

190 – 216 Arkell Road Guelph, Ontario

Final

Hydrogeological Investigation

Project Location:

190 - 216 Arkell Road Guelph, Ontario

Prepared for:

Crescent Homes 3-180 Frobisher Drive Waterloo ON N2V 2A2

Prepared by: MTE Consultants Inc. 520 Bingemans Centre Drive Kitchener, ON N2B 3X9

October 5, 2018

MTE File No.: 42063-104

TABLE OF CONTENTS

1.0 IN 1.1	ITRODUCTION Scope and Methodology	
2.0 SI	UBJECT LANDS DESCRIPTION	. 2
2.1	Adjacent Land Use	. 2
2.2	Topography and Drainage	. 2
2.3	Development Proposal	
3.0 FI	ELD PROGRAM	
3.1	Borehole Advancement and Monitoring Well Construction	. 4
3.2	Water Well Record Search	. 5
3.3	Groundwater Levels	. 5
3.4	Hydraulic Conductivity Testing	. 6
3.5	Groundwater Sampling	
4.0 RI	EGIONAL GEOLOGY AND HYDROGEOLOGY	.7
4.1	Physiography	. 7
4.2	Quaternary Geology	
4.3	Paleozoic Bedrock Geology	
4.4	Regional Hydrogeology Setting	
5.0 LO	OCAL HYDROGEOLOGICAL SETTING	. 8
5.1	Hydraulic Conductivity	. 9
5.2	Groundwater Flow and Average Linear Groundwater Velocity	. 9
5.3	On-Site Infiltration	
5.4	Groundwater Chemistry	
6.0 S	OURCE WATER PROTECTION	11
6.1	Wellhead Protection Area (WHPA) Vulnerability Assessment	11
6.1.	1 Intrinsic Aquifer Vulnerability (IAV)	12
6.2	Significant Groundwater Recharge Areas (SGRA)	
6.3	Potential Groundwater Quality Impacts	
7.0 IN	IPACT ASSESSMENT	
7.1	Potential Private Well Interference	14
7.2	Groundwater Impacts	
7.3	Wetland Impacts	
8.0 C	ONCLUSIONS	15
8.1	Recommendations and Monitoring	17
9.0 LI	MITATIONS	18
10.0 RI	EFERENCES	19

FIGURES

FIGURE 1	KEY MAP
FIGURE 2	STUDY AREA
FIGURE 3	EXISTING FEATURES
FIGURE 4	PHYSIOGRAPHIC LANDFORMS
FIGURE 5	QUATERNARY GEOLOGY
FIGURE 6	BEDROCK GEOLOGY
FIGURE 7	REGIONAL GROUNDWATER FLOW DIRECTION
FIGURE 8	GEOLOGICAL CROSS-SECTION A-A'
FIGURE 9	GEOLOGICAL CROSS-SECTION B-B'
FIGURE 10	LOCAL GROUNDWATER FLOW INTERPRETATION – JUNE 26,
	2018
FIGURE 11	WELLHEAD PROTECTION AREAS
FIGURE 12	WELLHEAD PROTECTION AREA VULNERABILITY
FIGURE 13	INSTRINSIC AQUIFER VULNERABILITY
FIGURE 14	SIGNIFICANT GROUNDWATER RECHARGE AREAS &
	VULNERABILITY
FIGURE 15	ISSUE CONTRIBUTING AREAS

TABLES

TABLE 1	GROUNDWATER LEVELS
TABLE 2	GROUNDWATER ELEVATIONS (mAMSL)
TABLE 3	GROUNDWATER CHEMISTRY RESULTS SUMMARY
TABLE 5.1 (in text)	SUMMARY OF HYDRAULIC CONDUCTIVITY ESTIMATES

APPENDICES

APPENDIX A	CONCEPT PLAN
APPENDIX B	BOREHOLE LOGS
APPENDIX C	HYDROGRAPHS
APPENDIX D	AQUIFER TEST [©] DATA SHEETS
APPENDIX E	PARTICLE SIZE DISTRIBUTION CHARTS
APPENDIX F	LABORATORY CERTIFICATES OF ANALYSIS

1.0 INTRODUCTION

MTE Consultants Inc. (MTE) was retained by Crescent Homes to conduct a hydrogeological investigation for a proposed residential development at municipal addresses 190-216 Arkell Road in Guelph, Ontario (herein referred to as the 'Subject Lands'). Currently, the Subject Lands are comprised of residential lots with associated residences and landscaped areas. **Figure 1** illustrates the Subject Lands Key Map.

MTE understands that the proposed development includes 33 townhouse units and two three-storey apartment buildings with a combined total of 32 apartment units. Also included are 46 parking spaces, a 20 m right-of-way for a roadway ('Street A') and an amenity area. The Subject Lands are to be serviced with municipal water and storm and sanitary sewers.

1.1 Scope and Methodology

The objectives of this report have been to investigate the suitability of the Subject Lands for the proposed development and to evaluate potential hydrogeological impacts on groundwater resources. In order to meet these objectives, the following scope of work was implemented:

- 1) Site Identification:
 - Site description.
 - Current and past land use summary.
 - Neighboring land uses.
 - Development Features.
 - Review of:
 - o Quaternary geology maps; and
 - Bedrock geology.
 - Ministry of the Environment and Climate Change (MOECC) well records review.
 - Review of existing geology and hydrogeological reports.
- 2) Field Investigation:
 - Advance six overburden boreholes and install four overburden groundwater monitoring wells on-Site overseen by Peto MacCallum Ltd (PML).
 - Measurement of groundwater levels to determine groundwater flow direction.
 - Field testing of monitoring wells to determine hydraulic conductivity and average linear groundwater velocity.
 - Collection of groundwater level measurements to document groundwater level fluctuations.
- 3) Analysis and Reporting:
 - Geologic and hydrogeological summary.
 - Preparation of geological cross-sections through the Subject Lands.
 - Assess potential hydrogeological impacts from the proposed development on the Site.

- Determine shallow groundwater system properties:
 - o Horizontal hydraulic gradient;
 - Average linear groundwater velocity; and
 - o Shallow groundwater flow patterns.
- Determine potential impacts on the Torrance Creek Subwatershed.

This report should be read in conjunction with the following reports that have also been completed for the Subject Lands:

• Draft Geotechnical Investigation; Proposed Arkell Road Subdivision, Guelph, Ontario for Crescent Homes Inc. - Peto MacCallum Ltd., April, 2017.

2.0 SUBJECT LANDS DESCRIPTION

The Subject Lands comprise an area of approximately 2.5 hectares (6.3 acres) and are located north of the Arkell Road and Summerfield Drive intersection. The Study Area for the Subject Lands, including the property boundary, geological cross-section locations, monitoring wells and existing features is illustrated on **Figure 2**.

The land use within the Subject Lands is residential. Currently, residential dwellings and associated landscaped and parking areas are present within the southern portion of the property. The City of Guelph Official Plan identifies the Subject Lands as within a 'Greenfield Area' and classifies the property as 'Low Density Greenfield Residential'. The City of Guelph Official Plan does not identify the Subject Lands as a Regulatory Floodplain; however a Significant Natural Area is illustrated along the northwest boundary of the Subject Lands. The Ministry of Natural Resources and Forestry (MNRF) identifies this feature as the Torrence Creek Swamp Provincially Significant Wetland (PSW).

2.1 Adjacent Land Use

The Subject Lands are bounded to the southwest by a rural residential property and the Torrence Creek Swamp PSW is present further beyond. The Torrence Creek Swamp PSW is present to the north, a residential development is present to the east and Arkell Road is present to the south, with residential developments present further south.

2.2 Topography and Drainage

The ground surface at the Subject Lands is generally flat with elevations typically ranging between 333 to 335.5 m above mean sea level (amsl) across the property, decreasing towards the northeast. Surface water runoff therefore drains from south to north, towards the PSW.

A storm sewer is present along Arkell Road to the south, with three catch basins located within the roadway.

GRCA and MNRF online mapping illustrate a PSW north of the property, extending south and traversing the north property boundary. In addition, GRCA mapping illustrates a small surface water body within the west portion of the Subject Lands, presumed to be a landscaped feature. No other surface water bodies/courses are illustrated within or transecting the property.

The Subject Lands are located within the Speed River Subwatershed. Tributaries of the Eramosa River (Torrance Creek) are located approximately 575 m north of the property. The Eramosa River flows to the Speed River which drains directly into the Grand River.

According to the GRCA, a large portion of the Subject Lands is located within a Regulation Limit, as defined by Ontario Regulation 150/06: *Grand River Conservation Authority: Regulation Of Development, Interference With Wetlands And Alterations To Shorelines And Watercourses.*

2.3 Development Proposal

A Preliminary Concept Plan for the proposed development has been prepared by MHBC Planning Ltd. (Kitchener, ON), dated May 17, 2018 and forms the basis for the hydrogeological investigation. The Preliminary Concept Plan includes 33 townhouse units and two three-storey apartment buildings with a combined total of 32 apartment units. Also included are 46 parking spaces, a 20 m right-of-way for a roadway ('Street A') and an amenity area. The southern extent of the PSW, as determined by an Environmental Impact Study conducted by Natural Resource Solutions Inc. (NRSI) is illustrated, as is a 30 m buffer. A road widening buffer of 5 m is also shown, extending north from Arkell Road.

The net area of the proposed development comprises approximately 1.24 hectares and excludes the wetland, buffer zone, roadway widening and right-of-way. The Preliminary Concept Plan is enclosed in **Appendix A**.

Municipal Servicing

It is understood that the townhouses may be constructed with full basements. The Subject Lands will be serviced by municipal water, sanitary sewers and storm sewers which are anticipated to be installed to conventional depths (1.5 to 3 mbgs).

For further servicing information refer to MTE's Functional Servicing Report under separate cover.

Stormwater Management (SWM)

The proposed SWM system includes the collection of stormwater runoff from the rightof-way and the front half of the on-street townhome roofs. Stormwater runoff from the right-of way will be collected via storm sewers draining to an oil/grit separator (OGS) for pre-treatment which will then discharge to a dry pond for quantity and additional quality control and ultimately discharge to an infiltration gallery north of the proposed right-ofway. Stormwater runoff from the apartment rooftops will discharge directly to an on-site infiltration gallery. Surface runoff from the apartment block will discharge to the dry pond which will be pre-treated with an OGS.

Stormwater from the rear yards of the townhomes located west of the proposed right-ofway will discharge, un-attenuated, directly to the wetland.

For further stormwater management information refer to MTE's Stormwater Management Report under separate cover.

3.0 FIELD PROGRAM

3.1 Borehole Advancement and Monitoring Well Construction

A total of six boreholes (BH1 to BH6) were advanced at the Subject Lands between February 13 and March 21, 2017 as part of a geotechnical investigation completed by PML. Boreholes were advanced to depths ranging between approximately 6.6 to 8.1 m bgs and were observed by PML. Four of these boreholes were completed as groundwater monitoring wells.

These boreholes and monitoring wells allow for the assessment of the overburden geology and hydrogeological characteristics at the Subject Lands, including stabilized groundwater elevations and groundwater flow direction interpretations. The borehole locations and ground elevations were surveyed by MTE to a geodetic benchmark. Borehole and monitoring well locations are illustrated on **Figure 3**. Borehole logs are provided in **Appendix B**.

Following installation, monitoring wells were developed using Waterra[™] Surge Blocks to remove any accumulated sediments from the bottom of the well and to remove fine materials from the well screen and sand pack.

Soil conditions observed during borehole advancement at the Subject Lands generally consist of topsoil ranging in thickness from 0.1 to 0.3 m underlain by native silt, sand, and sand and gravel to the maximum investigated depth of 8.1 m bgs. Fill was encountered at borehole locations BH1 and BH6 underlying the topsoil material. The fill material was observed to extend to approximately 0.5 to 0.7 m bgs and was comprised of sand and gravel or silt.

Bedrock was not encountered in any of the boreholes advanced at the Subject Lands; however, it is anticipated to be approximately 18 to 30 m bgs (refer to **Section 4.3**).

Representative samples of the overburden were collected from the boreholes by PML at regular depth intervals. All recovered samples were returned to PML's laboratory for detailed visual inspection, classification, and select particle size distribution analysis. Particle distribution size analyses charts have been provided in **Appendix E**.

3.2 Water Well Record Search

Private Wells

Hydrogeological data related to private supply wells within 500 m of the Subject Lands were obtained from water well records on file with the MOECC. Based on data in the MOECC well database, a total of 71 well records were located within 500 m of the Subject Lands. Of the 71 wells:

- 40 wells were identified as being livestock or domestic water supply wells;
- 16 wells were identified as test holes, observation or monitoring wells;
- One was identified as a municipal supply well;
- Five wells were identified as "not used";
- Four wells were identified as "abandoned"; and
- Five well records did not specify the well use.

Municipal Supply Well

The Burke Well and Pumping Station is located approximately 60 m southwest of the Subject Lands and houses one municipal well (Burke Well), representing the closest municipal well to the Subject Lands. This well is described by the City of Guelph as an "important current and future water source" for the City of Guelph as it provides 8% of the City's water supply. The Burke Well is a bedrock well, drawing from the deep aquifer system (Jagger Hims, 1998). The well depth is 79.6 m bgs within the Guelph – Middle Gasport Formation.

The Carter Wellfield is located approximately 1.8 km northeast of the Subject Lands and houses two wells (the Carter Wells) located approximately 3 m apart. The wells are bedrock wells, drawing from the shallow bedrock; however, the shallow bedrock in this area is interpreted to be hydraulically connected to the water table and therefore some water is supplied by Torrence Creek (LERSPC, 2015). As a result, the Carter Wells are classified as Groundwater Under the Direct Influence of Surface Water (GUDI) wells as outlined in Ontario Regulation 170/03: *Drinking Water Systems*. The well depths are 20.7 m bgs within the Guelph Formation.

3.3 Groundwater Levels

MTE completed multiple rounds of manual groundwater level measurements between March 2, 2017 and June 26, 2018. Manually measured groundwater levels and elevations within the monitoring wells are presented in **Table 1** and **Table 2**. In addition, electronic pressure transducers (data loggers) were installed within each of the monitoring wells on March 27, 2017. Data loggers measure the pressure (in centimeters of water) above the logger at a predetermined time interval, which can then be used to calculate a groundwater level and elevation. The data loggers installed at the Subject Lands were set to record a pressure at a time interval of every 1 hour.

Therefore, hydrographs illustrating continuous groundwater elevations within the monitoring wells at the Subject Lands for a period of 15 months are provided in **Appendix C**.

Groundwater elevations measured by data loggers were observed to range between 330.38 mAMSL (MW2 & MW5) and 333.99 mAMSL (MW4). It is noted that the ground surface elevation at MW4 is 333.24 mAMSL and therefore the measured groundwater elevations in the monitoring well represent saturated soil conditions at ground surface.

3.4 Hydraulic Conductivity Testing

Qualitatively, hydraulic conductivity (K) is a parameter describing the ease with which groundwater flows through a porous medium. Relatively large K values are attributed to permeable units, i.e. sand and gravel, while small values are attributed to less permeable material, i.e. silt or clay. Representative values for hydraulic conductivity for various soil types are presented in Freeze and Cherry (1979).

MTE conducted single well hydraulic response tests on the four on-Site monitoring wells in March 2017 (MW2 and MW3) and May 2017 (MW4 and MW5). A slug of known displacement was rapidly introduced (falling head test) and removed (rising head test) from the well as a means of inducing an immediate groundwater level response. Groundwater level recovery was monitored using a data logger programmed to collect groundwater levels every half second. Where possible, response tests were carried out three times using solid slugs of different displacement volumes to assess the viability of assumptions underlying the slug test analysis methods.

Prior to analysis, recovery data was normalized by dividing the observed head change (H_o) by the expected head change (H_o^*) for the solid slug used during testing. Normalized data plots from repeat tests (at the same well) were compared to determine coincidence between tests. Coincidence between tests suggests assumptions underlying conventional analysis methods can be considered valid at that well (Butler et. al., 1996; Butler et. al., 2003). A single representative test from the each well was selected and analyzed using the Bouwer & Rice model using the AquiferTest© Pro software package (Waterloo Hydrogeologic Inc., 2016) to estimate the horizontal hydraulic conductivity (K) of the unconfined saturated materials beneath the Subject Lands.

3.5 Groundwater Sampling

MTE collected groundwater samples from two on-Site monitoring wells (one hydraulically up-gradient and one hydraulically down-gradient) on June 26, 2018. Prior to sample collection, a minimum of three well volumes was purged from the well based on the recorded water levels. The samples were placed in laboratory supplied sample containers and transported on ice, under chain-of-custody, to ALS Laboratories in Waterloo, Ontario. Standard QA/QC protocols were followed as outlined by the (MOECP) guidance documents.

4.0 REGIONAL GEOLOGY AND HYDROGEOLOGY

4.1 Physiography

The Subject Lands are located within the physiographic region known as the Guelph Drumlin Field, as shown on **Figure 4a**. This region primarily consists of stoney till within the drumlins and deep gravel terraces in the intervening areas (*Chapman and Putnam*, 1984). **Figure 4b** illustrates the Subject Lands as being located within a drumlin field, and, in this area, the drumlins are almost entirely comprised of sandy Wentworth Till (Karrow, 1967).

4.2 Quaternary Geology

Geology throughout the City of Guelph is comprised of three distinct till units identified from youngest to oldest as the Wentworth Till, the Middle Maryhill Till and the Catfish Creek Till, overlying bedrock attaining thicknesses of 75 m. The Wentworth Till is described as a coarse-grained sandy to silty sand till which is often bouldery or stony (Karrow, 1968). This unit is generally found at ground surface throughout the City of Guelph and includes glacial features such as drumlins, found within the Guelph drumlin field, and the Galt and Paris moraines. The till thickness is described as variable, ranging between 15 to 30 m below drumlins and moraines, while thicknesses are much lower within low-lying areas.

The Quaternary Geology Map (**Figure 5**) identifies regional surface deposits of sand and gravel within the area of the Subject Lands, which is consistent with the drumlin field landform surrounding the Subject Lands, as shown on **Figure 4b**.

4.3 Paleozoic Bedrock Geology

The City of Guelph is underlain by the Guelph Formation, characterized as sandstone, shale, dolostone and siltstone, as shown by **Figure 6**.

Bedrock was not encountered during the on-Site drilling program (Section 3); however, according to the depth to bedrock reported in MOECC well records in the area (namely MOECC Well ID No.'s 6702585 and 6702584, located approximately 160 m and 240 m west, respectively) it is anticipated that bedrock is approximately 18 to 30 m bgs.

4.4 Regional Hydrogeology Setting

The City of Guelph relies almost exclusively on groundwater for its potable water supply (LERSPC, 2015). In total, 25 municipal supply wells are located throughout the City of Guelph, the majority of which draw water from the deep confined bedrock of the Gasport (formerly Amabel), Guelph, Eramosa and Goat Island Formations. A regional aquitard is present within the Eramosa Formation (the Vinemount Member), which confines the Gasport Formation (LERSPC, 2015).

-7-

The regional groundwater flow direction was determined based on the following:

- Regional groundwater elevations provided from the GRCA;
- The presence of a PSW north of the Subject Lands;
- The presence of Torrence Creek located approximately 575 m northeast of the Subject Lands; and
- Ground surface topography in the area surrounding the Subject Lands generally slopes to the north.

Based on these factors, the regional groundwater flow is expected to be generally northerly in the vicinity of the Subject Lands, as shown on **Figure 7**.

5.0 LOCAL HYDROGEOLOGICAL SETTING

Boreholes and monitoring wells installed by PML were used to interpret local hydrostratigraphic units and generate two geological cross-sections. Local geological cross-sections (Cross-section A-A' and Cross-section B-B') are presented on **Figures 8** and **9**.

Geological Cross-Section A-A' (Figure 8):

- Extends approximately 217.5 m from northwest to southeast through the Subject Lands;
- Illustrates topography generally slopes towards the northwest;
- Portrays a generally coarse-grained subsurface comprised of sand and sand and gravel units;
- Illustrates the presence of a silt units at approximately 0.3 m bgs and 8.3 m bgs within the southeast portion of the Subject Lands; and
- Infers the shallow groundwater table at the Subject Lands generally slopes from the northwest to the southeast, ranging in elevations from approximately 333 mamsl in the vicinity of the wetland, to approximately 332.5.

Geological Cross-Section B-B' (Figure 9):

- Extends approximately 190 m from west to east through the Subject Lands.
- Illustrates topography generally slopes towards the west.
- Portrays a coarse grained subsurface beneath the west portion of the Subject Lands extending westward where it meets a fine-grained silt unit. The fine-grained silt unit is illustrated underlying the coarse grained materials within the west portion of the Subject Lands at a depth of approximately 7.8 m bgs.
- Infers the shallow groundwater table at the Subject Lands is located at an elevation of approximately 332.5 mamsl.

5.1 Hydraulic Conductivity

The normalized plots for MW2 through MW5 show an acceptable coincidence, suggesting the assumptions underlying conventional analysis methods are valid.

Based on the results of the in-situ response tests, horizontal hydraulic conductivity (K-value) estimates throughout the Subject Lands were calculated to range from 2.1×10^{-6} m/sec (0.18 m/day) to 2.1×10^{-4} m/sec (17.7 m/day) with a geometric mean of 2.5×10^{-5} m/sec (2.14 m/day), which is consistent with average published values for sand and gravel soil (Freeze and Cherry, 1979). **Table 6.1** summarizes the K-value estimates for each analyzed data set. A summary of the analyses carried out in AquiferTest© Pro are provided in **Appendix E**.

TABLE 5.1: SUMMARY OF HYDRAULIC CONDUCTIVITY ESTIMATES

Well ID	Estimated Hydraulic Conductivity (m/sec)	
BH/MW2	5.52 x 10 ⁻⁵	
BH/MW3	1.62 x 10 ⁻⁵	
BH/MW4	2.06 x 10 ⁻⁶	
BH/MW5	2.05 x 10 ⁻⁴	
Geometric Mean	2.48 x 10 ⁻⁵	

5.2 Groundwater Flow and Average Linear Groundwater Velocity

Groundwater flow mapping was conducted for the Subject Lands using the June 26, 2018 groundwater elevation data. Groundwater contours and flow patterns are illustrated in **Figure 10** which suggests that shallow overburden groundwater generally flows in a southwesterly direction. It is recognized that this is inconsistent with MTE's interpretation of the regional groundwater flow direction (Section 4.4); this is interpreted to result from the separation distance between monitoring wells being small and therefore localized inconsistencies may exist. An average horizontal hydraulic gradient was calculated to be 0.005 m/m based on the June 26, 2018 groundwater levels.

Assuming an average horizontal conductivity of 2.5×10^{-5} m/s (Section 6.1) and using the horizontal hydraulic gradient of 0.005 m/m calculated above, the average linear groundwater velocity was calculated using Darcy's Law in the following equation:

Where:

q = groundwater flux ($m^3/m^2/time$)

 \dot{K} = effective hydraulic conductivity (2.5 x 10⁻⁵ m/s)

i = horizontal hydraulic gradient (0.005 m/m)

 n_e = effective soil porosity (0.3 typical for a sandy soil, Freeze and Cherry, 1979)

Using the above values, the average linear groundwater velocity at the Subject Lands is estimated to be approximately 13.0 m/year (4.13×10^{-7} m/sec).

5.3 On-Site Infiltration

The geotechnical report completed by PML provides infiltration rates for the "major near surface soil units" at the Subject Lands. The report states an infiltration rate of 30 mm/hr for the sand/sand and gravel units beneath the Subject Lands.

Any soils brought to the Subject Lands for grading are required to have the same or better infiltration rates as current conditions.

5.4 Groundwater Chemistry

Groundwater samples were submitted and analyzed for general chemistry parameters in order to document the groundwater chemistry prior to development. The analytical results are summarized in **Table 3**. Laboratory Certificates of Analysis are provided in **Appendix F**.

Anions and Nutrients

As shown, detectable concentrations of Ammonia, Chloride, Fluoride, Nitrate, and Sulfate were reported for the samples collected from the two monitoring wells. The highest concentration of Nitrate (6.29 mg/L) was reported for monitoring location MW-4, which is located hydraulically up-gradient within the Subject Lands, adjacent to the PSW at the north end of the property. A nitrate concentration of 1.59 mg/L was reported at monitoring location MW-2 which is interpreted as hydraulically down-gradient.

