

190-216 Arkell Road Guelph, Ontario

Hydrogeological Assessment Report

Project Location: 190 - 216 Arkell Road, Guelph, ON

Prepared for:

Crescent Homes 3-180 Frobisher Drive Waterloo, ON N2V 2A2

Prepared by:

MTE Consultants Inc. 520 Bingemans Centre Drive Kitchener, ON N2B 3X9

December 3, 2021

MTE File No.: 42063-104

Engineers, Scientists, Surveyors.

Contents

1.1 Overview 1.2 Scope and Methodology 1.3 Additional Investigations 2.0 Subject Lands Description 2.1 Adjacent Land Use 2.2 Topography and Drainage 3.0 Field Program 3.1 Borehole Advancement and Monitoring Well Construction 3.2 Mini-Piezometer Installation 3.3 Elevation Survey and Water Levels 3.4 Monitoring Well Development and Groundwater Sampling 3.5 Hydraulic Conductivity Testing 3.6 In-Situ Infiltration Testing 4.0 Regional Hydrogeological Setting 4.1 Physiography 4.2 Quaternary Geology 4.3 Paleozoic Geology	. 1
 Additional Investigations Subject Lands Description Adjacent Land Use Topography and Drainage Field Program Borehole Advancement and Monitoring Well Construction Mini-Piezometer Installation Elevation Survey and Water Levels Monitoring Well Development and Groundwater Sampling Hydraulic Conductivity Testing In-Situ Infiltration Testing Regional Hydrogeological Setting Physiography Quaternary Geology 	. 1
 2.0 Subject Lands Description 2.1 Adjacent Land Use 2.2 Topography and Drainage 3.0 Field Program 3.1 Borehole Advancement and Monitoring Well Construction 3.2 Mini-Piezometer Installation 3.3 Elevation Survey and Water Levels 3.4 Monitoring Well Development and Groundwater Sampling 3.5 Hydraulic Conductivity Testing 3.6 In-Situ Infiltration Testing 4.0 Regional Hydrogeological Setting 4.1 Physiography 4.2 Quaternary Geology 	. 1
 2.1 Adjacent Land Use	2
 2.2 Topography and Drainage	3
 3.0 Field Program	3
 3.1 Borehole Advancement and Monitoring Well Construction 3.2 Mini-Piezometer Installation 3.3 Elevation Survey and Water Levels 3.4 Monitoring Well Development and Groundwater Sampling 3.5 Hydraulic Conductivity Testing 3.6 In-Situ Infiltration Testing 4.0 Regional Hydrogeological Setting 4.1 Physiography 4.2 Quaternary Geology 	3
 3.2 Mini-Piezometer Installation 3.3 Elevation Survey and Water Levels. 3.4 Monitoring Well Development and Groundwater Sampling 3.5 Hydraulic Conductivity Testing 3.6 In-Situ Infiltration Testing 4.0 Regional Hydrogeological Setting. 4.1 Physiography 4.2 Quaternary Geology. 	. 4
 3.3 Elevation Survey and Water Levels	. 4
 3.4 Monitoring Well Development and Groundwater Sampling	. 4
 3.5 Hydraulic Conductivity Testing	4
 3.6 In-Situ Infiltration Testing	5
 4.0 Regional Hydrogeological Setting 4.1 Physiography 4.2 Quaternary Geology 	5
4.1 Physiography4.2 Quaternary Geology	6
4.2 Quaternary Geology	6
	6
4.3 Paleozoic Geology	6
	7
4.4 Water Well Records	7
4.4.1 Private Wells	7
4.4.2 Municipal Supply Wells	7
4.5 Regional Groundwater Flow	7
5.0 Local Hydrogeological Setting	8
5.1 Groundwater Quality	9
5.1.1 Anions and Nutrients	9
5.1.2 Dissolved Metals	9
5.2 Hydraulic Conductivity	9
5.3 Groundwater Flow and Average Linear Groundwater Velocity	10
5.4 Groundwater / Surface Water Interaction	10
5.5 In-Situ Infiltration Rates	11
6.0 Source Water Protection	12
6.1 Municipal Supply Wells and Wellhead Protection Area (WHPA) Vulnerability Assessment	12
6.2 Intrinsic Aquifer Vulnerability (IAV)	

6.3	Sig	nificant Groundwater Recharge Areas (SGRA)	.13
6.4	Pot	tential Groundwater Quality Impacts	.13
6.5	Gro	oundwater under Direct Influence of Surface Water	.14
7.0	Deve	lopment Considerations	.15
7.1	Sea	asonal High Groundwater Separation	.15
7.	.1.1 F	Finished Floor Elevations (FFE)	.15
7.	.1.2 \$	Stormwater Management Pond	.15
7.	.1.3 I	Infiltration Galleries	.15
7.2	Wa	ater Balance	.16
7.	.2.1 I	Infiltration to Groundwater	.16
7.	.2.2 \$	Surface Runoff to Wetland	.16
7.3	De	sign Infiltration Rate	.16
8.0	Impa	ct Assessment	.17
8.1	Pot	tential Well Interference	.17
8.	.1.1 F	Private Wells	.17
8.	.1.2	Municipal Wells	.17
8.2	Env	vironmental Features	.17
9.0	Conc	lusions	.18
9.1	Re	commendations and Monitoring	.20
10.0	Limita	ations	.21
11.0	Refer	rences	.22

Figures

- Figure 1 Key Map & Study Area
- Figure 2 Existing Features
- Figure 3 Physiographic Landforms
- Figure 4 Quaternary Geology
- Figure 5 Bedrock Geology
- Figure 6 Regional Groundwater Flow
- Figure 7 Geological Cross-Section A-A'
- Figure 8 Geological Cross-Section B-B'
- Figure 9A Local Groundwater Flow Interpretation (August 4, 2021)
- Figure 9B Seasonal High Groundwater Flow Interpretation (May 6, 2017)
- Figure 10 WHPAs
- Figure 11 WHPA Vulnerability Scoring
- Figure 12 Intrinsic Aquifer Vulnerability
- Figure 13 SGRA & Vulnerability Scoring
- Figure 14 ICAs
- Figure 15 GUDI & Vulnerability Scoring

Tables

- Table 1AGroundwater Measurements
- Table 1B Groundwater Elevations (mAMSL)
- Table 1C Minipiezometer Groundwater and Surface Water Measurements
- Table 2Groundwater Chemistry Results Summary 2018
- Table 3 MECP WWIS Water Well Summary and Impact Assessment

Appendices

- Appendix A Draft Plan of Subdivision
- Appendix B Borehole Logs
- Appendix C Hydrographs
- Appendix D AquiferTest Data Sheets
- Appendix E Particle Size Distribution Graphs
- Appendix F Laboratory Certificates of Analysis

1.0 Introduction

1.1 Overview

MTE Consultants Inc. (MTE) was retained by Crescent Homes to conduct a Hydrogeological Assessment in support of a Draft Plan of Subdivision application for lands located at municipal addresses 190, 202, 210, and 216 Arkell Road in Guelph, herein referred to as the 'Subject Lands' (see **Figure 1)**.

The Concept Plan for the Subject Lands was prepared by MHBC, dated April 28, 2021, and is presented in **Appendix A**.

The Draft Plan includes the following:

- One municipal road (Street A);
- Multiple Residential Blocks (Blocks 1-5);
- One Open Space Block (Block 6);
- One Stormwater Management Facility Block (Block 7); and
- One Road Widening Block (Block 8).

The proposed development is to be municipally serviced, including sanitary sewage collection, domestic water supply, storm drainage, and utilities.

This report is to be read in conjunction with the following reports:

- Preliminary Stormwater Management Report 190-216 Arkell Road (dated October 10, 2018, Revised April 7, 2020, and December 3, 2021), prepared by MTE; and
- Functional Servicing Report 190-216 Arkell Road (dated October 10,218, Revised April 7, 2020 and December 3, 2021), prepared by MTE.

1.2 Scope and Methodology

The purpose of this Hydrogeological Assessment is to develop a Hydrogeological Conceptual Site Model (HCSM) to aid in the evaluation of potential impacts on the existing groundwater and/or surface water systems, potential groundwater users, and natural ecosystem functions as a result of the proposed development of the Subject Lands. Hydrogeological information gathered through the Hydrogeological Assessment will be used to support the civil design.

The following scope of work was implemented to meet these objectives:

- 1) Background Review
 - Review available mapping from the Ministry of Natural Resources and Forestry (MNRF), Ontario Geologic Society (OGS), Ministry of the Environment, Conservation and Parks (MECP), Grand River Conservation Authority (GRCA), and the City of Guelph.
 - Site description.
 - Proposed Development Design Features.
 - Review of select wells within 500 m of the Subject Lands to identify:
 - Neighbouring wells;
 - Well depths;

- Well construction details; and
- Local geologic information.
- 2) Field Investigation
 - Advance six overburden boreholes and install four overburden groundwater monitoring wells on-Site overseen by Peto MacCallum Ltd (PML) to assess subsurface geologic conditions;
 - Installation of one mini-piezometer;
 - Fitting of the monitoring wells and mini-piezometer with electronic pressure transducers (data loggers) to monitor groundwater levels on a continuous basis;
 - Collecting manual groundwater measurement to facilitate the local groundwater flow direction interpretation;
 - Hydraulic field testing of monitoring wells to determine hydraulic conductivity and average linear groundwater velocity;
 - Collection of groundwater quality samples to document pre-construction (background) conditions; and
 - In-situ infiltration testing using a Guelph Permeameter to document existing infiltration rates of the native sediments.
- 3) Analysis and Reporting:
 - Provide a geologic and hydrogeological summary of the Subject Lands based on information gathered during the Hydrogeological Assessment;
 - Prepare geological cross-sections through the Subject Lands;
 - Assess the local shallow groundwater levels, flow direction, chemistry, and interaction with surface water;
 - Provide a seasonal high water table map to facilitate estimation of vertical separation distances from footings and utilities to the water table;
 - Estimate the pre-development water balance;
 - Provide an assessment of impacts the proposed development may have on water supply wells and surface water within 500 m of the Subject Lands; and
 - Provide a preliminary assessment of construction dewatering requirements (if any).

1.3 Additional Investigations

A Geotechnical Report was completed for the Subject Lands by Peto MacCallum Ltd. (Peto), dated April 20, 2017. Geological information collected during the geotechnical investigation was incorporated into the conceptual hydrogeological model of the Subject Lands.

A Phase I Environmental Site Assessment (ESA) was completed for the Subject lands by MTE, dated November 16, 2018 that identified potential environmental concerns within the limits of the Subject Lands. Therefore, a Phase II ESA was recommended.

A Phase II ESA was completed for the Subject Lands by MTE, dated January 10, 2020. Hydrogeological information collected during the Phase II ESA was incorporated into the conceptual hydrogeological model of the Subject Lands.

2.0 Subject Lands Description

The Subject Lands comprise an area of approximately 2.5 hectares (6.3 acres) and are located north of the Arkell Road and Summerfield Drive intersection. The Study Area for the Subject Lands, including the property boundary, geological cross-section locations, monitoring wells and existing features is illustrated on **Figure 2**.

The land use within the Subject Lands is residential. Currently, residential dwellings and associated landscaped and parking areas are present within the southern portion of the properties.

The City of Guelph Official Plan identifies the Subject Lands as within a 'Greenfield Area' and classifies the property as 'Low Density Greenfield Residential'. The City of Guelph Official Plan does not identify the Subject Lands as a Regulatory Floodplain; however, a Significant Natural Area is illustrated along the northwest boundary of the Subject Lands. The Ministry of Natural Resources and Forestry (MNRF) identifies this feature as the Torrence Creek Swamp Provincially Significant Wetland (PSW).

2.1 Adjacent Land Use

The Subject Lands are bounded to the southwest by a rural residential property and the Torrence Creek Swamp PSW is present further beyond. The Torrence Creek Swamp PSW is present to the north, a residential development is present to the east and Arkell Road is present to the south, with residential developments present further south.

The Burke Well and Pumping Station is located approximately 60 m southwest of the Subject Lands and houses one municipal well (Burke Well).

2.2 Topography and Drainage

The ground surface at the Subject Lands is generally flat with slopes ranging from 0.5% to 1.5%. Existing elevations within the Subject Lands range between 333.3 to 335.0 m above mean sea level (amsl). Under pre-development conditions, surface water runoff flows northwesterly towards the PSW.

A storm sewer is present along Arkell Road to the south, with three catch basins located within the roadway.

GRCA and MNRF online mapping illustrate a PSW north of the property, extending south and traversing the north property boundary. In addition, GRCA mapping illustrates a small surface water body within the west portion of the Subject Lands, presumed to be a landscaped feature. No other surface water bodies/courses are illustrated within or transecting the property.

The Subject Lands are located within the Torrance Creek Subwatershed. Tributaries of the Eramosa River (Torrance Creek) are located approximately 575 m north of the property. The Eramosa River flows to the Speed River which drains directly into the Grand River.

According to the GRCA, a large portion of the Subject Lands is located within a Regulation Limit, as defined by Ontario Regulation 150/06: *Grand River Conservation Authority: Regulation Of Development, Interference With Wetlands And Alterations To Shorelines And Watercourses.*

3.0 Field Program

3.1 Borehole Advancement and Monitoring Well Construction

A total of six boreholes (BH1 to BH6) were advanced at the Subject Lands between February 13 and March 21, 2017 as part of a geotechnical investigation completed by PML. Boreholes were advanced to depths ranging between approximately 6.6 to 8.1 mbgs and were observed by PML. Four of these boreholes were completed as groundwater monitoring wells.

These boreholes and monitoring wells allow for the assessment of the overburden geology and hydrogeological characteristics at the Subject Lands, including stabilized groundwater elevations and groundwater flow direction interpretations. The borehole locations and ground elevations were surveyed by MTE to a geodetic benchmark. Borehole and monitoring well locations are illustrated on **Figure 2**. Borehole logs are provided in **Appendix B**.

Following installation, monitoring wells were developed using Waterra[™] Surge Blocks to remove any accumulated sediments from the bottom of the well and to remove fine materials from the well screen and sand pack.

Soil conditions observed during borehole advancement at the Subject Lands generally consist of topsoil ranging in thickness from 0.1 to 0.3 m underlain by native silt, sand, and sand and gravel to the maximum investigated depth of 8.1 m bgs. Fill was encountered at borehole locations BH1 and BH6 underlying the topsoil material. The fill material was observed to extend to approximately 0.5 to 0.7 m bgs and was comprised of sand and gravel or silt.

Bedrock was not encountered in any of the boreholes advanced at the Subject Lands; however, it is anticipated to be approximately 18 to 30 m bgs (refer to **Section 4.3**).

Representative samples of the overburden were collected from the boreholes by PML at regular depth intervals. All recovered samples were returned to PML's laboratory for detailed visual inspection, classification, and select particle size distribution analysis. Particle distribution size analyses charts have been provided in **Appendix E**.

Additional drilling was undertaken at the Subject Lands in October 2019, as part of the Phase II ESA being completed for the Subject Lands at that time. A total of six boreholes were advanced at the Subject Lands to depths ranging between 1.5 to 6.1 mbgs. Three of these boreholes were completed as groundwater monitoring wells. Borehole logs are provided in **Appendix B**.

Soil conditions observed during the drilling activities completed for the Phase II ESA were generally described as native silt / silty sand / sand and gravel materials. A silt unit was encountered at borehole location MW106-19 underlying the native coarser-grained sediments above.

3.2 Mini-Piezometer Installation

One mini-piezometer was installed within the PSW in the north portion of the Subject Lands on October 9, 2019. The mini-piezometer location is illustrated on **Figure 2**.

3.3 Elevation Survey and Water Levels

The monitoring wells, mini-piezometer and boreholes used in the hydrogeological assessment were surveyed to a geodetic datum by MTE. The elevation surveys allow for groundwater and surface water levels collected from each monitoring well and mini-piezometer to be converted to elevations in metres above mean sea level (mamsl), allowing for the assessment of horizontal and vertical hydraulic gradients and groundwater flow directions.

Manually measured groundwater levels were collected from the first set of four monitoring wells (where accessible) on 20 occasions between March 2, 2017, and August 4, 2021; and from the second set of three monitoring wells on nine occasions (where accessible) between September 5, 2019, and August 4, 2021. Manually measured groundwater and surface water levels were collected at the mini-piezometer on 12 occasions between October 8, 2019, and August 4, 2021. **Tables 1A, 1B, and 1C** summarize the manually measured groundwater and surface water levels water levels and elevations.

Data loggers were installed within each of the first four monitoring wells on March 27, 2017. Data loggers measure the pressure (in centimetres of water) above the logger at a predetermined time interval, which can then be used to calculate a groundwater level and elevation. The data loggers installed at the Subject Lands were set to record a pressure at a time interval of every 1 hour. Groundwater elevation information attained from the data loggers and manually measured water levels has been compiled on hydrographs presented in **Appendix C**.

Groundwater elevations measured by data loggers were observed to range between 329.37 mamsl (MW2) and 334.02 mamsl (MW4) throughout the monitoring period. It is noted that the ground surface elevation at MW4 is 333.24 mamsl. Therefore, the measured maximum groundwater elevation at MW4 represents saturated conditions near ground surface. In addition, a wet area was observed at the ground surface in the vicinity of MW4 in 2017.

3.4 Monitoring Well Development and Groundwater Sampling

The monitoring wells were developed using a Hydrolift pump and Waterra[™] tubing and footvalve fitted with a surge block to remove accumulated sediments from the bottom of the well and to remove fine materials from the well screen and sand pack. Monitoring well development was deemed complete once a minimum of three well volumes was removed, water was observed to be silt-free, and/or recovery rates were observed to stabilize.

MTE collected groundwater samples from two on-Site monitoring wells (one hydraulically upgradient [MW4] and one hydraulically down-gradient [MW2]) on October 5, 2018. Prior to sample collection, a minimum of three well volumes was purged from the well based on the recorded water levels.

The samples were placed in laboratory supplied sample containers and transported on ice, under chain-of-custody, to ALS Laboratories in Waterloo, Ontario. Standard QA/QC protocols were followed as outlined by the (MECP) guidance documents.

3.5 Hydraulic Conductivity Testing

Qualitatively, hydraulic conductivity (K) is a parameter describing the ease with which groundwater flows through a porous medium. Relatively large K values are attributed to permeable units, i.e. sand and gravel, while small values are attributed to less permeable material, i.e. silt or clay. Representative values for hydraulic conductivity for various soil types are presented in Freeze and Cherry (1979).

MTE conducted single well hydraulic response tests on select on-Site monitoring wells in March 2017 (MW2 and MW3) and May 2017 (MW4 and MW5) following well development. A slug of known displacement was rapidly introduced (falling head test) and removed (rising head test) from the well as a means of inducing an immediate groundwater level response. Groundwater level recovery was monitored using a data logger programmed to collect groundwater levels every half second. Where possible, response tests were carried out three times using solid slugs of different displacement volumes to assess the viability of assumptions underlying the slug test analysis methods.

Prior to analysis, recovery data was normalized to compare coincidence between tests. Coincidence between tests suggests assumptions underlying conventional analysis methods can be considered valid (Butler et. Al., 2003). For wells with acceptable coincidence responses, a single representative test was selected and analyzed using the Bouwer & Rice model using the AquiferTest© Pro software package (Waterloo Hydrogeologic Inc., 2016) to estimate the horizontal hydraulic conductivity (K) of the unconfined saturated materials beneath the Subject Lands.

3.6 In-Situ Infiltration Testing

MTE completed test pit and in-situ infiltration testing at the Subject Lands on November 19, 2021. Four test pits (TP101-21 through TP104-21) were advanced at the Subject Lands to depths ranging from 0.5 to 1.6 mbgs for infiltration testing purposes using a mini-excavator operated by Steve Neeb of Neeb Excavating Inc. which was observed by MTE. The test pit locations are illustrated on **Figure 2**.

Infiltration tests were completed using a Soil Moisture 2800 K1 Guelph Permeameter in 0.05 m diameter x 0.16 to 0.20 m deep boreholes which were hand augered through the base of the test pit bottom in native overburden sediments in which the permeameter base tip was placed. Water levels within the combined reservoir of the Guelph Permeameter were recorded at regular time intervals to obtain time-varying infiltration rates of the sediment unit being tested.

The field saturated hydraulic conductivity (Kfs) of the tested materials was calculated using the Guelph Permeameter K-sat calculator, available for download on the soil moisture website (soilmoisture.com).

4.0 Regional Hydrogeological Setting

4.1 Physiography

The Subject Lands are located within the physiographic region known as the Guelph Drumlin Field. This region primarily consists of stoney till within the drumlins and deep gravel terraces in the intervening areas (*Chapman and Putnam*, 1984). **Figure 3** illustrates the Subject Lands as being located within a drumlin field, and, in this area, the drumlins are almost entirely comprised of sandy Wentworth Till (Karrow, 1967).

4.2 Quaternary Geology

Geology throughout the City of Guelph is comprised of three distinct till units identified from youngest to oldest as the Wentworth Till, the Middle Maryhill Till and the Catfish Creek Till, overlying bedrock. The Wentworth Till is described as a coarse-grained sandy to silty sand till which is often bouldery or stony (Karrow, 1968). This unit is generally found at ground surface throughout the City of Guelph and includes glacial features such as drumlins, found within the Guelph drumlin field, and the Galt and Paris moraines. The till thickness is described as variable, ranging between 15 to 30 m below drumlins and moraines, while thicknesses are much lower within low-lying areas.

The Quaternary Geology Map (**Figure 4**) identifies regional surface deposits of sand and gravel within the area of the Subject Lands, which is consistent with the drumlin field landform surrounding the Subject Lands, as shown on **Figure 3**.

4.3 Paleozoic Geology

The City of Guelph is underlain by the Guelph Formation, characterized as sandstone, shale, dolostone and siltstone, as shown by **Figure 5**.

Bedrock was not encountered during the on-Site drilling programs (Section 3); however, according to the depth to bedrock reported in MECP well records in the area (namely MECP Well ID No.'s 6702585 and 6702584, located approximately 160 m and 240 m west, respectively) it is anticipated that bedrock is approximately 18 to 30 m bgs.

4.4 Water Well Records

4.4.1 Private Wells

Hydrogeological data related to private supply wells within 500 m of the Subject Lands were obtained from water well records on file with the MECP. Based on data in the MECP Water Well Information System (WWIS) online database (searched November 2, 2021), a total of 76 well records were located within 500 m of the Subject Lands. Of the 76 wells:

- 41 wells were identified as being water supply wells, including one municipal well and two located within the Limits of the Subject Lands;
- 19 wells were identified as test holes, observation or monitoring wells;
- One well was identified as a dewatering well;
- Nine wells were identified as "abandoned"; and
- Six well records did not specify the well final status.

4.4.2 Municipal Supply Wells

The Burke Well, located approximately 60 m southwest of the Subject Lands, represents the closest municipal well to the Subject Lands. This well is described by the City of Guelph as an "important current and future water source" for the City of Guelph as it provides 8% of the City's water supply. The Burke Well is a bedrock well, drawing from the deep aquifer system (Jagger Hims, 1998). The well depth is 79.6 m bgs within the Guelph – Middle Gasport Formation.

The Carter Wellfield is located approximately 1.8 km northeast of the Subject Lands and houses two wells (the Carter Wells) located approximately 3 m apart. The wells are bedrock wells, drawing from the shallow bedrock; however, the shallow bedrock in this area is interpreted to be hydraulically connected to the water table and therefore some water is supplied by Torrence Creek (LERSPC, 2015). As a result, the Carter Wells are classified as Groundwater Under the Direct Influence of Surface Water (GUDI) wells as outlined in Ontario Regulation 170/03: *Drinking Water Systems.* The well depths are 20.7 m bgs within the Guelph Formation.

4.5 Regional Groundwater Flow

The City of Guelph relies almost exclusively on groundwater for its potable water supply

(LERSPC, 2015). In total, 25 municipal supply wells are located throughout the City of Guelph, the majority of which draw water from the deep confined bedrock of the Gasport (formerly Amabel), Guelph, Eramosa and Goat Island Formations. A regional aquitard is present within the Eramosa Formation (the Vinemount Member), which confines the Gasport Formation (LERSPC, 2015).

The regional groundwater flow direction was determined based on the following:

Regional groundwater elevations provided from the GRCA (updated 2021);

- The presence of a PSW north of the Subject Lands;
- The presence of Torrence Creek located approximately 575 m northeast of the Subject Lands;
- The presence of the Burke municipal well approximately 60 m southwest of the Subject Lands; and
- Ground surface topography in the area surrounding the Subject Lands generally slopes to the north.

Based on these factors, the regional groundwater flow is expected to be generally southerly to southwesterly in the vicinity of the Subject Lands, as shown on **Figure 6**.

5.0 Local Hydrogeological Setting

The monitoring wells and boreholes advanced during the geotechnical and environmental investigations were used to interpret the local hydrostratigraphic units and generate two geological cross-sections. Local geological cross-sections (Cross-section A-A' and Cross-section B-B') are presented on **Figures 7 and 8**.

Geological Cross-Section A-A' (Figure 7):

- Extends approximately 254 m from north to south through the Subject Lands and lands to the south.
- Illustrates relatively flat topography.
- Illustrates the subsurface to consist of topsoil underlain by coarse-grained sand and gravel / sand sediments. A layer of silt is present between the topsoil and coarse sediments in the vicinity of the proposed infiltration cell. The sand unit is underlain by a roughly 10 m thick silt unit overlying bedrock comprised of limestone and shale.
- Illustrates the local water table to be at an elevation of approximately 331.5 mamsl across the cross-section.
- Illustrates the seasonal high water table to be at an elevation of approximately 334.3 mamsl across the cross-section and the seasonal high water table is roughly present at ground surface in the north portion of the cross-section, within and in the vicinity of the PSW.

Geological Cross-Section B-B' (Figure 8):

- Extends approximately 174 m from west to east through the Subject Lands.
- Illustrates gently undulating topography.
- Illustrates the subsurface to consist of topsoil underlain by coarse-grained sand and gravel / sand sediments. A layer of silt is present between the topsoil and coarse sediments in the vicinity of MW3 and a layer of fill is present between the topsoil and sand and gravel unit in the vicinity of BH6, extending to the east where residential dwellings are located within the Subject Lands. A layer of silt is present underlying the coarse-grained sediments across the Subject Lands, located at 325.8 mamsl in the west portion of the Subject Lands and 331.8 mamsl in the east portion of the Subject Lands.

• Illustrates the local water table to be at an elevation of approximately 330.1 mamsl in the west portion of the cross-section and 330.7 mamsl in the east portion of the cross-section.

5.1 Groundwater Quality

Groundwater samples collected from the two monitoring wells on October 5, 2018 (MW2 and MW4) were submitted and analyzed for general chemistry parameters to document the groundwater chemistry prior to development. The analytical results are summarized in **Table 2**. Laboratory Certificates of Analysis are provided in **Appendix F**.

5.1.1 Anions and Nutrients

Detectable concentrations of Ammonia, Chloride, Fluoride, Nitrate, and Sulfate were reported for the samples collected from the two monitoring wells. The highest concentration of Nitrate (6.29 mg/L) was reported for monitoring location MW-4, which is located hydraulically upgradient within the Subject Lands, adjacent to the PSW at the north end of the property. A nitrate concentration of 1.59 mg/L was reported at monitoring location MW-2 which is interpreted as hydraulically down-gradient.

