Zr	448	90	60	403	59		



# TABLE 7 SUMMARY OF POLYNUCLEAR AROMATIC HYDROCARBON ANALYSES OF SPEED RIVER SEDIMENT SAMPLES

CONSTITUENT MOE(a) MDL(b) Sediments Downstream of Sewer Sediments Downstream of Sewer Outfall Southeast of Gas Plant Outfall Southwest of Gas Plant Lab Repeat ACENAPHTHENE ug/L 0.2 0.1 **ACENAPHTHYLENE** 0.2 ug/L nd 0.2 nd ndANTHRACENE ug/L 0.2 0.2 0.5 0.4 0.4 BENZO(A) ANTHRACENE ug/L 0.4 nd 0.3 1.4 ABENZO(B) + BENZO(K) FLUORANTHENE ug/L 0.4 nd 0.5 BENZO(A) PYRENE ug/L 1.0 0.8 nd nd nd nd BENZO(GHI) PERYLENE ug/L 0.8 nd nd CHRYSENE 0.4 ug/L 0.4 1.3 DIBENZ(A,H) ANTHRACENE ug/L 0.8 nd nd nd **FLUORANTHENE** ug/L 0.2 6.9 0.6 2.6 0.8 2.4 **FLUORENE** ug/L 0.2 0.2 nd nd 0.2 INDENO (1,2,3-CD) PYRENE 0.8 ug/L nd nd NAPTHALENE 0.2 ug/L nd nd nd nd nd **PHENANTHRENE** 0.2 ug/L 0.9 2.8 1.6 0.4 2.2

Notes (a) MOE - Ontario Ministry of the Environment Working Guideline - pers. comm. with U. Sibbul

0.2

ug/L

**PYRENE** 

0.5

4.8

2.0

0.6

1.7

⁽b) MDL - Method Detection Limit



### 5.0 SUMMARY AND CONCLUSIONS

The Guelph Gas Works and surrounding area is underlain by 1 to 5 m of fill and overburden overlying limestone bedrock. The water table occurs from 1 to 2.5 m below ground and slopes towards the Speed River approximately 150 m to the southeast of the gas plant.

Gas plant waste residues still exist on-site. The major residual of coal tar appears within fill in a bedrock depression in the southwest corner of the site. Coal tars likely exist beneath Surrey Street along the southern perimeter of the gas plant. Coal tars were found in sewer bedding along an abandoned storm sewer leading northeast along Surrey Street and southeast along Wyndham Street. The coal tars contain leachable phenols and polynuclear aromatic hydrocarbons (PAHs). Leachable sources of ammonia and cyanide also exist in the fills on-site.

Ground water sampling detected gas plant leachate along Surrey Street adjacent to the plant and downgradient to the southeast of the plant in the direction of ground water flow. The furthest downgradient monitor was 80 m from the plant. Trace concentrations of phenols, ammonia, cyanide and PAHs were detected at this monitor. Phenols slightly exceeded Ontario Drinking Water Objectives. Ground water quality effects to the southwest of the plant were detected but likely result from gas plant fill placed along Surrey Street.

Storm sewers heading from the plant site have discharged gas plant wastes or leachates in the Speed River during the course of the plant operation. The sewer leading southeast from the plant on Wyndham Street was abandoned many years ago. Coal tar occurs within the bedding of this sewer. The sewer leading southwest from the plant on Surrey Street is still in operation. Coal tars do not occur within the bedding of this sewer. Tarry sediments accumulated near the outfall of this sewer many years ago but were removed from the river during a channel improvement project in the 1960s.



Surface water sampling in the Speed River downgradient from the plant and sewer outfalls detected trace concentrations of cyanide (as total). The PWQO is not exceeded assuming that cyanide detected only has a small proportion of free cyanide.

Sediment sampling in the Speed River adjacent to the surface water monitoring locations did not detect any anomalous sediment quality related to the plant.

The conclusions from this study are that:

- the extent of wastes associated with the plant is well defined, and
- the wastes do not presently pose a threat to public health and safety.
- the wastes should be left undisturbed until such time that any future site development plans are approved.



## 6.0 <u>RECOMMENDATIONS</u>

- The City should review the results of this study with the Ministry of the Environment.
- The City should notify all municipal departments of the presence and extent of coal gas wastes in the plant area. Engineering drawings of the area should be marked accordingly. Appropriate precautions should be followed during any excavation on-site or during any sewer or road work in the area. Contaminated soils removed from excavations should be replaced in the excavation and covered with clean backfill. Contaminated soil that is not replaced in excavations will have to be analyzed and disposed in accordance with Regulation 309.
- The City and Union Gas should work together with Union Gas and any future site developers to ensure appropriate remedial measures are included in any site development plan. The extent of waste removal will depend upon the proposed development but should, at least, include the material within the bedrock depression in the southwest corner of the municipal parking lot. This material will have to be analyzed and disposed in accordance with Regulation 309.



#### 7.0 REFERENCES

Bouwer, H. and Rice, R.C., 1976.

A Slug Test for Determining Hydraulic Conductivity of Unconfirmed Aquifers With Completely or Partially Penetrating Walls. Water Resources Research, volume 12, p. 423-428.

City of Guelph.

Engineering Department Drawings of Services.

Intera, 1987.

Inventory of Coal Gasification Plant Wastes Sites in Ontario. Volumes I and II. Prepared for the Ontario Ministry of the Environment, Waste Management Branch.

Hvorslev, M.J., 1951.

Time Lag and Soil Permeability Observations. U.S. Army Corps. Engrs. Waterways Exp. Sta. Bull. 36, Vicksburg, Miss.

# APPENDIX A METHODOLOGY

#### **METHODOLOGY**

The purpose of the field work was to investigate the geologic and hydrogeologic setting of the former Guelph Gas works and to determine the extent of any gas plant waste residues. The work was initially conducted on-site and later extended off-site.

The field work mainly consisted of drilling and ground water monitor installation, testing and sampling. Test pits were completed to inspect the bedding beneath the storm sewers along Surrey and Wyndham Streets. Water samples were taken from the storm sewer flowing southwest along Surrey Street. Water and sediment samples were taken downgradient from two sewer outfalls from the plant site into the Speed River.

### **BOREHOLE DRILLING**

Drilling was carried out at a total of 15 locations during a two phased drilling program. During the first phase of drilling between September 29 and October 2, 1987, 13 boreholes were drilled at 11 locations (numbered 1 through 11) within the boundary of the Fountain Street Municipal Parking Lot. At all locations, auger holes were drilled to limestone bedrock. At locations 6 and 7, additional separate coreholes were drilled into the limestone to investigate the potential infiltration of gas plant wastes into the bedrock. During the second phase of drilling on December 14 and 15, 1987, four additional auger holes (numbered 12 through 15) were drilled south of the site along Surrey Street and Wellington Street. The geological logs for all boreholes are included in Appendix B.

The first phase of drilling was done using a Nodwell track-mounted CME 55 drill rig contracted from Dominion Soil Incorporated. The second phase of drilling was done using a trailer-mounted CME 45 drill rig contracted from Atcost Soil Drilling Incorporated.

All drilling in overburden and weathered limestone was done using 4 1/4" (10.8 cm inside diameter) hollow stem augers. Augering for each hole was conducted through a

hole in the bottom of a steel box. The box was used to contain the auger cuttings in case they were contaminated. A bentonite seal between the bottom of the box and the ground surface prevented any liquids from escaping from the box. Any cuttings found to contain coal tars were separated and stored in drums in a secured storage bin on-site. The cuttings were disposed of at Tricil in accordance with Ontario Ministry of the Environment Regulation 309.

At drill locations 6 and 7, bedrock was cored in a separate hole. After augering about 0.5 m into limestone, a 3" (7.6 cm) diameter steel casing was grouted with cement into the borehole. After allowing the grout to set overnight, coring was continued to final depth. Only clean City water was used and no chemical additives or drilling muds were required. All return water was collected and removed by City vacuum trucks if there were no detectable odors of coal tar. Otherwise, the water was was stored in drums in a secured storage bin on-site and disposed of at the City of Guelph Water Pollution Control Plant.

During overburden drilling, continuous split spoon soil sampling was conducted to define the geologic materials, to locate the soil-bedrock interface and to determine the presence of any coal tar product or odors. All soil samples were sealed in brown glass sample containers with foil-lined lids.

To prevent artificial contamination of the soil during drilling, no oil or grease was used on downhole drilling equipment. Hollow stem augers were cleaned with acetone and rinsed with distilled water prior to and between each borehole. Split spoon samplers were similarly cleaned between successive samples.

## **GROUND WATER MONITOR INSTALLATION**

A standpipe monitor was installed at 10 of the 15 drill locations in order to monitor water table conditions and shallow ground water quality. Monitors were installed in the bedrock at two locations. Monitors 1-I, 3-I, 5-I, 6-I, 6-II, 7-I, 7-II and 8-I were installed within the area of the former gas works; monitors 12-I, 13-I, 14-I and 15-I were installed downgradient of the gas works (Figure 3).

All monitors consisted of 50 mm diameter, Schedule 80, flush-threaded PVC pipe and #10 machine slotted screens. A sand filter was placed around the screen in each auger hole as the augers were pulled back. A 0.2 m to 0.5 m bentonite seal was placed from the filter to just below surface. The top of the sand filter and the seal were measured to ensure that the screen was fully covered with sand and that the seal was properly installed.

At all monitor locations, a protective steel casing and cap was installed at surface. For added security, an additional locking aluminum cap was fitted to the PVC pipe inside the casing. A rubber stopper was placed inside the PVC pipe to prevent water from entering the monitors.

The location of the all monitors were surveyed by the City of Guelph Works
Department and tied into storm sewer manhole locations. Elevations at ground level
and at the top of the monitor caps were tied into a geodetic benchmark so that bedrock
elevations and water levels could be related to sewer and bedrock data from other
survey drawings.

Details of the monitor installations are given in Appendix C.

#### **TEST PIT EXAMINATION**

Three test pits on Surrey Street and one test pit along Wyndham Street were excavated with a backhoe by the City of Guelph. This work was carried out on December 16 and 17, 1987. The purpose of this work was to investigate the bedding beneath the storm sewer for the presence of coal tar residues to determine if any product was migrating from the site along this potential pathway. The location of these test pits is shown in Figure 3. The logs of these test pits are included in Appendix B.

#### **MONITOR DEVELOPMENT**

Ground water monitors were developed after installation to remove accumulated fines or drilling water and to promote a better inflow of clear formation water into the monitor. In this program, all monitors levels were measured between 2 and 4 weeks after installation and development. Monitors were equipped with dedicated 1/4" x 3/8" polyethylene tubing to allow for quicker, cleaner and more economical development and sampling. A peristaltic pump was used to develop the monitors until the water became clear. At least 3 boreholes volumes of water were removed. All water collected was stored on-site in drums and disposed of at the City of Guelph Water Pollution Control Plant.

#### **HYDROCHEMICAL SAMPLING**

River water and sediment samples were collected on December 17, 1987 along the banks of the Speed River downstream from two storm sewers outfalls from the gas plant. These samples were taken to determine if any gas plant waste constituents could be detected in the river or its sediments. The results of these analyses are included in Appendix D.

Sediment samples were collected from undisturbed locations approximately one metre from shore on the same side of the river as the sewer outfalls. Samples were collected in glass bottles.

Surface water samples were collected from the water surface by partially submerging the sample bottle, approximately one metre from shore. Preservatives were added as required. Water samples for ICP (Inductively Coupled Argon Plasm Emission Spectroscopy) analysis were filtered in the field using a 0.45 micron filter.

Ground water samples were collected from 10 monitors between January 14 and 21, 1988. All monitors were purged before sampling. All monitors were sampled for phenol analysis. Selected monitors were additionally sampled for ammonium, cyanide and a complete ICP metal scan. The samples were taken using a peristaltic pump. The samples were not filtered or preserved in the field. They were filtered (if required) and

analysed at Barringer Magenta Limited within one day after collection. Water samples from four monitors were sent to NOVALAB Ltd. for analysis of PAHs (Polynuclear Aromatic Hydrocarbons). All samples were stored in a cooler during the field program.

One storm sewer water sample was taken from the storm sewer manhole at the intersection of Surrey Street and Gordon Street. The sample was analysed for phenols and PAHs to determine if any dissolved coal tar constituents presently migrate along the storm sewer from the site to the Speed River.

Three field duplicates and one trip blank of distilled water were sent to Barringer Magenta to check lab and field reproducibility of results. One trip blank of distilled water was sent to NOVALAB. The duplicates and blanks were handled and analysed in the same manner as the regular samples. The analytical results are included in Appendix D.

## IN SITU HYDRAULIC CONDUCTIVITY TESTING

After development, sampling and restabilization of each monitor, hydraulic conductivity (or permeability) testing was carried out if the static ground water level in the monitor was not too low. This was accomplished by monitoring the water level recovery in a monitor after a sudden rise in water level from the lowering of a weighted rod into the water. Only bedrock monitors could be tested. These tests were analysed according to Hvorslev (1951) or Bouwer and Rice (1976). The results are shown in Appendix E.