Dissolved Metals

The following parameters were detected in one or both of the groundwater samples collected from the Subject Lands:

- Barium
- Calcium
- Copper
- Magnesium

- Silicon
- Sodium
- Strontium
- Zinc

Potassium

Sodium and Chloride concentrations reported from monitoring location MW-2 were 60.4 mg/L and 76.0 mg/L, respectively. These concentrations were interpreted to results from road salt application on the roadway south of the Subject Lands. Concentrations of these parameters at monitoring location MW-4 were reported as 21.6 mg/L and 35.9 mg/L, respectively, indicating a reduction of the concentrations across the Subject Lands from south to north.

6.0 SOURCE WATER PROTECTION

The identification and assessment of vulnerable areas required through the Source Water Protection process has been completed for the Grand River Source Protection Area through a series of technical studies undertaken by the Lake Erie Region Source Protection Committee (LERSPC), the Grand River Conservation Authority, and the City of Guelph, which have delineated the areas requiring protection and identifying land use activities that could pose potential threats. The results of those studies are summarized in Chapter 8 of the Grand River Source Protection Area Assessment Report (LERSPC, 2015).

6.1 Wellhead Protection Area (WHPA) Vulnerability Assessment

With respect to source water protection, Wellhead Protection Areas (WHPA) are established for each municipal supply well through the delineation of well "capture zones." Part V of the Clean Water Act (CWA) Technical Rules (MOE, 2006) provides specific details for WHPA delineation.

The March 2010 City of Guelph Source Protection Project Groundwater and Surface Water Vulnerability Report defines a capture zone as:

"the projection onto the land surface of the portion of the three-dimensional volume through which groundwater travels towards a water supply well within a defined period of time." (AquaResource Inc., 2010)

WHPAs are divided into four categories based on travel time to the well, and are summarized in the table below.

Category	Description	
WHPA-A	A radius of 100 m from the outer boundary of the well	
WHPA-B	Time-of-travel to the well ≤2 years (not including WHPA-A)	
WHPA-C	Time-of-travel to the well is >2 years, but \leq 5 years	
WHPA-D	Time-of-travel to the well is >5 years, but \leq 25 years	

Based on data from GRCA Web-Mapping software, the majority of the Subject Lands are located within WHPA-B (\leq 2 year time-of-travel) of the nearby Burke municipal supply well. The southwest corner of the Subject Lands is observed to be located within WHPA-A (100 m zone), as shown on **Figure 11**.

The category of the WHPA and the characterization of the aquifer in terms of its susceptibility to surface/near surface sources of contamination allows for the calculation of a vulnerability score within a WHPA, which ranges from 2 to 10 (where 10 represents the highest vulnerability) (AquaResource Inc., 2010). Preferential pathways are also taken into consideration during the establishment of vulnerability scores, as they can allow contaminants to bypass natural features which protect the aquifer.

Both the vertical movement (intrinsic vulnerability) and horizontal movement (WHPA time-of-travel) of groundwater were incorporated into the establishment of the WHPA vulnerability scores. Usually, the most vulnerable areas in a WHPA (score of 8 to 10) are in WHPA-B (≤2 year time-of-travel) (Lake Erie Region Source Protection Committee, 2015).

As illustrated in **Figure 12**, the Subject Lands have been designated with three different WHPA vulnerability scores. A vulnerability score of 8 (considered moderate to high) has been assigned to more than half of the Subject Lands area, which is shown to extend toward the northern portion of the Subject Lands and beyond, into the wetland. The southeast corner of the Subject Lands has been assigned a moderate vulnerability score of 6, which implies that groundwater sources are adequately protected from surface contamination. Due to the close proximity to the Burke municipal supply well (approximately 60 m southwest of the Subject Lands), the southwest portion of the Subject Lands has been assigned a WHPA vulnerability score of 10, which represents the highest vulnerability.

6.1.1 Intrinsic Aquifer Vulnerability (IAV)

Intrinsic vulnerability of an aquifer is based on the idea that the natural environment (i.e. properties of the surface and subsurface including the unsaturated zone material, topography, depth to water table or depth to aquifer, preferential pathways, etc.) can provide some degree of protection against groundwater contamination from the surface, but does not take into consideration the properties of the contaminant itself (Liggett, Lapcevic, & Miller, May 2011). A map of intrinsic vulnerability is generated based on interpolating data between associated wells to generate a numerical score or index, with consideration given to observed static water levels, the overburden soil type, and the thickness of the unit above the aquifer. The generated maps are based on contaminant travel time from the ground surface through the subsurface and to the underlying contributing aquifer (AquaResource Inc., 2010).

Figure 13 illustrates the Subject Lands in relation to the City of Guelph with respect to intrinsic vulnerability. According to the GRCA, the intrinsic vulnerability of the aquifer at the Subject Lands has been designated a score of medium, which represents the susceptibility of the aquifer to contamination.

6.2 Significant Groundwater Recharge Areas (SGRA)

Groundwater recharge occurs where precipitation and snowmelt infiltrate into the ground to feed aquifers, watercourses, and wetlands. Significant Groundwater Recharge Areas (SGRAs) are typically associated with coarse-grained soils (i.e. sands and gravels) covering upland areas on the landscape. SGRA vulnerability scores of 2, 4, or 6 are assigned to areas which are designated as low, medium, or high SGRA vulnerability areas, respectively.

Based on the available GRCA online GIS data, the Subject Lands are depicted within an SGRA with an assigned medium vulnerability score of 4, on shown on **Figure 14**.

6.3 Potential Groundwater Quality Impacts

According to the Grand River Source Protection Plan, the analysis of the historical raw groundwater chemistry in each municipal well system for the City of Guelph has been used to determine whether any contaminants are present, and whether they have contributed to a decline in drinking water quality (Grand River Conservation Authority, 2015). Subsequently, zones of Issue Contributing Areas (ICA) were developed to define areas where past or current activities have or are likely to adversely affect the quality of drinking water in a given municipal well in which contaminants have already been measured at elevated levels.

An ICA is defined by the Grand River Source Protection Plan as:

"The area within which activities have or are likely to contribute to the elevated contaminant at the well...in most cases, an ICA is the 25 year time-of-travel capture zone." (Grand River Conservation Authority, 2015)

According to GRCA online GIS data, the Subject Lands are not located within an Issue Contributing Area (ICA).

Within the Study Area are lands designated as being within the ICA (**Figure 15**) of the Membro municipal supply well, located approximately 5 km northwest of the Subject Lands. The primary groundwater contaminant of concern within the Membro well was identified to be trichloroethylene (TCE), at which concentrations have been measured to be approximately half of the Ontario Drinking Water Quality Standard (ODWSQ) of 5 μ g/L, with an increasing trend (Lake Erie Region Source Protection Committee, 2015). Based on the intended redevelopment into residential land use, TCE will be not be used or stored on-Site and therefore no adverse impacts to groundwater quality are anticipated.

In addition, elevated concentrations of contaminants associated with road salt application were identified as a concern to groundwater quality within the ICA (Lake Erie Region Source Protection Committee, 2015). The application of road salt and the handling and storage of road salt are prescribed drinking water threats under the Clean Water Act (CWA). Road salt as a drinking water threat refers to any product containing sodium and/or chloride that is used to maintain roads and pedestrian areas.

The MOECC Tables of Drinking Water Threats identify sodium and chloride as contaminants that could make their way into surface and groundwater from road salt application, storage and handling. At typical concentrations in drinking water, sodium and chloride are not risks to human health. However, at concentrations greater than 20 mg/L, sodium intake may pose a health concern for people with dietary restrictions. At a concentration of 250 mg/L, chloride imparts a salty taste to drinking water.

Classifying the application of road salt as a significant drinking water threat is dependent on vulnerability zones, vulnerability score and the total impervious surface area. Although the Subject Lands are not located within an ICA, it is anticipated that the imperviousness of the Subject Lands will increase as a result of the proposed residential development and that road salt application will be required thereafter. Because the Subject Lands are located within an SGRA of medium vulnerability (i.e. vulnerability score of 6), it is reasonable to conclude that a Salt Management Plan (SMP) may be required. The need for a SMP, however, should be re-visited once a development plan for the Subject Lands has been finalized in order to help mitigate the effect of road salt on groundwater quality.

7.0 IMPACT ASSESSMENT

7.1 Potential Private Well Interference

An MOECC well record search indicates the presence of 40 domestic or livestock private water supply wells within a 500 m radius of the Subject Lands. A review of available well records determined that the shallowest depth at which water was encountered during the drilling of a domestic well was approximately 15.5 m bgs (51 feet), within a gravel unit (at MOECC#: 6702583, located approximately 330 m southwest of the Subject Lands). Based on the distance from the Subject lands to this shallow domestic supply well (>300 m), MTE does not anticipate any unreasonable well interference during construction activities.

Two municipal wells fields, Burke and Carter, are located within a 2 km radius of the Subject Lands. In particular, the Burke well is located approximately 60 m southwest of the Subject Lands. GRCA online GIS mapping indicates that the majority of the Subject Lands is categorized within WHPA-B, where a small portion of the southwest corner of the Subject Lands is located within the Burke well WHPA-A. A review of available well records determined the Burke and Carter wells to be screened within bedrock at depths of approximately 79.9 m bgs and 20.7 m bgs, respectively. Construction of basements, if included in the development, will not extend to these depths, and therefore it is unlikely that any well interference will occur within the municipal wells located near the Subject Lands during the construction process.

7.2 Groundwater Impacts

Static groundwater levels were measured at a depths ranging from above ground surface (representing saturated conditions at ground surface) (MW-4) to 3.7 m bgs (MW-2). The maximum groundwater elevation measured during this investigation was approximately 334.0 mAMLS which was observed at MW-4 in May 2017 during the spring freshet. MW4 is located in the northeast corner of the Subject Lands in the vicinity of the PSW. It is noted that the proposed development includes a 30 m horizontal separation from the limit of the PSW, as determined by NRSI, and MW-4 is located within this buffer zone; therefore the maximum groundwater elevation from

MW-3 was used, which is located approximately 30 m south of the buffer zone. The maximum groundwater elevation measured in MW-3 was 333.3 mAMSL, representing high spring time water levels measured in 2017 and 2018.

It is understood that additional fill will be introduced to further raise the grade on Subject Lands to an elevation of approximately 336.7 mAMSL prior to the construction of the proposed development. This provides an anticipated total separation of 3.4 m between the ground surface and top of the high water table. The lowest basement floor is anticipated to be at an approximate elevation of 334.22mAMSL. This provides a 0.89m separation distance between the high ground water table and the basement floor elevation which exceeds the City of Guelph Development Engineering Manual minimum separation distance of 0.5 m between basement elevations and the seasonal high groundwater elevation (COGECIS, 2016).

If, upon final confirmation of building design and Site grading, it is anticipated that the water table may be intercepted during construction activities, the need for construction dewatering will have to be assessed, which may result in the need for a Permit to take Water (PTTW) or Environmental Activity Sector Registry (EASR).

Further assessment may be required once design details are finalized and could be conducted during the detailed design stage of the development process.

7.3 Wetland Impacts

The groundwater flow direction across the Subject Lands was inferred as southwesterly, with the wetland along the north property boundary representing an expression of the groundwater table at ground surface. Therefore, it is apparent that the wetland contributes to the shallow groundwater flow.

During construction, cut-off collars may be used in excavated utility trenches to maintain natural flow regimes across the property and preserve flow conditions to the existing wetland feature.

8.0 CONCLUSIONS

Based on this hydrogeological investigation, MTE offers the following findings:

<u>Geology</u>

- Stratigraphic conditions beneath the Subject Lands consist of coarse-grained (sand or sand and gravel) materials characteristic of a drumlin landform; and
- Bedrock is anticipated to be approximately 18 to 30 m bgs.

<u>Hydrogeology</u>

- The groundwater table was encountered at a depth ranging between above ground surface (representing saturated conditions at ground surface) to 3.7 m bgs, at a maximum elevation of approximately 334.0 mAMSL during this investigation;
- The wetland located along the north property boundary appears to contribute to the local shallow groundwater flow;
- The local groundwater flow direction is inferred to be south-southwesterly while the regional groundwater flow direction is inferred as northerly;
- The horizontal hydraulic gradient of the groundwater table beneath the Subject Lands is estimated to be 0.005 m/m;
- Maximum and minimum hydraulic conductivity values for the shallow, unconfined groundwater aquifer beneath the Subject Lands were calculated to range between 2.1 x 10⁻⁶ m/sec (0.18 m/day) to 2.1 x 10⁻⁴ m/sec (17.7 m/day), with a geometric mean of 2.5 x 10⁻⁵ m/sec (2.14 m/day); and
- The groundwater velocity of the shallow groundwater aquifer beneath the Subject Lands was estimated to be approximately 13.0 m/year.

Impact Assessment and Construction Considerations

- Based on the measured depths to groundwater at the Subject Lands during this investigation, and the understanding that the grade of the Subject Lands is expected to be raised to approximately 336.7 mAMSL;
- Basement floors will have a minimum 0.89m separation distance to the high ground water table;
- If, upon final confirmation of building design and Site grading, it is anticipated that the water table may be intercepted during construction activities, the need for construction dewatering will have to be assessed, which may result in the need for a Permit to take Water (PTTW) or Environmental Activity Sector Registry (EASR);
- The geotechnical report completed by PML for the Subject Lands reports a infiltration rate of 30 mm/hr for the sand/sand and gravel units beneath the Subject Lands; and
- Impacts to the municipal aquifer from the proposed development are not anticipated due to the shallow depth of construction and the depth of completion of the closest municipal well.

As construction details were not available at the time of this report, assumptions were made for preliminary calculations. Further assessment may be required once design details are finalized.

8.1 Recommendations and Monitoring

Based on findings of this hydrogeological investigation, MTE offers the following recommendations:

- Continuous groundwater monitoring should be ongoing, updated and utilized during final design of the development as well as updated information utilized during the design of the site plan;
- During the development application process, existing on-site groundwater monitoring wells be maintained in accordance with Ontario Regulation 903 (as amended);
- Monitoring wells located within proposed construction areas will need to be decommissioned in accordance with Ontario Regulation 903 (as amended);
- Soils brought to the Subject Lands for grading must have the same or better infiltration rates as the current conditions;
- Based on policies outlined in the GRSPP, a Salt Management Plan is required for the Subject Lands, which will be undertaken by MTE during the final development design stages; and
- The use of cut-off collars during construction will assist in maintaining natural flow patterns across the property and preserve flow conditions to the existing wetland feature.

9.0 LIMITATIONS

Services performed by **MTE Consultants Inc.** (MTE) were conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the Environmental Engineering & Consulting profession. No other warranty or representation expressed or implied as to the accuracy of the information, conclusions or recommendations is included or intended in this report.

This report was completed for the sole use of MTE and Crescent Homes. The assignment was carried out in accordance with the Scope of Work described in Section 1.1 as reviewed with and agreed to by the Client. MTE makes no representation that the present report has dealt with all of the important environmental issues, except as provided in the Scope of Work. This report is not intended to be exhaustive in scope or to imply a risk-free facility. As such, this report may not deal with <u>all</u> issues potentially applicable to the Site and may omit aspects which are or may be of interest to the reader.

In addition, it should be recognized that a soil sample or groundwater level measurement represents one discrete portion of the Site at the time it is collected, and that the findings of this report are based on conditions as they existed during the time period of the investigation.

Any use which another party makes of this report, or any reliance on, or decisions to be made based upon it, are the responsibility of such parties. MTE accepts no responsibility for liabilities incurred by or damages, if any, suffered by another party as a result of decisions made or actions taken, based upon this report. Others with interest in the Site should undertake their own investigations and studies to determine how or if the condition affects them or their plans.


It should be recognized that the passage of time may affect the views, conclusions and recommendations (if any) provided in this report because environmental conditions of a property can change, along with regulatory requirements. Should additional or new information become available, MTE recommends that it be brought to our attention in order that we may determine whether it affects the contents of this report.

Respectfully Submitted,

MTE CONSULTANTS INC.

Kassandra Wallace, B.B.R.M. Environmental Scientist

KLW:dem

Peter A. Gray, P.Geo., QP_{ESA} VP, Senior Hydrogeologist

10.0 REFERENCES

Armstrong, D.K. and Carter, T.R, 2010: *The subsurface Paleozoic stratigraphy of southern Ontario:* Ontario Geological Survey, Special Volume 7, 301 p;

Butler, J.J., McElwee, C.D., & Liu, W., 1996: Improving the Quality of Parameter Estimates from Slug Tests. Ground Water, 34(3), 480-490;

Butler, J.J., Garnett, E.J., & Healey, J.M., 2003: Analysis of Slug Tests in Formations of High Hydraulic Conductivity. Groundwater Water 41(5), 620-630;

City of Guelph Engineering and Capital Infrastructure Services (COGECIS), 2016: Development Engineering Manual, Version 1, p. 28;

Credit Valley Conservation and Toronto and Region Conservation, 2010: Low Impact Development Stormwater Management Planning and Design Guide – Version 1.0, Table C1

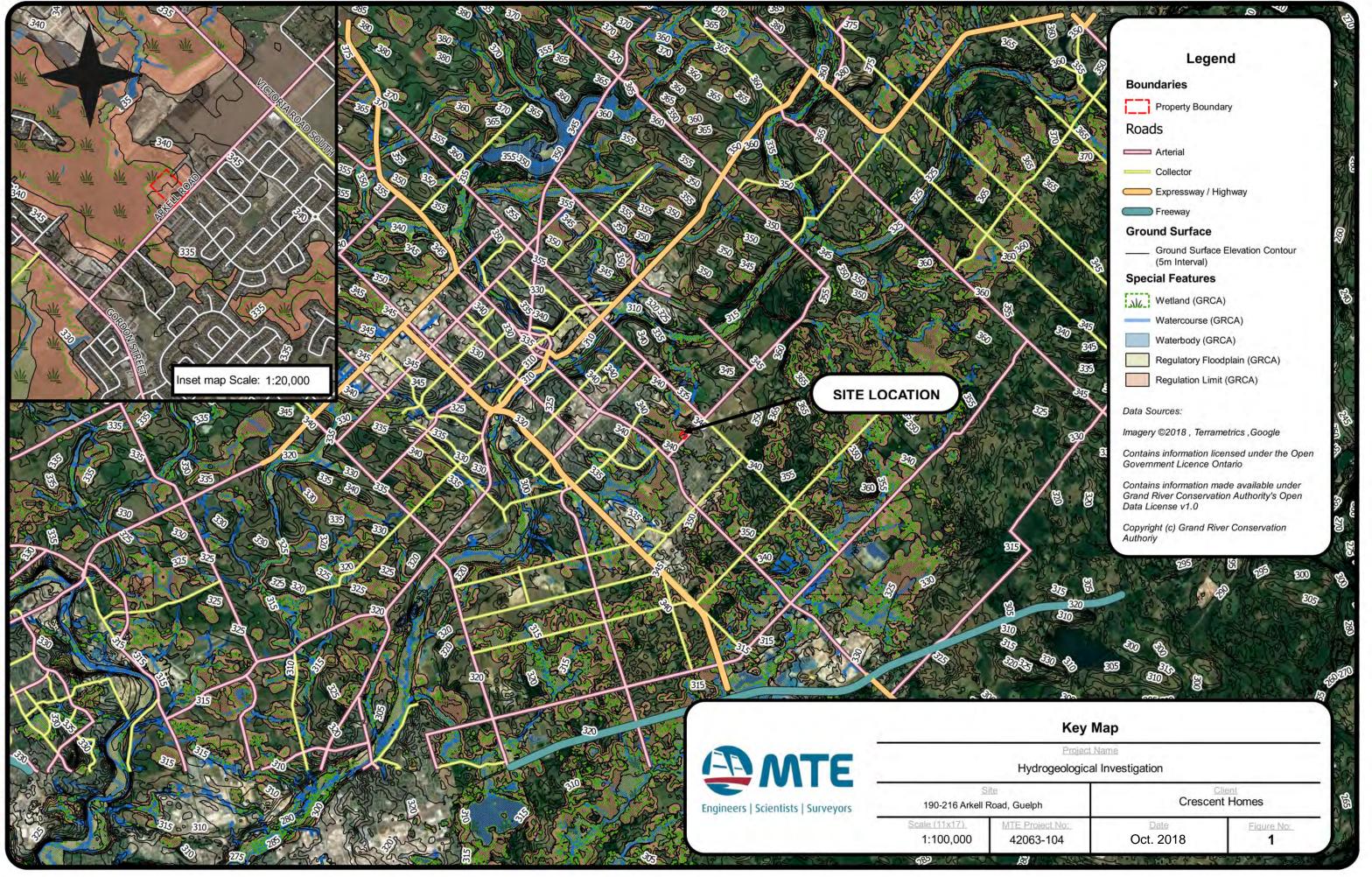
Freeze, R.A. and Cherry, J.A., 1979: *Groundwater;* Prentice-Hall Inc. Englewood Cliffs, New Jersey;

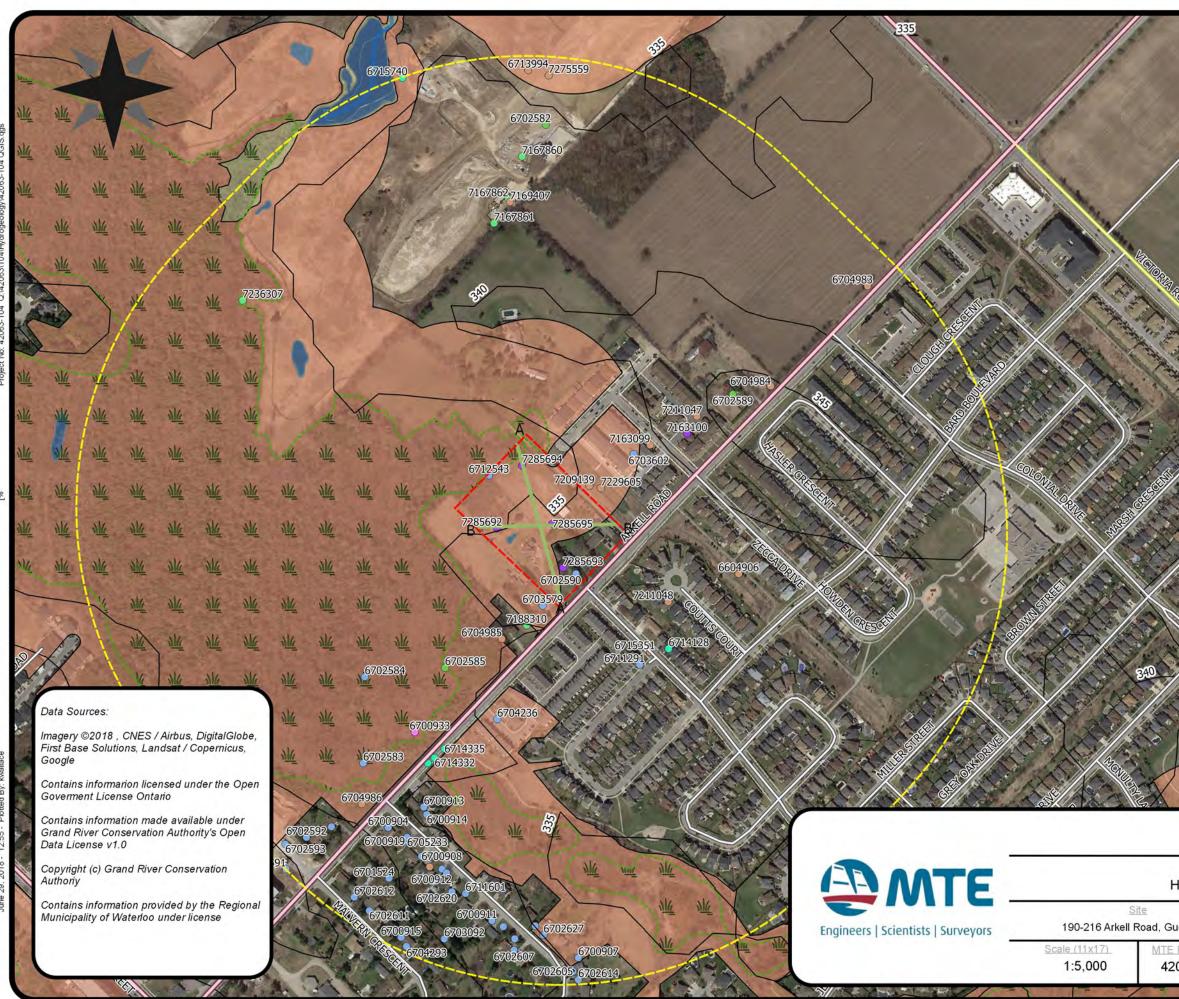
Grand River Conservation Authority and City of Guelph, 1999, *Torrance Creek* Subwatershed Study Management Study;