5.1.2 Dissolved Metals

The following parameters were detected in one or both of the groundwater samples collected from the Subject Lands:

- Barium
 Silicon
- Calcium
 Sodium
- Copper
 Strontium
- Magnesium
 Zinc
- Potassium

Sodium and Chloride concentrations reported from monitoring location MW-2 were 60.4 mg/L and 76.0 mg/L, respectively. These concentrations were interpreted to results from road salt application on the roadway south of the Subject Lands. Concentrations of these parameters at monitoring location MW-4 were reported as 21.6 mg/L and 35.9 mg/L, respectively, indicating a reduction of the concentrations across the Subject Lands from south to north.

5.2 Hydraulic Conductivity

The normalized plots for MW2 through MW5 show an acceptable coincidence, suggesting the assumptions underlying conventional analysis methods are valid.

Based on the results of the in-situ response tests, horizontal hydraulic conductivity (K-value) estimates throughout the Subject Lands were calculated to range from 2.1×10^{-6} m/sec to 2.1×10^{-4} m/sec with a geometric mean of 2.5×10^{-5} m/sec, which is consistent with average published values for sand and gravel soil (Freeze and Cherry, 1979). **Table 6.1** summarizes the K-value estimates for each analyzed data set. A summary of the analyses carried out in AquiferTest© Pro are provided in **Appendix E**.

Well ID	Estimated Hydraulic Conductivity (m/sec)
BH/MW2	5.5 x 10 ⁻⁵
BH/MW3	1.6 x 10 ⁻⁵
BH/MW4	2.1 x 10 ⁻⁶
BH/MW5	2.1 x 10 ⁻⁴
Geometric Mean	2.5 x 10⁻⁵

Table 5.2: Summary of Hydraulic Conductivity (K) Estimates

5.3 Groundwater Flow and Average Linear Groundwater Velocity

Groundwater flow mapping was conducted for the Subject Lands using the August 4, 2021, groundwater elevation data.

The interpreted local shallow groundwater flow direction is southerly to westerly across the Subject Lands, as shown on **Figure 9A**. This is consistent with the regional groundwater flow direction (southwesterly, GRCA, 2021).

An average horizontal hydraulic gradient was calculated to be 0.01 m/m based on the August 4, 2021, groundwater levels.

Assuming an average horizontal conductivity of 2.5x 10⁻⁵ m/s (Section 5.2) and using the horizontal hydraulic gradient of 0.01 m/m calculated above, the average linear groundwater velocity was calculated using Darcy's Law in the following equation:

$$q = (-Ki)/n_e$$

Where:

q = groundwater flux ($m^3/m^2/time$)

K = effective hydraulic conductivity (2.48 x 10^{-5} m/s)

i = horizontal hydraulic gradient (0.01 m/m)

 n_e = effective soil porosity (0.3 typical for a sandy soil, Freeze and Cherry, 1979)

Using the above values, the average linear groundwater velocity at the Subject Lands is estimated to be approximately 26 m/year.

The seasonal high groundwater flow interpretation is presented on **Figure 9B**. The date selected for the seasonal high groundwater flow interpretation was May 6, 2017, since, based on the hydrographs, this date represents a time period within the 2017 spring freshet and the 2017 spring freshet resulted in the highest seasonal high water table during the monitoring period.

5.4 Groundwater / Surface Water Interaction

Manual surface water and groundwater measurements collected from MP1-19, installed within the PSW, are provided in **Table 1C.** Based on the measurements collected, and the repeatedly observed absence of standing water in the vicinity of the MP1-19, a downward vertical hydraulic gradient between the surface water and local groundwater is interpreted to be present in this area.

A comparison of the groundwater levels observed within MP1-19 to those observed in MW4, located approximately 10 m south of MP1-19, found that the groundwater levels with MP1-19

were consistently above those within MW4. Therefore, a downward vertical hydraulic gradient between the shallow and deeper groundwater is interpreted to be present in this area.

Based on the above, it is interpreted that surface water infiltrates to the subsurface within the wetland acting to recharge the groundwater.

5.5 In-Situ Infiltration Rates

Calculating the Infiltration Rate was based on the methodology outlined by the Sustainable Technologies Evaluation Program (STEP) updated guidance on Low Impact Development Stormwater Management Planning and Design. As outlined on the STEP website, the water component of STEP is a partnership between the Toronto and Region Conservation Authority, Credit Valley Conservation, and Lake Simcoe Region Conservation Authority. Additional information about STEP is provided on their website at sustainabletechnologies.ca.

STEP has reviewed the Low Impact Development Stormwater Management Planning and Design Guide first completed in 2010 and provided updated guidance to the 2010 Guide using a wiki website (wiki.sustainabletechnologies.ca). STEP recommends using the online wiki page as the primary resource for LID planning and design.

Based on the field measurements, a Kfs has been calculated for each of the tested locations, summarized in **Table 5.5** below.

Test Pit	Depth (mbgs)	Soil Type	Median Kfs ¹ (cm/sec)	Median Kfs (mm/hr)
TP101-21	1.0	Silty SAND	8.9x10 ⁻⁵	3
TP101-21	P101-21 1.6 SAND, trace silt, trace gravel		3.5x10 ⁻⁴	13
TP102-21	0.8	SAND and GRAVEL	5.8x10 ⁻³	209
TP103-21	0.5 SAND and GRAVEL		5.4x10 ⁻³	194
TP104-21	0.9	SAND and GRAVEL	4.3x10 ⁻³	155

Table 5.5: Field Saturated Hydraulic Conductivity (Kfs) Summary (mm/hr)

The geotechnical report completed by PML provides infiltration rates for the "major near surface soil units" at the Subject Lands. The report states an infiltration rate of 30 mm/hr for the sand/sand and gravel units beneath the Subject Lands. A comparison of the infiltration rate provided by PML to the Infiltration Rates calculated above indicates that the sand and gravel units have a higher infiltration rate while the sand / silty sand units are lower. The discrepancy between the value provided in the geotechnical report, which is an infiltration estimate based on grain size, and the calculated infiltration rates above is attributed to the heterogeneity of the insitu sediments.

6.0 Source Water Protection

The identification and assessment of vulnerable areas required through the Source Water Protection process has been completed for the Grand River Source Protection Area through a series of technical studies undertaken by the Lake Erie Region Source Protection Committee (LERSPC), the GRCA, and the City of Guelph, which have delineated the areas requiring protection and identifying land use activities that could pose potential threats. The results of those studies are summarized in Chapter 8 of the Grand River Source Protection Area Assessment Report (LERSPC, 2015).

6.1 Municipal Supply Wells and Wellhead Protection Area (WHPA) Vulnerability Assessment

With respect to source water protection, Wellhead Protection Areas (WHPA) are established for each municipal supply well through the delineation of well "capture zones." Part V of the Clean Water Act (CWA) Technical Rules (MOE, 2006) provides specific details for WHPA delineation.

The March 2010 City of Guelph Source Protection Project Groundwater and Surface Water Vulnerability Report defines a capture zone as:

"the projection onto the land surface of the portion of the three-dimensional volume through which groundwater travels towards a water supply well within a defined period of time." (AquaResource Inc., 2010)

WHPAs are divided into four categories based on travel time to the well, and are summarized in the table below.

Category	Description	
WHPA-A	A radius of 100 m from the outer boundary of the well	
WHPA-B Time-of-travel to the well ≤2 years (not including WHP)		
WHPA-C	Time-of-travel to the well is >2 years, but \leq 5 years	
WHPA-DTime-of-travel to the well is >5 years, but ≤ 25 years		

Based on data from GRCA Web-Mapping software, the majority of the Subject Lands are located within WHPA-B (\leq 2 year time-of-travel) of the nearby Burke municipal supply well. The southwest corner of the Subject Lands is observed to be located within WHPA-A (100 m zone), as shown on **Figure 10**.

The category of the WHPA and the characterization of the aquifer in terms of its susceptibility to surface/near surface sources of contamination allows for the calculation of a vulnerability score within a WHPA, which ranges from 2 to 10 (where 10 represents the highest vulnerability) (AquaResource Inc., 2010). Preferential pathways are also taken into consideration during the establishment of vulnerability scores, as they can allow contaminants to bypass natural features which protect the aquifer.

Both the vertical movement (intrinsic vulnerability) and horizontal movement (WHPA time-oftravel) of groundwater were incorporated into the establishment of the WHPA vulnerability scores. Usually, the most vulnerable areas in a WHPA (score of 8 to 10) are in WHPA-B (≤2 year time-of-travel) (Lake Erie Region Source Protection Committee, 2015). As illustrated in **Figure 11**, the Subject Lands have been designated with three different WHPA vulnerability scores. A vulnerability score of 8 (considered moderate to high) has been assigned to more than half of the Subject Lands area, which is shown to extend toward the northern portion of the Subject Lands and beyond, into the wetland. The southeast corner of the Subject Lands has been assigned a moderate vulnerability score of 6, which implies that groundwater sources are adequately protected from surface contamination. Due to the close proximity to the Burke municipal supply well (approximately 60 m southwest of the Subject Lands), the southwest portion of the Subject Lands has been assigned a WHPA vulnerability score of 10, which represents the highest vulnerability.

6.2 Intrinsic Aquifer Vulnerability (IAV)

Intrinsic vulnerability of an aquifer is based on the idea that the natural environment (i.e. properties of the surface and subsurface including the unsaturated zone material, topography, depth to water table or depth to aquifer, preferential pathways, etc.) can provide some degree of protection against groundwater contamination from the surface, but does not take into consideration the properties of the contaminant itself (Liggett, Lapcevic, & Miller, May 2011). A map of intrinsic vulnerability is generated based on interpolating data between associated wells to generate a numerical score or index, with consideration given to observed static water levels, the overburden soil type, and the thickness of the unit above the aquifer. The generated maps are based on contaminant travel time from the ground surface through the subsurface and to the underlying contributing aquifer (AquaResource Inc., 2010).

Figure 12 illustrates the Subject Lands in relation to the City of Guelph with respect to intrinsic vulnerability. According to the GRCA, the intrinsic vulnerability of the aquifer at the Subject Lands has been designated a score of medium, which represents the susceptibility of the aquifer to contamination.

6.3 Significant Groundwater Recharge Areas (SGRA)

Groundwater recharge occurs where precipitation and snowmelt infiltrate into the ground to feed aquifers, watercourses, and wetlands. SGRAs are typically associated with coarse-grained sediments (i.e. sands and gravels) or very shallow overburden material covering upland areas on the landscape. SGRA vulnerability scores of 2, 4, or 6 are assigned to areas which are designated as low, medium, or high SGRA vulnerability areas, respectively.

Based on the available GRCA online GIS data, the Subject Lands are depicted within a SGRA with an assigned medium vulnerability score of 4, as shown on **Figure 13**.

6.4 Potential Groundwater Quality Impacts

According to the Grand River Source Protection Plan, the analysis of the historical raw groundwater chemistry in each municipal well system for the City of Guelph has been used to determine whether any contaminants are present, and whether they have contributed to a decline in drinking water quality (Grand River Conservation Authority, 2015). Subsequently, zones of Issue Contributing Areas (ICA) were developed to define areas where past or current activities have or are likely to adversely affect the quality of drinking water in a given municipal well in which contaminants have already been measured at elevated levels.

An ICA is defined by the Grand River Source Protection Plan as:

"The area within which activities have or are likely to contribute to the elevated contaminant at the well...in most cases, an ICA is the 25 year time-of-travel capture zone." (Grand River Conservation Authority, 2015)

According to GRCA online GIS data, the Subject Lands are not located within an Issue Contributing Area (ICA).

Elevated concentrations of contaminants associated with road salt application were identified as a concern to groundwater quality within the ICA (Lake Erie Region Source Protection Committee, 2015). The application of road salt and the handling and storage of road salt are prescribed drinking water threats under the Clean Water Act (CWA). Road salt as a drinking water threat refers to any product containing sodium and/or chloride that is used to maintain roads and pedestrian areas.

The MECP Tables of Drinking Water Threats identify sodium and chloride as contaminants that could make their way into surface and groundwater from road salt application, storage and handling. At typical concentrations in drinking water, sodium and chloride are not risks to human health. However, at concentrations greater than 20 mg/L, sodium intake may pose a health concern for people with dietary restrictions. At a concentration of 250 mg/L, chloride imparts a salty taste to drinking water.

Classifying the application of road salt as a significant drinking water threat is dependent on vulnerability zones, vulnerability score and the total impervious surface area. Although the Subject Lands are not located within an ICA, it is anticipated that the imperviousness of the Subject Lands will increase as a result of the proposed residential development and that road salt application will be required thereafter. Because the Subject Lands are located within an SGRA of medium vulnerability (i.e. vulnerability score of 6), it is reasonable to conclude that a Salt Management Plan (SMP) may be required. The need for a SMP, however, should be revisited once a development plan for the Subject Lands has been finalized in order to help mitigate the effect of road salt on groundwater quality.

6.5 Groundwater under Direct Influence of Surface Water

The Grand River Source Protection Area Approved Assessment Report (LERSPC, 2021) delineates the vulnerability areas for groundwater wells whose water supply is groundwater under the direct influence (GUDI) of surface water. As stated in the AAR (2021), there are three GUDI systems in Guelph: The Glen Collector system, Arkell 1 Well, and the Carter Wells. Map 7-18 provided in the AAR shows the Burke well and the majority of the Subject Lands are located within an area defined as "Wellhead Protection Area E Vulnerability" which delineates the GUDI Vulnerability Area associated with the Carter Wells located approximately 1.8 km north of the Subject Lands. The GUDI Vulnerability area is shown on **Figure 15**.

As stated in the AAR, the Carter Wells consist of two wells that obtain water from the shallow bedrock of the Guelph Formation. The wells are located adjacent to Torrance Creek and the shallow bedrock groundwater system is hydraulically connected to the water table with some of the water supplied by Torrance Creek. The Vulnerability score associated with the GUDI Vulnerability Area (WHPA-E) is 8, representing an intermediate score based on the current and proposed land uses within the area and existing and proposed stormwater systems discharging to Torrance Creek.

7.0 Development Considerations

7.1 Seasonal High Groundwater Separation

The City of Guelph Development Engineering Manual specifies a minimum separation distance of 0.5 m between basement elevations and the seasonal high groundwater elevation and 1.0 m between the base of an infiltration gallery and the seasonal high water table (COGECIS, 2019). In addition, where the seasonal high water table is "higher or lower than the proposed permanent pool level of stormwater management ponds" a clay liner is required to ensure the permanent pool level is maintained (COGEGIS, 2019).

7.1.1 Finished Floor Elevations (FFE)

Based on the FFE provided on drawing AG1.1 (Area Grading Plan, MTE, December 3, 2021), the proposed FFE are sufficiently above the seasonal high groundwater table whereby the minimum separation distance requirement of 0.5 m is satisfied.

7.1.2 Stormwater Management Pond

The base elevation of the proposed SWM pond located in the west portion of the Subject Lands, provided on drawing AG1.1 (Area Grading Plan, MTE, December 3, 2021), is 333.20 mamsl. Seasonal high groundwater elevation contours within / in the vicinity of the SWM Facility indicate the seasonal high groundwater table is present at an elevation of approximately 333.15 mamsl beneath the SWM Facility. Therefore, there is minimal separation between the seasonal high groundwater elevation and the proposed base elevation of the SWM Facility.

7.1.3 Infiltration Galleries

An infiltration cell is proposed north of the SWM Facility with a proposed base elevation of 334.20 mamsl. Seasonal high groundwater table elevation contours within / in the vicinity of the infiltration cell indicate the seasonal high groundwater table is present at an elevation between 333.15 and 333.25 mamsl beneath the infiltration cell. Therefore, the base elevation of the proposed infiltration cell is sufficiently above the seasonal high groundwater table whereby the minimum separation distance of 1.0 m is satisfied.

Based on MTE drawing AG1.1, two additional infiltration galleries are proposed in the south portion of the Subject Lands; however, proposed base elevations have not been provided at this time. It is understood that the grade of the Subject Lands is proposed to be raised during development. Any soils brought to the Subject Lands for grading are required to have the same or better infiltration rates as current conditions. In addition, base elevations of the proposed infiltration galleries should be located a minimum of 1.0 m above the seasonal high water table.

If, upon final confirmation of building design and Site grading, it is anticipated that the water table may be intercepted during construction activities, the need for construction dewatering will have to be assessed, which may result in the need for a Permit to take Water (PTTW) or Environmental Activity Sector Registry (EASR).

Further assessment may be required once design details are finalized and could be conducted during the detailed design stage of the development process.

7.2 Water Balance

A monthly water balance was completed for the Subject Lands for pre- and post-development conditions using the Thornthwaite and Mather method (1957) as part of the Stormwater Management (SWM) Report completed for the Subject Lands by MTE. As outlined in the SWM Report, the City requires that Low Impact Design (LID) best management practices be used to mimic pre-development recharge rates. Infiltration galleries are proposed to direct flow from roofs on-Site wherever possible. The SWM facility will introduce an infiltration cell to further promote groundwater recharge. Additionally, increasing the amount of pervious landscaped areas throughout the Subject Lands will improve groundwater recharge by means of passive infiltration.

7.2.1 Infiltration to Groundwater

Based on the water balance calculations provided in the SWM report (under separate cover), the pre-development passive infiltration volume at the Subject Lands is 7,580 m³/year whereas the post-development passive infiltration volume is 6,721 m³/year. However; through the implementation of lot-level infiltration galleries (wherever possible) and an end-of-pipe infiltration cell operable during non-winter months, the post-development passive infiltration volume can be increased to 7,816 m³/year. This equates to an equivalent infiltration rate across the Subject Lands of 251.6 mm/year, exceeding the target established in the Torrence Creek Subwatershed Study (TCSS) of 150mm/year.

7.2.2 Surface Runoff to Wetland

Based on calculations provided in the SWM report, the pre-development volume of runoff generated by the Subject Lands is 5,595 m³/year.

Under post-development conditions, the total area of the Subject Lands that will drain to the PSW is approximately 2.04 hectares. The increased impervious areas under post-development conditions will inevitably result in an increased annual runoff volume to the PSW. Approximately 7,347m³/year of runoff is generated by the Subject Lands under post-development conditions, which equates to an annual surplus of 1,752 m³/year of surface runoff volume to the PSW complex. On a monthly basis, pre-development volumes are sustained and monthly distribution of excess runoff is well balanced (refer Figure 5.4 in the SWM Report).

7.3 Design Infiltration Rate

The STEP wiki-page pertaining to Design Infiltration Rates recommends that a safety correction factor between 2 to 3 be applied to the measured infiltration rate (i.e. the calculated Kfs value) from the in-Situ testing to apply conservatism. The following table is provided on the wiki-page which outlines factors that should be taken into consideration when determining an appropriate safety factor:

Lower Value (closer to 2)	Higher Value (closer to 3)	
Catchment <100 m ²	Catchment >100 m ²	
Permeameter or Percolation Test on Site	Double Ring infiltrometer on Site, or grain size analysis is used	
Loamy or Sandy Soil Texture	Clayey Soil Texture	

Selecting a Safety Factor

Lower Value (closer to 2)	Higher Value (closer to 3)	
No variation in geologic formation, soil texture or bulk density within 1.5 meters below the proposed bottom of the practice.	Variation in geologic formation, soil texture or bulk density within 1.5 meters below the proposed bottom of the practice.	
No nearby sensitive receptors	Sensitive receptors in near proximity (e.g. septic systems, building foundations).	

Selecting a Safety Factor

Any soils brought to the Site for grading are required to have the same or better (i.e. higher) infiltration rates as current conditions.

8.0 Impact Assessment

8.1 Potential Well Interference

8.1.1 Private Wells

An MECP well record search indicates the presence of 40 domestic or livestock private water supply wells within a 500 m radius of the Subject Lands with two located within the limits of the Subject Lands. The well record details and impact assessment are summarized in **Table 3**. Individual well records are available through the MECP WWIS online database, searchable by Well ID.

A review of the well records found that the water supply wells within the Study Area were installed between 1950 and 1998. This area has undergone considerable development with residential subdivisions during this period. In addition, Figure 1 (Guelph Drinking Water System) within the 2020 Water Services' Annual and Summary Report completed by the City of Guelph shows the Subject Lands and lands within 500 m are located within a municipally serviced area.

Therefore, it is anticipated that these water supply wells are no longer used and impacts resulting from the proposed development are unlikely.

8.1.2 Municipal Wells

Two municipal wells fields, Burke and Carter, are located within a 2 km radius of the Subject Lands. In particular, the Burke well is located approximately 60 m southwest of the Subject Lands. GRCA online GIS mapping indicates that the majority of the Subject Lands is categorized within WHPA-B, where a small portion of the southwest corner of the Subject Lands is located within the Burke well WHPA-A. A review of available well records determined the Burke and Carter wells to be screened within bedrock at depths of approximately 79.9 m bgs and 20.7 m bgs, respectively. Construction of basements, if included in the development, will not extend to these depths, and therefore it is unlikely that any well interference will occur within the municipal wells located near the Subject Lands during the construction process.

8.2 Environmental Features

As outlined in Section 7.2.2, there in an increase in runoff volume to the PSW between pre- and post-development of 1,752 m³/year. However, as shown on Figure 5.4 of the SWM Report, on a monthly basis, pre-development volumes are sustained and monthly distribution of excess runoff is well balanced. Therefore, it is unlikely that the PSW will be negatively impacted by the increased annual infiltration volume following development.

During construction, cut-off collars may be used in excavated utility trenches to maintain natural flow regimes across the property and preserve flow conditions.

9.0 Conclusions

Based on this hydrogeological investigation, MTE offers the following findings:

<u>Geology</u>

- Stratigraphic conditions beneath the Subject Lands consist of coarse-grained (sand or sand and gravel) materials characteristic of a drumlin landform; and
- Bedrock is anticipated to be approximately 18 to 30 m bgs.

Hydrogeology

- Groundwater elevations measured by data loggers were observed to range between 329.37 mamsl (MW2) and 334.02 mamsl (MW4) throughout the monitoring period. The measured maximum groundwater elevation at MW4 represents saturated conditions near ground surface and a wet area was observed at the ground surface in the vicinity of MW4 in 2017.
- It is interpreted that surface water infiltrates to the subsurface within the wetland acting to recharge the groundwater.
- The regional groundwater flow direction is expected to be southerly to southwesterly in the vicinity of the Subject Lands.
- The local groundwater flow direction is interpreted to be southerly to westerly across the Subject Lands which is consistent with the regional groundwater flow direction.
- The average horizontal hydraulic gradient is estimated to be 0.01 m/m based on groundwater levels collected August 4, 2021.
- Maximum and minimum hydraulic conductivity values for the shallow, unconfined groundwater aquifer beneath the Subject Lands were calculated to range between 2.1 x 10⁻⁶ m/sec to 2.1 x 10⁻⁴ m/sec, with a geometric mean of 2.5 x 10⁻⁵ m/sec.
- The groundwater velocity of the shallow groundwater aquifer beneath the Subject Lands was calculated to be approximately 26 m/year.

Source Water Protection

- The Burke municipal supply well is located approximately 60 m southwest of the Subject Lands;
- The majority of the Subject Lands are located with WHPA-B of the Burke well. The southwest corner of the Subject Lands are located within WHPA-A (100 m zone) of the Burke well;
- The Subject Lands have been designated with WHPA vulnerability scores of 8 (moderate to high), 6 (moderate), and 10 (the highest vulnerability score);
- The intrinsic vulnerability of the aquifer at the Subject Lands has been designated a score of medium;

- The Subject Lands are located within a SGRA with a vulnerability score of 4 (medium);
- The Subject Lands are not located within an ICA; and
- The Subject Lands are located within a GUDI Vulnerability area associated with the Carter Wells located approximately 1.8 km north, with a vulnerability score of 8 (intermediate score).

Development Considerations

- The FFE are sufficiently above the seasonal high groundwater table whereby the minimum separation distance requirement of 0.5 m is satisfied.
- There is minimal separation between the seasonal high groundwater elevation and the proposed base elevation of the SWM Facility (approximately 5 cm).
- The base elevation of the proposed infiltration cell is sufficiently above the seasonal high groundwater table whereby the minimum separation distance of 1.0 m is satisfied.
- Proposed base elevations of the infiltration galleries in the south portion of the Subject Lands have not been provided at this time. It is understood that the grade of the Subject Lands is proposed to be raised during development. Any soils brought to the Subject Lands for grading are required to have the same or better infiltration rates as current conditions. In addition, base elevations of the proposed infiltration galleries should be located a minimum of 1.0 m above the seasonal high water table.
- The post-development infiltration volume is estimated to be 7,816 m³/year which is equivalent to an infiltration rate across the Subject Lands of 251.6 mm/year. This exceeds the target established in the TCSS (150mm/year).
- Approximately 7,347m³/year of runoff is generated by the Subject Lands under postdevelopment conditions, which equates to an annual surplus of 1,752 m³/year of surface runoff volume to the PSW complex. On a monthly basis, pre-development volumes are sustained and monthly distribution of excess runoff is well balanced (refer Figure 5.4 in the SWM Report).
- Calculated infiltration rates from in-situ testing completed at the Site ranged from 3 mm/hr (silty sand unit) to 209 mm/hr (sand and gravel unit).

Impact Assessment

- It is anticipated that the water supply wells within the Study Area are no longer used and impacts resulting from the proposed development are unlikely.
- It is unlikely that any well interference will occur within the municipal wells located near the Subject Lands during the construction process based on the screened depths of the municipal wells and/or the distance from the Subject Lands.
- Although there in an increase in runoff volume to the PSW between pre- and postdevelopment, on a monthly basis pre-development volumes are sustained and monthly distribution of excess runoff is well balanced. Therefore, it is unlikely that the PSW will be negatively impacted by the increased annual infiltration volume following development.

As construction details were not available at the time of this report, assumptions were made for preliminary calculations. Further assessment may be required once design details are finalized.

9.1 Recommendations and Monitoring

Based on findings of this hydrogeological investigation, MTE offers the following recommendations:

- Continuous groundwater monitoring should be ongoing, updated and utilized during final design of the development as well as updated information utilized during the design of the Draft Plan;
- On-site groundwater monitoring wells be maintained in accordance with Ontario Regulation 903 (as amended);
- Monitoring wells located within proposed construction areas will need to be decommissioned in accordance with Ontario Regulation 903 (as amended);
- Soils brought to the Subject Lands for grading must have the same or better infiltration rates as the current conditions;
- Based on policies outlined in the GRSPP, a Salt Management Plan is required for the Subject Lands, which will be undertaken by MTE during the final development design stages; and
- The use of cut-off collars during construction will assist in maintaining natural flow patterns across the property and preserve flow conditions to the existing wetland feature.

10.0 Limitations

Services performed by **MTE Consultants Inc.** (MTE) were conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the Environmental Engineering & Consulting profession. No other warranty or representation expressed or implied as to the accuracy of the information, conclusions or recommendations is included or intended in this report.

This report was completed for the sole use of MTE and Crescent Homes. The assignment was carried out in accordance with the Scope of Work described in Section 1 as reviewed with and agreed to by the Client. MTE makes no representation that the present report has dealt with all of the important environmental issues, except as provided in the Scope of Work. This report is not intended to be exhaustive in scope or to imply a risk-free facility. As such, this report may not deal with <u>all</u> issues potentially applicable to the Site and may omit aspects which are or may be of interest to the reader.

In addition, it should be recognized that a soil sample or groundwater level measurement represents one discrete portion of the Site at the time it is collected, and that the findings of this report are based on conditions as they existed during the time period of the investigation.