# APPENDIX B BOREHOLE AND TEST PIT LOGS

## **LEGEND**

}	Protective surface casing
] [	Casing and casing shoe
<b>±</b>	Monitor screen
	Cement seal
	Peltonite seal

SS Split Spoon Sample

GS Grab Sample from Auger

CS Core Barrel Sample

BOREHOLE LOG	BOREHOLE NO. 1
PROJECT NAME GUELPH - GAS WORKS STUDY CLIENT CITY OF GUELPH PROJECT NO. 87-907	DATE SEPT. 29, 1987 GEOLOGIST KHS ELEVATION 316.00mASL

			_		_				ᆜ	ELEVATION STORES
	i	£		~			SAM	PLE		
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR	DETAILS & NUMBER	INTERVAL	NO.	түрЕ	'N' VALUE	% WATER	COMMENTS
0.05	ASPHALT	F	15	17						
0.96 1	black & brown with red medium sand, coal cinders and brick pieces, dry  Light brown very fine sand and silt, trace clay moist grading to light brown and yellow very fine sand and fine rounded gravel, trace silt and coarse angular gravel, wet  LIMESTONE: light yellow limestone weathered down to					2 3	\$\$ \$\$ \$\$ \$\$ \$\$	13 13 9 17		- No odor  - Slight creosote odor from 0.7 to 1.0 m  - No odor  - No odor
2.90 3	2.74 m, saturated		-	<u>.</u>		6	<b>22</b>	7/3		- No odor
4	Borehole terminated at 2.90 m in limestone									

BOREHOLE LOG	BOREHOLE NO. 2
PROJECT NAME GUELPH - GAS WORKS STUDY CLIENT CITY OF GUELPH PROJECT NO. 87-907	DATE SEPT. 29, 1987 GEOLOGIST KHS ELEVATION 316.09 mASL

		-	Γ	Г		SAME	PLE		
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS & NUMBER	INTERVAL	NO.	түрЕ	N'VALUE	% WATER	COMMENTS
0.05	ASPHALT  FILL/OVERBURDEN:  dark brown and white fine to coarse gravel and medium to coarse sand, black coal cinders with yellow limestone fragments, dry  brown, red, white and yellow very fine to fine sand, trace clay grading to coarse sand and limestone fragments, moist to wet  LIMESTONE: light yellow crumbly and weathered down to 2.44 m, dry to moist  Borehole terminated at 2.63 m in limestone		NO MONITOR		2 3	SS SS SS SS SS	30 		- No odor
5		$\bot$		上	_				

BOREHOLE LOG	BOREHOLE NO. 3
PROJECT NAME GUELPH - GAS WORKS STUDY CLIENT CITY OF GUELPH PROJECT NO. 87-907	DATE SEPT. 29, 1987 GEOLOGIST KHS ELEVATION 316.05 mASL

					_					LELVATION OFFICE
	:	£	_	~	L		SAMI	PLE		
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR	DETAILS & NUMBER	INTERVAL	NO.	түрЕ	'N' VALUE	% WATER	COMMENTS
0.05	ASPHALT	+	- -	1.	Н					
	FILL: brown fine to medium gravel and medium to coarse sand, dry					1	SS	45		
1.14	red and orange medium size	<u> </u>				2	SS	20		- No odor
	brick sand and fine to coarse gravel, dry to moist, crumbly		1.1.1.1							
1.83 <b>2</b>	LIMESTONE: grey white Timestone weathered down to 2.18 m, moist	<del> </del>				3	SS	35		- No odor
2.74			TETTE I			4	SS	62		- No odor
3	Borehole terminated at 2.74 m in limestone		)							
4										
5					_			1	-	

BOREHOLE LOG	BOREHOLE NO4
PROJECT NAME GUELPH - GAS WORKS STUDY CLIENT CITY OF GUELPH PROJECT NO. 87-907	DATE SEPT. 30, 1987 GEOLOGIST KHS ELEVATION 314.20 mASL

									ELEVATION 314.20 MASL
	:	Ę	_α α			SAMI	PLE		
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS & NUMBER	INTERVAL	NO,	түрЕ	'N' VALUE	% WATER	COMMENTS
0.05	ASPHALT	F		Н					
0.01	FILL: brown medium sand, trace fine & coarse sand and fine gravel, dry				1	SS	19		. → No odor
1.22	dark to light brown fine sand and clay, dry to moist dark brown and red fine to medium gravel, fine to coarse	·	NO MÔNITOR		2	SS	15		- No odor
1.83 1.88 2	sand and brick fragments, moist LIMESTONE: yellow limestone, dry		N		3 4	SS SS	4 100		- No odor
3	Borehole terminated at 1.88 m in limestone								

BOREHOLE LOG	BOREHOLE NO. 5
CLIENT CITY OF GUELPH	DATE SEPT. 30, 1987 GEOLOGIST KHS ELEVATION 313.79 mASL

		_		_					
1	:	£	_ ~			SAM	PLE		
DEPTH- (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPH	MONITOR DETAILS & NUMBER	INTERVAL	NO.	түрЕ	'N' VALUE	% WATER	COMMENTS
0.51 0.61 1 2.13 2.23 2.43	ASPHALT  FILL:  black coal cinders, dry  brown to black and white fine to coarse sand and fine gravel, trace slag fragments, dry to moist and saturated below 1.52 m  black wood, organics and coal cinders, saturated  LIMESTONE: yellow weathered limestone, saturated  Borehole terminated at 2.43 m in limestone		MO M		2 3	\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$	11 4 2 64	% WAT	- No odor  - No odor  - No odor  - Slight creosote odor - No odor
5									

BORE	HOLE LOG		BOREHOLE NO. 6-I
CLIENT	CT NAME GUELPH - GAS WORKS CITY OF GUELPH CT NO. 87-907	STUDY	DATE SEPT. 30 & OCT.1,198 GEOLOGIST KHS ELEVATION 315.21 mASL
DEPTH	STRATIGRAPHIC DESCRIPTION	RAPH) TOR ILS IBER	AMPLE



BOREHOLE LOG	BOREHOLE NO. 6-I
PROJECT NAME GUELPH - GAS WORKS STUDY CLIENT CITY OF GUELPH PROJECT NO. 87-907	DATE SEPT. 30 & OCT. 1,198 GEOLOGIST KHS ELEVATION 315.21 mASL

		Ę		Γ		SAMI	PLE		
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHI	MONITOR DETAILS & NUMBER	INTERVAL	NO.	TYPE	'N' VALUE	% WATER	COMMENTS
	<u>LIMESTONE</u> , grey								
6			<del>HEELE</del>						
6.26			H I	}	2	CORE			
	Borehole terminated at 6.26 m in limestone		1						
7									
			·						
8									
9									
IO P - Piezoma	eter S-Standpipe G-Gas Monitor								

BOREHOLE LOG	BOREHOLE NO. 6-II
PROJECT NAME GUELPH - GAS WORKS STUDY CLIENT CITY OF GUELPH PROJECT NO. 87-907	DATE SEPT. 30, 1987 GEOLOGIST KHS ELEVATION 315.29 mASL

		_		_					
	;	Įź	_	٦,	<b>y</b>	SAM	PLE		
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	& NUMBER	INTERVAL NO.	ТҮРЕ	'N' VALUE	% WATER	COMMENTS
0.05	ASPHALT FILL: light brown medium sand, dry  black fine to medium sand sized coal cinders, dry  brown fine sand, some clay, trace silt and fine gravel, moist to wet, moderately cohesive  LIMESTONE: yellow white Timestone weathered down to 2.54 m. saturated  Borehole terminated at 2.74 m in limestone				3 4	SS	5		<ul> <li>No odor</li> <li>Very slight creosote odor</li> <li>Very slight creosote odor</li> </ul>

BOREHOLE LOG	BOREHOLE NO. 7-I
PROJECT NAME GUELPH - GAS WORKS STUDY CLIENT CITY OF GUELPH PROJECT NO. 87-907	DATE OCT. 1 & 2, 1987 GEOLOGIST KHS ELEVATION 313.64 mASL



BOREHOLE LOG	BOREHOLE NO. 7-I
PROJECT NAME GUELPH - GAS WORKS STUDY CLIENT CITY OF GUELPH PROJECT NO. 87-907	DATE OCT. 1, 1987 GEOLOGIST KHS ELEVATION 313.62 mASL

								<u> </u>	ELEVATION 313.02 IIIASL
	;	£	- ~	L		SAM	PLE		
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHI	MONITOR DETAILS & NUMBER	INTERVAL	NO.	TYPE	'N' VALUE	% WATER	COMMENTS
	— ASPHALT	-	1	忄					
1	FILL:  black, white and dark brown fine sand, clay and limestone fragments, trace coal cinders, dry white concrete  yellow white limestone and concrete fragments  black very fine to fine sand, some silt and clay trace fine gravel, wet  LIMESTONE: green limestone				1 · · · · · · · · · · · · · · · · · · ·	SS	6		<ul> <li>slight creosote odor</li> <li>slight creosote odor</li> <li>tar and strong odor of ammonia</li> </ul>
3	Borehole terminated at 2.44 m in limestone		II		3B 4	SS SS	50 100		- limestone appears burnt
4			·						
5						=	1	_	·

BOREHOLE LOG	BOREHOLE NO. 8
PROJECT NAME GUELPH - GAS WORKS STUDY CLIENT CITY OF GUELPH PROJECT NO. 87-907	DATE OCT. 1, 1987  GEOLOGIST KHS ELEVATION 313.59 mASL

			Г	T		_		SAM	01.5		I
		:	F		c <u>ec</u>	$\vdash$		SAM	- LE	r -	
DEPTH (m)		STRATIGRAPHIC DESCRIPTION	STRATIGRAPHI	OFINOM	DETAILS & NUMBER	INTERVAL	NO.	TYPE	'N' VALUE	% WATER	COMMENTS
0.05		ASPHALT FILL:									
0.48	<b>,</b> :	dark brown to white and red medium sand, clay and									
		limestone fragments, dry		H			1	SS	37		- No odor
1		red and orange medium sand sized brick debris, dry									
1.22		red brown to black and	_	1	1		2	SS	11		- No odor
		irredescent below 1.5 m, medium to coarse sand and									
		fine to medium gravel, trace wood chips wet to saturated below 1.5 m	1:				3	SS	4		- Strong odor with oily black irre- descent fluid
2								,			descent
		·					4	SS	14		- Strong odor tar
				1	工			33	14		
				·	#						- Strong odor
3	·	black fine to coarse sand and wood strips, tarry,	_				5	SS	5		tar
	<del></del>	saturated black and yellow grey tar-		,	1						
		covered limestone fragments saturated					6	SS	3_		- Strong odor tar
4		black fine to coarse sand and wood strips, tarry, saturated			++++						
Ë						ŀ	7	SS	4		- Strong odor tar
						Ì					
.87	$\int$		-				8	SS	19	-	- Strong odor tar

BOREHOLE LOG	BOREHOLE NO. 8
PROJECT NAME GUELPH - GAS WORKS STUDY CLIENT CITY OF GUELPH PROJECT NO. 87-907	DATE OCT. 1, 1987 GEOLOGIST KHS ELEVATION 313.59 mASL

								ㅗ	CLEVATION 313:39 MASE
		Ę	~ ~	L		SAMI	PLE		
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHI	MONITOR DETAILS & NUMBER	INTERVAL	NO.	түрЕ	'N' VALUE	% WATER	COMMENTS
5.38 <u> </u>	LIMESIONE: yellow grey weathered limestone, saturated				9A 9B	SS	40		- Strong odor
	Borehole terminated at 5.49 m in limestone		Ι						
6									
7									
	·			F					
8									
9									
F					1				
					+				
10	eter S-Standains C C					1			

BOREHOLE LOG	BOREHOLE NO. 9
PROJECT NAME GUELPH - GAS WORKS STUDY CLIENT CITY OF GUELPH PROJECT NO. 87-907	DATE OCT. 2, 1987 GEOLOGIST KHS ELEVATION 314.04 MASL

		<del></del>								<u> </u>	ELEVATION
			:	£	_ ~	L		SAMI	PLE		
DEPT (m)			STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS & NUMBER	INTERVAL	NO.	түрЕ	N'VALUE	% WATER	COMMENTS
0.05	H		ASPHALT	F		П					
0.91	1		FILL: black, brown and grey coal cinders & pitch fragments, fin to medium sand, medium to coarse rounded gravel, dry brown fine sand, some clay trace silt, fine gravel, coal	d)			1	SS	28		- Very slight odor - No odor
	2	-	pitch fragments, moist to wet and saturated below 1.5 m		NO MONITOR		3	SS	12		- Water level at 1.47 m in open borehole - Auger refusal at 1.68 m on metal like object
2.29 2.41			LIMESTONE: white grey weathered limestone				4	SS	58		- Split spoon to total depth
	3		Borehole terminated at 2.41 m in limestone								
	4										
	5					F	-				

