

November 13, 2017

Mr. Alfred Artinger

Reid's Heritage Homes 6783 Wellington Road 34, RR#22 Cambridge, Ontario N3C 2V4

Subject: Soil Infiltration Testing 19-59 Lowes Road Guelph, Ontario Our Ref.: 160-P-0010233-0-07-304-HD-L-0001-03

Dear Sir;

EnGlobe Corp. (Englobe) is pleased to submit this summary of our in-situ infiltration testing at the locations shown on the attached Drawing 1. In addition to this infiltration testing program, previous investigations of the property have been conducted, including the following:

- Geotechnical Investigation Report Proposed Residential Development, Lowes Road, Guelph, Ontario, May 24, 2016. Englobe Reference Number 160-P-0010233-0-01-100-HD-R-0001-00
- Scoped Hydrogeology Study, Lowes Road, Guelph, Ontario May 30, 2017. Englobe Reference Number 160-P-0010233-0-02-300-HD-R-0001-01
- Long Term Monitoring Program. On-going. Englobe Reference Number 160-P-0010233-0-05-302

This letter report supplements the information and data previously provided in the above-referenced Geotechnical Investigation and Scoped Hydrogeology Study, which should be reviewed in consultation with this letter.

The objectives of this letter report are to provide a summary of the infiltration properties of the soils at the locations depicted on Drawing 1.

Infiltration Testing

Infiltration tests were performed using a Soil Moisture Equipment 2800K1 Guelph Permeameter at the locations shown on the attached Drawing 1. Water levels within the combined reservoir of the Guelph Permeameter were recorded at regular intervals in order to obtain time varying infiltration rates of the near-surface soil layer. Infiltration testing was completed in three (3) pre-determined locations provided to Englobe by Stantec at an elevation of approximately 331.64 mASL. This elevation is the proposed base of the infiltration gallery as it corresponds to 1 m above the highest measured water level on-site during the May 2016 to May 2017 Long Term Monitoring Program. As existing residences are still present on the properties the pre-determined locations were in close proximity to the proposed infiltration gallery and clean water collection system locations.

November 13, 2017

Subject : Soil Infiltration Testing 19-59 Lowes Road, Guelph, Ontario 160-P-0010233-0-07-304-HD-L-0001-03

The approximate ground surface at test location GP-01-17 was approximately 332.4 mASL; therefore, the infiltration test elevation at this location was about 1.2 mBGS (4.0 fBGS) in order to achieve a flat base to complete the testing due to the cobbly nature of the soil. In test locations GP-02-17 and GP-03-17 elevation 331.64 mASL is above existing ground surface; therefore, in order to complete the infiltration testing the topsoil was stripped back to expose the inorganic native soils. The approximate testing elevation for GP-02-17 and GP-03-17 was 330.9 mASL.

The in-situ infiltration testing at GP-01-17 was completed on the underlying sand and gravel with some silt and occasional cobbles. The soil descriptions are based on visual inspection of the soils encountered at the time of excavation and Borehole Logs BH-02-16 and BH-03-16, appended. Soils encountered at GP-02-17 were sand with some silt and trace gravel to silty sand, trace gravel and topsoil material based on Borehole Logs BH-05-16 and BH-06-16 located within the vicinity of the testing location. Lastly soils encountered at GP-03-17 were silty sand, some gravel and trace topsoil to silty sand and gravel material based on Borehole Logs BH08-16 and BH-10-16.