Karrow, P.F., 1983: Quaternary Geology of the Hamilton-Cambridge Area. Ontario Geological Survey. Report 255, 95p;

Lake Erie Region Source Protection Committee (LERSPC), 2015, *Grand River Source Protection Area Approved Assessment Report;*

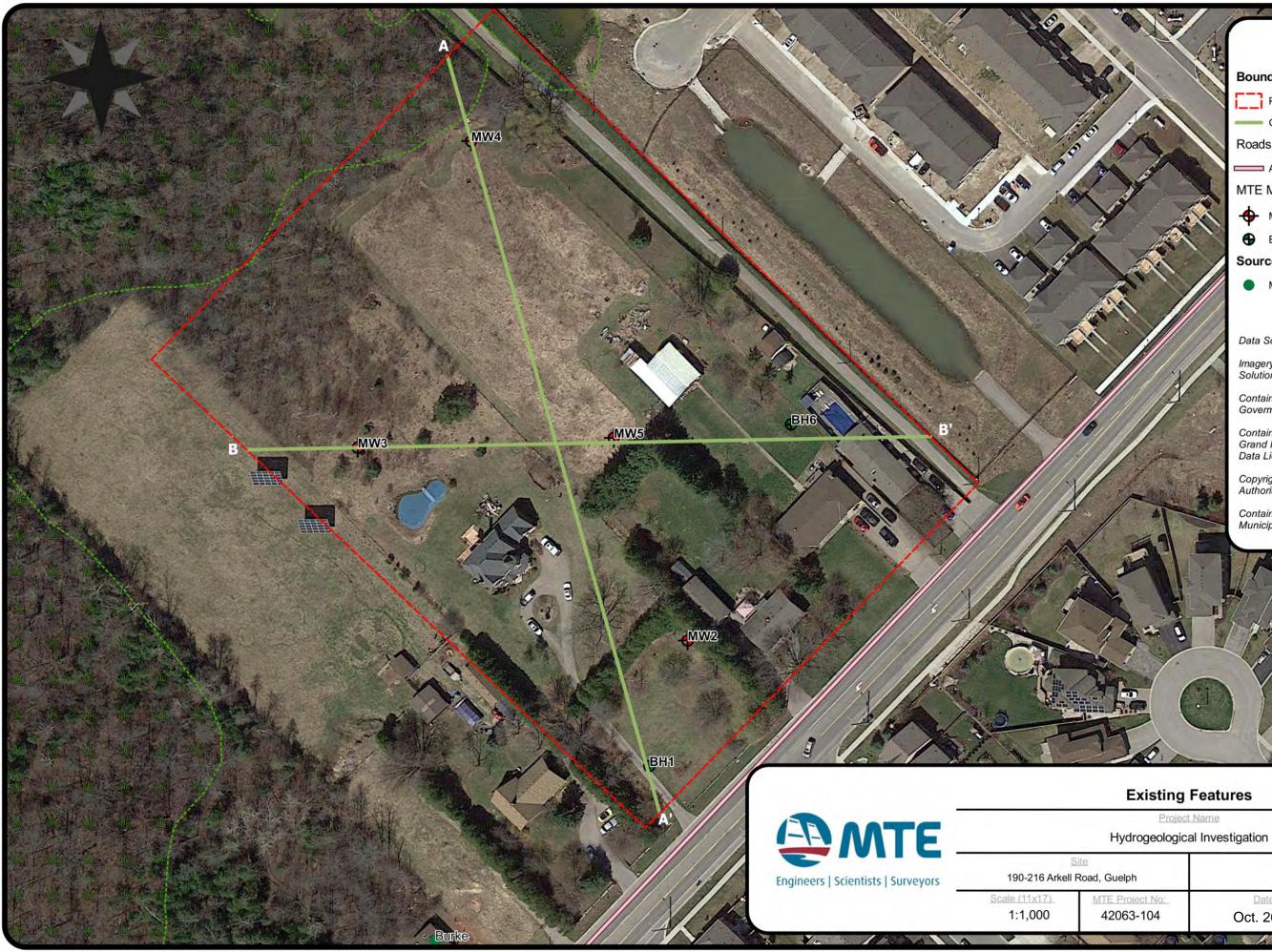
Peto MacCallum Ltd., 2017, Geotechnical Investigation, Proposed Arkell Road Subdivision, Guelph, Ontario; For Crescent Homes c/o MTE Consultants Inc.; and


Waterloo Hydrogeologic, 2015, Aquifer Test Pro Software



FIGURES

Drawing on experience...Building on


gth.

55 - Plotted By: kwallace

	Legend	
	Boundaries	
	Property Boundary	
	Study Area (500 m)	
	Geological Cross-Sections	
	Roads	
	Arterial	
	Collector	
	Local / Street	
	Ground Surface	
240 20 M	Ground Surface Elevation Contour (5m Interval)	
CONTRACTOR OF CONTRACTOR	Special Features	
	Wetland (GRCA)	/
	Watercourse (GRCA)	
A Marin	Waterbody (GRCA)	
1A	Regulatory Floodplain (GRCA)	
	Regulation Limit (GRCA)	
and the second	Monitoring Locations	
	MOECC Monitoring Wells	
	 Domestic 	
	 Livestock 	
12 11	Monitoring	
	 Municipal 	
	 Not Used 	
	Test Hole	
XX	Test Hole	
Mary Mary		
		and the
		5
10 STA	C C D K D D	12
		F
		5
		1
Study Ar	rea	and the second
Project Nam	ne	
Hydrogeological In	vestigation	X
	Client	
uelph	Crescent Homes	~
Project No: 063-104	Date Figure No: Oct. 2018 2	and and
Land 1		

Legend

NA NY

1 Am

Boundaries

- Property Boundary
- Geological Cross-Sections

Roads

Arterial

MTE Monitoring Locations

Honitoring Well

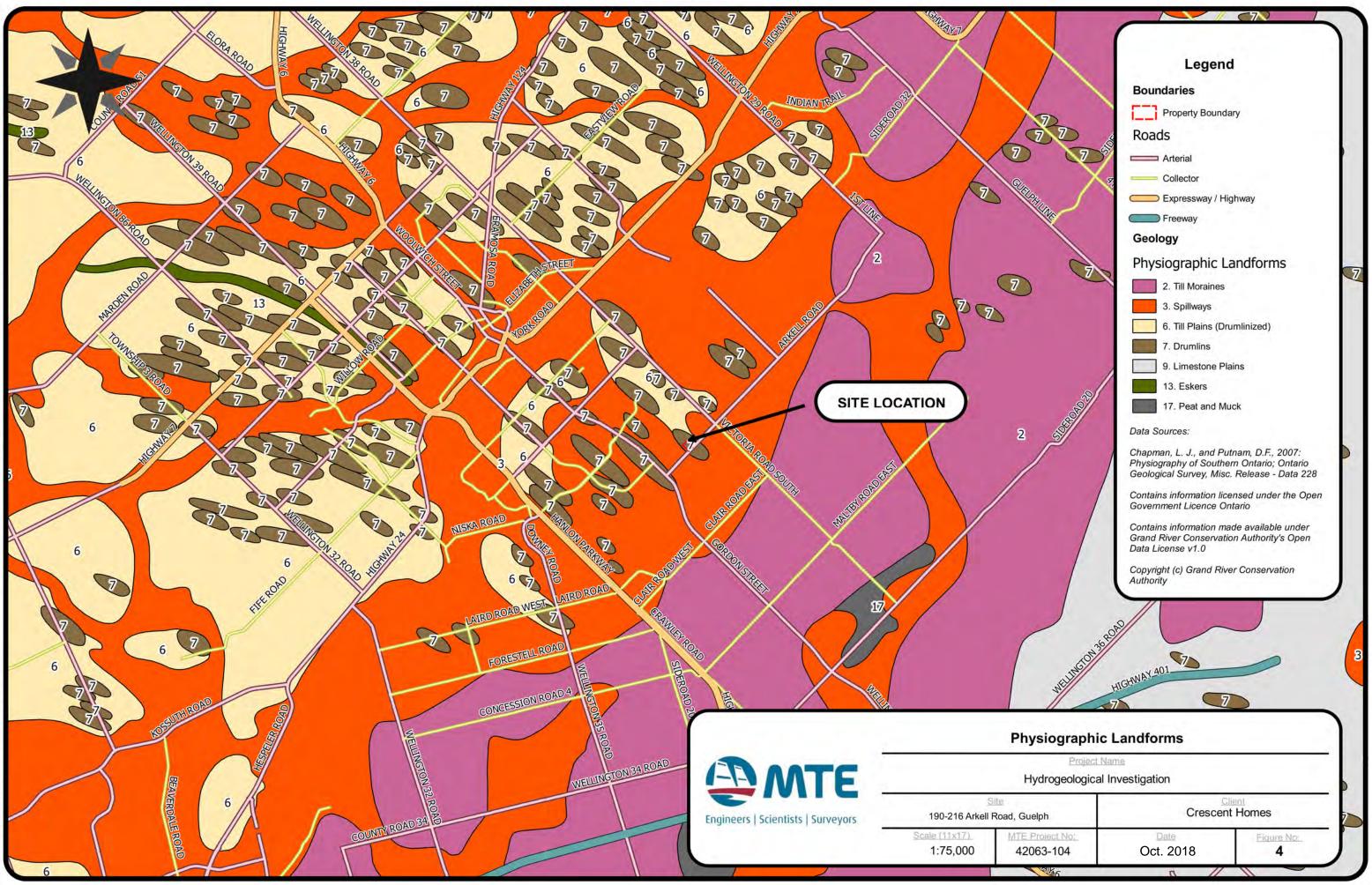
Borehole

Source Water Protection

Municipal Well

Data Sources:

Imagery (c) 2018, DigitalGlobe, First base Solutions, Google


Contains informarion licensed under the Open Goverment License Ontario

Contains information made available under Grand River Conservation Authority's Open Data License v1.0

Copyright (c) Grand River Conservation Authority

Contains information provided by the Regional Municipality of Waterloo under license

uelph		Dient ent Homes
Project No:	Date	Figure No:
2063-104	Oct. 2018	3

19

6

6

7b

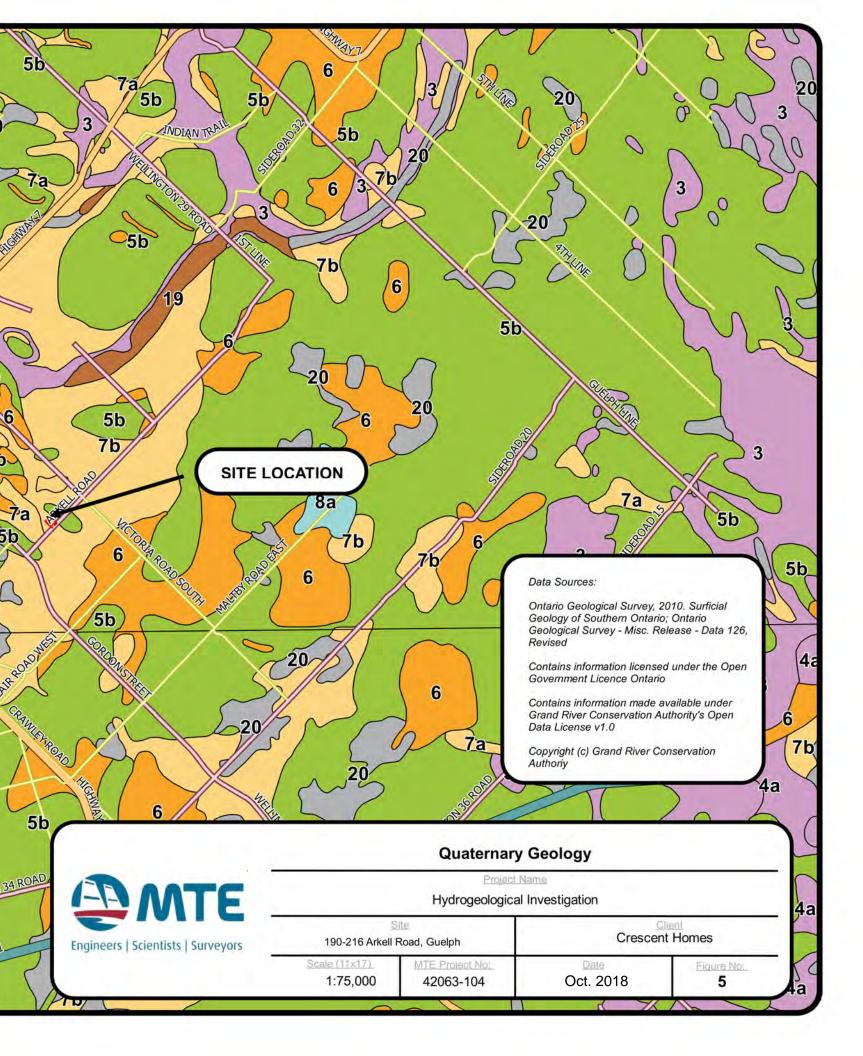
5b

5b

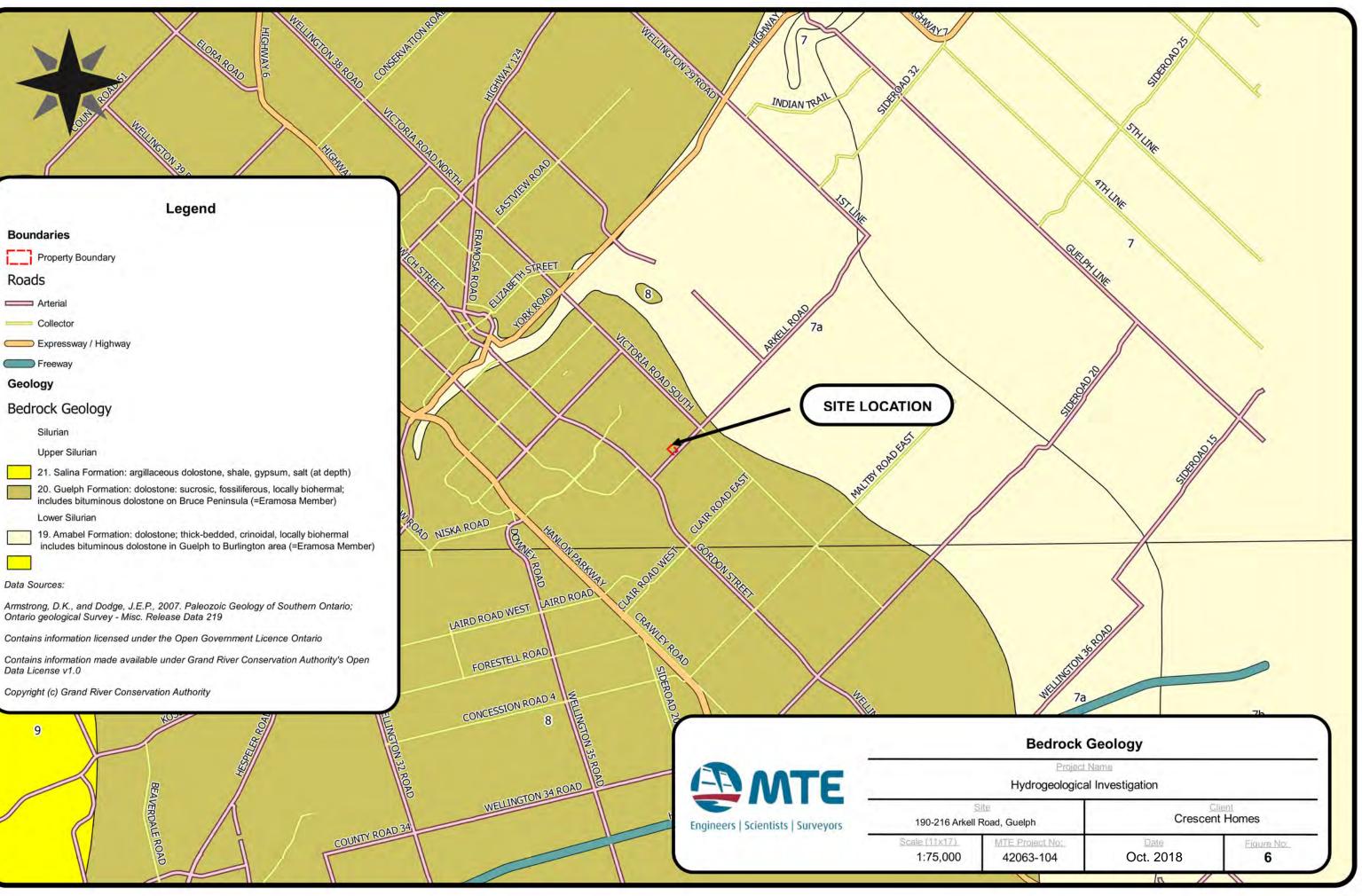
6

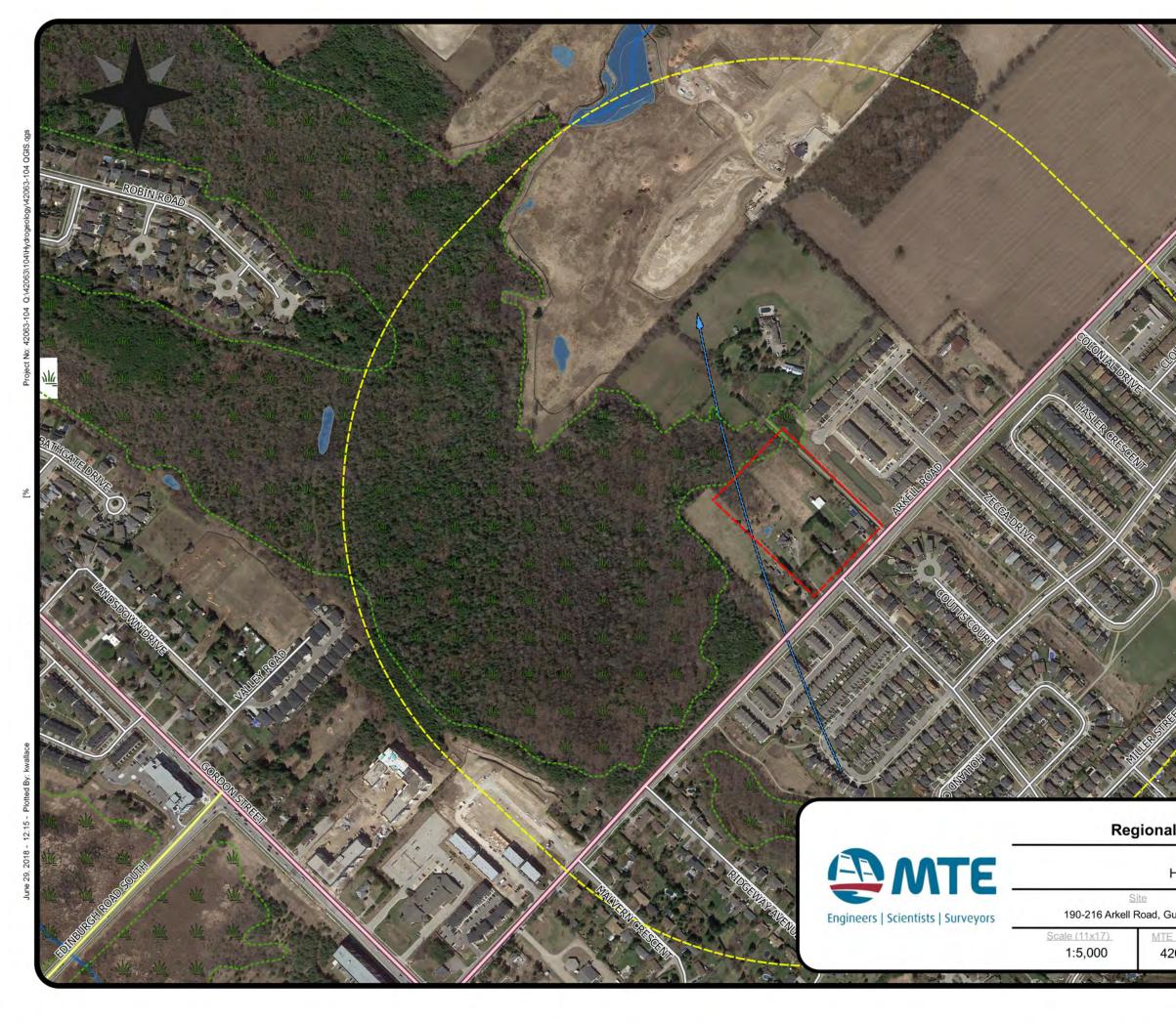
5b

7a


5b

3


5b


HIGHWAY 401

6

20

Legend

1//

Boundaries

- Property Boundary
- Study Area (500 m)

Roads

- Arterial

Special Features

- Wetland (GRCA)
 - Watercourse (GRCA)
- Waterbody (GRCA)

Regional Groundwater

Refer to Section 4.4 for Inferred Regional Groundwater Flow Direction Rationale

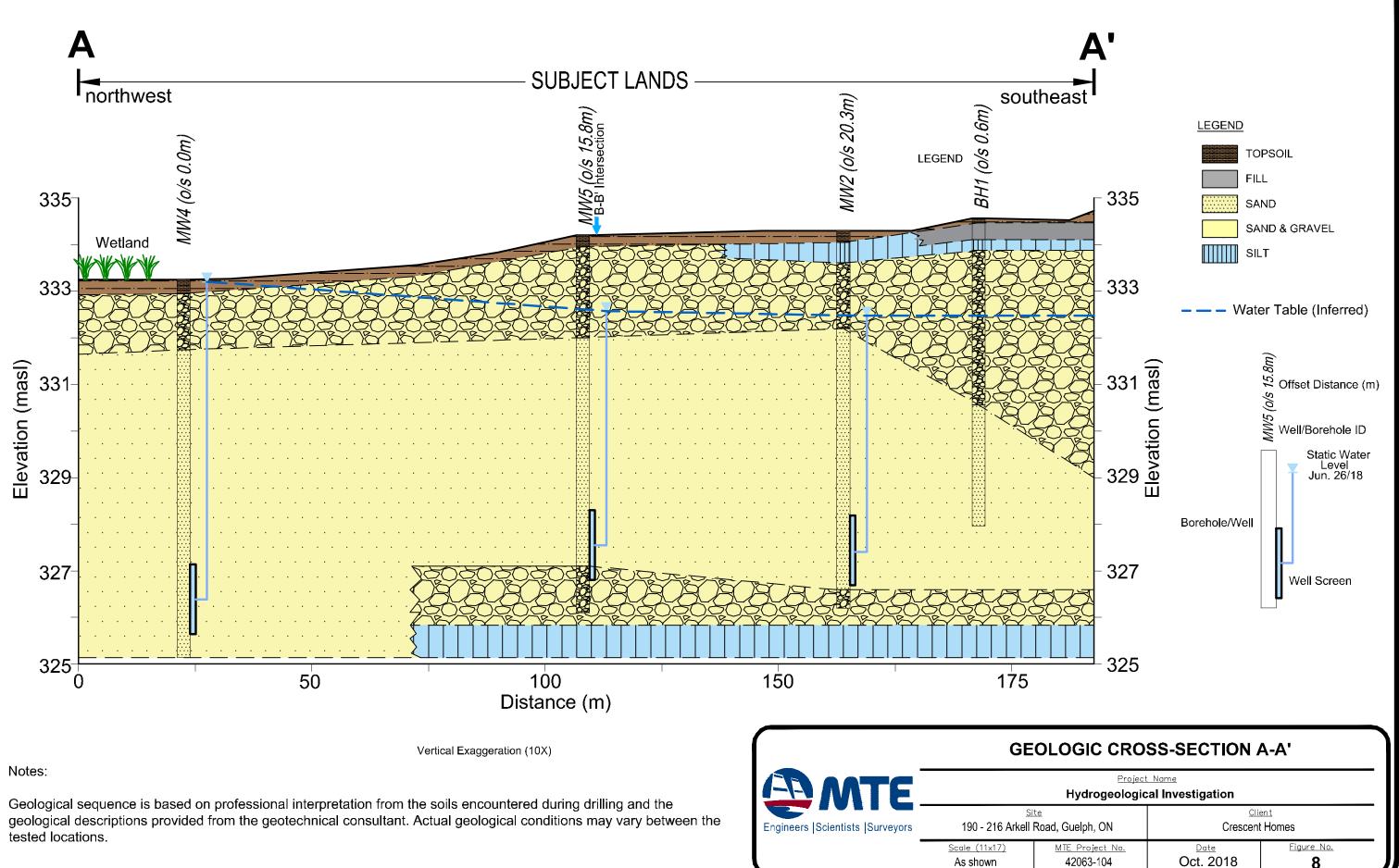
Data Sources:

