

2606657 Ontario Inc.

(Revised) Stormwater Management and Functional Servicing Report for 1871 & 1879 Gordon Street

GMBP File: 118170

March 9, 2021

GUELPH | OWEN SOUND | LISTOWEL | KITCHENER | LONDON | HAMILTON | GTA 650 WOODLAWN RD. W., BLOCK C, UNIT 2, GUELPH ON N1K 1B8 P: 519-824-8150 WWW.GMBLUEPLAN.CA

TABLE OF CONTENTS

1.	IN	INTRODUCTION1							
2.	Sľ	TE INFORMATION	1						
3.	SC	DILS	1						
4.	PF	ROPOSED DEVELOPMENT	2						
	4.1	Storm Sewers	2						
	4.2	Sanitary Sewers	2						
	4.3	Watermain	3						
5.	ST	ORMWATER MANAGEMENT	3						
;	5.1	Criteria	3						
;	5.2	Modelling Parameters	4						
;	5.3	Pre-Development Conditions	4						
;	5.4	Post-Development Conditions	5						
;	5.5	Infiltration	6						
;	5.6	Routing	0						
;	5.7	Water Quality	1						
6.		ATER BUDGET							
7.	M	AINTENANCE PLAN	2						
8.	SE	EDIMENT AND EROSION CONTROL PLAN	3						
9.	СС	ONCLUSIONS	3						

LIST OF FIGURES

Figure No. 1	Site Location Map
Figure No. 2	Pre-Development Catchment Areas Figure
Figure No. 3	Post-Development Catchment Areas Figure

LIST OF APPENDICES

Appendix A	Preliminary Geotechnical Investigation, Proposed Apartment Building 1871 & 1879 Gordon Street, Guelph, Ontario, completed by V.A. Wood (Guelph) Incorporated, dated April 2019, Amended June 5, 2019, Ref. No. G4091-19-4
	Guelph Permeameter Testing, Proposed Apartment Development 1871 & 1879 Gordon Street, Guelph, Ontario, completed by V.A. Wood (Guelph) Incorporated, dated July 3, 2019, Ref. No. G4091-19-7
Appendix B	Pre- and Post-Development MIDUSS Model Output, Stage-Storage-Discharge Calculation Tables, and Oil/Grit Separator and Brentwood Stormtank Details
Appendix C	Water Budget Analysis

(REVISED) STORMWATER MANAGEMENT AND FUNCTIONAL SERVICING REPORT

1871 & 1879 GORDON STREET, GUELPH

MARCH 9, 2021

GMBP FILE NO: 118170

1. INTRODUCTION

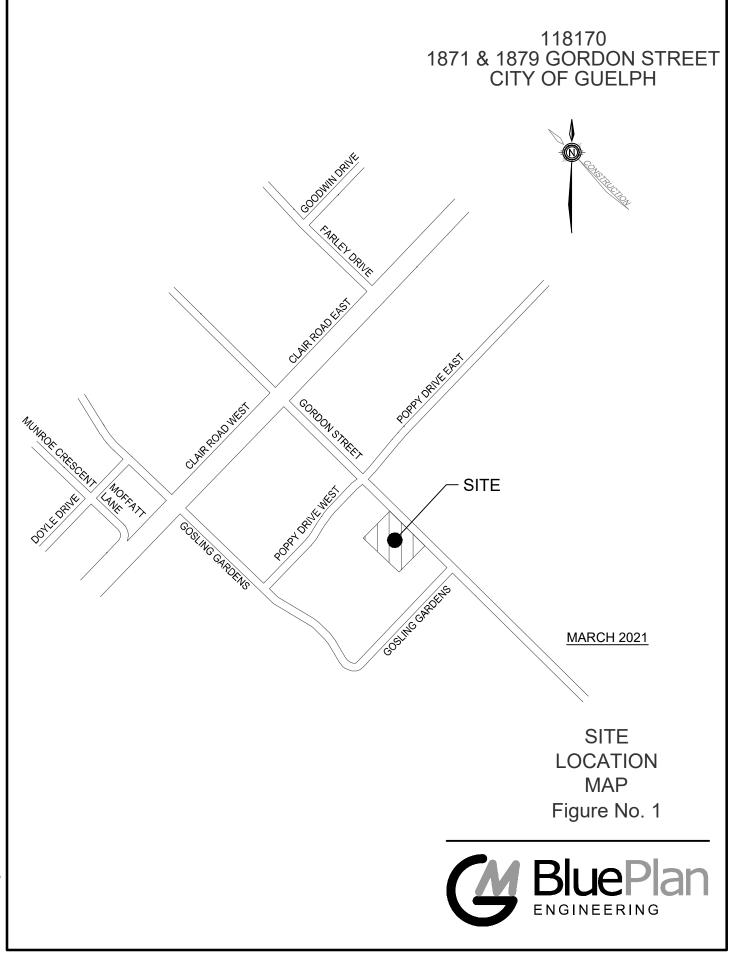
In support of the Zoning By-law Amendment Application, this revised report documents the proposed stormwater management design and servicing for the proposed multi-storey high density residential development at 1871 and 1879 Gordon Street in the City of Guelph (City), as well as addresses the first submission comments received from the City of Guelph in February 2020.

The Owner is required to have a Professional Engineer design a stormwater management system and have the said Engineer supervise and certify that the stormwater management system is installed in accordance with the approvals given under Section 41 of the Planning Act.

This report and stormwater management design is based on the following information:

- Van Harten Surveying Inc. completed a topographic survey of the site dated January 2, 2019
- The Site Plan was provided by Grinham Architects on February 5, 2021
- The existing and proposed site details are shown on the GM BluePlan Engineering Plans.

2. SITE INFORMATION


The 0.329-hectare subject property is located at 1871 and 1879 Gordon Street in the City of Guelph. The subject property is generally rectangular, with approximately 73m of frontage along Gordon Street and approximately 45m deep. For the purposes of this review, the adjacent Gordon Street is considered east of the subject site and to have a north-south orientation. The site is further bordered by 1861 Gordon Street to the north, Bird Landing Subdivision townhouses to the west, and 332 Gosling Gardens development to the south.

The arterial east-west roadways surrounding the site are Clair Road West to the north and Maltby Road to the south of the site. Local collector roads near the site are Poppy Drive West to the north and Gosling Gardens to the south. Please refer to Figure No. 1.

The 1871 and 1879 Gordon Street properties currently contain detached single-family dwellings, asphalt driveways and garages. The overall site topography slopes from the southeast to northwest with an 4% average grade along the east property line and a 7% average grade along the west property line. Existing runoff sheet flows uncontrolled to the adjacent northerly and westerly properties.

3. SOILS

The predominant surface soil type on the site and the surrounding area is Dumfries Loam (Wellington County Soils Map). The hydrologic soil classification for this soil type is Type A. This soil type generally has good drainage characteristics.

FILE:W:\Guelph118-2018\118170 Gordon St. ZCA\5 Work In Progress\Drafting\118170-DESIGN.dwg LAYOUT;FIC.1 LAST SAVED BY:Sgasior, 3/9/2021 2:09:26 PM PLOTTED BY:Steve Gasior - GM BluePlan 3/9/2021 2:11:39 PM

4. PROPOSED DEVELOPMENT

The proposed development includes one building which includes residential floors, and two below grade parking levels, with associated exterior parking and driving areas.

4.1 Storm Sewers

The City of Guelph provided the following drawings for information:

- Dwg No. 2D-118 Gordon Street Reconstruction Gordon Street Proposed Works Station 11+950 to Clair Road, As Recorded, by AECOM, dated January 2010.
- Dwg No. 2D-119 Gordon Street Reconstruction Gordon Street Proposed Works Station 11+810 to Station 11+950, As Recorded, by AECOM, dated January 2010.
- Dwg No. 2D-119A Gordon Street Reconstruction Future Poppy Drive Proposed Works Station 0+940 to Station 1+040, As Recorded, by AECOM, dated January 2010.
- Dwg No. 2D-120 Gordon Street Reconstruction Gordon Street Proposed Works Station 11+670 to Station 11+810, As Recorded, by AECOM, dated January 2010.
- Dwg No. 2D-121 Gordon Street Reconstruction Gordon Street Proposed Works Station 11+530 to Station 10+670, As Recorded, by AECOM, dated January 2010.

Based on record drawings 2D-120 from November 2008, there is a 300mm diameter storm sewer along the west curb line of Gordon Street, starting to the south of the site and flows to the north.

Given the available information, the current design does not utilize this existing storm system along Gordon Street.

We propose all runoff from roof surfaces, grassed areas, sidewalks, and paved surfaces will be conveyed through the proposed on-site storm sewer system to the proposed infiltration gallery at the northwest end of the site. Major storms will be routed overland to the municipal right-of-way by way of the pedestrian pathway located to the north of the building. A small portion of the stormwater runoff generated from the edges of the property will discharge to the adjacent property to the north or the municipal right-of-way.

4.2 Sanitary Sewers

Based on the December 17, 2018 City comments the subject property does not have frontage to an active municipal sanitary sewer. The subject lands were accounted to flow south towards the incomplete future Clair/Maltby secondary plan area sewershed. Unless a suitable alternative is created, any rezoning application for this subject property would have a holding zone until there is a sanitary sewer outlet. The timing of the installation of a sanitary outlet to the Clair/Maltby secondary plan area is unknown.

GMBP has explored other alternatives to service the subject property.

Existing Conditions

Existing sanitary stubs located near the subject property are as follows:

- MH. S at the west side of the Poppy Dr. W. and Gordon Intersection, 40m north of the subject property at an invert elevation of approximately 341.78m and a top of grate elevation of 344.8m (Bird Landing Subdivision, 1897 Gordon Street, As Record Drawings, dated June 20, 2017, by Gamsby and Mannerow Engineers).
- MH. N at the west side of the Gosling Gardens and Gordon Intersection, 80m south of the subject property at an invert elevation of approximately 346.7m and a top of grate elevation of 349.3m
- Stub to Block 24 of Bird Landing Subdivision (0.75 ha block at northwest corner of Gordon and Gosling) located 50.5m west of manhole at Gordon and Gosling with an invert of 346.35m.

Above noted sanitary stubs taken from Bird Landing Subdivision, 1897 Gordon Street, As Record Drawings, dated June 20, 2017, by Gamsby and Mannerow Engineers.

Previous Design Conditions

Based on our review of the Bird Land Subdivision sewer design for Poppy Drive West, specifically Manholes S to R (intersection at Gordon to 69.0m west of Gordon), 1861, 1871 and 1979 Gordon Street were accounted for at 6 L/s/ha in accordance with 150 units per hectare for High Density Residential Official Plan land use designation and the current City of Guelph Development Engineering Manual V2.0 January 2019.

Proposed Conditions

The current development concept is for High Density Residential on the 0.329-hectare subject site. The Bird Landing Subdivision design of the Poppy Drive West sanitary sewer accounted for the subject property as High Density Residential.

Therefore, it is proposed to extend a temporary sanitary service from sanitary manhole S, along Gordon Street, to service the subject property. The temporary sanitary service will be 200mm diameter in size to service the proposed development. Once the sanitary sewer on Gordon Street is operational as part of the Clair/Maltby secondary plan, the temporary sanitary service will be abandoned, and the property will connect to the sanitary sewer on Gordon Street.

4.3 Watermain

Based on record drawings noted in Section 4.1, there is a 400mm diameter PVC DR-25 watermain beneath the southbound traffic lanes of Gordon Street.

The site is to be serviced by a 150mm diameter watermain connected to the existing 400mm diameter watermain on Gordon Street. The proposed watermain will enter the mechanical room at the northeast corner of the building where it will connect to a water meter prior to connecting to the internal water system.

5. STORMWATER MANAGEMENT

5.1 Criteria

The stormwater management criteria established by the City of Guelph are as follows:

- 1. Control Post Development discharge from site to Pre-development rates for the 2 to 100-year Guelph Design Storms.
- 2. Sites that do not have a positive outlet must be designed to provide storage on site for twice the 5-year design storm runoff volume.
- 3. For commercial, institutional and high-density residential developments, excess runoff for the 2-year design storm is to be stored underground or on roof tops.
- 4. Major storm flows are to be routed overland to the municipal stormwater drainage system.

- 5. Excess runoff from the 5-year design storm may pond in parking areas of least anticipated use to a maximum depth of 0.3 metres.
- 6. Clean runoff (roof water) should be directed to pervious areas for infiltration to encourage ground water recharge.
- 7. Quality control facilities are required to remove suspended solids (oil and grit) from areas draining driveways and parking lots.
- 8. The minimum acceptable water quality level for discharge to the municipal collection system is 70% TSS removal or an enhanced level 80% TSS removal depending on the receiving water course.

5.2 Modelling Parameters

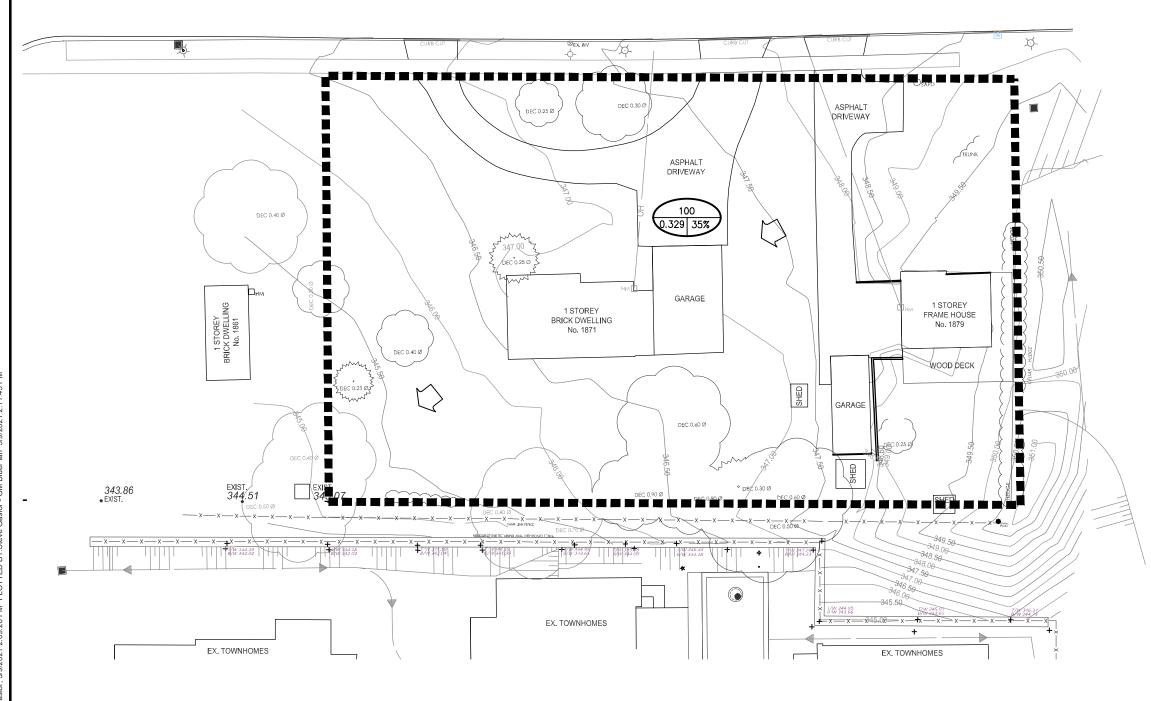
The City of Guelph mass rainfall data was used to model the full range of design storm events. The Chicago storm parameters and the total depth of rainfall for each storm are shown below in Table No. 1.

	2 Year	5 Year	25 Year	100 Year
a =	743	1,593	3,158	4,688
b =	6	11	15	17
c =	0.799	0.879	0.936	0.962
R =	0.4	0.4	0.4	0.4
td =	170	170	210	210
Rainfall depth (mm)	33.816	46.775	69.476	88.830

Table 1: Chicago Storm Parameters

The Horton infiltration method was used in the MIDUSS model. The following parameters summarized in Table No. 2 were used according to the City of Guelph Standards:

	Impervious Areas	Pervious Areas				
Manning's 'n'	0.013	0.300				
Maximum Infiltration (mm/hr)	0.0	75.0				
Minimum Infiltration (mm/hr)	0.0	12.5				
Lag Constant (hr)	0.00	0.25				
Depression Storage (mm)	1.5	5.0				


Table 2: MIDUSS	Horton	Parameters
-----------------	--------	------------

5.3 **Pre-Development Conditions**


For pre-development analysis purposes, the 0.329 hectare site was modelled as single drainage catchment due to the single outlet at the northwest corner of the site. The pre-development drainage catchment is shown on Figure No. 2 and described below. The pre-development MIDUSS computer modeling is attached in Appendix 'B'.

Catchment 100 (0.329 hectares, 35% impervious) represents the entire site including two single family dwellings, garages, sheds and asphalt driveways. Runoff from Catchment 100 flows overland to the northwest corner of the site to adjacent properties.

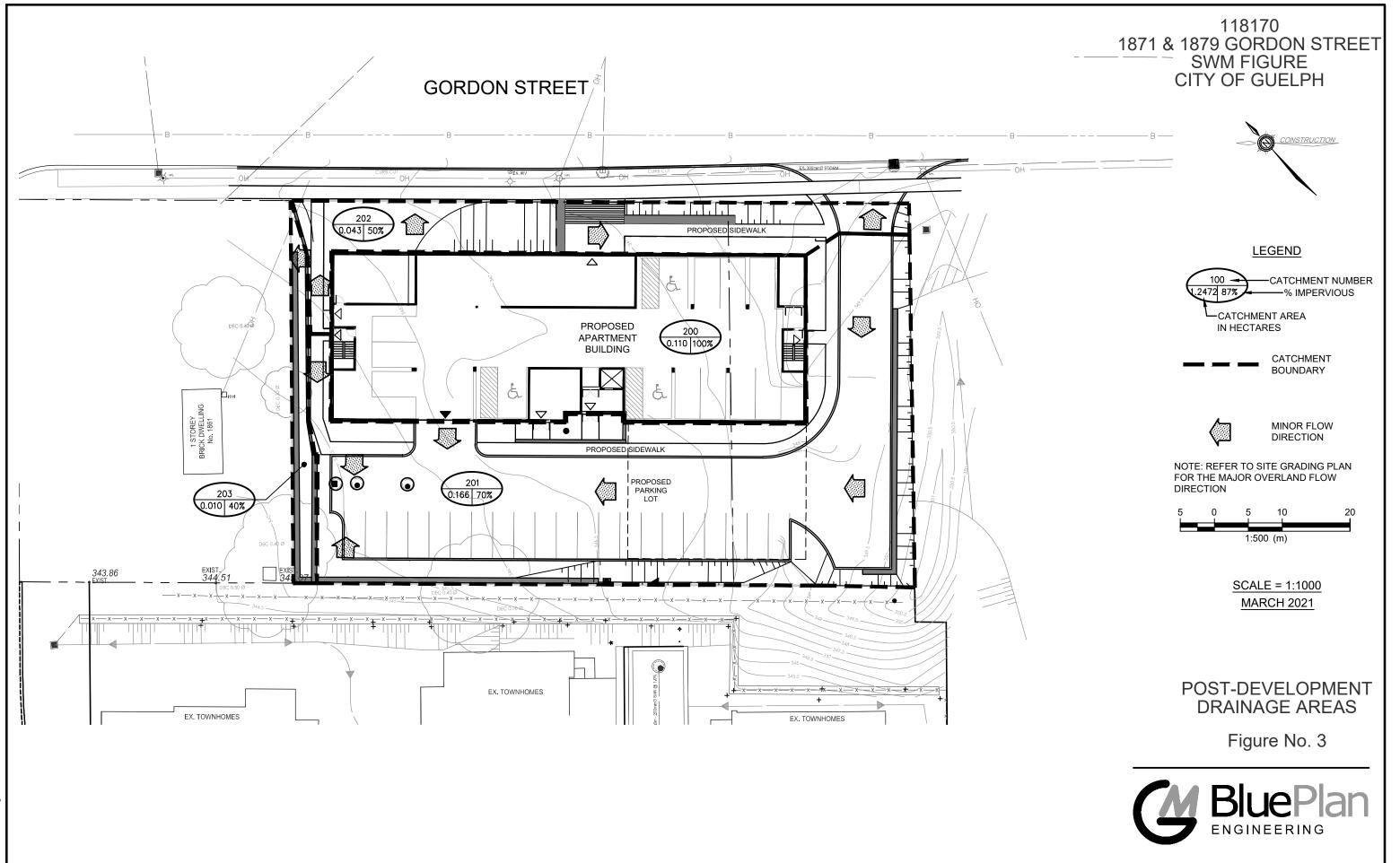
GORDON STREET

FILE:W:Guelph\118-2018\118170 Gordon St. ZCA\5 Work In Progress\Drafting\118170-DESIGN.dwg LAYOUT:FIG. 2 LAST SAVED BY:Sgasior, 3/9/2021 2:09:26 PM PLOTTED BY:Steve Gasior - GM BluePlan 3/9/2021 2:11:45 PM

A summary of the pre-development peak flow from the site for various design storm events are provided in Table No. 3 below.

	Total Discharge to Adjacent Properties (Catchment 100)	Total
2 Year		
Flow Rate (m ³ /s)	0.028	0.028
Runoff Volume (m ³)	41.09	41.09
5 Year		
Flow Rate (m ³ /s)	0.039	0.039
Runoff Volume (m ³)	74.28	74.28
25 Year		
Flow Rate (m ³ /s)	0.082	0.082
Runoff Volume (m ³)	137.39	137.39
100 Year		
Flow Rate (m ³ /s)	0.125	0.125
Runoff Volume (m ³)	194.85	194.85

Table 3: Pre-development Conditions: Flow Rates and Runoff Volumes


5.4 Post-Development Conditions

For post-development analysis purposes, the 0.329 hectare site was modelled as four (4) drainage catchments. The post-development drainage catchments are shown on Figure No. 3 and described below. The post-development MIDUSS computer modeling is attached in Appendix 'B'.

Catchment 200 (0.110 hectares, 100% impervious) represents the residential building's rooftop. Stormwater runoff from Catchment 200 is proposed to be attenuated at a controlled rate by roof drains. Catchment 200 is modeled with three roof drains, complete with six weirs in each drain. The roof drains are proposed to discharge directly to the storm sewer system, which discharges into the infiltration gallery. Catchment 200 stage-storage-discharge calculation table is presented in Appendix B.

Catchment 201 (0.166 hectares, 70% impervious) represents the proposed parking lot, driving isles, side walks and vegetated surfaces adjacent to the building and south retaining wall. Runoff from this catchment will be directed to the catch basin at the northwest end of the subject site and treated by an oil/grit separator structure prior to the Debris Row in the Brentwood system. The combined oil/grit separator and Debris Row filters runoff and connects with a feeder manhole that collects a combination of rooftop runoff and treated oil/grit separator runoff. The manhole discharges to the infiltration gallery.

Catchment 202 (0.043 hectares, 50% impervious) represents the east side of the site in the front of the building which includes grassed areas, sidewalks, and a portion of the site entrance. Under post-development conditions, this area will sheetflow overland towards the Gordon Street municipal right-of-way.

Catchment 203 (0.010 hectares, 40% impervious) represents the retaining walls and grassed area along the north edge of the subject property. Runoff from Catchment 203 will sheetflow overland towards the neighbouring properties to the north.

5.5 Infiltration

In Table No. 4 below is a summary of information from the below noted report that can be found in Appendix A:

• Guelph Permeameter Testing, Proposed Apartment Development 1871 & 1879 Gordon Street, Guelph, Ontario, completed by V.A. Wood (Guelph) Incorporated, dated April 2019, Amended June 5, 2019, Ref. No. G4091-19-7.

Date	Test Location	Test Depth Below Ex. Grade (m+/-)	Hydraulic Conductivity (cm/sec) ^{*1}	Test Log GW Encountered (m)
June 18, 2019	TP 1	0.9	7.10x10 ⁻⁵	-
June 18, 2019	TP 1	1.6	1.69x10 ⁻²	-
June 18, 2019	TP 1	2.4	7.34x10 ⁻⁴	-

Table 4: Summary of Guelph Permeameter Testing Report

^{*1} Calculations completed by Guelph Permeameter Soil Moisture Program by V.A. Wood (Guelph) Ltd.

V.A. Wood (Guelph) noted that deeper permeameter tests could not be completed due to unsafe excavation conditions in conjunction with the close proximity of the inground tile bed which was exposed in the test pit.

Table No. 5 below describes the calculation summary used to determine the design infiltration rates.

Location	Existing Grade (m)	Test Depth Below Ex. Grade (m+/-)	Elevation (m)	Test Hydraulic Conductivity (cm/s) ^{*1}	Assumed Hydraulic Conductivity (cm/s) ^{*1}	Ratio of Mean Measured Infiltration Rates	Safety Correction Factor*2	Hydraulic Conductivity (cm/s)	Design Infiltration Rate (mm/hr) ^{*3}	Design Hydraulic Conductivity (cm/s)
TP1	345.64	0.9	344.74	7.10x10⁻⁵		1.0			61.5	
TP1	345.64	1.6	344.04	1.69x10 ⁻²						
Bot. of Proposed Infiltration Gallery	345.64		343.70		7.34x10 ⁻⁴		2.5	2.9 x10 ⁻⁴		1.71 x10 ⁻³
TP1	345.64	2.4	343.24	7.34x10 ⁻⁴			2.0	2.0 / 10	0110	
1.5 m below Bot. of Proposed Infiltration Gallery	345.64		342.2		7.34x10 ⁻⁴					

Table 5: Infiltration Gallery Information and Design Parameters

^{*1} Calculations completed by Guelph Permeameter Soil Moisture Program by V.A. Wood (Guelph) Ltd.

^{*2} Credit Valley Conservation Low Impact Development Stormwater Management Planning and Design Guide, Version 1.0 2011, Appendix C Table C2 Safety correction factors for calculating design infiltration rates.

^{*3} Credit Valley Conservation Low Impact Development Stormwater Management Planning and Design Guide, Version 1.0 2011, Appendix C Figure C1: Approximate relationship between infiltration rate and hydraulic conductivity.

As noted above, permeameter testing could not be completed deeper than 2.4m below existing ground surface. Therefore, we have estimated the hydraulic conductivity at the bottom of the structure and 1.5 m below the infiltration gallery.

The infiltration gallery is proposed to be 18.5 m long, 6.5 m wide, and have a depth of 1.8m consisting of double stacked Brentwood Stormtank Module 25 totalling 1.8m in depth. The proposed infiltration gallery will provide a base area of 120m² and approximately 208 m³ of storm water storage. From the Geotechnical Investigation completed for the site prepared by V.A. Wood (Guelph) Incorporated, the native soils in the area of the infiltration gallery were found to be silty sand, silty sand and gravel/or sand and gravel. Based on the Design Infiltration Rate of 61.5 mm/hr in Table 5 above, it is estimated that the draw down time for the infiltration gallery is approximately 30 hours for the 5-year design storm (106.4 m³ of runoff) and 60 hours for the 100-year design storm event (216.9 m³ of runoff).

5.6 Routing

The hydrologic model MIDUSS was used to create the design storm runoff hydrographs and to route the hydrographs. The routing results for the proposed infiltration gallery is summarized in Table No. 6 below.

	Ava	ilable Capa	city	Actual Capacity Used			
	Peak Flow m³/s	volume		Peak Flow m³/s	Storage Volume m ³	Storage Elevation m	
Bottom of Gallery	0.002	0.00	343.70				
5-Year Design Storm				0.002	83.1	344.43	
Top of Gallery	0.0019	207.8	345.53				
100-Year Design Storm				0.002	188.0	345.36	
Top of DICB Grate	0.0019	209.3	346.33				
Start of Overflow to Gordon Street	0.0019	242.7	346.60				

Peak flows in the above table for the design storm events are equivalent to the infiltration rate of the native soils.

A summary of the post-development peak flows from the site for the 2-year to 100-year design storm events are provided in Table No. 7 below.

Catchment	2-Year	5-year	25-Year	100-Year
Catchment 200 – Roof top to Infiltration Gallery	0.007 m³/s	0.010 m³/s	0.015 m³/s	0.019 m³/s
Catchment 201 – Asphalt to Infiltration Gallery	0.027 m³/s	0.036 m³/s	0.054 m³/s	0.072 m³/s
Total Flow Infiltrated in Infiltration Gallery	0.002 m³/s	0.002 m³/s	0.002 m³/s	0.002 m³/s
Total Overflow to Gordon Street R.O.W. from Infiltration Gallery	0.0 m³/s	0.0 m³/s	0.0 m³/s	0.0 m³/s
Catchment 202 – To Gordon Street R.O.W.	0.005 m³/s	0.007 m³/s	0.012 m³/s	0.018 m³/s
Total Flow to Gordon Street R.O.W.	0.005 m³/s	0.007 m³/s	0.012 m³/s	0.018 m³/s
Catchment 203 – To Adjacent Properties	0.001 m³/s	0.001 m³/s	0.003 m³/s	0.004 m³/s
Total Flow to Adjacent Properties	0.001 m³/s	0.001 m³/s	0.003 m³/s	0.004 m³/s
Total Flow from Site	0.006 m³/s	0.008 m³/s	0.015 m³/s	0.022 m³/s

Table 7: Proposed Peak Flow Rate from Site (m3/s)

A summary of the pre- and post-development peak flow rates from the site for the 2-year to 100-year design storm events are provided in Table No. 8 below.

	Peak Flow to Adjacent Properties / Gordon Street R.O.W. (m³/s)
2 Year	
Pre-Development	0.028
Post-Development	0.006
5 Year	
Pre-Development	0.039
Post-Development	0.008
25 Year	
Pre-Development	0.082
Post-Development	0.015
100 Year	•
Pre-Development	0.125
Post-Development	0.022

Table 8: Pre- and Post-Development Conditions: Flow Rates and Runoff Volumes – All Storms

From Table No. 8 above, it can be observed that the proposed peak flow rate from the site, under the full range of design storm events, is estimated to be lower than the pre-development peak flow rate from site.

Upon completion of the development, all design storm flows will be directed to the low impact development (LID) infiltration gallery and flows from storm events greater than the 100-year will be directed to the Gordon Street right-of-way prior to overflowing to adjacent properties.

5.7 Water Quality

Enhanced water quality treatment (80% TSS removal) for runoff generated from the asphalt area (Catchment 201) will be achieved by routing the runoff through an oil/grit separator, Stormceptor Model EFO4 oil/grit separator prior to discharge to the infiltration gallery. The infiltration gallery is a Brentwood Stormtank system with a Debris Row to provide additional water quality prior to infiltration. Details of the oil/grit separator and Brentwood Stormtank have been included in Appendix "B".

6. WATER BUDGET

The average annual precipitation for the area in which the study site is located is estimated to be about 916.3mm. This amount is based on precipitation data recorded at the Waterloo Wellington Airport meteorological station for the period from 1981 to 2010. The water balance has been calculated on a monthly basis based on the strategy provided in "Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance" by Thornthwaite and Mather (dated 1957).

The 0.329-ha development site is understood to have underlying gravel and sand soils, with an estimated infiltration rate of 61.5mm/hr, based on the Guelph Permeameter Test completed by VA Wood and converted to

an infiltration rate using the Credit Valley Conservation Low Impact Development Stormwater Management Planning and Design Guide, Version 1.0 2011 (see Section 5.5).

The existing pre-development site discharges to the north of the adjacent property via overland sheet flow. The 0.329-ha site is 35% impervious, given building and driveway characteristics, which produces approximately 788 m³ of runoff annually.

Under pre-development conditions, the site currently produces approximately 854 m³ of recharge volume annually.

The post-development site is approximately 77% impervious. The increase in impervious area results in additional precipitation being available for recharge and runoff, as evapotranspiration is reduced. The total annual runoff volume towards the infiltration gallery is 2,132 m³. Under post-development conditions the total annual natural recharge volume (through pervious surfaces) is 105.7 m³.

An infiltration gallery has been designed to facilitate recharge and satisfy the water balance requirements for the overall site. The infiltration gallery has been designed with 1 metre clearance from the seasonally high groundwater table and 1.2 m of frost protection, where feasible. The post development potential annual enhanced recharge volume available is 1,557 m³, for a total potential annual recharge volume of 1,663m³. The design of the infiltration gallery provides a sufficient volume to satisfy the recharge and infiltration requirements.

Overall, the site development provides an increase of approximately 95% (854 m³) of recharge volume from existing to proposed conditions.

The results of the site water budget analysis, including the additional recharge provided by the infiltration gallery has been included in Appendix C.

7. MAINTENANCE PLAN

To ensure that the stormwater management system continues to function as designed and constructed, we recommend that the following inspections and maintenance activities be completed on an annual basis:

- 1. Infiltration galleries will be kept "off-line" until construction is complete. They will not serve as a sediment control device during site construction. Sediment will be prevented from entering the infiltration facility using super silt fence, diversion berms or other means.
- 2. We have specified clean outs at either end of the infiltration gallery to provide a means of inspecting and flushing them out as part of routine maintenance.
- Maintenance typically consists of cleaning out leaves, debris and accumulated sediment caught in sumps in catchbasins and manholes and inspection and cleanout of inlets and outlets annually or as needed.
- 4. Inspection via observation in cleanouts will be performed to ensure the facility drains within the maximum acceptable length of time at least annually and following every major storm event (>25 mm). If the time required to fully drain exceeds 48 to 72 hours, they will be drained via pumping and clean out of the perforated distribution pipe. If slow drainage persists, the system may need removal and replacement of granular material and/or geotextile fabric.
- 5. Regular inspections and cleanings of the Stormceptor Model EFO4 oil/grit separator and Brentwood Stormtank complete with Debris Row will be required as a part of the standard maintenance procedures carried out annually by the Owner.

8. SEDIMENT AND EROSION CONTROL PLAN

Silt fence will be installed along the property boundary in all locations where runoff will discharge from the site to adjacent lands. The silt fence will serve to minimize the opportunity for water borne sediments to be washed on to the adjacent properties.

Upon completion of the grading, any area not subject to active construction within 30 days will be topsoiled and hydroseeded as per OPSS 572.

Inspection and maintenance of all silt fencing will start after installation is complete. The silt fence will be inspected on a weekly basis during active construction or after a rainfall event of 13mm or greater. Maintenance will be carried out, within 48 hours, on any part of the silt fence found to need repair.

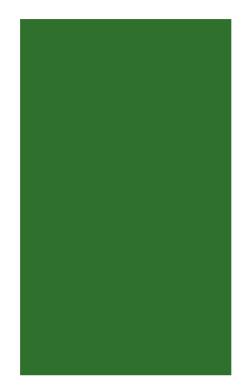
Once construction and landscaping has been substantially completed, the silt fence will be removed, any accumulated sediment will be removed, and the landscaping will be completed.

Details of the proposed sediment and erosion control measures will be detailed on a drawing at the Site Plan Application stage of the project.

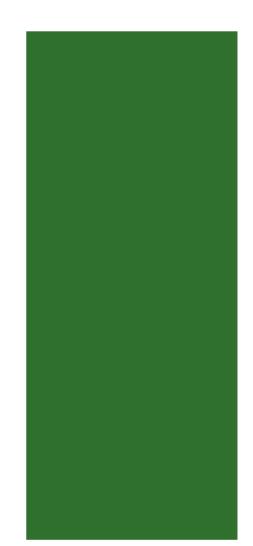
9. CONCLUSIONS

The 1871 and 1879 Gordon Street Stormwater Management and Functional Servicing report developed and clearly illustrated the following:

- 1. The post-development release rate from the site to adjacent properties and the Gordon Street right-ofway is 0.022 m3/s during the 100-year design storm event and is lower than pre-development release rate of 0.125 m3/s. Additionally, the post-development release rates for the 2-, 5-, and 25-year design storms are below the pre-development release rate and are summarized in Table 8.
- 2. Quality control for the stormwater collected from the paved surfaces will be provided by routing overland flows through an oil/grit separator prior to discharge into the infiltration gallery. The infiltration gallery will consist of a Brentwood Stormtank complete with Debris Row to provide additional water quality treatment prior to infiltration. The proposed water quality control measures will achieve above 70% TSS removal.
- 3. The site will provide infiltration through the onsite infiltration gallery consisting of Brentwood Stormtank Module 25 or approved equivalent. The post-development annual recharge volume is above the predevelopment recharge volume by approximately 95%.
- 4. Prior to construction, a silt fence will be installed along the property boundary in all locations where runoff will discharge from the site to adjacent lands. This will minimize the transport of sediment off-site during the construction period.


All of which is respectfully submitted.

Yours truly, GM BLUEPLAN ENGINEERING LIMITED Per:


Jack Turner, P.Eng.

W:/Guelph/118-2018/118170 Gordon St. ZCA/5 Work In Progress/Reports, Manuals, Contracts/SWM Report/2021-03-05 Submission/118170 SWM And FSR Report_2021-03-08.Docx

Appendix A Geotechnical Investigation

V.A. WOOD (GUELPH) INCORPORATED CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 TELEPHONE: 519-763-3101

PRELIMINARY GEOTECHNICAL INVESTIGATION PROPOSED APARTMENT BUILDING 1871 & 1879 GORDON STREET GUELPH, ONTARIO

> Ref. No. G4091-19-4 April, 2019

> > Amended June 5, 2019

Prepared for:

Mar-Cot Developments Inc. 375 Southgate Drive Guelph, Ontario N1G 3W6

Attention: Mr. Mario Cotroneo

Distribution:

(1) Copy – Mar-Cot Developments Inc.

(1) Copy – GM BluePlan Engineering Ltd.

(2) Copies - V.A. Wood (Guelph) Inc.