BOREHOLE LOG	BOREHOLE NO. 10
PROJECT NAME GUELPH - GAS WORKS STUDY CLIENT CITY OF GUELPH PROJECT NO. 87-907	DATE OCT. 2, 1987 GEOLOGIST KHS ELEVATION 315.25 mASL

		_	<del></del>			SAM	PLF		
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPH	MONITOR DETAILS & NUMBER	INTERVAL	NO.	түрЕ	'N' VALUE	% WATER	COMMENTS
0.05	ASPHALT	_							
0.61	FILL: brown with mottled rust medium to coarse sand some subrounded fine gravel, trace very fine sand, coal cinders and pitch fragments, dry				1	SS	9		- No odor - No odor
1.83	mottled brown and red fine sand, some clay, trace medium to coarse sand and fine gravel, moist  black medium to coarse sand and fine gravel, moist to wet				3	SS	10		- No odor
2.43	LIMESTONE:				4	SS SS	26 75		- Strong gasoline odor
3	Borehole terminated at 2.54 m in limestone								
4									

BOREHOLE LOG	BOREHOLE NO. 11
PROJECT NAME GUELPH - GAS WORKS STUDY CLIENT CITY OF GUELPH PROJECT NO. 87-907	DATE OCT. 2, 1987 GEOLOGIST KHS ELEVATION 314.14 MASL

									ELEVATION
	r .	£	_ ~			SAME	PLE		
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHI	MONITOR DETAILS & NUMBER	INTERVAL	NO.	ТҮРЕ	'N' VALUE	% WATER	COMMENTS
0.05	¬ ASPHALT /	F		Н					
	FILL: brown fine sand, some clay		MONITOR		1	SS	14		- Very slight creosote odor - No odor
1.77 1.22	LIMESTONE:		NO M		2	SS	54		- Slight odor of creosote
21	Borehole terminated at 1.22 m in limestone								
5									

BOREHOLE LOG	BOREHOLE NO12
PROJECT NAME GUELPH - GAS WORKS STUDY CLIENT CITY OF GUELPH PROJECT NO. 87-907	DATE DEC. 14, 1987 GEOLOGIST KHS ELEVATION 310.47 mASL

Borehole terminated at 3.20 m in limestone				_	_							
FILL/OVERBURDEN: brown organic topsoil and fine to medium sand and rootlets, moist  O.76  Grey brown to black fine to coarse gravel and fine to coarse sand, trace clay, dry to moist  LIMESTONE: Grey white weathered limestone; wet to saturated below 1.93 m  LIMESTONE: White weathered limestone; wet to saturated below 1.93 m  Borehole terminated at 3.20 m in limestone  Borehole terminated at 3.20 m in limestone			÷	E		. ~	L		SAMI	PLE		
FILL/OVERBURDEN: brown organic topsoil and fine to medium sand and rootlets, moist  O.76 grey brown to black fine to coarse gravel and fine to coarse sand, trace clay, dry to moist  1.39 LIMESTONE: grey white weathered limestone; wet to saturated below 1.93 m  3 SS 20 - No odor  4 SS 32 - No odor  - No odor	1		STRATIGRAPHIC DESCRIPTION	STRATIGRAP	MONITOR	DETAILS & NUMBER	INTERVAL	NO.	түрЕ	N'VALUE	% WATER	COMMENTS
	3.20	33	brown organic topsoil and fine to medium sand and rootlets, moist  grey brown to black fine to coarse gravel and fine to coarse sand, trace clay, dry to moist  LIMESTONE: grey white weathered limestone; wet to saturated below 1.93 m  Borehole terminated at 3.20 m in limestone					1 3 3 4	SS SS SS	11 25 20 32		<ul> <li>No odor</li> <li>No odor</li> <li>No odor</li> <li>No odor</li> <li>Limestone could be augered to total</li> </ul>
-Piezometer S-Standping C Con Marita		-1-		ᆚ		L	$\Gamma$					

BOREHOLE LOG	BOREHOLE NO. 13
CLIENT CITY OF GUELPH	DATE DEC. 14, 1987 GEOLOGIST KHS ELEVATION 310.39 mASL

		_	_		_						
	÷	Ę	_	æ	L		SAM	PLE			
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPH	MONITOR	DETAILS & NUMBER	INTERVAL	NO.	түрЕ	'N' VALUE	% WATER	COMMENT	s
	FILL/OVERBURDEN:	┢	5	7			_	Í	<u> </u>		·
				П						]	
	brown organic topsoil and fine to medium sand and rootlets,		П	Ш		-					
	moist								-	- No odor	
			Ш								
0.76	black and dark brown fine		H	14					-		
	sand, some clay and silt,										
	trace organics moist										
						1	SS	6		- No odor	
											·
1.47											
· '' 🖂	LIMESTONE:			. 1							
	yellow, brown and grey weathere	ď		<i>:</i> ::		2	SS	28		- No odor	
	limestone fragments, occasional	u	<u> </u>	F	ŀ						
2	silt and rounded fine gravel			Ξ.	t		·				•
H	near top of unit, dry to saturated below 1.98 m	٠.	_	F		3	SS	25		- No odor	
	Saturated below 1.30 III		Ĺ	Ξ.							
H			11								
			î .	_:	•	4	SS	56		No odov	
			1.1	_;	7	-	33	30		- No odor	
			ŢŢ.	<b>=  </b>	ſ						
3			Ĺ	_`:	ŀ	5	55	88		- No odor	
3.15			:::	. : <i>:</i>	4						
H	Borehole terminated at 3.15 m				7						
	in limestone		]	:	ł	-		-			
H					ļ	二					
	•				-	$\dashv$	$\dashv$	$\dashv$			7
口					ŀ		_				
4					F	$\Box$	$\Box$	口			
	İ				ŀ	$\dashv$		$\dashv$			
					t						
H	•				F	$\dashv$	$\Box$	$\Box$			
口					+	-+	$\dashv$	$\dashv$			
H											
H					-	-		_	]		
口					ŀ	$\dashv$	$\dashv$		$\dashv$		
					上					· ·	

BOREHOLE LOG	BOREHOLE NO. 14
PROJECT NAME GUELPH - GAS WORKS STUDY CLIENT CITY OF GUELPH PROJECT NO. 87-907	DATE DEC. 15, 1987 GEOLOGIST KHS ELEVATION 310.87 mASL

DEPTH (m)  STRATIGRAPHIC DESCRIPTION  FILL: brown organic topsoil moist  brown, black to yellow fine sand and silt, trace fine to coarse gravel with layers of wood chips plastic debris, glass, wet to saturated below 1.22 m  COMMENTS  SAMPLE  SAMPLE  O NO Odor  - No odor  - No odor  - No odor  - No odor
brown organic topsoil moist  brown, black to yellow fine sand and silt, trace fine to coarse gravel with layers of wood chips plastic debris, glass, wet to saturated below 1.22 m  - No odor
brown organic topsoil moist  brown, black to yellow fine sand and silt, trace fine to coarse gravel with layers of wood chips plastic debris, glass, wet to saturated below 1.22 m  - No odor
LIMESTONE: yellow weathered limestone and some brown fine sand, wet  2.44  Borehole terminated at 2.44 m in limestone  1  1  1  1  3  SS 8  - No odor  - No odor  - I

BOREHOLE LOG	BOREHOLE NO. 15
PROJECT NAME GUELPH - GAS WORKS STUDY CLIENT CITY OF GUELPH PROJECT NO. 87-907	DATE DEC. 15, 1987 GEOLOGIST KHS ELEVATION 311.65 mAS

DEPTH STRATIGRAPHIC DESCRIPTION    FILL:			$\overline{}$		T					
FILL: brown organic topsoil and rootlets, moist  O.76  dark brown to black with irredescence below 1.7 m very fine to medium sand, some silt and fine gravel trace clay, moist to wet below 1.7 m  LIMESTONE: yellow limestone, wet  Borehole terminated at 2.06 m  FILL: brown organic topsoil and rootlets, moist  - No odor  - No odor  - No odor  - No odor  - Sight creosote odor  - Slight creosote odor		;	Įž	~ ~	L		SAMI	PLE	<del></del>	
FILL: brown organic topsoil and rootlets, moist  O.76  dark brown to black with irredescence below 1.7 m very fine to medium sand, some silt and fine gravel trace clay, moist to wet below 1.7 m  LIMESTONE: yellow limestone, wet  Borehole terminated at 2.06 m  The provided state of the		STRATIGRAPHIC DESCRIPTION	STRATIGRAF	MONITOR DETAILS & NUMBEI	INTERVAL	NO.	TYPE	N'VALUE	% WATER	COMMENTS
dark brown to black with irredescence below 1.7 m very fine to medium sand, some silt and fine gravel trace clay, moist to wet below 1.7 m  LIMESTONE: yellow limestone, wet 2.06 m  Borehole terminated at 2.06 m  - No odor  - Sight creosote odor  - Slight creosote odor		FILL:	T	5.7						
T irredescence below 1.7 m very fine to medium sand, some silt and fine gravel trace clay, moist to wet below 1.7 m  LIMESTONE: yellow limestone, wet  Borehole terminated at 2.06 m  - No odor  - No odor  - Very slight creosote odor  - Slight creosote odor  - Slight creosote odor	0.76	rootlets, moist								- No odor
IMESTONE: yellow limestone, wet 3 SS IOU creosote odor - Slight creo	1	irredescence below 1.7 m very fine to medium sand, some silt and fine gravel trace clay,		++++++		1	SS	3		- No odor
3 3 	1.98 21 2.06	LIMESTONE: yellow limestone, wet		主					)	creosote odor - Slight creosote
	3	Borehole terminated at 2.06 m		Ι						

PROJECT NAME: GUELPH COAL GAS WORKS

PROJECT NUMBER: 87-907

TEST PIT No: TPI

LOCATION: SW CORNER OF SURREY AND WYNDHAM STREETS

APPROXIMATE DIMENSIONS = 2 m x 3 m

DEPTH TO WATER TABLE: 1.7 m

METHOD OF EXCAUATION: BACKHOE

DATE OF EXCAUATION: DEC 17, 1987

	DEPTH.	DESCRIPTION.	ROMARICS
	0-0.08	ASPHALT	
	0.03- 0.38	CONCRETE	
	0,38 - 1,68	FILL, gray, brown to black	
	the second of th	sand, grovel, same clay	
		and rootled,	
	1.68	STORM SEWEL PIPE &	-Top of 23 m (9") Storm
		PLACED 15 cm INTO	Sewer-Inside Is 8 cm
-		BEDROCK TRENCH	of stiff black precipitate
			with no cool ton odar
1		in the second of	and no oder of decay
	1.68 -1.83	LIMESTONE, grey Limestone	- Blackened Fluid along
	,	and timestone vock fragments	all fractures
		mixed with fine sound, neathered	- Approximate Depth of
	1 42 7	down +0 1.83n	Wester Tuble
L	1,83	BOTTOM OF TEST PIT	

PROJECT NAME: GUELPH COAL GAS WORKS

PROJECT NUMBER: 87-907

TEST PIT No: TPZ

LOCATION: SE CORNER OF SURREY HAD GORDON STREETS

APPROXIMATE DIMENSIONS = 2 m x 3 m

DEPTH TO WATER TABLE: 1.22 m (approximate)

METHOD OF EXCAUATION: BACKHOE

DATE OF EXCAUATION : DEC 17, 1987

4	DEPTH	DESCRIPTION.	REMARICS
	(m)		
	0-6.10	ASPHALT	
-	0.10 - 0.41	CONCRETE	
	0,41-0,61	FILL - dark grey coal cinder	
	0.61 - 0.86	FILL - Yellow white and blue	
		slag and pitch	
	0.86-0.91	FILL - gloss debris	
	0.91 -1.22	SILTY SAND, light brown grey	
	and the second second second second	silty sard, trace to some day	- Dotton of unit blackend
	the extra constant and the constant of the con	with roots and rootlets	occasionally
· · · · ·	1.25 - 1.83	DREADICS AND SILTY SAND	= Top of this unit
		dock brown organice and	coincides with approximate
			water table
	h83 -2.0.	LIMESTONE yellow white	- Storm Sewer laid.
		weathered limestone	on tops of Linestone
	2.0 -	BOTTOM OF TEST PIT	- No product in Sewer

PROJECT NAME: GUELPH COAL GAS WONKS

PROJECT NUMBER: 87-907

TEST PIT NO: TP3

LOCATION: SOUTH SIDE OF SURREY-60m NE OF TPZ

APPROXIMATE DIMENSIONS = 3m x 3.5 m

DEPTH TO WATER TABLE: 1.1 M

METHOD OF EXCAUATION: BACKHOE

DATE OF EXCAUATION: DEC 18, 1987

DEPTH	DETCRIPTION.	ROYARICS
(m)		
0-0.11	ASPHALT	
0.11 -0.30	CONCRETE	
0.30-0.60	FILL, gray and blue white dag	Noodor
83,0 - 0,68	FILL, black coal cindeas	a ~
0.68 - 6.86	FILL brown soundy day and	
	rock fragments	Top of Storm Seive at
0.86 -0.91	FILL, gloss debris	0,76 m - No evidence of
0,91-1.07	ORGANICS, black organics and	Coal Tors
	rootlets and roots	
1.07 - 1.14	SAND, brown with green and	water table approximately
	rust colouring medium sand	at top of soul
	saturated	
1.14 -1.22	LIMESTONE gruy white	
	Linestone	
1.22	BOTTOM OF TELT PIT	