Imagery (c) 2018, CNES/Airbus, DigitalGlobe, First Base Solutions, Google

Contains informarion licensed under the Open Goverment License Ontario

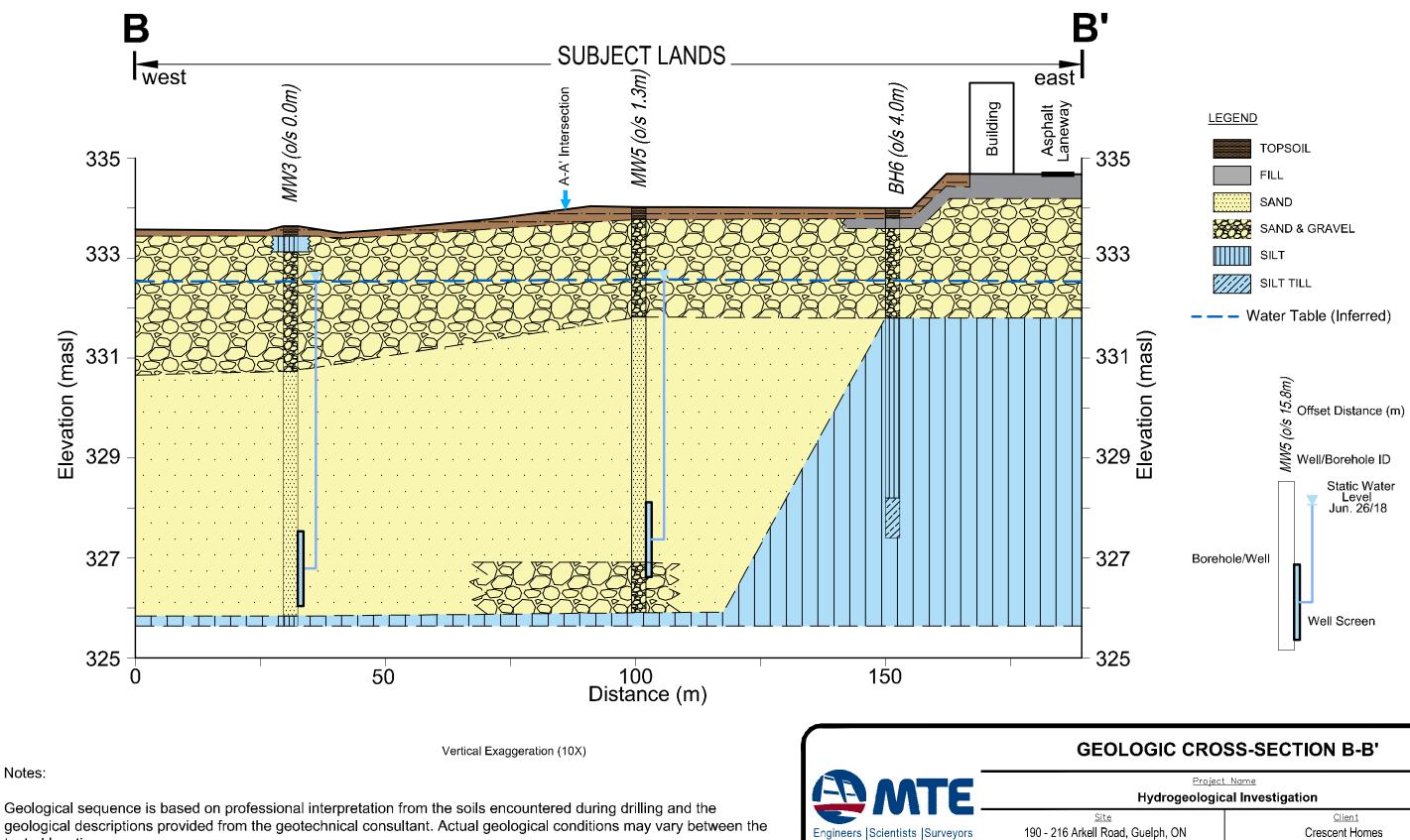
Contains information made available under Grand River Conservation Authority's Open Data License v1.0

Copyright (c) Grand River Conservation Authority

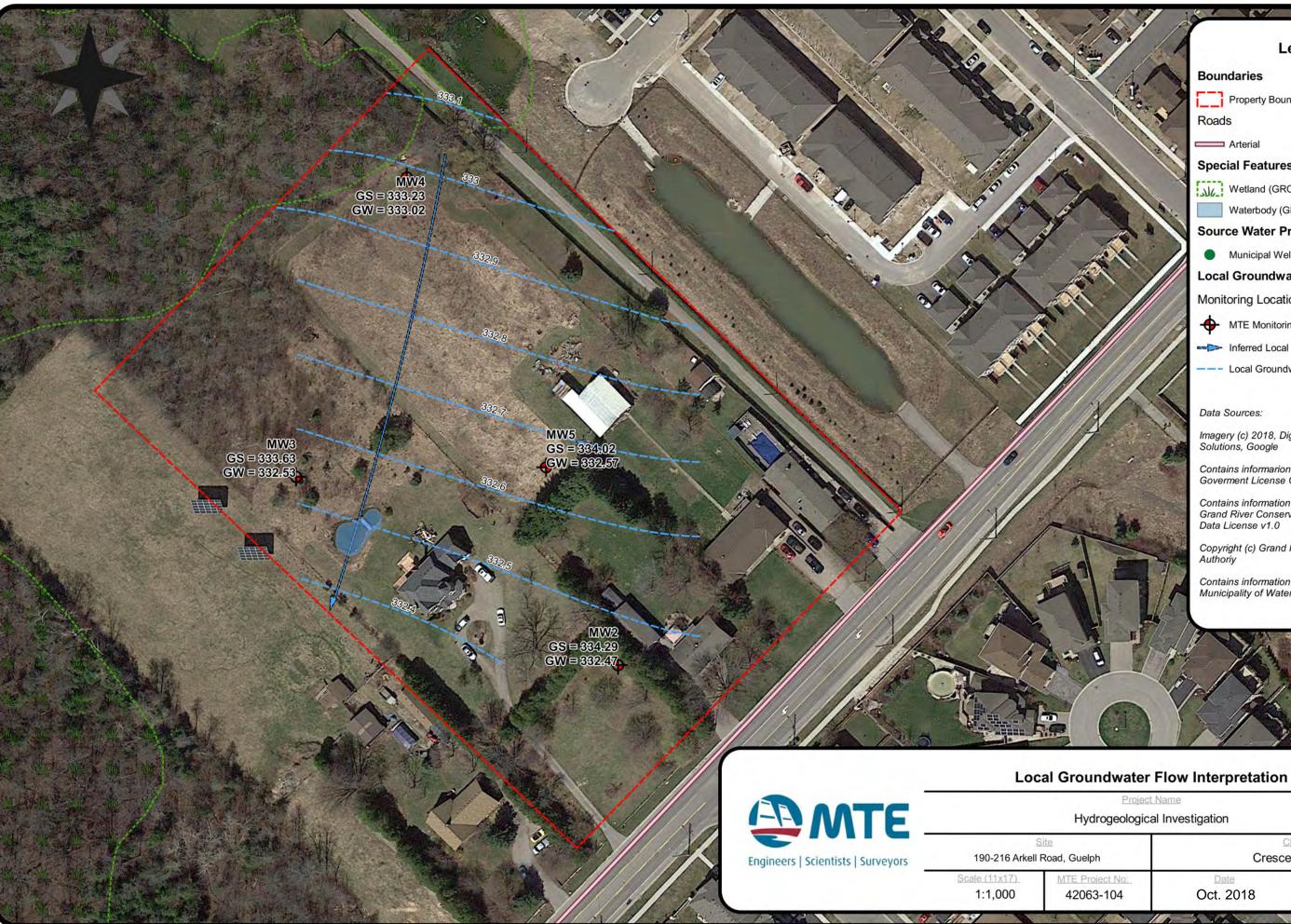

Contains information provided by the Regional Municipality of Waterloo under license

Regional Groundwater Flow Direction

Project Name


Hydrogeological Investigation

uelph	Client Crescent Homes	
Project No:	Date	Figure No:
063-104	Oct. 2018	7



geological descriptions provided from the geotechnical consultant. Actual geological conditions may vary between the tested locations.

BEOLOGIC CROSS-SECTION B-B'			
Project Name Hydrogeological Investigation			
<u>Site</u> cell Road, Guelph, ON	<u>دان</u> Crescent	_{ent} t Homes	
MTE Project No. 42063-104	Date Oct. 2018	Figure No. 9	

<u>Scale (11x17)</u> As shown

Legend

11 2011

Boundaries

Property Boundary Roads

Arterial

Special Features

Wetland (GRCA)

Waterbody (GRCA)

Source Water Protection

Municipal Well

Local Groundwater

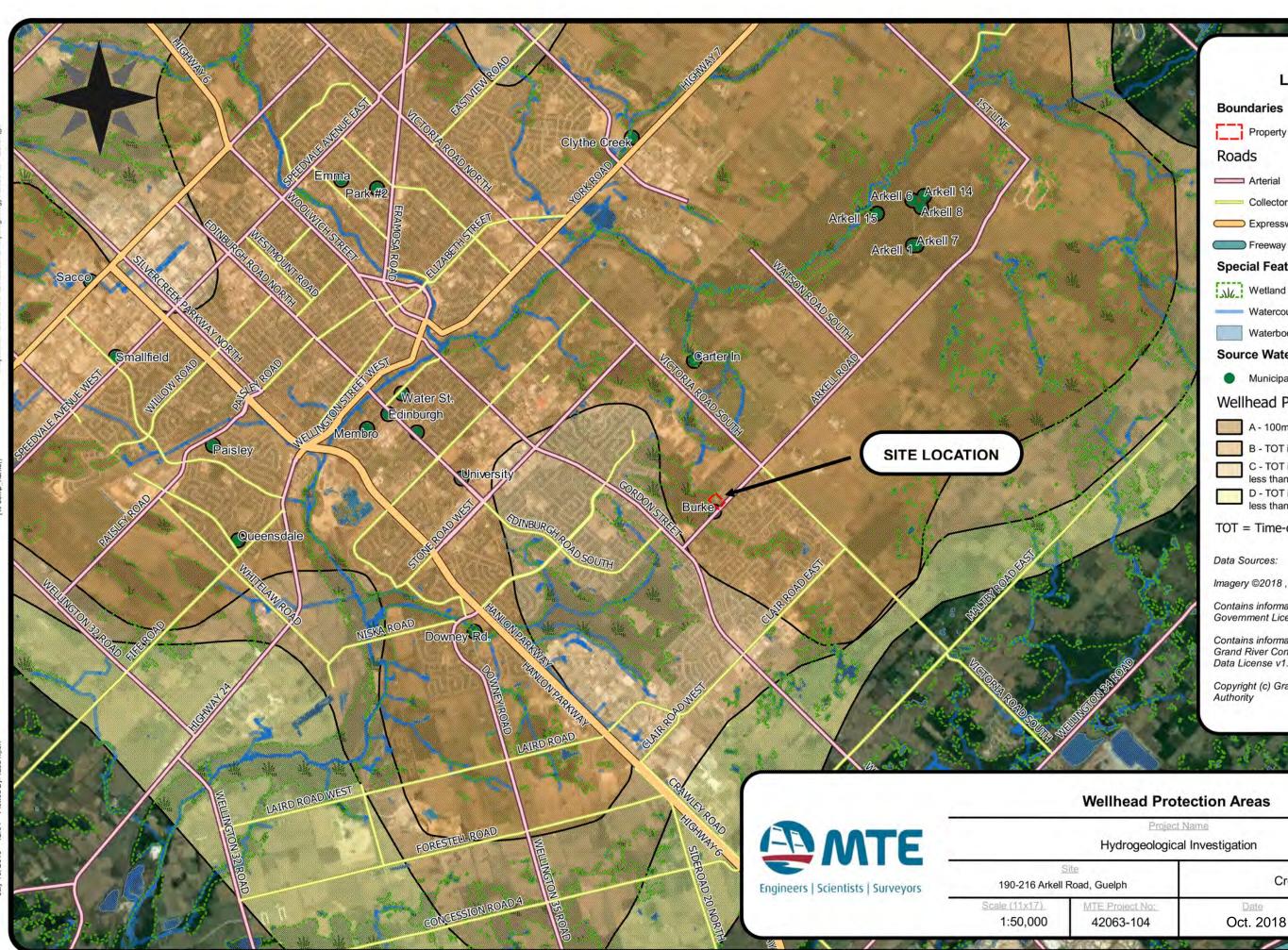
Monitoring Locations

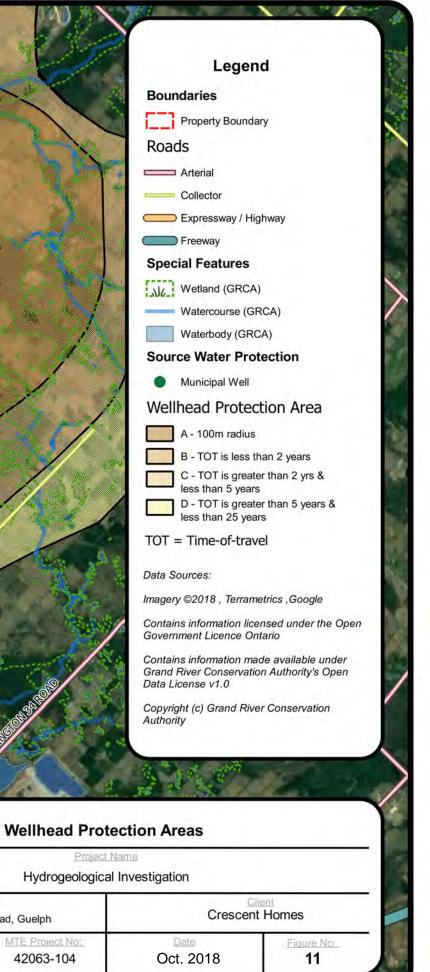
MTE Monitoring Well

- Local Groundwater Elevation Contour

Data Sources:

Imagery (c) 2018, DigitalGlobe, First Base Solutions, Google

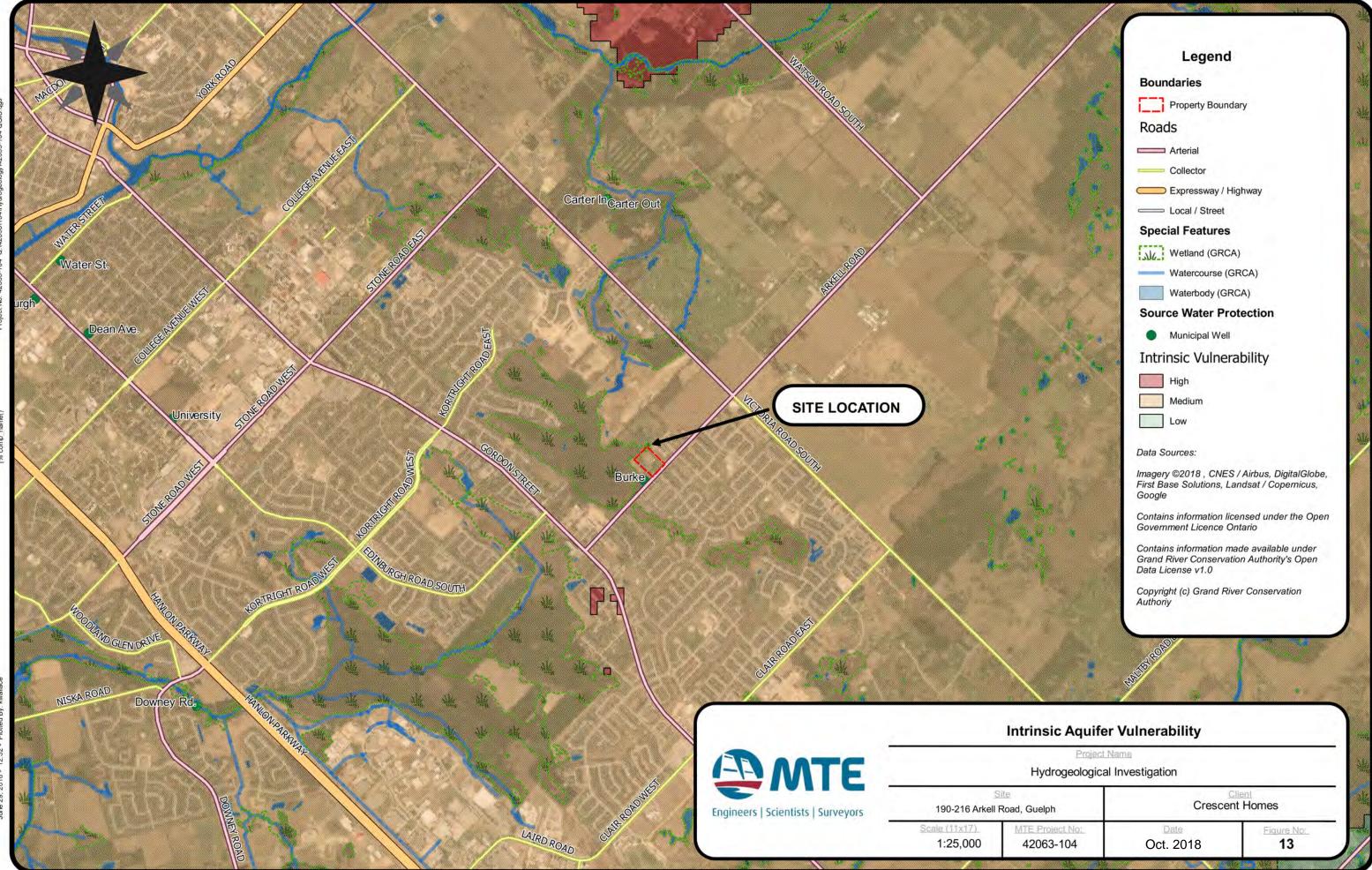

Contains informarion licensed under the Open Goverment License Ontario

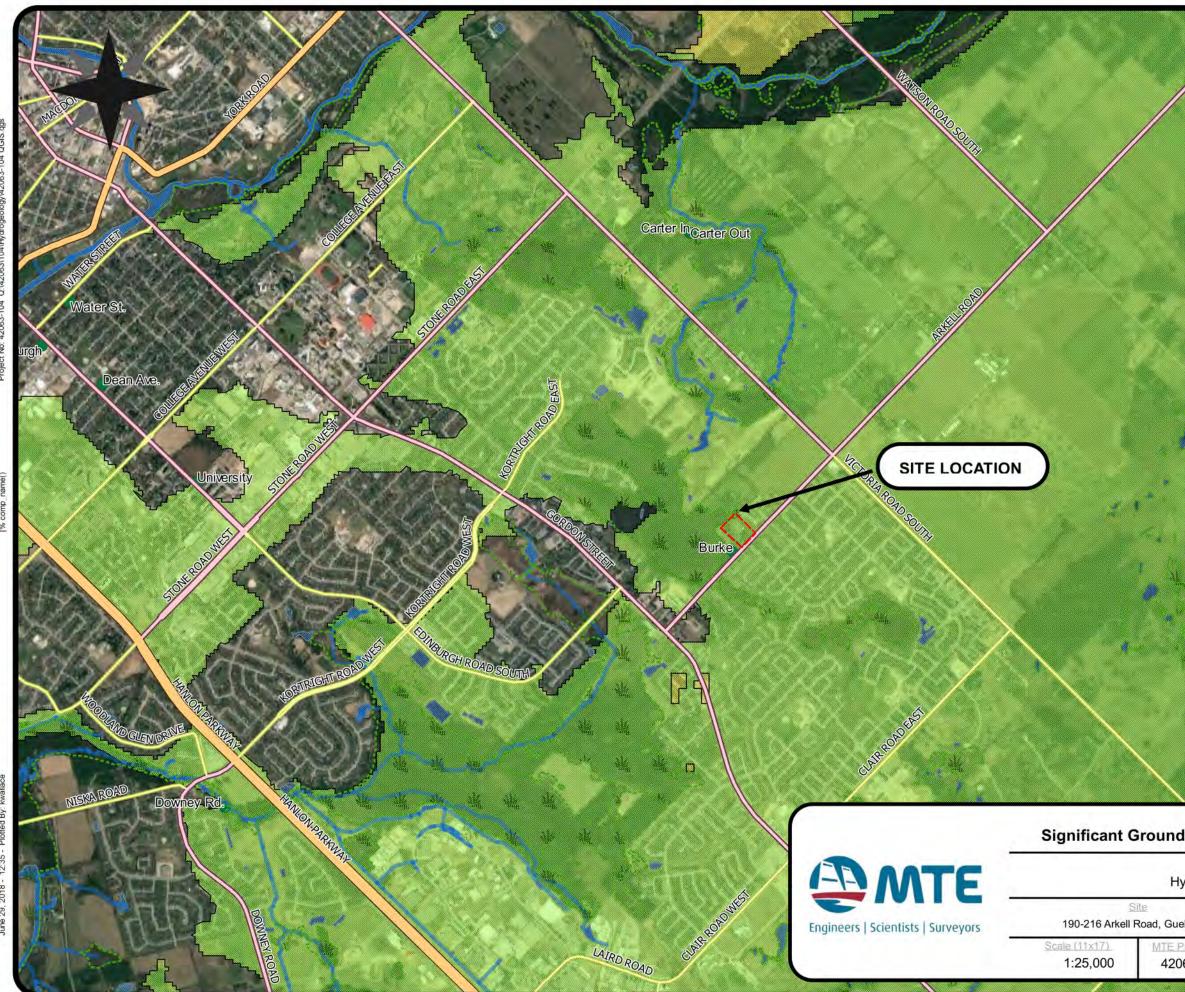

Contains information made available under Grand River Conservation Authority's Open Data License v1.0