CONTENTS

<u>Page</u>

1.0	INTRODUCTION				1
2.0	FIELD WORK				2
3.0	SUBSURFACE CO	ONDITIONS			3
4.0	GROUNDWATER	CONDITIONS			5
5.0	DISCUSSION AND	RECOMMENDATIO	ONS	•••••	6
6.0	STATEMENT OF L	.IMITATIONS			13

<u>APPENDIX</u>

APPENDIX 'A'	Statement of Limitations
APPENDIX 'B'	Chemical Analysis Results

ENCLOSURES

<u>No.</u>

BOREHOLE/MONITORING WELL LOCATION PLAN	1
BOREHOLE/MONITORING WELL LOGS	2 - 8
GRAIN SIZE DISTRIBUTION CURVES	9 - 10

.

1.0 INTRODUCTION:

V.A. Wood (Guelph) Inc. was retained by Mar-Cot Developments Inc. to carry out a preliminary geotechnical investigation for the proposed apartment building to be constructed at 1871 and 1879 in Guelph, Ontario.

Detailed plans for the proposed development were not available at the time of this report but it is understood that the preliminary plans are for a four-storey apartment building with two levels of underground parking as well as surface parking.

It is noted that the subject properties are currently occupied with two detached residential dwellings.

The purpose of the investigation was to reveal the subsurface conditions and to determine the relevant soil properties for preliminary recommendations for the design and construction of building foundations, retaining walls, storm water management and pavement designs.

.

2.0 <u>FIELD WORK</u>:

The fieldwork was carried out over the period of March 12 to 14, 2019 and consisted of seven (7) boreholes at the locations shown on Enclosure 1. The boreholes were advanced to the sampling depths by means of a track-mounted, power auger machine, equipped for soil sampling. Standard Penetration tests were carried out at frequent intervals of depth and the results are shown on the Logs as N-values. The subsurface soils were visually inspected, logged and sampled at the borehole locations.

Engineering staff from our office supervised the fieldwork with personnel from GM BluePlan Engineering Ltd. and the ground elevation at each borehole was supplied by GM BluePlan Engineering Ltd.

3.0 SUBSURFACE CONDITIONS:

Full details of the soils encountered in each borehole/monitoring well are given on the Borehole/Monitoring Well Logs, Enclosures 2 to 9, inclusive and the following notes are intended to summarize this data.

Monitoring Wells 1 and 2 and Boreholes 4 to 7, inclusive encountered a surficial deposit of **topsoil** ranging between 150 and 325mm thick. The natural moisture content was found to range from 39 to 44%.

Monitoring Well 3 encountered an existing paved driveway consisting of 25mm of <u>asphalt</u> on 100mm thick granular base.

The topsoil at Monitoring Wells 1 and 2 and Boreholes 4, 5 and 7, and the pavement at Monitoring Well 3 were underlain by deposits of <u>fill</u> to depths ranging between 0.3 and 3.0 metres below grade. The fill generally consisted of brown silty sand, silty sand and gravel and/or sand and gravel. Standard Penetration tests in the fill gave N-values ranging between 4 and 47 blows/300mm and the natural moisture content was found to range from 3 to 35%.

Based on the test results, the deposits of fill are considered to be in a generally very loose to dense condition, although it is noted that the presence of gravel and cobbles in the deposits may have resulted in high N-values and these may not accurately represent the relative density of the soils.

The fill at the monitoring wells and boreholes was underlain by a deposit of brown **gravel** and sand to the full depth of the investigation (i.e. 3.5 to 18.7 metres below grade). Thin layers of brown sand and/or silty sand were encountered within the gravel and sand at Monitoring Well 1. Standard Penetration tests in this deposit gave N-values ranging between 16 and greater than 100 blows/300mm and the natural moisture content was found to range from 3 to 10%. A typical grain size distribution curve for this material can be found on Enclosure 9.

Based on the test results, the deposit of gravel and sand is considered to have a generally compact to very dense relative density, although it is noted that the presence of gravel and cobbles in the deposit may have resulted in high N-values and these may not accurately represent the relative density of the soil.

The gravel and sand at Monitoring Well 1 was underlain by a deposit of grey <u>sand and</u> <u>silt till</u> to the full depth of the investigation (i.e.18.7 metres below grade). Standard Penetration tests in this deposit gave an N-value of 0 blows/300mm and the natural moisture content was found to be about 9%. A typical grain size distribution curve can be found on Enclosure 10.

Based on the test results, the deposit of sand and silt till is considered to have a very loose relative density.

Ref. No. G4091-19-4

4.0 **GROUNDWATER CONDITIONS**:

Boreholes 4 to 7, inclusive were dry and open to the full depth of the investigation on completion of the fieldwork program.

Monitoring Wells 1 and 3 had a free water surface at elevations of 331.0m± and 341.7m± (i.e. 15.0 and 6.1 metres below grade), respectively while Monitoring Well 2 was dry on April 2, 2019.

An examination of the soil samples indicated that they were generally moist to wet.

It is noted that no sub-artesian water pressures were encountered in any of the boreholes/monitoring wells.

Based on the foregoing, the groundwater table is considered to be located at elevations ranging between 331.0m± and 341.7m±.

5.0 DISCUSSION AND RECOMMENDATIONS:

5.1 <u>General</u>:

The boreholes encountered a surfical deposit of topsoil and/or pavement underlain by loose to dense fill on a deposit of compact to very dense gravel and sand on a very loose sand and silt till.

The groundwater table is considered to be located at elevations ranging between $331.0m\pm$ and $341.7m\pm$.

Final details concerning the proposed development were not available at the time of this report but it is understood that the preliminary plans are for a four-storey apartment building with two levels of underground parking as well as surface parking. Therefore the following discussion is considered preliminary and it should be reviewed when more details are available.

5.2 <u>Sewers</u>:

It is anticipated that the sewer inverts will be located at depths ranging between 3 and 4 metres below existing grade.

Reference to the Borehole Logs indicates that the subgrade will generally consist of competent gravel and sand. These deposits will generally provide adequate support for the pipes and allow the use of normal Class 'B' bedding using Granular 'A' material. Clear crushed stone should <u>not</u> be used as bedding unless it is wrapped with geotextile to prevent undesirable settlements caused from fines migrating into the voids of the stone. Where the exposed subgrade is less competent, the bedding thickness may have to be increased and it may be necessary to protect the excavation with a skim coat of concrete immediately after it has been exposed.

Where sewer trench grades are below the groundwater table, provisions may be required to lower the groundwater table through pumping from local sumps as and where required or through the use of well points. The sides of the excavation to a depth of more than 1.2 metres (and above the water table) should either be cut back at a side slope of 1 to 1 or supported using adequately braced closed sheeting.

The excavated materials will be generally suitable for use as trench backfill provided that they are free of topsoil and boulders. If the on-site materials are or become wet, they should be air dried prior to re-use as trench backfill. The trench backfill should be placed in 150 to 200mm thick layers and uniformly compacted to at least 95% of its Standard Proctor maximum dry density. The backfill around manholes should consist of wellgraded and well-compacted granular material.

To minimize potential problems and wetting of the subgrade material, backfilling operations should follow closely after excavations, so that only a minimal length of trench is exposed at a time. Should construction be carried out in the winter season, particular attention should be given to make sure no frozen material is used for backfill.

5.3 Foundations

The pavement, topsoil, and fill are not considered to be suitable bearing strata. Therefore, the foundations for the proposed structures should extend into the competent native gravel and sand designed to 300 kPa S.L.S/450 kPa U.L.S at the elevations indicated in the following chart:

Location	Borehole Ground Elevation (m±)	Suitable Bearing Stratum Elevation (m ±)	Bearing Stratum	Depth to Suitable Bearing Stratum Below Existing Grade (m±)
MW 1	346.0	343.4	Gravel and Sand	2.6
MW 2	346.9	344.6	Gravel and Sand	2.3
MW 3	347.8	345.2	Gravel and Sand	2.6
BH 4	349.9	348.2	Gravel and Sand	1.7
BH 5	349.5	348.9	Gravel and Sand	0.6
BH 6	346.2	345.7	Gravel and Sand	0.5
BH 7	345.2	341.9	Gravel and Sand	3.3

All exterior footings or footings in unheated areas should be located at least 1.2 metres below finished grade for adequate frost protection.

Elevation differences between adjacent footings should not be more than a half of the horizontal distance between them.

It is estimated that the total and differential settlements of footings designed to these bearing pressures will be less than 25 and 20mm respectively, which are normally considered acceptable for the proposed residential structures.

The minimum footing sizes should not be less than those specified in the National Building Code of Canada.

It is recommended that all foundation excavations be inspected by geotechnical personnel from V.A. Wood (Guelph) Inc. to ensure the founding soils are similar to those identified in the Test Pit Logs and that they are capable of supporting the design loads.

Based on the 2012 Building Code Compendium, the classification of soils for seismic design should be based on the average properties of the top 30 metres of the soil profile. The deepest boreholes were only 18 metres deep and were terminated in very dense gravel and sand. Assuming the very dense deposits extend to depth, the site soils may be classified as Site Class 'C' under the site classification for seismic site response of 2012 Building Code Compendium.

For the design of members resisting lateral loads, the recommended soil parameters are as follows:

Soil Parameters	Loose to Dense Fill	Very Dense Gravel and Sand		
Unit Weight	20 kN/m ³	21 kN/m³		
Friction Angle	30°	34°		
Cohesion	0	0		
Coefficient of Earth Pressure at Rest	0.47	0.44		
Coefficient of Active Pressure	0.31	0.28		
Coefficient of Passive Pressure	3.2	3.6		
Coefficient of Friction	0.35	0.45		
Modulus of Subgrade Reaction	25	50 kPa		

5.4 Basement/Underground Parking/Retaining Walls:

The basement walls should be designed to resist lateral earth pressures, the magnitude of which can be determined from:

	p	=	$K(\gamma d + q)$
where;	p	=	earth pressure, kN/m²
	К	=	earth pressure co-efficient = 0.33, if retaining structure is permitted to move, otherwise K = 0.5
	γ	=	unit weight of backfill, 20 kN/m ^{2 for} sand
	d	=	depth below finished grade, metres
	q	=	all adjacent surcharge kN/m ²

Water will tend to collect around the walls and under the slab which, therefore, should be designed to resist hydrostatic pressures unless a perimeter drainage system is installed. Water collected in this system should be connected to the local storm drainage system either by gravity or by a permanent sump pump. Surface drainage around the building should be directed away from the building.

If basement grades are within 0.5m of the measured high groundwater table we recommend that a sub-floor drainage system connected to the local storm drainage system either by gravity or by a permanent sump pump be installed. As well, waterproofing the basement walls would be recommended.

5.5 Excavation, Shoring and Groundwater Control:

No major construction problems due to water are anticipated with excavations above *EI*. 341.7 $m\pm$. Provision should, however, be made for control of any surface water run-off by pumping from local sumps as and where required.

Excavations to a depth of more than 1.2 metres below grade should be cut back to a side slope of 1 to 1 or, supported using adequately braced sheeting.

5.6 Floor Slabs:

The subgrade for the underground parking floor slabs will generally consist of compact to very dense gravel and sand. This material will generally provide adequate support for the proposed slabs. The proposed subgrade should be re-compacted from the surface to at least 98% of its Standard Proctor maximum dry density. Any loose/wet material encountered should be sub-excavated and replaced with approved fill.

The fill may consist of approved on-site materials free of cobbles/boulders or approved imported fill. All fill should be placed in 150 to 200mm thick lifts and compacted to at least 98% Standard Proctor maximum dry density. It is recommended the underfloor fill be placed at least one month prior to floor construction in order to minimize settlement.

A layer of well-graded, free-draining material, at least 150mm thick and compacted to 100% Standard Proctor maximum density, should be placed under the floor slabs to provide a uniform bearing surface and act as a vapour barrier.

Frequent inspections by geotechnical personnel from V.A. Wood (Guelph) Inc. should be carried out during construction to verify compaction of the subgrade and base courses by in-situ density testing using nuclear gauges.

5.7 <u>Surface Pavement Designs</u>:

All topsoil and any deleterious fill materials encountered should be stripped from the paved area. The underlying subgrade should then be re-compacted from the surface to at least 98% of its Standard Proctor maximum dry density prior to construction of the pavement. Any loose areas which are detected should be sub-excavated and backfilled with suitable on-site material or approved imported granular fill. All fill should be placed in 150 to 200mm thick lifts and compacted to at least 98% Standard Proctor maximum dry density.

Considering the probable traffic requirements and subsoil conditions, the following pavement designs are recommended:

	Passenger Car Parking (Light Duty) <u>(mm)</u>	Access Road (Medium Duty) <u>(mm)</u>
Asphaltic Concrete	50	90
Granular 'A' Base Course	150	150
Granular 'B' Sub-base Course	200	300

The base and sub-base granular materials should be compacted to at least 100% Standard Proctor maximum dry density. The asphalt should be compacted to OPS Specifications.

Frequent inspections by geotechnical personnel from V.A. Wood (Guelph) Inc. should be carried out during construction to verify the compaction of the subgrade, base courses and asphaltic concrete by in-situ density testing using nuclear gauges.

5.6 <u>Storm Water Management</u>:

As per the City of Guelph requirements, Guelph Permeameter testing in the proposed storm water management infiltration galleries will be carried out in the future to determine the hydraulic conductively of the subsoils for the storm water management design.

5.7 Chemical Analysis Results:

Representative samples of the subsoils from the boreholes were submitted to the Environmental Division of ALS Laboratory Group for chemical analyses. The analyses included:

- i) O.Reg. 153/04 as amended by O.Reg. 511 (April 15, 2011) [metals and inorganics].
- ii) BTEX
- iii) F1-F4
- iv) PAH

Chemical Analysis (Subsoils)							
Sample Description	Submission Date	Material Type	Depth (m±)	Eagle Detector Readings (TOV) (ppm)	Staining (Y/N)	Odour (Y/N)	Chemical Testing
ALS #L2244494-1 MW 1, Sam 3	14-Mar-19	Silty Clay Fill	1.5 - 2.0	0	N	N	Metals and Inorganics,BTEX, F1-F4,PAH
ALS #L224494-2 MW 2, Sam 5	14-Mar-19	Gravel and Sand	3.0 - 3.5	0	N	N	Metals and Inorganics, BTEX, F1-F4, PAH
ALS #L224494-3 MW 3, Sam 9	14-Mar-19	Gravel and Sand	9.1 –9.6	0	N	N	Metals and Inorganics, BTEX, F1-F4, PAH
ALS #L2246201-1 MW 3, Sam 3	19-Mar-19	Sand and Gravel Fill	1.5 - 2.0	0	N	N	Metals and Inorganics
ALS #L2246201-2 BH 4, Sam 1	19-Mar-19	Topsoil	0.0 - 0.6	0	N	N	Metals and Inorganics

The soil samples obtained from the boreholes were submitted as follows.

The analytical results are shown in Appendix 'B'. They indicate:

• topsoil, fill and gravel and sand yielded concentrations below the applicable below the applicable MOE Tables 1 and 2 Site Condition Standards as outlined in <u>Soil</u>, <u>Ground Water and Sediment Standards for Use Under Part XV.1 of the</u> <u>Environmental Protection Act, March 9, 2004, O.Reg. 153/04 as amended by</u> <u>O.Reg. 511 (April 2011)</u> for all parameters analyzed for residential, parkland, institutional, industrial, commercial, community, agricultural or other property uses <u>except</u> for <u>lead</u> in the gravel and sand and topsoil at Boreholes 2 and 4, respectively and mercury in the topsoil at Borehole 4..

6.0 STATEMENT OF LIMITATION:

The Statement of Limitation presented on Appendix 'A' is an integral part of this report.

V.A. WOOD (GUELPH) INC.

J. Broad, B.A. President & General Manager

JB:sm

Encls.

PROFESSIONAL 000 REGI V. Wood, M.Eng Chief Engineer Mincz of

APPENDIX 'A'

Ref. No. G2406-18-12

STATEMENT OF LIMITATIONS:

The conclusions and recommendations in this report are based on information determined at the borehole locations and on geological data of a general nature, which may be available, for the area investigated. Soil and groundwater conditions between and beyond the boreholes may differ from those encountered at the borehole locations and conditions may become apparent during construction, which would not be detected or anticipated at the time of the soil investigation.

We recommend that we be retained to ensure that all necessary stripping, subgrade preparation and compaction requirements are met, and to confirm that the soil conditions do not deviate materially from those encountered in the boreholes. <u>In cases where this recommendation is not followed, the company's responsibility is limited to interpreting accurately the information encountered at the boreholes.</u>

This report is applicable only to the project described in the introduction, constructed substantially in accordance with details of alignment and elevations quoted in the text.

V.A. Wood (Guelph) Inc. prepared this report for Mar-Cot Developments Inc. The material in it reflects V.A. Wood (Guelph) Inc. judgement in light of the information available to it at the time of preparation. Any use which a Third Party makes of this report, or any reliance on decisions to be made based on it, is the responsibility of such Third Parties. V.A. Wood (Guelph) Inc. accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

APPENDIX 'B'

V.A. WOOD (GUELPH) ATTN: JOHN BROAD 405 YORK ROAD GUELPH ON N1E 3H3 Date Received: 14-MAR-19 Report Date: 22-APR-19 14:37 (MT) Version: FINAL REV. 2

Client Phone: 519-763-3101

Certificate of Analysis

Lab Work Order #: L2244494 Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc:

NOT SUBMITTED G4091-19-3 17-641549

uffarse,

Emily Hansen Account Manager [This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 288 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Environmental 🕽

ANALYTICAL GUIDELINE REPORT

L2244494 CONTD

Page 2 of 8 22-APR-19 14:37 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed	Guideline Limits					
L2244494-1 G4091-19-3 MW1 SAM 3	, iooun		Let , Let ,	Gritto	/ thuryzed		Guidelli				
Sampled By: CLIENT on 14-MAR-19 @ 10:30											
Matrix: SOIL						#1	#2	#3	#4		
Physical Tests											
	40 7		0.40								
% Moisture Metals	16.7		0.10	%	17-MAR-19						
	-10		10	unte	20 MAD 40		4.0	7.5	10		
Antimony (Sb) Arsenic (As)	<1.0		1.0	ug/g	20-MAR-19	1	1.3	7.5	40		
Barium (Ba)	7.5 73.2		1.0	ug/g	20-MAR-19	11	18	18	18		
Beryllium (Be)	0.66		1.0 0.50	ug/g	20-MAR-19 20-MAR-19	210	220	390	670		
Boron (B)	<5.0		0.50 5.0	ug/g	20-MAR-19 20-MAR-19	2.5	2.5	4	8		
Cadmium (Cd)	< 0.50		0.50	ug/g	20-MAR-19 20-MAR-19	36	36 1.2	120	120		
Chromium (Cr)	21.2		1.0	ug/g	20-MAR-19 20-MAR-19	1 67	70	1.2 160	1.9 160		
Cobalt (Co)	7.8		1.0	ug/g	20-MAR-19	19	21	22	80		
Copper (Cu)	19.1		1.0	ug/g	20-MAR-19		92	140			
Lead (Pb)	30.8		1.0	ug/g	20-MAR-19 20-MAR-19	62 45	92 120	140	230 120		
Molybdenum (Mo)	<1.0		1.0	ug/g ug/g	20-MAR-19	45 2	2	6.9	40		
Nickel (Ni)	15.2		1.0	ug/g ug/g	20-MAR-19	37	82	100	270		
Selenium (Se)	<1.0		1.0	ug/g ug/g	20-MAR-19	1.2	1.5	2.4	5.5		
Silver (Ag)	<0.20		0.20	ug/g ug/g	20-MAR-19	0.5	0.5	2.4	40		
Thallium (TI)	< 0.20		0.20		20-MAR-19	1	1	1	3.3		
Uranium (U)	<1.0		1.0	ug/g	20-MAR-19	1.9	2.5	23	33		
Vanadium (V)	39.2		1.0	ug/g	20-MAR-19	86	2.5 86	23 86	33 86		
Zinc (Zn)	141		5.0	ug/g ug/g	20-MAR-19	290	290	340	340		
Volatile Organic Compounds	141		0.0	ugig	20-10/414-15	230	230	540	540		
Benzene	<0.0068		0.0068	ug/g	20-MAR-19	0.02	0.02	0.21	0.32		
Ethylbenzene	< 0.018		0.000	ug/g ug/g	20-MAR-19	0.02	0.02	1.1	1.1		
Toluene	<0.080		0.080	ug/g	20-MAR-19	0.03	0.00	2.3	6.4		
o-Xylene	<0.020		0.020	ug/g ug/g	20-MAR-19	0.2	0.2	2.5	0.4		
m+p-Xylenes	< 0.020		0.030	ug/g	20-MAR-19						
Xylenes (Total)	< 0.050		0.050	ug/g	20-MAR-19	0.05	0.05	3.1	26		
Surrogate: 4-Bromofluorobenzene	86.2		50-140	%	20-MAR-19	0.00					
Surrogate: 1,4-Difluorobenzene	92.3		50-140	%	20-MAR-19						
Hydrocarbons											
F1 (C6-C10)	<5.0		5.0	ug/g	20-MAR-19	17	25	55	55		
F1-BTEX	<5.0		5.0	ug/g	21-MAR-19	17	25	55	55		
F2 (C10-C16)	<10		10	ug/g	20-MAR-19	10	10	98	230		
F2-Naphth	<10		10	ug/g	21-MAR-19						
F3 (C16-C34)	<50		50	ug/g	20-MAR-19	240	240	300	1700		
F3-PAH	<50		50	ug/g	21-MAR-19						
F4 (C34-C50)	<50		50	ug/g	20-MAR-19	120	120	2800	3300		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	21-MAR-19						
Chrom. to baseline at nC50	YES			No Unit	20-MAR-19						
Surrogate: 2-Bromobenzotrifluoride	94.2		60-140	%	20-MAR-19						
Surrogate: 3,4-Dichlorotoluene	96.6		60-140	%	20-MAR-19						
Polycyclic Aromatic Hydrocarbons											
Acenaphthene	<0.050		0.050	ug/g	21-MAR-19	0.05	0.072	7.9	21		
Acenaphthylene	<0.050		0.050	ug/g	21-MAR-19	0.093	0.093	0.15	0.15		
Anthracene	<0.050		0.050	ug/g	21-MAR-19	0.05	0.16	0.67	0.67		
Benzo(a)anthracene	<0.050		0.050	ug/g	21-MAR-19	0.095	0.36	0.5	0.96		

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T1/T2-SOIL-RPIICC-C

#1: T1-Soil-Agricultural or Other Property Use

#2: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

#4: T2-Soil-Ind/Com/Commu Property Use (Coarse)

ANALYTICAL GUIDELINE REPORT

L2244494 CONTD

Page 3 of 8 22-APR-19 14:37 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		e Limits		
_2244494-1 G4091-19-3 MW1 SAM 3									
Sampled By: CLIENT on 14-MAR-19 @ 10:30						#1	#2	#3	#4
Matrix: SOIL						#1	#2	#3	#4
Polycyclic Aromatic Hydrocarbons									
Benzo(a)pyrene	< 0.050		0.050	ug/g	21-MAR-19	0.05	0.3	0.3	0.3
Benzo(b)fluoranthene	< 0.050		0.050	ug/g	21-MAR-19	0.3	0.47	0.78	0.96
Benzo(g,h,i)perylene	< 0.050		0.050	ug/g	21-MAR-19	0.2	0.68	6.6	9.6
Benzo(k)fluoranthene	< 0.050		0.050	ug/g	21-MAR-19	0.05	0.48	0.78	0.96
Chrysene	< 0.050		0.050	ug/g	21-MAR-19	0.18	2.8	7	9.6
Dibenzo(ah)anthracene	< 0.050		0.050	ug/g	21-MAR-19	0.1	0.1	0.1	0.1
Fluoranthene	<0.050		0.050	ug/g	21-MAR-19	0.24	0.56	0.69	9.6
Fluorene	<0.050		0.050	ug/g	21-MAR-19	0.05	0.12	62	62
Indeno(1,2,3-cd)pyrene	<0.050		0.050	ug/g	21-MAR-19	0.11	0.23	0.38	0.76
1+2-Methylnaphthalenes	<0.042		0.042	ug/g	21-MAR-19	0.05	0.59	0.99	30
1-Methylnaphthalene	<0.030		0.030	ug/g	21-MAR-19	0.05	0.59	0.99	30
2-Methylnaphthalene	<0.030		0.030	ug/g	21-MAR-19	0.05	0.59	0.99	30
Naphthalene	< 0.013		0.013	ug/g	21-MAR-19	0.05	0.09	0.6	9.6
Phenanthrene	<0.046		0.046	ug/g	21-MAR-19	0.19	0.69	6.2	12
Pyrene	< 0.050		0.050	ug/g	21-MAR-19	0.19	1	78	96
Surrogate: 2-Fluorobiphenyl	109.5		50-140	%	21-MAR-19				
Surrogate: p-Terphenyl d14	104.4		50-140	%	21-MAR-19				
2244494-2 G4091-19-3 MW2 SAM 5									
Sampled By: CLIENT on 14-MAR-19 @ 10:30									
Matrix: SOIL						#1	#2	#3	#4
Physical Tests									
% Moisture	4.30		0.10	%	17-MAR-19				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	20-MAR-19	1	1.3	7.5	40
Arsenic (As)	4.5		1.0	ug/g	20-MAR-19	11	18	18	18
Barium (Ba)	13.1		1.0	ug/g	20-MAR-19	210	220	390	670
Beryllium (Be)	<0.50		0.50	ug/g	20-MAR-19	2.5	2.5	4	8
Boron (B)	7.1		5.0	ug/g	20-MAR-19	36	36	120	120
Cadmium (Cd)	0.52		0.50	ug/g	20-MAR-19	1	1.2	1.2	1.9
Chromium (Cr)	7.1		1.0	ug/g	20-MAR-19	67	70	160	160
Cobalt (Co)	3.0		1.0	ug/g	20-MAR-19	19	21	22	80
Copper (Cu)	12.5		1.0	ug/g	20-MAR-19	62	92	140	230
Lead (Pb)	125		1.0	ug/g	20-MAR-19	*45	*120	*120	*120
Molybdenum (Mo)	<1.0		1.0	ug/g	20-MAR-19	2	2	6.9	40
Nickel (Ni)	5.8		1.0	ug/g	20-MAR-19	37	82	100	270
Selenium (Se)	<1.0		1.0	ug/g	20-MAR-19	1.2	1.5	2.4	5.5
Silver (Ag)	<0.20		0.20	ug/g	20-MAR-19	0.5	0.5	20	40
Thallium (TI)	<0.50		0.50	ug/g	20-MAR-19	1	1	1	3.3
Uranium (U)	<1.0		1.0	ug/g	20-MAR-19	1.9	2.5	23	33
Vanadium (V)	11.2		1.0	ug/g	20-MAR-19	86	86	86	86
Zinc (Zn)	243		5.0	ug/g	20-MAR-19	290	290	340	340
Volatile Organic Compounds				100000					
		1			A second of the second second				
Benzene	< 0.0068		0.0068	ug/g	20-MAR-19	0.02	0.02	0.21	0.32

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T1/T2-SOIL-RPIICC-C

#1: T1-Soil-Agricultural or Other Property Use

#2: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use #4: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

ANALYTICAL GUIDELINE REPORT

L2244494 CONTD

Page 4 of 8 22-APR-19 14:37 (MT)

4091-19-3 Sample Details					the state of the state of the	The Design of the Party	2	2-APR-19 1	4:37 (MT
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	e Limits	
L2244494-2 G4091-19-3 MW2 SAM 5									
Sampled By: CLIENT on 14-MAR-19 @ 10:30									
Matrix: SOIL					-	#1	#2	#3	#4
Volatile Organic Compounds									
Toluene	<0.080		0.080	ug/g	20-MAR-19	0.2	0.2	2.3	6.4
o-Xylene	< 0.020		0.020	ug/g	20-MAR-19	0.2	0.2	2.0	0.4
m+p-Xylenes	< 0.030		0.030	ug/g	20-MAR-19				
Xylenes (Total)	<0.050		0.050	ug/g	20-MAR-19	0.05	0.05	3.1	26
Surrogate: 4-Bromofluorobenzene	95.6		50-140	%	20-MAR-19				
Surrogate: 1,4-Difluorobenzene	102.6		50-140	%	20-MAR-19				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	20-MAR-19	17	25	55	55
F1-BTEX	<5.0		5.0	ug/g	21-MAR-19	17	25	55	55
F2 (C10-C16)	<10		10	ug/g	19-MAR-19	10	10	98	230
F2-Naphth	<10		10	ug/g	21-MAR-19	.0	.0		200
F3 (C16-C34)	<50		50	ug/g	19-MAR-19	240	240	300	1700
F3-PAH	<50		50	ug/g	21-MAR-19	210	210	000	1100
F4 (C34-C50)	<50		50	ug/g	19-MAR-19	120	120	2800	3300
Total Hydrocarbons (C6-C50)	<72		72	ug/g	21-MAR-19	.20	120	2000	0000
Chrom. to baseline at nC50	YES			No Unit	19-MAR-19				
Surrogate: 2-Bromobenzotrifluoride	100.3		60-140	%	19-MAR-19				
Surrogate: 3,4-Dichlorotoluene	100.1		60-140	%	20-MAR-19				
Polycyclic Aromatic Hydrocarbons									
Acenaphthene	<0.050		0.050	ug/g	21-MAR-19	0.05	0.072	7.9	21
Acenaphthylene	< 0.050		0.050	ug/g	21-MAR-19	0.093	0.093	0.15	0.15
Anthracene	< 0.050		0.050	ug/g	21-MAR-19	0.05	0.16	0.67	0.67
Benzo(a)anthracene	< 0.050		0.050	ug/g	21-MAR-19	0.095	0.36	0.5	0.96
Benzo(a)pyrene	< 0.050		0.050	ug/g	21-MAR-19	0.05	0.3	0.3	0.3
Benzo(b)fluoranthene	< 0.050		0.050	ug/g	21-MAR-19	0.3	0.47	0.78	0.96
Benzo(g,h,i)perylene	< 0.050		0.050	ug/g	21-MAR-19	0.2	0.68	6.6	9.6
Benzo(k)fluoranthene	< 0.050		0.050	ug/g	21-MAR-19	0.05	0.48	0.78	0.96
Chrysene	< 0.050		0.050	ug/g	21-MAR-19	0.18	2.8	7	9.6
Dibenzo(ah)anthracene	< 0.050		0.050	ug/g	21-MAR-19	0.1	0.1	0.1	0.1
Fluoranthene	< 0.050		0.050	ug/g	21-MAR-19	0.24	0.56	0.69	9.6
Fluorene	< 0.050		0.050	ug/g	21-MAR-19	0.05	0.12	62	62
Indeno(1,2,3-cd)pyrene	< 0.050		0.050	ug/g	21-MAR-19	0.11	0.23	0.38	0.76
1+2-Methylnaphthalenes	<0.042		0.042	ug/g	21-MAR-19	0.05	0.59	0.99	30
1-Methylnaphthalene	< 0.030		0.030	ug/g	21-MAR-19	0.05	0.59	0.99	30
2-Methylnaphthalene	< 0.030		0.030	ug/g	21-MAR-19	0.05	0.59	0.99	30
Naphthalene	<0.030		0.013	ug/g ug/g	21-MAR-19	0.05	0.09	0.99	9.6
Phenanthrene	<0.013		0.046	ug/g ug/g	21-MAR-19	0.05	0.69	6.2	9.0
Pyrene	< 0.040		0.040	ug/g ug/g	21-MAR-19	0.19	0.69	78	96
Surrogate: 2-Fluorobiphenyl	110.5		50-140	ug/g %	21-MAR-19 21-MAR-19	0.19	L	10	90
Surrogate: p-Terphenyl d14	108.9		50-140	%	21-MAR-19				
_2244494-3 G4091-19-3 MW3 SAM 9									
Sampled By: CLIENT on 14-MAR-19 @ 10:30									
Matrix: SOIL						#1	#2	#3	#4
					-				
Physical Tests	4.00		0.40	04	47 144 5 40				
% Moisture	4.66		0.10	%	17-MAR-19				

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T1/T2-SOIL-RPIICC-C

#1: T1-Soil-Agricultural or Other Property Use

#2: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

#4: T2-Soil-Ind/Com/Commu Property Use (Coarse)

ANALYTICAL GUIDELINE REPORT

L2244494 CONTD

Page 5 of 8 22-APR-19 14:37 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed				
L2244494-3 G4091-19-3 MW3 SAM 9									
Sampled By: CLIENT on 14-MAR-19 @ 10:30							"0	"0	
Matrix: SOIL					-	#1	#2	#3	#4
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	20-MAR-19	1	1.3	7.5	40
Arsenic (As)	2.9		1.0	ug/g	20-MAR-19	11	18	18	18
Barium (Ba)	13.3		1.0	ug/g	20-MAR-19	210	220	390	670
Beryllium (Be)	<0.50		0.50	ug/g	20-MAR-19	2.5	2.5	4	8
Boron (B)	<5.0		5.0	ug/g	20-MAR-19	36	36	120	120
Cadmium (Cd)	<0.50		0.50	ug/g	20-MAR-19	1	1.2	1.2	1.9
Chromium (Cr)	6.4		1.0	ug/g	20-MAR-19	67	70	160	160
Cobalt (Co)	2.8		1.0	ug/g	20-MAR-19	19	21	22	80
Copper (Cu)	17.0		1.0	ug/g	20-MAR-19	62	92	140	230
Lead (Pb)	28.3		1.0	ug/g	20-MAR-19	45	120	120	120
Molybdenum (Mo)	<1.0		1.0	ug/g	20-MAR-19	2	2	6.9	40
Nickel (Ni)	5.7		1.0	ug/g	20-MAR-19	37	82	100	270
Selenium (Se)	<1.0		1.0	ug/g	20-MAR-19	1.2	1.5	2.4	5.5
Silver (Ag)	<0.20		0.20	ug/g	20-MAR-19	0.5	0.5	20	40
Thallium (TI)	<0.50		0.50	ug/g	20-MAR-19	1	1	1	3.3
Uranium (U)	<1.0		1.0	ug/g	20-MAR-19	1.9	2.5	23	33
Vanadium (V)	17.9		1.0	ug/g	20-MAR-19	86	86	86	86
Zinc (Zn)	183		5.0	ug/g	20-MAR-19	290	290	340	340
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	20-MAR-19	0.02	0.02	0.21	0.32
Ethylbenzene	<0.018		0.018	ug/g	20-MAR-19	0.05	0.05	1.1	1.1
Toluene	<0.080		0.080	ug/g	20-MAR-19	0.2	0.2	2.3	6.4
o-Xylene	<0.020		0.020	ug/g	20-MAR-19				
m+p-Xylenes	<0.030		0.030	ug/g	20-MAR-19				
Xylenes (Total)	<0.050		0.050	ug/g	20-MAR-19	0.05	0.05	3.1	26
Surrogate: 4-Bromofluorobenzene	87.1		50-140	%	20-MAR-19				
Surrogate: 1,4-Difluorobenzene	94.7		50-140	%	20-MAR-19				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	20-MAR-19	17	25	55	55
F1-BTEX	<5.0		5.0	ug/g	21-MAR-19	17	25	55	55
F2 (C10-C16)	<10		10	ug/g	19-MAR-19	10	10	98	230
F2-Naphth	<10		10	ug/g	21-MAR-19				
F3 (C16-C34)	<50		50	ug/g	19-MAR-19	240	240	300	1700
F3-PAH	<50		50	ug/g	21-MAR-19				
F4 (C34-C50)	<50		50	ug/g	19-MAR-19	120	120	2800	3300
Total Hydrocarbons (C6-C50)	<72		72	ug/g	21-MAR-19				
Chrom. to baseline at nC50	YES		00 1 40	No Unit	19-MAR-19				
Surrogate: 2-Bromobenzotrifluoride Surrogate: 3,4-Dichlorotoluene	95.5		60-140	% %	19-MAR-19				
Polycyclic Aromatic Hydrocarbons	99.1		60-140	70	20-MAR-19				
	<0.050		0.050	ucla	21-MAR-19	0.05	0.072	7.9	21
Acenaphthene Acenaphthylene	<0.050 <0.050		0.050 0.050	ug/g	21-MAR-19 21-MAR-19	0.05 0.093	0.072	0.15	0.15
Acenaphtnylene	<0.050		0.050	ug/g	21-MAR-19 21-MAR-19	0.093	0.093	0.15	0.15
Anthracene Benzo(a)anthracene	<0.050		0.050	ug/g	21-MAR-19 21-MAR-19	0.05	0.16	0.67	0.87
Benzo(a)anthracene Benzo(a)pyrene	<0.050		0.050	ug/g	21-MAR-19 21-MAR-19	0.095	0.36	0.5	0.96
Benzo(a)pyrene Benzo(b)fluoranthene	<0.050		0.050	ug/g	21-MAR-19 21-MAR-19	0.05	0.3	0.3	0.3
Detection Limit for result exceeds Guideline Limit				ug/g		0.5	0.47	0.70	0.90

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T1/T2-SOIL-RPIICC-C

#1: T1-Soil-Agricultural or Other Property Use

#2: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

ANALYTICAL GUIDELINE REPORT

L2244494 CONTD

Page 6 of 8 22-APR-19 14:37 (MT)