PROJECT NAME: GUELPH COAL GAS WORKI

PROJECT NUMBER: 87-907

TEST PIT No: TP4

LOCATION: WEST BOULEVARD-WYNDHAM STREET,

APPROXIMATE DIMENSIONS =

DEPTH TO WATER TABLE: 1.6 m

METHOD OF EXCAUATION: BACKHOE

DATE OF EXCAUATION : APRIL 7, 1988

DEPTH	DESCRIPTION.	ROYARICS
(m)		
0-0.15	TOPSOIL brown silty sand some	
	clay, organics and vootlets, mais	
0.15 -0.71	FILL dark brown fine sand, some	
	fine to med gravel, trace day, moist	
0.71-1.45	FILL grey to brown + red clayey	-Top of 24" operating
	sand, slag and brick pieces, moist	Storm Sewer at 1.32n
<u> </u>	· · · · · · · · · · · · · · · · · · ·	-Top of 9" abandoned
		Storm Sever at 1.22m
	and the second of the second o	- Coal Tar Residere in pipe
1.45 - 1.68	FILL, black med sand, saturated	- Strong Creosote odov - Sample1
1.68 - 1.91	FILL, brown clayey fine to med, sand	- No odor or colouring
	trace the gravel & coul fragments	
1.91 - 2.06	SAND, green to black with white	- block substance without
	blebs medisand with rounded	odor at b. Hom O.A. an. Sample 2
	cobbler at base	-BOTTOM OF PIT AT 2.06m

# APPENDIX C GROUND WATER MONITOR DETAILS

## MONITOR DETAILS SUMMARY

PROJECT NAME : GUELPH GAS WORKS STUDY

PROJECT NO. :87-907

	:	IMATERIAL:	(e) tors -0.14 -0.10 -0.12 -0.08 -0.15 -0.25	1(t.e.1.c.); (m A.S.L.); (m A.S.L.); 313.86; 315.95; 313.67; 313.47; 313.34;	1.5-2.7 1.4-2.6 1.1-2.3 1.3-2.5 6.8-2.0 1.1-5.3	1.1-2.4 1.1-2.4 1.1-2.7	0.7-1.1 0.7-1.1 0.7-1.1 0.7-1.1 0.6-0.8	
	!(mm)	; ; ========== LOCATIONS urden monit urden monit	(a) ======= -0.14 -0.10 -0.12 -0.08 -0.15 -0.25	315.86   315.87   315.21   313.47   313.34	(m) (m) (1.5-2.7 (1.4-2.6 (1.1-2.3 (1.3-2.5 (0.8-2.0 (1.1-5.3	1.1-2.8 1.1-2.4 1.1-2.7 0.8-2.0	0.7-1.1 0.7-1.1 0.7-1.1 0.7-1.1 0.4-0.8 0.7-1.1	-
	- SITE Overbu 51 51 51 51 51 8edroc	LOCATIONS urden monit ik monitors 3° STEEL	-0.14 -0.10 -0.12 -0.08 -0.15 -0.25	313.86   315.95   313.67   315.21   313.34	1.5-2.7 1.4-2.6 1.1-2.3 1.3-2.5 0.8-2.0 1.1-5.3	1.1-2.8 1.1-2.6 1.1-2.4 1.1-2.7 0.8-2.0	0.7-1.1 0.7-1.1 0.7-1.1 0.7-1.1 0.6-0.8 0.7-1.1	
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	urden monit ik monitors 3° STEEL	-0.14 -0.10 -0.12 -0.08 -0.15 -0.25	315.86   315.95   313.67   315.21   313.47   313.34	1.5-2.7 1.4-2.6 1.1-2.3 1.3-2.5 0.8-2.0 1.1-5.3	1.1-2.4 1.1-2.4 1.1-2.7 0.5-2.0	0.7-1.1 0.7-1.1 0.7-1.1 0.6-0.8 0.7-1.1	**************************************
test took took took took took took took to	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	urden monit ik monitors 3° STEEL	-0.14 -0.10 -0.12 -0.08 -0.15 -0.25	315.86   315.95   313.67   315.21   313.47   313.34	1.5-2.7 1.4-2.6 1.1-2.3 1.3-2.5 0.8-2.0 1.1-5.3	1.1-2.4 1.1-2.4 1.1-2.7 0.5-2.0	0.7-1.1 0.7-1.1 0.7-1.1 0.6-0.8 0.7-1.1	···
EGS CO	51 51 51 51 51 52 53	ik monitors 3° STEEL	-0.14 -0.10 -0.12 -0.08 -0.15 -0.25	315.86   315.95   313.67   315.21   313.47   313.34	1.5-2.7 1.4-2.6 1.1-2.3 1.3-2.5 6.8-2.0 1.1-5.3	1.1-2.4 1.1-2.4 1.1-2.7 0.5-2.0	0.7-1.1 0.7-1.1 0.7-1.1 0.6-0.8 0.7-1.1	**************************************
100 00 00 00 00 00 00 00 00 00 00 00 00	54 54 54 55 55 55 55 55 55 55 55 55 55 55 55	ik monitors 3° STEEL	-0.10 -0.12 -0.08 -0.15 -0.25	315.86   315.95   313.67   315.21   313.47   313.34	1.5-2.7 1.4-2.6 1.1-2.3 1.3-2.5 6.8-2.0 1.1-5.3	1.1-2.4 1.1-2.4 1.1-2.7 0.5-2.0	0.7-1.1 0.7-1.1 0.7-1.1 0.6-0.8 0.7-1.1	···
For the part and part and the district the d	54 54 54 55 55 55 55 55 55 55 55 55 55 55 55	ik monitors 3° STEEL	-0.10 -0.12 -0.08 -0.15 -0.25	315.95   313.67   315.21   313.47   313.34	1.4-2.6 1.1-2.3 1.3-2.5 0.8-2.0 1.1-5.3	1.1-2.4 1.1-2.4 1.1-2.7 0.5-2.0	0.7-1.1 0.7-1.1 0.7-1.1 0.6-0.8 0.7-1.1	**************************************
EG	88 64 60 88 64 60	ik monitors 3° STEEL	-0.12 -0.08 -0.15 -0.25	313.67   315.21   313.47   313.34	1.1-2.3 1.3-2.5 0.8-2.0 1.1-5.3	1.1-2.4 1.1-2.7 0.8-2.0	0.7-1.1 0.7-1.1 0.6-0.8 0.7-1.1	**************************************
CO C	25 CH CH CH CH CH CH CH CH	ik monitors 3° STESL	-0.08 -0.15 -0.25	315.21 () 313.47 ( 313.34 (	1.3-2.5 6.8-2.0 1.1-5.3	1.1-2.7 0.5-2.0	0.7-1.1 0.á-0.8 0.7-1.1	<del>-</del> -
CO C	25 25 CB	ik monitors 3" STESL	-0.15 -0.25	313.47 ( 313.34 (	6.8-7.0 1.1-5.3	0.5-2.0	0.a-0.8 0.7-1.1	
600 Sh. sh.	51 8edroo 51	ik monitors 3° STEEL	5			0.5-2.0 1.1-5.4	0.7-1.1	-
£1. £1.	8aáro 51	ik monitors 3° STEEL	5			1,1-5,4		-
1 P	51	J" STEEL		1			040146	
I F	51	J" STEEL		1			DARINA	
1 F			-0.07					
1 F					4.9-6.1		0.2-3.9	-
	ಚಿತ	3" STEEL			2.9-4.1		0.3-2.7	_
				1 !				
	EY STRE	EET LOCATIO	ONS	) )				
				; ;		•		
					1.1-2.4	1.1-2.4	0.7-1.1	~
	51		-0.16			0.6-1.9	0.4-0.5	-
	TMOTOM	APECET LOS	natenno.					
	. 1190 I OR	SINEE! LOC	7#110N2					
	51		-0 10			1 0.0 0	ስ ን_ተ ዓ	
	51			310.18 11	1.7-3.0	1.7-3.4		-
						112 010	V#1 2±4	
				7 1				
-	I S WELL S S I S S	I S 51  #ELLINGTON  I S 51  I S 51  = top of lock	I S 51  WELLINGTON STREET LOC  S 51  S 51  S 51  c 50 of locking cap	I S SI -0.16  WELLINGTON STREET LOCATIONS I S 51 -0.10 I S 51 -0.21	I S 51 -0.17 310.70	I S 51 -0.17 310.70    1.1-2.4 I S 51 -0.16 311.49    0.6-1.8	I S 51 -0.17 310.70   1 1.1-2.4 1.1-2.4 I S 51 -0.16 311.49   0.6-1.8 0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.9   0.6-1.	I S 51

		6 A Q	UNS	NAI	E R	L	E-V E	LS									
	PAGJECT PROJECT			GUELPI 87-90		5 W	orks s	FUDY					4 .		t beach		
ar.	ERNS E	<del>-</del>	DATE:												9,1986		
	ND.	TOR ( TYPE	OP OF MON TMJ ELEV a ASL	HWATES LEVES In OTE	\ WATE _ ELEV   m AS	R L	IWATER LEVEL In BIM	WATER ELEV. m ASL	INATER ILEVEL Im BIN	WATER ELEV. a ASL	IWATER ILEVEL Im BIM	WATER ELEV # ASL	1	WATER LEVEL m 61H	WATER ELEV. # ASL	INATER ILEVEL	WATER ELEV. m ABL
1	Ī	5	315.86	; -	-		2.53	313.33	1 2,50	313.36	ļ	_	ł			-	~
3	I	Š	315.95	1)2.80	(315	.95	2.47	313.48	1 2.53	313.42	-		j ķ	-	-	! -	_
5	<u>:</u>	9	313.47	1 1,42	312.	25	1.43	312.24	1 1,47	312.20	į –	_	1	1.50	312.17		-
b	F	ç S	315.14	1 2.26	312. 313.	88   15	2.27 2.06	312.87 313.15	1 2.20 1 N/8	312,94 N/O	; - : N/O	- R/O	1	2.26 2.10	312.89 313.11	; _	-
7) 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S	313,53 313,47	1 1.52	311. 312.	91 : 38 :	1.59 1.23	311.95 312.24	1 1.63 4 N/O	311.90 N/0	-   N/O	- M/O	1	1.55 N/O	311.98 M/0	1 1 3/6	- 3/0
3	[	5		1 0.78	312.5	56 8	0.78	312,58	0.84	312.50	<u>;</u> -	-	;			1	-
2	7.	S	310.37	<u> -</u>		į	~	-	1 1.47	308.90	1 1,48	308.89	1	1,49	308.38	1 -	-
3	Ī	S	310.18	! -	-	3	-	-	1 N/O	NZO	1 47/0	W/O	!	N/N	19.75	1 1 40	708 79
Ž,	ī	S	310.70	-	-	į		-	1 1.43	309 67	1 M/C	N. B	į	i an	700 T1	1	_
5	Ī	8	311.49	-		:			154 6	2300 a	1.41/6	8170	ì	820	M ZO	7 + 72	7A0 07

# APPENDIX D HYDRAULIC CONDUCTIVITY TEST RESULTS

#### (HVORSLEV'S METHOD)

PROJECT NAME: GUELPH
PROJECT NUMBER: 87-907
INSTALLATION ID: 6-I

TEST START DATE: 19 JAN 1988
TEST START TIME: 14:25:00

STATIC WATER LEVEL H (mbRP): 2.255
INITIAL WATER LEVEL Ho (mbRP):1.855

DATE	ACTUAL TIME	CUMULATIVE TIME (minutes)	WATER LEVEL (mbRP)	<u>H-h</u> H-Ho
19 JAN 1988	14:25:00	0 00	1 06	1 00
		0.00	1.85	1.00
19 JAN 1988	14:25:10	.17	2.10	.39
19 JAN 1988	14:25:20	.33	2.15	.27
19 JAN 1988	14:25:30	.50	2.17	.21
19 JAN 1988	14:25:40	.67	2.19	.16
19 JAN 1988	14:25:50	.83	2.20	.14
19 JAN 1988	14:26:00	1.00	2.21	.12
19 JAN 1988	14:26:15	1.25	2.22	.10
19 JAN 1988	14:26:30	1.50	2.22	.08
19 JAN 1988	14:26:45	1.75	2.23	.07
19 JAN 1988	14:27:00	2.00	2.23	.06
19 JAN 1988	14:27:30	2.50	2.24	. 05
19 JAN 1988	14:28:00	3.00	2.24	.04
19 JAN 1988	14:29:00	4.00	2.25	.02
19 JAN 1988	14:30:00	5.00	2.25	.02