Infiltration rates were determined using the One-Head Analysis as described in the SoilMoisture Equipment Corp. 2800K1 Operating Instructions (Dec. 2008). This method is expressed by the following equation:

$$K_{fs} = \frac{C_1 \ Q_1}{2\pi H_{1^2} + \pi a^2 C_1 + 2\pi \ (H1/\alpha)}$$

Where:

 K_{fs} =field saturated hydraulic conductivity (entrapped air present) in cm/sec

 $C_1 =$ Shape factor

Q1 = Discharge from combined reservoir

H₁ = Well height (cm)

a = well radius (cm)

 α = soil texture (cm⁻¹)

Infiltration Rates

Field saturated hydraulic conductivities have been calculated using the results of the Guelph Permeameter testing. Three trials at each test location were completed allowing for pre-soaking of the initially unsaturated soils encountered. This hydraulic conductivity is measured when ponded water is allowed to infiltrate into an initially unsaturated soil. It is assumed that some volume of air becomes entrapped within the soils by the infiltrating water which can sometimes result in the field saturated hydraulic conductivity being less than a saturated hydraulic conductivity. However, the use of the field saturated hydraulic conductivity as most natural and man-made infiltration processes result in the entrapment of air within the soil (SoilMoisture Equipment Corp., 2008).

November 13, 2017

Subject: Soil Infiltration Testing 19-59 Lowes Road, Guelph, Ontario 160-P-0010233-0-07-304-HD-L-0001-03

The estimated design infiltration rate is based on recommendations found in the "Low Impact Development Stormwater Management Planning and Design Guide, Appendix C", published by the Toronto and Region (TRCA) and the Credit Valley (CVC) Conservation Authorities, and the approximate relationship between hydraulic conductivity and infiltration rate.

It should be noted that hydraulic conductivity and infiltration rate are two different concepts and that conversion from one parameter to another has to account for the hydraulic gradient and consequently cannot be done through unit conversion. A factor of safety of 2.5 was applied to the approximate infiltration rate to account for soil variability, gradual accumulation of fine soil sediments during the lifespan of the facility, and compaction during construction. The field measured hydraulic conductivities and estimated factored infiltration rates assuming favourably high hydraulic gradients (> 0.2) are summarized in Table 1 below. The field measured results and corresponding infiltration rates are summarized in Table 1 below.

Table 1 Infiltration Rates

INFILTRATION LOCATION	APPROXIMATE TEST DEPTH (mBGS)	APPROXIMATE TEST ELEVATION (m)	SOIL TYPE	FIELD SATUATED K-VALUE (m/sec)	FACTORED INFILTRATION RATE (mm/hr)
GP-01-17	1.2	331.2	Sand and Gravel	4.50 x 10-4	95
GP-02-17	0.5	330.9	Silty Sand	2.99 x 10 ⁻⁵	46
GP-03-17	0.5	330.9	Silty Sand	2.78 x 10⁻⁵	45

Based on the proposed location of the infiltration gallery we recommend that the infiltration results obtained from the Guelph Permeameter testing at test locations GP-02-17 and GP-03-17 be considered as the most appropriate field saturated hydraulic conductivities and infiltration rates. We anticipate that the top silt layer encountered at these locations will hinder the infiltration into the underlying sand and gravel layers; therefore, we advise that this layer be properly stripped and filled with a more permeable material.

We trust that this report is suitable for your present requirements, and we thank you for this opportunity to have been of service. If you have any questions or require further hydrogeological consultation, please do not hesitate to contact our office.

Yours very truly,

Kroan

Elysha Brears, G.I.T., M.E.S. Groundwater Technologist jw

Kelvin Antoniuk, P.Geo., B.Sc. Senior Geoscientist

Encl. Encl.	Drawing 1 – Site Plan Borehole Logs BH-02-16, BH-03-16, BH-05-16, BH-06-16, BH-08-16 and BH-10-16	
1ec: 1ec:	Stantec, Attention: Mr. Peter Fitzgerald Planning Consultants, Attention: Ms. Astrid Clos	

Englobe Corp.