Any use which another party makes of this report, or any reliance on, or decisions to be made based upon it, are the responsibility of such parties. MTE accepts no responsibility for liabilities incurred by or damages, if any, suffered by another party as a result of decisions made or actions taken, based upon this report. Others with interest in the Site should undertake their own investigations and studies to determine how or if the condition affects them or their plans.

It should be recognized that the passage of time may affect the views, conclusions and recommendations (if any) provided in this report because environmental conditions of a property can change, along with regulatory requirements. Should additional or new information become available, MTE recommends that it be brought to our attention in order that we may determine whether it affects the contents of this report.

All of which is respectfully submitted,

MTE Consultants Inc.

they

Kassandra Wallace, B.B.R.M. Environmental Scientist 519-743-6500 ext. 1321 kwallace@mte85.com Peter A. Gray, P.Geo., QP_{ESA} VP, Senior Hydrogeologist 519-743-6500 ext. 1306 pgray@mte85.com

KLW: smk

M:\42063\104\02 - Reports\MTE Reports\Hydrogeology\4. 2021 Submission\04-Deliverables\42063-104_2021-12-03_rpt_Arkell Hydrogeological Assessment.docx

11.0 References

Armstrong, D.K. and Carter, T.R, 2010: *The subsurface Paleozoic stratigraphy of southern Ontario:* Ontario Geological Survey, Special Volume 7, 301 p;

Butler, J.J., McElwee, C.D., & Liu, W., 1996: Improving the Quality of Parameter Estimates from Slug Tests. Ground Water, 34(3), 480-490;

Butler, J.J., Garnett, E.J., & Healey, J.M., 2003: Analysis of Slug Tests in Formations of High Hydraulic Conductivity. Groundwater Water 41(5), 620-630;

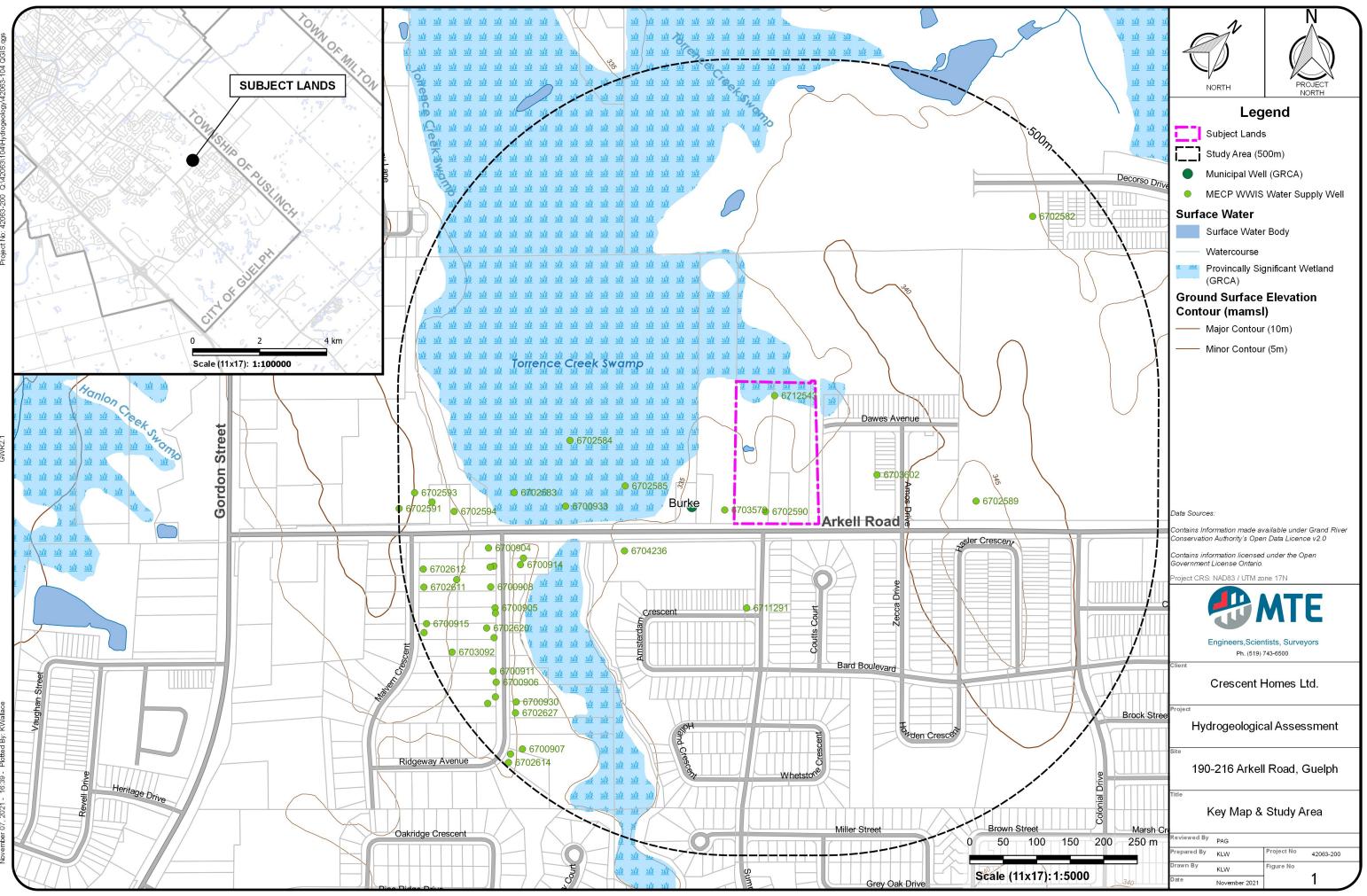
City of Guelph Engineering and Capital Infrastructure Services (COGECIS), 2016: Development Engineering Manual, Version 1, p. 28;

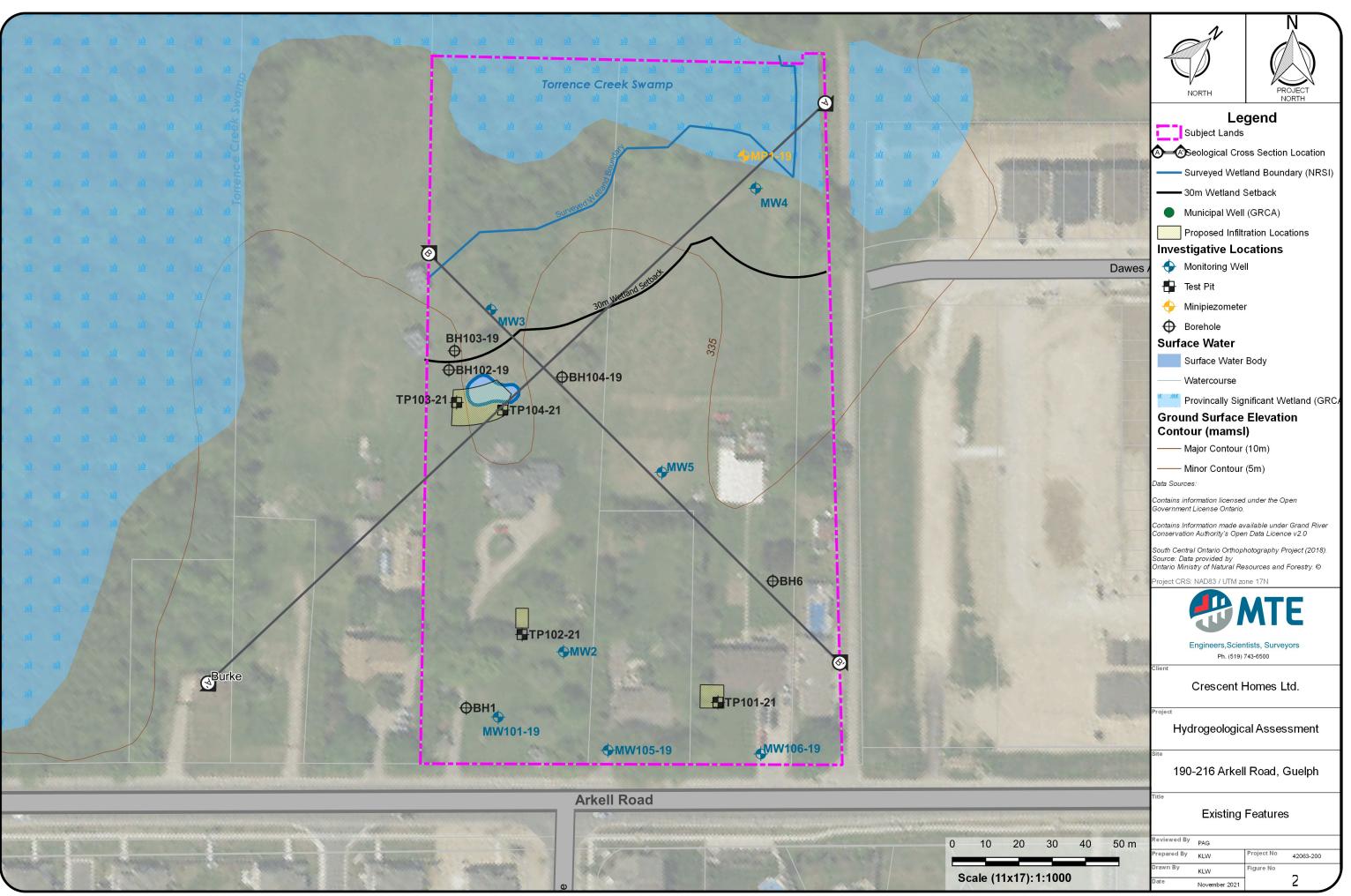
Credit Valley Conservation and Toronto and Region Conservation, 2010: *Low Impact Development Stormwater Management Planning and Design Guide – Version 1.0*, Table C1;

Freeze, R.A. and Cherry, J.A., 1979: *Groundwater;* Prentice-Hall Inc. Englewood Cliffs, New Jersey;

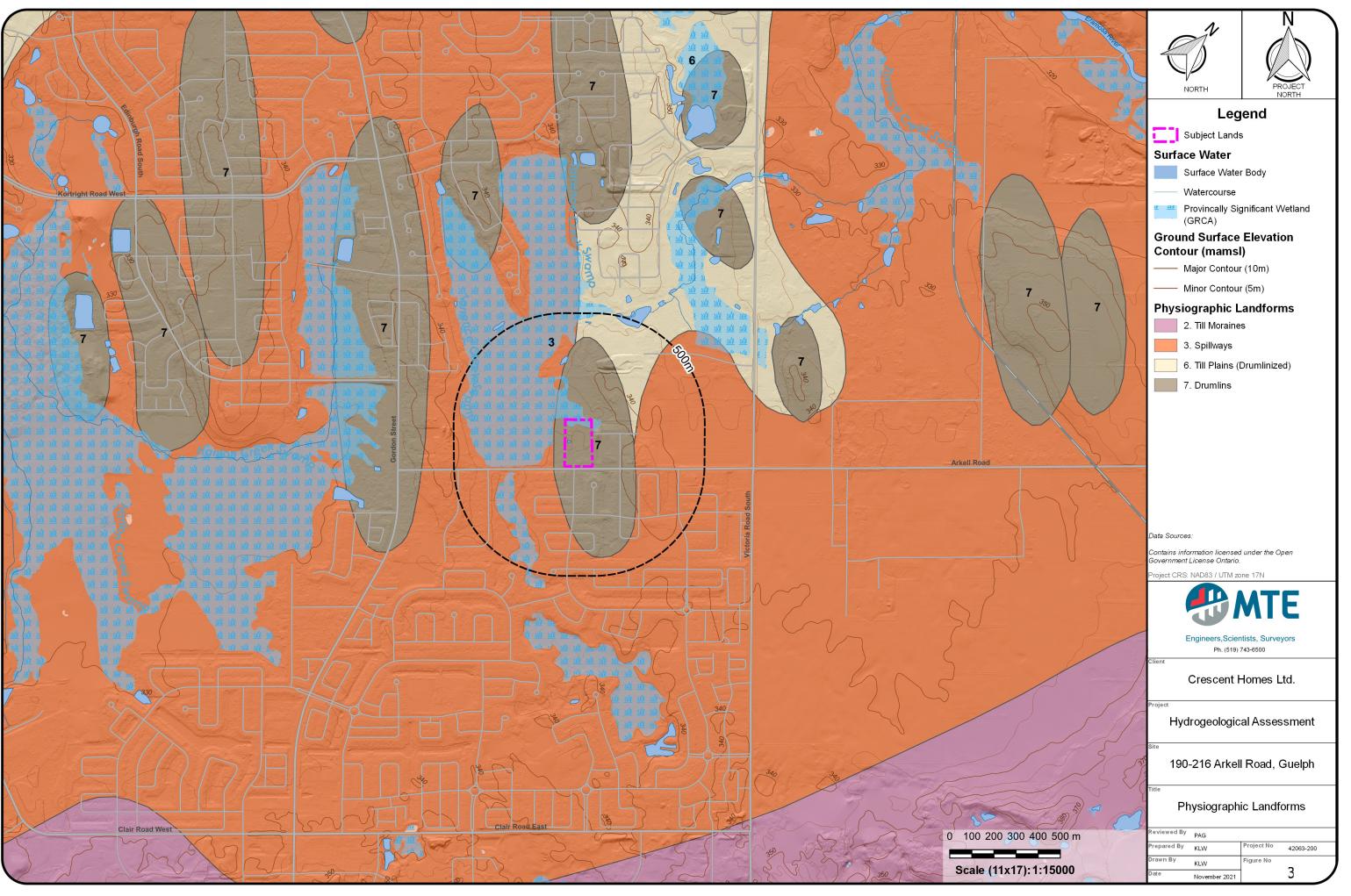
Grand River Conservation Authority and City of Guelph, 1999, *Torrance Creek Subwatershed Study Management Study;*

Karrow, P.F., 1983: Quaternary Geology of the Hamilton-Cambridge Area. Ontario Geological Survey. Report 255, 95p;


Lake Erie Region Source Protection Committee (LERSPC), 2015, Grand River Source Protection Area Approved Assessment Report;

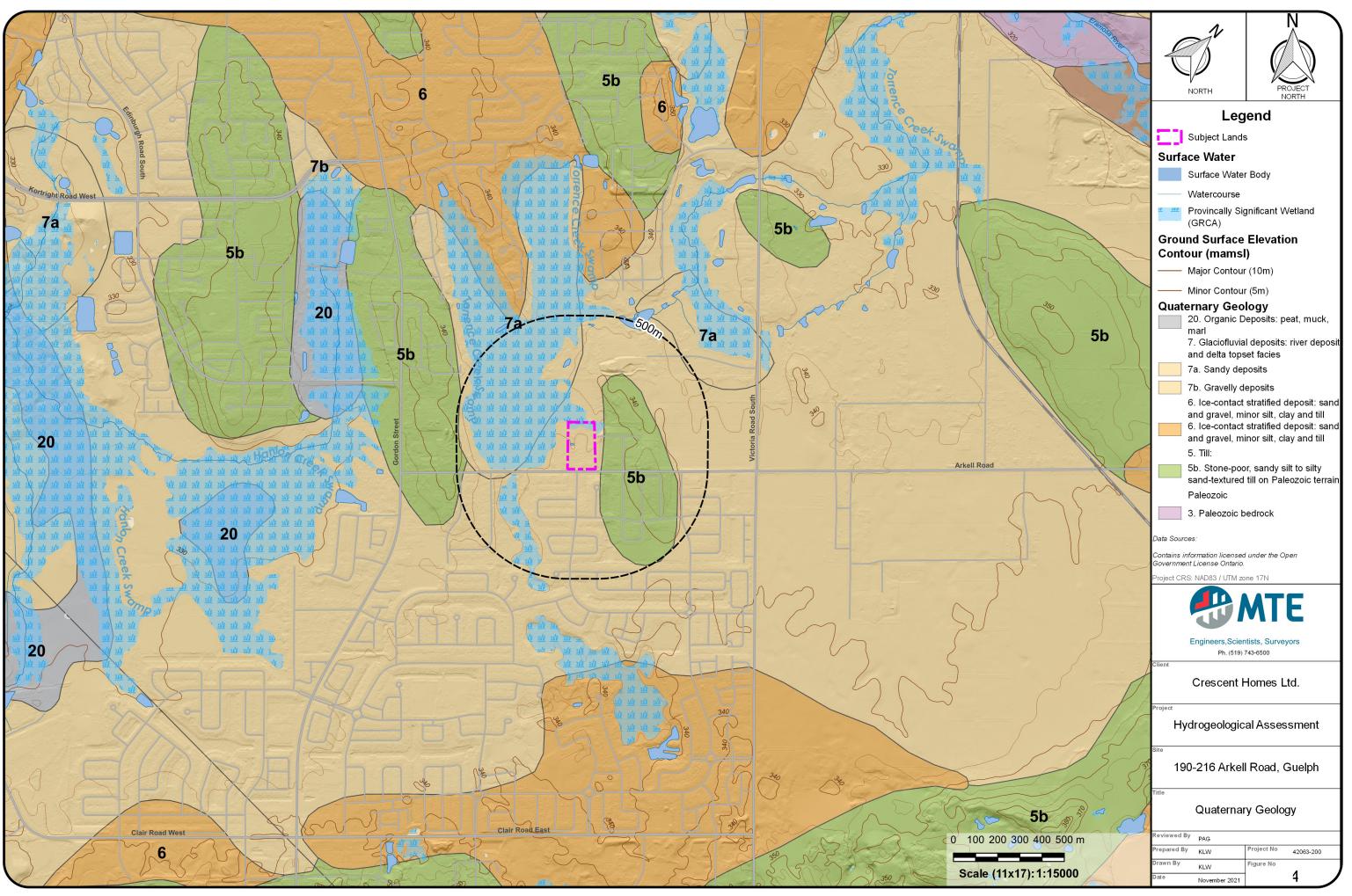

Peto MacCallum Ltd., 2017, Geotechnical Investigation, Proposed Arkell Road Subdivision, Guelph, Ontario; For Crescent Homes c/o MTE Consultants Inc.; and

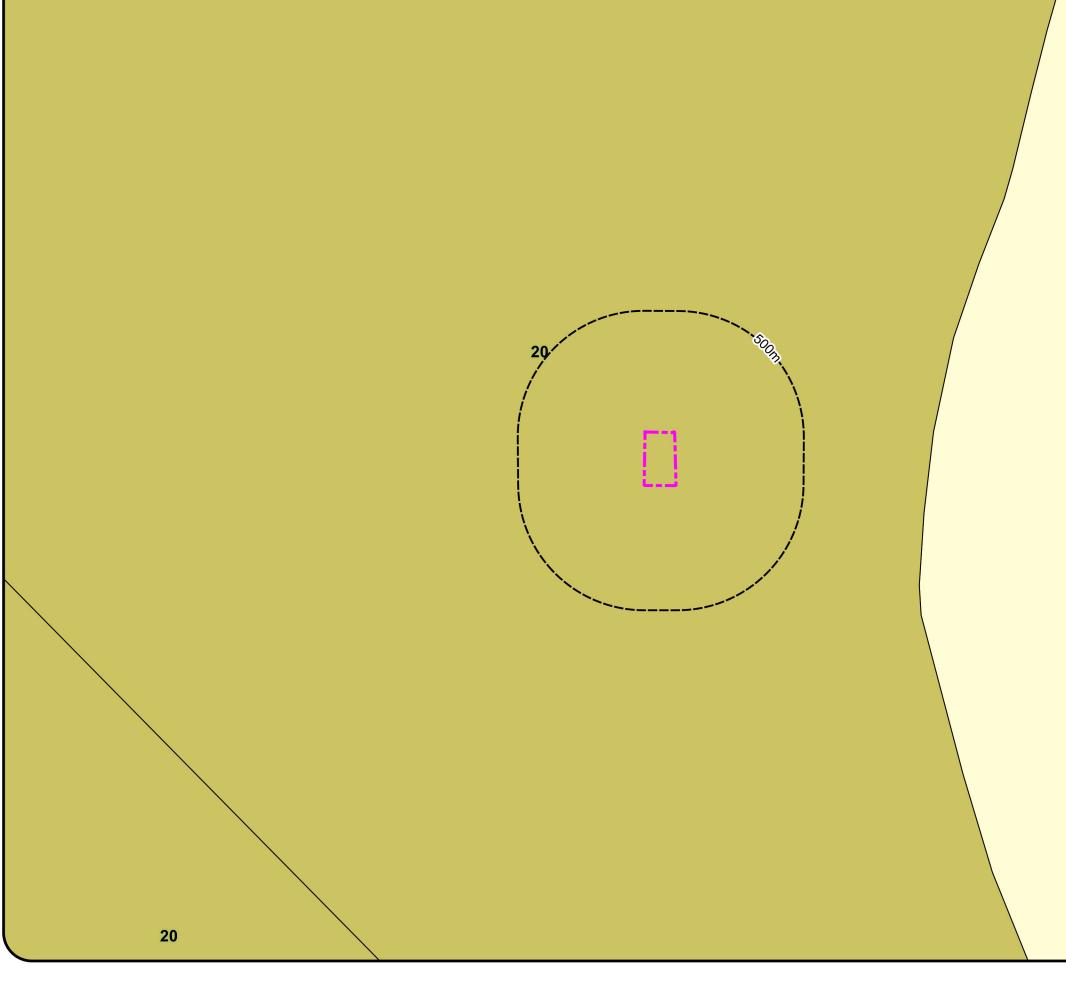
Waterloo Hydrogeologic, 2015, Aquifer Test Pro Software.