Sample Details					Second Second		2	22-APR-19 1	4:37 (MT
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
L2244494-3 G4091-19-3 MW3 SAM 9									
Sampled By: CLIENT on 14-MAR-19 @ 10:30									
Matrix: SOIL						#1	#2	#3	#4
Polycyclic Aromatic Hydrocarbons									
Benzo(g,h,i)perylene	<0.050		0.050	ug/g	21-MAR-19	0.2	0.68	6.6	9.6
Benzo(k)fluoranthene	<0.050		0.050	ug/g	21-MAR-19	0.05	0.48	0.78	0.96
Chrysene	<0.050		0.050	ug/g	21-MAR-19	0.18	2.8	7	9.6
Dibenzo(ah)anthracene	<0.050		0.050	ug/g	21-MAR-19	0.1	0.1	0.1	0.1
Fluoranthene	< 0.050		0.050	ug/g	21-MAR-19	0.24	0.56	0.69	9.6
Fluorene	< 0.050		0.050	ug/g	21-MAR-19	0.05	0.12	62	62
Indeno(1,2,3-cd)pyrene	< 0.050		0.050	ug/g	21-MAR-19	0.11	0.23	0.38	0.76
1+2-Methylnaphthalenes	< 0.042		0.042	ug/g	21-MAR-19	0.05	0.59	0.99	30
1-Methylnaphthalene	<0.030		0.030	ug/g	21-MAR-19	0.05	0.59	0.99	30
2-Methylnaphthalene	<0.030		0.030	ug/g	21-MAR-19	0.05	0.59	0.99	30
Naphthalene	<0.013		0.013	ug/g	21-MAR-19	0.05	0.09	0.6	9.6
Phenanthrene	<0.046		0.046	ug/g	21-MAR-19	0.19	0.69	6.2	12
Pyrene	<0.050		0.050	ug/g	21-MAR-19	0.19	1	78	96
Surrogate: 2-Fluorobiphenyl	64.1		50-140	%	21-MAR-19				
Surrogate: p-Terphenyl d14	87.0		50-140	%	21-MAR-19				
								2	
		1							

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T1/T2-SOIL-RPIICC-C

#1: T1-Soil-Agricultural or Other Property Use

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

#2: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

#4: T2-Soil-Ind/Com/Commu Property Use (Coarse)

Reference Information

ALS Test Code	Matrix	Test Description	Method Reference***
3TX-511-HS-WT	Soil	BTEX-O.Reg 153/04 (July 2011)	SW846 8260
BTX is determined by e	extracting a so	il or sediment sample as received with	h methanol, then analyzing by headspace-GC/MS.
Analysis conducted in a	iccordance wi	th the Protocol for Analytical Methods	Used in the Assessment of Properties under Part XV.1 of the Environmenta
Protection Act (July 1, 2		······································	
F1-F4-511-CALC-WT	Soil	F1-F4 Hydrocarbon Calculated Parameters	CCME CWS-PHC, Pub #1310, Dec 2001-S
Analytical methods use	d for analysis	of CCME Petroleum Hydrocarbons ha	ave been validated and comply with the Reference Method for the CWS PHC
Hydrocarbon results are	e expressed o	n a dry weight basis.	
the gravimetric heavy h	ydrocarbons of (and F1 were	cannot be added to the C6 to C50 hyd	e two results must be used in any application of the CWS PHC guidelines an rocarbons. alue where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes ha
represents a result whe	re the sum of		the result where Naphthalene has been subtracted from F2. F3-PAH e, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, en subtracted from F3.
Unless otherwise qualif	ied, the follow	ing quality control criteria have been r	net for the F1 hydrocarbon range:
1. All extraction and ana 2. Instrument performan	alysis holding nce showing n	times were met.	n 30% of the response factor for toluene.
1. All extraction and ana 2. Instrument performan 3. Instrument performan	alysis holding nce showing C nce showing t	times were met. 210, C16 and C34 response factors w	the average of the C10, C16 and C34 response factors.
Fraction F1 is determin	ed by extracti		ved with methanol, then analyzing by headspace-GC/FID.
Analysis conducted in a Protection Act (July 1, 2 must be reported).	ccordance wi 2011), unless	th the Protocol for Analytical Methods a subset of the Analytical Test Group	Used in the Assessment of Properties under Part XV.1 of the Environmenta (ATG) has been requested (the Protocol states that all analytes in an ATG
2-F4-511-WT	Soil	F2-F4-O.Reg 153/04 (July 2011)	CCME Tier 1
Petroleum Hydrocarbon to remove polar organic	is (F2-F4 fract interferences	tions) are extracted from soil with 1:1 F2, F3, & F4 are analyzed by GC-F	hexane:acetone using a rotary extractor. Extracts are treated with silica gel ID. F4G-sg is analyzed gravimetrically.
Notes:			546
		bons that elute between nC10 and nC bons that elute between nC16 and nC	
		bons that elute between nC34 and nC	
4. F4G: Gravimetric He			-4
6. Where both F4 (C34-		carbons (F4G) after silica gel treatmen G-sg are reported for a sample, the land	nc. rger of the two values is used for comparison against the relevant CCME
guideline for F4. 7. F4G-sg cannot be ad	ded to the C6	to C50 hydrocarbon results to obtain	an estimate of total extractable hydrocarbons.
8. This method is valida		d quality control complex is available	upon request
		d quality control samples is available s milligrams per dry kilogram, unless	
			Used in the Assessment of Properties under Part XV.1 of the Environmenta (ATG) has been requested (the Protocol states that all analytes in an ATG
Protection Act (July 1, 2 must be reported).	(011), unless	a subset of the Analytical Test Group	

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including AI, Ba, Be, Cr, S, Sr, Ti, TI, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

Instrumental analysis is by Collision / Reaction Cell ICPMS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

Reference Information

METHYLNAPS-CALC-WT		ABN-Calculated Parameters	SW846 8270	
MOISTURE-WT	Soil	% Moisture	CCME PHC in Soil - Tier 1 (mod)
PAH-511-WT	Soil	PAH-O.Reg 153/04 (July 2011)	SW846 3510/8270	
with a mixture of methano	I and tolue	is fortified with deuterium-labelled sur ne. The extracts are concentrated ar ene, if also present in the sample.	rogates and a mechanical shaking nd analyzed by GC/MS. Results fo	y techniqueis used to extract the sample r benzo(b) fluoranthene may include
				erties under Part XV.1 of the Environmenta rotocol states that all analytes in an ATG
YLENES-SUM-CALC- /T	Soil	Sum of Xylene Isomer Concentrations	CALCULATION	
Total xylenes represents t	he sum of	o-xylene and m&p-xylene.		
Chain of Custody number 17-641549 The last two letters of the		t code(s) indicate the laboratory that (performed analytical analysis for th	at test. Refer to the list below:
Laboratory Definition Co	de Lal	boratory Location	Laboratory Definition Code	Laboratory Location
WT		S ENVIRONMENTAL - WATERLOO, TARIO, CANADA		
GLOSSARY OF REPO	RT TERM	S		
applicable tests, surrog objectives for surrogate mg/kg - milligrams per l mg/kg wwt - milligrams p mg/kg lwt - milligrams p mg/L - unit of concentr < - Less than. D.L The reporting lim	ates are liste as are liste kilogram bi per kilogra per kilograr ation base it.	re similar in behaviour to target analy dded to samples prior to analysis as a d there. ased on dry weight of sample am based on wet weight of sample n based on lipid-adjusted weight d on volume, parts per million.	a check on recovery. In reports that	r in environmental samples. For t display the D.L. column, laboratory
UNLESS OTHERWISE STATE	D, ALL SAMP	o the samples as received by the labo PLES WERE RECEIVED IN ACCEPTABLE COND reports with the DRAFT watermark a	DITION.	QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

			Quam	Ly Contro	Report			
		Workorder:	L224449	4 F	Report Date: 2	22-APR-19		Page 1 of 11
Client: Contact:	V.A. WOOD (GUELPH) 405 YORK ROAD GUELPH ON N1E 3H3 JOHN BROAD							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
				Quantor				Analyzou
BTX-511-HS-WT	Soil							
Batch F WG3008713-4	R4573668 DUP	WG3008713-3						
Benzene	Bol	<0.0068	<0.0068	RPD-NA	ug/g	N/A	40	20-MAR-19
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	20-MAR-19
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	20-MAR-19
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-19
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	20-MAR-19
WG3008713-2 Benzene	LCS		92.6		%		70-130	20-MAR-19
Ethylbenzene			89.3		%		70-130	20-MAR-19
m+p-Xylenes			89.1		%		70-130	20-MAR-19
o-Xylene			88.3		%		70-130	20-MAR-19
Toluene			91.3		%		70-130	20-MAR-19
WG3008713-1	МВ							
Benzene			<0.0068		ug/g		0.0068	20-MAR-19
Ethylbenzene			<0.018		ug/g		0.018	20-MAR-19
m+p-Xylenes			<0.030		ug/g		0.03	20-MAR-19
o-Xylene			<0.020		ug/g		0.02	20-MAR-19
Toluene			<0.080		ug/g		0.08	20-MAR-19
Surrogate: 1,4	1-Difluorobenzene		101.5		%		50-140	20-MAR-19
Surrogate: 4-I	Bromofluorobenzene		96.2		%		50-140	20-MAR-19
WG3008713-5 Benzene	MS	L2244298-3	96.7		%		60-140	20-MAR-19
Ethylbenzene			92.4		%		60-140	20-MAR-19
m+p-Xylenes			91.0		%		60-140	20-MAR-19
o-Xylene			90.4		%		60-140	20-MAR-19
Toluene			94.0		%		60-140	20-MAR-19
	C 1							
F1-HS-511-WT	Soil							
Batch F WG3008713-4 F1 (C6-C10)	R4573668 DUP	WG3008713-3 <5.0	<5.0	RPD-NA	ug/g	N/A	30	20-MAR-19
WG3008713-2 F1 (C6-C10)	LCS	(Seitherdington	101.0		%		80-120	20-MAR-19
WG3008713-1 F1 (C6-C10)	МВ		<5.0		ug/g		5	20-MAR-19
	4-Dichlorotoluene		111.6		%		60-140	20-MAR-19
WG3008713-6		L2244298-2						
1100000710-0								

Surrogate: 2-Bromobenzotrifluoride

Quality Control Report

11	Page 2 of		61-A9A-9	eport Date: 22	ы н	-224449	Workorder: l			
								ON NJE 3H3	402 YORK)
	bəzylanA	timiJ	QЧЯ	stinU	Qualifier	fluseA	Reference	Matrix		tesT
								lioS		TW-F18-SH-F3
	61-AAM-02	041-09		%		8.66	L2244298-2		SW 899829\$	Batch R ^a WG3008713-6
								lio2	0991291	E2-F4-511-WT
		02	V/N	5,511		012	MG3008331-5		905 1571550	MG3008331-3
	01 900 01	30 30	A\N A\I	6/6n	AN-099	01>	01>			F2 (C10-C16)
	01-AAM-01 01-AAM-01	30 30	A\N A\N	ճ/ɓn ճ/ɓn	АИ-ОЧЯ АИ-ОЧЯ	09> 09>	<20 <20			E4 (C34-C20) E3 (C16-C34)
		00				00	22		SOL	MG3008331-5
	01-AAM-01	80-120		%		9.86				F2 (C10-C16)
	01-AAM-01	80-120		%		3.201 5.501				E3 (C16-C34)
	01-AAM-01	80-120		%		9 [.] 701			am	MC3008331-1 E4 (C34-C20)
	01-9AM-01	01		6/ɓn		<١٥				F2 (C10-C16)
	01-9AM-01	09		6/6n		<20				F3 (C16-C34)
	01-9AM-01	09		6/6n		09>				F4 (C34-C50)
	01-9AM-01	071-09		%		2.48	MC3008334 E	otrifluoride		Surrogate: 2-Bi
	01-9AM-01	041-09		%		102.3	MG3008331-5		SW	E2 (C10-C19) MC3008331-4
	01-9AM-01	041-09		%		8.011				F3 (C16-C34)
	01-AAM-01	041-09		%		4.711				F4 (C34-C50)
									8846734	Batch R4
	20-AAM-02	30	A\N	ճ/ճո	АР-ИА	01>	<10 MG3003283-2		ana	E2 (C10-C19) MC3003283-3
	01-AAM-02	30	A\N	6/6n	AN-09A	<20	<20			F3 (C16-C34)
	01-AAM-02	30	A\N	6/6n	AN-099	<20	<20			F4 (C34-C50)
									SOL	WG3009783-2
	01-ЯАМ-0S 01-ЯАМ-0S	80-120 80-120		%		9.5e 8.9e				F2 (C16-C34) F2 (C16-C34)
	20-AAM-02	80-120		%		0.00				E4 (C34-C20)
	o	071.00							ЯM	MG3009783-1
	01-AAM-02	01		ճ/ճո		01>				F2 (C10-C16)
	01-9AM-02	09		6/ɓn		09>				F3 (C16-C34)
	01 900 05	091-09		% 6/6n		9 0 E		obisoriBisto		E4 (C34-C20)

%

G.68

01-94M-02

L

071-09

			Workorder:	L224449)4	Report	Date: 22-AF	PR-19		Page 3 of 11
Client:	405 YOR	DD (GUELPH) K ROAD ON N1E 3H3								
Contact:	JOHN BR	ROAD								
Test		Matrix	Reference	Result	Qualifier	Uni	ts	RPD	Limit	Analyzed
F2-F4-511-WT		Soil								
Batch WG3009783- F2 (C10-C16			WG3009783-5	97.5		%			60-140	20-MAR-19
F3 (C16-C34	4)			100.6		%			60-140	20-MAR-19
F4 (C34-C50))			105.0		%			60-140	20-MAR-19
MET-200.2-CCN	IS-WT	Soil								
Batch	R4573663									
WG3009844-			WT-CANMET-	TILL1						
Antimony (SI				112.3		%			70-130	20-MAR-19
Arsenic (As)				111.6		%			70-130	20-MAR-19
Barium (Ba)				113.7		%			70-130	20-MAR-19
Beryllium (Be	e)			105.3		%			70-130	20-MAR-19
Boron (B)				2.8		mg/	kg		0-8.2	20-MAR-19
Cadmium (C				112.9		%			70-130	20-MAR-19
Chromium (C	Cr)			108.6		%			70-130	20-MAR-19
Cobalt (Co)				107.8		%			70-130	20-MAR-19
Copper (Cu)				109.8		%			70-130	20-MAR-19
Lead (Pb)				112.6		%			70-130	20-MAR-19
Molybdenum	n (Mo)			110.6		%			70-130	20-MAR-19
Nickel (Ni)	,			107.8		%	1		70-130	20-MAR-19
Selenium (Se	e)			0.34		mg/	200 9 . 2		0.11-0.51	20-MAR-19
Silver (Ag)				0.25		mg/			0.13-0.33	20-MAR-19
Thallium (TI)				0.132		mg/	ĸg		0.077-0.18	20-MAR-19
Uranium (U)				107.2		%			70-130	20-MAR-19
Vanadium (V	/)			108.4		% %			70-130	20-MAR-19
Zinc (Zn)			11/020000445	104.5		70			70-130	20-MAR-19
WG3009844- Antimony (SI			WG3009844-5 0.21	0.20		ug/g	9	2.1	30	20-MAR-19
Arsenic (As)			4.10	3.82		ug/g		7.3	30	20-MAR-19
Barium (Ba)			153	116		ug/g		28	40	20-MAR-19
Beryllium (Be	e)		0.59	0.60		ug/g		1.0	30	20-MAR-19
Boron (B)			5.3	5.2		ug/g		1.3	30	20-MAR-19
Cadmium (C	d)		0.211	0.227		ug/g		7.6	30	20-MAR-19
Chromium (0	Cr)		21.7	21.2		ug/g		2.1	30	20-MAR-19
Cobalt (Co)			8.81	8.46		ug/g		4.0	30	20-MAR-19
Copper (Cu)			15.8	15.3		ug/g				20-MAR-19
							0			

			Workorder:	L2244494	6	Report Date:	22-APR-19		Page 4 of 11
Client:	405 YOR GUELPH	ON N1E 3H3							
Contact: Test	JOHN BR	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
			Reference	Result	Quanner	Units	RF D	Linint	Analyzeu
MET-200.2-CCM		Soil							
Batch WG3009844-6 Copper (Cu)	R4573663 6 DUP		WG3009844-5 15.8	15.3		ug/g	3.1	30	20-MAR-19
Lead (Pb)			25.7	25.7		ug/g	0.1	30 40	20-MAR-19
Molybdenum	(Mo)		0.47	0.46		ug/g	2.9	40	20-MAR-19
Nickel (Ni)	(1110)		17.1	16.8					
Selenium (Se			0.27	0.28		ug/g	1.6	30	20-MAR-19
Silver (Ag))		<0.10	<0.10		ug/g	4.5	30	20-MAR-19
Thallium (TI)					RPD-NA	ug/g	N/A	40	20-MAR-19
			0.136	0.140		ug/g	2.5	30	20-MAR-19
Uranium (U)			0.505	0.502		ug/g	0.5	30	20-MAR-19
Vanadium (V))		34.2	33.7		ug/g	1.5	30	20-MAR-19
Zinc (Zn)			95.5	87.3		ug/g	9.0	30	20-MAR-19
WG3009844-4 Antimony (Sb				107.0		%		80-120	20-MAR-19
Arsenic (As)	,			98.4		%		80-120	20-MAR-19
Barium (Ba)				101.6		%		80-120	20-MAR-19
Beryllium (Be)			97.2		%		80-120	20-MAR-19
Boron (B)	,			93.2		%		80-120	20-MAR-19
Cadmium (Co	d)			96.6		%		80-120	20-MAR-19
Chromium (C	(C)			98.4		%		80-120	20-MAR-19
Cobalt (Co)				96.3		%		80-120	20-MAR-19
Copper (Cu)				95.6		%		80-120	20-MAR-19
Lead (Pb)				98.0		%		80-120	20-MAR-19
Molybdenum	(Mo)			102.6		%		80-120	20-MAR-19
Nickel (Ni)				96.0		%		80-120	20-MAR-19
Selenium (Se)			99.3		%		80-120	20-MAR-19
Silver (Ag)				102.0		%		80-120	20-MAR-19
Thallium (TI)				97.7		%		80-120	20-MAR-19
Uranium (U)				99.0		%		80-120	20-MAR-19
Vanadium (V))			101.2		%		80-120	20-MAR-19
Zinc (Zn)				97.1		%		80-120	20-MAR-19
WG3009844-1 Antimony (Sb				<0.10		mg/kg		0.1	20-MAR-19
Arsenic (As)				<0.10		mg/kg		0.1	20-MAR-19
Barium (Ba)				<0.50		mg/kg		0.5	20-MAR-19
Beryllium (Be)			<0.10		mg/kg		0.1	20-MAR-19

			5			port Date: 22-AF	PR-19		Page 5 of 11		
Client: Contact:	405 YOR	ON N1E 3H3									
Test		Matrix	Reference	Result 0	Qualifier	Units	RPD	Limit	Analyzed		
MET-200.2-CCN	IS WT	Soil					1044000000	Annes Andreadada			
	R4573663	501									
WG3009844- Boron (B)				<5.0		mg/kg		5	20-MAR-19		
Cadmium (C	d)			<0.020		mg/kg		0.02	20-MAR-19		
Chromium (C				<0.50		mg/kg		0.5	20-MAR-19		
Cobalt (Co)	.,			<0.10		mg/kg		0.1	20-MAR-19		
Copper (Cu)				<0.50		mg/kg		0.5	20-MAR-19		
Lead (Pb)				<0.50		mg/kg		0.5	20-MAR-19		
Molybdenum	(Mo)			<0.10		mg/kg		0.1	20-MAR-19		
Nickel (Ni)				<0.50		mg/kg		0.5	20-MAR-19		
Selenium (Se	e)			<0.20		mg/kg		0.2	20-MAR-19		
Silver (Ag)	5.			<0.10		mg/kg		0.1	20-MAR-19		
Thallium (TI)				<0.050		mg/kg		0.05	20-MAR-19		
Uranium (U)				<0.050		mg/kg		0.05	20-MAR-19		
Vanadium (V				<0.20		mg/kg		0.2	20-MAR-19		
Zinc (Zn)				<2.0		mg/kg		2	20-MAR-19		
MOISTURE-WT		Soil									
Batch	R4568352										
WG3007826- % Moisture	8 DUP		L2244137-1 89.0	89.4		%	0.4	20	17-MAR-19		
WG3007826- % Moisture	7 LCS			100.2		%		90-110	17-MAR-19		
WG3007826- % Moisture	6 MB			<0.10		%		0.1	17-MAR-19		
PAH-511-WT		Soil									
Batch	R4572647										
WG3007282- 1-Methylnaph			WG3007282-5 <0.030	<0.030	RPD-NA	ug/g	N/A	40	20-MAR-19		
2-Methylnaph			<0.030	<0.030	RPD-NA	ug/g	N/A	40	20-MAR-19		
Acenaphther			<0.050	<0.050	RPD-NA	ug/g	N/A	40	20-MAR-19		
Acenaphthyle			<0.050	<0.050	RPD-NA	ug/g	N/A	40	20-MAR-19		
Anthracene	SILC		<0.050	<0.050	RPD-NA	ug/g	N/A	40	20-MAR-19		
Benzo(a)anth	racene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	20-MAR-19		
Benzo(a)pyre			<0.050	<0.050	RPD-NA	ug/g	N/A	40	20-MAR-19		
Benzo(a)pyre			<0.050	<0.050	RPD-NA	ug/g	N/A	40	20-MAR-19		
Benzo(g,h,i)p			<0.050	<0.050	RPD-NA	ug/g	N/A	40	20-MAR-19		
Denzo(g,n,i)	Ser yierie		-0.000	-0.000	AF D-NA	29,9		40	20-10/-11-13		

	Quality control Report								
		Workorder	L224449	4 F	Report Date: 2	22-APR-19		Page 6 of 1	
Client: Contact:	V.A. WOOD (GUELPH) 405 YORK ROAD GUELPH ON N1E 3H3 JOHN BROAD								
Test	Matrix	Deference	Beault	Qualifier	Unite	BBB	Linsit	Analyzad	
Test	Watrix	Reference	Result	Quaimer	Units	RPD	Limit	Analyzed	
PAH-511-WT	Soil								
Batch	R4572647		-						
WG3007282 Benzo(k)flue		WG3007282 <0.050	-5 <0.050	RPD-NA	ug/g	N/A	40	20-MAR-19	
Chrysene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	20-MAR-19	
Dibenzo(ah)	anthracene	<0.050	<0.050	RPD-NA	ug/g	N/A	40	20-MAR-19	
Fluoranthen		<0.050	<0.050	RPD-NA	ug/g	N/A	40	20-MAR-19	
Fluorene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	20-MAR-19	
Indeno(1,2,3	3-cd)pyrene	<0.050	<0.050	RPD-NA	ug/g	N/A	40	20-MAR-19	
Naphthalene		<0.013	<0.013	RPD-NA	ug/g	N/A	40	20-MAR-19	
Phenanthre		<0.046	<0.046	RPD-NA	ug/g	N/A	40	20-MAR-19	
Pyrene		<0.050	<0.040	RPD-NA	ug/g	N/A	40	20-MAR-19	
5	2 1 0 0	40.000	-0.000	RFD-NA	ug,g	19/75	40	20-MAR-19	
WG3007282 1-Methylnap			99.5		%		50-140	20-MAR-19	
2-Methylnap			95.9		%		50-140	20-MAR-19	
Acenaphthe			103.3		%		50-140	20-MAR-19	
Acenaphthy			94.2		%		50-140	20-MAR-19	
Anthracene			97.1		%		50-140	20-MAR-19	
Benzo(a)ant	thracene		98.2		%		50-140	20-MAR-19	
Benzo(a)pyr			98.5		%		50-140	20-MAR-19	
Benzo(b)flue			90.0		%		50-140	20-MAR-19	
Benzo(g,h,i)	perylene		93.3		%		50-140	20-MAR-19	
Benzo(k)fluo	oranthene		107.6		%		50-140	20-MAR-19	
Chrysene			97.7		%		50-140	20-MAR-19	
Dibenzo(ah)	anthracene		81.1		%		50-140	20-MAR-19	
Fluoranthen	e		93.9		%		50-140	20-MAR-19	
Fluorene			96.2		%		50-140	20-MAR-19	
Indeno(1,2,3	3-cd)pyrene		76.1		%		50-140	20-MAR-19	
Naphthalene	8		96.1		%		50-140	20-MAR-19	
Phenanthre	ne		100.1		%		50-140	20-MAR-19	
Pyrene			93.8		%		50-140	20-MAR-19	
WG3007282			<0.020				0.03	20 MAD 40	
1-Methylnap			<0.030		ug/g		0.03	20-MAR-19	
2-Methylnap			<0.030		ug/g		0.03	20-MAR-19	
Acenaphthe			<0.050		ug/g		0.05	20-MAR-19	
Acenaphthy	lene		<0.050		ug/g			20-MAR-19	
Anthracene			<0.050		ug/g		0.05	20-MAR-19	

Workorder:

Report Date: 22-APR-19 Page 7 of 11

Client:	V.A. WOOD (GUELPH)	
	405 YORK ROAD	
	GUELPH ON N1E 3H3	
Contact:	JOHN BROAD	

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil						2	
Batch R457	2647							
	18		-0.050				0.05	
Benzo(a)anthracer	ne		<0.050		ug/g		0.05	20-MAR-19
Benzo(a)pyrene			<0.050		ug/g		0.05	20-MAR-19
Benzo(b)fluoranthe			<0.050		ug/g		0.05	20-MAR-19
Benzo(g,h,i)peryle			<0.050		ug/g		0.05	20-MAR-19
Benzo(k)fluoranthe	ene		<0.050		ug/g		0.05	20-MAR-19
Chrysene			<0.050		ug/g		0.05	20-MAR-19
Dibenzo(ah)anthra	cene		<0.050		ug/g		0.05	20-MAR-19
Fluoranthene			<0.050		ug/g		0.05	20-MAR-19
Fluorene			<0.050		ug/g		0.05	20-MAR-19
Indeno(1,2,3-cd)py	rene		<0.050		ug/g		0.05	20-MAR-19
Naphthalene			<0.013		ug/g		0.013	20-MAR-19
Phenanthrene			<0.046		ug/g		0.046	20-MAR-19
Pyrene			<0.050		ug/g		0.05	20-MAR-19
Surrogate: 2-Fluor	obiphenyl		112.1		%		50-140	20-MAR-19
Surrogate: p-Terph	nenyl d14		105.4		%		50-140	20-MAR-19
WG3007282-4 N	IS	WG3007282-5						
1-Methylnaphthale	ne		97.8		%		50-140	20-MAR-19
2-Methylnaphthale	ne		96.3		%		50-140	20-MAR-19
Acenaphthene			104.2		%		50-140	20-MAR-19
Acenaphthylene			95.6		%		50-140	20-MAR-19
Anthracene			99.0		%		50-140	20-MAR-19
Benzo(a)anthracer	ne		105.1		%		50-140	20-MAR-19
Benzo(a)pyrene			99.9		%		50-140	20-MAR-19
Benzo(b)fluoranthe	ene		108.1		%		50-140	20-MAR-19
Benzo(g,h,i)peryle	ne		97.9		%		50-140	20-MAR-19
Benzo(k)fluoranthe	ene		98.8		%		50-140	20-MAR-19
Chrysene			101.3		%		50-140	20-MAR-19
Dibenzo(ah)anthra	cene		86.1		%		50-140	20-MAR-19
Fluoranthene			103.8		%		50-140	20-MAR-19
Fluorene			99.0		%		50-140	20-MAR-19
Indeno(1,2,3-cd)py	vrene		90.9		%		50-140	20-MAR-19
Naphthalene			95.1		%		50-140	20-MAR-19
Phenanthrene			100.4		%		50-140	20-MAR-19
1 Herianan ene								

				cy ooner				
		Workorder	: L224449)4	Report Date: 22	2-APR-19		Page 8 of 11
Client: Contact:	V.A. WOOD (GUE 405 YORK ROAD GUELPH ON N1 JOHN BROAD	87 s.						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
		Kelefence	Nesuit	Quanner	Units	RED	Linit	Analyzeu
PAH-511-WT	Soil							
Batch WG300774	R4575591 1-3 DUP	WG3007741	E					
	aphthalene	41.9	39.8		ug/g	5.2	40	21-MAR-19
2-Methyln:	aphthalene	55.4	52.7		ug/g	5.0	40	21-MAR-19
Acenaphth	nene	1.53	1.46		ug/g	4.6	40	21-MAR-19
Acenaphth	nylene	0.320	0.299		ug/g	6.8	40	21-MAR-19
Anthracen	e	0.638	0.437		ug/g	37	40	21-MAR-19
Benzo(a)a	nthracene	0.214	0.176		ug/g	19	40	21-MAR-19
Benzo(a)p	yrene	0.075	0.077		ug/g	3.3	40	21-MAR-19
Benzo(b)fl	uoranthene	0.071	0.059		ug/g	18	40	21-MAR-19
Benzo(g,h	,i)perylene	0.054	<0.050	RPD-NA	ug/g	N/A	40	21-MAR-19
Benzo(k)fl	uoranthene	<0.050	<0.050	RPD-NA	ug/g	N/A	40	21-MAR-19
Chrysene		0.383	0.346		ug/g	10	40	21-MAR-19
Dibenzo(a	h)anthracene	<0.050	<0.050	RPD-NA	ug/g	N/A	40	21-MAR-19
Fluoranthe		0.321	0.302		ug/g	6.1	40	21-MAR-19
Fluorene		1.52	1.47		ug/g	3.5	40	21-MAR-19
Indeno(1.2	2,3-cd)pyrene	<0.050	<0.050	RPD-NA	ug/g	N/A	40	21-MAR-19
Naphthale		32.6	30.8		ug/g	5.7	40	21-MAR-19
Phenanthr		3.67	3.42		ug/g	7.1	40	21-MAR-19
Pyrene		0.980	0.837		ug/g	16	40	21-MAR-19
WG300774	1-2 LCS				-33	10		21110 0 0 0
	aphthalene		95.4		%		50-140	21-MAR-19
2-Methylna	aphthalene		90.1		%		50-140	21-MAR-19
Acenaphth	iene		99.4		%		50-140	21-MAR-19
Acenaphth	ylene		91.9		%		50-140	21-MAR-19
Anthracen	e		96.5		%		50-140	21-MAR-19
Benzo(a)a	nthracene		97.1		%		50-140	21-MAR-19
Benzo(a)p	yrene		104.2		%		50-140	21-MAR-19
Benzo(b)fl	uoranthene		104.2		%		50-140	21-MAR-19
Benzo(g,h	,i)perylene		109.0		%		50-140	21-MAR-19
Benzo(k)fl	uoranthene		121.8		%		50-140	21-MAR-19
Chrysene			104.0		%		50-140	21-MAR-19
Dibenzo(a	h)anthracene		104.8		%		50-140	21-MAR-19
Fluoranthe	ene		103.0		%		50-140	21-MAR-19
Fluorene			93.1		%		50-140	21-MAR-19