NOTE - mbRP is metres below Reference Point elevation - h is reading in mbRP



PROJECT NAME: GUELPH COAL TAR PROJECT NUMBER: 87-987

#### (HVORSLEV'S METHOD)

PROJECT NAME: GUELPH
PROJECT NUMBER: 87-907
INSTALLATION ID: 7-I

TEST START DATE: 19 JAN 1988
TEST START TIME: 15:44:00

STATIC WATER LEVEL H (mbRP): 1.552
INITIAL WATER LEVEL Ho (mbRP):1.152

	DATE	ACTUAL TIME	CUMULATIVE TIME (minutes)	WATER LEVEL (mbRP)	<u>H-h</u> H-Ho
19	JAN 1988	15:44:00	0.00	1.15	1 00
19	JAN 1988	15:44:07	.12	1.36	1.00 .49
19	JAN 1988	15:44:12	.20	1.37	.45
19	JAN 1988	15:44:20	.33	1.39	.40
19	JAN 1988	15:44:30	.50	1.41	.37
19	JAN 1988	15:44:40	.67	1.42	.34
19	JAN 1988	15:44:50	.83	1.43	.31
19	JAN 1988	15:45:00	1.00	1.44	.28
19	JAN 1988	15:45:15	1.25	1.45	.25
19	JAN 1988	15:45:30	1.50	1.46	.23
19	JAN 1988	15:45:45	1.75	1.47	.21
19	JAN 1988	15:46:00	2.00	1.48	.18
19	JAN 1988	15:46:15	2.25	1.49	.17
19	JAN 1988	15:46:30	2.50	1.49	. 15
19	JAN 1988	15:46:45	2.75	1.50	.13
19	JAN 1988	15:47:00	3.00	1.50	.12
19	JAN 1988	15:47:30	3.50	1.51	.10
19	JAN 1988	15:48:00	4.00	1.52	.09
19	JAN 1988	15:48:30	4.50	1.53	.07
19		15:49:00	5.00	1.53	.06
19	JAN 1988	15:50:00	6.00	1.53	.05

NOTE - mbRP is metres below Reference Point elevation - h is reading in mbRP



PROJECT NAME: GUELPH COAL TAR PROJECT NUMBER: 87~907

AFTER BOUWER & RICE, WATER RESOURCES RESEARCH, 1976

PROJECT NAME:

PROJECT NUMBER:

INSTALLATION ID:

TEST START DATE:

TEST START TIME:

STATIC WATER LEVEL (mbRP):

INSTALLATION ID:

12-I

18 JAN 1988

18:12:00

1.485

INITIAL WATER LEVEL (mbRP):

1.085

DATE	ACTUAL TIME	CUMULATIVE TIME (minutes)	WATER LEVEL (mbRP)	<u>y</u> yo
18 JAN 1988	18:12:00	0.00	1.08	1.00
18 JAN 1988	18:12:07	.12	1.18	.76
18 JAN 1988	18:12:20	.33	1.23	.64
18 JAN 1988	18:12:30	.50	1.26	.56
18 JAN 1988	18:12:40	.67	1.28	.51
18 JAN 1988	18:12:50	.83	1.31	.45
18 JAN 1988	18:13:00	1.00	1.32	. 41
18 JAN 1988	18:13:15	1.25	1.35	.34
18 JAN 1988	18:13:30	1.50	1.37	.30
18 JAN 1988	18:13:45	1.75	1.38	.26
18 JAN 1988	18:14:00	2.00	1.39	. 24
18 JAN 1988	18:14:30	2.50	1.41	.19
18 JAN 1988	18:15:00	3.00	1.43	.15

NOTE - mbRP is metres below Reference Point elevation

SLUG TEST ANALYSIS BOUWER AND RICE, WATER RESOURCES RESEARCH, 1976



PROJECT NAME: GUELPH COAL TAR PROJECT NUMBER: 87-987

### AFTER BOUWER & RICE, WATER RESOURCES RESEARCH, 1976

PROJECT NAME:

PROJECT NUMBER:

INSTALLATION ID:

TEST START DATE:

TEST START TIME:

STATIC WATER LEVEL (mbRP):

INITIAL WATER LEVEL (mbRP):

1.145

DAT	E 	ACTUAL TIME	CUMULATIVE TIME (minutes)	WATER LEVEL (mbRP)	у0
19 JAN	1988	09:58:00	0.00	1.15	1.00
19 JAN	1988	09:58:10	.17	1.24	.64
19 JAN	1988	09:58:20	.33	1.25	.58
19 JAN	1988	09:58:30	.50	1.26	.55
19 JAN	1988	09:58:45	.75	1.26	. 54
19 JAN	1988	09:59:00	1.00	1.26	.53
19 JAN	1988	09:59:15	1.25	1.27	.52
19 JAN	1988	09:59:30	1.50	1.27	.51
19 JAN	1988	09:59:45	1.75	1.27	.51
19 JAN	1988	10:00:00	2.00	1.27	.50
19 JAN	1988	10:00:30	2.50	1.27	. 49
19 JAN	1988	10:01:00	3.00	1.27	.48
19 JAN	1988	10:01:30	3.50	1.28	. 48
19 JAN	1988	10:02:00	4.00	1.28	.46
19 JAN	1988	10:03:00	5.00	1.28	. 46
19 JAN	1988	10:04:00	6.00	1.28	.45
19 JAN	1988	10:06:00	8.00	1.29	.43
19 JAN	1988	10:08:00	10.00	1.29	.41
19 JAN	1988	10:13:00	15.00	1.31	.35
19 JAN	1988	10:18:00	20.00	1.31	.33
19 JAN	1988	10:25:00	27.00	1.32	.29
19 JAN	1988	10:28:00	30.00	1.33	. 28
19 JAN	1988	10:38:00	40.00	1.34	.23
19 JAN	1988	10:48:00	50.00	1.34	. 20
19 JAN	1988	10:58:00	60.00	1.35	.18

NOTE - mbRP is metres below Reference Point elevation

SLUG TEST ANALYSIS BOUWER AND RICE, WATER RESOURCES RESEARCH, 1976



PROJECT NAME: GUELPH COAL TAR PROJECT NUMBER: 87-987

### APPENDIX E

RESULTS FROM CHEMICAL ANALYSES OF GROUND WATER, SEWER WATER, SURFACE WATER AND SEDIMENT SAMPLES

#### GROUND WATER MONITOR SAMPLING

### SAMPLE NUMBERING CORRELATION TABLE SAMPLE LOCATION - SAMPLE NUMBER

PROJECT NAME: GUELPH GAS WORKS STUDY

PROJECT NUMBER: 87-907

PARAMETE ANALYZED (sample	R S=	NH4	ICP METAI	L CN	PHENOL	РАН
volume)	(1000 ml)	(100 ml)	(100 ml)	(500 ml)	(100 ml)	(1000 ml)
BOREHOLE MONITOR	  F				N U M B	•
5-I	! ! ! !	; { ; ;		i i i	5-1	
6-I	i   	! ! !	; ;	:	6-1	\ \ •
6-11	1 1 1	t 1 1			6-2	
7-I Dup	7-1	7-2 19-3	7-3	7-4 19-1	7-5	7-6
Blank	19-2			19-4	19-4	23-1
8-I	; ; ;		j		8-1	
12-I Dup	12-1 16-1	12-2	12-3	12-4	12-5	12-6
Blank	1 10 1. 1	16-2	! !		22-1	
13-1	[   	1 1 1	; !		13-1	
14-I Dup Blank	14-1	14-2	14-3 17-1 17-2	14-4	14-5	14-6
15-I			; ; ;		15-1	15-2
S-I   (Surrey   Street   Storm   Sewer)					S-2	S-1
REMARKS:	Dup = Fiel Blank = Fi				Blank	

	BARRINGER MAGENTA	MAGE	NTA	304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2 (416) 675-3870	EW DRIVE ARIO			FILE: T8. DATE: 08.	T8_4023 08/02/88 WATER			F
1	1	1								1		E40E; 1
11	Ш	AG MG/L	AL MG/L	B MG/L	BA NG/L	BE MG/L	CA MG/L	CD MG/L	7/9K 00	CR MG/L	Z 77.9k	
1	-1	1	1	!		1	1	:	1	!	( <u>(</u> )	
11	- PHENOT +		;	**	1		. !		;	!	1	SENERAL SERVICES
1			1	i	!	АД -	i			ŧ		-
11		: ;	: :	! !	1 	I I	t 1 t 1		: :			2011-WA
15   15   15   15   15   15   15   15	8H 7 - 0 - 1 NH	. !	**	I	:		ļ	!			I	Contract Lea
11	7-3 - 100 HETAL	200	10	700	0.00		1 7 1 U	1 6	: u	1 C		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
11	7-44	. 1	- i	(//2+			2	ro l	3 1	A 1	)) 	
111 (	10-5-10-10-10-10-10-10-10-10-10-10-10-10-10-	į	į	1	1	1	1	I I	1			Carrent
11	8-I 8-1 - PHENOL	i		i i	ļ	1	**	i	!	i !	:	
11	12-1-5	!	i i	!	I	i	!	1	1	† 	!	7
111	12-2-NH2	Į 1	1	:	1	1	1	1	!	i	;	
7. (*01)       *198       *0005       111       (*01)       *03         8. (*01)       *198       *0005       111       (*01)       *03         8. (*01)       *196       *0005       *115       *01       *03         8. (*02)       *1094       *0005       *109       *01       *01       *01         8. (*02)       *1006       *10       *01       *01       *01       *01         8. (*02)       *004       *005       *0005       *01       *01       *01         8. (*02)       *004       *005       *0005       *01       *01       *01         8. (*01)       *02       *004       *005       *01       *01       *01         8. (*01)       *02       *004       *005       *01       *01       *01         8. (*01)       *02       *004       *005       *01       *01       *01         8. (*01)       *02       *019       *0005       *15.       *01       *01         8. (*01)       *02       *019       *010       *01       *01       *01       *01         8. (*01)       *02       *010       *010       *01       *01       *01 <td>12-3-1CP. METAL</td> <td>,011</td> <td>&lt;,01</td> <td>,136</td> <td>110</td> <td>,0005</td> <td>165</td> <td>&lt;.01</td> <td>&lt;.05</td> <td>60،</td> <td>&lt;,008</td> <td></td>	12-3-1CP. METAL	,011	<,01	,136	110	,0005	165	<.01	<.05	60،	<,008	
1	1 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	•	1	1		i	1	1	! !	1	
7. (**101 **188 **099 **0005 **111 (**101 (**105 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103 **103	LIZE - FRENOL	1	i i	!	i 1	i .	i	***		•	14	
7. (101 1.088 1.098 1.0005 111 (101 (101 (101 (101 (101 (101 (	13-1	i	i	i	l		i	;	1	1	ł	-
707 (,011 188 ,098 ,0005 111 (,011 (,05  )03  )03     113 (,011 (,196 (,098 (,0005 (,0005 (,011 (,05  )03  )03  )03  )03     114 (,011 (,097 (,0005 (,0005 (,0005 (,011 (,05  )03  )03  )03  )03     115 (,011 (,097 (,0005 (,0005 (,0005 (,011 (,05  )03  )03  )03  )03     116 (,011 (,097 (,0005 (,0005 (,0005 (,011 (,05  )03  )03  )03  )03     117 (,011 (,097 (,0005 (,0005 (,0005 (,011 (,05  )03  )03  )03  )03     118 (,011 (,097 (,0005 (,0005 (,011 (,005 (,011 (,005 (,011 (,005 (,011 (,005 (,011 (,005 (,011 (,005 (,011 (,005 (,011 (,005 (,011 (,005 (,011 (,005 (,011 (,005 (,011 (,005 (,011 (,005 (,011 (,005 (,011 (,005 (,011 (,005 (,011 (,005 (,011 (,005 (,011 (,005 (,005 (,011 (,005 (,011 (,005 (,005 (,005 (,011 (,005 (,005 (,005 (,011 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (,005 (	14-1-5=	1	1	!	ţ	1	1	1	i	1		
113 (.012 (.008 (.0005 115 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.013 (.0	14-2-NH3	200	15	188	αος	5000		10	100	1 6	100	
1.3 (.01 (.05) (.0005) (.0005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.001) (.005) (.005) (.001) (.005) (.001) (.005) (.005) (.001) (.005) (.005) (.001) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005)	14-4-CN	. !	1 ! 3 !	3   3   4	)		1 i 1 i	1	3	0   9   2	77 1	
1.3	TO TENOL	!	!	!		1	1	1	1	,		
13	A. C.		i				i i		<b>i</b>	:	! !	
13	2-116-1-8-(Q.P)		1	1	1	1	!!	: :	i !	! :		
1.3 (*01 *1956 (*0005 115 *.001 (*.05 *.003 (*.011 (*.05 *.003 (*.011 (*.05 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005 *.004 (*.005	16-2-NH3 (BLANK)			***	1	**	:	;	i	i	1	
13		!	1	1	1	[ !	1	!	!	!	:	
13		; ;	1	!	1	į	;	:	!	**	!	
0.9       .02       <.004	4.I 17-1 - ICP METAL (DUP),	013	<.01	,196	860,	,0005	11	,01	.03 .05	, O3	,023	
25	17-2-ICP METAL (BLANK)	÷003	+ 02	<.004	√ 0002 V	\$ 000°	40,	<,01	ខេ v	<.01	800°>	
55	13-2-0- (pur)				1	; <b>!</b>	: :			i i	! !	
55												
55	(d) 4 - 2 - 6 I I - 4	1	i	1	1	i i	1	1	ŧ	ļ.	1	
55	CN+ PHENOL BLA	(7r)	:	i	:	i	!	:	;	:	***	
05	(2-E22-1- PHENOL (DUP)	Ŧ i	!	į	1	1	1	***		***	***	-
07	BLANK C. FRIE	005	0,	<,004	<.005	<.0005	1.5	<.01	90,	<.01	<.008	
27	CITE-1 - PHENOL	!	1	l	1	8 P	. !		ı 1	i !		
27	State	7,					! !	i i	1	!	1	
27	/ #[6"2   PERK	) !	1	:	i	I		! !	: :	! !	! !	
27	O'M 6-2-R- DHENL - REPLICA	£"3	i	!	1	Ī	!	!	***	!	ï	
27	E H Z   V = /	i I		1	1	<b>!</b>	:	:	:	i	;	
27 .01 .097 .019 <.0005 15.6 <.01 <.05 .02 <	7-2-R-NHJ-ACPLICATE	1	1	1	1	1	:	!	***	#	***	
	7-17-3 - 10 P Hetal	007		760,	• 019	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ក្រុក សូម	₽ • •	\/ \ \ \	Sj.	200 000 V \	
Market Market States Spring Sp	- V- V - CN-	9 1	1 1		- 1 - 1 -		] ! - ! - !	, i	2 !	4 ! 2 !		
	(7-4-R-CN- REPLICATE	I I	1	***	1	i	1	1	***	!	***	