LEGEND :								
	SITE OUTLINE							
	BOREHOLE LOCATION							
EL. 331.32	GROUND SURFACE ELEVATION (m)						
/	INFILTRATION GALLERY							
	CLEAN WATER COLLECTION SYST	EM						
INFL	INFILTRATION							
329.51	GROUNDWATER ELEVATION (mAS	L) (Aug	ust 31, 2	2017)				
Ø	GUELPH PERMEAMETER TEST LO	CATION	I					
NOTES : 1-REFERENCES: STANTEC, Preliminary Grading Plan Site Plan Number, Drawing No GP-1, August 2016								
2-Borehole coordinates and elevations based on Sokkia network data.								
3-Drawing scal	3-Drawing scale may be distorted due to file conversion and/or copying.							
4-MW refers to	Measurements taken from the drawing must be verified in the field.							
4-INIVY REFERS to monitoring well installed at borehole location.								
Project	owes Road Developn Hydrogeology Stud	nent ly	.,					
	Lowes Road, Guelph, Ontario							
Title	SITE PLAN							
Englobe Corp. 353, Bridge Street East Kitchener (Ontario) N2K 2Y5 Telephone : 519,741.1313 Fax : 519,741.5422								
Prepared E.Ciocho	Discipline HYDR Scale 1:750	OGEOL	.OGY					
Checked E.Brears	Date 2017-1	1-10						
Project manager E.Brear	S Sequence no.	01	of	01				
M. dept. Project	-0010233-0-07-304	Disc.	Dwg no.	Rev.				
	-0010233-0-07-304	טיין						

Ground Elevatio Northing:

Easting:

on: <i>332.39 m</i>	Borehole Number:	BH-02-16
4817500.03 m	Job N°:	P-0010233-0-01-100
564840.49 m	Drill Date:	2016-05-02
	Field Tech:	D.Souter
	Drill Method:	Hollow Stem Auger

Project: Proposed Residential Development

Location: Lowes Road, Guelph, Ontario

	SOIL PROFILE			SAM	PLE																							
Depth (m)	Description Ground Elevation	Symbol E Elevation (m)	6 Depth (m)	Type and Number	"Blows" /150 mm	SPT 'N' Value	Dy 20 Std ◆ 20	Dynamic Cone X X 20 40 60 80 Std Penetration Std Penetration			SI	Shear Strength (PP) kPa 50 100 150 200 Initial Remold Shear Strength (FV) kPa 50 100 150 200 Shear Strength (FV) kPa					WP WL Water Content (%) 10 20 30					Groundwater Observations and Standpipe Details						
-	FILL: I loose brown silty sand and gravel, very moist loose dark brown silt, some		.00 2.24 , .15 , 2.11 , .28	SS-1	5-5 3-3	8	•												•			flush	mount co	over and	concre	ete		
1- 1- 1-	topsoil, trace sand and organics, moist brown sandy silt, trace gravel, very moist SAND AND GRAVEL: compact brown sand and gravel	33 0 0	<u>1.48</u> .91	SS-2	4-6 9-9	15										Ť					-12	bent	onite sea					
2-	some silt, occasional cobbles, , , , moist , very dense, numerous cobbles , ,	33 0 0 1 0 0	0.87_ .52	SS-3	18-20 30-26	50			Image: A start of the start												cn-9 LNZ U 9							
- - - - - - - - - - - - - - - - - - -	dense, wet	2 0 2 0 2	9.65 .74	SS-4	46-23 21-16	44		ł													2 2 2 2 2 2 2 2 3 2 9 1	sano	pack					
3-	compact, saturated	o o <u>32</u> a 3 o o	9.34 .05	SS -5	13-14 14-12	28	•									•					~~~~~							
4- - -	very dense to dense	6 6 32 6 3 6 6	8.58 .81	SS-6	27-30 35-30	65				•							•			<u> </u>	~~~~~~~~~~	50 n 3.05	im pipe m slotteo	l screen				
5-		0. 0. 3		SS-7	12-19 21-20	40		1	/																			
-	compact, occasional cobbles	32 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7 <u>.06</u> .33	SS-8	17-13 12-10	25		/														nativ	e cave					
6- - - - -	Borehole terminated 5.94 m	5	.94																		**1							
7-																												
8- 8- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																				_								
Rev	iewed by: <i>K.Thrams</i>				Draf	ted b	ц. у: И	E.C	Cio	cho	n n												She	et:	1	of	1	\neg
Note	es:																											