Client: VA. WOOD (GUELPH) dos York ROAD Result Qualifier Units RPD Limit Analyzed Contait JOHN BROAD Soil			Workorder:	L224449	4	Report Date: 2	2-APR-19		Page 9 of 11
PAH-511-WT Soil Batch R4575591 WG3007741-2 LCS Indeno(12.32-oDjyrene 90.8 % 50.140 21-MAR-19 Naphthalene 99.5 % 50.140 21-MAR-19 Phenanthrene 101.7 % 50.140 21-MAR-19 Pyrene 98.8 % 50.140 21-MAR-19 WG3007741-1 MB - 21-MAR-19 21-MAR-19 2-MetryInaphthalene <0.030 ug/g 0.03 21-MAR-19 2-MetryInaphthalene <0.050 ug/g 0.05 21-MAR-19 Acenaphthylene <0.050 ug/g 0.05 21-MAR-19 Acenaphthylene <0.050 ug/g 0.05 21-MAR-19 Benzo(a)anthracene <0.050 ug/g 0.05 21-MAR-19 Benzo(a)mituranthene <0.050 ug/g 0.05 21-MAR-19 Benzo(a)mituranthene <0.050 ug/g 0.05 21-MAR-19 Dibenzo(a)hantivacene <0.050 <t< th=""><th></th><th>405 YORK ROAD GUELPH ON N1E 3H3</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		405 YORK ROAD GUELPH ON N1E 3H3							
PAH-511-WT Soil Batch R4575591 WG3007741-2 LCS Indeno(12.32-oDjyrene 90.8 % 50.140 21-MAR-19 Naphthalene 99.5 % 50.140 21-MAR-19 Phenanthrene 101.7 % 50.140 21-MAR-19 Pyrene 98.8 % 50.140 21-MAR-19 WG3007741-1 MB - 21-MAR-19 21-MAR-19 2-MetryInaphthalene <0.030 ug/g 0.03 21-MAR-19 2-MetryInaphthalene <0.050 ug/g 0.05 21-MAR-19 Acenaphthylene <0.050 ug/g 0.05 21-MAR-19 Acenaphthylene <0.050 ug/g 0.05 21-MAR-19 Benzo(a)anthracene <0.050 ug/g 0.05 21-MAR-19 Benzo(a)mituranthene <0.050 ug/g 0.05 21-MAR-19 Benzo(a)mituranthene <0.050 ug/g 0.05 21-MAR-19 Dibenzo(a)hantivacene <0.050 <t< th=""><th></th><th></th><th>Reference</th><th>Result</th><th>Qualifier</th><th>Units</th><th>RPD</th><th>Limit</th><th>Analyzed</th></t<>			Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Bath R4575591 WG3007741-2 CS Naphthalene 99.5 % 50-140 21-MAR-19 Naphthalene 99.5 % 60-140 21-MAR-19 Prenamthene 101.7 % 60-140 21-MAR-19 Pyrene 88.8 60-140 21-MAR-19 WG3007741-1 MB 0.030 ug/g 0.03 21-MAR-19 McMathyhaphthalene -0.030 ug/g 0.05 21-MAR-19 Acenaphthylene -0.050 ug/g 0.05 21-MAR-19 Acenaphthylene -0.050 ug/g 0.05 21-MAR-19 Benzo(a)phracene -0.050 ug/g 0.05 21-MAR-19 Benzo(a)phracenthene -0.050 ug/g 0.05 21-MAR-19 Ben									
Naphthalen90.8%%%0.40021-MAR-19Naphthalen90.5%%0.40021-MAR-19Plenanthrene101.7%%0.40021-MAR-19Pyrene90.5%%0.40021-MAR-19Pyrene0.0371%%0.40021-MAR-19Pyrene0.0371%%0.40021-MAR-192.Methymaphthalene0.030ug/g0.0321-MAR-192.Methymaphthalene0.0301%21-MAR-192.Acenaphthylene0.050ug/g0.0521-MAR-19Acenaphthalene0.050ug/g0.5021-MAR-19Benzo(s)nthracene0.050ug/g0.5021-MAR-19Benzo(s)nthracene0.050ug/g0.5021-MAR-19Benzo(s)nthracene0.050ug/g0.5021-MAR-19Benzo(s)nthracene0.050ug/g0.5021-MAR-19Benzo(s)nthracene0.050ug/g0.5021-MAR-19Benzo(s)nthracene0.050ug/g0.5021-MAR-19Benzo(s)nthracene0.050ug/g0.5021-MAR-19Benzo(s)nthracene0.050ug/g0.5021-MAR-19Benzo(s)nthracene0.050ug/g0.5021-MAR-19Benzo(s)nthracene0.050ug/g0.5021-MAR-19Horence0.050ug/g0.5021-MAR-19Picoranthene0.050ug/g0.5021-MAR-19Naphthalene0.051									
Indenq(1.2,3-cd)pyrene90.8%50-14021-MAR-19Naphthalene90.5%50-14021-MAR-19Pyrena98.8%50-14021-MAR-19Pyrene98.8%50-14021-MAR-19J-Mathylnaphthalene<0.030									
Phenathrene 101.7 % 50.14.0 21-MAR-19 Pyrene 98.8 % 50.14.0 21-MAR-19 WG3007741-1 MB				90.8		%		50-140	21-MAR-19
Pyrene98.8%%50-14021-MAR-19''	Naphthale	ene		99.5		%		50-140	21-MAR-19
WordsourceUg/g0.0321-MAR-191-Methylnaphthalene<0.030	Phenanth	rene		101.7		%		50-140	21-MAR-19
1-Methylnaphthalene<0.030ug/g0.0321-MAR-19Acenaphthene<0.050	Pyrene			98.8		%		50-140	21-MAR-19
2-Methylnaphthalene Urden Urden <thurden< th=""></thurden<>	WG300774	41-1 MB							
Acenaphthene 0.050 ug/g 0.05 21-MAR-19 Acenaphthylene 0.050 ug/g 0.05 21-MAR-19 Anthracene 0.050 ug/g 0.05 21-MAR-19 Benzo(a)prine 0.050 ug/g 0.05 21-MAR-19 Benzo(a)prine 0.050 ug/g 0.05 21-MAR-19 Benzo(b)fluoranthene 0.050 ug/g 0.05 21-MAR-19 Benzo(b)fluoranthene 0.050 ug/g 0.05 21-MAR-19 Benzo(b)fluoranthene 0.050 ug/g 0.05 21-MAR-19 Benzo(k)fluoranthene 0.050 ug/g 0.05 21-MAR-19 Benzo(k)fluoranthene <0.050	1-Methyln	aphthalene		<0.030		ug/g			21-MAR-19
Accenaphthylene 0.050 ug/g 0.050 21-MAR-19 Anthracene <0.050	2-Methyln	aphthalene		<0.030		ug/g		0.03	21-MAR-19
Anthracene <0.050	Acenapht	hene		<0.050		ug/g		0.05	21-MAR-19
Benzo(a)anthracene -0.050 ug/g 0.05 21-MAR-19 Benzo(a)pyrene -0.050 ug/g 0.05 21-MAR-19 Benzo(b)fluoranthene -0.050 ug/g 0.05 21-MAR-19 Benzo(b)fluoranthene -0.050 ug/g 0.05 21-MAR-19 Benzo(b)fluoranthene -0.050 ug/g 0.05 21-MAR-19 Benzo(k)fluoranthene -0.050 ug/g 0.05 21-MAR-19 Dibenzo(a)hanthracene -0.050 ug/g 0.05 21-MAR-19 Dibenzo(a)hanthracene -0.050 ug/g 0.05 21-MAR-19 Fluoranthene -0.050 ug/g 0.05 21-MAR-19 Fluoranthene -0.050 ug/g 0.05 21-MAR-19 Indeno(1,2,3-cd)pyrene -0.050 ug/g 0.05 21-MAR-19 Naphthalene -0.050 ug/g 0.05 21-MAR-19 Surrogate: -Fluorobiphenyl 71.2 % 0.046 21-MAR-19 Surrogate: -Fluorobiphenyl d14 102.2 % 50-140 21-MAR-19 Surogate: -Fluorobiphenyl d14	Acenapht	hylene		<0.050		ug/g		0.05	21-MAR-19
Benzo(a)pyrene0.050ug/g0.0521-MAR-19Benzo(b)fluoranthene<0.050	Anthracer	ie		<0.050		ug/g		0.05	21-MAR-19
Benzo(b)fluoranthene <.0.050 ug/g 0.05 21-MAR-19 Benzo(b)fluoranthene <0.050	Benzo(a)a	anthracene		<0.050		ug/g		0.05	21-MAR-19
Benzo(g,h,i)perylene <0.050 ug/g 0.05 21-MAR-19 Benzo(g,h,i)perylene <0.050	Benzo(a)p	byrene		<0.050		ug/g		0.05	21-MAR-19
Benzo(k)fluoranthene <0.050	Benzo(b)f	luoranthene		<0.050		ug/g		0.05	21-MAR-19
Chargene < 0.050 ug/g 0.05 21 -MAR-19 Dibenzo(ah)anthracene < 0.050 ug/g 0.05 21 -MAR-19 Fluoranthene < 0.050 ug/g 0.05 21 -MAR-19 Fluoranthene < 0.050 ug/g 0.05 21 -MAR-19 Indeno(1,2,3-cd)pyrene < 0.050 ug/g 0.05 21 -MAR-19 Naphthalene < 0.050 ug/g 0.05 21 -MAR-19 Phenanthrene < 0.046 ug/g 0.046 21 -MAR-19 Pyrene < 0.050 ug/g 0.046 21 -MAR-19 Surrogate: 2-Fluorobiphenyl 71.2 40 0.050 21 -MAR-19 Surrogate: p-Terphenyl d14 102.2 $\%$ $50-140$ 21 -MAR-19 Surrogate: p-Terphenyl d14 102.2 $\%$ $50-140$ 21 -MAR-19 Surrogate: p-Terphenyl d14 102.2 $\%$ $50-140$ 21 -MAR-19 Acenaphthalene N/A $MS-B$ $\%$ $ 21$ -MAR-19 Acenaphthylene 80.8 $\%$ 21 -MAR-19	Benzo(g,h	i,i)perylene		<0.050		ug/g		0.05	21-MAR-19
Dibenzo(ah)anthracene 0.050 ug/g 0.05 21-MAR-19 Fluoranthene <0.050	Benzo(k)f	luoranthene		<0.050		ug/g		0.05	21-MAR-19
Flooranthene 0.050 ug/g 0.05 21 -MAR-19Fluorene 0.050 ug/g 0.05 21 -MAR-19Indeno(1,2,3-cd)pyrene 0.050 ug/g 0.05 21 -MAR-19Naphthalene 0.013 ug/g 0.013 21 -MAR-19Phenanthrene 0.046 ug/g 0.046 21 -MAR-19Pyrene 0.050 ug/g 0.046 21 -MAR-19Surrogate: 2-Fluorobiphenyl 71.2 ug/g 0.05 21 -MAR-19Surrogate: p-Terphenyl d14 102.2 9 $50-140$ 21 -MAR-19VG3007741-4MSMS-B $\%$ $50-140$ 21 -MAR-192-Methylnaphthalene N/A MS-B $\%$ 21 -MAR-192-Methylnaphthalene N/A MS-B $\%$ 21 -MAR-192-Methylnaphthalene N/A MS-B $\%$ 21 -MAR-19Acenaphthene N/A MS-B $\%$ 21 -MAR-19Acenaphthene 0.63 106.3 $\%$ $50-140$ 21 -MAR-19Acenaphthylene 0.63 $\%$ $50-140$ 21 -MAR-19Acenaphthylene 0.63 $\%$ $50-140$ 21 -MAR-19Acenaphthylene 0.63 $\%$ $50-140$ 21 -MAR-19Benzo(a)anthracene 105.1 $\%$ $50-140$ 21 -MAR-19Benzo(a)pyrene 106.7 $\%$ $50-140$ 21 -MAR-19Benzo(a)pyrene 106.7 $\%$ $50-140$ 21 -MAR-19	Chrysene			<0.050		ug/g		0.05	21-MAR-19
Fluorene<0.050ug/g0.0521-MAR-19Indeno(1,2,3-cd)pyrene<0.050	Dibenzo(a	h)anthracene		<0.050		ug/g		0.05	21-MAR-19
Indeno(1,2,3-cd)pyrene <0.050	Fluoranthe	ene		<0.050		ug/g		0.05	21-MAR-19
Nachtquige Geppend < 0.013 ug/g 0.013 21 -MAR-19Naphthalene < 0.046 ug/g 0.046 21 -MAR-19Phenanthrene < 0.050 ug/g 0.05 21 -MAR-19Pyrene < 0.050 ug/g 0.05 21 -MAR-19Surrogate: 2-Fluorobiphenyl 71.2 $\%$ 50 -140 21 -MAR-19Surrogate: p-Terphenyl d14 102.2 $\%$ 50 -140 21 -MAR-19 $VG3007741-4$ MSWG3007741-5 N/A $MS-B$ $\%$ $ 21$ -MAR-192-Methylnaphthalene N/A $MS-B$ $\%$ $ 21$ -MAR-192-Methylnaphthalene N/A $MS-B$ $\%$ $ 21$ -MAR-19Acenaphthene N/A $MS-B$ $\%$ $ 21$ -MAR-19Acenaphthylene 80.8 $ 21$ -MAR-19 21 -MAR-19Anthracene 106.3 $ \%$ 50 -140 21 -MAR-19Benzo(a)anthracene 106.7 $\%$ $\%$ 50 -140 21 -MAR-19Benzo(a)pyrene 106.7 $\%$ $\%$ 50 -140 21 -MAR-19	Fluorene			<0.050		ug/g		0.05	21-MAR-19
Phenanthrene<0.046ug/g0.04621-MAR-19Pyrene<0.050	Indeno(1,2	2,3-cd)pyrene		<0.050		ug/g		0.05	21-MAR-19
Pyrene<0.050ug/g0.0521-MAR-19Surrogate: 2-Fluorobiphenyl71.2%50-14021-MAR-19Surrogate: p-Terphenyl d14102.2%50-14021-MAR-19 $MG3007741-4$ MSWG3007741-5N/AMS-B%-21-MAR-191-MethylnaphthaleneN/AMS-B%-21-MAR-192-MethylnaphthaleneN/AMS-B%-21-MAR-19AcenaphtheneN/AMS-B%-21-MAR-19Acenaphthylene80.8%50-14021-MAR-19Anthracene106.3%50-14021-MAR-19Benzo(a)anthracene105.1%50-14021-MAR-19Benzo(a)pyrene106.7%50-14021-MAR-19	Naphthale	ene		<0.013		ug/g		0.013	21-MAR-19
Surrogate: 2-Fluorobiphenyl71.2%50-14021-MAR-19Surrogate: p-Terphenyl d14102.2%50-14021-MAR-19WG3007741-4MSWG3007741-5%21-MAR-191-MethylnaphthaleneN/AMS-B%-21-MAR-192-MethylnaphthaleneN/AMS-B%-21-MAR-19AcenaphtheneN/AMS-B%-21-MAR-19Acenaphthylene80.8%50-14021-MAR-19Anthracene106.3%50-14021-MAR-19Benzo(a)anthracene105.1%50-14021-MAR-19Benzo(a)pyrene106.7%50-14021-MAR-19	Phenanth	rene		<0.046		ug/g		0.046	21-MAR-19
Surrogate: p-Terphenyl d14 102.2 % 50-140 21-MAR-19 WG3007741-4 MS WG3007741-5 MK MS-B % - 21-MAR-19 1-Methylnaphthalene N/A MS-B % - 21-MAR-19 2-Methylnaphthalene N/A MS-B % - 21-MAR-19 Acenaphthene N/A MS-B % - 21-MAR-19 Acenaphthene N/A MS-B % - 21-MAR-19 Acenaphthylene 80.8 % - 21-MAR-19 Anthracene 106.3 % 50-140 21-MAR-19 Benzo(a)anthracene 105.1 % 50-140 21-MAR-19 Benzo(a)pyrene 106.7 % 50-140 21-MAR-19	Pyrene			<0.050		ug/g		0.05	21-MAR-19
WG3007741-4 MS WG3007741-5 WG3007741-5 MA MS-B % - 21-MAR-19 21-MAR-19	Surrogate	: 2-Fluorobiphenyl		71.2		%		50-140	21-MAR-19
1-MethylnaphthaleneN/AMS-B%-21-MAR-192-MethylnaphthaleneN/AMS-B%-21-MAR-19AcenaphtheneN/AMS-B%-21-MAR-19Acenaphthylene80.8%50-14021-MAR-19Anthracene106.3%50-14021-MAR-19Benzo(a)anthracene105.1%50-14021-MAR-19Benzo(a)pyrene106.7%50-14021-MAR-19	Surrogate	: p-Terphenyl d14		102.2		%		50-140	21-MAR-19
Acenaphthene N/A MS-B % - 21-MAR-19 Acenaphthylene 80.8 % 50-140 21-MAR-19 Anthracene 106.3 % 50-140 21-MAR-19 Benzo(a)anthracene 105.1 % 50-140 21-MAR-19 Benzo(a)pyrene 106.7 % 50-140 21-MAR-19			WG3007741-5	N/A	MS-B	%		-	21-MAR-19
Acenaphthylene80.8%50-14021-MAR-19Anthracene106.3%50-14021-MAR-19Benzo(a)anthracene105.1%50-14021-MAR-19Benzo(a)pyrene106.7%50-14021-MAR-19	2-Methyln	aphthalene		N/A	MS-B	%		-	21-MAR-19
Anthracene106.3%50-14021-MAR-19Benzo(a)anthracene105.1%50-14021-MAR-19Benzo(a)pyrene106.7%50-14021-MAR-19	Acenapht	hene		N/A	MS-B	%		-	21-MAR-19
Benzo(a)anthracene 105.1 % 50-140 21-MAR-19 Benzo(a)pyrene 106.7 % 50-140 21-MAR-19	Acenapht	hylene		80.8		%		50-140	21-MAR-19
Benzo(a)pyrene 106.7 % 50-140 21-MAR-19	Anthracer	ne		106.3		%		50-140	21-MAR-19
	Benzo(a)a	anthracene		105.1		%		50-140	21-MAR-19
Benzo(b)fluoranthene 95.6 % 50-140 21-MAR-19	Benzo(a)p	byrene		106.7		%		50-140	21-MAR-19
	Benzo(b)f	luoranthene		95.6		%		50-140	21-MAR-19

		Workorder:	L2244494	la l	Report Date:	22-APR-19		Page 10 of 11
Client:	V.A. WOOD (GUELPH) 405 YORK ROAD GUELPH ON N1E 3H3							
Contact:	JOHN BROAD							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch I	R4575591							
WG3007741-4		WG3007741-5						
Benzo(g,h,i)p	erylene		98.8		%		50-140	21-MAR-19
Benzo(k)fluor	anthene		100.8		%		50-140	21-MAR-19
Chrysene			88.3		%		50-140	21-MAR-19
Dibenzo(ah)a	Inthracene		93.5		%		50-140	21-MAR-19
Fluoranthene			112.7		%		50-140	21-MAR-19
Fluorene			N/A	MS-B	%		-	21-MAR-19
Indeno(1,2,3-	cd)pyrene		110.0		%		50-140	21-MAR-19
Naphthalene			N/A	MS-B	%		-	21-MAR-19
Phenanthrene	e		N/A	MS-B	%		-	21-MAR-19
Pyrene			N/A	MS-B	%		-	21-MAR-19

Report Date: 22-APR-19

Workorder: L2244494

Client: V.A. WOOD (GUELPH) 405 YORK ROAD GUELPH ON N1E 3H3 Contact: JOHN BROAD

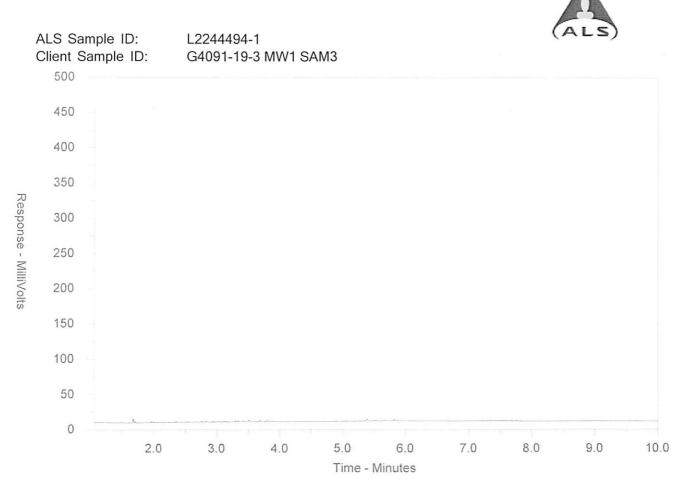
Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
~ 10	Calibratian Varification Chandard

CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.


Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

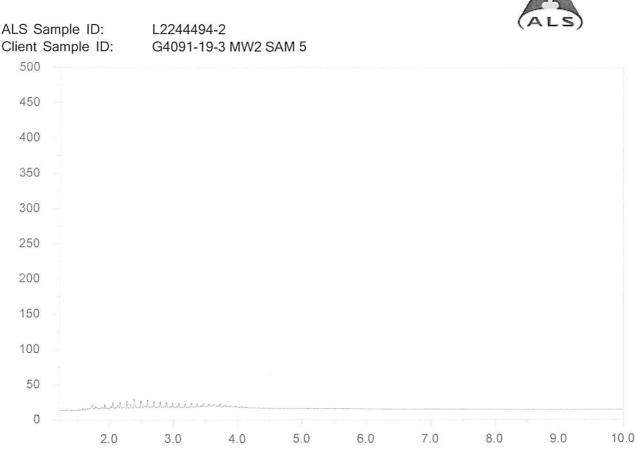
ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

∢ —F2-	*	-F3 F4	\rightarrow	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasoline 🔸 🛛 🖌		← N	Notor Oils/Lube Oils/Grease	,
	-Diesel/Jet F	uels →		


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <u>www.alsglobal.com</u>.

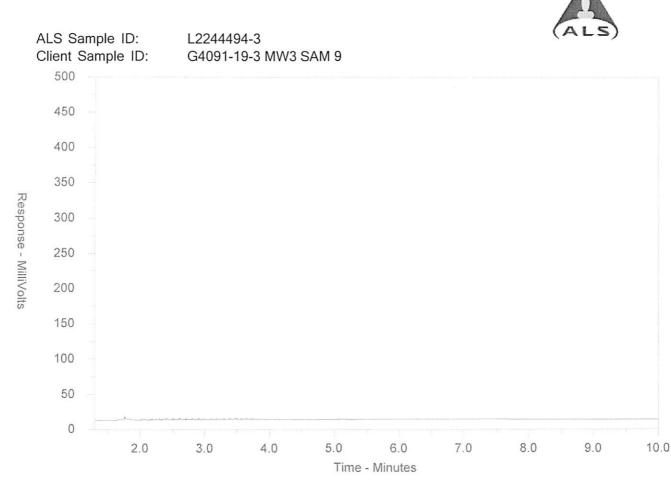
CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

Time - Minutes

←F2-	*	-F3 F4	\rightarrow	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasoline 🔸 🛛 🖌 M		← N	Motor Oils/Lube Oils/Grease	•
	– Diesel/Jet I	Fuels ->		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <u>www.alsglobal.com</u>.

Printed on 3/19/2019 6:16:49 PM

Response - MilliVolts

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

←F2-	*<	-F3	\rightarrow	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasoline →		← N	Motor Oils/Lube Oils/Grease	•
◄	– Diesel/Jet F	uels →		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <u>www.alsglobal.com</u>.

eport To	www.alsglobal.com Contact and company name below will appea		· ·	Bon out Commod		·	r:	8-1			- 10-1-00		nto et s	A.M	<u> 10.0001</u>		COD TA	Ts (surc			
ompany:		**	Select Report Fo	Report Format		DD (DIGITAL)	-		gular	_			-							nay app	ipiy)
ontact:	V.A. Wood (Guetph)	100.	-	C) Report with Repo				_	guiar (9 (P4-2		ᅀᆜᢟ		_		as day (urcharges	зрргу		
hone:	John Broad 519 - 763 - 3101			its to Criteria on Report			Ĕ	F -	y (P3-2	-	H					-	•				
	Company address below will appear on the final	report	Select Distributio				24		y (P2-(-	H							tory holi y apply)		200%	6
treet:	YOS York Rd			johnb @1			<u> </u>				med for :	12 E8P TA		<u> </u>				mm-yy l	-		—
ity/Province:			Email 2	Jon D (m)	v awawa	reibu . cow						ding to the					_	HAT YY			
ostal Code:	Suelph/ON		Email 3		· · ·	·····	-			pettonn			_		s Requ					<u> </u>	
voice To	Same as Report To			Invoice Dis	tribution		-		to	dicate F	iborod (i	1 Porter					(P) below			m	T
			Select Involce Di			FAX	<u> </u>						1			1			-	4 /	inlesse nervide further detail.
	Copy of Invoice with Report	_["0		office @ vo								_			┝──┥	\vdash	┢━┿	╾┾╴		1	
ompany: ontact;			Email 2	STTICE OU VE	<u>zweenche</u>	ipro com															
011000.	Project Information			il and Gas Require	d Fields (client u	60)										.					4
LS Account #			AFE/Cost Center.		PO#																
	1091-19-3		Major/Miner Cods:		Routing Code:															1 ·	
0/AFE:		<u> </u>	Requisitioner:				1			7									}		
SD:	· · · · · · · · · · · · · · · · · · ·	<u>·</u> ·	Location:				5	\mathbf{x}		۹.	5				1					НОГР	
					1	~	12	TEX	_	1	그									18	
ALS Lab Wa	ork Order # (lab uso only): 2824	4494 山	ACS Contact:		Sampler:		metals	8	Ľ	\mathbb{N}	8									ES ON	
ALS Sample #		and/or Coordinates		Date	Time	Sample Type	1. 2													SAMPLES	
(lab use only)	(The seeinpeen the s			(dd-mmm-yy)	(hh:mm)															SA	
1	G4091-19-3	MWI SA	M 3	140319	0:30	SOIL	X	X	X	\times	X										
۵	G4091-19-3 M	WQ SAA	5	14 03 19	10:30	SOIL		X	X	$ \mathbf{X} $	X	. I									Г
ົ ົ	G4091-19-3 MI		a	19 03 19	10:30	SOIL	X	X	X	\mathbf{X}	\mathbf{X}						\square				Г
							1			~~~~			+						+		1-
		<u> </u>					+						+	-	++		┝──┼╴		+		╋
· · · · ·														_	+ - +	<u> </u>	┝╼╋	-+-	. 	 	┢
	· · · · · · · · · · · · · · · · · · ·		- ···					<u> </u>					_	- · ·	+	\square	\vdash	\rightarrow	——	\square	
• <u> </u>					-										\square		\square				╇
• • •	· .	4													ŀ						
•												•				\square					Γ
			•														\square				Г
······	······································							1										-	+		t
	···			· · ·			+								┢╌┤		┟──┼╴		+	╄──┦	┢
		Special Instructions /		1		han the balance		L		<u>نـــــا</u>	ŚÅ						(lab us				ㅗ
	ing Water (DW) Samples' (cliont use)	Special instructions /		etronic COC only)	ang on the grop-o	own list delow	Froze						_	rvation	ر بار بر بر بر بر ال	Yes			No		
Drinki	ken from a Regulated DW System?						Ice P				ubes					Yes	ō		No		
	YES NO	TLLI		T 115 D			Cooli	ing Init		Π.					-		_				
re samples tak		ו מסוף ו	and	Table 2			<u> </u>		INIITIAL	C001	RTEM	ERATURI	s•c	`	Τ		FINAL CO	OOLER TE	MPERAT	URES *C	č
re samples tak	r human consumption/ use?								1						Π	1.0	N 1		1		T
tre samples tak	r human consumption/ use?		-1																1		
Are samples tak	r human consumption/ use? YES NO	•	[*] . . .	INITIAL SHIPMEN	IT RECEPTION (ab use only)			┝┼	-		F	VAL SI	IPMEN				use on		لب	L
Are samples tak	r human consumption/ use?	•	Received by:	INITIAL SHIPMEN	TRECEPTION (I	ab use only)	Time:	:	TROCE	ived b	<u>/</u>	FI	VAL SI	Date	NT REC	CEPTK		use on	<u></u>	 Тіпје:	ـــــ جرج

•

V.A. WOOD (GUELPH) ATTN: JOHN BROAD 405 YORK ROAD GUELPH ON N1E 3H3

Date Received: 19-MAR-19 Report Date: 22-APR-19 14:35 (MT) Version: FINAL REV. 3

Client Phone: 519-763-3101

Certificate of Analysis

Lab Work Order #:L2246201Project P.O. #:NOT SUBMITTEDJob Reference:G4091-19-3C of C Numbers:17-641551Legal Site Desc:Hermitian

lyttarses

Emily Hansen Account Manager [This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 288 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Environmental 💭

ANALYTICAL GUIDELINE REPORT

L2246201 CONTD

Page 2 of 5 22-APR-19 14:35 (MT)

Groups Analyze Result Cualifier D.L. Units Analyzed Guideline Limits L2246201-1 G491-19-3 MW3, SAM 3 Sampled By: LLENT on 13-MAR-19 (g) 15.00 ift #1 #2 #3 Physical Tests Conductivity 0.240 0.0040 mS/cm 25-MAR-19 0.57 0.7 % Conductivity 0.240 0.0050 ug/g 22-MAR-19 0.051 0.061 0.050 0.050 0.050 0.050	
Matrix: SOIL #1 #2 #3 Physical Tests 0.0040 mS/cm 25-MAR-19 0.47 0.57 0.7 % Motisure 3.58 0.10 % 22-MAR-19 0.47 0.57 0.7 Cyanides Cyanide, Weak Acid Diss <0.050	
Mail Odd Mail	#4
Conductivity 0.240 0.0040 mS/cm 25-MAR-19 0.47 0.57 0.7 % Moisture 3.58 0.10 % 22-MAR-19 0.51 0.051 0.051 Cyanides 0.050 ug/g 22-MAR-19 0.51 0.051 0.051 Saturated Paste Extractables 0.92 0.10 SAR 25-MAR-19 1 2.4 5 Saturated Paste Extractables 18.4 0.50 mg/L 25-MAR-19 1 2.4 5 Sodium (Na) 8.12 0.50 mg/L 25-MAR-19 1 1.3 7.5 Arismony (Sb) <1.0	#4
% Moisture 3.58 0.10 % 22.4MR-19 Mathematical field of thematical field of the	
pH Cyanides Cyanide, Weak Acid Diss 8.13 0.10 pH units 24.MAR-19 L L L Gyanide, Weak Acid Diss <0.050	1.4
Cyanides -<	11.199-1276
Cyanide, Weak Acid Diss <0.050 ug/g 22-MAR-19 0.051 0.051 0.051 SAR 0.92 0.10 SAR 25-MAR-19 1 2.4 5 Calcium (Ca) 18.4 0.50 mg/L 25-MAR-19 1 2.4 5 Magnesium (Mg) 8.12 0.50 mg/L 25-MAR-19 1 1.3 7.5 Antimony (Sb) <1.0	
Saturated Paste Extractables 0.92 0.10 SAR Calcium (Ca) 1 2.4 5 Calcium (Ca) 18.4 0.50 mg/L 25-MAR-19 1 2.4 5 Magnesium (Mg) 8.12 0.50 mg/L 25-MAR-19 1 1.3 7.5 Antimony (Sb) <1.0	
SAR 0.92 0.10 SAR 25-MAR-19 1 2.4 5 Calcium (Ca) 18.4 0.50 mg/L 25-MAR-19 1 1.3 7.5 Magnesium (Mg) 8.12 0.50 mg/L 25-MAR-19 1 1.3 7.5 Metals - 1.0 ug/g 25-MAR-19 1 1.8 7.5 Antimony (Sb) <1.0	0.051
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Magnesium (Mg) Sodium (Na) 8.12 18.8 0.50 0.50 mg/L mg/L 25-MAR-19 25-MAR-19 L L Antimony (Sb) <1.0	12
Sodium (Na) Metals 18.8 0.50 mg/L 25-MAR-19 L L Antimony (Sb) <1.0	
Metals Image: constraint of the section o	
Antimony (Sb) <1.0	
Arsenic (As) 2.7 1.0 ug/g 25-MAR-19 11 18 18 Barium (Ba) 13.4 1.0 ug/g 25-MAR-19 210 220 390 Beryllium (Be) <0.50	
Barium (Ba) 13.4 1.0 ug/g 25-MAR-19 210 220 390 Beryllium (Be) <0.50	40
Beryllium (Be) <0.50 ug/g 25-MAR-19 2.5 2.5 4 Boron (B) 5.2 5.0 ug/g 25-MAR-19 36 36 120 Boron (B), Hot Water Ext. <0.10	18
Boron (B) 5.2 5.0 ug/g 25-MAR-19 36 36 120 Boron (B), Hot Water Ext. <0.10	670
Boron (B), Hot Water Ext. <0.10 ug/g 25-MAR-19 36 36 1.5 Cadmium (Cd) <0.50	8
Cadmium (Cd) <0.50 0.50 ug/g 25-MAR-19 1 1.2 1.2 Chromium (Cr) 7.2 1.0 ug/g 25-MAR-19 67 70 160 Cobalt (Co) 2.3 1.0 ug/g 25-MAR-19 19 21 22 Copper (Cu) 14.8 1.0 ug/g 25-MAR-19 667 70 160 Lead (Pb) 14.8 1.0 ug/g 25-MAR-19 62 92 140 Lead (Pb) 14.5 1.0 ug/g 25-MAR-19 6.2 92 6.9 Mercury (Hg) <0.0050	120
Chromium (Cr) 7.2 1.0 ug/g 25-MAR-19 67 70 160 Cobalt (Co) 2.3 1.0 ug/g 25-MAR-19 19 21 22 Copper (Cu) 14.8 1.0 ug/g 25-MAR-19 62 92 140 Lead (Pb) 14.5 1.0 ug/g 25-MAR-19 65 120 120 Mercury (Hg) <0.0050	2
Cobalt (Co) 2.3 1.0 ug/g 25-MAR-19 19 21 22 Copper (Cu) 14.8 1.0 ug/g 25-MAR-19 62 92 140 Lead (Pb) 14.5 1.0 ug/g 25-MAR-19 45 120 120 Mercury (Hg) <0.0050	1.9 160
Copper (Cu) 14.8 1.0 ug/g 25-MAR-19 62 92 140 Lead (Pb) 14.5 1.0 ug/g 25-MAR-19 45 120 120 Mercury (Hg) <0.0050	80
Lead (Pb) 14.5 1.0 ug/g 25-MAR-19 45 120 120 Mercury (Hg) <0.0050	230
Mercury (Hg) <0.0050 0.0050 ug/g 25-MAR-19 0.16 0.27 0.27 Molybdenum (Mo) <1.0	120
Molybdenum (Mo) <1.0 1.0 ug/g 25-MAR-19 2 2 6.9 Nickel (Ni) 4.9 1.0 ug/g 25-MAR-19 37 82 100 Selenium (Se) <1.0	3.9
Nickel (Ni) 4.9 1.0 ug/g 25-MAR-19 37 82 100 Selenium (Se) <1.0	40
Selenium (Se) <1.0 ug/g 25-MAR-19 1.2 1.5 2.4 Silver (Ag) <0.20	270
Silver (Ag) <0.20	5.5
Thallium (TI) <0.50 0.50 ug/g 25-MAR-19 1 1 1 Uranium (U) <1.0	40
Uranium (U) <1.0	3.3
Vanadium (V) 15.3 1.0 ug/g 25-MAR-19 86 80	33
Zinc (Zn) 252 5.0 ug/g 25-MAR-19 290 290 340 Speciated Metals <0.20	86
Speciated Metals	340
L2246201-2 G4091-19-3 BH4, SAM 1 Sampled By: CLIENT on 12-MAR-19 @ 16:15 Matrix: SOIL Physical Tests Conductivity 0.222 0.0040 mS/cm 25-MAR-19 0.47 0.57 0.7	
Sampled By: CLIENT on 12-MAR-19 @ 16:15 #1 #2 #3 Matrix: SOIL #1 #2 #3 Physical Tests 0.222 0.0040 mS/cm 25-MAR-19 0.47 0.57 0.7	8
Matrix: SOIL #1 #2 #3 Physical Tests 0.222 0.0040 mS/cm 25-MAR-19 0.47 0.57 0.7	
Matrix: SOIL #1 #2 #3 Physical Tests 0.222 0.0040 mS/cm 25-MAR-19 0.47 0.57 0.7	-
Physical Tests 0.222 0.0040 mS/cm 25-MAR-19 0.47 0.57 0.7	#4
Conductivity 0.222 0.0040 mS/cm 25-MAR-19 0.47 0.57 0.7	
	14
	1.4
pH 7.30 0.10 pH units 24-MAR-19	
Cyanides	
Cyanide, Weak Acid Diss <0.050 0.050 ug/g 22-MAR-19 0.051 0.051 0.051	0.051
Saturated Paste Extractables	0.001
SAR 0.29 0.10 SAR 25-MAR-19 1 2.4 5	12
* Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.	12

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T1/T2-SOIL-RPIICC-C

#1: T1-Soil-Agricultural or Other Property Use

#2: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

#4: T2-Soil-Ind/Com/Commu Property Use (Coarse)

ANALYTICAL GUIDELINE REPORT

L2246201 CONTD

Page 3 of 5 22-APR-19 14:35 (MT)

Brouping Analyte 2246201-2 G4091-19-3 BH4, SAM 1 ampled By: CLIENT on 12-MAR-19 @ 16:15 latrix: SOIL saturated Paste Extractables Calcium (Ca) Magnesium (Mg) Sodium (Na)	33.8 5.50	Qualifier	D.L.	Units	Analyzed		Guidelin		
ampled By: CLIENT on 12-MAR-19 @ 16:15 latrix: SOIL aturated Paste Extractables Calcium (Ca) Magnesium (Mg) Sodium (Na)	5.50								
latrix: SOIL Saturated Paste Extractables Calcium (Ca) Magnesium (Mg) Sodium (Na)	5.50								
a turated Paste Extractables Calcium (Ca) Magnesium (Mg) Sodium (Na)	5.50					#1	#2	#3	#4
Calcium (Ca) Magnesium (Mg) Sodium (Na)	5.50								
Magnesium (Mg) Sodium (Na)	5.50								
Sodium (Na)			0.50	mg/L	25-MAR-19				
	COF		0.50	mg/L	25-MAR-19				
etals	6.95		0.50	mg/L	25-MAR-19				
Antimony (Sb)	<1.0		1.0	ug/g	25-MAR-19	1	1.3	7.5	40
Arsenic (As)	8.7		1.0	ug/g	25-MAR-19	11	18	18	18
Barium (Ba)	70.5		1.0	ug/g	25-MAR-19	210	220	390	670
Beryllium (Be)	<0.50		0.50	ug/g	25-MAR-19	2.5	2.5	4	8
Boron (B)	5.8		5.0	ug/g	25-MAR-19	36	36	120	120
Boron (B), Hot Water Ext.	0.55		0.10	ug/g	25-MAR-19	36	36	1.5	2
Cadmium (Cd)	0.62		0.50	ug/g	25-MAR-19	1	1.2	1.2	1.9
Chromium (Cr)	15.5		1.0	ug/g	25-MAR-19	67	70	160	160
Cobalt (Co)	5.5		1.0	ug/g	25-MAR-19	19	21	22	80
Copper (Cu)	24.6		1.0	ug/g	25-MAR-19	62	92	140	230
Lead (Pb)	80.4		1.0	ug/g	25-MAR-19	*45	120	120	120
Mercury (Hg)	0.686		0.0050	ug/g	25-MAR-19	*0.16	*0.27	*0.27	3.9
Molybdenum (Mo)	<1.0		1.0	ug/g	25-MAR-19	2	2	6.9	40
Nickel (Ni)	10.5		1.0	ug/g	25-MAR-19	37	82	100	270
Selenium (Se)	<1.0		1.0	ug/g	25-MAR-19	1.2	1.5	2.4	5.5
Silver (Ag)	<0.20		0.20	ug/g	25-MAR-19	0.5	0.5	20	40
Thallium (TI)	<0.50		0.50	ug/g	25-MAR-19	1	1	1	3.3
Uranium (U)	<1.0		1.0	ug/g	25-MAR-19	1.9	2.5	23	33
Vanadium (V)	30.3		1.0	ug/g	25-MAR-19	86	86	86	86
Zinc (Zn)	183		5.0	ug/g	25-MAR-19	290	290	340	340
peciated Metals									
Chromium, Hexavalent	<0.20		0.20	ug/g	22-MAR-19	0.66	0.66	8	8

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T1/T2-SOIL-RPIICC-C

#1: T1-Soil-Agricultural or Other Property Use

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

#2: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

#4: T2-Soil-Ind/Com/Commu Property Use (Coarse)

Reference Information

Methods Listed (if appli	icable):		
ALS Test Code	Matrix	Test Description	Method Reference***
B-HWS-R511-WT	Soil	Boron-HWE-O.Reg 153/04 (July 2011)	HW EXTR, EPA 6010B
A dried solid sample is a ICP/OES.	extracted with	calcium chloride, the sample underg	oes a heating process. After cooling the sample is filtered and analyzed by
Analysis conducted in a Protection Act (July 1, 2		h the Protocol for Analytical Methods	Used in the Assessment of Properties under Part XV.1 of the Environmental
CN-WAD-R511-WT	Soil	Cyanide (WAD)-O.Reg 153/04 (July 2011)	MOE 3015/APHA 4500CN I-WAD
			The filtrate is then distilled where the cyanide is converted to cyanogen with a combination of barbituric acid and isonicotinic acid to form a highly
Analysis conducted in a Protection Act (July 1, 2		h the Protocol for Analytical Methods	Used in the Assessment of Properties under Part XV.1 of the Environmental
CR-CR6-IC-WT	Soil	Hexavalent Chromium in Soil	SW846 3060A/7199
			for Evaluating Solid Waste" SW-846, Method 7199, published by the United nalysis for chromium (VI) by ion chromatography using diphenylcarbazide in a
Analysis conducted in a Protection Act (July 1, 2		h the Protocol for Analytical Methods	Used in the Assessment of Properties under Part XV.1 of the Environmental
EC-WT	Soil	Conductivity (EC)	MOEE E3138
A representative subsar conductivity meter.	mple is tumble	d with de-ionized (DI) water. The ration	o of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a
Analysis conducted in a Protection Act (July 1, 2		h the Protocol for Analytical Methods	Used in the Assessment of Properties under Part XV.1 of the Environmental
HG-200.2-CVAA-WT	Soil	Mercury in Soil by CVAAS	EPA 200.2/1631E (mod)
Soil samples are digeste	ed with nitric a	ind hydrochloric acids, followed by ar	nalysis by CVAAS.
Analysis conducted in a Protection Act (July 1, 2		h the Protocol for Analytical Methods	Used in the Assessment of Properties under Part XV.1 of the Environmental
MET-200.2-CCMS-WT	Soil	Metals in Soil by CRC ICPMS	EPA 200.2/6020A (mod)
Soil/sediment is dried, d through a 0.355 mm sie Instrumental analysis is	ve. Strong Ac	cid Leachable Metals in the <2mm fra	led to support Ontario regulations, the <2mm fraction is ground to pass action are solubilized by heated digestion with nitric and hydrochloric acids.
partially recovered (mat	rix dependent)		metals. Silicate minerals are not solubilized. Some metals may be only II, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. ampling, storage, or digestion.
Analysis conducted in a Protection Act (July 1, 2 must be reported).	ccordance wit 011), unless a	h the Protocol for Analytical Methods a subset of the Analytical Test Group	Used in the Assessment of Properties under Part XV.1 of the Environmental (ATG) has been requested (the Protocol states that all analytes in an ATG
MOISTURE-WT	Soil	% Moisture	CCME PHC in Soil - Tier 1 (mod)
PH-WT	Soil	рН	MOEE E3137A
		is extracted with 20mL of 0.01M cald yzed using a pH meter and electrode	cium chloride solution by shaking for at least 30 minutes. The aqueous layer is .
Protection Act (July 1, 2	011).		Used in the Assessment of Properties under Part XV.1 of the Environmental
SAR-R511-WT	Soil	SAR-O.Reg 153/04 (July 2011)	SW846 6010C
	ntrations of Na		aqueous extract is separated from the solid, acidified and then analyzed using LA requirements for calculated parameters. These individual parameters are
Analysis conducted in a Protection Act (July 1, 2		h the Protocol for Analytical Methods	Used in the Assessment of Properties under Part XV.1 of the Environmental