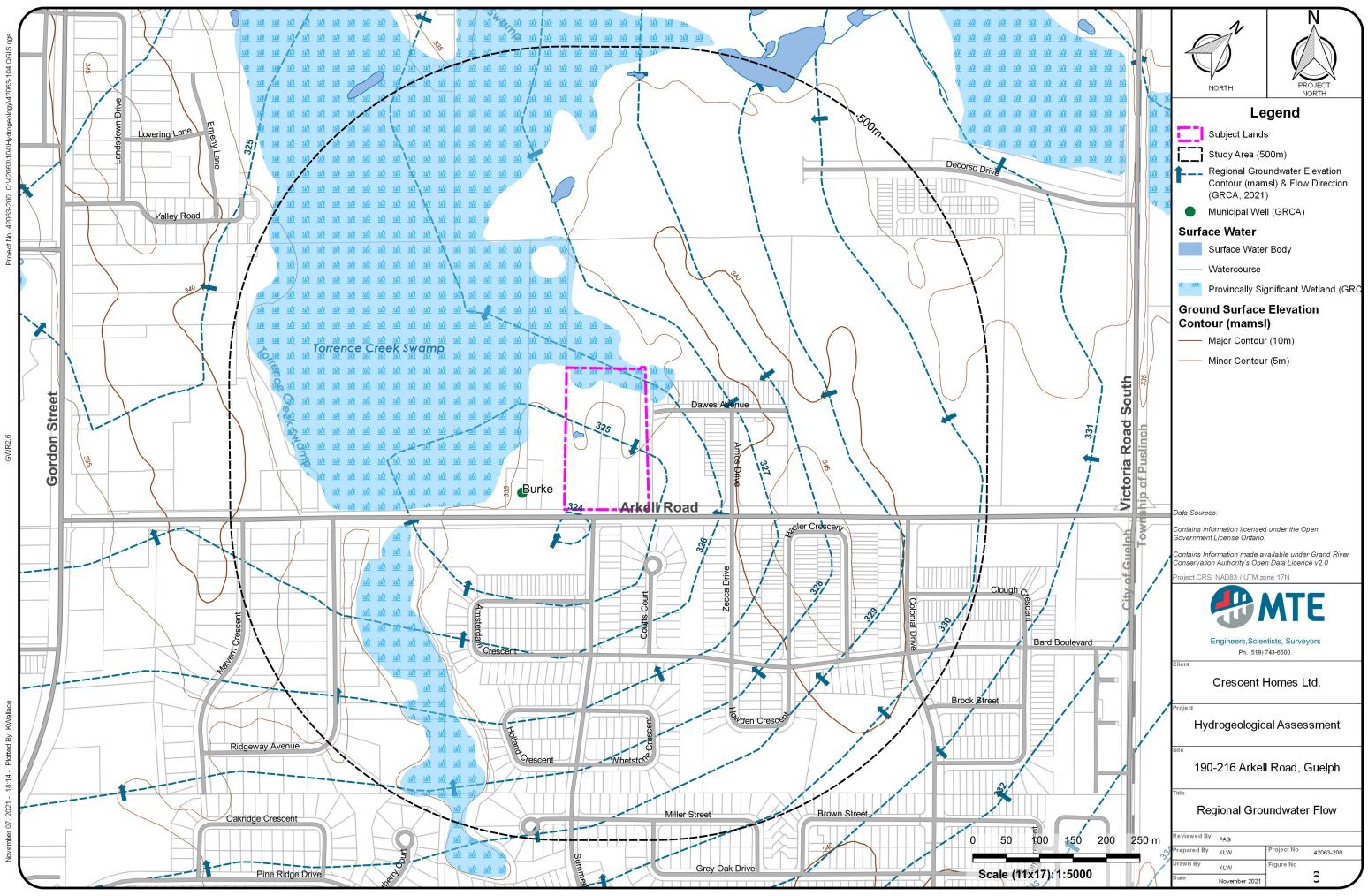

Project No: 42063-200 Q:\42063\104\Hydrogeology\42063-104 QC

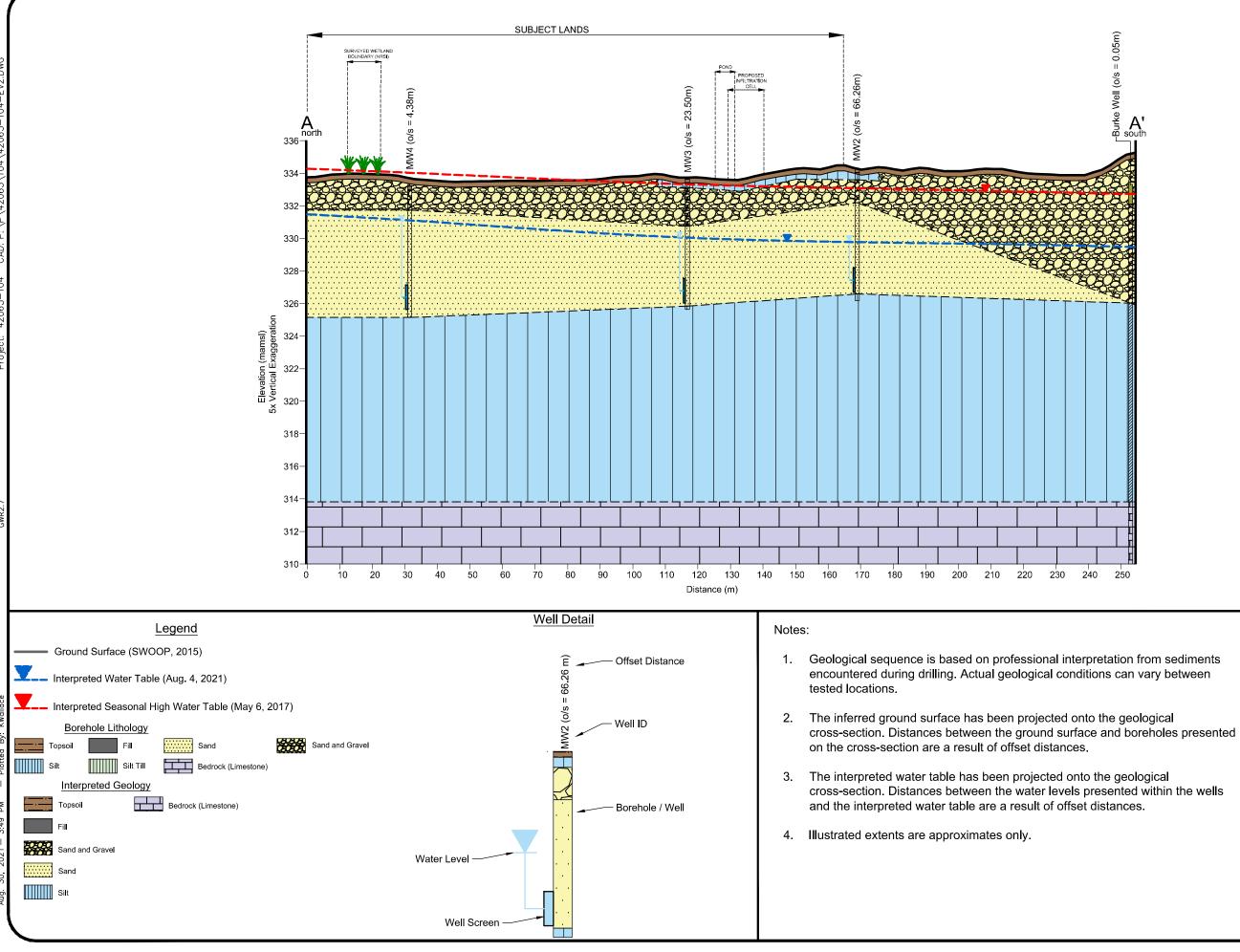
GWR

mber 25, 2021 - 10:14 - Plotted By: KWal



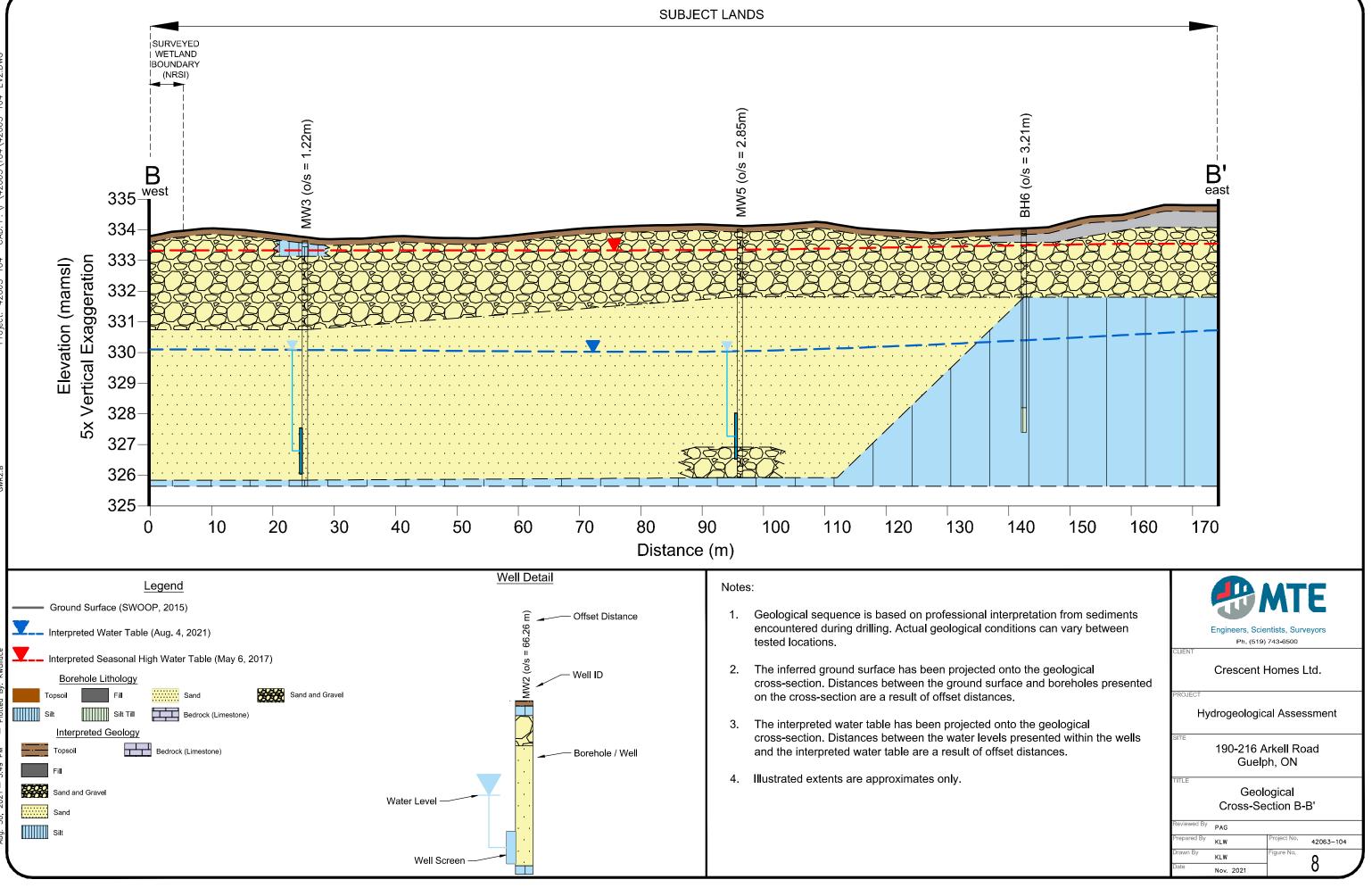

ovember 07, 2021 - 18:00 - Plotted By: KWallace





	NORTH NORTH	
	Legend	
	Subject Lands	
	Surface Water	
	Surface Water Body	
	Watercourse	
	Provincally Significant Wetland (GRCA)	
	Ground Surface Elevation Contour (mamsl)	
	—— Major Contour (10m)	
	—— Minor Contour (5m)	
	Paleozoic Geology	
	Upper Silurian	
	20. Guelph Formation: dolostone:	
	sucrosic, fossiliferous, locally biohermal; includes bituminous	
	dolostone on Bruce Peninsula Lower Silurian	
	19. Amabel Formation: dolostone;	
	thick-bedded, crinoidal, locally biohermal; includes bituminous dolostone in Guelph to Burlington	
19	area	
	Data Sources:	
	Contains information licensed under the Open Government License Ontario.	
	Project CRS: NAD83 / UTM zone 17N	
	MTE	
	Engineers, Scientists, Surveyors	
	Ph. (519) 743-6500	
	Client Crescent Homes Ltd.	
	Project	
	Hydrogeological Assessment	
	190-216 Arkell Road, Guelph	
	Title	
	Bedrock Geology	
0 100 200 300 400 500 m	Reviewed By PAG	
	Prepared By KLW Project No 42063-200	
Scale (11x17):1:15000	Drawn By KLW Figure No Date November 2021 5	
	November 2021	

Engineers, Scientists, Surveyors Ph. (519) 743-6500


Crescent Homes Ltd.

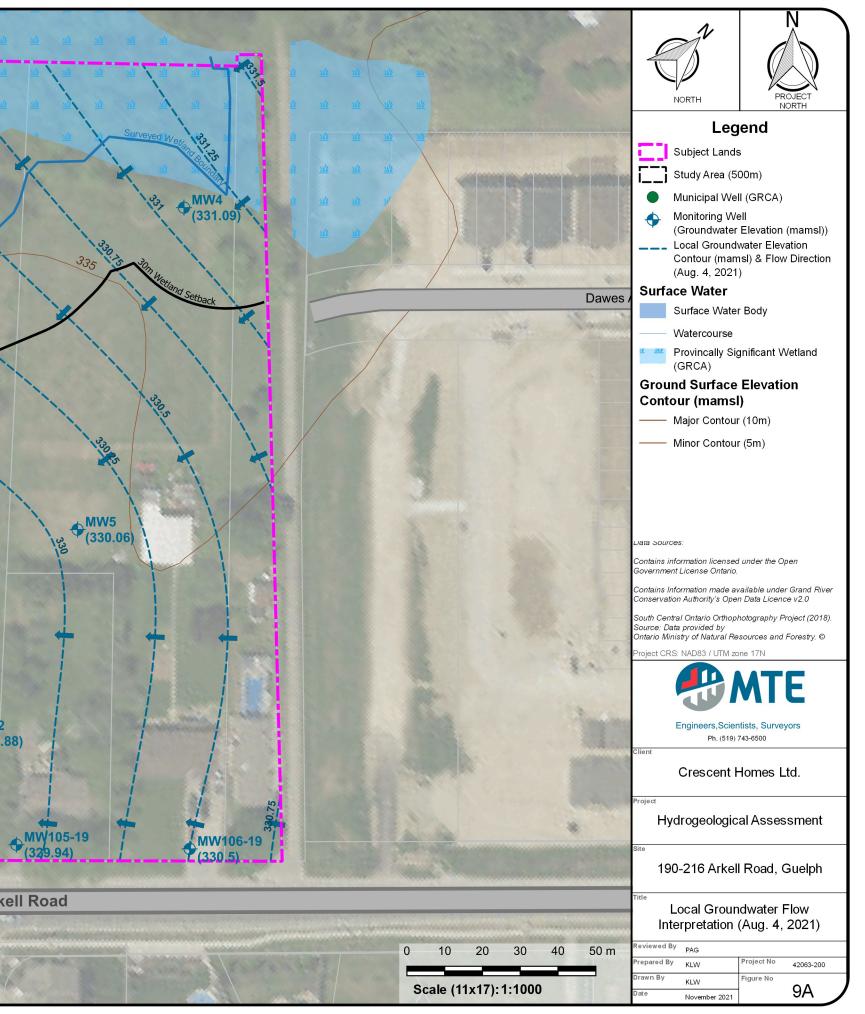
Hydrogeological Assessment

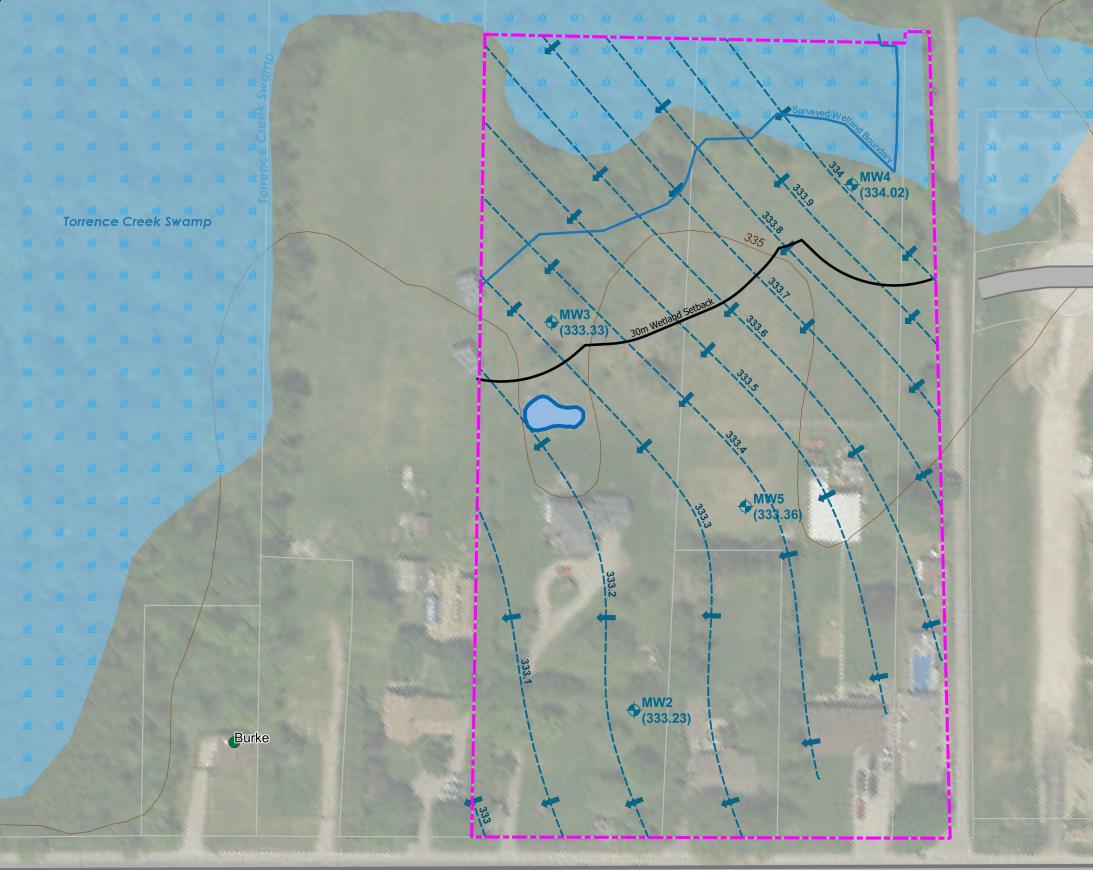
190-216 Arkell Road Guelph, ON

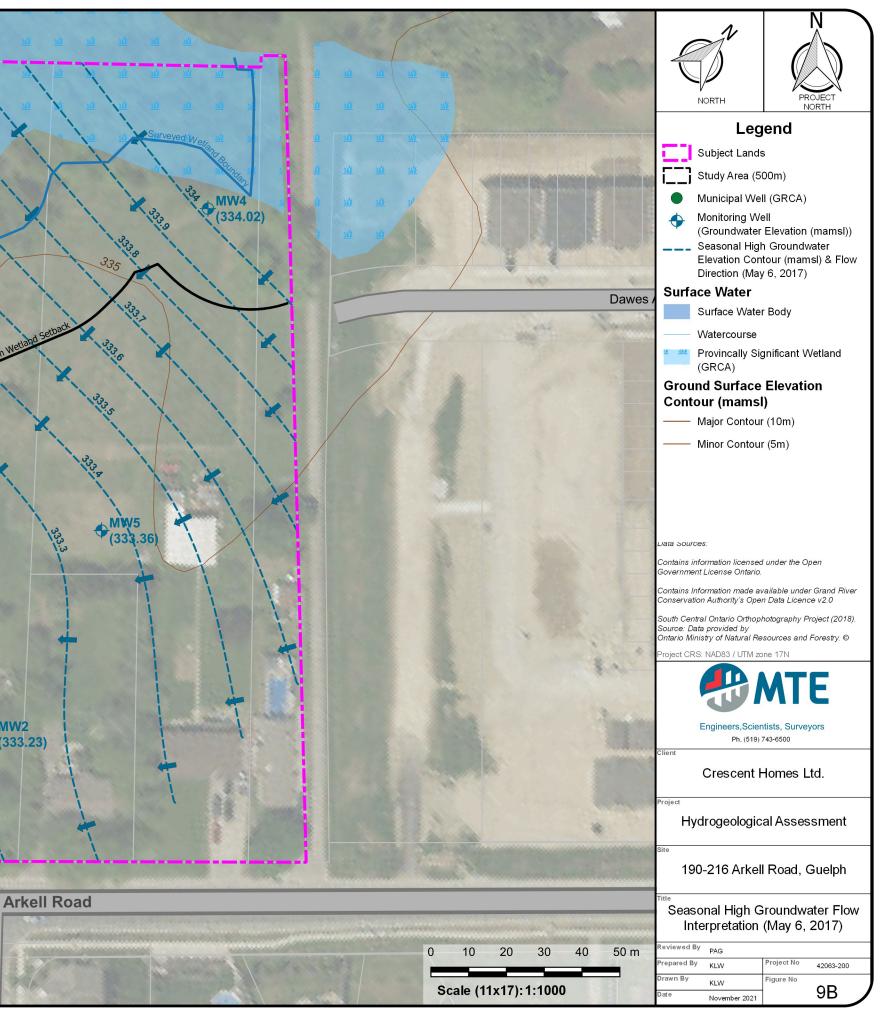
Geological Cross-Section A-A'

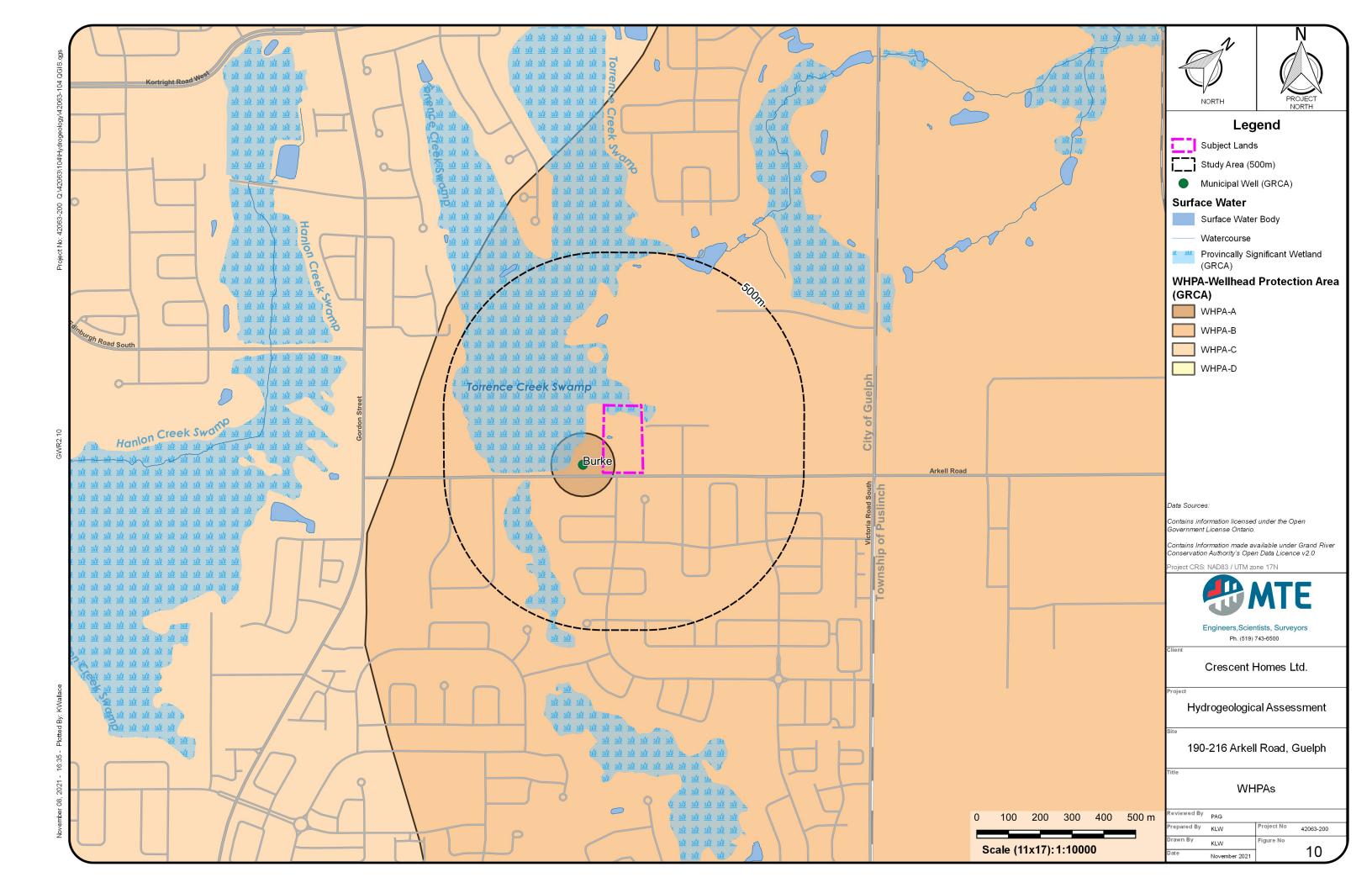
Reviewed By	PAG		
Prepared By	KLW	Project No.	42063-104
Drawn By	KLW	Figure No.	7
Date	Nov. 2021	1	