(416) 675-3870 BARRINGER MAGENTA

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

FILE: T8_4023 NATE: 08/02/88 MATRIX: WATER

WD NO! 38-4023

WATERS

GARINER-LEE ASSOCIATES (KURT STAUFFERT) PROJECT #87-907

RE 332/L

MG/L

AL MG/L

AG /L

SAMPLE

PAGE:

77.9% 96.7L

1 000 000 000 000 000 000

1 1 4 5 5

119

<.01 38.8

.0182 .0200 .0005

965 <,005

193

1,00 1,00 1,00

\$00°

EPA,STD(CRT)

304 C. REXD. M9W 6	(416)
	BARRINGER MAGENTA

I CARLINGVIEW DRIVE XDALE, ONTARIO W 5G2 6) 875-3870

FILE: T8_4023 DATE: 08/02/88 MATRIX: WATER

	FAGE: 3																											
		SI MG/L	ł ! 1 !	1 1	1	ក ល ល		I I		1 1	****	! !	4,37	1	! !	1 1	47 102	4 ^ የስ. የነር !	:		1	10°.	1 1	! ! ! !	1 1		ស ស	
***************************************	WO NO! 88-4023	P.R MG/L	***		1	\ \ \ \	 	; ;	10,	** **	1		<,05		! !	! ! ! !	1	្ត ១១! ១១!	!	[]			1	1 1	1 2	1	00011 00011	
	NO NG	F MG/L		1 1	!	17.	!!	!!!	in * '	***	1		0   V		1 1	1 1	1	ក្នុ សូស្តា	1	1 1		្រំ	!	1 t 1 1		!	5511	
		NI NG/L		1 1	1.	:0° '	<b>!</b> !	1 1	<. <.05	1 1	į	1 1	£04×	1	1 ;	1 1	I	, 00, 00, 00,	i	: :			i		***		\$0. \$0. 1.	
اد		NA MG/L			į	534	1 1	1 1	5.45°	1 1	1	1 1	297	į	! !	1 1	**	100 101	i	: :	I	W	i	; !		1	534 540 	
		M0 M6/L			- Flescor 1	ित् स		* ;	4	a, s	y. I		4	1	2: 	1 1	1	Å. M.d.l		*.	) 1	N	1	1 1	† I	1	dd	
	ECT #87-907	MN MG/L				<.01 <.01	***		104,	1 1	****	! ! ! !	FT.	Į,	1 i	1 1	I	 1012 1013	£	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ì	<.01 <.01	i	]	1 1	1	, 10, 10,	
	RT) PROJECT	MG/L		1 1	I	26.3	! ! ! !		69.1		. 4	1 1	5.08	1.	W 121	<b>!</b> ! ;		60.4 4.01	t 1	ŧ .		 	1	1 1	***	1	26,3	
	RT STAUFFE	K H6/L	1 1	1 1	i	10:1	:	: :	10.1	: <u> </u>	**	: :	12.	1	***	## to	11	12,1	1	** **	i	w	1	1 1	1 1	***	10,1	
	CARTMER-LEE ASSOCIATES (NURT STAUFFERT)	FE MG/L	†   		! - i	2,96	[ ] [ ]	i ;	10,	! !	1	**		**	1 1	I !	1 1	0, 0,0;		: :	i	<,01	**		: 1	***	2,96	
	R-LEE ASSC		-1 KIE																			. UAIA						
	C GARTME	SAMPLE	5-1 5-3	661 612 123	7-1	r 	-1-0       \$ED+	12:1	. C.C.	11 22 12 13 14 15		-4-4-1 -4-1 -3-1	14-3 14-4	14-5	10 10 11 11	- 9 - 9 - 9 - 9 - 9 - 9 - 9	16-4	17-1 19-1 19-1	19-2	191 5-61	1	CUNIKUL U BLANK	ट्रि : :	5-1-5 6-2	6-2-R	7-2-5	7-4-7 7-4-4-7	

BARRINGER MAGENTA (416) 675-387

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2 (416) 675-3870

NAT NAT

FILE: TB_4023 NATE: 08/02/88 MATRIX: WATER

A STATE OF THE STA

4							
PAGET							
	SI MG/L		1	20.5	I	ម្រ	į
: 88-4023	PB MG/L		1	76,	1.00	**	·
#ON OM	P MG/L		1	က V	1	មា វ	i
	NI MG/L	Į.	1	,19	Ş	<.05	1
	NA NG/L	1	I	in V		29,7	40.0
7 WATERS	M0 1/9/1	1	1		1	연	
JECT #87-90.	NG/L	i	1	61,	120	<,01	
ERT) PRO.	MG/L	42	1	<.01	1	10,1	10.0
KURT STAUFF	К МБ/L	-	1	ហ √	***	ထွ•်ဇ	10.0
SOCIATES (	FE MG/L	•	1	,87	1.00	.02	-
GARTNER-LEE ASSOCIATES (KURT STAUFFERT) PROJECT #87-907 WATERS	SAMPLE ID	T: 12	13-1-8	CONTROL STD	CONTROL, EST.	EFA STD	EPA,STD(CRT)

BARRINGER MAGENTA (416) 675-38
--------------------------------

INGVIEW DRIVE S, ONTARIO 3870

FILE: T8_4023 DATE: 08/02/88 MATRIX: WATER

ا د	PAGE: 5																																
بمعدده بالمهارية والمستحرية والمرازية والمرازية والمرازية والمرازية والمرازية والمرازية والمرازية والمرازية		7/9n =S	11.00	: !	Ţ	****	i !	100 100	***	#	-	*** ***	1	⊽	: ; : i	****	***	77	1 !	i		CID KHS		magnitude .	1 1	! <del>!</del>	**	***	1 1	i I	. ! !	****	*** ***
	WO NO: 88-4023	FHENOLS UG/L	77		- I	***	1 1	254	27600	** ***	1 1	l m	₹	!	1 1	P44 440	₩.	1 (	1 1	1			i l	1 7 † >	7m	i 🗸	V	7	d <del>d</del> V V	## ##	! ! ! !	! !	į
	, DW	NH3-N MG/L	1 1	1 !	i	26.1	1 1	1	1	1 1	573	! !	I	1	.77	!	1 1	i	60°	i.	į	1 1	i i	26,1	i 1 i i	<,02	***	1	i   i	26+1	28.2		1
		CN-TOT UG/L	: : !		1	!	2070	7 i	1			110	i	Į į	! [ <b>S</b>	<del>द</del> ें <del>-1</del>	1 1	## sé	! !		;	2950		!	- 5   1	1 64	i	Į į	i į	141 148	1 1	2680	2500
7	ere.	ZR MG/L	1 1	1 1	i	ŧ	ហ្វ V	i i	i	i	<.05	l i	i	•	<,05	<b>!</b>	1 1	ł			0.0√ 0.0√	0 : 0 : V	į			<,05	i	i	1 1	i	10 V	20°	
		ZN MG/L				***	ं. 10° V		1	i de		1 1		1	40			: · · · · · · · · · · · · · · · · · · ·	: 1 1 1		40,	: ::::::::::::::::::::::::::::::::::::	I I	1	l 1 l ;			<b>!</b>		i i	100	10,	1
	PROJECT #87-907	^\ \	¥ 1	I i	1	***	450.	1	1	1	.012	1		I I	.012	1	1 1	***	1 1		,012	/00+	1		i (	.010	***	i	i i		 450.	,027	***************************************
		TI MG/L	****	1 1	į	***	,071		***	1	×,005		1464 1800	1	<.005	# !	49 - 101	<b>!</b> :		I	< .005 POOS	0004/	1	1	I I	<,005	i	:		1	.071	6901	***
	CURT STAUFF	TH H0/L	***		i	i	១ ! .	1 i		1	\ \ \ \	***	***	*******	<,05	<b>:</b>	: :	:	***		្រ >	0 I	! !	***	***	< 0.05	****	1		***		) (102	
	OCIATES (	38 %67L	***************************************	1	1 -	1	138	•	***	I	548	***	i	1	.519	!	1 1	1			818 7	100+/	1	: :	:	.005	.!	i !	! !	!		129	;
	GARTMER-LEE ASSOCIATES (KURT STAUFFERT)	SAMPLE III	5-1 S-1 KHS		1 -	7-2	75 55	. [^ [		F-04	7 M 1 - 1 2 M 1 - 1	122-14 123-154	13-1	14-1	M 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	चि <b></b> b T	1.0.1. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	111	NP	16-4	17-1	Y-10 1-10 1-10	1.5	17:3		CONTROL DATA BLANK	  	A-1-0	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	72	7-2-R 7-3	7-5-V	7-4-R

(416) 675-3870 BARRINGER MAGENTA

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

FILE: 18_4023 DATE: 08/02/88 MATRIX: WATER

WO NO: 88-4023

PHENOLS UG/L

NH3-N MG/L

CN-TOT

WATERS

CARTMER-LEE ASSOCIATES (KURT STAUFFERT) PROJECT #87-907

7.1 MG/L

TH MG/L

SR MG/L

SAMPLE

. 05 . 05 . 05

,180 ,220 ,022

13-1-R 13-1-R CONTROL SID CONTROL.EST. EPA SID

EPA.STD(CRT)

1.48

117 117 120 120 105

ZN MG/L 118 7,20 7,20

PAGE:

9420 CÔTE DE LIESSE, LACHINE, QUÉ. H8T 1A1 TÉL.: (TÉLEX FAX: (

TÉL.: (514) 636-6218, 631-1838
TÉLEX: 06-822787 • (LYNJON)
FAX: (514) 631-881 2 72

RECEIVED
FEB 3-1938
PHE GARTNER LEE
ASSOCIATES LIMITED
463-R

LETTRE COUVERTURE POUR BELINOGRAPHE FAX COVERING LETTER

		Feb. 3/88
	HEURE/TIME	3:00 pm.
	·	
VEUILLEZ LIV PLEASE DELIV		
NOM/ NAME:	MR. T. Kewen.	
COMPAGNIE/	GAMINEE-LEE VASSOC.	
FAX #:	1-416-477-1456	
PAGES:	2 (LETTRE COUVERTURE INCLUSE/ INCLUDING COVERING LETTER)	
DE/FROM:	B. Clowiey	
MESSAGE:		<u></u>
<del></del>		

### CONCENTRATION OF POLYCYCLIC ARONATIC HYDROCARBONS IN WATER \$ug/L\$

ARMANINIS	15.0	Mai	Sewer <b>S-1</b>	rik 7-I	15-I 14-	14-I	DISTILLE	Lab	
COMPOUND	15-2	MDL	كهتر	7-6	12-6	14-6	23-1	Blank	HOL
ACENAPHTHENE	120	0.5	-	15	11	•	_	•	0.05
ACENAPHTHYLENE	270	0.5		290	•	-	_	-	0.05
ANTHRACENE	55	0.5	-	7.8	-	-	-	-	0.05
BENZ (A) ANTHRACENE	38	0.5	-	0.1	. •	-	-	•	0.05
BENZO(B) + BENZO(K)FLUORANTHENE	28	0.5	•	-	•	•	-	•	0.05
BENZO (A) PYRENE	29	0.5	•	-	-	•	-	-	0.05
BENZO(GHI)PERYLENE	19	1	-	-	-	-	. •	-	0.1
CHRYSENE	25	0.5	•	0.06	-	•		-	0.05
DIBENZ(A,H)ANTHRACENE	3	1	-	-	•	-	-	-	0,1
FLUGRANTHENE	120	0.5	-	3.3	-	-	-	-	0.05
FLUGRENE	100	0.5	•	56	1	-	-	•	0.05
INDENO(1,2,3-CD)PYRENE	13	1	•	-	-	-	_		0.1
NAPHTHALENE	-	0.5	•	270	1.4	-	-	-	0.05
PHENANTHRENE	340	0.5	. •	55	-	•	-	-	0,05
PYREHE	130	0.5	-	2.5	-	-	-	-	0.05