Reference Information

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

17-641551

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA		

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

			quan	cy contro	rioport			
		Workorder:	L224620)1 F	Report Date: 2	22-APR-19		Page 1 of 6
Client:	V.A. WOOD (GUE 405 YORK ROAD GUELPH ON N1							
Contact:	JOHN BROAD							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
B-HWS-R511-	WT Soil							
Batch	R4581096							
WG301322		L2246269-1	0.00					
	Hot Water Ext.	0.24	0.22		ug/g	9.0	30	25-MAR-19
WG301322 Boron (B),	6-2 IRM Hot Water Ext.	HOTB-SAL_S	OIL5 94.8		%		70-130	25-MAR-19
WG301322 Boron (B),	6-3 LCS Hot Water Ext.		100.2		%		70-130	25-MAR-19
WG301322 Boron (B),	6-1 MB Hot Water Ext.		<0.10		ug/g		0.1	25-MAR-19
CN-WAD-R51	1-WT Soil							
Batch	R4580571							
WG301118		L2245548-2						
Cyanide, V	Veak Acid Diss	N/A	<0.050	RPD-NA	ug/g	N/A	35	22-MAR-19
WG301118 Cyanide, V	7-2 LCS Veak Acid Diss		98.3		%		80-120	22-MAR-19
WG301118 Cvanide, V	7-1 MB Veak Acid Diss		<0.050		ug/g		0.05	22-MAR-19
WG301118		L2245548-2	98.0		%		70-130	22-MAR-19
CR-CR6-IC-W								
Batch	R4580508							
WG301137		WT-SQC012						
Chromium	, Hexavalent		90.5		%		70-130	22-MAR-19
WG301137 Chromium	1-3 DUP , Hexavalent	L2246362-2 <0.20	<0.20	RPD-NA	ug/g	N/A	35	22-MAR-19
WG301137 Chromium	1-2 LCS Hexavalent		97.2		%		80-120	22-MAR-19
WG301137							0.2	
			<0.20		ug/g		0.2	22-MAR-19
EC-WT	Soil							
Batch WG301323	R4581535 1-9 DUP	WG3013231-8						
Conductivit		0.435	0.426		mS/cm	2.1	20	25-MAR-19
WG301323 Conductivit		WT SAR2	103.9		%		70-130	25-MAR-19
WG301336 Conductivit	4-1 LCS		102.3		%		90-110	25-MAR-19
WG301323							00 110	20 00 00 10

				Quain	Ly Com	I OI REPORT			
			Workorder:	L224620	1	Report Date: 22-/	APR-19		Page 2 of 6
Client:	405 YOR	OD (GUELPH) K ROAD ON N1E 3H3							
Contact:	JOHN BF	ROAD							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EC-WT		Soil							
Batch F	R4581535								
WG3013231-6 Conductivity	6 МВ			<0.0040		mS/cm		0.004	25-MAR-19
HG-200.2-CVAA-	WT	Soil							
Batch F	R4581415								
WG3013223-2 Mercury (Hg)	CRM		WT-CANMET-	TILL1 101.1		%		70-130	25-MAR-19
WG3013223-6	DUP		WG3013223-5						
Mercury (Hg)			0.0153	0.0161		ug/g	4.8	40	25-MAR-19
WG3013223-3 Mercury (Hg)	LCS			101.0		%		80-120	25-MAR-19
WG3013223-1 Mercury (Hg)	MB			<0.0050		mg/kg		0.005	25-MAR-19
MET-200.2-CCMS	S-WT	Soil							
Batch F	R4581588								
WG3013223-2			WT-CANMET-						
Antimony (Sb)			113.3		%		70-130	25-MAR-19
Arsenic (As)				116.5		%		70-130	25-MAR-19
Barium (Ba)				120.2		%		70-130	25-MAR-19
Beryllium (Be))			110.8		%		70-130	25-MAR-19
Boron (B)				2.9		mg/kg		0-8.2	25-MAR-19
Cadmium (Cd				111.4		%		70-130	25-MAR-19
Chromium (C	r)			115.0		%		70-130	25-MAR-19
Cobalt (Co)				115.1		%		70-130	25-MAR-19
Copper (Cu)				116.8		%		70-130	25-MAR-19
Lead (Pb)				113.4		%		70-130	25-MAR-19
Molybdenum	(1010)			116.4		%		70-130	25-MAR-19
Nickel (Ni)	x.			115.3				70-130	25-MAR-19
Selenium (Se)			0.37		mg/kg		0.11-0.51	25-MAR-19
Silver (Ag)				0.26		mg/kg		0.13-0.33	25-MAR-19
Thallium (TI)				0.136		mg/kg %		0.077-0.18 70-130	25-MAR-19
Uranium (U)				108.0 116.4		%			25-MAR-19
Vanadium (V) Zinc (Zn)				109.3		%		70-130 70-130	25-MAR-19
WG3013223-6 Antimony (Sb)			WG3013223-5 0.23	0.23		ug/g	0.1	30	25-MAR-19 25-MAR-19

		Workorder:	L224620)1 I	Report Date: 22	-APR-19		Page 3 of	6
Client:	V.A. WOOD (GUELPH) 405 YORK ROAD GUELPH ON N1E 3H3								
Contact:	JOHN BROAD			đ					
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	_
MET-200.2-CCM	MS-WT Soil								
Batch	R4581588								
WG3013223 Arsenic (As		WG3013223-5 9.16	9.68		ug/g	5.5	30	25-MAR-19	
Barium (Ba)		114	123		ug/g	7.7	40	25-MAR-19	
Beryllium (B		0.63	0.66		ug/g	4.1	30	25-MAR-19	
Boron (B)	-,	8.8	9.8		ug/g	10	30	25-MAR-19	
Cadmium (0	.(h.	0.081	0.078		ug/g	3.4	30	25-MAR-19	
Chromium (2 0 0 2	19.9	21.1		ug/g	6.0	30	25-MAR-19	
Cobalt (Co)		13.9	14.5		ug/g	4.4	30	25-MAR-19	
Copper (Cu)	59.0	61.3		ug/g	3.8	30	25-MAR-19	
Lead (Pb)		13.3	13.4		ug/g	0.7	40	25-MAR-19	
Molybdenun	n (Mo)	0.47	0.51		ug/g	7.2	40	25-MAR-19	
Nickel (Ni)		26.2	27.6		ug/g	5.2	30	25-MAR-19	
Selenium (S	ie)	<0.20	<0.20	RPD-NA	ug/g	N/A	30	25-MAR-19	
Silver (Ag)		<0.10	<0.10	RPD-NA	ug/g	N/A	40	25-MAR-19	
Thallium (TI)	0.116	0.121		ug/g	3.7	30	25-MAR-19	
Uranium (U)		0.518	0.530		ug/g	2.3	30	25-MAR-19	
Vanadium (28.1	30.0		ug/g	6.4	30	25-MAR-19	
Zinc (Zn)		66.2	69.7		ug/g	5.2	30	25-MAR-19	
WG3013223	-4 LCS				00				
Antimony (S			104.1		%		80-120	25-MAR-19	
Arsenic (As)			98.1		%		80-120	25-MAR-19	
Barium (Ba)			101.0		%		80-120	25-MAR-19	
Beryllium (B	e)		91.8		%		80-120	25-MAR-19	
Boron (B)			84.9		%		80-120	25-MAR-19	
Cadmium (C	Cd)		96.5		%		80-120	25-MAR-19	
Chromium (Cr)		94.6		%		80-120	25-MAR-19	
Cobalt (Co)			95.9		%		80-120	25-MAR-19	
Copper (Cu))		93.7		%		80-120	25-MAR-19	
Lead (Pb)			97.9		%		80-120	25-MAR-19	
Molybdenun	n (Mo)		100.6		%		80-120	25-MAR-19	
Nickel (Ni)			94.3		%		80-120	25-MAR-19	
Selenium (S	ie)		96.7		%		80-120	25-MAR-19	
Silver (Ag)			98.8		%		80-120	25-MAR-19	
Thallium (TI)		97.7		%		80-120	25-MAR-19	

			Workorder:	L224620)1	Report Date: 22-	APR-19		Page 4 of 6
Client: Contact:	405 YOR	ON N1E 3H3							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCM	S-WT	Soil							
	R4581588	0.010							
WG3013223-4 Uranium (U)				92.4		%		80-120	25-MAR-19
Vanadium (V)			99.7		%		80-120	25-MAR-19
Zinc (Zn)				90.9		%		80-120	25-MAR-19
WG3013223- Antimony (St				<0.10		mg/kg		0.1	25-MAR-19
Arsenic (As)	,,			<0.10		mg/kg		0.1	25-MAR-19
Barium (Ba)				<0.10		mg/kg		0.5	25-MAR-19 25-MAR-19
Beryllium (Be				<0.10		mg/kg		0.1	25-MAR-19
Boron (B)	•)			<5.0		mg/kg		5	25-MAR-19
Cadmium (Co	d)			<0.020		mg/kg		0.02	25-MAR-19
Chromium (C				<0.50		mg/kg		0.5	25-MAR-19
Cobalt (Co)	.,			<0.10		mg/kg		0.1	25-MAR-19
Copper (Cu)				<0.50		mg/kg		0.5	25-MAR-19
Lead (Pb)				<0.50		mg/kg		0.5	25-MAR-19
Molybdenum	(Mo)			<0.10		mg/kg		0.1	25-MAR-19
Nickel (Ni)	()			<0.50		mg/kg		0.5	25-MAR-19
Selenium (Se	e)			<0.20		mg/kg		0.2	25-MAR-19
Silver (Ag)				<0.10		mg/kg		0.1	25-MAR-19
Thallium (TI)				<0.050		mg/kg		0.05	25-MAR-19
Uranium (U)				<0.050		mg/kg		0.05	25-MAR-19
Vanadium (V)			<0.20		mg/kg		0.2	25-MAR-19
Zinc (Zn)				<2.0		mg/kg		2	25-MAR-19
MOISTURE-WT		Soil							
Batch WG3011223-3 % Moisture	R4577930 3 DUP		L2246205-2 34.6	34.0		%	1.8	20	22-MAR-19
WG3011223-2 % Moisture	2 LCS			100.3		%		90-110	22-MAR-19
WG3011223-1 % Moisture	I MB			<0.10		%		0.1	22-MAR-19
PH-WT		Soil							
Batch WG3011289-1 pH	R4580399 I DUP		L2246195-1 7.77	7.82	J	pH units	0.05	0.3	24-MAR-19
WG3012846-1	LCS			10484/93/980	1177	■ unit _ sole #\$P\$#55668868			encer scool/first cford

				•	,	1			
			Workorder:	L2246201		Report Date:	22-APR-19		Page 5 of 6
Client:	405 YOR	OD (GUELPH) K ROAD ON N1E 3H3							
Contact:	JOHN BF	ROAD							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-WT		Soil							
Batch	R4580399								
WG3012846 -1 pH	1 LCS			6.98		pH units		6.9-7.1	24-MAR-19
SAR-R511-WT		Soil							
Batch	R4581423								
WG3013231-9			WG3013231-8						
Calcium (Ca)			25.9	25.4		mg/L	1.9	30	25-MAR-19
Sodium (Na)			17.0	17.3		mg/L	1.7	30	25-MAR-19
Magnesium (Mg)		10.5	10.3		mg/L	1.9	30	25-MAR-19
WG3013231-7 Calcium (Ca)			WT SAR2	109.5		%		70-130	25-MAR-19
Sodium (Na)				95.5		%		70-130	25-MAR-19
Magnesium (Ma)			107.9		%		70-130	25-MAR-19
WG3013231-1	•,			107.0				70-150	23-10/213
Calcium (Ca)				109.0		%		70-130	25-MAR-19
Sodium (Na)				103.6		%		70-130	25-MAR-19
Magnesium (Mg)			104.8		%		70-130	25-MAR-19
WG3013231-6				<0.50		ma/l		0.5	25 MAD 40
Calcium (Ca) Sodium (Na)				<0.50		mg/L mg/L		0.5	25-MAR-19 25-MAR-19
Magnesium (Na)	Ma)			<0.50		mg/L		0.5	25-MAR-19 25-MAR-19
waynesium (ivig)			~0.50		mg/L		0.5	20-MAR-19

Report Date: 22-APR-19

Workorder: L2246201

Client: V.A. WOOD (GUELPH) 405 YORK ROAD GUELPH ON N1E 3H3 Contact: JOHN BROAD

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
1.001	> Laboratory Control Comple Duplicate

LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

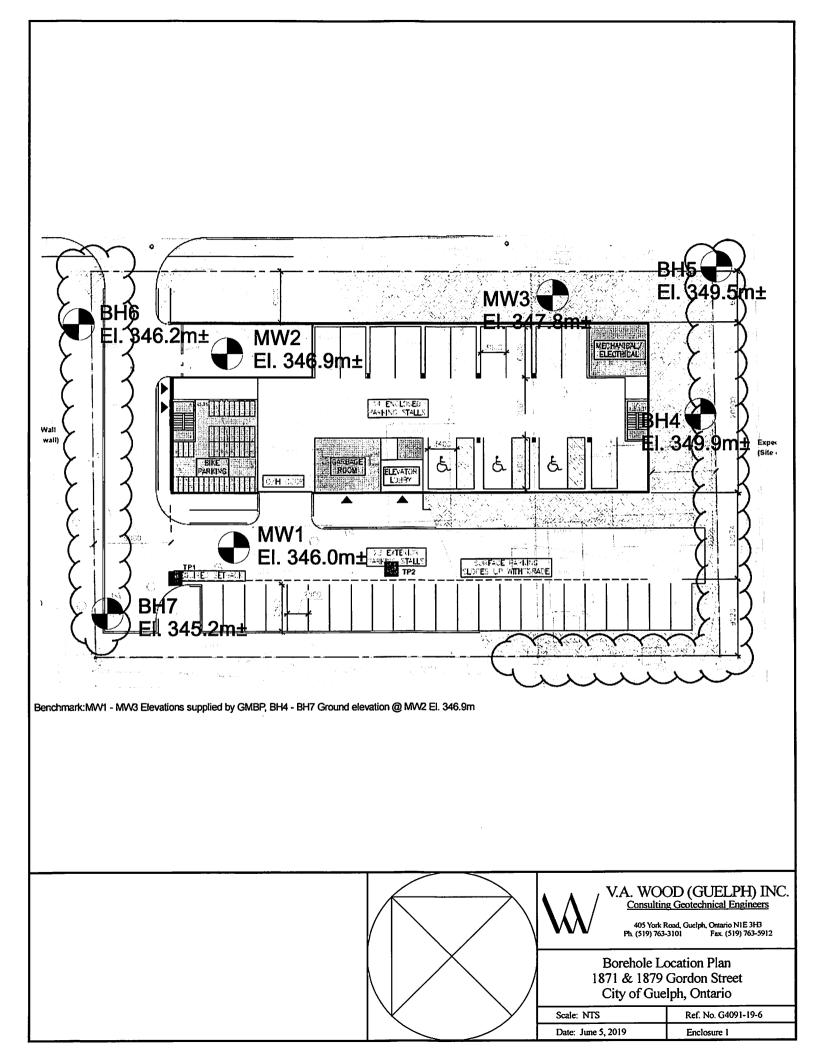
ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

AISI	Environmental	quest Form	0.0070	1) / (19/4(9)	-COFC				COC Number: 17 - 641551 Pego of											
(ACS)	wyw.alsqlobal.com	Canada To) Free: 1 800 68	8 9878							ł									
Report To	Conject and company name bolow will appro-	Report Format / Distribution				Select Service Laver Low V - Contact your AM to confirm all E&P TATs (surcharges may apply)														
Company:	VA Wood (Gueloh)	Select Report Fo	ect Report Format: DF PDF EXCEL EDD (DIGITAL)				Regular [R] X Standard TAT If received by 3 pm - business days - na surcharges apply										may ap	pp:y)	<u> </u>	
Contact:	John Broad	Quality Control (QC) Report with Report				5[_] NO	Ê	4 day [P4	يلاعك مغدف	7	T &	_		_	_	cruarge	S OLANY			
Phone:	519 - 763 - 3101	Compare Results to Criteria on Report - provide details below if box checked				1641	3 day (P3	· ·	4	§ 1 Businoss day [E-100%]										
Company address below will appear on the final report			Select Distribution:				ž,			4	Same Day, Weekend or Statutory holiday [E2-200% [Laboratory opening fees may apply]									
Street:		Email 1 or Fax, john & Q Va Wood aucleh. com																		
City/Province:	······································		Email 2	Jancow	K A MONT	grister con						dan kerel ad				11411 -99	101.0000			
Postal Code:	· · · · · · · · · · · · · · · · · · ·	Email 3					for taels that can not be performed according to the service level solected, you will be contacted. Analysis Request													
	Same as Report To	Invoice Distribution																		
	Same as Report To VES NO Copy of Involce with Report			N2 (D				Indicate Fittered (F), Preserved (P) or Fittered and Preserved (F/P) below												
Company:									╉╍╍╂╼╸				_		┿	-+	<u> </u>	-	- P	
Contact		Email 1 or Fax office @ Vawaadquelph.com													· ·			further		
1000 L	Project Information			Email 2 Oil and Gas Required Fields (client use)															- B	1
ALS Account # / Quote #:			AFE/Cost Center.		PO#	1961	APCARNES)											provide	
J_{00} #: $G_{4}O_{9}(-19-3)$																			8	6
90/AFE:			Majoriklinor Code: Routing Code:																(please	Ϊü
		Requisitioner:															ġ.		1 É	
LSD:			Location:		· · · · · ·					1	1		1		1			₽	P P	۱ ö
ALS Lab Wor	tk Order # (lab use only): L22	46201	ALS Contact:		Sempler:		metals											SAMPLES ON HOLD	is her	NUMBER OF CONTAINERS
ALS Sample # (lab use only)	Sample Identification (This description will a			Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	ž											AMPL	dEg	IBWD
	G4091-19-3 MV	C CA	2	013-Mar19	15:00	SOIL									++	-+	+	+‴	† "	ħ
	G4091-19-3 RH	4. SAM I		12-Mar-19		SOIL	†X†			-					┿╾┽				+	╞
	64041-14-3 BK	91 31/4 1		102-1 Inr-17	10.13	JUDIL		_	┼╌┼╴					-+-	┿┿		<u> </u>	+	+	╇
							┢──┟		┝╼┝╸						┝──┥		_		+	
										ŀ										
		•																		
															\square				T	
											-				+			+	+	+
	· · _ · · · · · · · · · · · · · ·	·····		 			┼╍┼		┼─┤─						+ +			+	+	+-
		•		<u> </u>			╉╍╍╋		┼─┼					<u> </u>	┿╌╌┼	-+			╇	4
																\square				
	· · · · · · · · · · · · · · · · · · ·]								i							
				· · · ·							Т			1						Г
	· ·									+						÷		+	+	t
<u>.</u>		Reacted Instructions (Encelf: Celtorio de	add on report by click		down liet holow	+			SAMPI	E COI	DITION	ASR	ÉCEIVEL	J flab ur	Se only	<u></u>		_	<u>.</u>
Drinkin	g Water (DW) Samples ¹ (client use)	opecal line occords r		ctronic COC only)	cing on the crop-	COWALLET DOLON	Frozen					bservati		Yes	Ē		No	<u> </u>		
-	n from a Regulated DW System? ES 🔲 NO				<u>.</u>		Ice Pad		Ice Cube	* 2	Cust	ody seal	intact	Yes		_	No			
	uman consumption/ use?	Table 1	and	able '2		•	 		L COOLER T	EMPERA	TURES	c		<u> </u>	FINALC	OOLER	TEMPERAT	TURES .	• .	—
•	ES NO								<u> </u>		Т		-1-	TER	TT		<u> </u>		T	
11"	SHIPMENT RELEASE (client use)			INITIAL SHIPMEN	T RECEPTION (lah uga onlut	1				EIN A	SHIPN	ENT	RECEPT	L	0 1150 1		—	4	
4			Deschuert big		Date:	au use only	Time:	Per	eived by:		FINA	_				7 7.	<u>""</u>	Time	e:,, ,,	10.
Released by:	i Date:	l lime:	Keceiven Dv.	<i>n ,</i>																
Released by:	H Date: Mar 19		Received by:	1K		-19	10:1		,51100 DJ.			W I'		Mar	r [*	1//	7	11	4.	45

1. If any water samples are taken from a Regulated Drinking Water (DW) System, clease submit using an Authorized DW COC form.


_

.

-

ENCLOSURES

MONITORING WELL No: 1

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Mar-Cot Investments

PROJECT: Geotechnical Investigation

ENCLOSURE No: 2

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

LOCATION: 1871 & 1879 Gordon St, Guelph, ON

SUPERVISOR: B.A.

	SUBSURFACE P	ROFILE				5	SAMPL	E			
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL		WELL	NUMBER	ТҮРЕ	N-VALUE	PENETRATION RESISTANCE 20 40 60 80	WATER CONTENT % 5 10 15 20 25	EAGLE TOV (ppm)
0.0 0.3 1.7 2.3	Ground Surface 275mm Topsoil dark brown, compact Sand and Gravel FILL trace organics, moist dark brown, very stiff Silty Clay FILL moist brown, compact to very dense GRAVEL AND SAND trace silt, moist	346.0 345.7 344.3 343.7		Bentonite Holeplug		1 1 2 3 4 5 6 7 7 8 8	SS SS	9 10 19 16 50 50 38 38 30 45 38	o o o o o		
	RILLED BY: London Soil Tests Ltd				Н	ole di	AMETE	ER: 150	mm		
	RILL METHOD: Hollow Stem Auge	ers			D	ATUM:	Geode	tic			
	RILL DATE: March 14, 2019				S	HEET:	1 of 2				

MONITORING WELL No: 1

CLIENT: Mar-Cot Investments

PROJECT: Geotechnical Investigation

LOCATION: 1871 & 1879 Gordon St, Guelph, ON

ENCLOSURE No: 2

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

SUPERVISOR: B.A.

	SUBSURFACE P	ROFILE			5	SAMPL	E									
(ш) НЦ ОС В Ц Ц С В С В С В С В С В С В С В С В	ESCRIPTION	ELEVATION	SYMBOL	MONITORING WELL	NUMBER	ТҮРЕ	N-VALUE	PE RI 20	NETI ESIS 40	RATIC TANC 60	0N E 80	W.		%	NTEN 20 25	EAGLE OV (ppm)
18.3 18.7 18.7 18.7 18.7 SAND AND some clay, saturated	npact ND Ise to very dense NND SAND et			Sand Sand Sand Screen S	10 11 12 13 13 14 14	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	22 26 50 41 32 HW		0	.150n	1111		•	•		0
DRILLED BY:	London Soil Tests Ltd	•			IOLE DI	AMETE	R: 150)mm				•				
DRILL METH	OD: Hollow Stem Auge	rs		C	ATUM:	Geode	tic									
	March 14, 2019				HEET: :											

MONITORING WELL No: 2

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Mar-Cot Investments

PROJECT: Geotechnical Investigation

LOCATION: 1871 & 1879 Gordon St, Guelph, ON

ENCLOSURE No: 3

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

SUPERVISOR: B.A.

																 _	
	SUBSURFACE P	ROFILE				8	SAMPL	E									
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL		MONITORING WELL	NUMBER	түре	N-VALUE	PEN RES 20 4	IETI SIS 19	RATI TAN 60	CE	۰ ۲		%	ЕNT 25	EAGLE TOV (ppm)
0.0	Ground Surface 250mm Topsoil dark brown, very loose Silty Sand and Gravel FILL	346.9 346.6		+	Protective Cover	1	SS SS	9 15	0 0								• 0
1.5	moist	345.4		L 6njde	(2-Apr-19)	2	SS	4	o								0
	brown, compact to very dense GRAVEL AND SAND trace silt, moist			Bentonite Holeplug	• DRY (2-Api • DRY (2-Api ser	3	SS	16	e J					•			0
				Bent	Riser	4	SS	23	0								0
						5	SS	50		ŝ	,		•				0
				Sand -	Screen	6	SS	41		J							0
	SAND seam @ 6.1m				V o	7	SS	38	۵	,				•			0
			66,66,66,60 000000000000000000000000000	Bentonite Holeplug		8	SS	50		q	·100	mm					0
9.6		337.3	00.0	ă		9	SS	50		Ċ.	225	mm	•				0
	End of Borehole														 :	 	
	RILLED BY: London Soil Tests Ltd					OLE DI			mm						 		
	RILL METHOD: Hollow Stem Auge	ers				ATUM: HEET: 1											

MONITORING WELL No: 3

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Mar-Cot Developments Inc.

PROJECT: Geotechnical Investigation

LOCATION: 1871 & 1879 Gordon St, Guelph, ON

ENCLOSURE No: 4

SUPERVISOR: B.A.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE F	PROFILE			5	SAMPL	E									
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	MONITORING WELL	NUMBER	ТҮРЕ	N-VALUE	PI F 20	ENET RESIS 40	RATIO STANC 60	ON E 80	₩ 5		%	NTENT 20 25	EAGLE TOV (ppm)
0.0	Ground Surface	347.8														+
	25mm Asphalt	1	S707197		1	AS							-			
	100mm Granular Base	1				~	-						•			0
	brown, compact to dense Sand and Gravel FILL											:				
	moist				2	SS	20	c								0
				Flush												
					3	SS	43		÷							0
2.3		345.5		foleplug												
	brown, compact to very dense		000	Bentonite Holeplug	4	SS	26	0								\vdash
	GRAVEL AND SAND trace silt,			PH F		33	20	U U								0
	moist		0,00,0	₽ ₽												
			00.0	Bentor (2-Apr-19)- munumun Riser	5	ss	26	÷					•			0
				A C				•								
				5												
			000	W												
			000	© El. 341.7m	6	SS	38		0							
			00.0	Saller		33	30									0
[00.00													
			00.0	W.L												
			100-0 100-0													
				間日	7	SS	50			o 250	mm	: •				0
			\$0°.050													<u> </u>
			000	Screen												
			,0,0,0	s												
			00.00													
			00.00	te Holeptug	8	SS	50			ି 225	mm					0
			00.0	lole												
				te H											1	
			<u>,0000</u>													
			000	Benton								÷				
9.6		338.2	-00-0 -07-0		9	SS	50			o 175	m	•				0
	End of Borehole			i												
	RILLED BY: London Soil Tests Ltd				OLE DI	AMETE	R: 150	mm				I				
	DRILL METHOD: Hollow Stem Augers DATUM: Geodetic															
	RILL DATE: March 13, 2019	-			HEET: '		-									
I																- 1

BOREHOLE No: 4

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Mar-Cot Developments Inc.

PROJECT: Geottechnical Investigation

LOCATION: 1871 & 1879 Gordon St, Guelph, ON

ENCLOSURE No: 5

SUPERVISOR: B.A.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PROFIL	E			s		E.										
DEPTH (m)	DESCRIPTION	ELEVATION	BOL	UND ER	BER		'N' BLOWS/0.3m	PENET	ration Blow	N RESIS /S/0.3m	TANCE	WA	TEF	۲ CC %	ONTE	ENT	UNIT WEIGHT
DEP		ELE	SYMBOL	GROUND WATER	NUMBER	TYPE	BLO BLO	20	40	60 '	80 '	5	10 '	15 '	20	25	LIND
0.0	Ground Surface	349.9															
0.3	250mm Topscil	349.6	$l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l$		1	ss	12	÷	-								
	brown, compact to dense Silty Sand and Gravel FILL moist				1	ss	20	0	-					•		•	
				DRY (12-Mar-19)													
				DRY	2	SS	42		- 						•		:
1.5		348.4															
	brown, dense to very dense GRAVEL AND SAND trace silt,		000 0000						-								
	moist				3	SS	50			» 175mn	n	*•					
					4	SS	50		ŝ	a 225m r	'n						
			000000 0000000000000000000000000000000		5	SS	49					•					
3.5	· · · · · · · · · · · · · · · · · · ·	346.4	0.00														
	End of Borehole .								-				-		-		
DF	RILLED BY: London Soil Tests Ltd.				HO		METE	R: 110mm	1								
DF	RILL METHOD: Solid Stem Augers				DA	TUM: (Geodet	ic									
DF	RILL DATE: March 12, 2019				SH	SHEET: 1 of 1											

BOREHOLE No: 5

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Mar-Cot Developments Inc.

PROJECT: Geotechnical Investigation

LOCATION: 1871 & 1879 Gordon St, Guelph, ON

ENCLOSURE No: 6

SUPERVISOR: B.A.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PROFILE				s		.E						_				
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	түре	'N' BLOWS/0.3m		BLOW	/S/0.3m	TANCE			%		ENT	UNIT WEIGHT
				ษีรั	ž	₹	놀립	20 '	40 '	60 '	80 '	5	10	15	20	25	5
0.0	Ground Surface 150mm Topsoil	349.5	~ ~														
0.1		349.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1	ss	21	o									
0.3	brown, dense Sand and Gravel FILL	349.2										•					
	frozen brown, compact to very dense GRAVEL AND SAND			(6	1	SS	37		0								
	trace silt, moist			DRY (12-Mar-19)	-												
				DRY	2	ss	25	¢.									
					3	SS	50			o 200m	n	•					
								50 c 100mm									
			0000 0000		4	SS	50			୦ 100m i	n	-					
					5	SS	50	50 ⊂ 175mm ●									
3.5		346.0	9D.9						-								
	End of Borehole																
DF	RILLED BY: London Soil Tests Ltd.				но	LE DIA	METE	R: 110mm	1								
DF	RILL METHOD: Solid Stem Augers				DA	TUM: (Geodet	ic									
DF	RILL DATE: March 12, 2019				SH	EET: 1	of 1										

BOREHOLE No: 6

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Mar-Cot Developments Inc.

PROJECT: Geotechnical Investigation

LOCATION: 1871 & 1879 Gordon St, Guelph, ON

ENCLOSURE No: 7

SUPERVISOR: B.A.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

		Ξ			s	AMPL	E						Τ
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	ground Water	NUMBER	TYPE	'N' BLOWS/0.3m		ATION LOWS 40	RESIS 5/0.3m 60	STANCE	WATER CONTENT %	UNIT WEIGHT
0.0	Ground Surface	346.2									<u>. </u>		
0.2	225mm Topsoil	346.0	1111		1	ss	21	o					
	brown, compact to dense GRAVEL AND SAND trace silt moist		0,00,00	(6	1	SS	24	¢,				•	
				DRY (12-Mar-19)									
-				DRY	2	SS	47		C				
		é	66.66.6 0.0000 0.0000										
					3	SS	SS 31 c						
					4	SS	45						
				•									
3.5		342.7	000 000		5	SS	40		0				
	End of Borehole												
											i		
	RILLED BY: London Soil Tests Ltd.	I			но			R: 110mm				<u> </u>	
DF	DRILL METHOD: Solid Stem Augers DATUM: Geodetic												

DRILL DATE: March 12, 2019

SHEET: 1 of 1

DRILL DATE: March 12, 2019

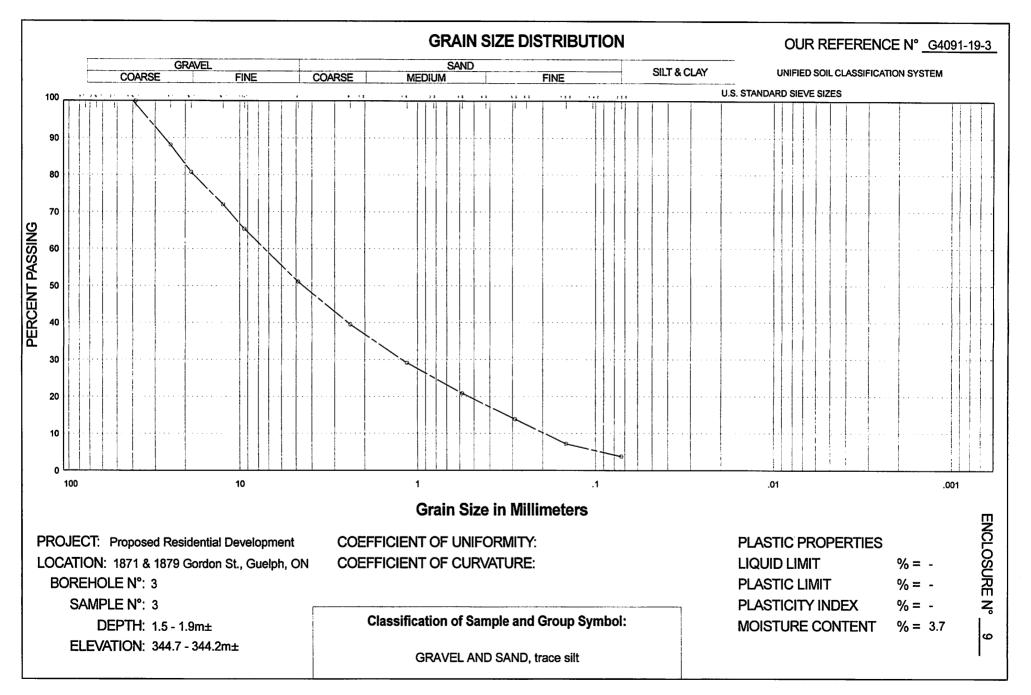
BOREHOLE No: 7

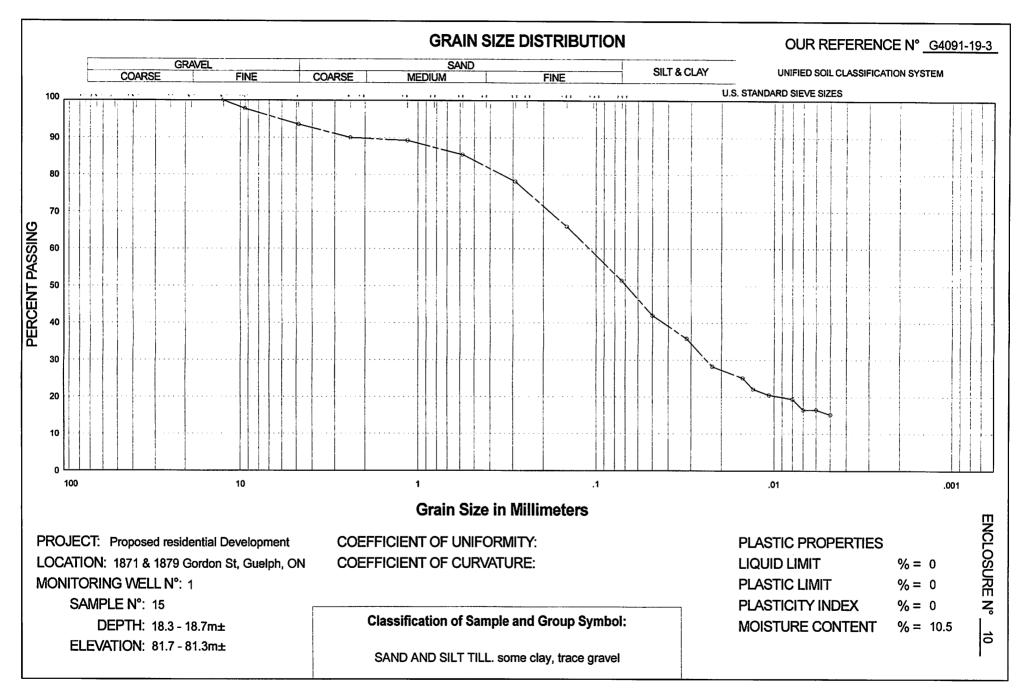
V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Mar-Cot Developments Inc.

PROJECT: Geotechnical Investigation

LOCATION: 1871 & 1879 Gordon St, Guelph, ON


ENCLOSURE No: 8


SUPERVISOR: B.A.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PROFIL	E			s	AMPL	E								Τ
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	'N' BLOWS/0.3m		BLOW	S/0.3m			%		UNIT WEIGHT
				פֿק	ž	F	2 8	20	40	60	80 '	5 10	J 15	20 25	5
0.0	Ground Surface 325mm Topsoil	345.2	~ ~												
0.3		344.8	$l_l l_l l_l$		1	SS	18	о							
	dark brown, compact to dense Silty Sand FILL moist			(6)	1	ss	18	Ø							
				DRY (12-Mar-19)											
				DRY	2	SS	47								
					3	SS	12	6					•		
					4	SS	23	o							
3.0	brown, dense	342.1													
3.5	GRAVEL AND SAND trace silt, moist	341.7			5	ss	42					0			
	End of Borehole														
														:	
DF	RILLED BY: London Soil Tests Ltd.				но		METE	R: 110mm							
DF	RILL METHOD: Solid Stem Augers				DA	TUM: (Geodet	ic							

SHEET: 1 of 1

V. A. WOOD (GUELPH) INCORPORATED

V.A. WOOD (GUELPH) INCORPORATED

CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 TELEPHONE: 519-763-3101

July 3, 2019

Reference No. G4091-19-7

Mar-Cot Developments Inc. 375 Southgate Drive Guelph, Ontario N1G 3W6

Attention: Mr. Mario Cotroneo, President

RE: Guelph Permeameter Testing Proposed Residential Development 1871 & 1879 Gordon Street City of Guelph, Ontario

Dear Sir,

V.A. Wood (Guelph) Inc. was retained by Mar-Cot Developments Inc. to carry out Guelph Permeameter testing for the proposed residential development at 1871 & 1879 Gordon Street in the City of Guelph, Ontario.

The purpose of the testing was to determine the hydraulic conductivity of the subsoils within the proposed development area for the storm water management design.

The Guelph Permeameter testing took place on June 18 and the Test Pit location and ground elevation is given on Guelph Permeameter Test Location Plan, Enclosure 1.

The permeameter testing consisted of three (3) permeameter tests at depths ranging between 0.9± and 2.4± metres below existing grade, at the locations and depths selected by GM BluePlan Engineering Ltd. Full details of the soils encountered in the test pit is given on the Test Pit Log, Enclosure 2. We note that further permeameter testing at deeper depths could not be completed on June 18, 2019 due to unsafe excavation conditions in conjunction with the close proximity of the inground tile bed which was exposed in the test pit.

Mar-Cot Developments Inc. July 3, 2019 <u>Ref. No. G4091-19-6</u> Page two

The results of the Guelph Permeameter testing is noted in following chart:

Dete	Test	Test Depth Below Ex.	Field Description of	Hydraulic Co	onductivity ¹
Date	Location	Grade (m±)	Soils	(cm²/min)	(cm/sec)
June 18, 2019	TP 1	0.9	brown, compact Sand and Gravel FILL, trace to some silt, trace organics, moist	5.91 x 10⁴	7.10 x 10⁵
June 18, 2019	TP 1	1.6	brown, compact Sand and Gravel FILL, trace to some silt, trace organics, moist	1.41 x 10 ⁻¹	1.69 x 10²
June 18, 2019	TP 1	2.4	brown, compact SAND AND SILT, some clay, moist	6.12 x 10 ⁻³	7.34 x 10 ⁻⁴

¹Calculations completed by Guelph Permeameter Soil Moisture Program

We trust this report has been completed within our terms of reference; however, should you have any questions, please do not hesitate to contact this office.