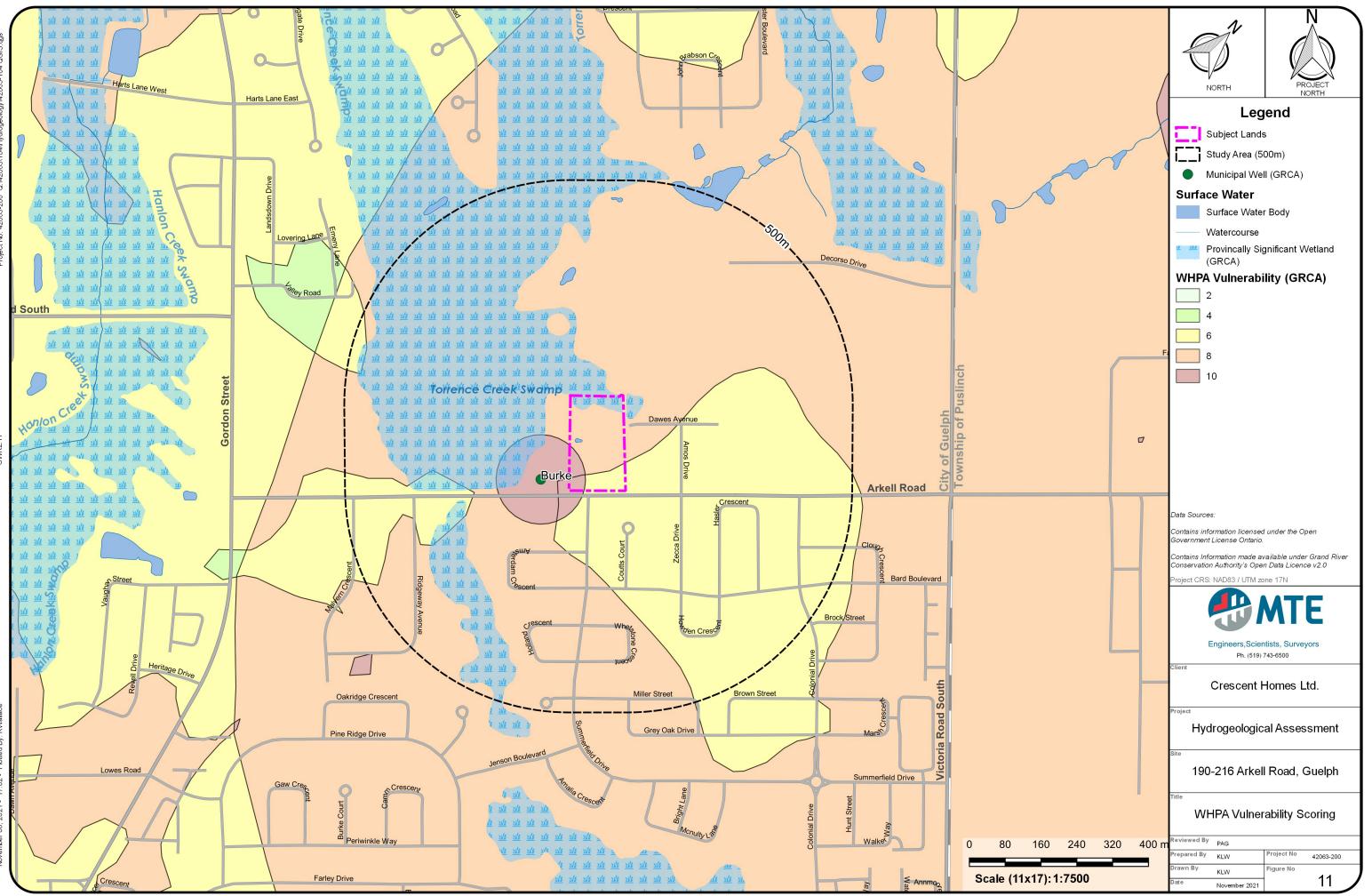
3WR2.8

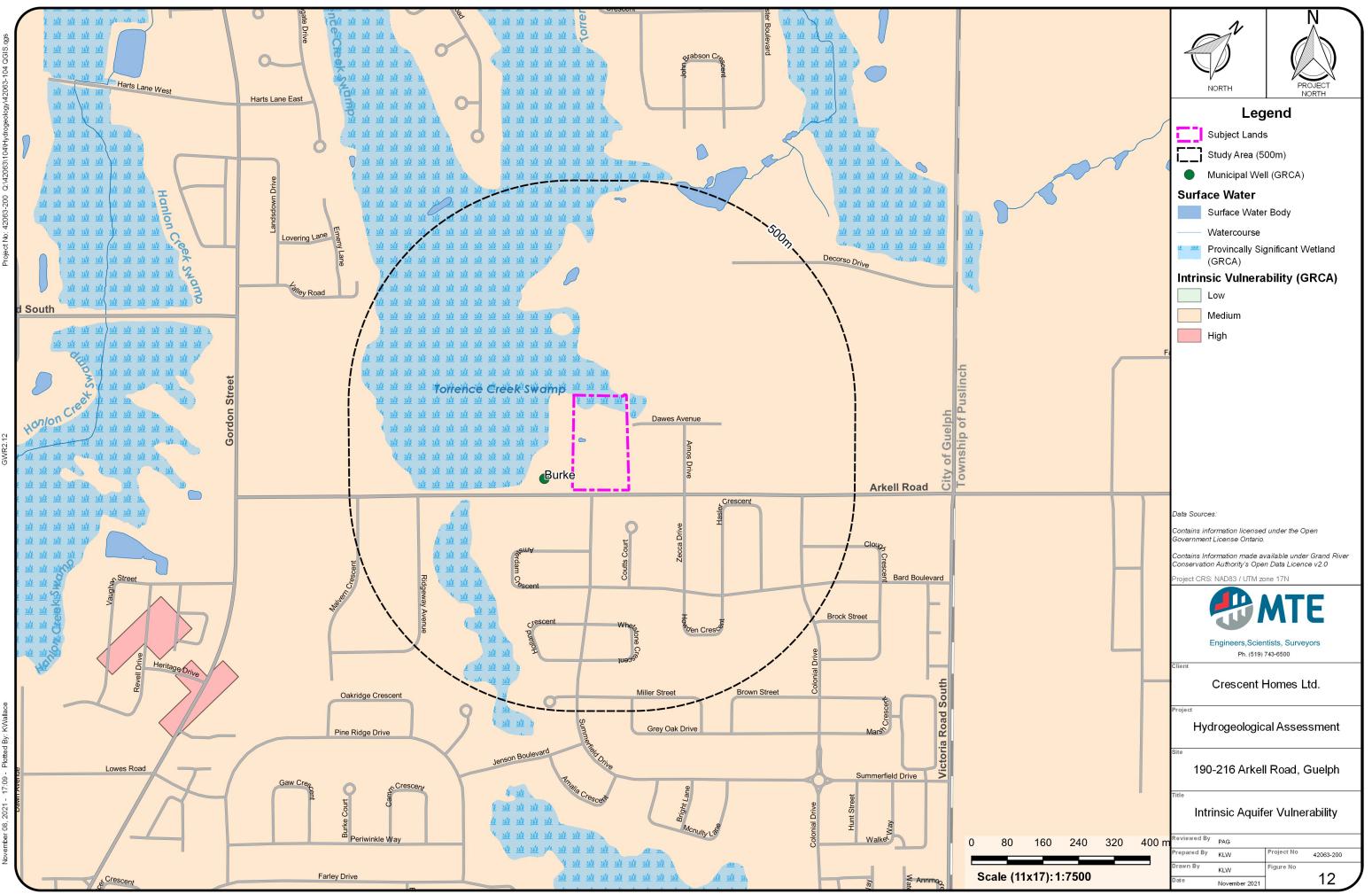

2021 – 3:49 PM – Plotted By: KWallc

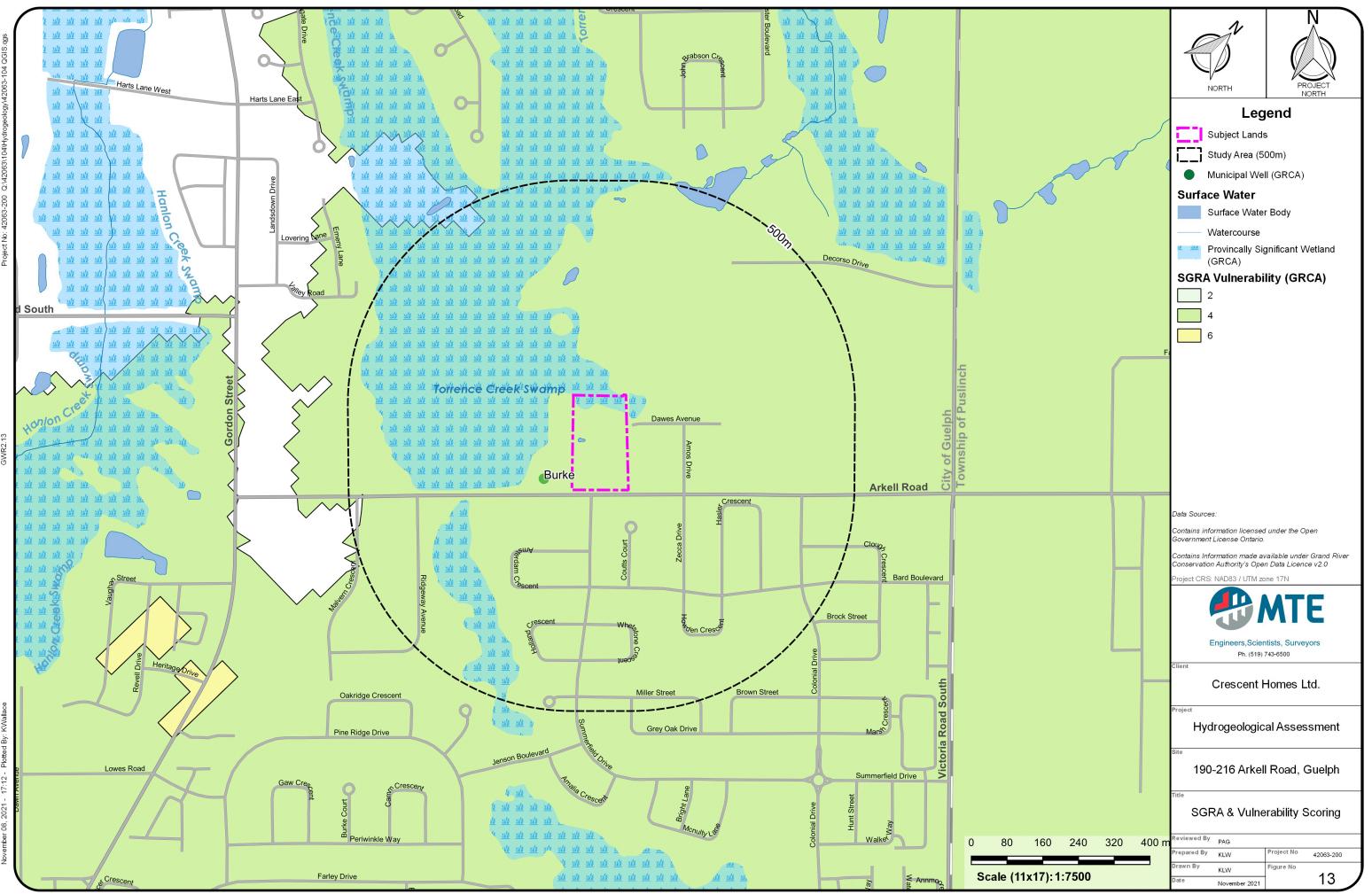


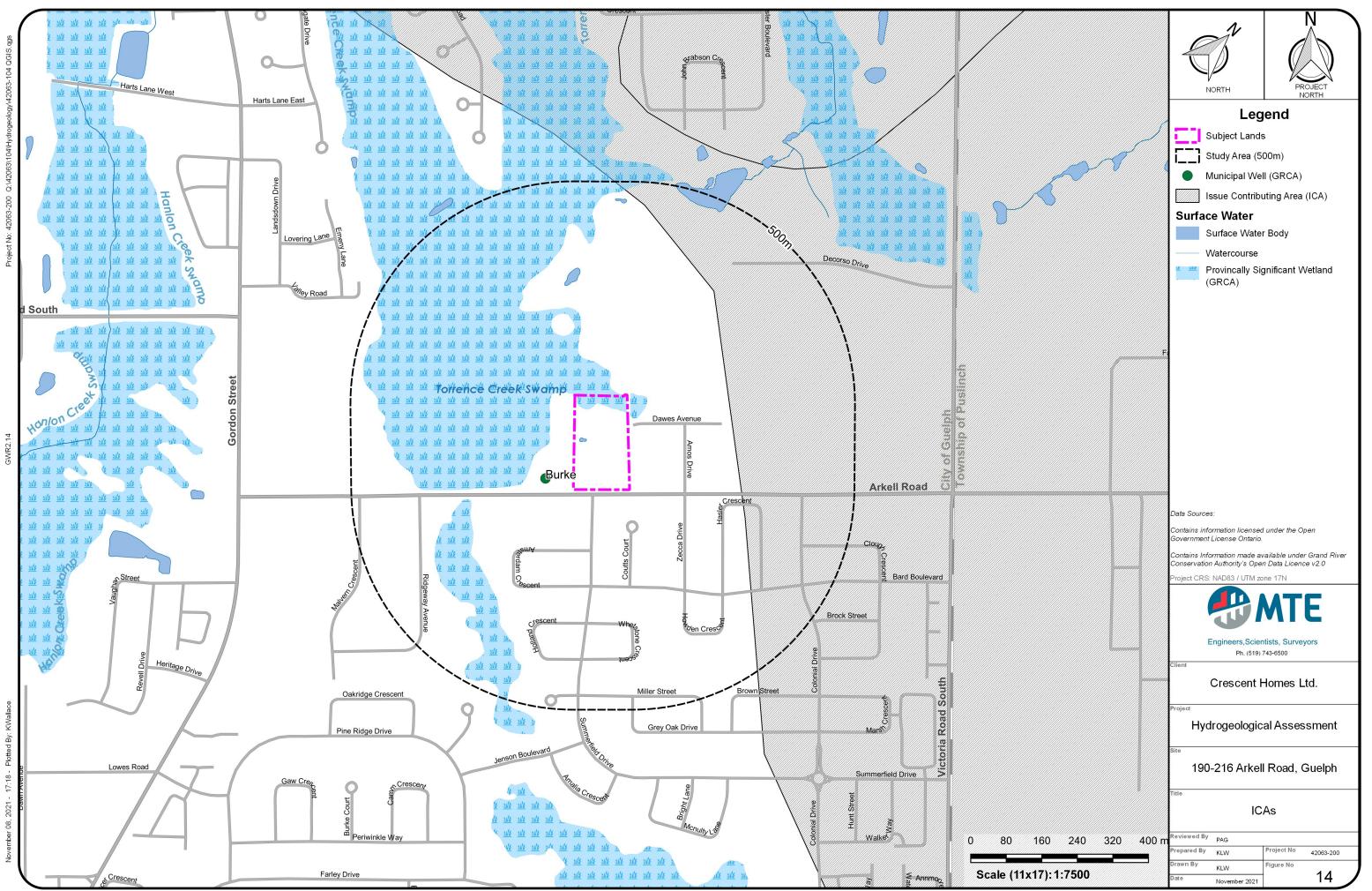


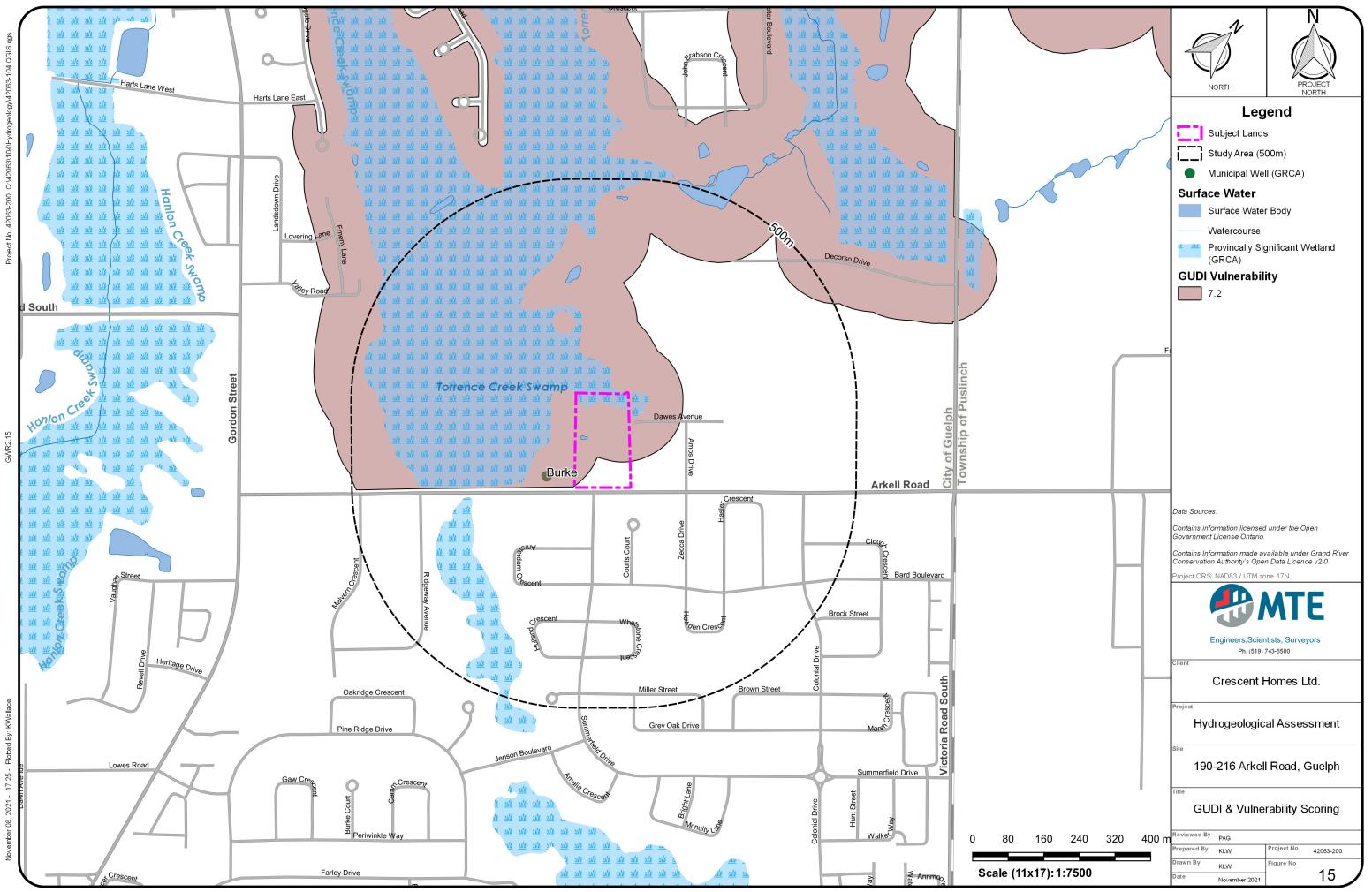











'roject No: 42063-200 @:\42063\104\Hydrogeology\42063-104 QG

wember 08, 2021 - 17:02 - Plotted By: KV

Table 1A: Groundwater Levels

ID	MV	V-2	MV	V-3	M	N-4	M\	N-5	MW1	01-19	MW1	05-19	MW1	06-19
TOC Elevation (mAMSL)	335	5.04	334	1.31	333	3.99	334	4.83	335	5.83	334	1.76	334	4.80
GS Elevation (mAMSL)	334	1.29	333	3.64	333	3.24	334	4.02	334	.68	334	1.84	334	4.88
Stickup (m)	0.	75	0.	67	0.	75	0.	81	1.	15	-0.	.08	-0	.08
Date	mbtoc	mbgs	mbtoc	mbgs	mbtoc	mbgs	mbtoc	mbgs	mbtoc	mbgs	mbtoc	mbgs	mbtoc	mbgs
2-Mar-17	2.77	2.02	1.77	1.10	NI	-	NI	-	NI	-	NI	-	NI	-
27-Mar-17	2.71	1.96	1.75	1.08	0.58	-0.17	2.32	1.51	NI	-	NI	-	NI	-
10-May-17	1.95	1.20	1.17	0.50	0.04	-0.71	1.57	0.76	NI	-	NI	-	NI	-
7-Jun-17	2.38	1.63	1.56	0.89	0.51	-0.24	2.06	1.25	NI	-	NI	-	NI	-
2-Nov-17	4.4	3.65	3.51	2.84	2.81	2.06	4.12	3.31	NI	-	NI	-	NI	-
26-Mar-18	2.97	2.22	2.09	1.42	1.15	0.40	2.62	1.81	NI	-	NI	-	NI	-
26-Jun-18	2.57	1.82	1.79	1.11	0.98	0.23	2.26	1.45	NI	-	NI	-	NI	-
17-Jun-19	2.76	2.01	1.95	1.28	0.77	0.02	2.50	1.69	NI	-	NI	-	NI	-
26-Jun-19	2.93	2.18	-	-	-	-	-	-	NI	-	NI	-	NI	-
2-Jul-19	2.96	2.21	2.17	1.50	1.10	0.35	2.72	1.91	NI	-	NI	-	NI	-
5-Sep-19	4.18	3.43	3.31	2.64	2.47	1.72	3.93	3.12	NI	-	NI	-	NI	-
29-Oct-19	4.68	3.93	3.78	3.11	2.76	2.01	4.37	3.56	5.40	4.25	4.30	4.38	4.15	4.23
6-Dec-19	4.52	3.77	3.49	2.82	2.34	1.59	4.17	3.36	5.27	4.12	NM	-	NM	-
12-Mar-20	3.27	2.52	2.12	1.45	0.74	-0.01	2.87	2.06	4.08	2.93	NM	-	NM	-
1-Jun-20	3.94	3.19	2.93	2.26	1.78	1.03	3.65	2.84	4.69	3.54	NM	-	NM	-
26-Aug-20	4.55	3.80	3.64	2.97	2.73	1.98	4.21	3.40	5.42	4.27	NM	-	NM	-
3-Nov-20	5.29	4.54	4.39	3.72	3.49	2.74	5.02	4.21	6.04	4.89	4.95	5.03	4.51	4.59
1-Feb-21	5.46	4.71	4.45	3.78	3.17	2.42	5.09	4.28	6.25	5.10	5.17	5.25	NM	NM
4-May-21	5.05	4.30	3.89	3.22	2.33	1.58	4.57	3.76	5.88	4.73	4.79	4.87	4.38	4.46
4-Aug-21	5.16	4.41	4.22	3.55	2.90	2.15	4.77	3.96	5.93	4.78	4.82	4.90	4.30	4.38

Notes:

TOC = Top of Casing

GS = Ground Surface

NI = Not Installed

NM = Not Measured

mAMSL = metres above mean sea level

Negative water level values indicate saturated soil conditions at ground surface

Negative stickup values indicate well is a flushmount well

MTE File No.: 42063-104 11/9/2021

ID	MW2	MW3	MW4	MW5	MW101-19	MW105-19	MW106-19
TOC Elevation (mAMSL)	335.04	334.31	333.99	334.83	335.83	334.76	334.80
2-Mar-17	332.27	332.54	NI	NI	NI	NI	NI
27-Mar-17	332.33	332.56	333.41	332.51	NI	NI	NI
10-May-17	333.09	333.14	333.95	333.26	NI	NI	NI
7-Jun-17	332.66	332.75	333.48	332.77	NI	NI	NI
2-Nov-17	330.64	330.80	331.18	330.71	NI	NI	NI
26-Mar-18	332.07	332.22	332.84	332.21	NI	NI	NI
26-Jun-18	332.47	332.53	333.02	332.57	NI	NI	NI
17-Jun-19	332.28	332.36	333.22	332.33	NI	NI	NI
2-Jul-19	332.08	332.14	332.89	332.11	NI	NI	NI
5-Sep-19	330.86	331.00	331.52	330.90	NI	NI	NI
29-Oct-19	330.37	330.53	331.23	330.46	330.43	330.46	330.65
12-Nov-19	NM	NM	NM	NM	NM	NM	NM
6-Dec-19	330.52	330.82	331.65	330.66	330.56	NM	NM
12-Mar-20	331.77	332.19	333.25	331.96	331.75	NM	NM
1-Jun-20	331.10	331.38	332.21	331.18	331.14	NM	NM
26-Aug-20	330.49	330.67	331.26	330.62	330.41	NM	NM
3-Nov-20	329.75	329.92	330.50	329.81	329.79	329.81	330.29
1-Feb-21	329.58	329.86	330.82	329.74	329.58	329.59	NM
4-May-21	329.99	330.42	331.66	330.26	329.95	329.97	330.42
4-Aug-21	329.88	330.09	331.09	330.06	329.90	329.94	330.50

Table 1B: Groundwater Elevations (mAMSL)

mAMSL = metres above mean sea level

Notes:

Table 1C: Minipiezometer Groundwater and Surface Water Measurements

	Location	MP	1-19
	TOC Elevation (mamsl)	334	4.48
Date	GS Elevation (mamsl)	333	3.32
		mbtoc	mamsl
	Inside Level (IL)	DRY	-
8-Oct-19	Outside Level (OL)	DRY	-
	Vertical Hydraulic Gradient (m/m)		-
	Inside Level (IL)	DRY	-
29-Oct-19	Outside Level (OL)	DRY	-
	Vertical Hydraulic Gradient (m/m)		-
	Inside Level (IL)	DRY	-
12-Nov-19	Outside Level (OL)	DRY	-
	Vertical Hydraulic Gradient (m/m)		-
	Inside Level (IL)	DRY	-
6-Dec-19	Outside Level (OL)	DRY	-
	Vertical Hydraulic Gradient (m/m)		-
	Inside Level (IL)	1.46	333.02
12-Mar-20	Outside Level (OL)	DRY	-
	Vertical Hydraulic Gradient (m/m)		-
	Inside Level (IL)	1.97	332.51
21-Apr-20	Outside Level (OL)	DRY	-
	Vertical Hydraulic Gradient (m/m)		-
	Inside Level (IL)	DRY	-
1-Jun-20	Outside Level (OL)	DRY	-
	Vertical Hydraulic Gradient (m/m)		-
	Inside Level (IL)	DRY	-
26-Aug-20	Outside Level (OL)	DRY	-
	Vertical Hydraulic Gradient (m/m)		-
	Inside Level (IL)	DRY	-
3-Nov-20	Outside Level (OL)	DRY	-
	Vertical Hydraulic Gradient (m/m)		_
	Inside Level (IL)	DRY	-
1-Feb-21	Outside Level (OL)	DRY	-
	Vertical Hydraulic Gradient (m/m)		-
	Inside Level (IL)	DRY	-
4-May-21	Outside Level (OL)	DRY	-
	Vertical Hydraulic Gradient (m/m)		-
	Inside Level (IL)	DRY	-
4-Aug-21	Outside Level (OL)	DRY	-
	Vertical Hydraulic Gradient (m/m)		-

Notes:

TOC = Top of Casing GS = Ground Surface mamsI = metres above mean sea level IL = Inside Level (Groundwater) OL = Outside Level (Surface Water)

Table 2: Groundwater Chemistry Summary - 2018

Table 2: Groundwater Chemistry Summ	Í		MW-2	MW-4
Parameter	Units	DL	5-0	ct-18
			L2119092-1	L2119092-2
Physical Tests				
Colour, Apparent	CU	2	77.6	455
Conductivity	umhos/cm	3	712	770
Hardness (as CaCO3)	mg/L	10	250	380
pH	pH units	0.1	7.89	7.63
Total Dissolved Solids	mg/L	20	546	452
Turbidity	NTU	0.1	>4000	>4000
Anions and Nutrients				
Alkalinity, Total (as CaCO3)	mg/L	10	230	313
Ammonia, Total (as N)	mg/L	0.02	0.035	0.041
Chloride (Cl)	mg/L	0.5	76	35.9
Fluoride (F)	mg/L	0.02	0.062	0.051
Nitrate (as N)	mg/L	0.02	1.59	6.29
Nitrite (as N)	mg/L	0.02	<0.010	<0.010
Orthophosphate-Dissolved (as P)	mg/L	0.003	<0.0030	<0.010
Sulfate (SO4)	mg/L	0.003	13.6	14.2
Dissolved Metals	1116/ 2	0.5	15.0	14.2
Dissolved Metals Filtration Location	1		FIELD	FIELD
Aluminum (Al)-Dissolved	mg/L	0.01	<0.010	<0.010
Antimony (Sb)-Dissolved	mg/L	0.005	<0.0050	<0.0050
Arsenic (As)-Dissolved	mg/L	0.001	<0.0010	<0.0010
Barium (Ba)-Dissolved	mg/L	0.01	0.028	0.058
Beryllium (Be)-Dissolved	mg/L	0.001	<0.020	<0.0010
Bismuth (Bi)-Dissolved	mg/L	0.001	<0.0010	<0.0010
Boron (B)-Dissolved	mg/L	0.001	<0.0010	<0.050
Cadmium (Cd)-Dissolved	mg/L	0.00009	<0.000090	<0.00090
Calcium (Ca)-Dissolved	mg/L	0.00003	67.5	98.6
Chromium (Cr)-Dissolved	mg/L	0.0005	<0.00050	<0.00050
Cobalt (Co)-Dissolved	mg/L	0.0003	<0.00050	<0.00050
Copper (Cu)-Dissolved	mg/L	0.0003	0.0034	0.0043
Iron (Fe)-Dissolved	mg/L	0.001	< 0.050	< 0.050
Lead (Pb)-Dissolved	mg/L	0.001	<0.0010	<0.0010
	mg/L	0.001	19.7	32.5
Magnesium (Mg)-Dissolved Manganese (Mn)-Dissolved	mg/L	0.001	<0.0010	<0.0010
Manganese (Mn)-Dissolved Molybdenum (Mo)-Dissolved	mg/L	0.001	<0.0010	<0.0010
Nickel (Ni)-Dissolved	mg/L	0.001	<0.0010	<0.0010
Phosphorus (P)-Dissolved	mg/L	0.002	<0.0020	<0.050
	mg/L	0.05	1.9	7.5
Potassium (K)-Dissolved		_	<0.00040	<0.00040
Selenium (Se)-Dissolved	mg/L	0.0004	2.4	4.6
Silicon (Si)-Dissolved	mg/L	1	<0.00010	4.6
Silver (Ag)-Dissolved	mg/L	0.0001		
Sodium (Na)-Dissolved	mg/L	0.5	60.4 0.0735	21.6 0.111
Strontium (Sr)-Dissolved	mg/L	0.001		
Thallium (TI)-Dissolved	mg/L	0.0003	<0.00030	<0.00030
Tin (Sn)-Dissolved	mg/L	0.001	<0.0010	<0.0010
Titanium (Ti)-Dissolved	mg/L	0.002	<0.0020	<0.0020
Tungsten (W)-Dissolved	mg/L	0.01	<0.010	<0.010
Uranium (U)-Dissolved	mg/L	0.005	< 0.0050	<0.0050
Vanadium (V)-Dissolved	mg/L	0.001	<0.0010	<0.0010
Zinc (Zn)-Dissolved	mg/L	0.003	0.0132	0.0293
Zirconium (Zr)-Dissolved	mg/L	0.004	<0.0040	<0.0040

Notes:

DL = Detection Limit

Table 3. MECP WWIS Water Well Summary and Impact Assessment

				Well Details					Impact Asse	essment
Well ID	Date Completed	Easting	Northing	Final Status	Primary Use	Secondary Use	Well Depth (m)	Distance from Site (m)	Location in Reference to the Site	Anticipated Impact from Proposed Development
6702583	1950-06-21	564957.3	4818525	Water Supply	Domestic		15.54	329	South	
6702585	1951-09-17	565065.3	4818651	Water Supply	Livestock	Domestic	34.44	163	South	
6702593	1959-07-13	564854.3	4818418	Water Supply	Domestic		34.44	477	South	
6702592	1959-09-14	564882.3	4818427	Water Supply	Domestic		35.66	451	South	
6702594	1959-09-26	564915.3	4818441	Water Supply	Domestic		37.8	418	South	
6702584	1961-10-27	564959.3	4818639	Water Supply	Domestic		28.04	247	South	
6702590	1962-10-24	565238.3	4818775	Water Supply	Domestic		19.81	0	On-Site	
6702611	1963-02-11	564965.3	4818330	Water Supply	Domestic		40.84	472	South	
6702612	1963-06-20	564945.3	4818348	Water Supply	Domestic		42.67	469	South	
6702614	1963-10-17	565241.3	4818239	Water Supply	Domestic		26.21	490	South	
6702605	1964-06-11	565234.3	4818250	Water Supply	Domestic		21.34	479	South	
6702620	1965-02-03	565074.3	4818355	Water Supply	Domestic		18.29	401	South	
6702591	1965-05-14	564855.3	4818385	Water Supply	Domestic		41.45	500	South	
6702589	1965-11-03	565445.3	4819012	Water Supply	Livestock	Domestic	36.58	235	East	
6702627	1965-11-24	565195.3	4818298	Water Supply	Domestic		25.6	431	South	
6702607	1965-11-25	565156.3	4818278	Water Supply	Domestic		24.38	455	South	
6700904	1966-01-14	564990.3	4818440	Water Supply	Domestic		41.15	368	South	
6700905	1966-01-27	565061.3	4818385	Water Supply	Domestic		40.23	378	South	
6701524	1966-02-03	564991.3	4818373	Water Supply	Domestic		24.69	422	South	
6700906	1966-02-04	565142.3	4818309	Water Supply	Domestic		25.3	427	South	
6700908	1966-02-09	565034.3	4818402	Water Supply	Domestic		40.23	375	South	None Anticipated
6700911	1966-03-04	565127.3	4818317	Water Supply	Domestic		37.49	422	South	
6700912	1966-03-11	565067.3	4818380	Water Supply	Domestic		37.49	380	South	
6700913	1966-03-15	565037.3	4818467	Water Supply	Domestic		40.54	318	South	
6700919	1966-06-17	565012.3	4818422	Water Supply	Domestic		40.23	370	South	
6702582	1966-10-07	565198.3	4819368	Water Supply	Livestock	Domestic	45.72	407	South	
6700907	1967-01-19	565241.3	4818268	Water Supply	Domestic		36.58	461	South	
6700930	1967-05-01	565184.3	4818310	Water Supply	Domestic		24.69	420	South	
6700915	1967-07-10	565007.3	4818295	Water Supply	Domestic		38.1	483	South	
6700914	1967-07-20	565041.3	4818457	Water Supply	Domestic		40.23	325	South	
6700939	1967-10-12	565157.3	4818293	Water Supply	Domestic		24.38	440	South	
6703092	1968-01-04	565064.3	4818293	Water Supply	Domestic		28.96	462	South	
6703579	1969-09-27	565194.3	4818733	Water Supply	Domestic		28.35	14	South	
6703602	1970-01-08	565314.3	4818933	Water Supply	Domestic		37.8	89	East	
6704236	1972-04-11	565134.3	4818583	Water Supply	Domestic		23.77	168	South	
6704293	1972-07-12	565014.3	4818283	Water Supply	Domestic		40.54	490	South	
6705233	1974-08-22	565015.3	4818427	Water Supply	Domestic		28.96	364	South	
6711291	1993-09-22	565322.3	4818655	Water Supply	Domestic		22.86	126	South	
6711601	1994-11-14	565092.3	4818353	Water Supply	Domestic		27.74	396	South	
6712543	1998-05-21	565123.3	4818905	Water Supply	Domestic		24.38	0	On-Site	