Copyright (c) Grand River Conservation Authoriy

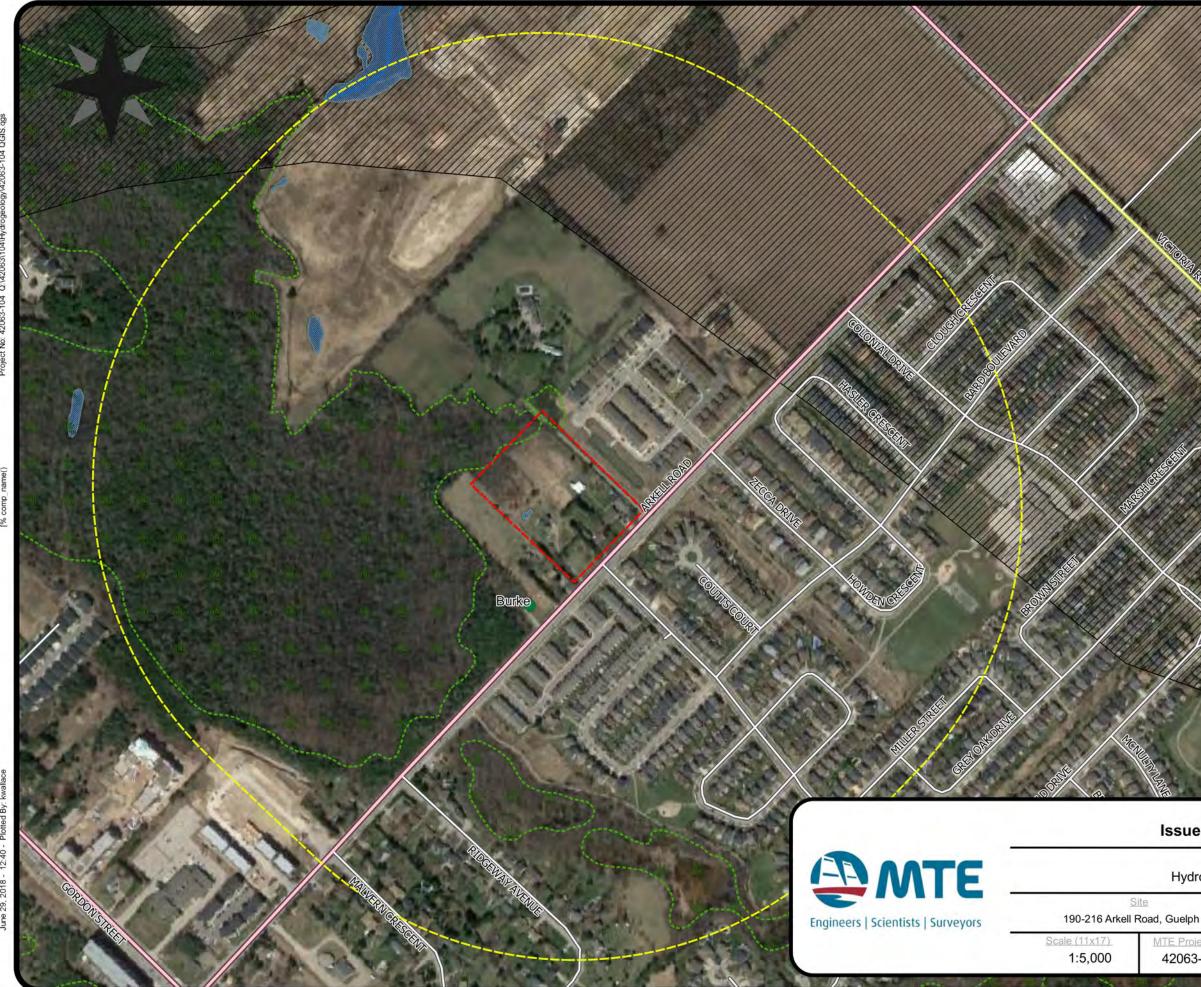
Contains information provided by the Regional Municipality of Waterloo under license

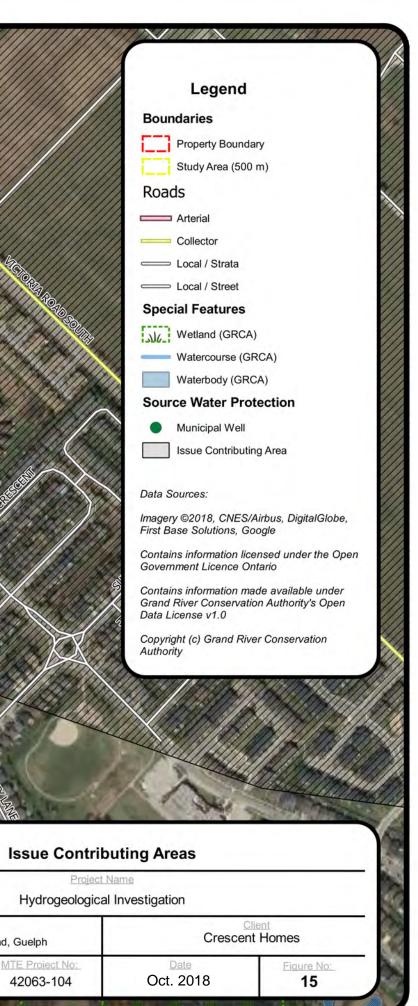
uelph		<u>Client</u> Crescent Homes	
Project No:	Date	Figure No:	
2063-104	Oct. 2018	10	




	(
d	Legend	d	
/	Boundaries		
1 🗶	Property Bounda	ary	
	Roads		
	Arterial		
	Collector		
(🍝 👘	Expressway / Hi	ghway	
	Local / Street		
	Special Features		
); • (Wetland (GRCA)	
	Watercourse (G	RCA)	
	Waterbody (GR	CA)	
100	Source Water Pro	tection	
	Municipal Well		
()	Wellhead Protect	tion Area	
3 Š	Vulnerability		
	2		
*	4		
	6	1	
1	8		
	10		
H.	Data Sources:		
	Imagery ©2018 , Terram	netrics ,Google	
	Contains information lice Government Licence Or		
	Contains information ma Grand River Conservati Data License v1.0	A STATE A STATE AND A STATE A STAT	
	Copyright (c) Grand Rive Authority	er Conservation	
		ANA DECEMBER	
	1. 1. 1. 1. 1. 1. A.		
ad Protection	Area Vulnerability		
Project I			
Hydrogeologica		lient	
, Guelph		Crescent Homes	
ATE Project No: 42063-104	Date Oct. 2018	Figure No: 12	

1.0


1


ALL DOG 1

	(
	Legen	d
	Boundaries	
1	Property Boundar	rv.
	Roads	,
- <u></u> 7	Arterial	
1	Collector	hum
	Expressway / Hig	nway
	Special Features	
	Wetland (GRCA)	
	Watercourse (GR	1.0
	Source Water Prot	
1.1		ection
1 C 1	Municipal Well	
<u> </u>	Significant Group	
	Recharge Area V	unerability
	2	
	4	
	6	
	Data Sources:	
	Imagery ©2018 , CNES / First Base Solutions, Lan Google	
	Contains information licer Government Licence Ont	
	Contains information mac Grand River Conservation Data License v1.0	
	Copyright (c) Grand Rive Authority	r Conservation
ater Rec	while Port of the second secon	arability
212 12		siability
Project ogeologica	Name al Investigation	
	Crescent	
-104	Date Oct. 2018	Figure No: 14

TABLES

Drawing on experience...Building on

Table 1: Groundwater Levels

ID	MV	V-2	M	W-3	MV	N-4	MW-5		
TOC Elevation (mAMSL)	335	5.04	334	4.31	333	3.99	334	1.83	
Stickup (m)	0.	75	0	.67	0.	75	0.81		
Date	mbtoc	mbgs	mbtoc	mbgs	mbtoc	mbgs	mbtoc	mbgs	
2-Mar-17	2.77	2.02	1.77	1.10	N.I.	-	N.I.	-	
27-Mar-17	2.71	1.96	1.75	1.08	0.58	-0.17	2.32	1.51	
10-May-17	1.95	1.20	1.17	0.50	0.04	-0.71	1.57	0.76	
7-Jun-17	2.38	1.63	1.56	0.89	0.51	-0.24	2.06	1.25	
2-Nov-17	4.4	3.65	3.51	2.84	2.81	2.06	4.12	3.31	
26-Mar-18	2.97	2.22	2.09	1.42	1.15	0.40	2.62	1.81	
26-Jun-18	2.57	1.82	1.79	1.11	0.98	0.22	2.26	1.45	

Notes:

N.I. = not installed

mAMSL = metres above mean sea level

Negative values indicate saturated soil conditions at ground surface

Table 2: Groundwater Elevations (mAMSL)

ID	MW2	MW3	MW4	MW5
TOC Elevation (mAMSL)	335.04	334.31	333.99	334.83
2-Mar-17	332.27	332.54	-	-
27-Mar-17	332.33	332.56	333.41	332.51
10-May-17	333.09	333.14	333.95	333.26
7-Jun-17	332.66	332.75	333.48	332.77
2-Nov-17	330.64	330.80	331.18	330.71
26-Mar-18	332.07	332.22	332.84	332.21
26-Jun-18	332.47	332.53	333.02	332.57

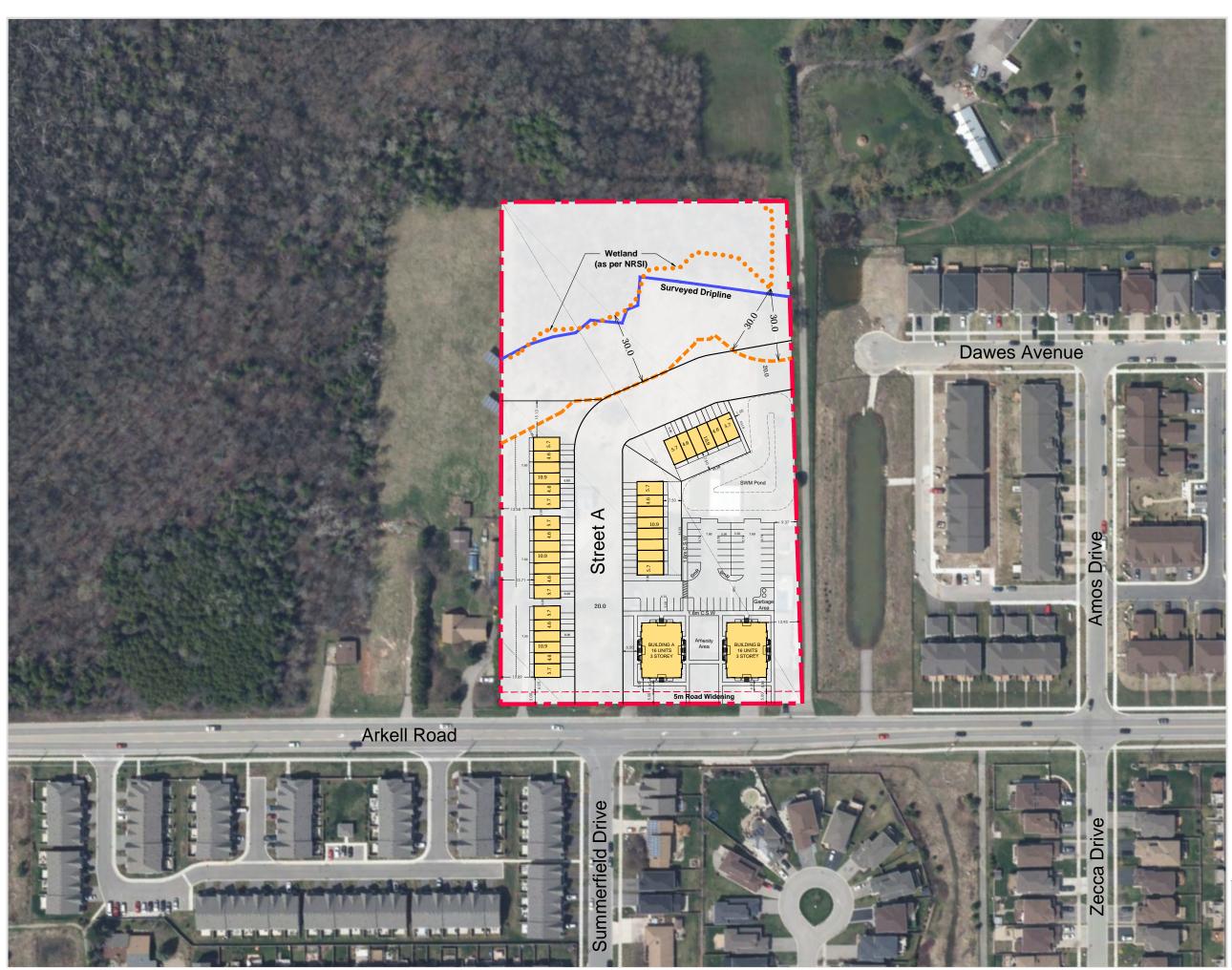
Notes:

mAMSL = metres above mean sea level

Table 3: Groundwater Chemistry Summary - 2018

Table 3: Groundwater Chemistry Summ			MW-2	MW-4
Parameter	Units	DL	5-0	ct-18
			L2119092-1	L2119092-2
Physical Tests				
Colour, Apparent	CU	2	77.6	455
Conductivity	umhos/cm	3	712	770
Hardness (as CaCO3)	mg/L	10	250	380
рН	pH units	0.1	7.89	7.63
Total Dissolved Solids	mg/L	20	546	452
Turbidity	NTU	0.1	>4000	>4000
Anions and Nutrients				
Alkalinity, Total (as CaCO3)	mg/L	10	230	313
Ammonia, Total (as N)	mg/L	0.02	0.035	0.041
Chloride (Cl)	mg/L	0.5	76	35.9
Fluoride (F)	mg/L	0.02	0.062	0.051
Nitrate (as N)	mg/L	0.02	1.59	6.29
Nitrite (as N)	mg/L	0.02	<0.010	<0.010
Orthophosphate-Dissolved (as P)	mg/L	0.003	<0.0030	<0.0030
Sulfate (SO4)	mg/L	0.003	13.6	14.2
Dissolved Metals		0.0		
Dissolved Metals Filtration Location	1		FIELD	FIELD
Aluminum (Al)-Dissolved	mg/L	0.01	< 0.010	<0.010
Antimony (Sb)-Dissolved	mg/L	0.005	< 0.0050	< 0.0050
Arsenic (As)-Dissolved	mg/L	0.001	<0.0010	<0.0010
Barium (Ba)-Dissolved	mg/L	0.01	0.028	0.058
Beryllium (Be)-Dissolved	mg/L	0.001	<0.0010	<0.0010
Bismuth (Bi)-Dissolved	mg/L	0.001	<0.0010	<0.0010
Boron (B)-Dissolved	mg/L	0.001	< 0.050	< 0.050
Cadmium (Cd)-Dissolved	mg/L	0.00009	< 0.000090	<0.000090
Calcium (Ca)-Dissolved	mg/L	0.5	67.5	98.6
Chromium (Cr)-Dissolved	mg/L	0.0005	<0.00050	< 0.00050
Cobalt (Co)-Dissolved	mg/L	0.0005	< 0.00050	< 0.00050
Copper (Cu)-Dissolved	mg/L	0.0003	0.0034	0.0043
Iron (Fe)-Dissolved	mg/L	0.001	< 0.050	< 0.050
Lead (Pb)-Dissolved	mg/L	0.001	<0.0010	<0.0010
Magnesium (Mg)-Dissolved	mg/L	0.5	19.7	32.5
Manganese (Mn)-Dissolved	mg/L	0.001	<0.0010	<0.0010
Molybdenum (Mo)-Dissolved	mg/L	0.001	<0.0010	<0.0010
Nickel (Ni)-Dissolved	mg/L	0.001	<0.0010	<0.0010
Phosphorus (P)-Dissolved	mg/L	0.002	<0.050	<0.050
Potassium (K)-Dissolved	mg/L	0.03	1.9	7.5
Selenium (Se)-Dissolved	mg/L	0.0004	<0.00040	<0.00040
Silicon (Si)-Dissolved	mg/L	0.0004	2.4	4.6
Silver (Ag)-Dissolved	mg/L	0.0001	<0.00010	<0.00010
Sodium (Na)-Dissolved	mg/L	0.0001	60.4	21.6
Strontium (Sr)-Dissolved	mg/L	0.001	0.0735	0.111
Thallium (TI)-Dissolved	mg/L	0.0003	<0.00030	< 0.00030
Tin (Sn)-Dissolved	mg/L	0.0003	<0.0010	<0.00030
Titanium (Ti)-Dissolved	mg/L	0.001	<0.0010	<0.0010
Tungsten (W)-Dissolved	mg/L	0.002	<0.0020	<0.0020
Uranium (U)-Dissolved	mg/L	0.001	<0.010	<0.010
Vanadium (V)-Dissolved	mg/L	0.005	<0.0030	<0.0030
	mg/L	0.001	0.0132	0.0293
Zinc (Zn)-Dissolved	mg/L	0.003	<0.0132	<0.0293
Zirconium (Zr)-Dissolved	iiig/L	0.004	NULUU4U	NU.UU4U

Notes:


DL = Detection Limit

APPENDIX A

CONCEPT PLAN

Drawing on experience...Building on

Preliminary **Concept Plan**

Arkell Road Properties

City of Guelph County of Wellington

	Proposed
Gross Area	GÍÊIHÁ, ÁÇGĚIÁ@eaĐ
Net Area	FGÊF€Á(ÁÇFÈGÁ@æD
Number of Units	65
No. of Storeys	3
Gross Area Density	25.6 units/ha
Net Area Density	52.4 units/ha
Parking Required	39 spaces
Parking Provided	46 spaces

- Notes:
 1. Net Area excludes: NRSI wetland limit, 30m buffer from NRSI wetland, 20m wide right of way and 5m road widening.
 2. Standards for Residential Townhouse (R.3) Zone used for Concept Plan.
 3. Parking Required includes 1 space/unit and 20% visitor parking requirement
- Parking required includes a spaceful in and 20% visitor parking requirement.
 Site Boundary is approximate and should be verified by Survey.
 Natural feature limits from NRSI (July 28, 2016) and verified by GRCA and City of Guelph staff.
 Density to be confirmed through City review.

- Sources: Vumap/ First Base Solutions Aerial Imagery 2017 Parcel Fabric Grand River Conservation Authority (GRIN) 2010 Dripline Limits Natural Resource Solutions Inc. (NRSI) June 2016 Wetland Limits Natural Resource Solutions Inc. (NRSI) July 28, 2016 City of Guelph Zoning By-law (1995) 14864

DATE: July 11, 2018

FILE: 15246A

SCALE Á FKFÉ €€

DRAWN: DGS/GC

K:\15246A-CRESCENT HOMES-ARKELL ROAD-GUELPH/CONCEPT/CONCEPT PLAN JULY 11 2018.DWG

APPENDIX B

BOREHOLE LOGS

Drawing on experience...Building on

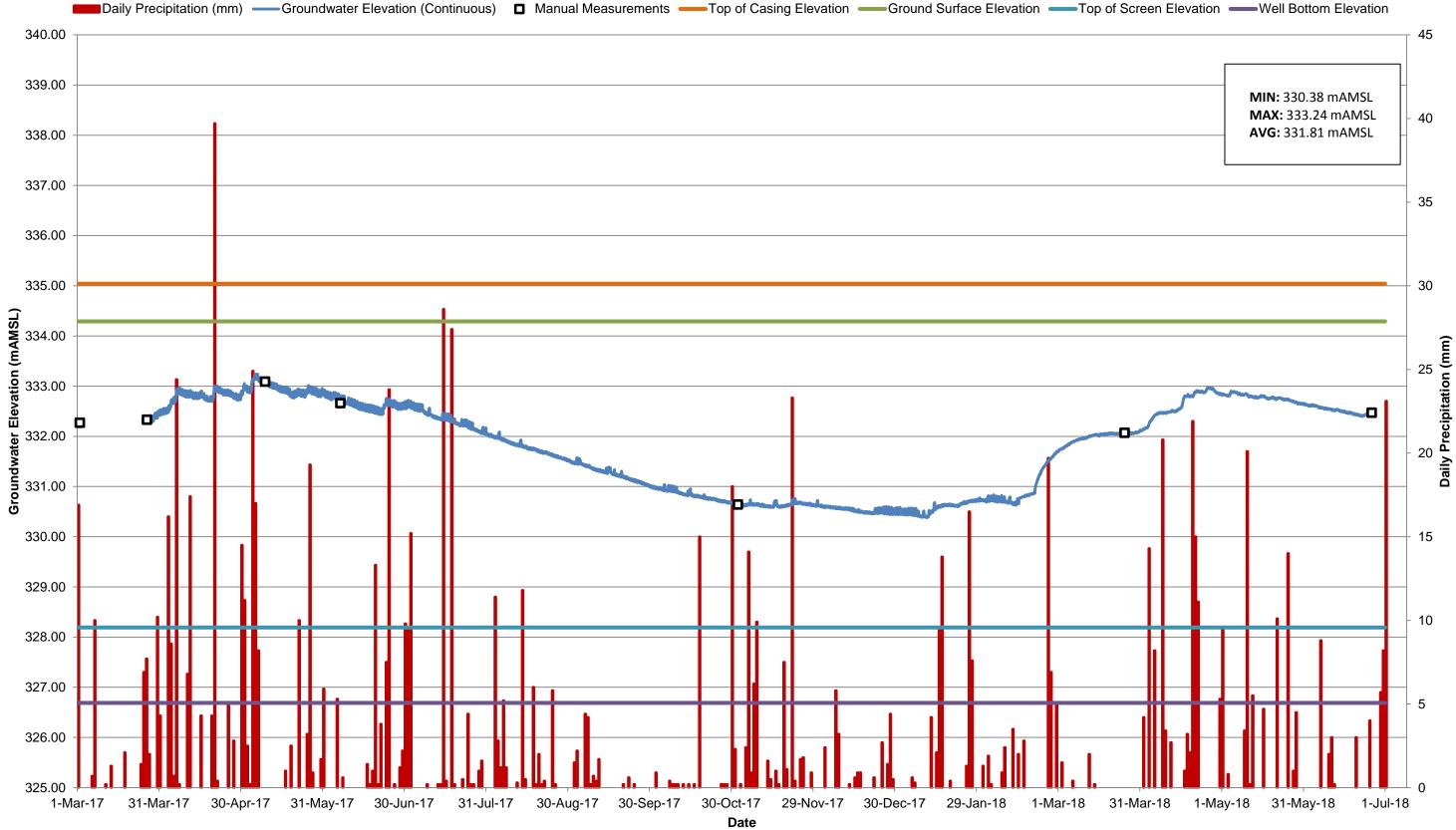
	CATION Arkell Road, Guelph, Ontario RING METHOD Continuous Flight Hollow Ste	em Auger	s				BOR	NG DA	TE: 201	7 02 13	3				GINEER K. Hanes CHNICIAN H. Shinwar
EPTH in	SOIL PROFILE DESCRIPTION	LEGEND	NUMBER	SA	BLOWS/0.3m BLOWS/0.3m	LEVATION SCALE		0 10 NIC CON DARD PE	ENGTH C 0 150 E PENETR NETRATIO	200 Ation ×	PLA WA: W _P	JID LIMIT _ STIC LIMI TER CONT W	T W _P TENTW 	UNIT	GROUND WATER OBSERVATIONS AND REMARKS
ETRES	GROUND ELEVATION 334.56		Ň		 BT0	ELI			DWS/0.3M	80		TER CON 0 20	TENT %	γ kN/m ³	GR SA S
).10).46	TOPSOIL: Dark brown silt, trace sand, numerous rootlets, damp		1	SS	7							o			
0.69	FILL: Brown sand and gravel, trace silt, moist					334								-	
	SILT: Loose brown silt, trace sand,		2	SS	42	_					Î				
	occasional rootlets, damp SAND AND GRAVEL: Dense to very		3	66	50/150mn	333				\rightarrow	•0			-	
2.1	dense brown sand and gravel, trace to some silt, numerous cobbles, damp		5	33	50/1501111	-					٦Ň -				
32.5	becoming moist		4	SS	39	332									
2.9						552]				
31.7	becoming compact, no cobbles, saturated, contains saturated silt layers	· ^ · ·	5	SS	23			•							Sampler wet from SS
		0.0				331						$\left \right\rangle +$		-	
	SAND: Compact brown sand, trace to														
	some silt, trace gravel, saturated					- 330	\square			_					
			6	SS	12		†					9			
						329									
			-	00	10										
6.6 28.0	BOREHOLE TERMINATED AT 6.6 m		7	SS	16	328	-					•		-	
20.0	BOREHOLE TERMINATED AT 0.0 III														Upon completion of augering
															Wet cave to 3.1 m
NOTE	S: Headspace: SS1 0ppm, SS2 0ppm, SS3 0ppm, SS7 0ppm	0ppm, S	S4 0p	opm, S	S5 0ppm,	SS6	;	¥≓ ¥≓	UPON (COMPLET	ION OF IEASUF	'ED DURIN DRILLING RED IN		REN LAE	DISTURBED FIELD VANE MOLDED FIELD VANE 3 SHEAR TEST CKET PENETROMETER