Yours very truly, V.A. WOOD (GUELPH) INC.

· / Ena (

J. Broad, B.A. President & General Manager

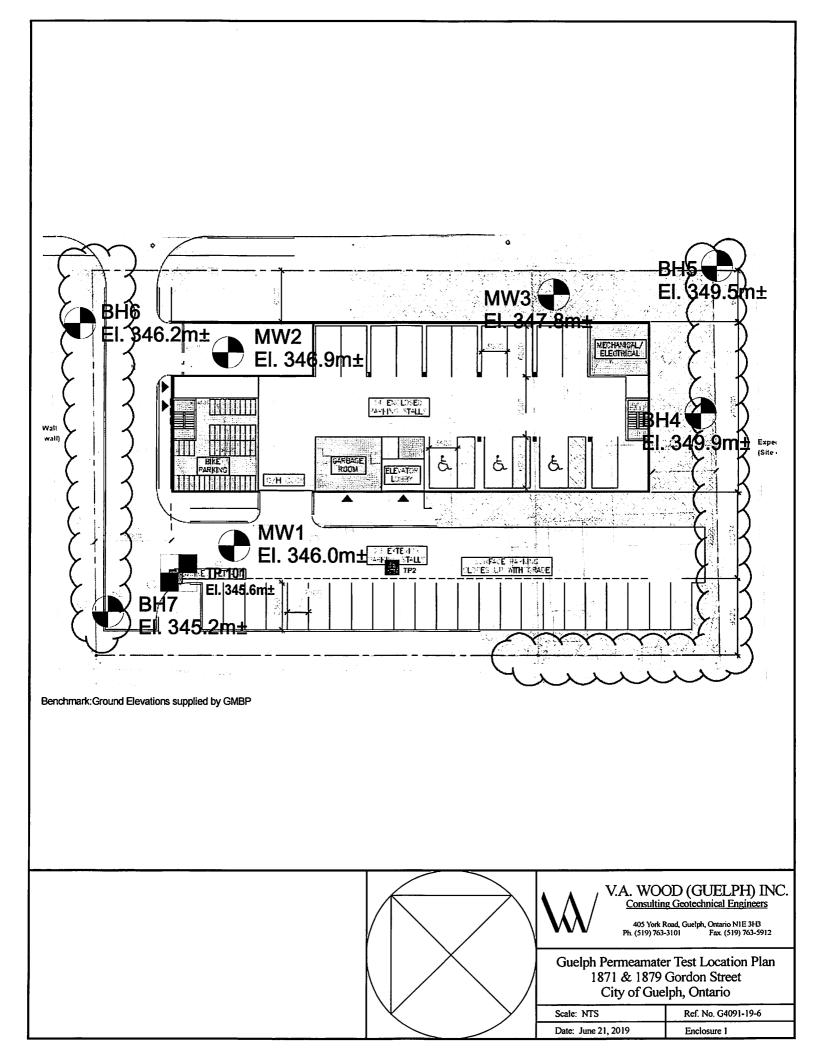
JB:sm

Encls.

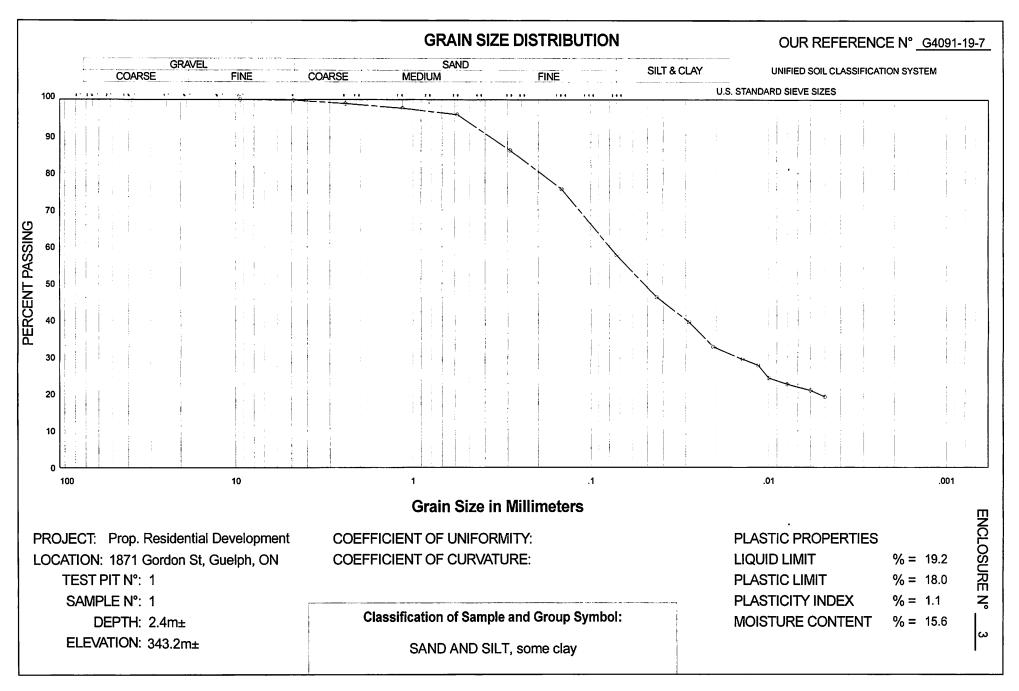
Cc: GM BluePlan Engineering Ltd.

APPENDIX

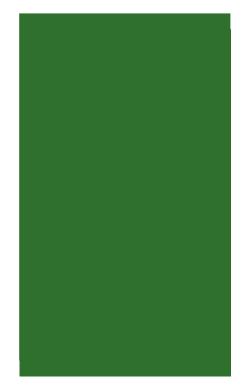
STATEMENT OF LIMITATIONS:


The conclusions and recommendations in this report are based on information determined at the test pit locations and on geological data of a general nature, which may be available, for the area investigated. Soil and groundwater conditions between and beyond the test pits may differ from those encountered at the test pit locations and conditions may become apparent during construction, which would not be detected or anticipated at the time of the soil investigation.

We recommend that we be retained to ensure that all necessary stripping, subgrade preparation and compaction requirements are met, and to confirm that the soil conditions do not deviate materially from those encountered in the test pits. <u>In cases where this recommendation is not</u> <u>followed the company's responsibility is limited to interpreting accurately the information</u> <u>encountered at the test pits</u>.


This report is applicable only to the project described in the introduction, constructed substantially in accordance with details of alignment and elevations quoted in the text.

V.A. Wood (Guelph) Inc. prepared this report for Mar-Cot Developments Inc. and GM BluePlan Engineering Ltd. The material in it reflects V.A. Wood (Guelph) Inc. judgement in light of the information available to it at the time of preparation. Any use which a Third Party makes of this report, or any reliance on decisions to be made based on it, are the responsibility of such Third Parties. V.A. Wood (Guelph) Inc. accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.


ENCLOSURES

CLI	FERENCE No: G4091-19-7 TEST PIT No: 101 ENT: Mar-Cot Developments Inc. DJECT: Proposed Residential Development ENCLOSURE No: 2 CATION: 1871 & 1879 Gordon St, Gue., ON SUPERVISOR: JB/BRF	V.A. WOOL <u>CONSULTING G</u> 405 YORK ROAD, PH. (519) 763-3101	OTECHN	CAL ENGI	NEERS
DEPTH (m)	SOIL DESCRIPTION	ELEVATION (m)	SYMBOL	GROUND WATER	SAMPLES
0.0	GROUND SURFACE 250mm Topsoil brown, compact	345.6			
2.3	Sand and Gravel FILL trace to some silt, trace organics, moist brown, compact	343.3			1
2.7	SAND AND SILT, some clay moist brown, compact to dense GRAVEL AND SAND trace silt, moist	342.9 342.6			
	END OF TEST PIT				
EXC	CAVATED BY: Mar-Cot Developments Inc.EST PIT DIMENSIONS: 3.0) x 3.0m			
	THOD: Excavator DATUM ELEVATION: Geode	etic			
DA1	TE: June 18, 2019 SHEET: 1 of 1				

V. A. WOOD (GUELPH) INCORPORATED

Appendix **B**

Pre- and Post-Development MIDUSS Model Output and Stage-Storage-Discharge Calculation Tables and Oil/Grit Separator and Brentwood Stormtank Details

		118170 2-year pre.out
"		MIDUSS Output>"
"		MIDUSS version Version 2.25 rev. 473"
"		MIDUSS created Sunday, February 07, 2010"
"	10	Units used: ie METRIC"
"		Job folder: \\gamsby.local\GMProjects\Guelph\118-2018\"
"		118170 Gordon St. ZCA\5 Work in Progress\Design Calcs\2019-07-22
Mid	dus"	
"		Output filename: 118170 2-year pre.out"
"		Licensee name: gmbp"
"		Company "
"		Date & Time last used: 7/23/2019 at 11:26:32 AM"
" 3	1 TI	IME PARAMETERS"
"	5.000	Time Step"
"	170.000	Max. Storm length"
"	2880.000	Max. Hydrograph"
" 3	2 ST	FORM Chicago storm"
"	1	Chicago storm"
"	743.000	Coefficient A"
"	6.000	Constant B"
"		Exponent C"
		Fraction R"
	170.000	
	1.000	Time step multiplier"
		aximum intensity 105.606 mm/hr"
	-	otal depth 33.816 mm"
	6	002hyd Hydrograph extension used in this file"
" 3		ATCHMENT 100"
	1	Triangular SCS"
	1 2	Equal length"
	100	Horton equation" Catch 100 Existing Property"
	35.000	% Impervious"
	0.329	Total Area"
	25.000	Flow length"
	4.000	Overland Slope"
	0.214	Pervious Area"
	25.000	Pervious length"
	4.000	Pervious slope"
	0.115	Impervious Area"
	25.000	Impervious length"
	4.000	Impervious slope"
"	0.300	Pervious Manning 'n'"
"	75.000	Pervious Max.infiltration"
"	12.500	Pervious Min.infiltration"
"	0.250	Pervious Lag constant (hours)"
"	5.000	Pervious Depression storage"
"	0.013	Impervious Manning 'n'"
"	0.000	Impervious Max.infiltration"

				11817	70 2-y	year pr	e.out		
"		0.000	Impervious Min	.infi	ltrat	ion"			
"		0.001	Impervious Lag	const	tant	(hours))"		
"		1.500	Impervious Dep	ressi	on st	orage"			
"			0.028	0.00	0	0.000	0.00	0 c.m/sec	п
"		Ca	atchment 100		Perv	ious	Impervic	ous Total	Area "
"		Su	urface Area		0.21	4	0.115	0.329	hectare"
		Τź	ime of concentra	tion			1.450	3.271	minutes"
		T	ime to Centroid			89	83.076	83.835	
		Ra	ainfall depth		33.8	16	33.816	33.816	
			ainfall volume		72.3	2	38.94	111.25	
			ainfall losses		31.7	05	2.050	21.326	
			unoff depth		2.11		31.766	12.490	
			unoff volume		4.51		36.58	41.09	c.m"
"		Rı	unoff coefficien	t	0.06	2	0.939	0.369	"
"		Ma	aximum flow		0.00	4	0.028	0.028	c.m/sec"
	40	H١	/DROGRAPH Add Ru	noff '					
"		4	Add Runoff "						
"			0.028	0.02	8	0.000	0.00	90"	
"	38	ST	FART/RE-START TO	TALS :	100"				
"		3	Runoff Totals	on EX	IT"				
"		Тс	otal Catchment a	rea				0.329	hectare"
"		Тс	otal Impervious	area				0.115	hectare"
"			otal % imperviou					35.000"	
"	19	ΕX	(IT"						

		11817	0 5-year pro	e.out	
		MIDUSS Output			>"
		MIDUSS version			2.25 rev. 473"
		MIDUSS created		Sunday, Fel	oruary 07, 2010"
	10	Units used:			ie METRIC"
		Job folder:	\\gamsby.lo	cal\GMProjects\G	uelph\118-2018\"
		118170 Gordon St. Z0		÷	-
Middus"				0	
		Output filename:		118170	5-year pre.out"
		Licensee name:			gmbp"
		Company			п
		Date & Time last use	ed:	7/23/2019	at 11:30:50 AM"
" 31	TI	ME PARAMETERS"			
	5.000	Time Step"			
" 1	70.000	Max. Storm length"			
" 28	380.000	Max. Hydrograph"			
" 32	ST	ORM Chicago storm"			
н	1	Chicago storm"			
	93.000	Coefficient A"			
	11.000	Constant B"			
		Exponent C"			
		Fraction R"			
"] "	.70.000	Duration"	- 0		
	1.000	Time step multiplie		4	
п		aximum intensity	134.89	•	
	-	otal depth	46.77		1
" 33	6	005hyd Hydrograph ATCHMENT 100"		sed in this file	
"	1	Triangular SCS"			
	1	Equal length"			
	2	Horton equation"			
	100	Catch 100 Existing F	Property"		
н	35.000	% Impervious"			
	0.329	Total Area"			
н	25.000	Flow length"			
н	4.000	Overland Slope"			
н	0.214	Pervious Area"			
п	25.000	Pervious length"			
н	4.000	Pervious slope"			
	0.115	Impervious Area"			
н	25.000	Impervious length"			
п	4.000	Impervious slope"			
п	0.300	Pervious Manning 'n			
	75.000	Pervious Max.infilt			
	12.500	Pervious Min.infilt			
	0.250	Pervious Lag constan	• •		
	5.000	Pervious Depression	•		
"	0.013	Impervious Manning			
	0.000	Impervious Max.infi	itration"		

				11817	'0 5-y	ear pr	e.out		
"		0.000	Impervious M:	in.infi]	ltrat	ion"			
"		0.001	Impervious La	ag const	tant ((hours))"		
"		1.500	Impervious De	epressio	on sto	orage"			
"			0.039	0.000	9	0.000	0.0	00 c.m/sec'	II
"		C	atchment 100		Perv	ious	Impervi	ous Total A	Area "
"		S	urface Area		0.214	4	0.115	0.329	hectare"
"		Т	ime of concent	ration	12.47	76	1.315	4.789	minutes"
"		Т	ime to Centroid	d	86.07	79	81.462	82.899	minutes"
"		R	ainfall depth		46.77	75	46.775	46.775	mm"
"		R	ainfall volume		100.0	93	53.86	153.89	c.m"
"		R	ainfall losses		35.96	55	2.347	24.198	mm''
"		R	unoff depth		10.83	10	44.428	22.577	mm"
"		R	unoff volume		23.12	2	51.16	74.28	c.m"
"		R	unoff coefficie	ent	0.23	1	0.950	0.483	"
"		М	aximum flow		0.019	9	0.037	0.039	c.m/sec"
"	40	Н	YDROGRAPH Add I	Runoff '					
"		4	Add Runoff "						
"			0.039	0.039	9	0.000	0.0	30 "	
"	38	S	TART/RE-START	TOTALS 1	100"				
"		3	Runoff Totals	s on EXI	IT"				
"		Total Catchment area						0.329	hectare"
"		Total Impervious area						0.115	hectare"
"		Т	otal % impervi	ous				35.000"	
"	19	E	XIT"						

		118170 25-year pre.out
н		MIDUSS Output>"
		MIDUSS version Version 2.25 rev. 473"
н		MIDUSS created Sunday, February 07, 2010"
н	10	Units used: ie METRIC"
н		Job folder: \\gamsby.local\GMProjects\Guelph\118-2018\"
		118170 Gordon St. ZCA\5 Work in Progress\Design Calcs\2019-07-22
Middu	ıs"	
"		Output filename: 118170 25-year pre.out"
н		Licensee name: gmbp"
н		Company "
н		Date & Time last used: 7/23/2019 at 11:33:18 AM"
" 31	TI	IME PARAMETERS"
	5.000	Time Step"
"	210.000	•
"	2880.000	Max. Hydrograph"
" 32		FORM Chicago storm"
"	1	Chicago storm"
	3158.000	Coefficient A"
	15.000	Constant B"
"	0.936	Exponent C"
"		Fraction R"
"	210.000	Duration"
н	1.000	Time step multiplier"
н	Ma	aximum intensity 169.546 mm/hr"
п		otal depth 69.476 mm"
н	6	025hyd Hydrograph extension used in this file"
" 33	CA	ATCHMENT 100"
"	1	Triangular SCS"
"	1	Equal length"
п	2	Horton equation"
"	100	Catch 100 Existing Property"
п	35.000	% Impervious"
"	0.329	Total Area"
"	25.000	Flow length"
"	4.000	Overland Slope"
"	0.214	Pervious Area"
"	25.000	Pervious length"
"	4.000	Pervious slope"
	0.115	Impervious Area"
	25.000	Impervious length"
	4.000	Impervious slope"
	0.300	Pervious Manning 'n'"
	75.000	Pervious Max.infiltration"
	12.500	Pervious Min.infiltration"
	0.250	Pervious Lag constant (hours)"
	5.000	Pervious Depression storage"
	0.013	Impervious Manning 'n'"
	0.000	Impervious Max.infiltration"

				118176	0 25-y	ear pr	re.out			
"		0.000	Impervious Mi	in.infi]	ltrati	on"				
"		0.001	Impervious La	ag const	tant (hours)	"			
"		1.500	Impervious De	epressio	on sto	rage"				
"			0.082	0.000	9	0.000	0.000	c.m/sec'		
"		Ca	atchment 100		Pervi	ous	Impervious	Total A	Area	н
"		Su	urface Area		0.214		0.115	0.329		hectare"
"		Τi	ime of concentr	ration	9.152		1.200	4.727		minutes"
"		Τi	ime to Centroid	t	100.7	09	97.488	98.917		minutes"
"		Ra	ainfall depth		69.47	6	69.476	69.476		mm"
"		Ra	ainfall volume		148.5	8	80.00	228.58		c.m"
"		Ra	ainfall losses		40.98	0	3.086	27.717		mm"
"		Ru	unoff depth		28.49	7	66.390	41.760		mm"
"		Ru	unoff volume		60.94		76.45	137.39		c.m"
"		Ru	unoff coefficie	ent	0.410		0.956	0.601		"
"		Ma	aximum flow		0.052		0.047	0.082		c.m/sec"
"	40	H١	/DROGRAPH Add F	Runoff '						
"		4	Add Runoff "							
"			0.082	0.082	2	0.000	0.000"	I		
"	38	ST	TART/RE-START	TOTALS 1	100"					
"		3	Runoff Totals	s on EXI	IT"					
"		Total Catchment area					e	.329	hect	tare"
"		Тс	otal Impervious	s area			e	.115	hect	tare"
"		Тс	otal % impervio	ous			35	.000"		
"	19	Ε>	(IT"							

		118170 100-year pre.out
		MIDUSS Output>"
п		MIDUSS version Version 2.25 rev. 473"
п		MIDUSS created Sunday, February 07, 2010"
п	10	Units used: ie METRIC"
п	10	Job folder: \\gamsby.local\GMProjects\Guelph\118-2018\"
Middu		118170 Gordon St. ZCA\5 Work in Progress\Design Calcs\2019-07-22
MIUUU	12	Output filonomou 118170 100 year and out"
п		Output filename: 118170 100-year pre.out" Licensee name: gmbp"
		0 F
		Company "
" 31		Date & Time last used: 7/23/2019 at 11:54:37 AM"
" 31 "		IME PARAMETERS"
	5.000	Time Step"
	210.000	
יי יי	2880.000	Max. Hydrograph"
" 32 "		FORM Chicago storm"
	1	Chicago storm"
	4688.000	Coefficient A"
	17.000	Constant B"
		Exponent C"
		Fraction R"
	210.000	
	1.000	Time step multiplier"
		aximum intensity 213.574 mm/hr" Dtal depth 88.830 mm"
	-	
" 33	6	100hyd Hydrograph extension used in this file" ATCHMENT 100"
" "	1	Triangular SCS"
	1	Equal length"
	2	Horton equation"
	100	Catch 100 Existing Property"
	35.000	% Impervious"
	0.329	Total Area"
	25.000	Flow length"
н	4.000	Overland Slope"
п	4.000 0.214	Pervious Area"
п	25.000	Pervious length"
п	4.000	Pervious slope"
п	4.000 0.115	Impervious Area"
п	25.000	Impervious length"
п	4.000	Impervious slope"
п	0.300	Pervious Manning 'n'"
	75.000	Pervious Max.infiltration"
	12.500	Pervious Min.infiltration"
	0.250	Pervious Lag constant (hours)"
	5.000	Pervious Depression storage"
	0.013	Impervious Manning 'n'"
	0.000	Impervious Max.infiltration"
	0.000	

				118170	100-year	pre.out		
"		0.000	Impervious	Min.infi]	ltration"			
"		0.001	Impervious	Lag const	tant (hour	`s)"		
"		1.500	Impervious	Depressio	on storage			
"			0.125	0.000	0.00	0.0	00 c.m/sec'	I
"		Ca	atchment 100		Pervious	Impervi	ous Total A	Area "
"		Su	urface Area		0.214	0.115	0.329	hectare"
"		Ti	ime of concen [.]	tration	7.559	1.094	4.318	minutes"
"		Ti	ime to Centro	id	100.595	96.787	98.686	minutes"
"		Ra	ainfall depth		88.830	88.830	88.830	mm"
"		Ra	ainfall volum	e	189.96	102.29	292.25	c.m"
"		Ra	ainfall losse	s	43.392	4.001	29.605	mm"
"		Ru	unoff depth		45.438	84.829	59.225	mm"
"		Ru	unoff volume		97.17	97.68	194.85	c.m"
"		Ru	unoff coeffic	ient	0.512	0.955	0.667	"
"		Ma	aximum flow		0.086	0.059	0.125	c.m/sec"
"	40	H١	/DROGRAPH Add	Runoff '	•			
"		4	Add Runoff	11				
"			0.125	0.125	5 0.00	0.0	00"	
"	38	ST	TART/RE-START	TOTALS 1	L00"			
"		3	Runoff Tota	ls on EXI	[Т"			
"		Total Catchment area					0.329	hectare"
"		Total Impervious area					0.115	hectare"
"		Тс	otal % imperv	ious			35.000"	
"	19	ΕX	(IT"					

1871 Gordon Street Our File: 118170 July 25, 2019

Catchment 200: Proposed Rooftop Storage (Residential Building)

Design Discharge Rate =	1.50 l/min/mm/weir	2.50E-05	m ³ /s/mm/weir
Max. Average Storage Depth =	100 mm		
Design Discharge =	150.0 l/min/weir	0.0015	m ³ /s/weir
No. of Drains =	3		
No. Weirs/Drain =	6		
Allowable Release Rate =	2700.0 l/min	0.027	m ³ /s
Rooftop Area =	1,120 m ²	(flat rooftop a	rea that is available for storage)

Therefore: 464.5 sq m/Roof Drain or 5000 sq ft/Roof Drain as per OBC

STAGE-STORAGE-DISCHARGE TABLE

Stage (m)	Storage (m ³)	Discharge (m ³ /s)
0.000	0.0	0.000
0.025	28.0	0.011
0.050	56.0	0.023
0.075	84.0	0.034
0.100	112.0	0.045

1871 & 1879 Gordon Street MAR-COT CITY OF GUELPH OUR FILE: 118170 5-Mar-21

CATCHMENT 200 AND 201 - INFILITRATION GALLERY

	ST	AGE STORAGE	VOLUME CALC	ULATIONS	
ELEV	DEPTH	SURFACE	INCR.	ACCUM.	_
		AREA	VOLUME	STORAGE VOLUME	
(m)	(m)	(sq m)	(cu m)	(cu m)	
343.70	0.000	117.1	0.0	0.0	Bottom of Gallery
343.71	0.010	117.1	1.1	1.1	
344.10	0.400	117.1	44.3	45.4	
344.50	0.800	117.1	45.4	90.8	
345.00	1.300	117.1	56.8	147.6	
345.25	1.550	117.1	28.4	176.0	
345.53	1.830	117.1	31.8	207.8	Top of Gallery (1.2m below Pr. Grade)
345.54	1.840	1.2	0.6	208.4	
345.75	2.050	1.2	0.2	208.6	
346.00	2.300	1.2	0.3	208.9	
346.20	2.500	1.2	0.2	209.2	
346.35	2.650	1.2	0.2	209.3	T/CB Lid
346.50	2.800	150.0	15.0	224.3	
346.60	2.900	200.0	18.3	242.7	Overflow @ Gordon Street
346.65	2.950	250.0	11.7	254.3	
346.70	3.000	1.0	1.0	255.3	T/Curb on Site

BOTTOM INFILTRATION ONLY

L(dw) =	18.29	m
W(dw) =	6.40	m
Perimeter=	49.38	m
D(dw) =	1.83	m
A(c) =	117.1	sq m
VOL(dw)=	214.2	cu m
VOL(st)=	207.8	cu m
K =	1.71E-05	m/s

STAGE/STORAGE/DISCHARGE TABLE AGE SOIL WEIR TOTAL

		-		GE/DISCHARG		
ELEV.	STAGE	STORAGE	SOIL	WEIR	TOTAL	
		VOLUME	DISCHARGE	DISCHARGE	DISCHARGE	
(m)	(m)	(m ³)	(m³/s)	(m³/s)	(m ³ /s)	_
343.70	0.000	0.0	0.0000000	0.00000	0.000000	Bottom of Gallery
343.71	0.010	1.1	0.0020017	0.00000	0.002002	
344.10	0.400	45.4	0.0020117	0.00000	0.002012	
344.50	0.800	90.8	0.0020217	0.00000	0.002022	
345.00	1.300	147.6	0.0020317	0.00000	0.002032	
345.25	1.550	176.0	0.0020417	0.00000	0.002042	
345.53	1.830	207.8	0.0020517	0.00000	0.002052	Top of Gallery (1.2m below Pr. Grade)
345.54	1.840	208.4	0.0020617	0.00000	0.002062	
345.75	2.050	208.6	0.0020717	0.00000	0.002072	
346.00	2.300	208.9	0.0020817	0.00000	0.002082	
346.20	2.500	209.2	0.0020917	0.00000	0.002092	
346.35	2.650	209.3	0.0021017	0.00000	0.002102	T/CB Lid
346.50	2.800	224.3	0.0021117	0.00000	0.002112	
346.60	2.900	242.7	0.0021217	0.00000	0.002122	Overflow @ Gordon Street
346.65	2.950	254.3	0.0021317	0.00000	0.002132	
346.70	3.000	255.3	0.0021417	0.00000	0.002142	T/Curb on Site

			MIDUSS Output>"
п			MIDUSS version Version 2.25 rev. 473"
"			MIDUSS created Sunday, February 07, 2010"
"		10	Units used: ie METRIC"
"			Job folder: W:\Guelph\118-2018\118170 Gordon St. ZCA\"
"			5 Work in Progress\Design Calcs\2021-01-27 Middus\post"
п			Output filename: Default.Out"
"			Licensee name: gmbp"
"			Company
"			Date & Time last used: 2/5/2021 at 2:58:57 PM"
"	31	T:	IME PARAMETERS"
"		5.000	Time Step"
"		170.000	Max. Storm length"
"		2880.000	Max. Hydrograph"
"	32	S	TORM Chicago storm"
"		1	Chicago storm"
"		743.000	Coefficient A"
"		6.000	Constant B"
"		0.799	Exponent C"
"		0.400	Fraction R"
"		170.000	Duration"
"		1.000	Time step multiplier"
"			aximum intensity 105.606 mm/hr"
"		То	otal depth 33.816 mm"
		6	002hyd Hydrograph extension used in this file"
	33		ATCHMENT 200"
		1	Triangular SCS"
		1	Equal length"
		2	Horton equation"
		200	Catch 200 Roof Top"
		100.000	% Impervious"
		0.110	Total Area"
		25.000	Flow length" Overland Slope"
		1.000 0.000	Pervious Area"
		25.000	Pervious length"
		1.000	Pervious slope"
п		0.110	Impervious Area"
		25.000	Impervious length"
		1.000	Impervious slope"
		0.300	Pervious Manning 'n'"
		75.000	Pervious Max.infiltration"
		12.500	Pervious Min.infiltration"
"		0.250	Pervious Lag constant (hours)"
"		5.000	Pervious Depression storage"
"		0.013	Impervious Manning 'n'"
"		0.000	Impervious Max.infiltration"
"		0.000	Impervious Min.infiltration"
"		0.001	Impervious Lag constant (hours)"
"		1.500	Impervious Depression storage"

			0.025	0.000	0.000	0.000	c.m/sec"	
"		Ca	tchment 200		Pervious		Total Area	
			rface Area		0.000	0.110	0.110	hectare"
			me of concentrat	tion		2.198	2.198	minutes"
"			me to Centroid		97.835	84.196	84.196	minutes"
"		Ra	infall depth		33.816	33.816	33.816	mm"
"		Ra	infall volume		0.00	37.20	37.20	c.m"
"		Ra	infall losses		31.705	1.990	1.990	mm"
"		Ru	noff depth		2.111	31.826	31.826	mm"
"		Ru	noff volume		0.00	35.01	35.01	c.m"
"		Ru	noff coefficien	t	0.000	0.941	0.941	
"			ximum flow		0.000	0.025	0.025	c.m/sec"
"	40	HY	DROGRAPH Add Rui	noff '				
"		4	Add Runoff "					
"			0.025	0.02	5 0.000	0.000"		
"	54		ND DESIGN"					
"		0.025	Current peak f		c.m/sec"			
		0.001	Target outflow		.m/sec"			
		35.0	Hydrograph volu		c.m"			
		5.	Number of stage					
		0.000	Minimum water					
		0.100 0.000	Maximum water Starting water					
		0.000 0	Keep Design Da			- Falco"		
		0	Level Discha		Volume"			
				900	0.000"			
			0.02500 0.01		28.000"			
			0.05000 0.02		56.000"			
			0.07500 0.034		84.000"			
"			0.1000 0.04		112.000"			
"		Pe	ak outflow		0.00	07 c.m/s	ec"	
"		Ма	ximum level		0.01			
"		Ма	ximum storage		17.53	39 c.m"		
"		Ce	ntroidal lag		2.11	10 hours"		
"			0.025 0.0	925	0.007	0.000 c.m	/sec"	
"	40	HY	DROGRAPH Next 1:	ink "				
"		5	Next link "					
			0.025	0.007	7 0.007	0.000"		
	33		TCHMENT 201"					
		1	Triangular SCS					
		1	Equal length"					
		2	Horton equation	1"				
		201	Catchment 201"					
		70.000 0.166	% Impervious" Total Area"					
		30.000	Flow length"					
		3.000	Overland Slope					
		0.050	Pervious Area"					
"		30.000	Pervious lengt	า"				
"		3.000	Pervious slope					
		2.500						

	0.116 30.000 3.000 0.300 75.000 12.500 0.250	Impervious Area" Impervious length" Impervious slope" Pervious Manning 'n Pervious Max.infilt Pervious Min.infilt Pervious Lag consta	ration" ration"			
"	5.000	Pervious Depression	storage"			
"	0.013	Impervious Manning				
	0.000	Impervious Max.infi				
	0.000	Impervious Min.infi				
	0.001	Impervious Lag cons	• •) "		
	1.500	Impervious Depressi	-	0.000		
	6	0.027 0.00			.m/sec"	
		atchment 201 urface Area	Pervious 0.050	1mpervious 0.116	Total Area	
		ime of concentration	21.919	1.764	0.166 2.319	hectare" minutes"
		ime to Centroid	93.239	83.461	83.730	minutes"
		ainfall depth	33.816	33.816	33.816	mm"
п		ainfall volume	16.84	39.29	56.13	c.m"
"		ainfall losses	31.710	1.965	10.889	mm"
"		unoff depth	2.106	31.851	22.927	mm"
"		unoff volume	1.05	37.01	38.06	c.m"
"	Ru	unoff coefficient	0.062	0.942	0.678	"
"	Ma	aximum flow	0.001	0.027	0.027	c.m/sec"
"	40 HY	/DROGRAPH Add Runoff				
"	4	Add Runoff "				
"		0.027 0.03	0 0.007	0.000"		
		OND DESIGN"				
	0.030	Current peak flow	c.m/sec"			
	0.001	3	.m/sec"			
	73.1	Hydrograph volume	c.m"			
	16. 343.700	Number of stages" Minimum water level	metre"			
	345.700	Maximum water level				
	343.700	Starting water leve				
	0	Keep Design Data: 1		= False"		
	Ŭ	Level Discharge	Volume"	- Turse		
п		343.700 0.000	0.000"			
"		343.710 0.00200	1.100"			
"		344.100 0.00201	45.400"			
"		344.500 0.00202	90.800"			
"		345.000 0.00203	147.600"			
"		345.250 0.00204	176.000"			
"		345.530 0.00205	207.800"			
"		345.540 0.00206	208.400"			
		345.750 0.00207	208.600"			
		346.000 0.00208	208.900"			
		346.200 0.00209	209.200"			
		346.350 0.00210	209.300"			

		246 500	0 00011	224 200"			
п		346.500	0.00211	224.300"			
		346.600	0.00212	242.700"			
п		346.650	0.00213	254.300"			
п		346.700	0.00214	255.300"	\sim		
п		Peak outflow		0.00			
п		Maximum leve		344.15			
п		Maximum stor	•	51.52			
		Centroidal 1 0.027	0	5.75 0.002		(
п	40		0.030		0.000 c.m/	Sec	
п		HYDROGRAPH S [.] 2 Start - N	ew Tributa	-			
п		2 Start - N		-	0.000"		
	33	CATCHMENT 20		0.002	0.000		
		1 Triangula					
п		1 Equal len					
п		2 Horton eq	-				
п	20		Front of S	Sito"			
	50.00			JICC			
	0.04	-					
п	10.00						
п	3.00	0					
	0.02		•				
п	10.00						
п	3.00		-				
"	0.02		-				
"	10.00	•					
"	3.00		-				
п	0.30		Manning 'n				
п	75.00		Max.infilt				
"	12.50	0 Pervious	Min.infilt	ration"			
"	0.25	0 Pervious	Lag consta	nt (hours)"			
"	5.00	0 Pervious	Depression	storage"			
"	0.01	3 Imperviou	s Manning	'n'"			
"	0.00	0 Imperviou	s Max.infi	ltration"			
"	0.00	0 Imperviou	s Min.infi	ltration"			
"	0.00	•	•	tant (hours))"		
"	1.50	•		on storage"			
"		0.00				c.m/sec"	_
		Catchment 20		Pervious		Total Area	
		Surface Area		0.022	0.022	0.043	hectare"
		Time of conc		11.338	0.912	1.576	minutes"
		Time to Cent		84.340	82.188	82.325	minutes"
		Rainfall dep		33.816	33.816	33.816	mm"
		Rainfall vol		7.27	7.27	14.54	c.m"
		Rainfall los		31.706	2.778	17.242	mm"
		Runoff depth		2.110	31.038	16.574	mm"
		Runoff volum		0.45	6.67	7.13	c.m"
		Runoff coeff		0.062	0.918	0.490	
	40	Maximum flow		0.000	0.005	0.005	c.m/sec"
	40	HYDROGRAPH A	uu kunott				

		4	۵dd	Runoff "							
		•	7100	0.005	0.00	5 0.00	o 02 0	.000"			
"	40	HYI	DROGR	APH Start							
"	-	2		t - New Tr		-					
"		_		0.005	0.000	-	o 02 0	.000"			
	33	CA	ТСНМЕ	NT 203"							
"		1		ngular SCS							
"		1		l length"							
"		2	-	on equation	n"						
"		203		h 203 Flow		North of S	Site"				
"		40.000	% Im	pervious"							
"		0.010		l Area"							
п		10.000		length"							
п		5.000		land Slope							
"		0.006		ious Area"							
"		10.000	Perv	ious lengt	h"						
п		5.000		ious slope							
"		0.004		rvious Area							
"		10.000	•	rvious len							
"		5.000	•	rvious slo	•						
"		0.300	Perv	ious Manni	ng 'n						
"		75.000	Perv	ious Max.i	nfiltı	ration"					
"		12.500	Perv	ious Min.i	nfiltı	ration"					
"		0.250	Perv	ious Lag co	onstar	nt (hours))"				
п		5.000	Perv	ious Depres	ssion	storage"					
п		0.013	Impe	rvious Man	ning	'n'"					
"		0.000	Impe	rvious Max	.infi	ltration"					
"		0.000	Impe	rvious Min	.infi	ltration"					
"		0.001	Impe	rvious Lag	const	tant (hou	rs)"				
"		1.500	Impe	rvious Dep			e"				
"				0.001	0.000	0.00	92 0	.000 (c.m/sec	n	
"				nt 203		Pervious	Imper	vious	Total /	Area	"
"				Area		0.006	0.004		0.010		hectare"
"				concentra	tion	9.727	0.783		1.608		minutes"
"				Centroid		82.804	82.22		82.274		minutes"
"				l depth		33.816	33.81	6	33.816		mm"
"				l volume		2.03	1.35		3.38		c.m"
"				l losses		31.735	3.093		20.279		mm"
"				depth		2.081	30.72	3	13.537		mm"
				volume		0.12	1.23		1.35		c.m"
"				coefficient	t	0.062	0.909		0.400		"
				flow		0.000	0.001		0.001		c.m/sec"
	40			APH Add Ru	noff '	•					
		4	Add	Runoff "							
				0.001	0.00		d2 0	.000"			
	38	-		E-START TO							
		3		off Totals of		LI		~	220	hac	tana"
				atchment a					.329		tare" tare"
				mpervious a					.252	nec	tare"
		10	ιαi λ	5 impervious	5			10	.505"		