Draft Plan of Subdivision

Borehole Logs

	DJECT Proposed Arkell Road Subdivision CATION Arkell Road, Guelph, Ontario						BOR	NG D	ATE:	2017 (02 13						REF.: INEER	17KF002 K. Hanes
	RING METHOD Continuous Flight Hollow Ste	em Auger	s														HNICIAN	H. Shinwar
	SOIL PROFILE			SA	MPLES					ГН С" (LIQU	JID LIM	IT	_ W_	ΤΗ	GROU	ND WATER
EPTH in	DESCRIPTION	TEGEND	NUMBER	TYPE	BLOWS/0.3m N - VALUES	ELEVATION	-	50 1 MIC CO DARD P	00 1 NE PEN PENETR	50 20 IETRATION ATION TI	ю см ×	PLA WA1 W _P	STIC LI TER CO V	IMIT INTENT	W rW I	UNIT WEIGHT		RVATIONS REMARKS
ETRES	GROUND ELEVATION 334.56		Ž		-N BLC	E			.OWS/0 40 (0.3M 50 81	0		TER CO		т% 0	γ kN/m³		GR SA S
).10).46	TOPSOIL: Dark brown silt, trace sand, numerous rootlets, damp	ĪXX	1	SS	7									o				
0.69	FILL: Brown sand and gravel, trace silt,					334	·	$\left \right $					\vdash					
	moist SILT: Loose brown silt. trace sand.	-1.00	2	SS	42							9						
	occasional rootlets, damp	Paro				333				\square								
	SAND AND GRAVEL: Dense to very dense brown sand and gravel, trace to	ح : 0. • 0. •	3	SS	50/150mm	1					/ % /	¢						
32.5	some silt, numerous cobbles, damp											$ \rangle$						
	becoming moist	·.∩.∘.	4	SS	39	332	-	,	\sim	1		6				-		
2.9 31.7												\						
01.7	becoming compact, no cobbles, saturated, contains saturated silt layers	0°.	5	SS	23			•					þ				Sampler w	vet from SS5
		, o. c				331		/					\vdash					
4.0 30.6	SAND: Compact brown sand, trace to	- <u></u>						1					$ \rangle$					
00.0	some silt, trace gravel, saturated					330							$ \rangle$					
			6	SS	12	- 330	•						k	þ				
						329	+									-		
			7	SS	16								6					
6.6 28.0	BOREHOLE TERMINATED AT 6.6 m	<u> </u>				328							-				Upon com	unletion of
																	augering Wet cave	
																	wel cave	to 5.1 m
						1												
NOTE	: S: Headspace: SS1 0ppm, SS2 0ppm, SS3 0ppm, SS7 0ppm	I 3 0ppm, S	S4 0p	۱ opm, ۹	I SS5 0ppm,	SSE	1 6	<u> </u>	UP WA	ATER LE ON CON ATER LE DNITORII	IPLET VEL M	ION OF IEASUR	DRILLI		+ ⊕ ⊛	REN	 STURBED F OLDED F EL SHEAR TES KET PENETF	D VANE T

	CATION Arkell Road, Guelph, Ontario RING METHOD Continuous Flight Hollow Ster	n Auger	s							2017 02				TEC	GINEER K. Hanes CHNICIAN H. Shinwar
DEPTH in	SOIL PROFILE DESCRIPTION	TEGEND	NUMBER	SAI EALE	BLOWS/0.3m N - VALUES	EVATION		50 1 MIC COL DARD P	00 1 NE PENI ENETRA	H C. (kPa 50 200 ETRATION ATION TEST 3M		UID LIMIT _ ASTIC LIMIT TER CONTE W •	W_, ENTW 	UNIT W	GROUND WATER OBSERVATIONS AND REMARKS
ETRES	GROUND ELEVATION 335.16		Ň		- N DTB	ū			OWS/0. 0 6			ATER CONT 10 20	ENT % 30	γ kN/m ³	GR SA S
0.25 34.91	TOPSOIL: Dark brown silt, trace sand, numerous rootlets, damp	ĥĩ	1	SS	3	335	•					\triangleright		-	Concrete
0.69	SILT: Loose dark brown silt, some sand,	<u>li li l</u>						\searrow			/	1			
	trace gravel, occasional rootlets, damp	0.00	2	SS	57				-		<u> (</u>			-	
	and gravel, trace to some silt, numerous cobbles, damp	0. P				_									
2.1		. o. c	3	SS	64					•	0				
	SAND: Compact to dense brown sand, trace to some silt, trace gravel, occasional	1				333						\mathbb{N}			 Sampler wet f
	cobbles, saturated		4	SS	34			Í				9			SS4
				00		332							_		- Bentonite Sea
		· ·	5	SS	31	_		Ī				$ \hat{\gamma} $			
															- 50 mm Plastic
						331								-	Riser
			6	SS	30										
						330						Ύ			
															∵. i
			7	SS	26	329							_	-	
															i - E
						328									Screen
7.7						020									
	SILT: Dense brown silt, trace sand, trace	frit	8	SS	39							5			
<u>8.1</u> 327.1	gravel, wet BOREHOLE TERMINATED AT 8.1 m	╉┷┷┷													Water Level Readings Initial: 3.40 m
															Initial: 3.40 m Elevation: 331.76
															<u>2017-04: 2.51 m</u> Elevation: 332.45
NOT	S: Headspace: SS1 0ppm, SS2 0ppm, SS3 ()nnm S	S4 0r	nm S	S5 500m	996			WA			VED DURING = DRILLING	€/ +		DISTURBED FIELD VANE MOLDED FIELD VANE

		ATION Arkell Road, Guelph, Ontario RING METHOD Continuous Flight Hollow Sten	n Auger	s				BOR	RING D	ATE:	2017 02 1	3					INEEF HNICI.	
		SOIL PROFILE			SAI	MPLES			E0 41	nn 4	TH C, (kPa) 50 200		JID LIMIT STIC LIN		_ W_	юнт	-	ROUND WATER
	EPTH in TRES	DESCRIPTION	TEGEND	NUMBER	TYPE	BLOWS/0.3m N - VALUES	EVATION	DYNA STAN	MIC COI	NE PEN ENETR	50 200 IETRATION 2 ATION TEST 0 0.3M 80		TER CON	ITENT_	W 	S UNIT WEIGHT		AND REMARKS
		GROUND ELEVATION 334.42		<		BL	Ш		20 4	0 6	50 80	1	10 20			γ kN/m³		- Stick up
0	1.51	TOPSOIL: Dark brown silt, trace sand, numerous rootlets, moist	ÎĨĨ	1	SS	5		•					9				XX	 ← Concrete
		SILT: Loose dark brown silt, some sand, pccasional rootlets SAND AND GRAVEL: Very loose brown		2	SS	3	_											
	33.1	sand and gravel, trace to some silt, occasional_cobbles, damp becoming compact, saturated		3	SS	35	333		7									- Sampler wet SS3
	2.9		. O. C	4	SS	31	332						•			-		
	31.5	SAND: Compact to dense brown sand, trace to some silt, trace gravel, occasional cobbles, saturated		5	SS	24	331						ę			-		– Bentonite Se
									$ \rangle$				$ \rangle $					- 50 mm Plasti Riser
				6	SS	42	330			•			•			-		
							329		+/							-		
				7	SS	27	328						ļ			-		· Fllter Sand ·
																		Screen
8	7.8 3.0	SILT: Compact brown silt, trace sand,		8	SS	21	327		ł				\$			-		
32	26.4	trace gravel, wet/ BOREHOLE TERMINATED AT 8.0 m															<u>Wate</u> Initial Eleva	<u>r Level Reading</u> : 1.95 m ation: 332.47
																	<u>2017-</u> Eleva	<u>-04: 1.86 m</u> ation: 332.56
									ž	14/1					+		VSTUR	BED FIELD VANE

во	RING METHOD Continuous Flight Hollow Ste	em Auger	s												CIAN H. Shinwa
DEPTH in	DESCRIPTION	regend	NUMBER	SAI	BLOWS/0.3m	ELEVATION SCALE		NIC CONE DARD PEN	150 PENETRA ETRATION	200 TION ×	W _P 	.IMIT V ONTENT W V ⊕			GROUND WATER OBSERVATIONS AND REMARKS
IETRES	GROUND ELEVATION 334.13		Z		N-		2	0 40	VS/0.3M 60	80		ONTENT %	, γ _{kN/i}	n°	- Stick up GR SA S
0.30	TOPSOIL: Dark brown silt, trace sand, numerous rootlets, moist	ڮڹۛڿڹؖٳ	1	SS	6	334	٩				•			Ň	Concrete
<u>0.69</u> 333.44	SAND AND GRAVEL: Compact brown sand and gravel, trace to some silt, bccasional cobbles, moist		2	SS	13										- Sampler wet f SS2
1.5	bccasional cobbles, moist		2	33	13	333	H			-			_		002
332.7	SAND: Compact brown sand, trace to some silt, trace gravel, saturated		3	SS	14						\				
	some sin, trace gravel, saturated					332	\vdash		_		$ \rangle$		_		
			4	SS	11		+								
						331									- Bentonite Sea
			5	SS	12	_	1				9				
						330									
			6	SS	18							÷			
						329	\vdash						_		
			7	SS	10	328	\vdash						_		·∔ Fllter Sand
			/	55	10										
						327								Ë	· + Screen
						021									
8.1			8	SS	25			•			6				_
326.0	BOREHOLE TERMINATED AT 8.1 m													Wa	ter Level Reading al: 0.75 m
														Elev	vation: 333.38
														<u>201</u> Elev	<u>7-04: 0.44 m</u> vation: 333.55
	ES: Headspace: SS1 0ppm, SS2 5ppm, SS3							Ā	WATER		BSERVED DU	IRING/ +	. <i>"</i>		RBED FIELD VANE

	CATION Arkell Road, Guelph, Ontario RING METHOD Continuous Flight Hollow Ster	n Auger	ſS				BOR	NG D	ATE:	2017	03 21						INEER K. Hanes HNICIAN H. Shinwa
	SOIL PROFILE			SAI	MPLES					гн С"			ID LIM		_ W_	НТ	GROUND WATER
EPTH in	DESCRIPTION	LEGEND	NUMBER	TYPE	BLOWS/0.3m N - VALUES	LEVATION	DYNA STANI	NIC COI DARD P	NE PEN ENETR	50 20 IETRATI ATION 1	on ×	₩A1 ₩ _₽	TER CO	IMIT DNTENT N Ə	r₩ ₩,	UNIT WEIGHT	OBSERVATIONS AND REMARKS
ETRES	GROUND ELEVATION 334.97	1 3	ž		N- N-	ELE			OWS/0	0.3M 50 8	0			ONTEN 20 3		γ kN/m³	- Stick up GR SA
).25 34.72	TOPSOIL: Dark brown silt, trace sand, trace gravel, numerous rootlets, damp	۲. ج.خ.	1	SS	13		•					9					Concrete
	SAND AND GRAVEL: Dense brown sand and gravel, trace to some silt, numerous	• O°.						$\left \right\rangle$									
	cobbles, damp	0.0.0	2	SS	49	334						Ŷ				-	
		. O. C	3	SS	31	-			1								
2.2		0. r	1	- 33	51	- 333						- ×					
32.8	SAND: Compact brown sand, some gravel, trace to some silt, occasional	[4	SS	24												- Sampler wet SS4
	cobbles, saturated		1			332		1									- Bentonite Se
			• 5	SS	27			•					¢				
								/									
						331		1									
			-			-	/										
			6	SS	14	330	•						9			-	
5.6								$\left \right\rangle$									
29.4	becoming very dense					329											Fllter Sand
			7	SS	51	1020							5				
						-											Screen
7.1 27.9	SAND AND GRAVEL: Very dense brown	l.o.c				328										-	
	sand and gravel, trace silt, numerous cobbles, saturated		<u> </u>														
8.1)	8	SS	52	327			•			6					
26.9	BOREHOLE TERMINATED AT 8.1 m																Water Level Reading Initial: 2.3 m
																	Elevation: 332.67
																	<u>2017-04: 2.18 m</u> Elevation: 332.65
NOTE	S: Headspace: SS1 0ppm, SS2 0ppm, SS3 5 0ppm, SS7 0ppm, SS8 0ppm	ōppm, S	S4 5p	opm, S	S5 0ppm	, SS6		¥ ¥	UP WA	ATER LE ON COI ATER LE ONITORI	NPLETI EVEL M	ON OF EASUR	DRILLI		+ ⊕ ⊛ ♠	REM LAB	ISTURBED FIELD VANE IOLDED FIELD VANE SHEAR TEST IKET PENETROMETER

LOC	DJECT Proposed Arkell Road Subdivision CATION Arkell Road, Guelph, Ontario						BOR	ING D	ATE:	2017	03 21					ENG	REF.: INEER	17KF002 K. Hanes
BO	RING METHOD Continuous Flight Hollow Ste	m Auger	s													TEC	HNICIAN	H. Shinwary
EPTH in	SOIL PROFILE DESCRIPTION	TEGEND	NUMBER	SA BALL	BLOWS/0.3m N - VALUES	EVATION				Ή C _u (50 20 ETRATION ATION T .3M		PLA WA1 W _P		IMIT DNTENT N Ə	rw 	UNIT WEIGHT	OBSE	ND WATER RVATIONS REMARKS
ETRES	GROUND ELEVATION 334.0	1 3	ž		N-N	S		BL 20 4	OWS/0 10 6	.3M 0 8	0			ONTEN 20 3	IT % 10	γ kN/m³		GR SA SI
0.20 0.41	TOPSOIL: Dark brown silt, trace sand,		1	SS	18						•	0				KIN/III		
	numerous rootlets, damp FILL: Dark brown silt, some sand, trace							$\left \right\rangle$										
33.31	gravel, occasional rootlets, damp		2	SS	45	333			.									
1.5	SAND AND GRAVEL: Dense brown sand and gravel, trace to some silt, numerous	المحرفر	-						V									
	cobbles, damp		3	SS	36								þ				Sampler v	vet from SS3
2.2	becoming moist					332		\vdash					\vdash			-		
31.8	SILT: Compact brown silt, trace sand,	1	4	SS	12		•	1					6					
	trace gravel, trace clay, wet to saturated		-			224							/					
			5	SS	10	331	•					(6					
						330												
			6	SS	16													
					10	329		\geq					F					
5.8 28.2	SILT TILL: Very dense brown silt, some	- p				328												
	sand, some gravel, occasional cobbles,		7	SS	50/75mm	320					~							
0.0	damp BOREHOLE TERMINATED AT 6.6 m		<u> </u>	00													1.1	alatian of
21.4	BOREHOLE TERMINATED AT 0.0 III																Upon com augering Cave to 2	ipletion of
																	Cave to 2. Free wate	0 m r at 1.83 m
NOTE	S: Headspace: SS1 0ppm, SS2 0ppm, SS3 0ppm, SS7 0ppm	0ppm, S	I S4 5p	ppm, S	SS5 0ppm,	SS6	;	<u> </u>	UP WA	TER LE ON COM TER LE NITORI	IPLETI VEL M	ON OF EASUR	DRILLI		+ + + + + + + + + + + + + + + + + + + +	REN	DISTURBED Fi NOLDED FIEL SHEAR TES	D VANE

ID Number: MW101-19

Project: Phase II ESA

Project No: 42063-200

Client: Crescent Homes Ltd.

Site Location: 190-216 Arkell Rd., Guelph

Drill Date: 10/4/2019

Drilling Contractor: Altech Drilling

Drill Rig: Geoproble 7822DT

Drill Method: Direct-Push

Protective Cover: Monument

		Subsurface Profile			Sa	amp	е	Headspace	
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Type	Recovery (%)	Soil Sample Lab Analysis	PID ppm 20 20 40 60 80 Hydrocarbon 100 200 300 400	Well Completion Details
ft m		Ground Surface	334.6						
2		TOPSOIL Dark brown silt topsoil, trace sand, moist red brick fragments at 0.23m FILL Dark brown silt, trace sand, trace to some	0.0	1	DP	38	Metals, As, Sb, Se, PAHs	0,55	Concrete
0 1 2 - - - - - - - - - - - - -		gravel (potential cobbles), moist		2	DP	38			Bentonite
		SILTY SAND AND GRAVEL Light brownish-grey silty sand and gravel (potential cobbles), moist	<u>332.8</u> 1.8	3	DP	62		035	51mm F
8 10 12 12 4				4	DP	62			
12		increasing moisture with depth		5	DP	65			51mm Slotted Screen
14			330.0	6	DP	65			Sand Pack
16		SAND AND GRAVEL Brown medium to coarse-grained sand and gravel, some silt, saturated below 4.6m	4.6	7	DP	62	PHCs, BTEX	0,55	
			328.5	8	DP	62	•	0,45	
		Drilling Terminated	6.1						······································
Field	Tecł	nnician: KLW					Note	es:	

Field Technician: KLW

Drafted by: KLW

Reviewed by: RMR

Water level measured October 8, 2019. Metal pipe encountered in first attempted borehole at approximately 0.3mbgs. Moved borehole off pipe and redrilled No noticeable staining or odours.

Sheet: 1 of 1

ID Number: BH102-19

Project: Phase II ESA

Project No: 42063-200

Client: Crescent Homes Ltd.

Site Location: 190-216 Arkell Rd., Guelph

Drill Date: 10/4/2019

Drilling Contractor: Altech Drilling

Drill Rig: Geoproble 7822DT

Drill Method: Direct-Push

Protective Cover: NA

	SUBSURFACE PROFILE				SA	MPL	.E	HEADSPACE	
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Type	Recovery (%)	Soil Sample Lab Analysis	PID ppm 20 20 40 60 80 Hydrocarbon ppm 100 200 300 400	Well Completion Details
ft m		Ground Surface	0.0						57777A
0 1 0 1 1 2 2		FILL Brown sandy silt, some gravel, moist	0.0	1	DP	53	Metals*, PAHs, PHCs*	045	
2 4 		SILTY SAND AND GRAVEL Light brownish-grey silty sand and gravel (potential cobbles), moist	-0.9 0.9 -1.5	2	DP	53	 	. œo	Bentonite
6 10 12 14 14 14 14 14 14 16 10 10 10 10 10 10 10 10 10 10		Drilling Terminated	-1.5						

Field Technician: KLW

Drafted by: KLW

Reviewed by: RMR

Notes:

Borehole advance on top of fill pile. Metals* - sample analyzed for Metals, As, Sb and Se

Se PHCs* - sample analyzed for PHCs and BTEX No noticeable staining or odours.

ID Number: BH103-19

Project: Phase II ESA

Project No: 42063-200

Client: Crescent Homes Ltd.

Site Location: 190-216 Arkell Rd., Guelph

Drill Date: 10/4/2019

Drilling Contractor: Altech Drilling

Drill Rig: Geoproble 7822DT

Drill Method: Direct-Push

Protective Cover: NA

	SUBSURFACE PROFILE					MPL	.E	HEADSPACE	
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Type	Recovery (%)	Soil Sample Lab Analysis	PID ppm 20 20 40 60 80 Hydrocarbon ppm 100 200 300 400	Well Completion Details
ft m		Ground Surface	0.0						
0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1		FILL Brown sandy silt, some gravel, moist	-0.8	1	DP	33	Metals*, PAHs, PHCs* ^I	045	
2		SILTY SAND AND GRAVEL Light brownish-grey silty sand and gravel (potential cobbles), moist	0.8	2	DP	33	•	Q 5	Bentonite
6 6 10 12 14 14 14 14 14 14 14 14 14 14		Drilling Terminated	-1.5						

Field Technician: KLW

Drafted by: KLW

Reviewed by: RMR

Notes:

Borehole advance on top of fill pile. Metals* - sample analyzed for Metals, As, Sb and Se

Se PHCs* - sample analyzed for PHCs and BTEX No noticeable staining or odours.

ID Number: BH104-19

Project: Phase II ESA

Project No: 42063-200

Client: Crescent Homes Ltd.

Site Location: 190-216 Arkell Rd., Guelph

Drill Date: 10/4/2019

Drilling Contractor: Altech Drilling

Drill Rig: Geoproble 7822DT

Drill Method: Direct-Push

Protective Cover: NA

	SUBSURFACE PROFILE					SA	MPL	.E	HEADSPACE	
Depth		Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Type	Recovery (%)	Soil Sample Lab Analysis	PID ppm 20 20 40 60 80 Hydrocarbon ppm 100 200 300 400	Well Completion Details
ft m	n		Ground Surface	0.0						17773
	U		FILL Brown sandy silt, some gravel, moist SILTY SAND AND GRAVEL	0.0 -0.6 0.6	1	DP	38	Metals*, PAHs, PHCs* ^I	035	
			Light brownish-grey silty sand and gravel (potential cobbles), moist		2	DP	38		045	Bentonite
		뿬료:	Duilling Tanansis at a d	1.5 1.5						
$\begin{array}{c} 0 \\ ft \\ n \\ 2 \\ 1 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	4		Drilling Terminated	1.5						
20	6									

Field Technician: KLW

Drafted by: KLW

Reviewed by: RMR

Notes:

Borehole advance on top of fill pile. Metals* - sample analyzed for Metals, As, Sb and Se

Se PHCs* - sample analyzed for PHCs and BTEX No noticeable staining or odours.

ID Number: MW105-19

Project: Phase II ESA

Project No: 42063-200

Client: Crescent Homes Ltd.

Site Location: 190-216 Arkell Rd., Guelph

Drill Date: 10/4/2019

Drilling Contractor: Altech Drilling

Drill Rig: Geoproble 7822DT

Drill Method: Direct-Push

Protective Cover: Flushmount

Subsurface Profile					Sa	ampl	e	Headspace	
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Type	Recovery (%)	Soil Sample Lab Analysis	PID ppm 20 20 40 60 80 Hydrocarbon ppm 100 200 300 400	Well Completion Details
$0 \frac{\text{ft}}{1} 0$		Ground Surface	334 8 0.0						
2		ASPHALT SILT Greyish-brown silt, trace gravel, moist		1	DP	58			Concrete
4		SILTY SAND Brown medium to coarse-grained silty sand, gravelly, moist	<u>333.8</u> 0.9	2	DP	58		B O	Bentonite
6 2				3	DP	77			
8				4	DP	77			=
12				5	DP	65			
14				6	DP	65			51mm Slotted Screen
		SAND	329.6 5.2	7	DP	85	Metals*,	035	
		 ∖ Brown medium to coarse-grained sand, / \trace to some silt, trace gravel, saturated / ∫ fine-grained sand seam 	329.0 5.8 328.7	8	DP	85	PAHs, PHC*	045	
		Drilling Terminated	6.1						

Field Technician: KLW

Drafted by: KLW

Reviewed by: RMR

Notes:

Water level measured October 8, 2019. Metals* - sample analyzed for Metals, As, Sb, Se PHCs* - sample analyzed for PHCs and BTEX No noticeable staining or odours.

Sheet: 1 of 1

ID Number: MW106-19

Project: Phase II ESA

Project No: 42063-200

Client: Crescent Homes Ltd.