HDL . METHOD DETECTION LIMIT

### RECOVERY OF BURROGATE STANDARDS (%)

COMPOUND	15-2	5-1	7-6	12-6	14-6	23-1	Lab Blank
D8-MAPHTHALENE	28.8	52.4	ŧ	68.7	48.1	59	60.3
DIO-ANTHRACENE	54.5	86.9	55.9	95.6	88.2	80.2	65.5
010-FLUORANTHENE	36.2	67.2	64.9	67.6	67.1	62.8	68.2
012-PERYLENE	18.6	60.9	32	55.6	55.7	58.1	61.4

^{* *} Recovery not determined due to the high concentration of native maphthalene

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2	(416) 675-3870
	MAC

FILE: 17_4697 DATE: 08/02/88 MATRIX: WATERS



					-					1	
GARTNER LEE (T. KEWEN)	KEWEN)	ANALYSIS OF	2 WATERS	(PROJECT	#87-907)			NO NO:	1: 87-4697		PAGE
声	AG MG/L	AL MG/L	B NG/L	BA MG/L	RE MG/L	CA MG/L	CD WG/L	CO MG/L	CR MG/L	CU MG/L	
SPEED RIVER 1 ERAMOSA RIVE 2 CONTROL DATA	< 005 < 005	.04 404	.018	.017	<,0005 <,0005	67.9	<pre>&lt;.01 &lt;.01 &lt;.01</pre>		.03	800°>	
BLANK ABPEED ATVER	\ \.005 \.005	Ý.	<.004 .018	<.005 .017	<pre></pre>	<.01 67.9	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<. 03 03	800.	
SPEED RIVA-R CONTROL SID	<pre>&lt;.005 &lt;.005 &lt;.005 </pre>	96. 100.	.017 .195	.017 <,005	.0187	66.7	<pre></pre>	<.05 .17 .20	00°	×.008 .206	
EPA STD EPA,STD(CRT)	× 005	<-01 	,095	<,005	<.0005	39.9	, 01 , 01	\$ 1   	101	\$ 00° ×	
	t i	1	!	!		1		1	1	ŀ	
					troni Sorgia Vin						
Ä	FE MG/L	₩ ₩6/L	MG/L	MN MG/L	. MO	NA MG/L	NI MG/L	P. MG/L	PB MG/L	SI MG/L	
SPEED-RIVER LERAMBSA-RIVE 2	15	1,13	20.2	.03	44	11.2	< .05 < .05	^ ^ សំ សំ	.05 .05 .05	1,21	
CONTROL DATA RLANK SPEED-RIVER 1	10.	^+   ww	20,2	<.01 .03	100	11,5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	100	1,201	
SPEED-RIVE-R 1	41,	1. A. M.	20.0	.03	0,0 V V	11,2	0.00	ស្វ √ V	.00°	1,18	
CONTROL.EST. EPA STD FFA.STD(CRT)	1001	10.01	10.4	1 22	101	40+8	1 0 0 £	; [\$]	18 <u>5</u> 11	. 44	
	i	) i	5 I	**		) I	1	ŧ	<.05	****	

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2 (416) 675-3870 BARRINGER MAGENTA

FILE: 17_4697 DATE: 08/02/88 MATRIX: WATERS

-	

FAGE :			
	S== MG/L	, , , 100, , 100, ,	1 1 1 1
WD NO: 87-4597	PHENOLS UG/L		l 17
N OM	NH3-N NG/L	201100 cwel	<.01
	CN-TOT UG/L	54 145 3 8 4 1	l V
	ZR MG/L	000 000 000 000 000 000 000 000 000 00	
#87-907)	ZN HG/L	99199 9489	
(FROJECT #87-907	y MG/L	000 00 1.50 000 00 1.50 000 00 00 00 00	
2 WATERS	TI MG/L	000 V V V V V V V V V V V V V V V V V V	·  -
ANALYSIS DE	TH MG/L	11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.	
KEMEN)	SR MG/L	7.001 1.155 1.155 1.155 1.155 1.155	! ! ! !
GARTNER LEE (T. KEWEN) ANALYSIS DE 2 WATER	SAMPLE ID TK.	SPEED RIVER CONTROL DATA SPEED RIVER I SPEED RIVER I SPEED RIVER I CONTROL STD CONTROL STD CONTROL STD CONTROL STD CONTROL STD	BLANK

BASE-NEUTRAL EXTRACTABLES: ND = NOT DETECTED; * = DETECTED BELOW M.D.L

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2 (416) 675-3870

FILE: 17,46978 DATE: 07/02/88 MATRIX: WATER

40 NO: 87-46978

									·
			•						
REAGENT BLANK	2222	22222	99999	<u> </u>	Sassa	2 2222	33.65 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	£ 5555	SESSO
ACATON AND AND AND AND AND AND AND AND AND AN	<b>2</b>	22222	25555	S SZZZZ	5 52 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	A 6999	13 N 23+27 D 20 20 20 20 20 20 20 20 20 20 20 20 20	를 맞춘당를	22222
Speetra. Repeat	25858 -	2555 2555	2222			E EZECE	34+0 CUN CUN CUN CUN CUN CUN	# ####################################	N N N N N N N N N N N N N N N N N N N
SPEED .	22222 - -		ZZZZZ		S S S S S S S S S S S S S S S S S S S	X NNNN K K K K K K K K K K K K K K K K K	31. S + CN CN CN CN CN CN CN CN CN CN CN CN CN C	Z ZZZZ Z ZZZZ	22222
M.D.L. UG/L	ကဲ့ညက်ည်ဝဲ	000 000000	1 G	o minino o m	W OW OW	uu សល្ខ០ស	ដ ស សិសិសិ <b>ວ</b> ិសិ	о о о о о о о	00000
COMPOUND NUMBER	RIS(2-CHLOROETHYL)ETHER 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE RIS(2-CHLOROISOPROPYL)ETHER	HEXACHLOROETHANE N-NITROSODI-N-PROPYLAMINE NITROBENZENE ISOPHORONE RIS(2-CHLOROETHOXY)METHANE	1,2,4-TRICHLOROBENZENE NAPHTHALENE HEXACHLOROBUTADIENE 2-METHYLNAPHTHALENE 1-METHYLNAPHTHALENE	HEXACHLOROCYCLOPENTADIENE 2-CHLORONAPHTHALENE ACENAPHTHYLENE DIMETHYL PHTHALATE 2,6-DINITROTOLUENE	ACENAPHTHENE 2,4-DINITROTOLUENE FLUORENE 4-CHLOROPHENYL PHENYL ETHER DIETHYL PHTHALATE	N-NITROSOBIPHENYLAMINE AZOBENZENE 4-BROMOPHENYL PHENYL ETHER HEXACHLORORENZENE PHENANTHRENE	ANTHRACENE DI -N-BUTYL PHTHALATE FLUCRANTHENE RENZIDINE	BENZYL BUTYL PHTHALATE BENZO(A)ANTHRACENE CHRYSENE 3,3'-IICHLOROBENZIDINE RIS(2-ETHYLHEXYL)PHTHALATE	DI-N-OCTYL PHTHALATE BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE RENZO(A)PYRENE INDENO(1,2,3-CD)PYRENE
SAMPLE	는 어떤 4 ID	8 % 8 % 9 % 9 % 9 % 9 % 9 % 9 % 9 % 9 %		20.487 20.487		3000 3000 3000 3000	m mmmm H GW 410	ы ышы 4 4 ышы 4	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

FILE: L7,46978 DATE: 07/02/88 MATRIX: WATER

FAGE:

UD NO: 87-46978

REAGENT BLANK

STATES AND STATES

<del>SPEETTTR.</del> REPEAT

M.D.L. UG/L

COMPOUND

SAMPLE NUMBER

**99** 

G S •

999

45 DIRENZO(A+H)ANTHRACENE 47 RENZO(GHI)FERYLENE

K

(416) 675-3870

**F**BARRINGER MAGENTA

BASE-NEUTRAL EXTRACTABLES: ND = NOT DETECTED: * = DETECTED BELOW M.D.L.

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2 (416) 875-3870 BARRINGER MAGENTA

FILE: L7,4697C DATE: 07/02/87 MATRIX: WATER

PAGE:		
WO NO: 87-4697C		
	REAGENT BLANK	87 91 117
	RIVER	74 49 74 64 58 58
	SPEEDTA: REPEAT	76 81 106 152
	######################################	12 51 70 70 70
RECOVERIES	AMDUNT UG/L	000 NN N
NDARD PERCENT	COMPOUND	
BASE-NEUTRAL SURROGATE STANDARD PERCENT RECOVERIES	SAMPLE NUMBER	1 NITROBENZENE-DS 2 2-FLUOROBIPHENYL 3 4-TERPHENYL-D14

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2 BARRINGER MAGENTA

SPINED BASE-NEUTRAL SAMPLES - PERCENT RECOVERY

(416) 675-3870

FILE: L7,4697D DATE: 07/02/87 MATRIX: WATER



PAGE:

WO NO: 87-46970

	. 1		j formale general	e in a Region					
REAGENT BLANK	1000 888 11	72 999 1039 1039	91 100 100 105 102	. 89 103 111 122	0.00004 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.440 1.44	11111111111111111111111111111111111111	108 104 60 64	70 104 104	80 100 105 72
AMOUNT UG/L	ପ୍ରତିତ୍ୱର	00000	ନିହିତ୍ରତି ବହିତ୍ରତି	0.0000	00000	0 0000 0 0000	2000 2000	00000 00000	00000 00000
SAMPLE NUMBER	1 BIS(2-CHLOROETHYL)ETHER 2 1,3-DICHLOROBENZENE 3 1,4-DICHLOROBENZENE 4 1,2-DICHLOROBENZENE 5 BIS(2-CHLOROISOPROPYL)ETHER	6 HEXACHLOROETHANE 7 N-NITROSODI-N-PROPYLAMINE 8 NITROBENZENE 9 ISOPHORONE 10 BIS(2-CHLOROETHOXY)METHANE	11 1,2,4-TRICHLORORENZENE 12 NAPHTHALENE 13 HEXACHLORORUTADIENE 14 2-METHYLNAPHTHALENE 15 1-METHYLNAPHTHALENE	16 HEXACHLOROCYCLOPENTADIENE 17 2-CHLORONAPHTHALENE 18 ACENAPHTHYLENE 19 DIMETHYL PHTHALATE 20 2,6-DINITROTOLUENE	21 ACENAPHTHENE 22 2,4-DINITROTOLUENE 23 FLUORENE 24 4-CHLOROPHENYL PHENYL ETHER 25 DIETHYL PHTHALATE	26 N-NITROSODIPHENYLAMINE 27 AZOBENZENE 28 4-BROMOPHENYL PHENYL ETHER 29 HEXACHLOROBENZENE 30 PHENANTHRENE	31 ANTHRACENE 32 DI-N-BUTYL PHTHALATE 33 FLUORANTHENE 34 BENZIDINE 35 PYRENE	36 BENZYL BUTYL PHTHALATE 37 BENZO(A)ANTHRACENE 38 CHRYSENE 39 3,3'-DICHLOROBENZIDINE 40 BIS(2-ETHYLHEXYL)PHTHALATE	41 DI-N-OCTYL PHTHALATE 42 BENZO(8)FLUORANTHENE 43 BENZO(K)FLUORANTHENE 44 BENZO(A)PYRENE 45 INDENO(1,2,3-CD)PYRENE

SPIKED BASE-NEUTRAL SAMPLES - PERCENT RECOVERY

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2 (416) 675-3870

FILE: L7.4697D DATE: 07/02/87 MATRIX: WATER

/02/87 TER



FAGE :

WO NO: 87-4697D

		:					
.554	Mir ogs	ğışı		À	14 14 -	i piki	
REAGENT	BLANK	73	89	92	107	73	
AMDUNT	7/90	20	20	20	200	20	
SAMPLE	NUMBER	46 DIBENZO(A,H)ANTHRACENE	47 RENZO(GHI)PERYLENE		2-FLUOROBIPHE	SO 4-TERPHENYL-D14(S.ST)	

·	PAGE:					
A	WO NO: 87-4697					
17_4697 08/02/88 SEDIMENT	#U NO:					
FILE: DATE: MATRIX:		OIL & GRS PPM	3280 6000 6000 3540	3280	211	19500
		ZR PPM	97 60 60 59	1 65	272	11
	(PROJECT #87-907)	ZN PPM	209 448 877 403	209 261	251 250 250	
N DRIVE RIO	S (PRC	> £	74 64 788 788 77	- 64 - 74	49 50.0	1.1
304 CARLINGVIEW DRIVE REXDALE, ONTARIO MBW 5G2 (416) 875-3870		T L W	4960 2100 1280 2530	4960 4389	747	
ENTA	NALYSIS O	TH Md4	4 4 10 10 10 10 10 10 10 10 10 10 10 10 10	22 27	362 375	! !
R MAG	KEWEN) A	S A A	7k. 185 C 245 D 213	185	250 265 265	ŧ ŧ
BARRINGER MAGENTA	GARTNER LEE (T, KEWEN) ANALYSIS OF 4 SEDIMEN	SAMPLE ID	A-SPEED RIVE A ERAMINOSA O PERMINASA D	CONTROL DATA A-SPEED RIVR A-SPEED-R	SY-2 SY-2(CERT)	NRS-1645 1645 (CERT.)