Ground Elevation: 332.57 m **Borehole Number:** Northing:

Easting:

tion:	332.57 m	Borehole Number:	BH-03-16
481	7516.77 m	Job N°:	P-0010233-0-01-100
56	4855.63 m	Drill Date:	2016-05-02
		Field Tech:	D.Souter
		Drill Method:	Hollow Stem Auger

Proposed Residential Development Project:

Location: Lowes Road, Guelph, Ontario

Ground Elevati Northing:

Easting:

on: 331.42 m	Borehole Number:	BH-05-16
4817547.70 m	Job N°:	P-0010233-0-01-100
564859.41 m	Drill Date:	2016-05-02
	Field Tech:	D.Souter
	Drill Method:	Hollow Stem Auger

BH-05-16

Project: Proposed Residential Development

Location: Lowes Road, Guelph, Ontario

Borehole Number: Ground Elevation: 331.32 m Northing:

Easting:

P-0010233-0-01-100	Job N°:	4817570.01 m
2016-05-03	Drill Date:	564871.12 m
D.Souter	Field Tech:	
Hollow Stem Auger	Drill Method:	

BH-06-16

Project: Proposed Residential Development

Location: Lowes Road, Guelph, Ontario

	SOIL PROFILE			SAN	IPLE																		
Depth (m)	Description	Symbol	쟖 Elevation (m) 중 Depth (m)	Type and Number	"Blows" /150 mm	SPT 'N' Value	Dynamic Cone 5 20 40 60 80 Std Penetration 5 0 40 50 50				Shear Strength (PP) kPa					₩ WI W	Cont %) 20	H WL ent	Groundwater Observations and Standpipe Details				
	TOPSOIL: dark brown silt, moist SAND: loose brown/dark brown silty	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00 331.12 0.20	SS-1	2-3 5-5	8	•												•		046 05 40	21-60-0102	flushmount cover and concrete bentonite seal
- 1- -	compact, brown, some gravel, occasional cobbles, moist		_ <u>330.56</u> 0.76	\$\$-2	9-7 6-6	13												1				el. 323.00 m 2	
	SAND AND GRAVEL: very dense grey/brown sand and gravel, trace silt, numerous cobbles, saturated	* 0	<u>329.80</u> 1.52	SS-3	16-24 39-20	63				•												~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
- - - - -	dense	0 0 0 0 0 0	_329.03_ 2.29	SS-4	31-20 23-32	43																222222	sand pack
3- - -	compact	0 0 0 0	_328.27_ 3.05	SS-5	12-13	27												•				222222	50 mm pipe 3.05 m slotted screen
- - - - -	very dense	0 0	_327.51_ 3.81	SS-6	17-15 /75 mm																	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
5	compact, brown, occasional cobbles	а ь о о о	_326.75_ 4.57	SS-7	9-11 15-19	26												•					native cave
	Borehole terminated at 5.18 m	<u>,a.</u> b	5.18				-															~~	
6- - - -																					-		
7-																							
- - 8- - - -																					_		
Rev	iewed by: <i>K.Thrams</i>				Draft	ted k	by:	E.	Cic	och	on												Sheet: 1 of 1

Ground Elevation: 331.42 m **Borehole Number:** Northing: 4817586.89 m Job N°:

564883.60 m

Easting:

Drill Date:

Field Tech:

BH-08-16

2016-05-03

D.Souter

P-0010233-0-01-100

Project:	Proposed Residential Development
Fiojeci.	Proposed nesidential Development

Location: Lowes Road, Guelph, Ontario

Ground Elevation: 331.97 m **Borehole Number:** 4817597.87 m

564907.94 m

Job N°:

Drill Date:

Field Tech:

Northing:

Easting:

BH-10-16

2016-05-03

D.Souter

P-0010233-0-01-100

Project:	Proposed Residential Development
----------	----------------------------------