Site Location: 190-216 Arkell Rd., Guelph

Drill Date: 10/4/2019

Drilling Contractor: Altech Drilling

Drill Rig: Geoproble 7822DT

Drill Method: Direct-Push

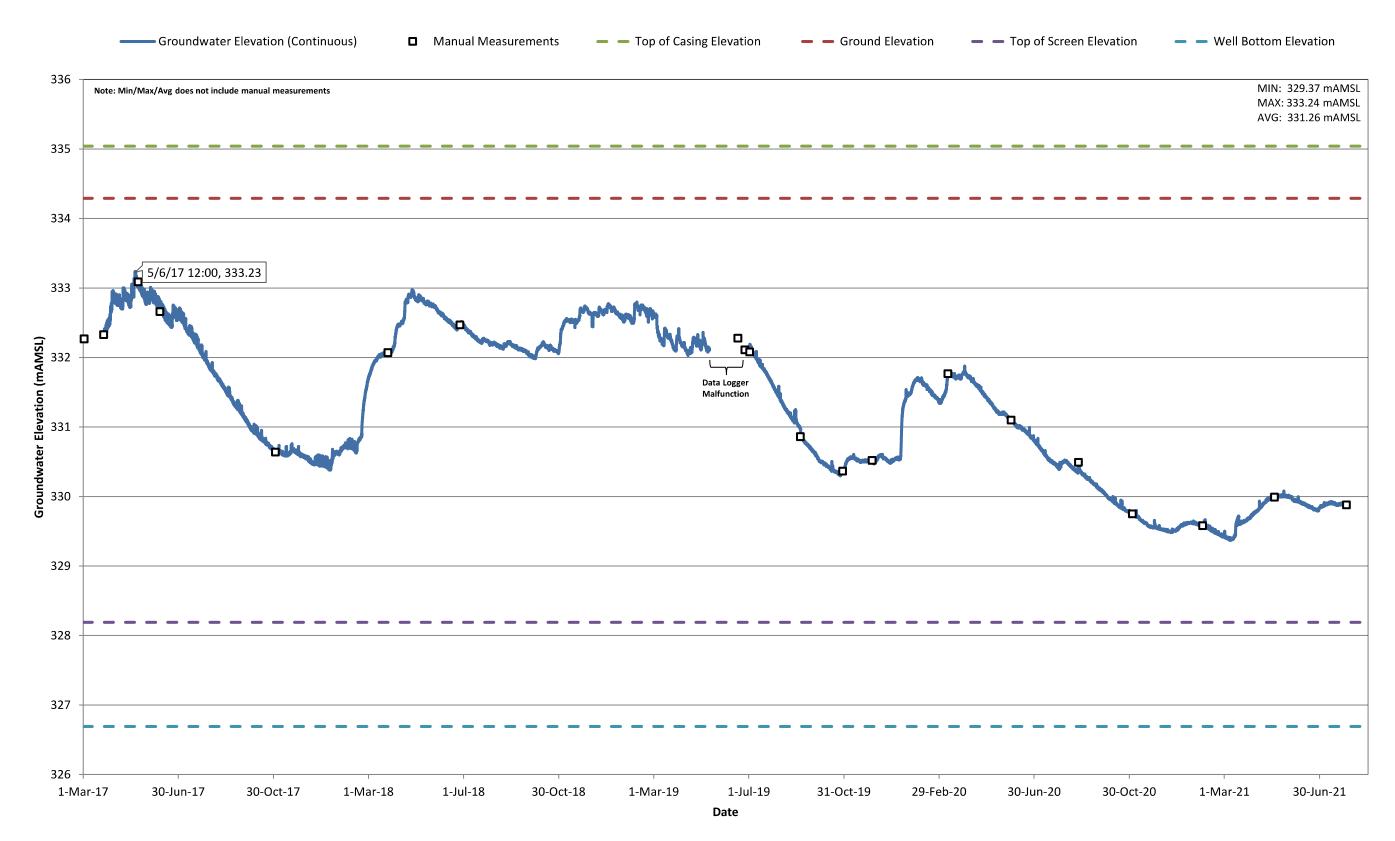
Protective Cover: Flushmount

		Subsurface Profile					е	Headspace	
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Type	Recovery (%)	Soil Sample Lab Analysis	PID ppm 20 40 60 80 Hydrocarbon ppm 100 200 300 400	Well Completion Details
$0 \frac{\text{ft m}}{-0}$	~~~~	Ground Surface	334.8 0.0						
		FILL Brown silt, trace to some sand, some gravel, moist (potential fill)	0.0	1	DP	60	M*, PHC*	040	Concrete
			333,3	2	DP	60	WI, I HO		Bentonite
6 2		SILTY SAND Brownish-grey medium to coarse-grained silty sand, gravelly, moist	<u>333.3</u> 1.5	3	DP	62		Q 35	Bentc 51mm PVC Riser
8 ⁻¹ 				4	DP	62			
12-1 				5	DP	57			screen
14			<u>330.2</u> 4.6	6	DP	57			Sand Pack
16		SAND AND GRAVEL Brown medium to coarse-grained sand and gravel, some silt, saturated below 4.7m SILT Brown silt, trace sand, trace gravel,	4.6 <u>329.9</u> 4.9	7	DP	73	M*, PHC*, P*	B 0	
		saturated	328.7	8	DP	73		035	
		Drilling Terminated	6.1						

Field Technician: KLW

Drafted by: KLW

Reviewed by: RMR

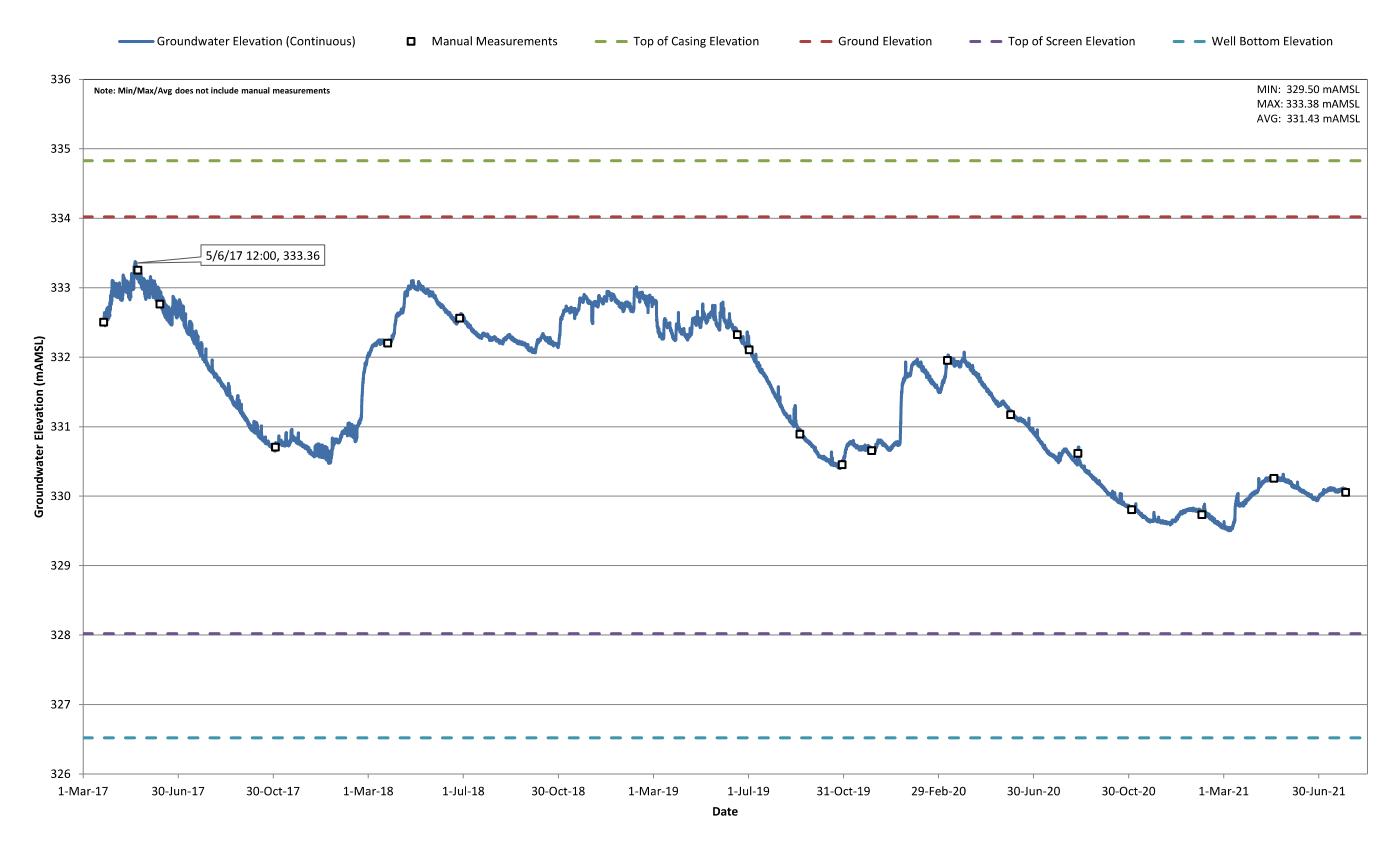

Notes: Water level measured October 8, 2019. Metals* - sample analyzed for Metals, As, Sb, Se PHCs* - sample analyzed for PHCs and BTEX P* - sample analyzed for PAHs No noticeable staining or odours.

Sheet: 1 of 1

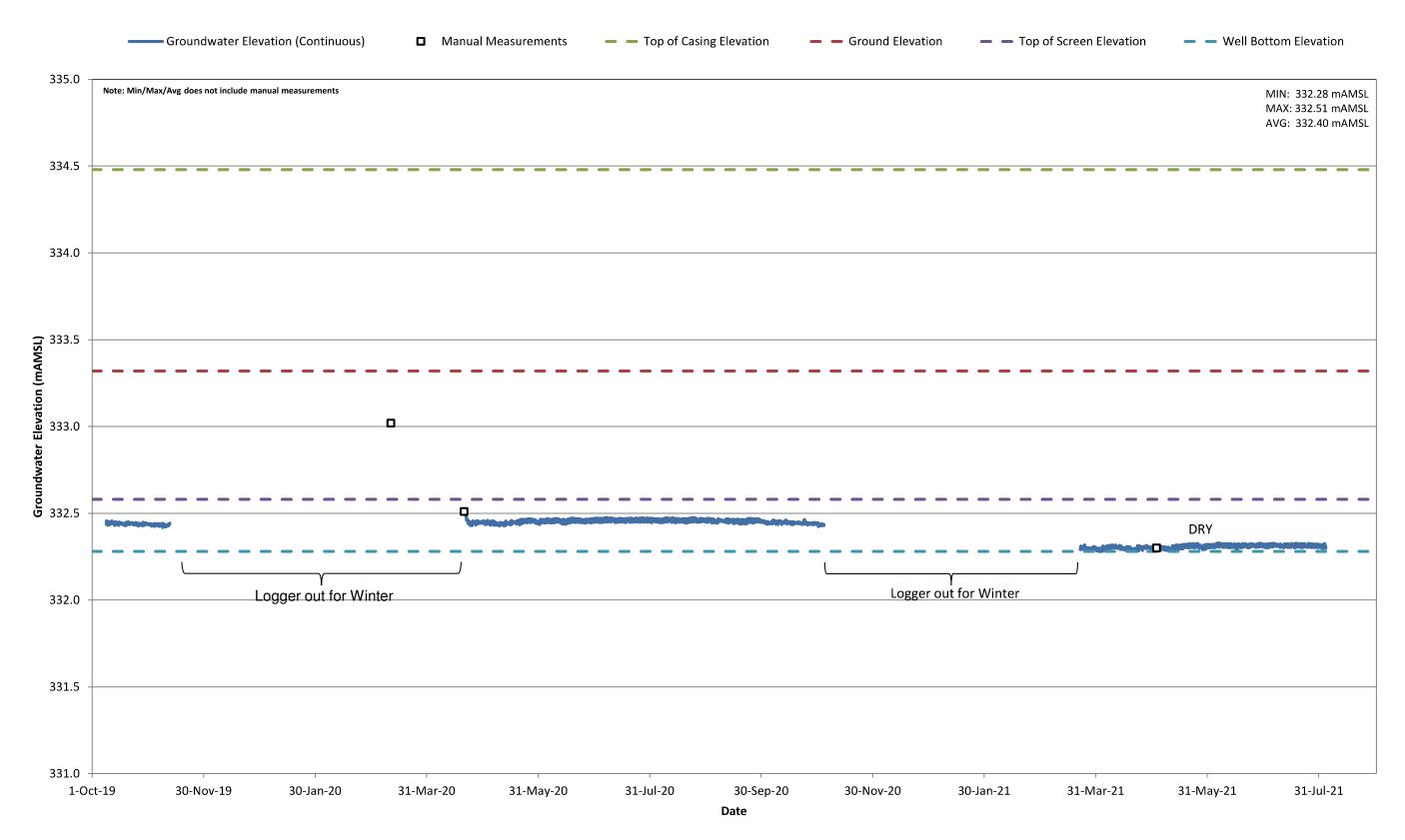
Hydrographs

Hydrograph 1: Groundwater Elevations (mAMSL) - MW2-17

Hydrograph 2: Groundwater Elevations (mAMSL) - MW3-17

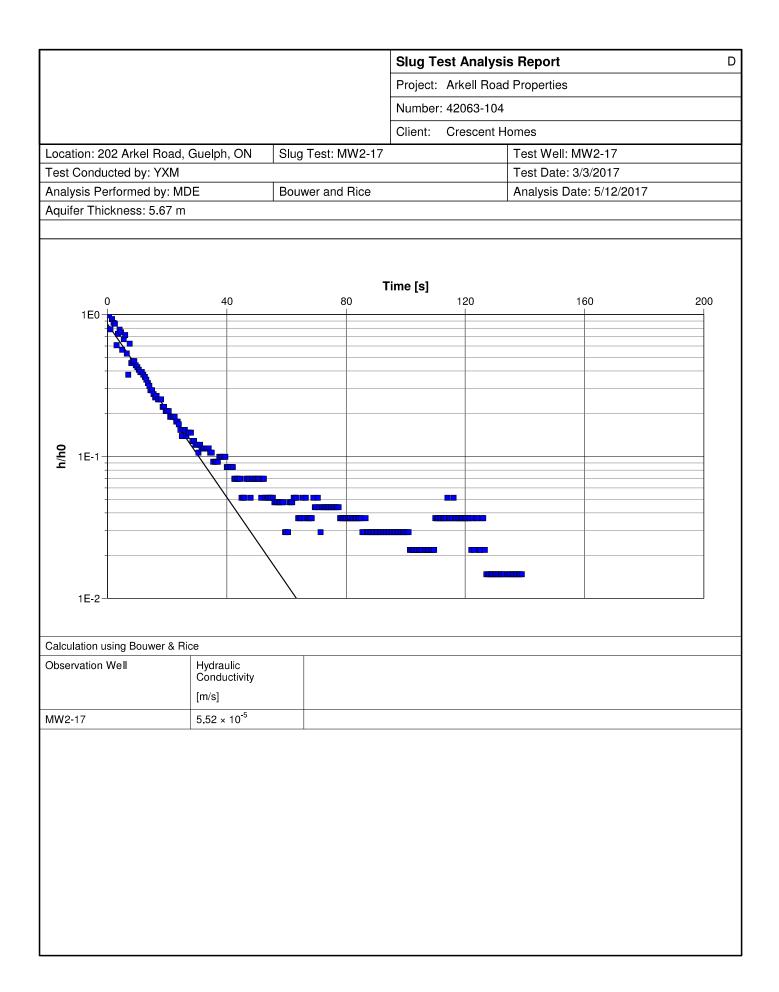

MTE File No.: 42063-104 Printed on: 11/11/2021

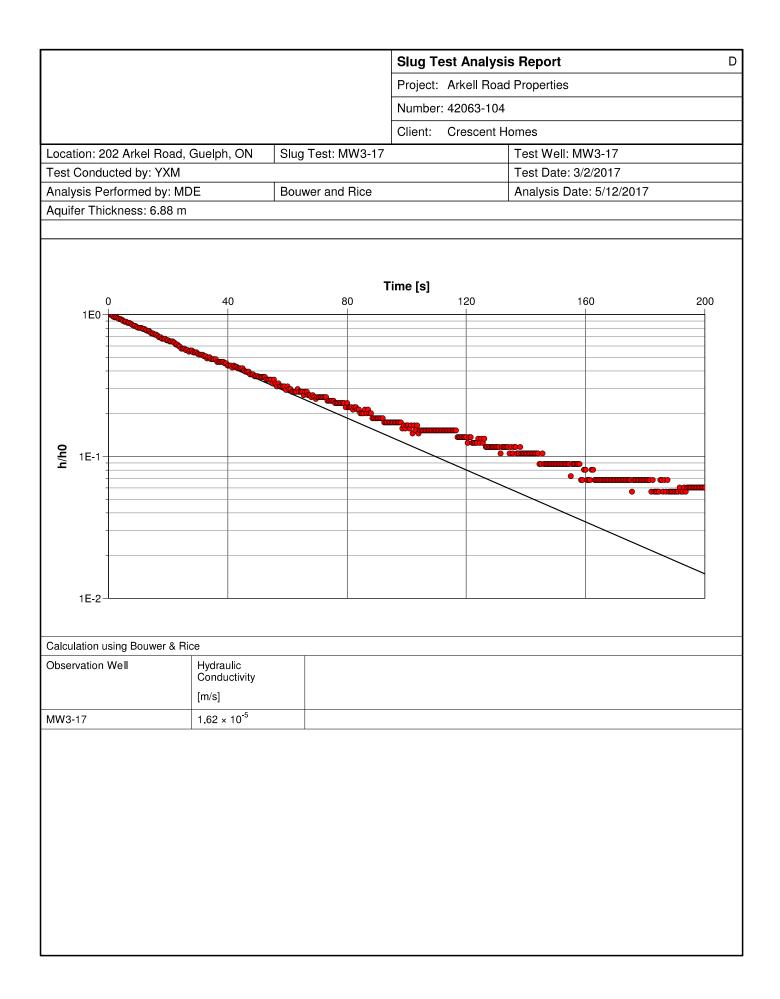
Hydrograph 3: Groundwater Elevations (mAMSL) - MW4-17

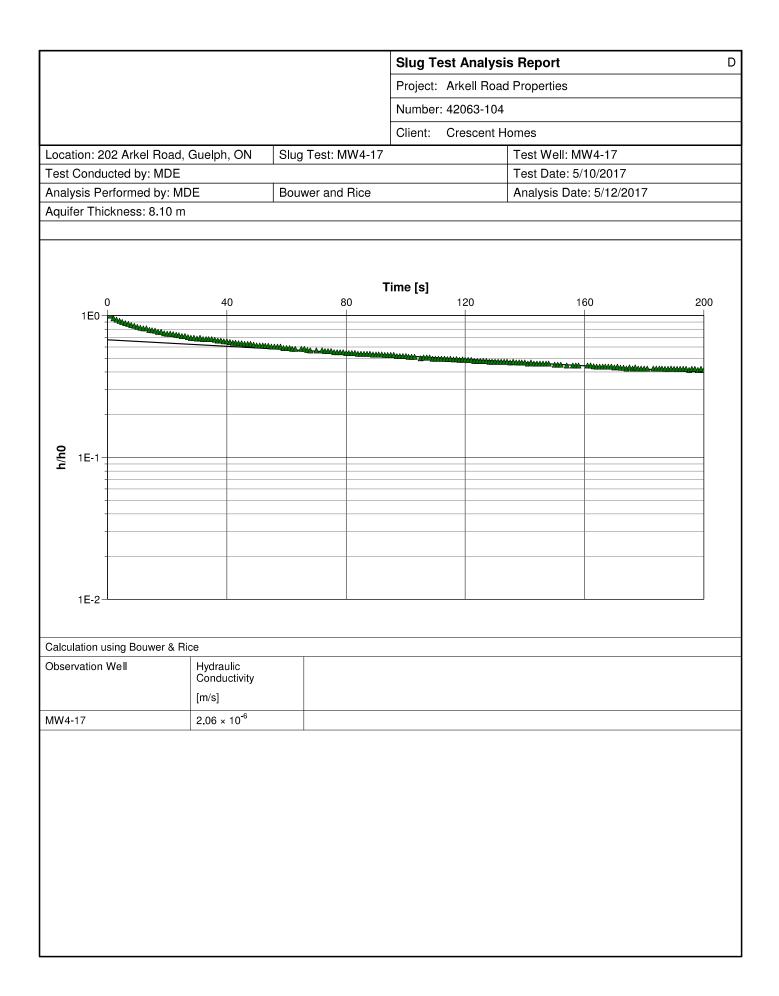


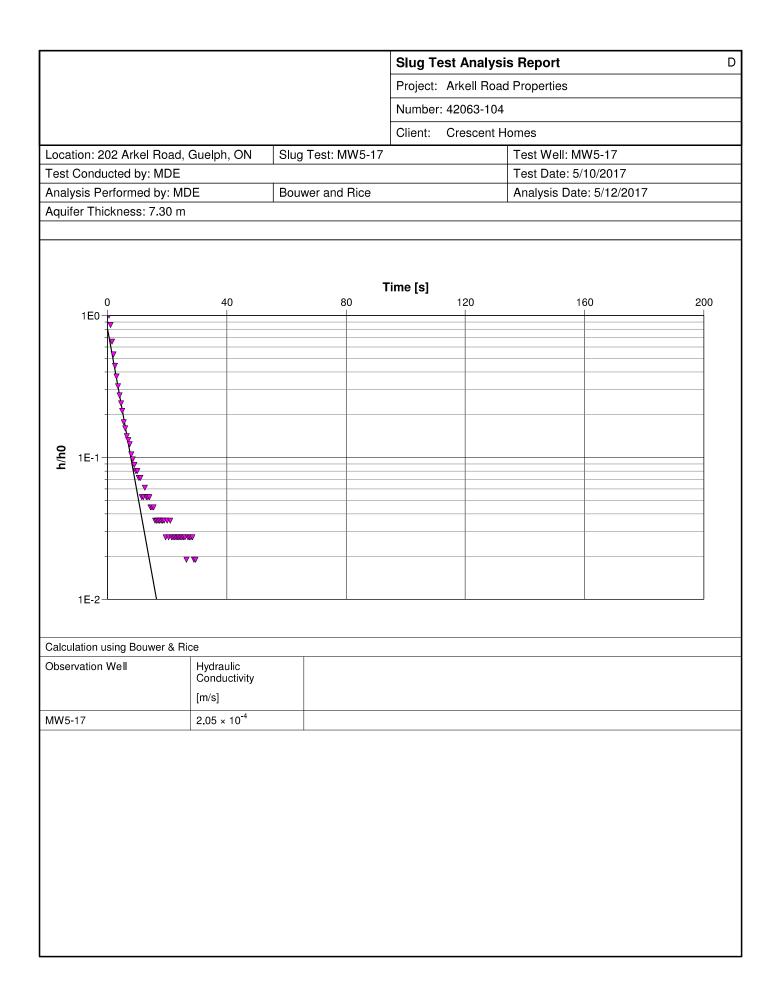
MTE File No.: 42063-104 Printed on: 11/11/2021

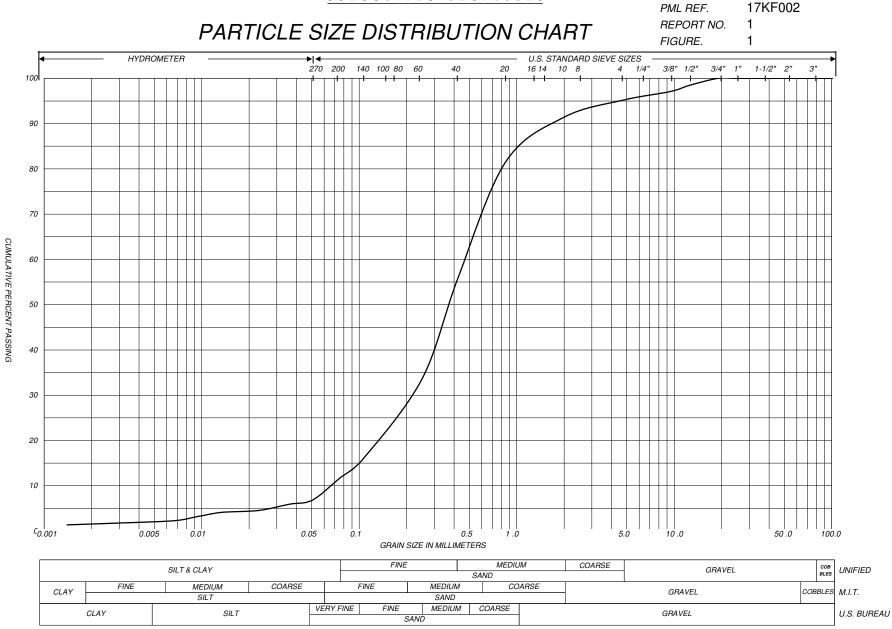
Hydrograph 4: Groundwater Elevations (mAMSL) - MW5-17


Hydrograph 1: Groundwater Elevations (mAMSL) - MP1-19





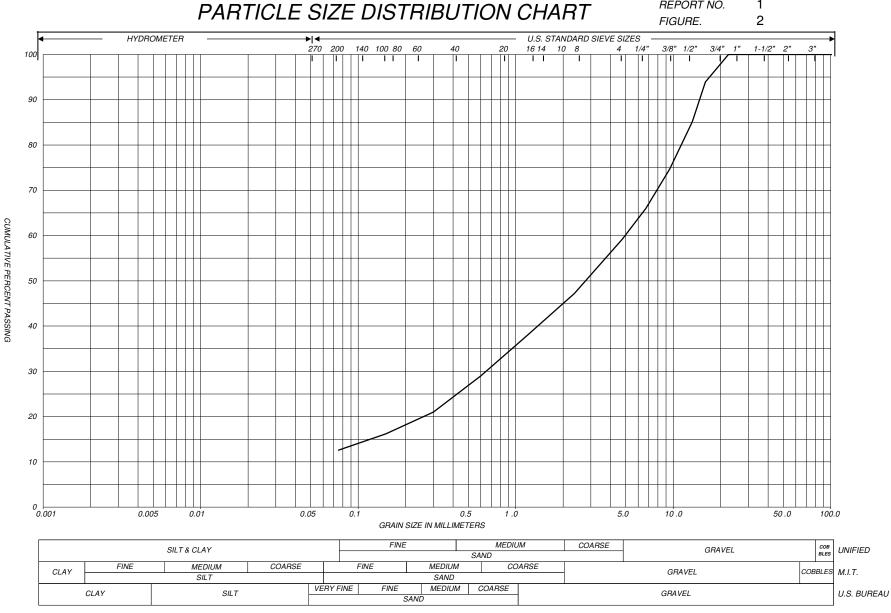

AquiferTest Data Sheets



Particle Size Distribution Graphs

Peto MacCallum Ltd.

<u>CONSULTING ENGINEERS</u>


REMARKS Borehole 1, Sample SS6, Depth 4.5 to 5.0 m

SAND, SOME SILT, TRACE GRAVEL

Peto MacCallum Ltd.

CONSULTING ENGINEERS

17KF002 PML REF. REPORT NO. 1 2 FIGURE.