304 CARLINGV REXDALE, ON M9W 5G2	
0 L Z	
	Į
	はにはて
	7 7 7
	いいてい
	77 77

77.4697 08/02/88 SEDIMENT FILE: DATE: MATRIX:

RECEIVED MAR 2 - 1988 ASSOCIATES LEMITED GARTNER LE 장 300 300 ዋዋ ሞዋ 180 195 145 180 160 85 85 1 | -PR 42884 54 57 20 11.0 630 1170 1400 740 630 680 650 650 820 970 8020 in E 7900 9000 100 30800 31000 AN FPR 7900 8500 3800 9600 128000 139000 56200 57000 P. P. CA 28000 90000 30000 28000 18888 88881 964 997 2370 2480 7. 75 7. 85 7. 05 7. 05 7. 05 7. 05 E T 208891 964 1600 1490 968 242 316 234 302 242 277 277 450 8 £ 54400 48000 31300 45600 | | 54400 56800 19 16300 16100 27300 30500 21 62000 64100 27300 33500 23600 31300 8300 9500 100 32300 37000 8300 11000 7800 10200 ^ ^ ^ ^ ^ \ ល លល់ល រំ ^ ^ ^ ^ ^ \ n n n n n i 36400 23300 18100 20300 ΉŒ 1 1 36400 36100 15 42000 42900 بخ OA B-SPEED RIVR A-ERAMOSA B-ERAMOSA CONTROL DATA A-SPEED RIUR A-SPEED-R RLANK SY-2 SY-2(CERT) A-SPEEN RIUR B-SPEEN RIUR A-ERANDSA-B-ERANDSA CONTROL DATA A-SPEED RIUR A-SPEED-R RLANK SY-2 SY-2 SY-2(CERT) A-SPEED RIVR NBS-1645 1645 (CERT.) 1645 (CERT,) NBS-1645 SAMPLE SAMPLE

FAGE

UD ND: 87-4697

(PROJECT #87-907)

4 SEDIMENTS

ANALYSIS OF

GARINER LEE (T, KEWEN)

BARRINGER MAGENTA

(416) 675-3870

IVIEW DRIVE

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2 BARRINGER MAGENTA

(416) 675-3870

SPEED.R

- NOT DETECTED; *

BASE-NEUTRAL EXTRACTABLES: NI

COMPOUND

1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE RIS(2-CHLOROISOPROPYL)ETHER

BIS(2-CHLOROETHYL)ETHER

NUMBER

SAMPLE

REAGENT BL ANK MO NO: 87-46976 # <del>22255</del> <u>~</u>. **5555** 2.5 1.25 1.75 1.75 HRANDON. 07/02/88 SEDIMENT L7,46976 ુ ‡ CRAMDEA BANKARA FILE: DATE: MATRIX: SPEEDR R-REPEAT DETECTED RELOW M.D. 는 유로관로 유 SPEED, R. 4 4 5 5 5 5 7 8 8

44004

4-BROMOPHENYL PHENYL ETHER HEXACHLOROBENZENE PHENANTHRENE

BENZO(A)ANTHRACENE CHRYSENE 3,3'-DICHLOROBENZIDINE BIS(2-ETHYLHEXYL)PHTHALATE

BENZYL BUTYL PHTHALATE

ANTHRACENE DI-N-BUTYL PHTHALATE FLUORANTHENE BENZIDINE PYRENE

DI-N-OCTYL PHTHALATE RENZO(B)FLUORANTHENE RENZO(K)FLUORANTHENE RENZO(A)PYRENE INDENO(1,2,3-CD)PYRENE

4-CHLOROPHENYL PHENYL ETHER DIETHYL PHTHALATE

2,4-DINITROTOLUENE FLUORENE

200000 400000

ACENAPHTHENE

N-NITROSODIPHENYLAMINE

AZOBENZENE

80800

ल ठेलेलेल

N-NITROSODI-N-PROPYLAMINE NITROBENZENE ISOPHORONE BIS(2-CHLOROETHOXY)METHANE

4 789 4

HEXACHLORDETHANE

1,2,4-TRICHLOROBENZENE

NAPHTHALENE HEXACHLOROBUTADIENE 2-METHYLNAPHTHALENE 1-METHYLNAPHTHALENE

HEXACHLOROCYCLOPENTADIENE

2-CHLORONAFHTHALENE ACENAPHTHYLENE IIMETHYL PHTHALATE 2,6-DINITROTOLUENE

20000

(416) 675-3870 BARRINGER MAGENTA

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

FILE: L7,46976 DATE: 02/02/88 MATRIX: SEDIMENT

WO NO: 87-46976 francer. fr. - I ABOUT A

SPEEDR B-REPEAT

SPEED.R.

SPEED.R

M.D.L. UG/G

COMFOUND

BASE-NEUTRAL EXTRACTABLES: ND = NOT DETECTED; % = DETECTED BELOW M.D.L

웊Ξ

물물

复분

46 DIBENZO(A,H)ANTHRACENE 47 BENZO(GHI)FERYLENE

NUMBER

SAMFLE

复물

99 9

REAGENT BLANK

PAGE:

SPINEU BASE-NEUTRAL SAMPLES - PERCENT RECOVERY

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2 (416) 675-3870

FILE: L7:46971 DATE: 07/02/87 MATRIX: SEDINENT

MO MU: 87-46971

PRGE:

in the second		े विश्वकार १ क्ट							
SPEED,R.	8 7 8 7 8 7 8 7 8 7	64 64 64 64 64 64 64 64	2000 4000 4000 4000 4000 4000 4000 4000	8 88 8 8 4 0 6 5	7 C & & 2 C & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 &	2 0 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	988 998 10	121 114 107 132	MANGU PHHRO
AMOUNT UG/6	тетты	ന മലമാ	men enen en	mmmm m	темий в	വഷവൻ വ	നമ്പാൻ ന	വ യമ്പ്	menene
за <i>и</i> яск сонгоино	1 BIS(2-CHLORDETHYL)ETHER 2 1,3-DICHLOROBENZENE 3 1,4-DICHLOROBENZENE 4 1,2-DICHLOROBENZENE 5 BIS(2-CHLOROISOPROPYL)ETHER	6 HEXACHLOROETHANE 7 N-NITROSODI-N-FROPYLADINE 8 NITROBENZENE 9 ISOPHORONE 0 RIS(2-CHLOROETHOXY)METHANE	1 1,2,4-TRICHLOROBENZENE 2 NAPHTHALENE 3 HEXACHLOROBUTADIENE 4 2-METHYLNAPHTHALENE 5 1-KETHYLNAPHTHALENE	6 HEXACHLOROCYCLOPENTADIENE 7 2-CHLORONAPHTHALENE 8 ACENAPHTHYLENE 9 DIMETHYL PHTHALATE 0 2.6-DINITROTOLUENE	21 ACENAPHTHENE 22 2,4-DINITROTOLUENE 23 FLUORENE 24 4-CHLOROPHENYL PHENYL ETHER 25 DIETHYL PHTHALATE	26 N-NITROSODIPHENYLAMINE 27 AZOBENZENE 28 4-BKOMOPHENYL PHENYL ETHEK 29 HEXACHLOROBENZENE 30 PHENANTHRENE	31 ANTHRACENE 32 DI-N-BUTYL PHTHALATE 33 FLUORANTHENE 34 BENZIDINE 35 PYRENE	36 BENZYL BUTYL PHTHALATE 37 BENZO(A)ANTHRACENE 38 CHRYSENE 37 3,3'-DICHLOROBENZIDIWE 40 BIS(2-ETHYLHEXYL)FHTHALATE	1 DI-N-OCTYL PHTHALATE 2 BENZO(B)FLUORANTHENE 3 BENZO(K)FLUORANTHENE 4 BENZO(A)FYRENE 5 INDENO(1,2,3-CD)FYRENE

SPINED BASE-NEUTRAL SAMPLES - PERCENT RECOVERY

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2 (416) 675-3870

FILE: L7,4697I DATE: 07/02/87 MATRIX: SEDIMENT

PAGE

WU NU 3 87-46971

7 *		Sale*		1.57	şiş.	<b>%</b> .3	\$8. T
SPEED.R.	€.	in Ci	56	500	78	F F	
AriOUNT	9/90	M		M	<b>[~</b> ]	M	
COMPOUND	ZBER	DIBENZO(A,H)ANTHRACENE	BENZO (GH1) PERYLENE	NITROBENZEWE-DS(S.ST)	2-FLUORORIPHENYL(8,ST)	4-TERPHENYL-D14(S.ST)	
SAMPLE	SS	46	47	48	49	143	

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2 (416) 675-3870

FILE: L7.4697H DATE: 07/02/88 MATRIX: SEDIMENT



-		
PAGE :		
4697H	REAGENT BLANK	95 88 87
WO NO: 87-4697H	ERAHOSA.	<b>الإ</b> 86 75 61
	15. 4C	7 <b>k</b> 106 99 99
	SPEEDR B-REPEAT	89 104 29
	SPEED.R. B	843.0 843.0
	SPEED.R A	161 172 24
RECOVER1ES	AKOUNT UG/G	мим
RASE-MEUTRAL SURROGATE STANDARD PERCENT RECOVERIES	SAMPLE COMPOUND NUMBER	1 NITROBENZENE-DS 2 2-FLUOROBIPHENYL 3 4-TERPHENYL-D14
RAS	SAM	

### APPENDIX F

INSPECTION REPORT OF BASEMENT SURVEY SOUTH OF SURVEY STREET

## BASEMENT SURVEY SOUTH OF SURREY STREET

On July 6, 1988, the City and Environmental Strategies Ltd visited the residences south of Surrey Street across from the former Guelph Gas Works. The purpose of the visits was to inspect the basements for any evidence of coal tar odours or seepage.

### 45,47 and 49 Surrey Street

These addresses refer to three different portions of the same building. This building is one of the original residences in the area and is situated directly opposite the former gas works. The original portion of the building was constructed about 1913. A major addition was completed to the rear of the building several years ago. The basement extends beneath the entire building. The basement is fully developed and contains two large apartments which each occupy about half the basement. The basement appears to be completed above the bedrock surface.

The superintendent of the building was interviewed during the basement inspection. He has lived in the building for ten years. He could not recall unusual odours or seepages in the basements during this time. He was also not aware of any flooding of the basement during the last ten years.

During the basement inspection, no unusual odours or seepages were noted. However, the sump in the central basement area was found to contain black hydrocarbon sediment. The superintendent was not previously aware of this sediment. The sump is located beside a water heater that was previously oil-fired. No sediment was found in any floor drains or outside drains.

The building used to be heated with fuel oil. One fuel storage tank was located in the southwest corner of the basement and was removed several years ago. A filling pipe for another tank was found on the northeast side of the building but the superintendent

could not recall the location of any second fuel storage tank. The superintendent did not know of any other hydrocarbon storage on-site.

### 53 Surrey Street

This address is a small separate residence. It is one of the original houses in the area and is situated directly opposite the gas works. The basement of this house is not finished although a small raised floor has been constructed in the northwest corner of the basement. The basement is completed above the bedrock.

One of the tenants was interviewed during the basement inspection. He has lived in this house for three years. He could not recall any unusual odours or seepages in the basement and none was apparent during the inspection. The basement does not have any visible sump.

### 41 Wyndham Street

This address is a small separate residence. It is one of the original houses in the area and is located opposite the east corner of the gas works. The basement of this house is not developed and appears to be completed above the bedrock.

One of the tenants was interviewed during the basement inspection. The tenant has lived in the house for only six months and was not aware of any unusual odours or seepage in the basement. None was apparent during the inspection. The basement does not have any sump.

### 45 Wyndham Street

This address is a small separate residence. It is one of the original houses in the area and is located three houses southeast of the gas works.

The owner has lived in this house for over 50 years and was interviewed during this visit. The basement was not inspected but the owner has never observed any unusual odours or seepage in the basement.