	CATION Arkell Road, Guelph, Ontario RING METHOD Continuous Flight Hollow Stem	n Auger	s				BOR	ING D.	AIE:	2017 02 ⁻	13				GINEER K. Hanes CHNICIAN H. Shinwar
)EPTH	SOIL PROFILE DESCRIPTION	D	BER		BLOWS/0.3m N - VALUES	LE		50 1	00 1	THC (kPa) 50 200 ETRATION ATION TEST 3M		UID LIMIT STIC LIMI TER CONT W	TW	MEIG	GROUND WATER OBSERVATIONS AND REMARKS
in ETRES	2221122122122212222	LEGEND	NUMBER	түре	LOWS	ELEVA	STAN	DARD P BL	enetr. OWS/0	ATION TEST .3M		TER CON	TENT %	S	- Stick up
0.25	GROUND ELEVATION 335.16 TOPSOIL: Dark brown silt, trace sand,	~~~	4	SS	∞i < 3	335		20 4	6	0 80		10 20	30	kN/m	₃
34.91 0.69	numerous rootlets, damp		1	55	3							\mathcal{P}			
34.47	SILT: Loose dark brown silt, some sand, frace gravel, occasional rootlets, damp		2	SS	57	_									
	SAND AND GRAVEL: Very dense sand and gravel, trace to some silt, numerous	0.0	-	00	01	334					T				
	cobbles, damp	9.0.C	3	SS	64										
2.1	SAND: Compart to depend brown cond	• <u>·</u> 0•	-		-	333									
33.1	SAND: Compact to dense brown sand, trace to some silt, trace gravel, occasional		4	SS	34			•	ľ						 Sampler wet f
	cobbles, saturated					-									
			5	SS	31	332		+						_	- Bentonite Sea
						-									
						331									- 50 mm Plastic Riser
															Riser
			6	SS	30			+				∮			
						330		\square			_			-	
						329									Fllter Sand
			7	SS	26	529		•				9			: Screen
								$ \rangle$							Screen
						328		+			_			_	
7.7						_		$ \rangle$							
8.1	SILT: Dense brown silt, trace sand, trace gravel, wet		8	SS	39			-			6)			
27.1	BOREHOLE TERMINATED AT 8.1 m														Water Level Readings Initial: 3.40 m
															Elevation: 331.76
															<u>2017-04: 2.51 m</u> Elevation: 332.45
									14/4	TER LEVEL	OBSER		G/ +	116/	DISTURBED FIELD VANE
ΝΟΤΕ	ES: Headspace: SS1 0ppm, SS2 0ppm, SS3 0	ppm, S	S4 0r	opm, S	S5 5ppm	. SS6		Ŧ		ON COMPLE					MOLDED FIELD VANE

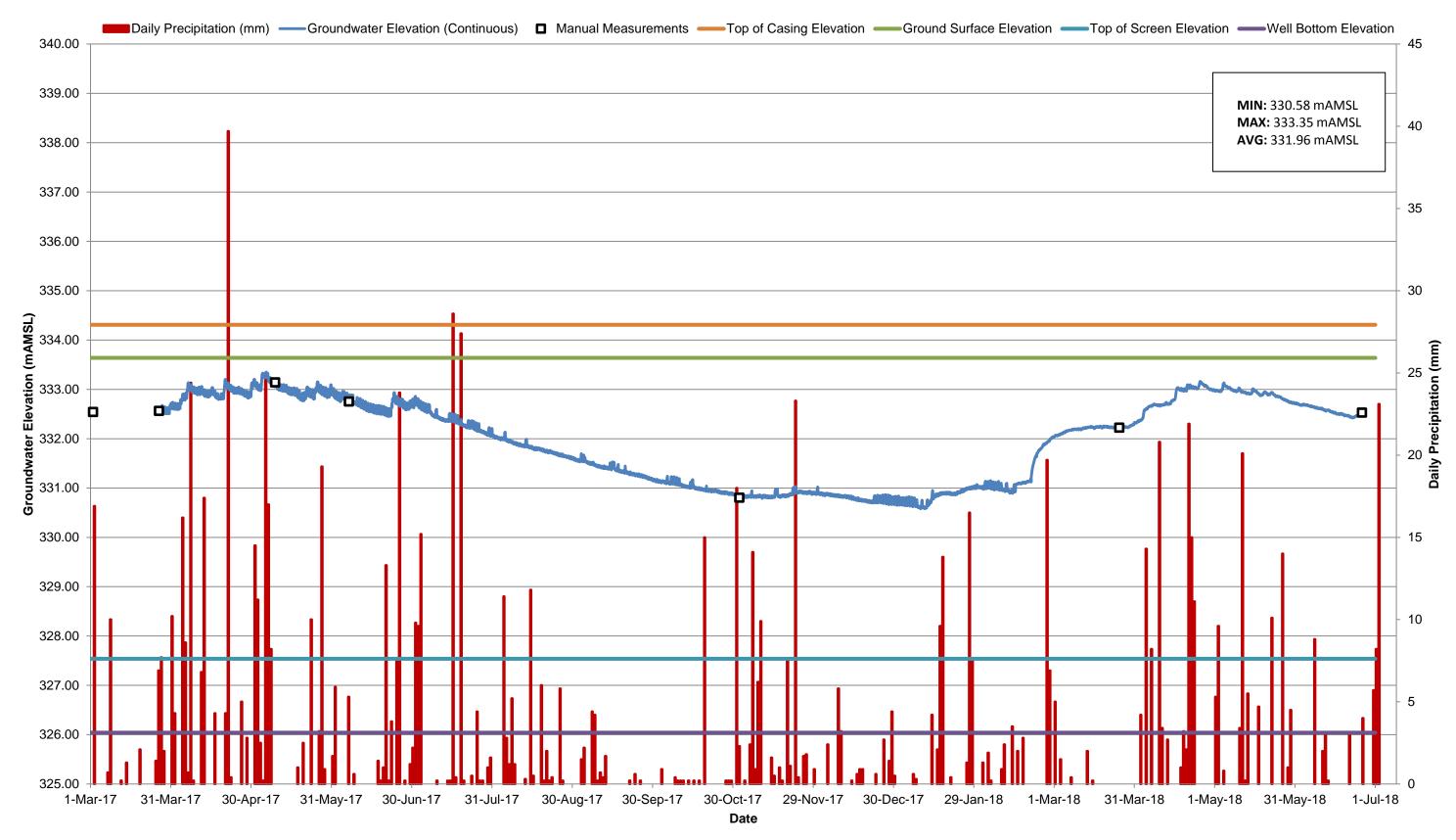
	CATION Arkell Road, Guelph, Ontario RING METHOD Continuous Flight Hollow Sten	n Auger	S				BOR	ING D	ATE:	2017 02 1	ა					INEER HNICIA	
DEPTH	SOIL PROFILE DESCRIPTION	Ð	ER		WPLES MPLES MPLES	TION E		50 1 MIC CO	00 1 NE PEN	"H C _u (kPa) 50 200 "ETRATION		UID LIMI ISTIC LI TER CO V	MIT NTENT		UNIT WEIGHT	0	ROUND WATER BSERVATIONS ND REMARKS
in ETRES		LEGEND	NUMBER	TYPE	BLOWS/0.3m N - VALUES	ELEVATION SCALE	STAN		ENETR. OWS/0	ATION TEST	•	TER CO)	-Ĩ	Nn γ		-Stick up
0.20	GROUND ELEVATION 334.42 TOPSOIL: Dark brown silt, trace sand,							20 4	io e	50 80	1	10 2	0 3	0	kN/m ³		-Concrete
0.51	numerous rootlets, moist		1	SS	5	334	!				_	2			-		Concrete
	SILT: Loose dark brown silt, some sand, occasional rootlets		2	SS	3	-											
1.4	SAND AND GRAVEL: Very loose brown sand and gravel, trace to some silt,)	-	00	5	333	\geq										
555.1	occasional cobbles, damp	· 0 · :	3	SS	35							5					- Sampler wet SS3
	becoming compact, saturated											\land					
			4	SS	31	332		+				þ					
2.9 331.5	SAND: Compact to dense brown sand,							/									-Bentonite Se
	trace to some silt, trace gravel, occasional cobbles, saturated		5	SS	24	331						9					
								$ \rangle$				$ \rangle $					
								$ \rangle$				$ \rangle $					- 50 mm Plasti Riser
			6	SS	42	330											
			ŀ	00	-12	_			ſ			ĬĬ					
						329		+/							-		
								/								:. i÷	- Filter Sand
			7	SS	27	328		 				\$					
												/					- Screen
7.8			_			327											
8.0	SILT: Compact brown silt, trace sand, trace gravel, wet	μ	8	SS	21	_	-	-				9				Wator	l evel Reading
	BOREHOLE TERMINATED AT 8.0 m															Initial:	Level Reading 1.95 m ion: 332.47
																Elevat	<u>)4: 1.86 m</u> ion: 332.56
	S: Headspace: SS1 0ppm, SS2 0ppm, SS3 0)nnm S	S4 0r	nm S	SE Ennm	000		Ţ	WA	TER LEVEL				+ ⊕			ED FIELD VANE FIELD VANE

BO	RING METHOD Continuous Flight Hollow Ste	m Auger	s				1							HNICIAN H. Shinv
DEPTH in	SOIL PROFILE DESCRIPTION	regend	NUMBER	SAI	BLOWS/0.3m N- VALUES	ELEVATION SCALE	5	0 100 NIC CONE I	NGTH C. (k 150 200 PENETRATIO ETRATION TE	O NN X	LIQUID LIMIT PLASTIC LIM WATER CON W _p W	ITW_P	ЦЩ.	GROUND WATEF OBSERVATIONS AND REMARKS
ETRES	GROUND ELEVATION 334.13	- <u>"</u>	INN	T	N-V BLOV	ELE'S		BLON 0 40	/S/0.3M 60 80	,	WATER CON 10 20	ITENT % 30	γ	- Stick up GR S/
0.30	TOPSOIL: Dark brown silt, trace sand,	/ .	1	SS	6	334	-				÷		kN/m ³	
<u>0.69</u> 333.44	Numerous rootlets, moist SAND AND GRAVEL: Compact brown sand and gravel, trace to some silt, bccasional cobbles, moist		2	SS	13	333					Q			- Sampler we SS2
<u>1.5</u> 332.7	becoming saturated SAND: Compact brown sand, trace to some silt, trace gravel, saturated		3	SS	14	_								
			4	SS	11	332	•						_	
			5	SS	12	331					•		_	- Bentonite S
						330								
			6	SS	18									
						329	\square							
			7	SS	10	328	┥				• •		-	Fliter Sand
						327							_	Screen
8.1			8	SS	25	-					o			
	BOREHOLE TERMINATED AT 8.1 m													Water Level Readir Initial: 0.75 m Elevation: 333.38
														<u>2017-04: 0.44 m</u> Elevation: 333.55
	:5: Headspace: SS1 0ppm, SS2 5ppm, SS3							ž			BSERVED DURI	IG/ +		ISTURBED FIELD VANE

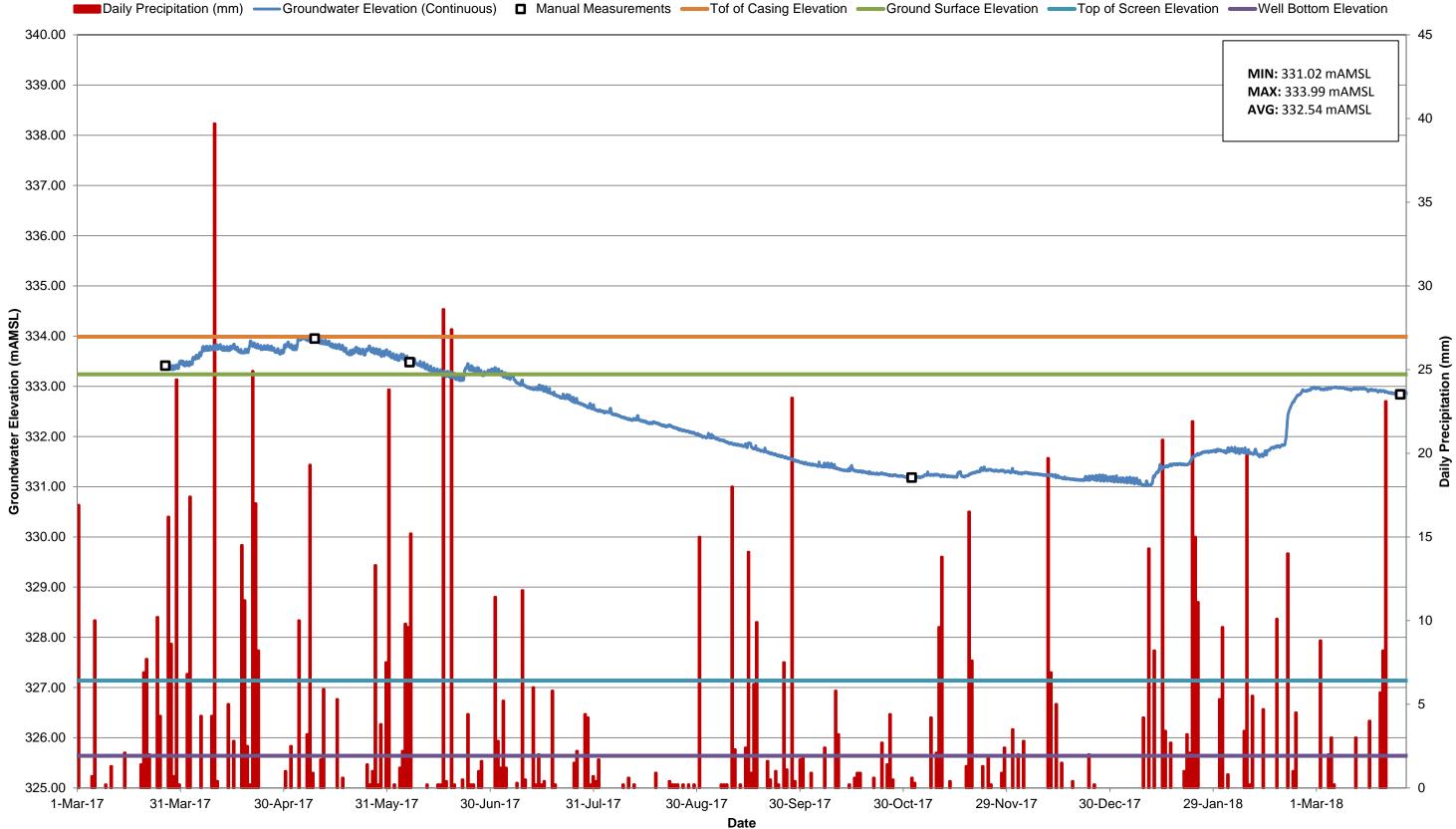
	CATION Arkell Road, Guelph, Ontario RING METHOD Continuous Flight Hollow Ster	n Auger	s				BOR	NG D	ATE:	2017 (03 21						INEER HNICIAN	K. Hanes H. Shinwary
	SOIL PROFILE			SAI	MPLES					ГН С _" (ID LIM		_ W_	GHT		IND WATER
EPTH in	DESCRIPTION	LEGEND	NUMBER	TYPE	BLOWS/0.3m N - VALUES	EVATION	DYNA STAN	MIC COI DARD P	NE PEN ENETR	50 20 IETRATION ATION TI	N X	₩A1 ₩ _₽		IMIT NTEN1 V	rw w,	UNIT WEIGHT	AND	ERVATIONS REMARKS
ETRES	GROUND ELEVATION 334.97		ž		- N BLG	Ë			ows/o	0.3M 50 8	0			ONTEN	17 % 10	γ kN/m³		tick up GR_SA SI
0.25 34.72	TOPSOIL: Dark brown silt, trace sand, trace gravel, numerous rootlets, damp	<u>لۇي</u> ب	1	SS	13		•					9					X X4-0	oncrete
	SAND AND GRAVEL: Dense brown sand and gravel, trace to some silt, numerous					-												
	cobbles, damp	.0.c	2	SS	49	334						Î						
		• <u>0</u> •.	3	SS	31	-			1									
2.2		0.0.C	1	00	01	- 333		\vdash				\neg	、 、					
32.8	SAND: Compact brown sand, some gravel, trace to some silt, occasional		4	SS	24								6				- Si S ¹	ampler wet fi S4
	cobbles, saturated					332		Ц										entonite Sea
			5	SS	27			•					ģ					
								/										
						331		/										
						_												
			6	SS	14	330	└						<u> </u>			-		
5.6								\backslash										
	becoming very dense					329											FI	Ilter Sand
			7	SS	51	329						(ļ					
			Ļ	00	01	-											· El_s	creen
7.1						328												JICCII
	SAND AND GRAVEL: Very dense brown sand and gravel, trace silt, numerous																	
8.1	cobbles, saturated)	8	SS	52	327			•			6						
	BOREHOLE TERMINATED AT 8.1 m																Water Lev	vel Reading
																	Initial: 2.3 Elevation:	: 332.67
																	<u>2017-04:</u>	<u>2.18 m</u>
																	Elevation	332.65
							<u> </u>	ž		TER LE					+		ISTURBED F	IELD VANE
NOTE	S: Headspace: SS1 0ppm, SS2 0ppm, SS3 9 0ppm, SS7 0ppm, SS8 0ppm	5ppm, S	S4 5p	opm, S	S5 0ppm	, SS6	5	=		ON CON					Ð		IOLDED FIEL	


	LOC	DJECT Proposed Arkell Road Subdivision CATION Arkell Road, Guelph, Ontario RING METHOD Continuous Flight Hollow Ste	m A	uger	s				BOR	NG D	ATE:	2017	03 21					ENG	. REF.: 17KF002 SINEER K. Hanes HNICIAN H. Shinwary
	DEPTH in	SOIL PROFILE DESCRIPTION		LEGEND	NUMBER	SA IAPE	BLOWS/0.3m BLOWS/0.3m N - VALUES	EVATION SCALE		50 1 MIC CO DARD F		50 2 IETRAT ATION	<i>00</i>	PLA WA W _P	TER CO	IMIT ONTEN W Ə	TW W_	UNIT WEIGHT	GROUND WATER OBSERVATIONS AND REMARKS
	METRES	GROUND ELEVATION 334.0		"	אר		- N BLO	S			.OWS/0 10 (30			ONTEN 20 3	IT % 80	γ kN/m³	GR SA SI&
	0.20 0.41	TOPSOIL: Dark brown silt, trace sand, numerous rootlets, damp		Ň	1	SS	18		•					9					
	0.69 333.31	FILL: Dark brown silt, some sand, trace gravel, occasional rootlets, damp		ع.ر م.ز ۱۹:۰	2	SS	45	333			•								
	1.5 332.6	SAND AND GRAVEL: Dense brown sand and gravel, trace to some silt, numerous cobbles, damp		ن. غ.ور	3	SS	36				/								Sampler wet from SS3
, - - -	2.2	becoming moist	ار ا		5	33	50	332							Ĩ				
		SILT: Compact brown silt, trace sand, trace gravel, trace clay, wet to saturated			4	SS	12	004	Í										
- (5	SS	10	. 331	•						é				
,								330	\square										
					6	SS	16	_											
					0	55	10	329							$\left[- \right]$				
- -	<u>5.8</u> 328.2	SILT TILL: Very dense brown silt, some	0					328											
		sand, some gravel, occasional cobbles, damp		0	7	SS	50/75mm	320					~						
-	327.4	BOREHOLE TERMINATED AT 6.6 m	Γ																Upon completion of augering Cave to 2.0 m
																			Free water at 1.83 m
1																			
-																			
1																			
1	NOTE	S: Headspace: SS1 0ppm, SS2 0ppm, SS3 0ppm, SS7 0ppm	0pp	m, S	S4 5p	opm, S	SS5 0ppm,	SS6	3	T Z	UP WA	ON CO	EVEL O MPLET EVEL M	ION OF IEASUF	DRILL		+ ⊕ ⊛	REN	 DISTURBED FIELD VANE MOLDED FIELD VANE 3 SHEAR TEST