Borehole 2, Sample SS2, Depth 0.7 to 1.2 m REMARKS

SAND AND GRAVEL, SOME SILT

Laboratory Certificates of Analysis

MTE CONSULTANTS INC. ATTN: ANDREW BINGEMAN 520 BINGEMANS CENTRE DRIVE KITCHENER ON N2B 3X9 Date Received: 26-JUN-18 Report Date: 04-JUL-18 14:43 (MT) Version: FINAL

Client Phone: 519-743-6500

Certificate of Analysis

Lab Work Order #: L2119092

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 42063-104 17-624726

Mary-Lynn Pike Client Services Supervisor

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2119092-1 MW-2 Sampled By: CLIENT on 26-JUN-18 @ 12:00 Matrix: WATER							
Physical Tests							
Colour, Apparent	77.6		2.0	CU		27-JUN-18	R4099703
Conductivity	712		3.0	umhos/cm		27-JUN-18	R4099089
Hardness (as CaCO3)	250		10	mg/L		28-JUN-18	
рН	7.89		0.10	pH units		27-JUN-18	R4099089
Total Dissolved Solids	546	DLDS	20	mg/L		29-JUN-18	R4110482
Turbidity	>4000		0.10	NTU		27-JUN-18	R4098100
Anions and Nutrients							
Alkalinity, Total (as CaCO3)	230		10	mg/L		28-JUN-18	R4101190
Ammonia, Total (as N)	0.035		0.020	mg/L		27-JUN-18	R410033
Chloride (CI)	76.0		0.50	mg/L		28-JUN-18	R410456
Fluoride (F)	0.062		0.020	mg/L		28-JUN-18	R4104567
Nitrate (as N)	1.59		0.020	mg/L		28-JUN-18	R410456
Nitrite (as N)	<0.010		0.010	mg/L		28-JUN-18	R410456
Orthophosphate-Dissolved (as P)	<0.0030		0.0030	mg/L		27-JUN-18	R410035
Sulfate (SO4)	13.6		0.30	mg/L		28-JUN-18	R410456
Dissolved Metals							
Dissolved Metals Filtration Location	FIELD					27-JUN-18	R409795
Aluminum (AI)-Dissolved	<0.010		0.010	mg/L	27-JUN-18	27-JUN-18	R409900
Antimony (Sb)-Dissolved	<0.0050		0.0050	mg/L	27-JUN-18	27-JUN-18	R409900
Arsenic (As)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R409900
Barium (Ba)-Dissolved	0.028		0.010	mg/L	27-JUN-18	27-JUN-18	R409900
Beryllium (Be)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R409900
Bismuth (Bi)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R409900
Boron (B)-Dissolved	<0.050		0.050	mg/L	27-JUN-18	27-JUN-18	R409900
Cadmium (Cd)-Dissolved	<0.000090		0.000090	mg/L	27-JUN-18	27-JUN-18	R409900
Calcium (Ca)-Dissolved	67.5		0.50	mg/L	27-JUN-18	27-JUN-18	R409900
Chromium (Cr)-Dissolved	<0.00050		0.00050	mg/L	27-JUN-18	27-JUN-18	R409900
Cobalt (Co)-Dissolved	<0.00050		0.00050	mg/L	27-JUN-18	27-JUN-18	R409900
Copper (Cu)-Dissolved	0.0034		0.0010	mg/L	27-JUN-18	27-JUN-18	R409900
Iron (Fe)-Dissolved	<0.050		0.050	mg/L	27-JUN-18	27-JUN-18	R409900
Lead (Pb)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R409900
Magnesium (Mg)-Dissolved	19.7		0.50	mg/L	27-JUN-18	27-JUN-18	R409900
Manganese (Mn)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R409900
Molybdenum (Mo)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R409900
Nickel (Ni)-Dissolved	<0.0020		0.0020	mg/L	27-JUN-18	27-JUN-18	R409900
Phosphorus (P)-Dissolved	<0.050		0.050	mg/L	27-JUN-18	27-JUN-18	R409900
Potassium (K)-Dissolved	1.9		1.0	mg/L	27-JUN-18	27-JUN-18	R409900
Selenium (Se)-Dissolved	<0.00040		0.00040	mg/L	27-JUN-18	27-JUN-18	R409900
Silicon (Si)-Dissolved	2.4		1.0	mg/L	27-JUN-18	27-JUN-18	R409900
Silver (Ag)-Dissolved	<0.00010		0.00010	mg/L	27-JUN-18	27-JUN-18	R409900
Sodium (Na)-Dissolved	60.4		0.50	mg/L	27-JUN-18	27-JUN-18	R4099009

 * Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2119092-1 MW-2 Sampled By: CLIENT on 26-JUN-18 @ 12:00 Matrix: WATER							
Dissolved Metals							
Strontium (Sr)-Dissolved	0.0735		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Thallium (TI)-Dissolved	< 0.00030		0.00030	mg/L	27-JUN-18	27-JUN-18	R4099009
Tin (Sn)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Titanium (Ti)-Dissolved	<0.0020		0.0020	mg/L	27-JUN-18	27-JUN-18	R4099009
Tungsten (W)-Dissolved	<0.010		0.010	mg/L	27-JUN-18	27-JUN-18	R4099009
Uranium (U)-Dissolved	<0.0050		0.0050	mg/L	27-JUN-18	27-JUN-18	R4099009
Vanadium (V)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Zinc (Zn)-Dissolved	0.0132		0.0030	mg/L	27-JUN-18	27-JUN-18	R4099009
Zirconium (Zr)-Dissolved	<0.0040		0.0040	mg/L	27-JUN-18	27-JUN-18	R4099009
L2119092-2 MW-4 Sampled By: CLIENT on 26-JUN-18 @ 13:04 Matrix: WATER							
Physical Tests							
Colour, Apparent	455	DLHC	4.0	CU		27-JUN-18	R4099703
Conductivity	770		3.0	umhos/cm		27-JUN-18	R4099089
Hardness (as CaCO3)	380		10	mg/L		28-JUN-18	
рН	7.63		0.10	pH units		27-JUN-18	R4099089
Total Dissolved Solids	452	DLDS	20	mg/L		29-JUN-18	R4110482
Turbidity	>4000		0.10	NTU		27-JUN-18	R4098100
Anions and Nutrients							
Alkalinity, Total (as CaCO3)	313		10	mg/L		28-JUN-18	R4101190
Ammonia, Total (as N)	0.041		0.020	mg/L		27-JUN-18	R4100330
Chloride (CI)	35.9		0.50	mg/L		28-JUN-18	R4104567
Fluoride (F)	0.051		0.020	mg/L		28-JUN-18	R4104567
Nitrate (as N)	6.29		0.020	mg/L		28-JUN-18	R4104567
Nitrite (as N)	<0.010		0.010	mg/L		28-JUN-18	R4104567
Orthophosphate-Dissolved (as P)	<0.0030		0.0030	mg/L		27-JUN-18	R4100351
Sulfate (SO4)	14.2		0.30	mg/L		28-JUN-18	R4104567
Dissolved Metals							
Dissolved Metals Filtration Location	FIELD					27-JUN-18	R4097954
Aluminum (Al)-Dissolved	<0.010		0.010	mg/L	27-JUN-18	27-JUN-18	R4099009
Antimony (Sb)-Dissolved	<0.0050		0.0050	mg/L	27-JUN-18	27-JUN-18	R4099009
Arsenic (As)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Barium (Ba)-Dissolved	0.058		0.010	mg/L	27-JUN-18	27-JUN-18	R4099009
Beryllium (Be)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Bismuth (Bi)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Boron (B)-Dissolved	<0.050		0.050	mg/L	27-JUN-18	27-JUN-18	R4099009
Cadmium (Cd)-Dissolved	<0.000090		0.000090	mg/L	27-JUN-18	27-JUN-18	R4099009
Calcium (Ca)-Dissolved	98.6		0.50	mg/L	27-JUN-18	27-JUN-18	R4099009
Chromium (Cr)-Dissolved	<0.00050		0.00050	mg/L	27-JUN-18	27-JUN-18	R4099009
Cobalt (Co)-Dissolved	<0.00050		0.00050	mg/L	27-JUN-18	27-JUN-18	R4099009
Copper (Cu)-Dissolved	0.0043		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009

 * Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2119092-2 MW-4 Sampled By: CLIENT on 26-JUN-18 @ 13:04 Matrix: WATER							
Dissolved Metals							
Iron (Fe)-Dissolved	<0.050		0.050	mg/L	27-JUN-18	27-JUN-18	R4099009
Lead (Pb)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Magnesium (Mg)-Dissolved	32.5		0.50	mg/L	27-JUN-18	27-JUN-18	R4099009
Manganese (Mn)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Molybdenum (Mo)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Nickel (Ni)-Dissolved	<0.0020		0.0020	mg/L	27-JUN-18	27-JUN-18	R4099009
Phosphorus (P)-Dissolved	<0.050		0.050	mg/L	27-JUN-18	27-JUN-18	R4099009
Potassium (K)-Dissolved	7.5		1.0	mg/L	27-JUN-18	27-JUN-18	R4099009
Selenium (Se)-Dissolved	<0.00040		0.00040	mg/L	27-JUN-18	27-JUN-18	R4099009
Silicon (Si)-Dissolved	4.6		1.0	mg/L	27-JUN-18	27-JUN-18	R4099009
Silver (Ag)-Dissolved	<0.00010		0.00010	mg/L	27-JUN-18	27-JUN-18	R4099009
Sodium (Na)-Dissolved	21.6		0.50	mg/L	27-JUN-18	27-JUN-18	R4099009
Strontium (Sr)-Dissolved	0.111		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Thallium (TI)-Dissolved	<0.00030		0.00030	mg/L	27-JUN-18	27-JUN-18	R4099009
Tin (Sn)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Titanium (Ti)-Dissolved	<0.0020		0.0020	mg/L	27-JUN-18	27-JUN-18	R4099009
Tungsten (W)-Dissolved	<0.010		0.010	mg/L	27-JUN-18	27-JUN-18	R4099009
Uranium (U)-Dissolved	<0.0050		0.0050	mg/L	27-JUN-18	27-JUN-18	R4099009
Vanadium (V)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Zinc (Zn)-Dissolved	0.0293		0.0030	mg/L	27-JUN-18	27-JUN-18	R4099009
Zirconium (Zr)-Dissolved	<0.0040		0.0040	mg/L	27-JUN-18	27-JUN-18	R4099009
* Refer to Referenced Information for Qualifiers (if any) ar							

 * Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Descripti	on	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike		Chloride (Cl)	MS-B	L2119092-1, -2
Matrix Spike		Barium (Ba)-Dissolved	MS-B	L2119092-1, -2
Matrix Spike		Calcium (Ca)-Dissolved	MS-B	L2119092-1, -2
/latrix Spike		Magnesium (Mg)-Dissolved	MS-B	L2119092-1, -2
/latrix Spike		Silicon (Si)-Dissolved	MS-B	L2119092-1, -2
/latrix Spike		Sodium (Na)-Dissolved	MS-B	L2119092-1, -2
/latrix Spike		Strontium (Sr)-Dissolved	MS-B	L2119092-1, -2
/latrix Spike		Uranium (U)-Dissolved	MS-B	L2119092-1, -2
Matrix Spike		Ammonia, Total (as N)	MS-B	L2119092-1, -2
Matrix Spike		Nitrate (as N)	MS-B	L2119092-1, -2
ample Paramete	er Qualifier key l	isted:		
Qualifier D	escription			
DLDS D	etection Limit Raise	ed: Dilution required due to high Disso	Ived Solids / Electi	rical Conductivity.
DLHC D	etection Limit Raise	ed: Dilution required due to high conce	ntration of test and	alyte(s).
MS-B N	latrix Spike recover	y could not be accurately calculated d	ue to high analyte	background in sample.
est Method Refe	erences:			
ALS Test Code	Matrix	Test Description	Method Refere	ence**
ALK-WT This analysis is ca colourimetric meth		Alkalinity, Total (as CaCO3) cedures adapted from EPA Method 31	EPA 310.2 0.2 "Alkalinity". To	tal Alkalinity is determined using the methyl orange
CL-IC-N-WT Inorganic anions a	Water are analyzed by Ion	Chloride by IC Chromatography with conductivity and	EPA 300.1 (m d/or UV detection.	od)
decanting. Colour	s measured spectro measurements ca			ards using the single wavelength method after sample mple as received (at time of testing), without pH
EC-WT	Water	Conductivity ectly by immersing the conductivity cel	APHA 2510 B I into the sample.	
-IC-N-WT Inorganic anions a		Fluoride in Water by IC Chromatography with conductivity and	EPA 300.1 (m d/or UV detection.	od)
	own as Total Hardr	Hardness ness) is calculated from the sum of Ca oncentrations are preferentially used f		sium concentrations, expressed in CaCO3 equivalents. alculation.
/IET-D-CCMS-WT	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/	6020A (mod)
Water samples ar	e filtered (0.45 um)	, preserved with nitric acid, and analyz	ed by CRC ICPMS	3.
Method Limitation	(re: Sulfur): Sulfide	and volatile sulfur species may not be	e recovered by this	s method.
Analysis conducte Protection Act (Ju		th the Protocol for Analytical Methods	Used in the Asses	sment of Properties under Part XV.1 of the Environmen
NH3-WT Sample is measur colorimetrically.	Water ed colorimetrically.	Ammonia, Total as N When sample is turbid a distillation st	EPA 350.1 ep is required, san	nple is distilled into a solution of boric acid and measure
NO2-IC-WT Inorganic anions a	Water are analyzed by Ion	Nitrite in Water by IC Chromatography with conductivity and	EPA 300.1 (m d/or UV detection.	od)
NO3-IC-WT Inorganic anions a	Water are analyzed by Ion	Nitrate in Water by IC Chromatography with conductivity and	EPA 300.1 (m d/or UV detection.	od)
PH-WT Water samples ar	Water e analyzed directly	pH by a calibrated pH meter.	APHA 4500 H	-Electrode
				sment of Properties under Part XV.1 of the Environme

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

Reference Information

PO4-DO-COL-WT	Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS
		cedures adapted from APHA Method 4 s been lab or field filtered through a 0.4	500-P "Phosphorus". Dissolved Orthophosphate is determined 5 micron membrane filter.
SO4-IC-N-WT Inorganic anions are	Water analyzed by lor	Sulfate in Water by IC Chromatography with conductivity and	EPA 300.1 (mod) /or UV detection.
			APHA 2540C 540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids s determined by evaporating the filtrate to dryness at 180 degrees celsius.
			APHA 2130 B d by the sample under defined conditions with the intensity of light scattered dings are obtained from a Nephelometer.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

17-624726

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2119092 Report Date: 04-JUL-18 Page 1 of 6 MTE CONSULTANTS INC. Client: 520 BINGEMANS CENTRE DRIVE KITCHENER ON N2B 3X9 ANDREW BINGEMAN Contact: Test Qualifier Units RPD Limit Matrix Analyzed Reference Result ALK-WT Water Batch R4101190 WG2809810-11 CRM WT-ALK-CRM 92.5 Alkalinity, Total (as CaCO3) % 80-120 28-JUN-18 WG2809810-3 CRM WT-ALK-CRM Alkalinity, Total (as CaCO3) 93.4 % 80-120 28-JUN-18 WG2809810-12 DUP L2119092-2 Alkalinity, Total (as CaCO3) 313 318 mg/L 1.7 20 28-JUN-18 WG2809810-10 LCS Alkalinity, Total (as CaCO3) 96.3 % 85-115 28-JUN-18 WG2809810-2 LCS 97.9 Alkalinity, Total (as CaCO3) % 85-115 28-JUN-18 WG2809810-1 MB Alkalinity, Total (as CaCO3) <10 mg/L 10 28-JUN-18 WG2809810-9 MB Alkalinity, Total (as CaCO3) <10 mg/L 10 28-JUN-18 CL-IC-N-WT Water Batch R4104567 WG2809480-2 LCS 101.2 Chloride (CI) % 90-110 28-JUN-18 WG2809480-1 MB Chloride (CI) <0.50 mg/L 0.5 28-JUN-18 COLOUR-APPARENT-WT Water Batch R4099703 WG2808121-2 LCS 106.7 Colour, Apparent % 85-115 27-JUN-18 WG2808121-1 MB CU Colour, Apparent <2.0 27-JUN-18 2 EC-WT Water Batch R4099089 WG2808019-10 LCS Conductivity 99.9 % 90-110 27-JUN-18 WG2808019-6 LCS 99.7 Conductivity % 90-110 27-JUN-18 WG2808019-5 MB Conductivity <3.0 umhos/cm 3 27-JUN-18 WG2808019-9 MB Conductivity <3.0 umhos/cm 3 27-JUN-18

F-IC-N-WT

	Workorder: L211909	2 Report Date: 04-	JUL-18	Page 2 of 6			
Fest Matrix	Reference Result	Qualifier Units	RPD	Limit	Analyzed		
F-IC-N-WT Water							
Batch R4104567							
WG2809480-2 LCS							
Fluoride (F)	101.3	%		90-110	28-JUN-18		
WG2809480-1 MB Fluoride (F)	<0.020	mg/L		0.02	28-JUN-18		
MET-D-CCMS-WT Water							
Batch R4099009							
WG2807911-2 LCS							
Aluminum (Al)-Dissolved	105.6	%		80-120	27-JUN-18		
Antimony (Sb)-Dissolved	101.3	%		80-120	27-JUN-18		
Arsenic (As)-Dissolved	104.9	%		80-120	27-JUN-18		
Barium (Ba)-Dissolved	102.5	%		80-120	27-JUN-18		
Beryllium (Be)-Dissolved	103.7	%		80-120	27-JUN-18		
Bismuth (Bi)-Dissolved	102.5	%		80-120	27-JUN-18		
Boron (B)-Dissolved	99.6	%		80-120	27-JUN-18		
Cadmium (Cd)-Dissolved	99.8	%		80-120	27-JUN-18		
Calcium (Ca)-Dissolved	103.8	%		80-120	27-JUN-18		
Chromium (Cr)-Dissolved	103.0	%		80-120	27-JUN-18		
Cobalt (Co)-Dissolved	103.1	%		80-120	27-JUN-18		
Copper (Cu)-Dissolved	103.0	%		80-120	27-JUN-18		
Iron (Fe)-Dissolved	97.6	%		80-120	27-JUN-18		
Lead (Pb)-Dissolved	102.6	%		80-120	27-JUN-18		
Magnesium (Mg)-Dissolved	107.9	%		80-120	27-JUN-18		
Manganese (Mn)-Dissolved	103.5	%		80-120	27-JUN-18		
Molybdenum (Mo)-Dissolved	103.7	%		80-120	27-JUN-18		
Nickel (Ni)-Dissolved	102.4	%		80-120	27-JUN-18		
Phosphorus (P)-Dissolved	106.0	%		80-120	27-JUN-18		
Potassium (K)-Dissolved	101.3	%		80-120	27-JUN-18		
Selenium (Se)-Dissolved	102.8	%		80-120	27-JUN-18		
Silicon (Si)-Dissolved	100.7	%		60-140	27-JUN-18		
Silver (Ag)-Dissolved	99.3	%		80-120	27-JUN-18		
Sodium (Na)-Dissolved	109.4	%		80-120	27-JUN-18		
Strontium (Sr)-Dissolved	97.7	%		80-120	27-JUN-18		
Thallium (TI)-Dissolved	105.6	%		80-120	27-JUN-18		
Tin (Sn)-Dissolved	100.3	%		80-120	27-JUN-18		
Titanium (Ti)-Dissolved	101.6	%		80-120	27-JUN-18		

		Workorder: L2119092		2	Report Date: 0	4-JUL-18	Page 3 of 6				
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed			
MET-D-CCMS-WT	Water										
Batch R40990	09										
WG2807911-2 LC											
Tungsten (W)-Dissol			98.1		%		80-120	27-JUN-18			
Uranium (U)-Dissolv			102.5		%		80-120	27-JUN-18			
Vanadium (V)-Dissol	lved		106.6		%		80-120	27-JUN-18			
Zinc (Zn)-Dissolved			97.8		%		80-120	27-JUN-18			
Zirconium (Zr)-Disso	lved		99.5		%		80-120	27-JUN-18			
WG2807911-1 MB Aluminum (Al)-Disso			<0.0050		mg/L		0.005	27-JUN-18			
Antimony (Sb)-Disso			<0.00010)	mg/L		0.0001	27-JUN-18			
Arsenic (As)-Dissolv			<0.00010		mg/L		0.0001	27-JUN-18			
Barium (Ba)-Dissolve			<0.00010		mg/L		0.0001	27-JUN-18			
Beryllium (Be)-Disso			<0.00010		mg/L		0.0001	27-JUN-18			
Bismuth (Bi)-Dissolv			<0.00005		mg/L		0.00005	27-JUN-18			
Boron (B)-Dissolved			<0.010		mg/L		0.00000	27-JUN-18			
Cadmium (Cd)-Disso			<0.00000)5(mg/L		0.000005	27-JUN-18			
Calcium (Ca)-Dissol			<0.050		mg/L		0.05	27-JUN-18			
Chromium (Cr)-Disse			<0.00050)	mg/L		0.0005	27-JUN-18			
Cobalt (Co)-Dissolve			<0.00010		mg/L		0.0001	27-JUN-18			
Copper (Cu)-Dissolv			<0.00020		mg/L		0.0002	27-JUN-18			
Iron (Fe)-Dissolved			<0.010		mg/L		0.002	27-JUN-18			
Lead (Pb)-Dissolved			< 0.00005	50	mg/L		0.00005	27-JUN-18			
Magnesium (Mg)-Dis			< 0.0050		mg/L		0.005	27-JUN-18			
Manganese (Mn)-Dis			<0.00050)	mg/L		0.0005	27-JUN-18			
Molybdenum (Mo)-D			< 0.00005		mg/L		0.00005	27-JUN-18			
Nickel (Ni)-Dissolved			<0.00050		mg/L		0.0005	27-JUN-18			
Phosphorus (P)-Diss			<0.050		mg/L		0.05	27-JUN-18			
Potassium (K)-Disso			<0.050		mg/L		0.05	27-JUN-18			
Selenium (Se)-Disso			<0.00005	50	mg/L		0.00005	27-JUN-18			
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	27-JUN-18			
Silver (Ag)-Dissolved			< 0.00005	50	mg/L		0.00005	27-JUN-18			
Sodium (Na)-Dissolv			<0.050		mg/L		0.05	27-JUN-18			
Strontium (Sr)-Disso			< 0.0010		mg/L		0.001	27-JUN-18			
Thallium (TI)-Dissolv			< 0.00001	10	mg/L		0.00001	27-JUN-18			
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	27-JUN-18			
Titanium (Ti)-Dissolv	ved		<0.00030		mg/L		0.0003	27-JUN-18			

		Workorder	: L211909	2	Report Date: 04	1-JUL-18	Page 4 of 6				
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed			
MET-D-CCMS-WT	Water										
Batch R4099009											
WG2807911-1 MB											
Tungsten (W)-Dissolved			<0.00010		mg/L		0.0001	27-JUN-18			
Uranium (U)-Dissolved			<0.00001	0	mg/L		0.00001	27-JUN-18			
Vanadium (V)-Dissolved			<0.00050		mg/L		0.0005	27-JUN-18			
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	27-JUN-18			
Zirconium (Zr)-Dissolved			<0.00030		mg/L		0.0003	27-JUN-18			
NH3-WT	Water										
Batch R4100330											
WG2808125-6 LCS					24						
Ammonia, Total (as N)			98.7		%		85-115	27-JUN-18			
WG2808125-5 MB Ammonia, Total (as N)			<0.020		mg/L		0.00				
Ammonia, Total (as N)			<0.020		mg/∟		0.02	27-JUN-18			
NO2-IC-WT	Water										
Batch R4104567											
WG2809480-2 LCS			100 7		0/						
Nitrite (as N)			100.7		%		70-130	28-JUN-18			
WG2809480-1 MB Nitrite (as N)			<0.010		mg/L		0.01	28-JUN-18			
			20.010		ing/L		0.01	20-JUN-10			
NO3-IC-WT	Water										
Batch R4104567											
WG2809480-2 LCS Nitrate (as N)			100.7		%		70-130	28-JUN-18			
WG2809480-1 MB			100.7		,0		70-150	20-0011-10			
Nitrate (as N)			<0.020		mg/L		0.02	28-JUN-18			
PH-WT	Water				-						
	Waler										
Batch R4099089 WG2808019-10 LCS											
pH			7.00		pH units		6.9-7.1	27-JUN-18			
WG2808019-6 LCS											
рН			6.99		pH units		6.9-7.1	27-JUN-18			
PO4-DO-COL-WT	Water										
Batch R4100351											
WG2808131-2 LCS											
Orthophosphate-Dissolve	ed (as P)		106.3		%		70-130	27-JUN-18			
WG2808131-1 MB											
Orthophosphate-Dissolve	ed (as P)		<0.0030		mg/L		0.003	27-JUN-18			
SO4-IC-N-WT	Water										

		Workorder: L2119092		Report Date: 0	4-JUL-18	Page 5 of 6					
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed			
SO4-IC-N-WT	Water										
	04567 LCS										
Sulfate (SO4)			101.9		%		90-110	28-JUN-18			
WG2809480-1 Sulfate (SO4)	MB		<0.30		mg/L		0.3	28-JUN-18			
SOLIDS-TDS-WT	Water										
	10482 DUP Golids	L2119092-1 546	543		mg/L	0.5	20	29-JUN-18			
WG2810907-2 Total Dissolved S	LCS Solids		97.0		%		85-115	29-JUN-18			
WG2810907-1 Total Dissolved S	MB Solids		<10		mg/L		10	29-JUN-18			
TURBIDITY-WT	Water										
	98100										
WG2807987-2 Turbidity	LCS		104.0		%		85-115	27-JUN-18			
WG2807987-1 Turbidity	МВ		<0.10		NTU		0.1	27-JUN-18			

Workorder: L2119092

Report Date: 04-JUL-18

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS	Environment		Custody (C Request	L21190	92-COFC		e la	abel h	nere		coc	Number: P	17 - (^{age} \	52 4 ₅	726 1)			
	www.alsglobal.com									. <u> </u>									
Report To		e below will appear on the final report		Report Format									to confirm				ay app	ly}	
Company:	MIE COOSL	utants Inc.	Select Report Fo					Regular		Standaro			pm - busines	· · · · ·	ircharges ap	ply			
Contact:				Quality Control (QC) Report with Report				Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system										l	i
Phone:				ults to Criteria on Report -			192 - 3 C	lay [P3-2	=				, Weekend				200%	Г	
	Company address below will app	pear on the final report	Select Distribution					iay [P2-	50%]			.aborato	ry opening	fees may	/ apply)]		-	L	_
Street:			Email 1 or Fax	DOINPRY	Nancen	He85.10	Dat Dat	e and Tim	e Required fo	or all E&P	TATs:			dd-mi	mm•yy hh	i:mm			
City/Province:			Email 2 Kin	vivale Or	M1685.	.com	For tests that	can not be	performed ac	cording to	the servic	alavel selec	ted, you will be	contacted,	-				
Postal Code:			Email 3		· ·		Analysis Request												
Invoice To	Same as Report To	YA YES NO		Invoice Di	stribution	· ·		In	dicate Filtere	d (F), Pre	served (P)	or Filtered	and Preserved	l (F/P) below				See 1	_
	Copy of Invoice with Report		Select Invoice D	istribution: 🍙 E	MAIL MAIL	FAX				1								detalls	
Company:			Email 1 or Fax							1						\square		Ē	
Contact:		•	Email 2							·								Ę	
	Project Inform	ation		oil and Gas Require	d Fields (client us													provide further	
ALS Account #/	Project Information				PO#										· ·			De la	
	LS Account #/ Quote #:				Routing Code:											· [8 .	n
					Roading Code.		18											E F	Ę.
)/AFE:			Requisitioner:						ŀ .			· ·				e l	SHA	ž
LSD:	· · · · · · · · · · · · · · · · · · ·	Location:	Location:					100							· ·	호	a la la	ŝ.	
ALS Lab Wor	rk Order # (lab use only):	12119092 84		m_{r}	Sampler: \(in	Senchem		4 . •								SAMPLES ON HOLD	Is haz	Ś
ALS Sample # (lab use only)		Identification and/or Coordinate scription will appear on the report		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	ß		¢.								SAMPL	Sample is hazardous (plea) NUMBER OF CONTAINERS	NUMB
	mw-2			26/06/8	12:00	(D)	X			ŀ		•						1	T
						<u> </u>	14							•					Ť
	nnw-4			+ · · · · ·		•		-				_			+	┼─╂	-+	-+	<u>.</u>
							+			4					<u> </u>	┼╌╌╂	 		_
	· · · ·					<u></u>	<u> </u>									┝╌╌┥			
		•	·																
		1						·											_
							<u> </u>			1						├──†	-		-
	<u> </u>		· · ·	· <u> </u>		· · · · · · · · · · · · · · · · · · ·		-			<u> </u>				_ <u>_</u>	┝		<u> </u>	_
	· ·		· · · ·	ļ	<u> </u>	l <u>.</u>	+			 	- +					┝─┛	$ \rightarrow $		
			•	•			,												
										•	·								_
							1.	-			┼╌╌┼╴				1	††	-+		
				· · · · · · · · · · · · · · · · · · ·	<u> </u>					+		_	+			┝╌╂			_
ļ	L				<u> </u>										_ <u> </u>	┶┷┻			
Drinkin	g Water (DW) Samples ¹ (client	use) Special Instruct	ions / Specify Criteria to	add on report by clic ctronic COC only)	king on the drop-do	own list below				_		_	S RECEIVE		a only)				
	n from a Regulated DW System?						Frozen	*				servation	•			No		님	
	ES IN NO		· .				Ice Packs Cooling Ir		Ice Cubes	L بر	Custod	/ seal int/	act Ye	s 📘		No			
Are samples for h	uman consumption/ use?		•			•		INITIAL	COOLER TE	MPERAT	URES "C			FINAL CO	OOLER TEM	PERATUR	RES °C	·	_
i i m	es 🏼 🖊 NO		· · ·		-			1					12.1	°C T				_	
h	SHIPMENT RELEASE	(client use)		INITIAL SHIPMEN	T RECEPTION (Ia	b use only)		+	,		FINAL	SHIPMEI	NT RECEP	TION (lab	use only	لي من اب ا	يكي	~	
Released by:	Date:		ne: Received by:		Date:		Time:	Rece	ived by: 🗸	M	L	Dat		÷	118		lime: 15	ī.sc	2
REFER TO BACK	PAGE FOR ALS LOCATIONS AND S portions of this form may delay analysis.	SAMPLING INFORMATION Please fill in this form LEGIBLY, By the use Nater (DW) System, please submit using		ledges and agrees with the	TE - LABORATORY Terms and Conditions		W - CLIENT ack page of the		xort copy.				<u> </u>	•	<u> </u>	1	$\overline{\mathcal{V}}$	JULY 2017 FR	₹0N

-

/	14	
1	VRe	