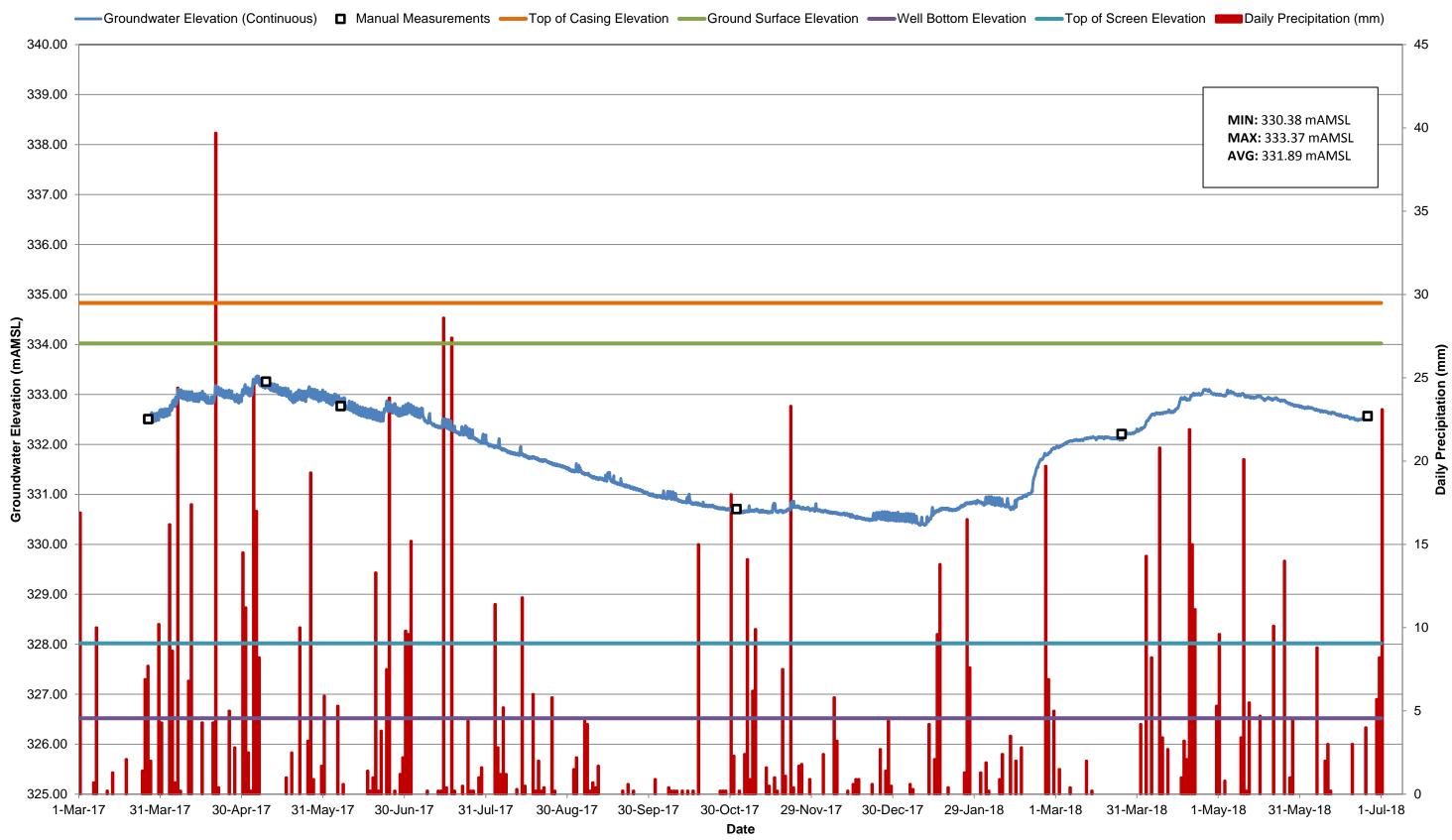
APPENDIX C


HYDROGRAPHS

Drawing on experience...Building on


Hydrograph 1: Groundwater Elevations (mAMSL) - MW2-17

Hydrograph 2: Groundwater Elevations (mAMSL) - MW3-17

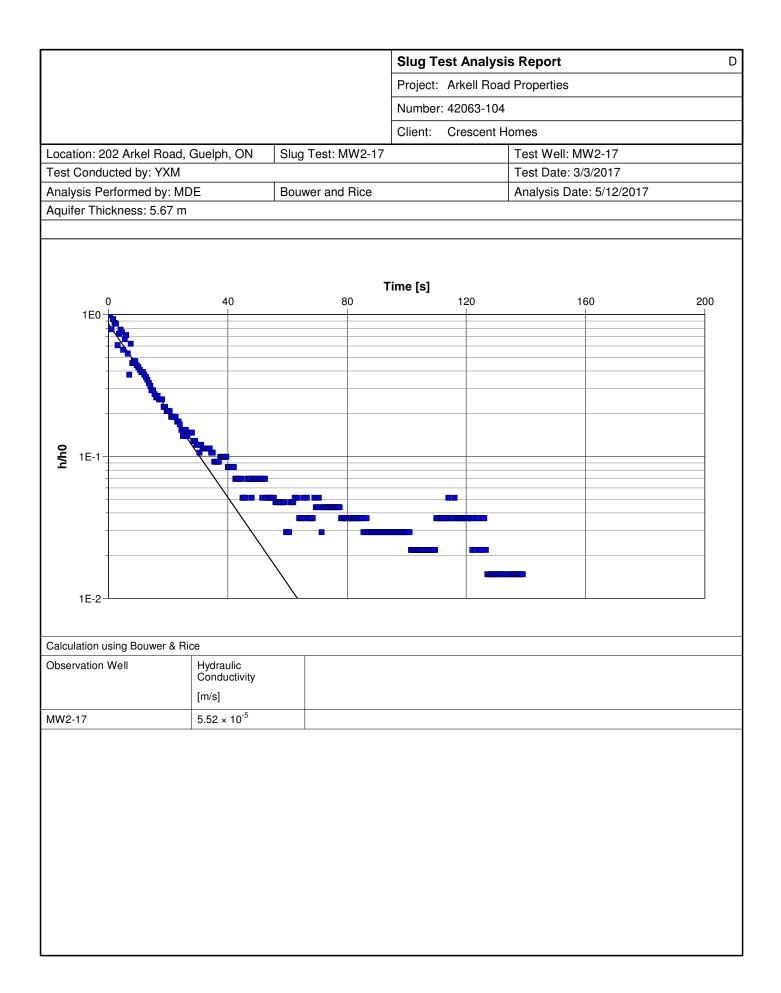


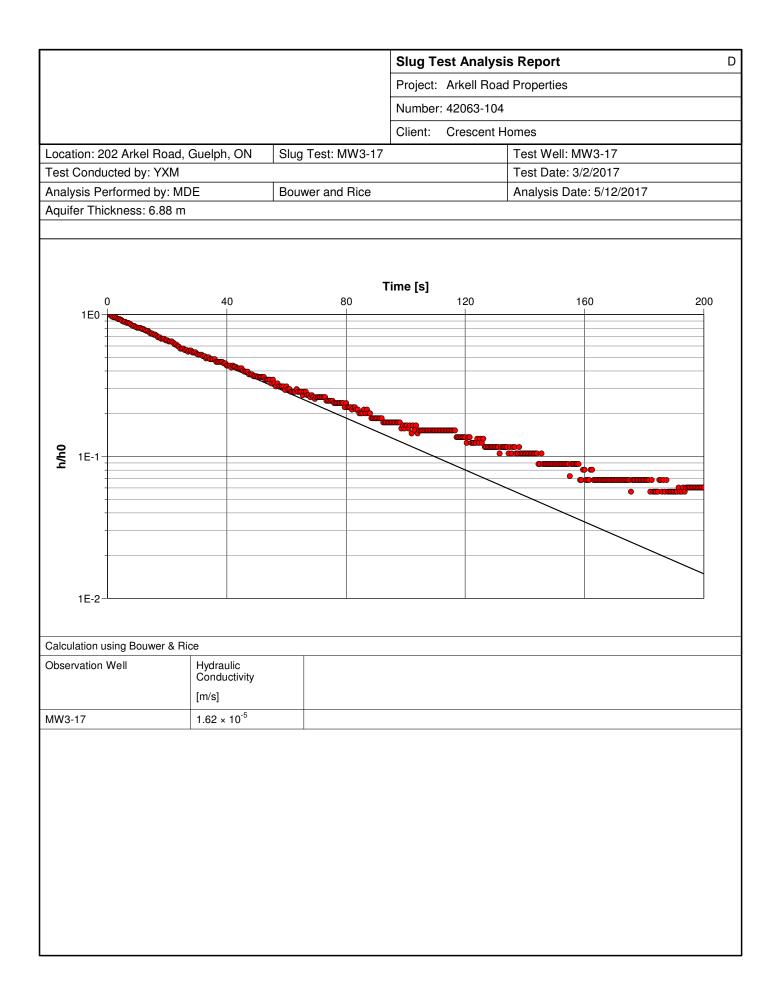
Hydrograph 3: Groundwater Elevations (mAMSL) - MW4-17

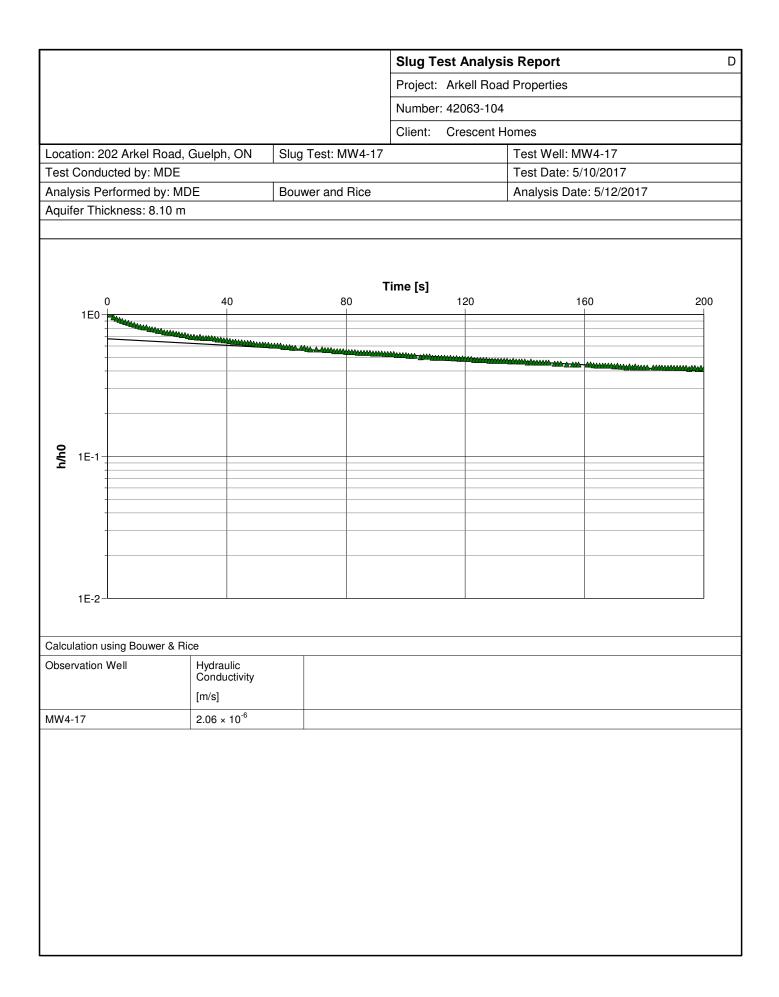
190 - 219 Arkell Road Hydrogeological Investigation

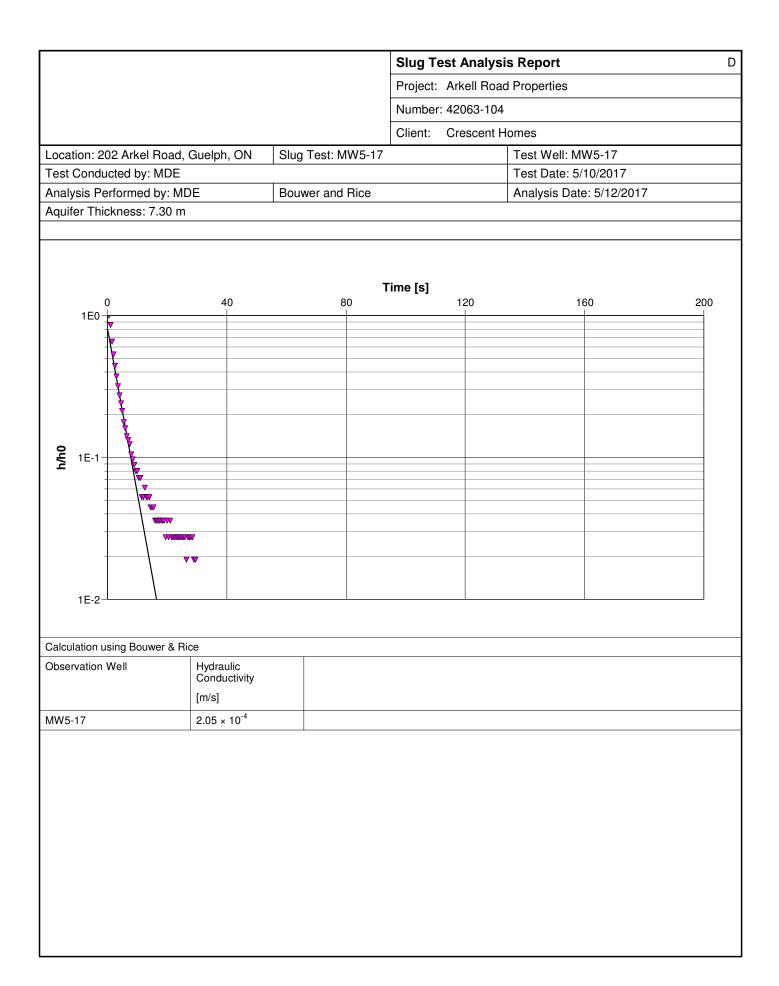
Hydrograph 4: Groundwater Elevations (mAMSL) - MW5-17

190 - 216 Arkell Road Hydrogeological Investigation






APPENDIX D


AQUIFER TEST© DATA SHEETS

Drawing on experience...Building on

PARTICLE SIZE DISTRIBUTION CHARTS

Drawing on experience...Building on

Peto MacCallum Ltd.

<u>CONSULTING ENGINEERS</u>

17KF002 PML REF. REPORT NO. 1 PARTICLE SIZE DISTRIBUTION CHART FIGURE. 1 HYDROMETER U.S. STANDARD SIEVE SIZES **≯|**∢ 270 200 140 100 80 60 40 20 16 14 10 8 4 1/4" 3/8" 1/2" 3/4" 1" 1-1/2" 2" 3″ 0.005 0.01 0.01 0.05 0.1 0.5 5.0 10.0 50.0 100.0 1.0 GRAIN SIZE IN MILLIMETERS

		SILT & CLAY		FIN	E	MEDIL	ЈМ	COARSE	GRAVEL	СОВ	UNIFIED
		SIET & CEAT				SAND			ONAVEL	BLES	
CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	CC	DARSE		GRAVEL	COBBLES	MIT
CLAT		SILT			SAND				GRAVEL	CODDLLS	WI.I.I.
	CLAY	SILT	V	ERY FINE FINE	MEDIUN	COARSE			GRAVEL		U.S. BUREAU
	OLAT	SIET			SAND				0.3. DUNLAU		

REMARKS Borehole 1, Sample SS6, Depth 4.5 to 5.0 m

100

90

80

70

60

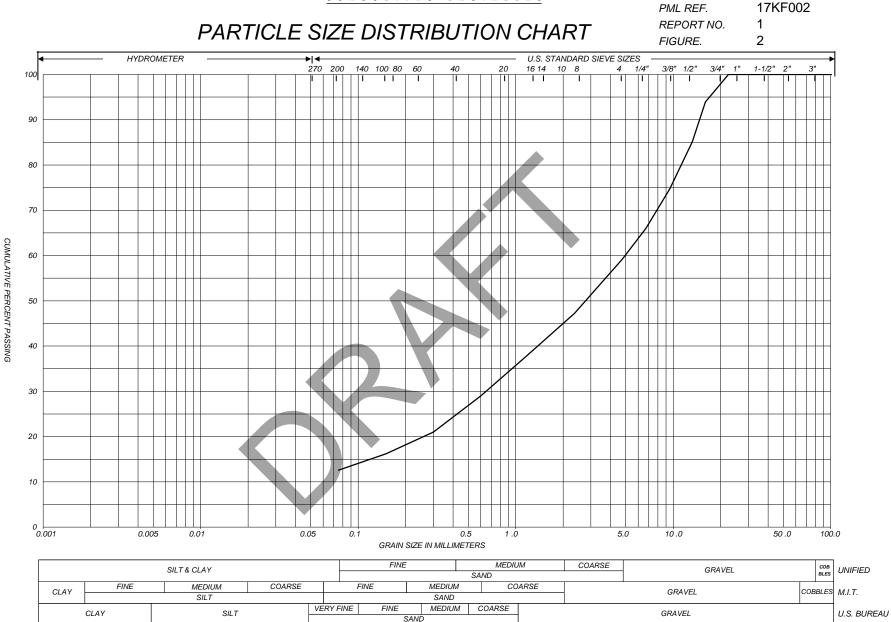
50

40

30

20

10


C0.001

CUMULATIVE PERCENT PASSING

SAND, SOME SILT, TRACE GRAVEL

Peto MacCallum Ltd.

<u>CONSULTING ENGINEERS</u>

REMARKS Borehole 2, Sample SS2, Depth 0.7 to 1.2 m

SAND AND GRAVEL, SOME SILT

LABORATORY CERTIFICATES OF ANALYSIS

Drawing on experience...Building on

MTE CONSULTANTS INC. ATTN: ANDREW BINGEMAN 520 BINGEMANS CENTRE DRIVE KITCHENER ON N2B 3X9 Date Received: 26-JUN-18 Report Date: 04-JUL-18 14:43 (MT) Version: FINAL

Client Phone: 519-743-6500

Certificate of Analysis

Lab Work Order #: L2119092

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 42063-104 17-624726

Mary-Lynn Pike Client Services Supervisor

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 288 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🕽

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2119092-1 MW-2 Sampled By: CLIENT on 26-JUN-18 @ 12:00							
Matrix: WATER Physical Tests							
Colour, Apparent	77.6		2.0	CU		27-JUN-18	R4099703
Conductivity	712		2.0 3.0	umhos/cm		27-JUN-18	R4099703 R4099089
Hardness (as CaCO3)	250		3.0 10	mg/L		28-JUN-18	K4099009
pH	7.89		0.10	pH units		27-JUN-18	R4099089
Total Dissolved Solids	546	DLDS	20	mg/L		29-JUN-18	R4110482
Turbidity	>4000	-	0.10	NTU		27-JUN-18	R4098100
Anions and Nutrients			0110				
Alkalinity, Total (as CaCO3)	230		10	mg/L		28-JUN-18	R4101190
Ammonia, Total (as N)	0.035		0.020	mg/L		27-JUN-18	R4100330
Chloride (Cl)	76.0		0.50	mg/L		28-JUN-18	R4104567
Fluoride (F)	0.062		0.020	mg/L		28-JUN-18	R4104567
Nitrate (as N)	1.59		0.020	mg/L		28-JUN-18	R4104567
Nitrite (as N)	<0.010		0.010	mg/L		28-JUN-18	R4104567
Orthophosphate-Dissolved (as P)	<0.0030		0.0030	mg/L		27-JUN-18	R4100351
Sulfate (SO4)	13.6		0.30	mg/L		28-JUN-18	R4104567
Dissolved Metals							
Dissolved Metals Filtration Location	FIELD					27-JUN-18	R4097954
Aluminum (AI)-Dissolved	<0.010		0.010	mg/L	27-JUN-18	27-JUN-18	R4099009
Antimony (Sb)-Dissolved	<0.0050		0.0050	mg/L	27-JUN-18	27-JUN-18	R4099009
Arsenic (As)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Barium (Ba)-Dissolved	0.028		0.010	mg/L	27-JUN-18	27-JUN-18	R4099009
Beryllium (Be)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Bismuth (Bi)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Boron (B)-Dissolved	<0.050		0.050	mg/L	27-JUN-18	27-JUN-18	R4099009
Cadmium (Cd)-Dissolved	<0.000090		0.000090	mg/L	27-JUN-18	27-JUN-18	R4099009
Calcium (Ca)-Dissolved	67.5		0.50	mg/L	27-JUN-18	27-JUN-18	R4099009
Chromium (Cr)-Dissolved	<0.00050		0.00050	mg/L	27-JUN-18	27-JUN-18	R4099009
Cobalt (Co)-Dissolved	<0.00050		0.00050	mg/L	27-JUN-18	27-JUN-18	R4099009
Copper (Cu)-Dissolved	0.0034		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Iron (Fe)-Dissolved	<0.050		0.050	mg/L	27-JUN-18	27-JUN-18	R4099009
Lead (Pb)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Magnesium (Mg)-Dissolved	19.7		0.50	mg/L	27-JUN-18	27-JUN-18	R4099009
Manganese (Mn)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Molybdenum (Mo)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Nickel (Ni)-Dissolved	<0.0020		0.0020	mg/L	27-JUN-18	27-JUN-18	R4099009
Phosphorus (P)-Dissolved	< 0.050		0.050	mg/L	27-JUN-18	27-JUN-18	R4099009
Potassium (K)-Dissolved	1.9		1.0	mg/L	27-JUN-18	27-JUN-18	R4099009
Selenium (Se)-Dissolved	<0.00040		0.00040	mg/L	27-JUN-18	27-JUN-18	R4099009
Silicon (Si)-Dissolved	2.4		1.0	mg/L	27-JUN-18	27-JUN-18	R4099009
Silver (Ag)-Dissolved	<0.00010		0.00010	mg/L	27-JUN-18	27-JUN-18	R4099009
Sodium (Na)-Dissolved	60.4		0.50	mg/L	27-JUN-18	27-JUN-18	R4099009
* Poter to Poteronand Information for Qualifiers (if any) an	l						

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2119092-1 MW-2							
Sampled By: CLIENT on 26-JUN-18 @ 12:00 Matrix: WATER							
Dissolved Metals							
Strontium (Sr)-Dissolved	0.0735		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Thallium (TI)-Dissolved	<0.00030		0.00030	mg/L	27-JUN-18	27-JUN-18	R4099009
Tin (Sn)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Titanium (Ti)-Dissolved	<0.0020		0.0020	mg/L	27-JUN-18	27-JUN-18	R4099009
Tungsten (W)-Dissolved	<0.010		0.010	mg/L	27-JUN-18	27-JUN-18	R4099009
Uranium (U)-Dissolved	<0.0050		0.0050	mg/L	27-JUN-18	27-JUN-18	R4099009
Vanadium (V)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Zinc (Zn)-Dissolved	0.0132		0.0030	mg/L	27-JUN-18	27-JUN-18	R4099009
Zirconium (Zr)-Dissolved	<0.0040		0.0040	mg/L	27-JUN-18	27-JUN-18	R4099009
L2119092-2 MW-4			0.0010				
Sampled By: CLIENT on 26-JUN-18 @ 13:04 Matrix: WATER							
Physical Tests							
Colour, Apparent	455	DLHC	4.0	CU		27-JUN-18	R4099703
Conductivity	770		3.0	umhos/cm		27-JUN-18	R4099089
Hardness (as CaCO3)	380		10	mg/L		28-JUN-18	
pH	7.63		0.10	pH units		27-JUN-18	R4099089
Total Dissolved Solids	452	DLDS	20	mg/L		29-JUN-18	R4110482
Turbidity	>4000		0.10	NTU		27-JUN-18	R4098100
Anions and Nutrients							
Alkalinity, Total (as CaCO3)	313		10	mg/L		28-JUN-18	R4101190
Ammonia, Total (as N)	0.041		0.020	mg/L		27-JUN-18	R4100330
Chloride (Cl)	35.9		0.50	mg/L		28-JUN-18	R4104567
Fluoride (F)	0.051		0.020	mg/L		28-JUN-18	R4104567
Nitrate (as N)	6.29		0.020	mg/L		28-JUN-18	R4104567
Nitrite (as N)	<0.010		0.010	mg/L		28-JUN-18	R4104567
Orthophosphate-Dissolved (as P)	<0.0030		0.0030	mg/L		27-JUN-18	R4100351
Sulfate (SO4)	14.2		0.30	mg/L		28-JUN-18	R4104567
Dissolved Metals							
Dissolved Metals Filtration Location	FIELD					27-JUN-18	R4097954
Aluminum (AI)-Dissolved	<0.010		0.010	mg/L	27-JUN-18	27-JUN-18	R4099009
Antimony (Sb)-Dissolved	<0.0050		0.0050	mg/L	27-JUN-18	27-JUN-18	R4099009
Arsenic (As)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Barium (Ba)-Dissolved	0.058		0.010	mg/L	27-JUN-18	27-JUN-18	R4099009
Beryllium (Be)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Bismuth (Bi)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Boron (B)-Dissolved	<0.050		0.050	mg/L	27-JUN-18	27-JUN-18	R4099009
Cadmium (Cd)-Dissolved	<0.000090		0.000090	mg/L	27-JUN-18	27-JUN-18	R4099009
Calcium (Ca)-Dissolved	98.6		0.50	mg/L	27-JUN-18	27-JUN-18	R4099009
Chromium (Cr)-Dissolved	<0.00050		0.00050	mg/L	27-JUN-18	27-JUN-18	R4099009
Cobalt (Co)-Dissolved	<0.00050		0.00050	mg/L	27-JUN-18	27-JUN-18	R4099009
Copper (Cu)-Dissolved	0.0043		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2119092-2 MW-4 Sampled By: CLIENT on 26-JUN-18 @ 13:04 Matrix: WATER							
Dissolved Metals							
Iron (Fe)-Dissolved	<0.050		0.050	mg/L	27-JUN-18	27-JUN-18	R4099009
Lead (Pb)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Magnesium (Mg)-Dissolved	32.5		0.50	mg/L	27-JUN-18	27-JUN-18	R4099009
Manganese (Mn)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Molybdenum (Mo)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Nickel (Ni)-Dissolved	<0.0020		0.0020	mg/L	27-JUN-18	27-JUN-18	R4099009
Phosphorus (P)-Dissolved	<0.050		0.050	mg/L	27-JUN-18	27-JUN-18	R4099009
Potassium (K)-Dissolved	7.5		1.0	mg/L	27-JUN-18	27-JUN-18	R4099009
Selenium (Se)-Dissolved	<0.00040		0.00040	mg/L	27-JUN-18	27-JUN-18	R4099009
Silicon (Si)-Dissolved	4.6		1.0	mg/L	27-JUN-18	27-JUN-18	R4099009
Silver (Ag)-Dissolved	<0.00010		0.00010	mg/L	27-JUN-18	27-JUN-18	R4099009
Sodium (Na)-Dissolved	21.6		0.50	mg/L	27-JUN-18	27-JUN-18	R4099009
Strontium (Sr)-Dissolved	0.111		0.0010	mg/L	27-JUN-18	27-JUN-18	R4099009
Thallium (TI)-Dissolved	<0.00030		0.00030	mg/L	27-JUN-18		R409900
Tin (Sn)-Dissolved	<0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R409900
Titanium (Ti)-Dissolved	<0.0020		0.0020	mg/L	27-JUN-18	27-JUN-18	R409900
Tungsten (W)-Dissolved	<0.010		0.010	mg/L	27-JUN-18	27-JUN-18	R409900
Uranium (U)-Dissolved	< 0.0050		0.0050	mg/L	27-JUN-18	27-JUN-18	R409900
Vanadium (V)-Dissolved	< 0.0010		0.0010	mg/L	27-JUN-18	27-JUN-18	R409900
Zinc (Zn)-Dissolved Zirconium (Zr)-Dissolved	0.0293 <0.0040		0.0030 0.0040	mg/L mg/L	27-JUN-18 27-JUN-18	27-JUN-18 27-JUN-18	R409900 R409900

 * Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

QC Samples with Qualifiers & Comments:

Matrix Spike	ption	Parameter	Qualifier	Applies to Sample Number(s)
		Chloride (Cl)	MS-B	L2119092-1, -2
Vatrix Spike		Barium (Ba)-Dissolved	MS-B	L2119092-1, -2
Matrix Spike		Calcium (Ca)-Dissolved	MS-B	L2119092-1, -2
/latrix Spike		Magnesium (Mg)-Dissolved	MS-B	L2119092-1, -2
/latrix Spike		Silicon (Si)-Dissolved	MS-B	L2119092-1, -2
/latrix Spike		Sodium (Na)-Dissolved	MS-B	L2119092-1, -2
/latrix Spike		Strontium (Sr)-Dissolved	MS-B	L2119092-1, -2
/latrix Spike		Uranium (U)-Dissolved	MS-B	L2119092-1, -2
/latrix Spike		Ammonia, Total (as N)	MS-B	L2119092-1, -2
/latrix Spike		Nitrate (as N)	MS-B	L2119092-1, -2
ample Param	eter Qualifier key li	isted:		
Qualifier	Description			
DLDS	Detection Limit Raise	ed: Dilution required due to high Dissol	ved Solids / Electr	ical Conductivity.
DLHC	Detection Limit Raise	ed: Dilution required due to high concer	ntration of test and	alyte(s).
ЛS-B	Matrix Spike recovery	y could not be accurately calculated du	ue to high analyte l	packground in sample.
est Method Re	eferences:			
LS Test Code	Matrix	Test Description	Method Refere	ence**
LK-WT This analysis is colourimetric m		Alkalinity, Total (as CaCO3) cedures adapted from EPA Method 310	EPA 310.2 0.2 "Alkalinity". To	tal Alkalinity is determined using the methyl orange
L-IC-N-WT	Water s are analyzed by Ion	Chloride by IC Chromatography with conductivity and	EPA 300.1 (mo l/or UV detection.	od)
Apparent Colou decanting. Colo	our measurements ca	n be highly pH dependent, and apply to		ards using the single wavelength method after sample nple as received (at time of testing), without pH
adjustment. Co	oncurrent measuremer	nt of sample pH is recommended.		
C-WT Water samples	Water can be measured dire	Conductivity actly by immersing the conductivity cell	APHA 2510 B into the sample.	
		Fluoride in Water by IC Chromatography with conductivity and	EPA 300.1 (mo l/or UV detection.	od)
Inorganic anion IARDNESS-CAI Hardness (also	s are analyzed by Ion LC-WT Water known as Total Hardr	Chromatography with conductivity and Hardness	I/or UV detection. APHA 2340 B Icium and Magnes	ium concentrations, expressed in CaCO3 equivalents.
Inorganic anion IARDNESS-CAI Hardness (also Dissolved Calci	s are analyzed by Ion LC-WT Water known as Total Hardr ium and Magnesium c	Chromatography with conductivity and Hardness ness) is calculated from the sum of Cal oncentrations are preferentially used for Dissolved Metals in Water by CRC	I/or UV detection. APHA 2340 B Icium and Magnes	ium concentrations, expressed in CaCO3 equivalents. Iculation.
Inorganic anion IARDNESS-CAI Hardness (also Dissolved Calci IET-D-CCMS-W	s are analyzed by Ion LC-WT Water known as Total Hardr ium and Magnesium c /T Water	Chromatography with conductivity and Hardness ness) is calculated from the sum of Cal oncentrations are preferentially used for	I/or UV detection. APHA 2340 B Icium and Magnes or the hardness ca APHA 3030B/6	ium concentrations, expressed in CaCO3 equivalents. Iculation. 6020A (mod)
Inorganic anion IARDNESS-CAI Hardness (also Dissolved Calci //ET-D-CCMS-W Water samples	is are analyzed by Ion LC-WT Water known as Total Hardr ium and Magnesium co /T Water are filtered (0.45 um),	Chromatography with conductivity and Hardness ness) is calculated from the sum of Cal oncentrations are preferentially used for Dissolved Metals in Water by CRC ICPMS	I/or UV detection. APHA 2340 B Icium and Magnes or the hardness ca APHA 3030B/6 ed by CRC ICPMS	ium concentrations, expressed in CaCO3 equivalents. Iculation. 5020A (mod)
Inorganic anion IARDNESS-CAI Hardness (also Dissolved Calci IET-D-CCMS-W Water samples Method Limitati	is are analyzed by Ion LC-WT Water known as Total Hardr ium and Magnesium co /T Water are filtered (0.45 um), on (re: Sulfur): Sulfide cted in accordance wit	Chromatography with conductivity and Hardness ness) is calculated from the sum of Cal oncentrations are preferentially used for Dissolved Metals in Water by CRC ICPMS , preserved with nitric acid, and analyze	I/or UV detection. APHA 2340 B Icium and Magnes or the hardness ca APHA 3030B/6 ed by CRC ICPMS e recovered by this	ium concentrations, expressed in CaCO3 equivalents. Iculation. 6020A (mod) 6. method.
Inorganic anion IARDNESS-CAI Hardness (also Dissolved Calci IET-D-CCMS-W Water samples Method Limitati Analysis conduc Protection Act (IH3-WT	Is are analyzed by Ion LC-WT Water known as Total Hardr ium and Magnesium co /T Water are filtered (0.45 um), on (re: Sulfur): Sulfide cted in accordance wit (July 1, 2011). Water sured colorimetrically.	Chromatography with conductivity and Hardness ness) is calculated from the sum of Cal oncentrations are preferentially used for Dissolved Metals in Water by CRC ICPMS preserved with nitric acid, and analyze and volatile sulfur species may not be th the Protocol for Analytical Methods I Ammonia, Total as N	I/or UV detection. APHA 2340 B locium and Magnes or the hardness ca APHA 3030B/6 ed by CRC ICPMS e recovered by this Used in the Asses EPA 350.1	ium concentrations, expressed in CaCO3 equivalents. Iculation. 3020A (mod) method. sment of Properties under Part XV.1 of the Environmen
Inorganic anion HARDNESS-CAI Hardness (also Dissolved Calci MET-D-CCMS-W Water samples Method Limitati Analysis conduc Protection Act (NH3-WT Sample is meas colorimetrically. NO2-IC-WT	Is are analyzed by Ion LC-WT Water known as Total Hardr ium and Magnesium co /T Water are filtered (0.45 um), on (re: Sulfur): Sulfide cted in accordance wit (July 1, 2011). Water sured colorimetrically.	Chromatography with conductivity and Hardness ness) is calculated from the sum of Cal oncentrations are preferentially used for Dissolved Metals in Water by CRC ICPMS preserved with nitric acid, and analyze and volatile sulfur species may not be th the Protocol for Analytical Methods I Ammonia, Total as N	I/or UV detection. APHA 2340 B Icium and Magnes for the hardness ca APHA 3030B/f ed by CRC ICPMS e recovered by this Used in the Asses EPA 350.1 ep is required, san EPA 300.1 (me	ium concentrations, expressed in CaCO3 equivalents. Iculation. 5020A (mod) 5. method. sment of Properties under Part XV.1 of the Environmen nple is distilled into a solution of boric acid and measure
HARDNESS-CAI Hardness (also Dissolved Calci MET-D-CCMS-W Water samples Method Limitati Analysis conduc Protection Act (NH3-WT Sample is meas colorimetrically. NO2-IC-WT Inorganic anion	Is are analyzed by Ion LC-WT Water known as Total Hardr ium and Magnesium co /T Water are filtered (0.45 um), on (re: Sulfur): Sulfide cted in accordance wit (July 1, 2011). Water sured colorimetrically. Water is are analyzed by Ion Water	Chromatography with conductivity and Hardness ness) is calculated from the sum of Cal oncentrations are preferentially used for Dissolved Metals in Water by CRC ICPMS , preserved with nitric acid, and analyze and volatile sulfur species may not be th the Protocol for Analytical Methods I Ammonia, Total as N When sample is turbid a distillation ster Nitrite in Water by IC	I/or UV detection. APHA 2340 B Icium and Magnes or the hardness ca APHA 3030B/d ed by CRC ICPMS e recovered by this Used in the Asses EPA 350.1 ep is required, san EPA 300.1 (mo	ium concentrations, expressed in CaCO3 equivalents. Iculation. 5020A (mod) 5. method. sment of Properties under Part XV.1 of the Environmer nple is distilled into a solution of boric acid and measure od)

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

Reference Information

* ALS test methods may	incorporate m	nodifications from specified reference m	ethods to improve performance.
			d by the sample under defined conditions with the intensity of light scattered dings are obtained from a Nephelometer.
TURBIDITY-WT	Water	Turbidity	APHA 2130 B
			APHA 2540C 540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids s determined by evaporating the filtrate to dryness at 180 degrees celsius.
		Chromatography with conductivity and	
SO4-IC-N-WT	Water	Sulfate in Water by IC	EPA 300.1 (mod)
5	01	ocedures adapted from APHA Method 4 as been lab or field filtered through a 0.4	500-P "Phosphorus". Dissolved Orthophosphate is determined 5 micron membrane filter.
PO4-DO-COL-WT	Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

17-624726

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample mg/L - unit of concentration based on volume, parts per million.

mg/L - unit of concentration based on volu

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Quam	ly Com	ioi Keport			
		Workorder:	L211909	2	Report Date: (04-JUL-18	Pa	ge 1 of 6
Client:	MTE CONSULTANTS 520 BINGEMANS CE KITCHENER ON N2	ENTRE DRIVE 2B 3X9						
Contact:	ANDREW BINGEMA	N						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-WT	Water							
Batch	R4101190							
WG2809810 Alkalinity, Te	otal (as CaCO3)	WT-ALK-CRM	92.5		%		80-120	28-JUN-18
WG2809810 Alkalinity, To	otal (as CaCO3)	WT-ALK-CRM	93.4		%		80-120	28-JUN-18
WG2809810	-12 DUP	L2119092-2	0.10					
Alkalinity, 10 WG2809810	otal (as CaCO3)	313	318		mg/L	1.7	20	28-JUN-18
Alkalinity, T	otal (as CaCO3)		96.3		%		85-115	28-JUN-18
WG2809810 Alkalinity, Te	-2 LCS otal (as CaCO3)		97.9		%		85-115	28-JUN-18
WG2809810 Alkalinity, Te	-1 MB otal (as CaCO3)		<10		mg/L		10	28-JUN-18
WG2809810 Alkalinity, Te	-9 MB otal (as CaCO3)		<10		mg/L		10	28-JUN-18
CL-IC-N-WT	Water							
Batch	R4104567							
WG2809480 Chloride (Cl			101.2		%		90-110	28-JUN-18
WG2809480 Chloride (Cl			<0.50		mg/L		0.5	28-JUN-18
COLOUR-APP	ARENT-WT Water							
Batch	R4099703							
WG2808121 Colour, App			106.7		%		85-115	27-JUN-18
WG2808121 Colour, App			<2.0		CU		2	27-JUN-18
EC-WT	Water						_	
Batch	R4099089							
WG2808019 Conductivity			99.9		%		90-110	27-JUN-18
WG2808019							00-110	
Conductivity			99.7		%		90-110	27-JUN-18
WG2808019 Conductivity			<3.0		umhos/cm		3	27-JUN-18
WG2808019 Conductivity			<3.0		umhos/cm		3	27-JUN-18
F-IC-N-WT	Water							

F-IC-N-WT

Water

		Workorder	: L211909)2	Report Date: 0	4-JUL-18	Pa	age 2 of
est N	Aatrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F-IC-N-WT	Water							
Batch R4104567								
WG2809480-2 LCS Fluoride (F)			101.3		%		90-110	28-JUN-18
WG2809480-1 MB Fluoride (F)			<0.020		mg/L		0.02	28-JUN-18
IET-D-CCMS-WT	Water							
Batch R4099009								
WG2807911-2 LCS								
Aluminum (Al)-Dissolved			105.6		%		80-120	27-JUN-18
Antimony (Sb)-Dissolved			101.3		%		80-120	27-JUN-18
Arsenic (As)-Dissolved			104.9		%		80-120	27-JUN-18
Barium (Ba)-Dissolved			102.5		%		80-120	27-JUN-18
Beryllium (Be)-Dissolved			103.7		%		80-120	27-JUN-18
Bismuth (Bi)-Dissolved			102.5		%		80-120	27-JUN-18
Boron (B)-Dissolved			99.6		%		80-120	27-JUN-18
Cadmium (Cd)-Dissolved			99.8		%		80-120	27-JUN-18
Calcium (Ca)-Dissolved			103.8		%		80-120	27-JUN-18
Chromium (Cr)-Dissolved			103.0		%		80-120	27-JUN-18
Cobalt (Co)-Dissolved			103.1		%		80-120	27-JUN-18
Copper (Cu)-Dissolved			103.0		%		80-120	27-JUN-18
Iron (Fe)-Dissolved			97.6		%		80-120	27-JUN-18
Lead (Pb)-Dissolved			102.6		%		80-120	27-JUN-18
Magnesium (Mg)-Dissolved	d		107.9		%		80-120	27-JUN-18
Manganese (Mn)-Dissolve	d		103.5		%		80-120	27-JUN-18
Molybdenum (Mo)-Dissolve	ed		103.7		%		80-120	27-JUN-18
Nickel (Ni)-Dissolved			102.4		%		80-120	27-JUN-18
Phosphorus (P)-Dissolved			106.0		%		80-120	27-JUN-18
Potassium (K)-Dissolved			101.3		%		80-120	27-JUN-18
Selenium (Se)-Dissolved			102.8		%		80-120	27-JUN-18
Silicon (Si)-Dissolved			100.7		%		60-140	27-JUN-18
Silver (Ag)-Dissolved			99.3		%		80-120	27-JUN-18
Sodium (Na)-Dissolved			109.4		%		80-120	27-JUN-18
Strontium (Sr)-Dissolved			97.7		%		80-120	27-JUN-18
Thallium (TI)-Dissolved			105.6		%		80-120	27-JUN-18
Tin (Sn)-Dissolved			100.3		%		80-120	27-JUN-18
Titanium (Ti)-Dissolved			101.6		%		80-120	27-JUN-18

		Workorder: L2119		19092 Report Date:		4-JUL-18	Pa	Page 3 of 6		
ſest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
MET-D-CCMS-WT	Water									
Batch R409900)9									
WG2807911-2 LCS										
Tungsten (W)-Dissolv			98.1		%		80-120	27-JUN-18		
Uranium (U)-Dissolve			102.5		%		80-120	27-JUN-18		
Vanadium (V)-Dissolv	red		106.6		%		80-120	27-JUN-18		
Zinc (Zn)-Dissolved			97.8		%		80-120	27-JUN-18		
Zirconium (Zr)-Dissolv	ved		99.5		%		80-120	27-JUN-18		
WG2807911-1 MB	(ad		<0.0050		~~~/l		0.005	07 11 10 40		
Aluminum (Al)-Dissol			<0.0000	`	mg/L		0.005	27-JUN-18		
Antimony (Sb)-Dissol					mg/L		0.0001	27-JUN-18		
Arsenic (As)-Dissolve			<0.00010		mg/L		0.0001	27-JUN-18		
Barium (Ba)-Dissolved			<0.00010		mg/L		0.0001	27-JUN-18		
Beryllium (Be)-Dissolv			<0.00010		mg/L		0.0001	27-JUN-18		
Bismuth (Bi)-Dissolve	a		<0.00005	50	mg/L		0.00005	27-JUN-18		
Boron (B)-Dissolved			<0.010		mg/L		0.01	27-JUN-18		
Cadmium (Cd)-Dissol			<0.00000	50	mg/L		0.000005	27-JUN-18		
Calcium (Ca)-Dissolve			<0.050		mg/L		0.05	27-JUN-18		
Chromium (Cr)-Disso			<0.00050		mg/L		0.0005	27-JUN-18		
Cobalt (Co)-Dissolved			<0.00010		mg/L		0.0001	27-JUN-18		
Copper (Cu)-Dissolve	d		<0.00020)	mg/L		0.0002	27-JUN-18		
Iron (Fe)-Dissolved			<0.010		mg/L		0.01	27-JUN-18		
Lead (Pb)-Dissolved			<0.00005	50	mg/L		0.00005	27-JUN-18		
Magnesium (Mg)-Diss	solved		<0.0050		mg/L		0.005	27-JUN-18		
Manganese (Mn)-Diss	solved		<0.00050)	mg/L		0.0005	27-JUN-18		
Molybdenum (Mo)-Dis	ssolved		<0.00005	50	mg/L		0.00005	27-JUN-18		
Nickel (Ni)-Dissolved			<0.00050)	mg/L		0.0005	27-JUN-18		
Phosphorus (P)-Disso	olved		<0.050		mg/L		0.05	27-JUN-18		
Potassium (K)-Dissolv	ved		<0.050		mg/L		0.05	27-JUN-18		
Selenium (Se)-Dissol	ved		<0.00005	50	mg/L		0.00005	27-JUN-18		
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	27-JUN-18		
Silver (Ag)-Dissolved			<0.00005	50	mg/L		0.00005	27-JUN-18		
Sodium (Na)-Dissolve	ed		<0.050		mg/L		0.05	27-JUN-18		
Strontium (Sr)-Dissolv	/ed		<0.0010		mg/L		0.001	27-JUN-18		
Thallium (TI)-Dissolve	ed		<0.00002	10	mg/L		0.00001	27-JUN-18		
Tin (Sn)-Dissolved			<0.00010)	mg/L		0.0001	27-JUN-18		
Titanium (Ti)-Dissolve	ed		<0.00030)	mg/L		0.0003	27-JUN-18		

		Workorder:	L211909	2	Report Date: 04	-JUL-18	Pa	ge 4 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-WT	Water							
Batch R4099009								
WG2807911-1 MB Tungsten (W)-Dissolved			<0.00010		mg/L		0.0001	27-JUN-18
Uranium (U)-Dissolved			<0.00001	0	mg/L		0.00001	27-JUN-18
Vanadium (V)-Dissolved			<0.00050		mg/L		0.0005	27-JUN-18
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	27-JUN-18
Zirconium (Zr)-Dissolved			<0.00030		mg/L		0.0003	27-JUN-18
NH3-WT	Water							
Batch R4100330								
WG2808125-6 LCS Ammonia, Total (as N)			98.7		%		85-115	27-JUN-18
WG2808125-5 MB Ammonia, Total (as N)			<0.020		mg/L		0.02	27-JUN-18
IO2-IC-WT	Water							
Batch R4104567								
WG2809480-2 LCS Nitrite (as N)			100.7		%		70-130	28-JUN-18
WG2809480-1 MB Nitrite (as N)			<0.010		mg/L		0.01	28-JUN-18
NO3-IC-WT	Water							
Batch R4104567								
WG2809480-2 LCS Nitrate (as N)			100.7		%		70-130	28-JUN-18
WG2809480-1 MB								
Nitrate (as N)			<0.020		mg/L		0.02	28-JUN-18
РН-WT	Water							
Batch R4099089								
WG2808019-10 LCS			7.00					
рН			7.00		pH units		6.9-7.1	27-JUN-18
WG2808019-6 LCS рН			6.99		pH units		6.9-7.1	27-JUN-18
PO4-DO-COL-WT	Water							
Batch R4100351								
WG2808131-2 LCS Orthophosphate-Dissolve	ed (as P)		106.3		%		70-130	27-JUN-18
WG2808131-1 MB Orthophosphate-Dissolve	ed (as P)		<0.0030		mg/L		0.003	27-JUN-18
SO4-IC-N-WT	Water							

SO4-IC-N-WT

		Workorder:	L211909	2	Report Date: 0	4-JUL-18	Pa	ge 5 of 6
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SO4-IC-N-WT	Water							
Batch R4104567 WG2809480-2 LCS Sulfate (SO4) Sulfate (SO4)			101.9		%		90-110	28-JUN-18
WG2809480-1 MB Sulfate (SO4)			<0.30		mg/L		0.3	28-JUN-18
SOLIDS-TDS-WT	Water							
BatchR4110482WG2810907-3DUPTotal Dissolved Solids		L2119092-1 546	543		mg/L	0.5	20	29-JUN-18
WG2810907-2 LCS Total Dissolved Solids			97.0		%		85-115	29-JUN-18
WG2810907-1 MB Total Dissolved Solids			<10		mg/L		10	29-JUN-18
TURBIDITY-WT	Water							
Batch R4098100 WG2807987-2 LCS Turbidity			104.0		%		85-115	27-JUN-18
WG2807987-1 MB Turbidity			<0.10		NTU		0.1	27-JUN-18

Workorder: L2119092

Report Date: 04-JUL-18

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

	S) Environmental		stody (C lequest L2119092-COFC foll Free: 1				e label here					COC Number: 17 - 624726 Page of 1									
	www.alsglobal.com		-		1.51.4.51.4.5			<u> </u>				<u>.</u>									
leport To	Contact and company name below will appea	Report Format / Distribution					Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply)														
	MTE Consultant	Select Report Format: V PDF Excel V EDD (DIGITAL)					Regular (R) Standard TAT if received by 3 pm - business days - no surcharges apply														
ontact:		Quality Control (QC) Report with Report						ay (P4-20%)			GENC	1 Business day [E-100%]							L		
hone:	Company address below will appear on the final	Compare Results to Criteria on Report - provide details below if box checked Select Distribution: EMAIL MAIL FAX				PRIOR (Business	월 3 day [P3-25%] 월 2 day [P2-50%]			EMERG			ay, Weekend or Statutory holiday (E2-20 tory opening fees may apply)]					1%			
treet:			Email 1 or Fax	DIVIPER	NONOM	11085.10		Date and	Time Re	quired fo	or all E&I	TATE:				dd	-៣៣៣៣-	/y hh:mn	ì		
ity/Province:	·			nivale Or				that cen n	ot be peri	iormed ac	cording to	the serv	ice lavel 1	elected, y	will be c	ontacter	J.				
ostal Code:	<u> </u>	Email 3					Analysis Request														
	Same as Report To		Invoice Distribution																		
								Indicate Filtered (F), Preserved (F) or Filtered and Preserved (F/P) below											deta		
	Copy of Invoice with Report YES	J MO		stribution: 7 EM		FAX	 				-	·			_		+		_	ler e	
Company:			Email 1 or Fax			· · · · · ·	· ·					.								1 Tr	1
Contact:			Email 2				4										'			de i	
	Project Information			il and Gas Required		e)	-											.		Į Š	
LS Account # / C			AFE/Cost Center:		PO#		/											·		a a	
ob#: \ 21	063-104		Major/Minor Code:		Routing Code:		5				•									lea	L SH
O/AFE:			Requisitioner:			1	18			•										5	N N
SD:	· · ·	0.1	Location:		· · ·		Ð										·		5	- Pp	CONTAINERS
ALS Lab Work	Order # (lab use only): UU9	092 ABB	ALS Contact:	mr	Sampler: \	ĨN	ןֿזַ												SAMPLES ON HOLD	is hazardous	6
ALS Sample # (lab use only)	Sample Identification	and/or Coordinates		Date	Time	Sample Type	S												AMPLE	Sample	NUMBER
(into use only)	(This description will ap	pear on the report)		(dd-mmm-yy)	(hh:mm)		R								-	_	+ ·		ů.	- 0	
	now-2			26/06/8	12:00	<u>v</u>	X						·			_					4
	nw-4			1	13.04	۱	X														4
													ŀ								
														•		+			-		
					· · · ·		+						-+			+	┿┈┥		-+		╋
	· · · · · · · · · · · · · · · · · · ·	1	<i>w</i> .		·						<u> </u>									\perp	┢
								·													
				E							1										T
								-				- ·	-								1.
		······································					<u> </u>			+	+	┝╍╴┨				+			+	+	+
						<u>-</u>					<u> </u>				_		+			\perp	╄-
1																				Ŀ	
1						•															Τ
		· · ·			·		1	\neg		+	+	┝╼╌┨	-+			+			+-	1	1
		n				<u> </u>	┢──┤					E COM			CEIVEI	l N /lah	LISE OF	(v)			
Drinking	Water (DW) Samples ¹ (client use)	Special Instructions /		add on report by click stronic COC only)	ang on the grop-do	WITH ST DEIOW	Frozer	,		1			bserva		Yes	- 1.an		N	0	٦	
re samples taken i	from a Regulated DW System?	1					Ice Pa	6		a Cubes	ু দি	Custo			Yes			N			
YES	DX NO	•					1	g Initiate		ייייייי 1	· / ·	0000	uj (cu		100	•			0		
	man consumption/ use?								4-	LI OLER TE	MOEDAT	LIDES W			· · ·	FIMAL	00015	TEMPER	TUPES		
			. 1						11/12 000						17 1	2/			-	Ť	<u> </u>
	NO NO					 			_	<u> </u>					0.1	<u> </u>				<u> </u>	
lejeased by:	SHIPMENT RELEASE (client use)	Time:	Received by:	INITIAL SHIPMEN	Date:	o use only)	Time:	 =	eceive	d by	$\overline{}$	FINAL		MENT F Date:	ECEPT	ION (I	ab use	only)	Tim		
Los Cont	in renvid 20/00	/\X ["""e:.	incocived by:		Udie.			^	JUGIVE	· · · · ·		1			NE	81	<u>(</u> / 1	8	1	ي: گ	ഹ
EFER TO BACK PA	AGE FOR ALS LOCATIONS AND SAMPLING INF		<u> </u>	WHIT	E - LABORATORY		1. N - CLIE	NT COP	Y		f	~	<u> </u>	Jer		(<u>~ }</u>	<u> </u>	1/	_	2017 FROM
ilure to complete all p	ortions of this form may delay analysis. Please fill in this for are taken from a Regulated Drinking Water (DW) Syste	orm LEGIBLY, By the use of this		edges and agrees with the						сору.						•			1	Ŋ	/

٠.

.