			MIDUSS Output>"
		10	MIDUSS created Sunday, February 07, 2010"
		10	Units used: ie METRIC"
			Job folder: W:\Guelph\118-2018\118170 Gordon St. ZCA\"
			5 Work in Progress\Design Calcs\2021-01-27 Middus\post" Output filename: Default.Out"
			•
			Licensee name: gmbp" Company "
			Date & Time last used: 2/5/2021 at 3:31:48 PM"
п	31	т	IME PARAMETERS"
	51	5.000	Time Step"
		170.000	Max. Storm length"
		2880.000	Max. Hydrograph"
"	32		TORM Chicago storm"
	-	1	Chicago storm"
		1593.000	Coefficient A"
"		11.000	Constant B"
"		0.879	Exponent C"
"		0.400	Fraction R"
"		170.000	Duration"
"		1.000	Time step multiplier"
"		Ma	aximum intensity 134.894 mm/hr"
"		Тс	otal depth 46.775 mm"
"		6	005hyd Hydrograph extension used in this file"
	33		ATCHMENT 200"
"		1	Triangular SCS"
		1	Equal length"
		2	Horton equation"
		200	Catch 200 Roof Top"
		100.000	% Impervious"
		0.110	Total Area"
		25.000 1.000	Flow length" Overland Slope"
		0.000	Pervious Area"
		25.000	Pervious length"
		1.000	Pervious slope"
		0.110	Impervious Area"
"		25.000	Impervious length"
"		1.000	Impervious slope"
		0.300	Pervious Manning 'n'"
"		75.000	Pervious Max.infiltration"
"		12.500	Pervious Min.infiltration"
"		0.250	Pervious Lag constant (hours)"
"		5.000	Pervious Depression storage"
"		0.013	Impervious Manning 'n'"
"		0.000	Impervious Max.infiltration"
"		0.000	Impervious Min.infiltration"
"		0.001	Impervious Lag constant (hours)"
"		1.500	Impervious Depression storage"

	0	.033 0.000	0.000	0.000 0	.m/sec"	
	Catchment				Total Area	
	Surface A			0.110	0.110	hectare"
п				1.993	1.993	minutes"
"	Time to C			82.400	82.400	minutes"
"	Rainfall	depth 4		46.775	46.775	mm"
п	Rainfall	volume	0.00	51.45	51.45	c.m"
"	Rainfall	losses	35.917	2.122	2.122	mm"
"	Runoff de	pth	10.858	44.653	44.653	mm"
"	Runoff vo	lume	0.00	49.12	49.12	c.m"
"	Runoff co	efficient	0.000	0.955	0.955	
"	Maximum f		0.000	0.033	0.033	c.m/sec"
"4		H Add Runoff "				
"		noff "				
		.033 0.033	0.000	0.000"		
" 5			<i>,</i>			
		t peak flow	c.m/sec"			
	•		m/sec"			
	, , ,	raph volume	c.m"			
		of stages"	metre"			
п		m water level m water level	metre"			
		ng water level				
п		esign Data: 1		False"		
		l Discharge	Volume"	Taise		
п	0.00	•	0.000"			
	0.0250		28.000"			
п	0.0500		56.000"			
п	0.0750		84.000"			
"	0.100	0 0.04500	112.000"			
"	Peak outf	low	0.01	.0 c.m/se	ec"	
п	Maximum l	evel	0.02	2 metre'	1	
"	Maximum s	torage	25.19	93 c.m"		
"	Centroida	l lag	2.08			
"		3 0.033	0.010	0.000 c.m/	'sec"	
" 4		H Next link "				
	5 Next 1					
		0.033 0.010	0.010	0.000"		
" 3						
		ular SCS"				
	•	length"				
п		equation" ent 201"				
		ervious"				
	0.166 Total					
		ength"				
		nd Slope"				
		us Area"				
"		us length"				
"		us slope"				

	0.116 30.000 3.000 0.300 75.000 12.500 0.250	Impervious Area" Impervious length" Impervious slope" Pervious Manning 'n Pervious Max.infilt Pervious Min.infilt Pervious Lag consta	ration" ration"						
"	5.000	Pervious Depression	storage"						
"	0.013	Impervious Manning							
"	0.000	Impervious Max.infi							
"	0.000	Impervious Min.infi							
	0.001	Impervious Lag cons	•)"					
	1.500	Impervious Depressi	•		<i>,</i> "				
	-	0.036 0.01			c.m/sec"				
		atchment 201	Pervious		Total Area	" 			
		urface Area	0.050	0.116	0.166	hectare"			
		ime of concentration	15.173	1.599	2.881	minutes"			
		ime to Centroid ainfall depth	88.550 46.775	81.788 46.775	82.427 46.775	minutes" mm"			
		ainfall volume	23.29	54.35	77.65	c.m"			
		ainfall losses	35.918	2.140	12.273	mm"			
		unoff depth	10.857	44.636	34.502	mm"			
"		inoff volume	5.41	51.87	57.27	c.m"			
"		Runoff coefficient 0.232 0.954 0.738 "							
"	Ma	aximum flow	0.004	0.036	0.036	c.m/sec"			
"	40 HY	/DROGRAPH Add Runoff	п						
"	4	Add Runoff "							
"		0.036 0.04	1 0.010	0.000"					
		OND DESIGN"							
	0.041	Current peak flow	c.m/sec"						
	0.001		.m/sec"						
	106.4	Hydrograph volume	c.m"						
	16. 343.700	Number of stages" Minimum water level	. metre"						
	345.700	Maximum water level							
	343.700	Starting water leve							
	0	Keep Design Data: 1		= False"					
	Ũ	Level Discharge	Volume"	1 dibe					
"		343.700 0.000	0.000"						
"		343.710 0.00200	1.100"						
"		344.100 0.00201	45.400"						
"		344.500 0.00202	90.800"						
"		345.000 0.00203	147.600"						
"		345.250 0.00204	176.000"						
"		345.530 0.00205	207.800"						
"		345.540 0.00206	208.400"						
		345.750 0.00207	208.600"						
		346.000 0.00208	208.900"						
		346.200 0.00209	209.200"						
		346.350 0.00210	209.300"						

		346.500	0.00211	224.300"			
			0.00212	242.700"			
			0.00213	254.300"			
	-	346.700	0.00214	255.300"			
		ak outflow		0.00			
		ximum level		344.43			
		ximum stora	•	83.06			
	Cei	ntroidal la	0	7.98		(
		0.036	0.041	0.002	0.000 c.m/	sec	
" 40 "	_	Start - Ne		Tributary"			
	2	0.036			0.000"		
" 33	<u>د</u> ۸-	TCHMENT 202		0.002	0.000		
" 22	1	Triangular					
	1	Equal leng					
	2	Horton equ	•				
	202	Catch 202		Sito"			
	50.000	% Impervic		Jite			
	0.043	Total Area					
	10.000	Flow lengt					
	3.000	Overland S					
	0.022	Pervious A	•				
	10.000	Pervious 1					
	3.000	Pervious s	-				
	0.022	Impervious					
	10.000	Impervious					
п	3.000	Impervious	slope"				
	0.300	Pervious M	lanning 'n				
	75.000	Pervious M	lax.infilt	ration"			
	12.500	Pervious M	lin.infilt	ration"			
"	0.250	Pervious L	.ag consta	nt (hours)"			
	5.000	Pervious D	-	•			
	0.013	Impervious					
	0.000	Impervious					
	0.000	Impervious					
"	0.001			tant (hours)) "		
"	1.500	-	-	on storage"		<i>,</i>	
	6-1	0.007				.m/sec"	п
		tchment 202	<u>.</u>	Pervious	•	Total Area	
		rface Area		0.022	0.022	0.043	hectare"
		me of conce		7.849	0.827	2.242	minutes"
		me to Centr		82.333	80.769	81.084	minutes" mm"
		infall dept		46.775	46.775	46.775	
п		infall volu infall loss		10.06 35.894	10.06 3.664	20.11 19.779	c.m" mm"
		noff depth	5	10.881	43.111	26.996	mm"
п		noff volume		2.34	43.111 9.27	11.61	
		noff coeffi		0.233	9.27	0.577	C.III "
		ximum flow	.crenc	0.003	0.922	0.007	c.m/sec"
" 40		DROGRAPH AC	ld Runoff '		0.007	0.007	C. III/ 36C
-+0	1111	UNUGNALIT AU					

		4	Add Runoff "					
"			0.007	0.007	7 0.002	0.000"		
"	40	HYI	DROGRAPH Start	- New	Tributary"			
"		2	Start - New Tr	ibutar	°y"			
"			0.007	0.000	0.002	0.000"		
"	33	CA	TCHMENT 203"					
"		1	Triangular SCS					
"		1	Equal length"					
"		2	Horton equatio	n"				
"		203	Catch 203 Flow	off N	North of Sit	te"		
"		40.000	% Impervious"					
		0.010	Total Area"					
		10.000	Flow length"					
		5.000	Overland Slope					
		0.006	Pervious Area"					
		10.000	Pervious lengt					
		5.000	Pervious slope					
		0.004	Impervious Are					
		10.000	Impervious len	•				
		5.000	Impervious slo	-				
		0.300 75.000	Pervious Manni Pervious Max.i	•				
		12.500	Pervious Min.i					
		0.250	Pervious Lag c					
		5.000	Pervious Depre					
		0.013	Impervious Man		-			
		0.000	Impervious Max	•				
		0.000	Impervious Min					
		0.001	Impervious Lag)"		
"		1.500	Impervious Dep			, ,		
"			0.001	0.000	•	0.000	c.m/sec	11
"		Ca	tchment 203		Pervious	Impervious	Total /	Area "
"		Su	rface Area		0.006	0.004	0.010	hectare"
"		Ti	me of concentra	tion	6.734	0.710	2.355	minutes"
"			me to Centroid		81.098	80.784	80.869	
"			infall depth		46.775	46.775	46.775	mm"
"			infall volume		2.81	1.87	4.68	c.m"
"			infall losses		36.131	4.287	23.393	mm''
			noff depth		10.644	42.488	23.382	mm"
			noff volume		0.64	1.70	2.34	c.m"
			noff coefficien	t	0.228	0.908	0.500	
	40		ximum flow		0.001	0.001	0.001	c.m/sec"
	40		DROGRAPH Add Ru Add Runoff "	потт				
		4	0.001	0.001	L 0.002	0.000"		
	38	ST.	ART/RE-START TO			0.000		
	50	3	Runoff Totals					
"		-	tal Catchment a			a	.329	hectare"
			tal Impervious				.252	hectare"
			tal % imperviou				.505"	

			MIDUSS Output>"
			MIDUSS Output>" MIDUSS version Version 2.25 rev. 473"
			MIDUSS version 2.25 rev. 475 MIDUSS created Sunday, February 07, 2010"
		10	Units used: ie METRIC"
		10	Job folder: W:\Guelph\118-2018\118170 Gordon St. ZCA\"
			5 Work in Progress\Design Calcs\2021-01-27 Middus\post"
			Output filename: Default.Out
			Licensee name: gmbp"
			Company "
п			Date & Time last used: 2/5/2021 at 3:39:06 PM"
	31	TI	IME PARAMETERS"
	51	5.000	Time Step"
		170.000	Max. Storm length"
		2880.000	Max. Hydrograph"
"	32		FORM Chicago storm"
	_	1	Chicago storm"
		3158.000	Coefficient A"
		15.000	Constant B"
"		0.936	Exponent C"
"		0.400	Fraction R"
		170.000	Duration"
"		1.000	Time step multiplier"
"		Ma	aximum intensity 185.783 mm/hr"
"		Тс	otal depth 67.552 mm"
"		6	025hyd Hydrograph extension used in this file"
"	33	CA	ATCHMENT 200"
		1	Triangular SCS"
		1	Equal length"
"		2	Horton equation"
		200	Catch 200 Roof Top"
		100.000	% Impervious"
		0.110	Total Area"
		25.000	Flow length"
		1.000	Overland Slope"
		0.000	Pervious Area"
		25.000	Pervious length"
		1.000 0.110	Pervious slope" Impervious Area"
		25.000	Impervious Area Impervious length"
		1.000	Impervious slope"
		0.300	Pervious Manning 'n'"
		75.000	Pervious Max.infiltration"
п		12.500	Pervious Min.infiltration"
"		0.250	Pervious Lag constant (hours)"
"		5.000	Pervious Depression storage"
п		0.013	Impervious Manning 'n'"
"		0.000	Impervious Max.infiltration"
"		0.000	Impervious Min.infiltration"
"		0.001	Impervious Lag constant (hours)"
"		1.500	Impervious Depression storage"
			·

			0.047	0 000		0.000		
		6-	0.047	0.000			.m/sec"	п
			tchment 200		Pervious		Total Area	
			rface Area	ion	0.000	0.110	0.110	hectare"
			me of concentrat	100	12.857	1.754	1.754	minutes"
			me to Centroid		89.137	81.044	81.044	minutes" mm"
			infall depth infall volume		67.552	67.552	67.552	
			infall losses		0.00	74.31	74.31	c.m"
			noff depth		39.582 27.970	2.356 65.196	2.356 65.196	mm" mm"
			noff volume		0.00	71.72	71.72	
			noff coefficient	-	0.000	0.965	0.965	C.m
			ximum flow	-	0.000	0.965		c m/coc"
	40		DROGRAPH Add Rur	· حـد ا		0.047	0.047	c.m/sec"
	40	пт 4	Add Runoff "					
		4		0.047	7 0.000	0.000"		
	54	DC	ND DESIGN"	0.04	0.000	0.000		
	54	0.047	Current peak f	0.4	c.m/sec"			
		0.047 0.001	Target outflow		.m/sec"			
		71.7	Hydrograph volu		.m/sec c.m"			
		5.	Number of stage		C.III			
		0.000	Minimum water 1		metre"			
		0.100	Maximum water 1		metre"			
		0.000	Starting water					
		0.000	Keep Design Dat			= False"		
п		U	Level Dischar		Volume"	- Turse		
			0.000 0.0	•	0.000"			
			0.02500 0.011		28.000"			
			0.05000 0.023		56.000"			
			0.07500 0.034		84.000"			
			0.1000 0.045		112.000"			
		Pe	ak outflow		0.01	L5 c.m/se	ec"	
"		Ма	ximum level		0.03			
"		Ма	ximum storage		36.94			
"			ntroidal lag		2.05			
"			0.047 0.6	947	0.015	0.000 c.m/	/sec"	
"	40	HY	DROGRAPH Next li					
"		5	Next link "					
"			0.047	0.01	5 0.015	0.000"		
"	33	CA	TCHMENT 201"					
"		1	Triangular SCS"	I				
"		1	Equal length"					
"		2	Horton equatior	י"				
"		201	Catchment 201"					
"		70.000	% Impervious"					
"		0.166	Total Area"					
"		30.000	Flow length"					
"		3.000	Overland Slope	I				
"		0.050	Pervious Area"					
"		30.000	Pervious length					
"		3.000	Pervious slope"	•				

п	0.116	Impervious Area"								
п	30.000	Impervious length"								
"	3.000	Impervious slope"								
"	0.300	Pervious Manning 'n	Pervious Manning 'n'"							
	75.000	Pervious Max.infilt	Pervious Max.infiltration"							
п	12.500	Pervious Min.infilt	ration"							
п	0.250	Pervious Lag consta	ant (hours)"							
	5.000	Pervious Depression								
	0.013	Impervious Manning	•							
н	0.000	Impervious Max.infi								
н	0.000	Impervious Min.infi								
п	0.001	Impervious Lag cons)"						
	1.500	Impervious Depressi	•	/						
		0.054 0.01	•	0.000	c.m/sec"					
	Ca	tchment 201	Pervious		Total Area					
		irface Area	0.050	0.116	0.166	hectare"				
		me of concentration	10.316	1.407	2.794	minutes"				
		me to Centroid	86.583	80.567	81.504	minutes"				
		infall depth	67.552	67.552	67.552	mm"				
		infall volume	33.64	78.50	112.14	c.m"				
		infall losses	39.601	2.569	13.678	mm"				
		noff depth	27.951	2.569 64.983	53.874	mm"				
		noff volume	13.92							
		noff coefficient	0.414	0.962	0.798					
		ximum flow	0.011	0.051	0.054	c.m/sec"				
" 40 "		DROGRAPH Add Runoff								
	4	Add Runoff "		0.000						
		0.054 0.06	62 0.015	0.000"						
" 54 "		ND DESIGN"								
	0.062	Current peak flow	c.m/sec"							
	0.001	0	.m/sec"							
	161.1	Hydrograph volume	c.m"							
	16.	Number of stages"								
	343.700	Minimum water level								
	346.700	Maximum water level								
	343.700	Starting water leve								
	0	Keep Design Data: 1	-	= False"						
		Level Discharge	Volume"							
		343.700 0.000	0.000"							
		343.710 0.00200	1.100"							
"		344.100 0.00201	45.400"							
"		344.500 0.00202	90.800"							
		345.000 0.00203	147.600"							
п		345.250 0.00204	176.000"							
п		345.530 0.00205	207.800"							
		345.540 0.00206	208.400"							
		345.750 0.00207	208.600"							
		346.000 0.00208	208.900"							
		346.200 0.00209	209.200"							
		346.350 0.00210	209.300"							

		246 500	0 00011	224 200			
п		346.500	0.00211	224.300"			
		346.600	0.00212	242.700"			
		346.650	0.00213	254.300"			
		346.700	0.00214	255.300"	2	0	
		Peak outflow		0.00			
п		Maximum level		344.89			
		Maximum stora	•	135.51			
п		Centroidal la	-	11.63		(
п	40	0.054	0.062	0.002	0.000 c.m/	sec	
	40	HYDROGRAPH St		-			
			ew Tributar 4 0.000	-	0.000"		
	33	0.054 CATCHMENT 202		0.002	0.000		
	22	1 Triangular					
		1 Equal leng					
		2 Horton equ	-				
	26		Front of S	Sito"			
	50.00			JICE			
	0.04						
	10.00						
	3.00	-					
	0.02						
	10.00						
"	3.00		-				
"	0.02		-				
"	10.00						
"	3.00	-	-				
"	0.30	-	Manning 'n'				
"	75.00		Max.infiltr				
п	12.50	0 Pervious N	Min.infiltr	ration"			
п	0.25	0 Pervious I	Lag constar	nt (hours)"			
"	5.00	0 Pervious [Depression	storage"			
"	0.01	.3 Impervious	s Manning '	'n'"			
"	0.00	0 Impervious	s Max.infi]	ltration"			
"	0.00	0 Impervious	s Min.infi]	ltration"			
"	0.00	-	-	ant (hours)			
"	1.50			on storage"			
"		0.012				.m/sec"	
"		Catchment 202	2	Pervious	•	Total Area	
		Surface Area		0.022	0.022	0.043	hectare"
		Time of conce		5.336	0.728	2.161	minutes"
		Time to Centr		81.715	79.769	80.374	minutes"
		Rainfall dept		67.552	67.552	67.552	mm"
		Rainfall volu		14.52	14.52	29.05	c.m"
		Rainfall loss	ses	39.573	5.566	22.570	mm"
		Runoff depth		27.978	61.985	44.982	mm"
		Runoff volume		6.02	13.33	19.34	c.m"
		Runoff coeff:	icient	0.414	0.918	0.666	
	40	Maximum flow		0.006	0.010	0.012	c.m/sec"
	40	HYDROGRAPH Ad	u kunott '				

п		4	Add Runoff "				
п		•	0.012 0.01	2 0.002	0.000"		
	40	HY	DROGRAPH Start - New				
		2	Start - New Tributa	•			
		_	0.012 0.00	-	0.000"		
	33	CA	TCHMENT 203"				
"		1	Triangular SCS"				
"		1	Equal length"				
п		2	Horton equation"				
п		203	Catch 203 Flow off	North of Si	te"		
п		40.000	% Impervious"				
"		0.010	Total Area"				
"		10.000	Flow length"				
"		5.000	Overland Slope"				
"		0.006	Pervious Area"				
"		10.000	Pervious length"				
"		5.000	Pervious slope"				
"		0.004	Impervious Area"				
"		10.000	Impervious length"				
п		5.000	Impervious slope"				
п		0.300	Pervious Manning 'n	, , , ,			
"		75.000	Pervious Max.infilt	ration"			
"		12.500	Pervious Min.infilt	ration"			
"		0.250	Pervious Lag consta	nt (hours)"			
"		5.000	Pervious Depression	storage"			
п		0.013	Impervious Manning	'n'"			
"		0.000	Impervious Max.infi	ltration"			
"		0.000	Impervious Min.infi	ltration"			
"		0.001	Impervious Lag cons	tant (hours)"		
"		1.500	Impervious Depressi	on storage"			
"			0.003 0.00			c.m/sec"	
"			tchment 203	Pervious	Impervious	Total A	rea "
"			rface Area	0.006	0.004	0.010	hectare"
"		Ti	me of concentration	4.578	0.624	2.237	minutes"
			me to Centroid	80.921	79.743	80.224	minutes"
"			infall depth	67.552	67.552	67.552	mm"
			infall volume	4.05	2.70	6.76	c.m"
			infall losses	39.616	6.699	26.449	mm"
			noff depth	27.936	60.853	41.103	mm"
			noff volume	1.68	2.43	4.11	c.m"
			noff coefficient	0.414	0.901	0.608	
			ximum flow	0.002	0.002	0.003	c.m/sec"
	40		DROGRAPH Add Runoff				
		4	Add Runoff "		0.000		
	20	C.T.	0.003 0.00		0.000"		
	38		ART/RE-START TOTALS				
		3	Runoff Totals on EX tal Catchment area	ΤΙ.	Q	220	hostone"
п			tal Impervious area				hectare" hectare"
п			tal % impervious area			.252 .505"	nectare
		10	car % Tilher ATOR2		70	. רטר	

			MIDUSS Output>"
п			MIDUSS version Version 2.25 rev. 473"
"			MIDUSS created Sunday, February 07, 2010"
"		10	Units used: ie METRIC"
п		-	Job folder: W:\Guelph\118-2018\118170 Gordon St. ZCA\"
п			5 Work in Progress\Design Calcs\2021-01-27 Middus\post"
"			Output filename: Default.Out"
"			Licensee name: gmbp"
"			Company "
"			Date & Time last used: 2/5/2021 at 3:50:58 PM"
"	31	T	IME PARAMETERS"
"		5.000	Time Step"
"		210.000	Max. Storm length"
"		2880.000	Max. Hydrograph"
"	32	S	TORM Chicago storm"
"		1	Chicago storm"
"		4688.000	Coefficient A"
"		17.000	Constant B"
"		0.962	Exponent C"
"		0.400	Fraction R"
"		210.000	Duration"
"		1.000	Time step multiplier"
"		Ma	aximum intensity 213.574 mm/hr"
"		Тс	otal depth 88.830 mm"
"		6	100hyd Hydrograph extension used in this file"
	33	CA	ATCHMENT 200"
		1	Triangular SCS"
		1	Equal length"
		2	Horton equation"
		200	Catch 200 Roof Top"
		100.000	% Impervious"
		0.110	Total Area"
		25.000	Flow length" Overland Slope"
		1.000 0.000	Pervious Area"
п		25.000	Pervious length"
		1.000	Pervious slope"
		0.110	Impervious Area"
п		25.000	Impervious length"
		1.000	Impervious slope"
		0.300	Pervious Manning 'n'"
		75.000	Pervious Max.infiltration"
п		12.500	Pervious Min.infiltration"
"		0.250	Pervious Lag constant (hours)"
"		5.000	Pervious Depression storage"
"		0.013	Impervious Manning 'n'"
"		0.000	Impervious Max.infiltration"
"		0.000	Impervious Min.infiltration"
"		0.001	Impervious Lag constant (hours)"
"		1.500	Impervious Depression storage
			-

п		0.057	0.000	0.000	0.000	c.m/sec"	
н	Cat	chment 200		Pervious		Total Area	
н		rface Area		0.000	0.110	0.110	hectare"
п		ne of concentra		11.457	1.659	1.659	minutes"
н		ne to Centroid		104.423	97.486	97.486	minutes"
п		nfall depth		88.830	88.830	88.830	mm"
н		Infall volume		0.00	97.71	97.71	c.m"
н	Rai	nfall losses		43.310	2.646	2.646	mm"
п	Run	noff depth		45.520	86.184	86.184	mm"
н	Run	noff volume		0.00	94.80	94.80	c.m"
п	Run	noff coefficien	t	0.000	0.970	0.970	
п		aimum flow		0.000	0.057	0.057	c.m/sec"
" 40		ROGRAPH Add Ru	noff "	1			
п	4	Add Runoff "					
н		0.057	0.057	0.000	0.000"		
" 54		ID DESIGN"	_				
		Current peak f		c.m/sec"			
		Target outflow		m/sec"			
		Hydrograph vol		c.m"			
п		Number of stag		motoo"			
п		Minimum water Maximum water		metre" metre"			
п		Starting water					
н	0.000	Keep Design Da			= False"		
п	Ū	Level Discha		Volume"	- Tuise		
п			000	0.000"			
н		0.02500 0.01		28.000"			
п		0.05000 0.02		56.000"			
н		0.07500 0.03		84.000"			
"		0.1000 0.04	500	112.000"			
н	Pea	ak outflow		0.01	19 c.m/s	ec"	
	Max	kimum level		0.04	43 metre	п	
п	Max	kimum storage		47.66			
"	Cer	ntroidal lag		2.32			
		0.057 0.		0.019	0.000 c.m	/sec"	
" 40		ROGRAPH Next 1	ink "				
	5	Next link "					
	C 4 7	0.057	0.019	0.019	0.000"		
" 33 "		CHMENT 201"					
п	1 1	Triangular SCS					
п		Equal length" Horton equatio	n"				
п		Catch 201"	11				
п		% Impervious"					
	0.166	Total Area"					
п	30.000	Flow length"					
н	3.000	Overland Slope					
		Pervious Area"					
	30.000	Pervious lengt	h"				
н		Pervious slope					
		•					

		0.116 30.000 3.000 0.300 75.000 12.500 0.250	Pervious M Pervious M Pervious L	5 length" 5 slope" Manning 'n' Max.infiltr Man.infiltr Mag constar	ration" ration" nt (hours)"				
		5.000 0.013		epression Manning '					
п		0.000	•	Max.infi]					
п		0.000	-	Min.infi]					
n		0.001	-		ant (hours)				
"		1.500	-	-	on storage"				
"			. 0.072		•	0.000 0	.m/sec"		
n		Cat	chment 201		Pervious	Impervious			
U		Sur	face Area		0.050	0.116	0.166	hectare"	
"		Tin	ne of conce	entration	9.192	1.331	2.779	minutes"	
"		Tin	ne to Centr	roid	102.017	97.031	97.949	minutes"	
"		Rai	infall dept	:h	88.830	88.830	88.830	mm"	
"			infall volu		44.24	103.22	147.46	c.m"	
			infall loss	es	43.671	3.096	15.269	mm"	
			noff depth		45.159	85.733	73.561	mm"	
		Runoff volume 22.49 99.62 122.11 c.m" Bunoff coofficient 0.508 0.005 0.828 "							
		RUNOTT COETTICIENC 0.508 0.965 0.828							
п	10		cimum flow DROGRAPH Ac	اط میںممحد ا	0.018	0.059	0.072	c.m/sec"	
п	40	пть 4	Add Runoff						
п		4	0.072		5 0.019	0.000"			
	54	PON	ID DESIGN"	0.000	0.019	0.000			
п	51	0.086	Current pe	ak flow	c.m/sec"				
n		0.001	Target out		.m/sec"				
"		216.9	Hydrograph		c.m"				
"		16.	Number of						
"	3	43.700	Minimum wa	ter level	metre"				
"	3	46.700	Maximum wa	ter level	metre"				
"	3	43.700	0	ater level					
"		0			= True; 0 =	= False"			
			Level Di	•	Volume"				
			343.700	0.000	0.000"				
			343.710	0.00200	1.100"				
			344.100	0.00201	45.400"				
			344.500	0.00202	90.800"				
п			345.000 345.250	0.00203 0.00204	147.600" 176.000"				
п			345.530	0.00204	207.800"				
п			345.540	0.00205	207.000				
"			345.750	0.00200	208.600"				
"			346.000	0.00208	208.900"				
"			346.200	0.00209	209.200"				
"			346.350	0.00210	209.300"				

			346.500	0.00211	224.300"			
				0.00211	242.700"			
п				0.00212	254.300"			
				0.00214	255.300"			
		F	Peak outflow	0.0022	0.00	02 c.m/se	°C"	
			Aaximum level		345.35			
"			1aximum stora		187.98			
"			Centroidal la	-	15.49			
"			0.072	0.086	0.002	0.000 c.m/	'sec"	
"	40	ŀ	HYDROGRAPH St	art - New	Tributary"			
"		2	Start - Ne	w Tributan	ry"			
"			0.072	0.000	0.002	0.000"		
"	33	(CATCHMENT 202	, II				
"		1	Triangular	SCS"				
"		1	Equal leng	th"				
"		2	Horton equ	ation"				
		202	Catch 202		Site"			
"		50.000	•					
"		0.043	Total Area					
		10.000	Flow lengt					
		3.000	Overland S	•				
		0.022	Pervious A					
		10.000	Pervious 1					
		3.000	Pervious s	-				
		0.022 10.000	Impervious					
		3.000	Impervious Impervious	-				
		0.300	Pervious M					
		75.000	Pervious M	•				
		12.500						
		0.250			nt (hours)"			
"		5.000	Pervious D	-				
"		0.013	Impervious	-	-			
"		0.000	Impervious	-				
"		0.000	Impervious	Min.infi	ltration"			
"		0.001	Impervious	Lag const	tant (hours))"		
"		1.500	Impervious	Depressio	on storage"			
			0.018	0.000	0.002		c.m/sec"	
"			Catchment 202		Pervious	-	Total Area	
"			Surface Area		0.022	0.022	0.043	hectare"
			Time of conce		4.755	0.688	2.146	minutes"
			Time to Centr		97.550	96.291	96.743	minutes"
			Rainfall dept		88.830	88.830	88.830	mm"
			Rainfall volu		19.10	19.10	38.20	C.m"
			Rainfall loss	es	43.505	7.737	25.621	mm"
			Runoff depth Runoff volume		45.325	81.093	63.209	mm"
п			Runoff coeffi		9.74 0.510	17.43 0.913	27.18 0.712	c.m"
п			Maximum flow	CICIL	0.009	0.011	0.018	c.m/sec"
п	40		HAXIMUM TIOW	d Runoff '		0.011	0.010	C.m/ 3CC
	.	I	I DRUGINALIT AU					

	4	Add Runoff "				
	•	0.018 0.01	8 0.002	0.000"		
п	40 н	YDROGRAPH Start - New		0.000		
	2	Start - New Tributa	-			
	-	0.018 0.00	•	0.000"		
	33 C	ATCHMENT 203"				
	1	Triangular SCS"				
	1	Equal length"				
"	2	Horton equation"				
	203	Catch 203 Flow from	North of S	ite"		
	40.000	% Impervious"				
"	0.010	Total Area"				
п	10.000	Flow length"				
п	5.000	Overland Slope"				
п	0.006	Pervious Area"				
"	10.000	Pervious length"				
п	5.000	Pervious slope"				
"	0.004	Impervious Area"				
"	10.000	Impervious length"				
п	5.000	Impervious slope"				
п	0.300	Pervious Manning 'n				
п	75.000	Pervious Max.infilt	ration"			
"	12.500	Pervious Min.infilt	ration"			
"	0.250	Pervious Lag consta	nt (hours)"			
"	5.000	Pervious Depression	storage"			
"	0.013	Impervious Manning	'n'"			
"	0.000	Impervious Max.infi				
"	0.000	Impervious Min.infi				
"	0.001	Impervious Lag cons)"		
	1.500	Impervious Depressi	-			
	_	0.004 0.00			c.m/sec"	
		atchment 203	Pervious	Impervious		
		urface Area	0.006	0.004	0.010	hectare"
		ime of concentration	4.079	0.591	2.189	minutes"
		ime to Centroid	96.861	96.274	96.543	minutes"
		ainfall depth	88.830	88.830	88.830	mm"
		ainfall volume	5.33	3.55	8.88	c.m"
п		ainfall losses	43.992	9.314	30.121	mm"
		unoff depth unoff volume	44.838	79.516	58.709	mm"
		unoff coefficient	2.69 0.505	3.18	5.87	c.m"
		aximum flow		0.895 0.002	0.661 0.004	c m/coc"
		YDROGRAPH Add Runoff	0.003	0.002	0.004	c.m/sec"
п	40 n 4	Add Runoff "				
п	4	0.004 0.00	4 0.002	0.000"		
п	38 S	TART/RE-START TOTALS		0.000		
п	3	Runoff Totals on EX				
п	-	otal Catchment area	- 1	a	.329 ł	hectare"
п		otal Impervious area				hectare"
"		otal % impervious			.505"	
	•			, 0		

Province:	Ontario	Project Name:	1871 & 1879 Gordo	on			
City:	Guelph	Project Number:	118170				
Nearest Rainfall Station:	WATERLOO WELLINGTON AP	Designer Name:	Madeline Carter	Madeline Carter			
NCDC Rainfall Station Id:	9387	Designer Company:	GMBluePlan	GMBluePlan			
Years of Rainfall Data:	34	Designer Email:	madeline.carter@g	mblueplan.ca			
		Designer Phone:	519-831-7814				
Site Name:		EOR Name:					
Drainage Area (ha):	0.14	EOR Company:					
% Imperviousness:	95.00	EOR Email:					
•	efficient 'c': 0.87	EOR Phone:					
Particle Size Distribution:	Fine		Net Annua	l Sediment			
Target TSS Removal (%):	80.0		(TSS) Load	Reduction			
Deguized Water Quality Dury	ff Valuma Cantura (0/)	90.00	Sizing S	ummary			
Required Water Quality Runo			Stormceptor	TSS Removal			
Estimated Water Quality Flow	v Rate (L/S):	4.77	Model	Provided (%)			
Oil / Fuel Spill Risk Site?		Yes	EFO4	87			
Upstream Flow Control?		No	EFO6	91			
Peak Conveyance (maximum)	Flow Bate (L/s):		EFO8	92			
Site Sediment Transport Rate	(kg/ha/yr):		EFO10	92			
			EFO12	92			

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

PERFORMANCE

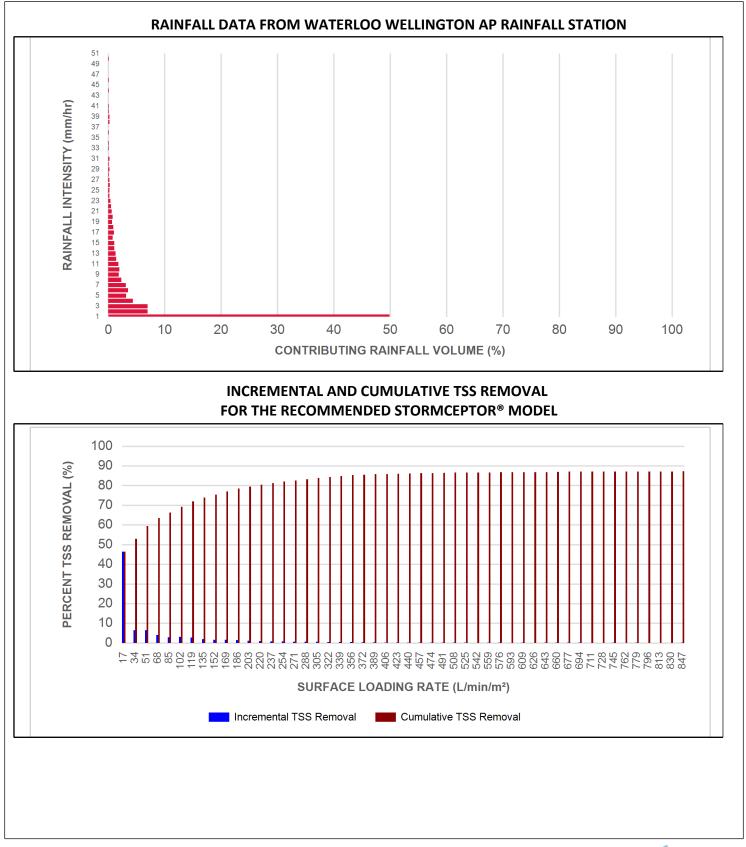
► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Dorsont
Size (µm)	Than	Fraction (µm)	Percent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5

x


Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
1	49.9	49.9	0.34	20.0	17.0	93	46.4	46.4
2	7.0	56.9	0.68	41.0	34.0	93	6.5	52.9
3	7.0	63.9	1.02	61.0	51.0	92	6.4	59.4
4	4.4	68.3	1.35	81.0	68.0	91	4.0	63.4
5	3.2	71.5	1.69	102.0	85.0	89	2.8	66.2
6	3.5	75.0	2.03	122.0	102.0	87	3.0	69.2
7	3.1	78.1	2.37	142.0	119.0	86	2.7	71.9
8	2.3	80.4	2.71	163.0	135.0	84	1.9	73.8
9	1.9	82.3	3.05	183.0	152.0	81	1.5	75.4
10	2.0	84.3	3.39	203.0	169.0	79	1.6	77.0
11	1.8	86.1	3.72	223.0	186.0	78	1.4	78.4
12	1.4	87.5	4.06	244.0	203.0	76	1.1	79.4
13	1.3	88.8	4.40	264.0	220.0	74	1.0	80.4
14	1.1	89.9	4.74	284.0	237.0	73	0.8	81.2
15	1.1	91.0	5.08	305.0	254.0	72	0.8	82.0
16	0.8	91.8	5.42	325.0	271.0	70	0.6	82.5
17	1.0	92.8	5.76	345.0	288.0	69	0.7	83.2
18	0.9	93.7	6.09	366.0	305.0	67	0.6	83.8
19	0.7	94.4	6.43	386.0	322.0	65	0.5	84.3
20	0.8	95.2	6.77	406.0	339.0	64	0.5	84.8
21	0.6	95.8	7.11	427.0	356.0	63	0.4	85.2
22	0.5	96.3	7.45	447.0	372.0	61	0.3	85.5
23	0.4	96.7	7.79	467.0	389.0	59	0.2	85.7
24	0.2	96.9	8.13	488.0	406.0	58	0.1	85.8
25	0.2	97.1	8.47	508.0	423.0	57	0.1	86.0

Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
26	0.3	97.4	8.80	528.0	440.0	57	0.2	86.1
27	0.2	97.6	9.14	549.0	457.0	57	0.1	86.2
28	0.1	97.7	9.48	569.0	474.0	56	0.1	86.3
29	0.2	97.9	9.82	589.0	491.0	55	0.1	86.4
30	0.1	98.0	10.16	609.0	508.0	55	0.1	86.5
31	0.2	98.2	10.50	630.0	525.0	54	0.1	86.6
32	0.0	98.2	10.84	650.0	542.0	54	0.0	86.6
33	0.1	98.3	11.17	670.0	559.0	54	0.1	86.6
34	0.1	98.4	11.51	691.0	576.0	53	0.1	86.7
35	0.0	98.4	11.85	711.0	593.0	52	0.0	86.7
36	0.1	98.5	12.19	731.0	609.0	52	0.1	86.7
37	0.0	98.5	12.53	752.0	626.0	52	0.0	86.7
38	0.2	98.7	12.87	772.0	643.0	52	0.1	86.8
39	0.2	98.9	13.21	792.0	660.0	52	0.1	86.9
40	0.1	99.0	13.54	813.0	677.0	52	0.1	87.0
41	0.1	99.1	13.88	833.0	694.0	52	0.1	87.0
42	0.0	99.1	14.22	853.0	711.0	51	0.0	87.0
43	0.0	99.1	14.56	874.0	728.0	51	0.0	87.0
44	0.1	99.2	14.90	894.0	745.0	51	0.1	87.1
45	0.0	99.2	15.24	914.0	762.0	51	0.0	87.1
46	0.1	99.3	15.58	935.0	779.0	51	0.1	87.1
47	0.0	99.3	15.91	955.0	796.0	51	0.0	87.1
48	0.0	99.3	16.25	975.0	813.0	51	0.0	87.1
49	0.0	99.3	16.59	995.0	830.0	51	0.0	87.1
50	0.1	99.4	16.93	1016.0	847.0	51	0.1	87.2
				Estimated Net	Annual Sedim	ent (TSS) Loa	d Reduction =	87 %

	Maximum Pipe Diameter / Peak Conveyance												
Stormceptor EF / EFO	Model Diameter		Min Angle Inlet / Outlet Pipes			Max Out Diamo	•	Peak Conveyance Flow Rate					
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)				
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15				
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35				
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60				
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100				
EF12 / EF012	3.6	12	90	1828	72	1828	72	2830	100				

SCOUR PREVENTION AND ONLINE CONFIGURATION

► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor[®] EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor[®] EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

45*-90* 0*-45* 0*-45* 45*-90*

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

x

0° - 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

					Poll	utant C	apacity					
Stormceptor Model EF / EFO Diameter		Pipe In	h (Outlet Invert to Oil Volume Inp Floor)		Recommended Sediment Maintenance Depth *		Maximum Sediment Volume *		Maximum Sediment Mass **			
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EF012	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

*Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To		
Patent-pending enhanced flow treatment	Superior, verified third-party	Regulator, Specifying & Design Engineer		
and scour prevention technology	performance	Regulator, specifying & besign Engineer		
Third-party verified light liquid capture	Proven performance for fuel/oil hotspot	Regulator, Specifying & Design Engineer,		
and retention for EFO version	locations	Site Owner		
Functions as bend, junction or inlet	Design flexibility	Specifying & Design Engineer		
structure	Design nextority	Specifying & Design Engineer		
Minimal drop between inlet and outlet	Site installation ease	Contractor		
Large diameter outlet riser for inspection	Easy maintenance access from grade	Maintenance Contractor & Site Owner		
and maintenance	Lasy maintenance access nom grade	Maintenance contractor & site Owner		

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management - Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units:
6 ft (1829 mm) Diameter OGS Units:
8 ft (2438 mm) Diameter OGS Units:
10 ft (3048 mm) Diameter OGS Units:
12 ft (3657 mm) Diameter OGS Units:

 $\begin{array}{l} 1.19 \ m^3 \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^3 \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^3 \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^3 \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^3 \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

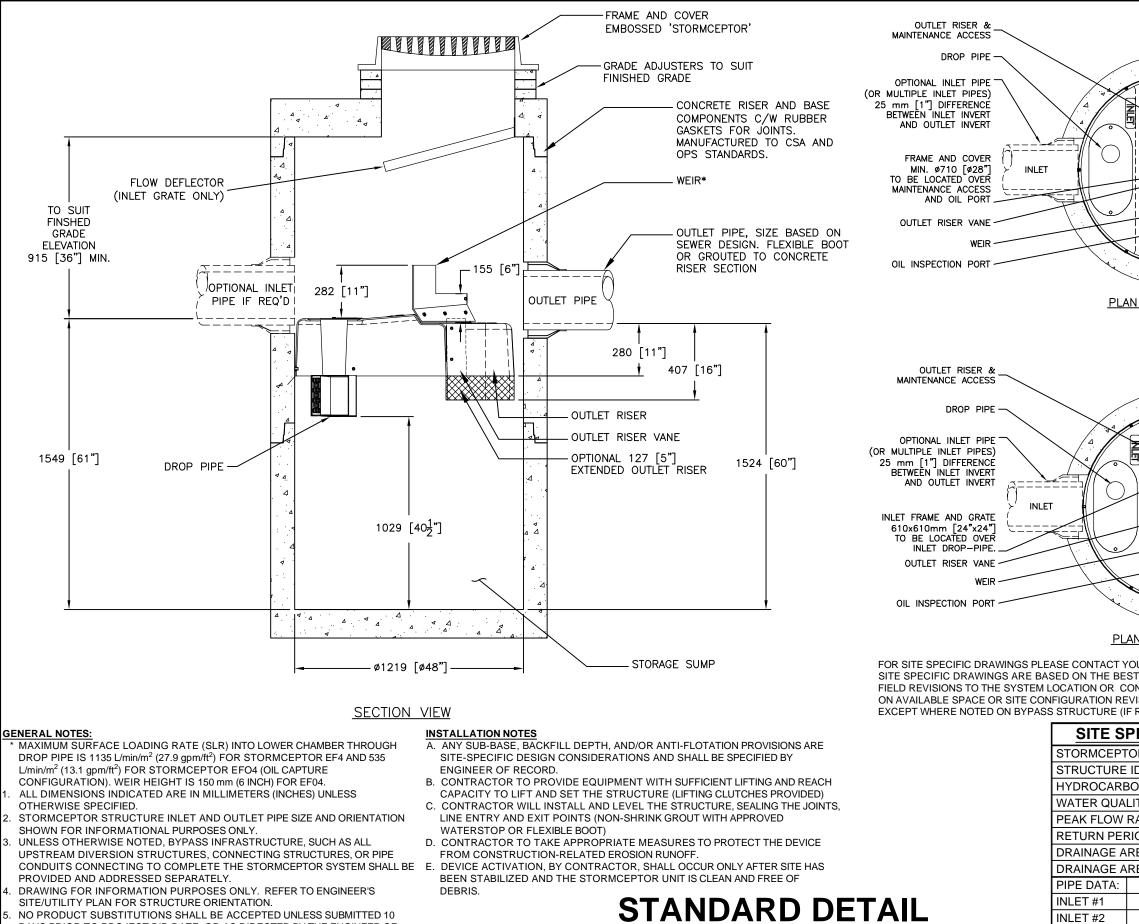
remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing shall be determined using historical rainfall data and a sediment removal performance curve derived from the actual third-party verified laboratory testing data. The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.**


3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

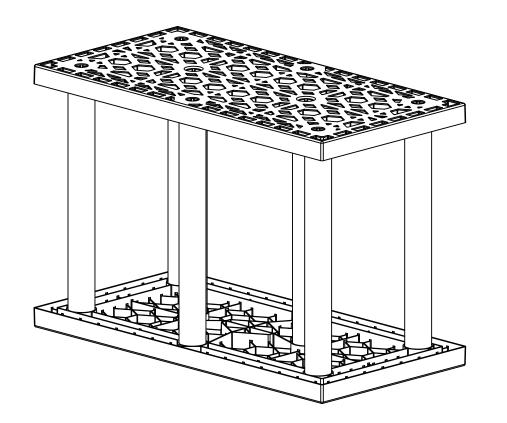
3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m2 to 2600 L/min/m2) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

NO PRODUCT SUBSTITUTIONS SHALL BE ACCEPTED UNLESS SUBMITTED 10 DAYS PRIOR TO PROJECT BID DATE, OR AS DIRECTED BY THE ENGINEER OF RECORD.

NOT FOR CONSTRUCTION


						1 5 8	and contractor by Imbrium Systems ("Imbrium"). A Neither this drawing, nor any part thereof, may be the sourcement or modified is nor memory without		discrimts any intolling or responsibility for such use. If discretionation the subplied information upon			inaccurate information supplied by others.
		1 K	$\overline{\ }$				####	####	####	JSK	JSK	₽
PLA	N VIEW	(STANDAF			. ()		####	####	####	UPDATES	INITIAL RELEASE	REVISION DESCRIPTION
							####	####	####	6/8/18	5/26/17	DATE
	4	X A					####	####	####	-	0	MARK
PL SECONTACT Y DED ON THE BE DCATION OR C FIGURATION RC FIGURATION RC ISTRUCTURE (I	AN VIEW OUR LOCA ST AVAILAN ONNECTIC	BLE INFORM N PIPING M ELEVATION		THE TIME	TATIVE. SOME BASED							SCALE = NTS
,			REQ	JIREM	ENTS	1				L1N 3A9 +1-416-860-86	CHANG PATRY	
STORMCEPT				04		1			Ξ		NEOT THE FO	
STRUCTURE		•			*				2	0-9900 INTL	VOKE ORINO 1006 - 770401	A CONTRACTOR
HYDROCARE					*		Ó		0	DRIVE 416-96	MOTECTED 707,100-724	
WATER QUA			_/S)		*	-				107 FAIRVIEW DRIVE, 565-4801 CA 416-96	CONTENTS P	
PEAK FLOW		,	W (vre)		*	ł				407 FA	AND PARTY OF	A LEASE AND A LEAS
DRAINAGE A			(913)		*	L				l⊧	e a	
DRAINAGE A		RVIOUS	NESS (%)	*	DATE 10/		2017				
PIPE DATA:	I.E.	MAT'L	DIA	SLOPE	% HGL	DESI	GNE		0	RAW		
INLET #1	*	*	*	*	*	JSI CHEO	K CKED			JSK	OVED:	
INLET #2	*	*	*	*	*	BS	F		:	SP		
OUTLET	*	*	*	*	*	PRO.		No.:	S	EQUE	ENCE	No.:
* PER ENGIN	EER OF R	ECORD				SHEE		1		OF	1	
						1			1	UF	1	

BRENTWOOD STORMTANK MODULE SHOP DRAWINGS

1871 & 1879 GORDON STREET

Guelph, ON

Pages:

Cover Page Module Layout TYP. Construction Det TYP. Pipe Penetration TYP. Debris Row Deta Supplementary Notes Supplementary Notes

117 Basaltic Rd, Concord, ON L4K 1G4 Canada Ph: (905) 761-9123 www.layfieldgroup.com

DOUBLE STACK MODULE SYSTEM

Total Storage Volume	199.87 m ³
Module Storage Volume	169.36 m ³
Stone Storage Volume	$30.51m^{3}$
System Footprint	109.63 m ²
Estimated Geotextile Fabric	730m ²
Estimated Stone Volume	76.29m ³
Excavation Required	284.02m ³
Excavation Depth	2.59m
Stone Type	19mm clear
Stone Void Space	40%
Module Type (Bottom)	25 Series ST-36
Module Type (Top)	25 Series ST-36

1871 & 1879 GORDON STREET

Guelph, ON

REV. Record of Changes Date By											
\triangle	Preliminary D	rawing	02MAR21	AC							
Page Name		r Page									
Drawn by:	AC	Checked	By: AW								
Scale	NTS	Date: 02MAR21									
Sheet:											
	01 OF 07										

	01 OF 07
	02 OF 07
tails	03 OF 07
Details	04 OF 07
ails	05 OF 07
	06 OF 07
	07 OF 07

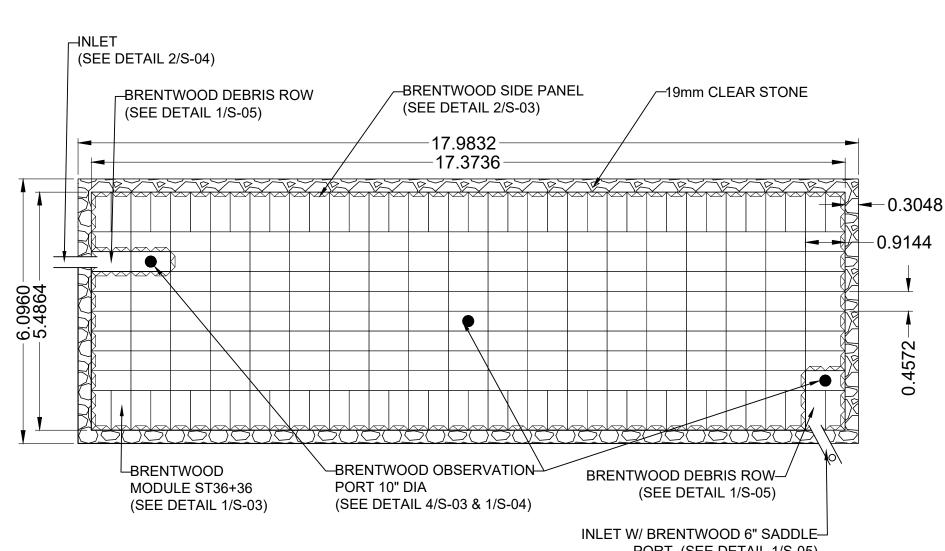
Material Quantity (ST-36)

ST-36	456
Platens	912
36" Columns	3648
36" Side Panels	214
10" Observation Port	3
6" Saddle Port	1

Elevations

Leveling Stone Bottom	343.6976
Module Invert	343.8500
Top of Module	345.6788
Top of Stone Backfill	345.9836
Minimum Finished Grade	346.2884
Maximum Finished Grade	347.2000

Contractor to confirm that quantities shipped to site match those listed above. Please report any discrepancy or damage to Layfield immediately.


- All dimensions are measured in meters unless noted a. otherwise.
- Reference Brentwood Industries standard drawings and notes b. for detailed information.
- Reference current Brentwoood Module installation c. instructions for proper installation practices.

[http://www.brentwoodindustries.com/products/stormwater-management /stormtank/module.php#feature5]

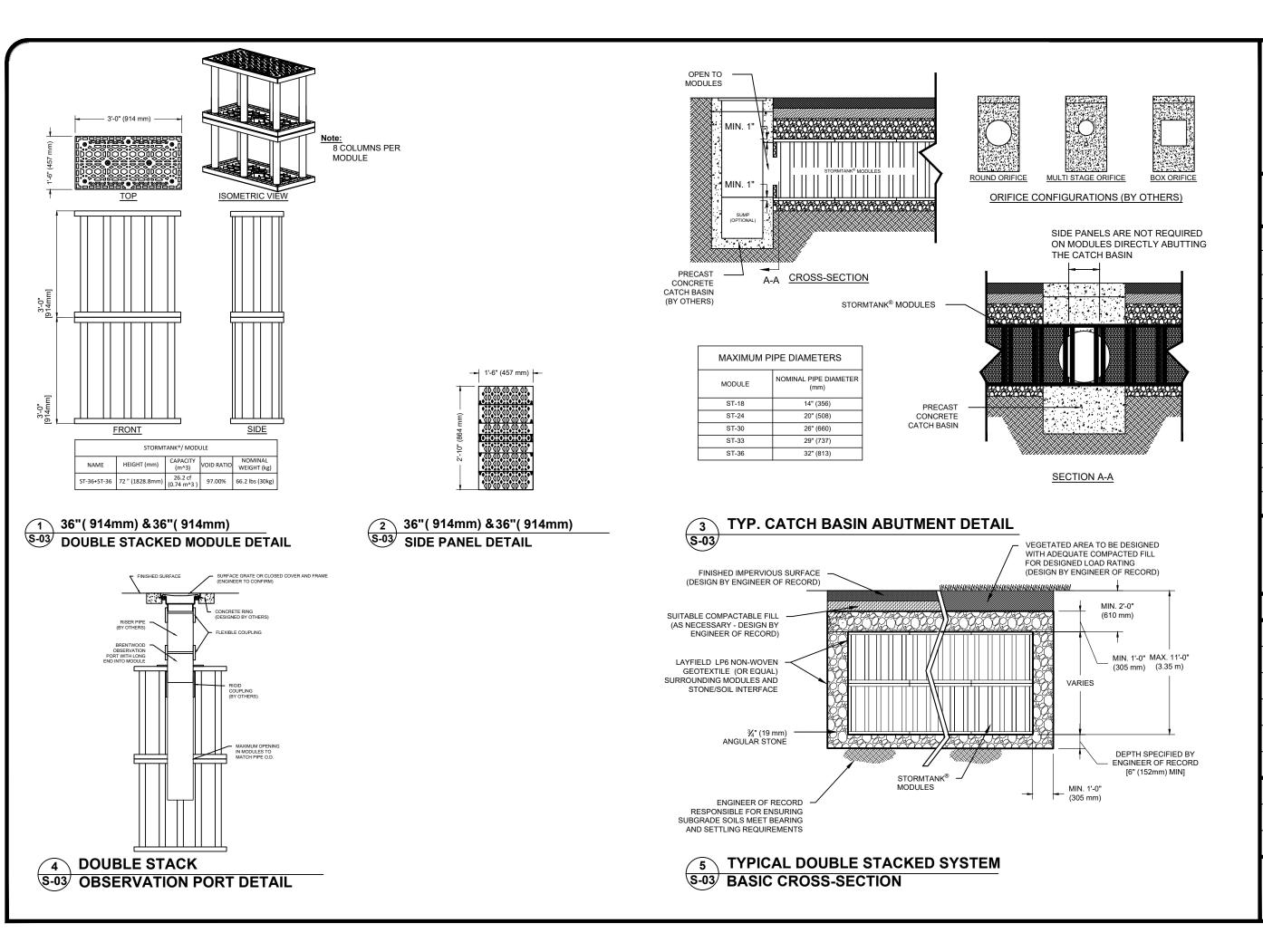

- Engineer of record to confirm conformance to manufacturer's d. allowable proximity to other structures and slopes.
- All inlet and pipe locations and designs by others. e.
- The sub-grade and side backfill needs to be compacted to f. 95%, unless noted otherwise.
- During and after installation, the Brentwood Module area g. should be clearly marked and roped off to prevent unauthorized construction and equipment trafficking over the modules.
- Top of Ground water is to be maintained 610 mm (2 ft) below h. the module to prevent buoyancy, unless otherwise noted by engineer.
- The quantities related to stone and geosynthetics are estimated values as the roll size, overlaps, waste, ect. may vary.

NOTES

S-02

PORT (SEE DETAIL 1/S-05)

117 Basaltic Rd, Concord, ON L4K 1G4 Canada Ph: (905) 761-9123 www.layfieldgroup.com


DOUBLE STACK MODULE SYSTEM

Total Storage Volume	199.87 m ³
Module Storage Volume	169.36 m ³
Stone Storage Volume	$30.51\mathrm{m}^3$
System Footprint	109.63 m ²
Estimated Geotextile Fabric	730m ²
Estimated Stone Volume	76.29m ³
Excavation Required	284.02m ³
Excavation Depth	2.59m
Stone Type	19mm clear
Stone Void Space	40%
Module Type (Bottom)	25 Series ST-36
Module Type (Top)	25 Series ST-36

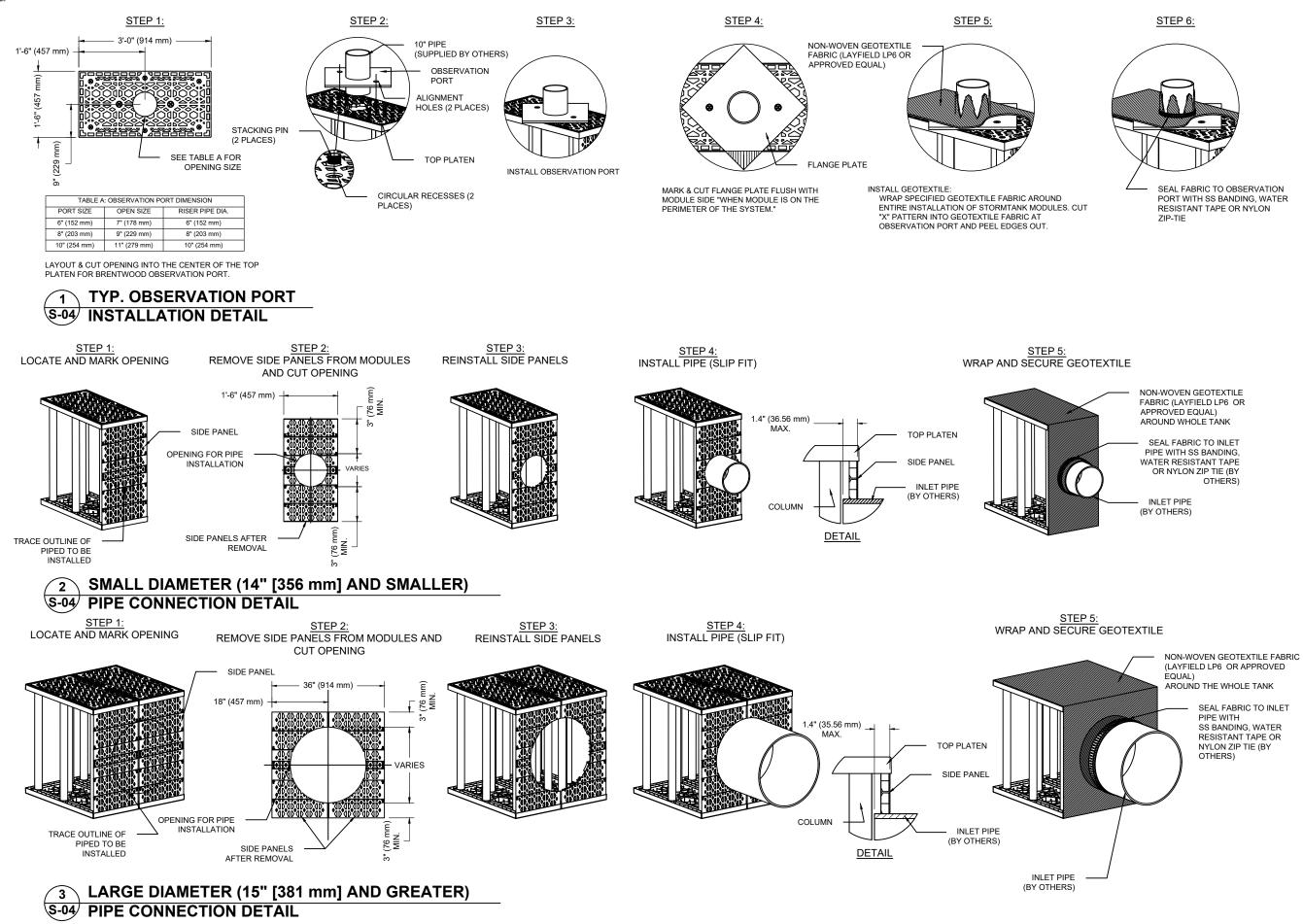
1871 & 1879 GORDON STREET

Guelph, ON

REV. Record of Changes Date By				
\triangle	Preliminary Dr	rawing	02MAR21	AC
Page Name: Module Layout				
Drawn by:	AC	Checked By: AW		
Scale	NTS	Date:	02MAR21	
Sheet:				
02 OF 07				

117 Basaltic Rd, Concord, ON L4K 1G4 Canada Ph: (905) 761-9123 www.layfieldgroup.com

DOUBLE STACK MODULE SYSTEM


Total Storage Volume	199.87 m ³
Module Storage Volume	169.36 m ³
Stone Storage Volume	30.51 m ³
System Footprint	109.63 m ²
Estimated Geotextile Fabric	730m ²
Estimated Stone Volume	76.29m ³
Excavation Required	284.02 m ³
Excavation Depth	2.59m
Stone Type	19mm clear
Stone Void Space	40%
Module Type (Bottom)	25 Series ST-36
Module Type (Top)	25 Series ST-36

1871 & 1879 GORDON STREET

Guelph, ON

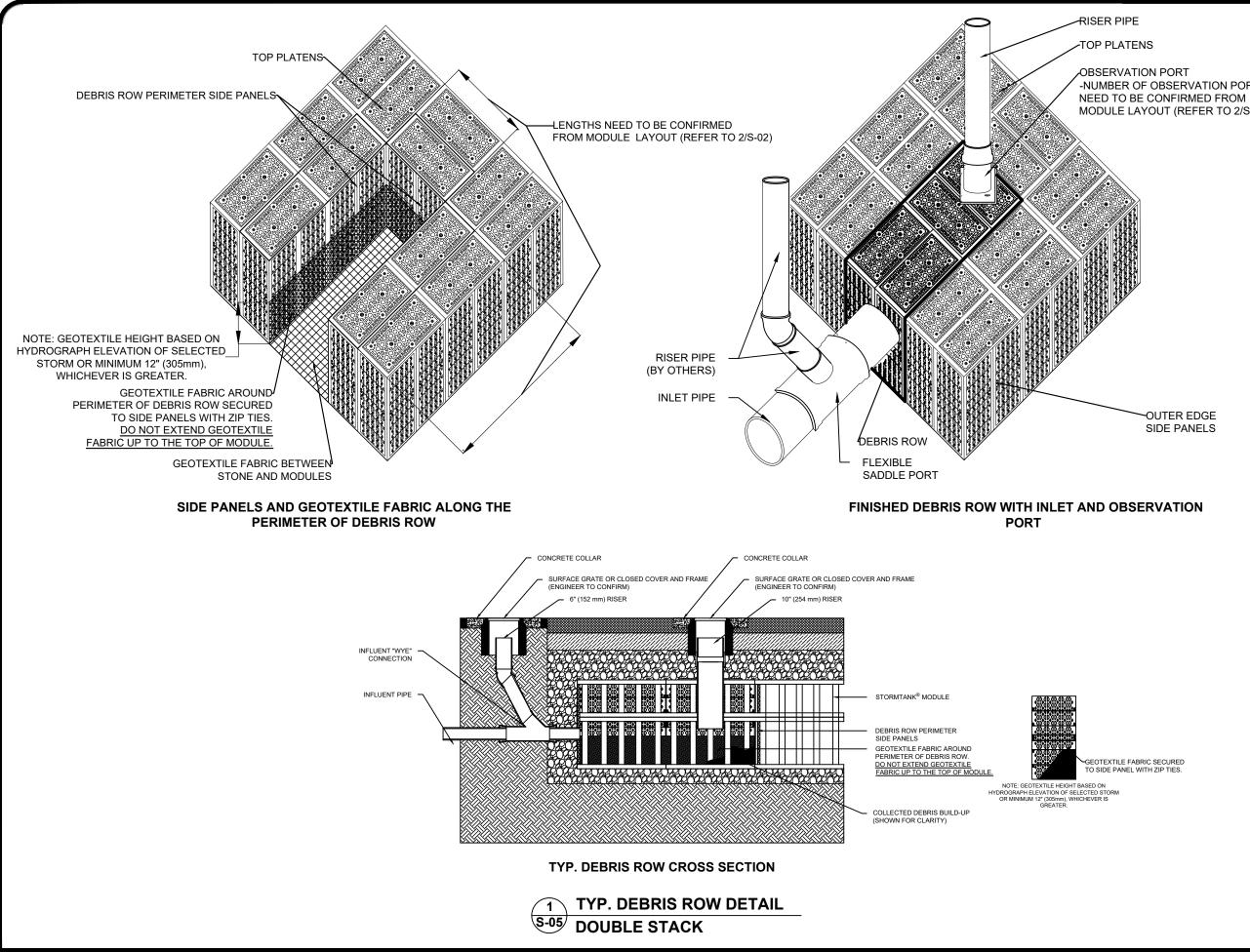
REV.	Record of Cl	nanges	Date	By
\triangle	Preliminary Dr	rawing	02MAR21	AC
Page Name: TYP. Construction Details				
Drawn by:	AC	Checked	By: AW	
Scale	NTS	Date:)2MAR21	
Sheet:				
03 OF 07				

ANSI B Size Page (Horizontal)

SEAL FABRIC TO OBSERVATION PORT WITH SS BANDING, WATER RESISTANT TAPE OR NYLON

117 Basaltic Rd, Concord, ON L4K 1G4 Canada Ph: (905) 761-9123 www.layfieldgroup.com

DOUBLE STACK MODULE SYSTEM


Total Storage Volume	199.87 m ³
Module Storage Volume	169.36 m ³
Stone Storage Volume	30.51 m ³
System Footprint	109.63 m ²
Estimated Geotextile Fabric	730m ²
Estimated Stone Volume	76.29m ³
Excavation Required	284.02 m ³
Excavation Depth	2.59m
Stone Type	19mm clear
Stone Void Space	40%
Module Type (Bottom)	25 Series ST-36
Module Type (Top)	25 Series ST-36

1871 & 1879 GORDON STREET

Guelph, ON

REV.	Record of Cl	nanges	Date	By
\triangle	Preliminary Dr	awing	02MAR21	AC
Page Name: TYP. Pipe Penetration Details				
Drawn by:	AC	Checked By: AW		
Scale	NTS	Date:	02MAR21	
Sheet:				
04 OF 07				

ANSI B Size Page (Horizontal)

-NUMBER OF OBSERVATION PORTS MODULE LAYOUT (REFER TO 2/S-02)

> OUTER EDGE SIDE PANELS

117 Basaltic Rd, Concord, ON L4K 1G4 Canada Ph: (905) 761-9123 www.layfieldgroup.com

DOUBLE STACK MODULE SYSTEM

Total Storage Volume	199.87 m ³
Module Storage Volume	169.36 m ³
Stone Storage Volume	30.51 m ³
System Footprint	109.63 m ²
Estimated Geotextile Fabric	730m ²
Estimated Stone Volume	76.29m ³
Excavation Required	284.02 m ³
Excavation Depth	2.59m
Stone Type	19mm clear
Stone Void Space	40%
Module Type (Bottom)	25 Series ST-36
Module Type (Top)	25 Series ST-36

1871 & 1879 GORDON STREET

Guelph, ON

REV.	Record of Cl	nanges	Date	By
\triangle	Preliminary Dr	awing	02MAR21	AC
_				
Page Name: TYP. Debris Row Details				
Drawn by:	AC	Checked	By: AW	
Scale	NTS	Date:	02MAR21	
Sheet:				
	05 C	F	07	

General Conditions

- Review installation procedures and coordinate the installation with other construction activities, such as grading, excavation, utilities, construction access, erosion control, etc
- Engineered Drawings supersede all provided documentation, as the information furnished in this document is based on a typical installation.
- When installed based on Brentwood's Site Preparation and Installation Instructions or similar, a StormTank® system can support an HS-25 load.
- Coordinate the installation with manufacturer's representative/distributor to be on-site to review start up procedures and installation instructions.
- Components shall be unloaded, handled and stored in an area protected from traffic and in a manner to prevent damage.
- Assembled modules may be walked on, but vehicular traffic is prohibited until backfilled per Manufacturer's requirements. Protect the installation against damage with highly visible construction tape, fencing, or other means until construction is complete. Ensure all construction occurs in accordance with Federal, Provincial and Local Laws,

Ordinances, Regulations and Safety Requirements.

• Extra care and caution should be taken when temperatures are at or below 40° F (4.4° C).

1.0 StormTank® Assembly

StormTank® Modules:

StormTank® modules are delivered to the site as palletized components requiring simple assembly. No special equipment, tools or bonding agents are required; only a rubber mallet. A single worker can typically assemble a module in two minutes.

ASSEMBLY INSTRUCTIONS:

- 1. Place a platen on a firm level surface and insert the eight (8) columns into the platen receiver cups. Firmly tap each column with a rubber mallet to ensure the column is seated.
- 2. Place a second platen on a firm level surface. Flip the previously assembled components upside down onto the second platen, aligning the columns into the platen receiver cups.
- 3. Once aligned, seat the top assembly by alternating taps, with a rubber mallet at each structural column until all columns are firmly seated.

SIDE PANEL

- 4. If side panels are required, firmly tap the top platen upward to raise the top platen. Insert the side panel into the bottom platen.
- 5. Align the top of the side panel with the top platen and firmly seat the top platen utilizing a rubber mallet.

GENERAL NOTES:

- Remove packaging material and check for any damage. Report any damaged components to a StormTank® Distributor or Brentwood personnel.
- StormTank® components are backed by a one year warranty, when installed per manufacturer's recommendations.

2.0 Basin Excavation

- 1. Stake out and excavate to elevations per approved plans.Excavation Requirements: a. Sub-grade excavation must be a minimum of 6" (152 mm) below designed
 - StormTank® Module invert. b. The excavation should extend a minimum of 12" (305 mm) beyond the StormTank® dimensions in each length and width (an additional 24" [610 mm] in total length and total width) to allow for adequate placement of side backfill material
 - c. Remove objectionable material encountered within the excavation, including protruding material from the walls.
 - d. Furnish, install, monitor and maintain excavation support (e.g., shoring, bracing, trench boxes, etc.) as required by Federal, Provincial and Local Laws, Ordinances, Regulations and Safety Requirements.

3.0 Sub-Grade Requirements

- 1. Sub-grade shall be unfrozen, level (plus or minus 1%), and free of lumps or debris with no standing water, mud or muck. Do not use materials nor mix with materials that are frozen and/or coated with ice or frost
- 2. Unstable, unsuitable and/or compromised areas should be brought to the Engineer's attention and mitigating efforts determined prior to compacting the sub-grade.
- 3. Sub-grade must be compacted to 95% Standard Proctor Density or as approved by the Engineer of Record. If code requirements restrict subgrade compaction, it is the requirement of the geotechnical Engineer to verify that the bearing capacity and settlement criteria for support of the system are met. *

* The Engineer of Record shall reference Brentwood document Appendix A for minimum

soil bearing capacity required based on Load Rating and top cover depth. Minimum soil bearing capacity is required so that settlements are less than 1" through the entire sub-grade and do not exceed long-term 1/2" differential settlement between any two adjacent units within the system. Sub-grade must be designed to ensure soil bearing capacity is maintained throughout all soil saturation levels.

4.0 Leveling Bed Installation

1. Install geotextile fabric and/or liner material, as specified.

- a. Geotextile fabric shall be placed per manufacturer's recommendations. b. Additional material to be utilized for wrapping above the system must be protected from damage until use.
- 2. After the geotextile is secured, place a minimum 6" (152 mm) Leveling Bed.
 - a. Material should be a 3/4" (19 mm) angular stone meeting Appendix B -Acceptable Fill Material
 - b. Material should be raked free of voids, lumps, debris, sharp objects and plate vibrated to a level with a maximum 1% slope.
- 3. Correct any unsatisfactory conditions

5.0 StormTank® Module Placement

- 1. 1. Install geotextile fabric and/or liner material, as specified.
 - a. Geotextile fabric shall be placed per manufacturer's recommendations. b. Additional material to be utilized for wrapping above the system must be protected from damage until use.
- 2. Mark the footprint of the modules for placement.
 - a. Ensure module perimeter outline is square or similar prior to Module placement. b. Care should be taken to note any connections, ports or other irregular units to
 - be placed.
- 3. Install the individual modules by hand, as detailed below.
 - a. The modules should be installed as shown in the StormTank® submittal drawings with the short side of perimeter modules facing outward, except as otherwise required.
 - b. Make sure the top/bottom platens are in alignment in all directions to within a maximum 1/4" (6.4 mm)
 - c. For double stack configurations:
 - i. Install the bottom module first. DO NOT INTERMIX VARIOUS MODULE HEIGHTS ACROSS LAYERS. Backfilling prior to proceeding to second laver is optional
 - ii. Insert stacking pins (2 per module) into the top platen of the bottom module.
 - iii. Place the upper module directly on top of the bottom module in the same direction, making sure to engage the pins.
- 4. Install the modules to completion, taking care to avoid damage to the geotextile and/or liner material
- 5. Locate any ports or other penetration of the StormTank®.
- a. Install ports/penetrations in accordance with the approved submittals, contract documents and manufacturer's recommendations.
- 6. Upon completion of module installation, wrap the modules in geotextile fabric and/or liner.
 - a. Geotextile fabric shall be wrapped and secured per manufacturer's recommendations
 - b. Seal any ports/penetrations per Manufacturer's requirements

Notes:

• If damage occurs to the geotextile fabric or impermeable liner, repair the material in accordance with the geotextile/liner Manufacturer's recommendations.

6.0 Side Backfill

- 1. Inspect all geotextile, ensuring that no voids or damage exists; which will allow sediment into the StormTank® system
- 2. Adjust the stone/soil interface geotextile along the side of the native soil to ensure the geotextile is taught to the native soil.
- 3. Once the geotextile is secured, begin to place the Side Backfill.
 - a. a. Material should be a 3/4" (19 mm) angular stone meeting Appendix B -Acceptable Fill Material
 - b. b. Backfill sides "evenly" around the perimeter without exceeding single 12" (305 mm) lifts.
 - c. Place material utilizing an excavator, dozer or conveyor boom.
 - d. Utilize a plate vibrator to settle the stone and provide a uniform distribution.

Notes:

- Do not apply vehicular load to the modules during placement of side backfill. All material placement should occur with equipment located on the native soil surrounding the system.
- If damage occurs to the geotextile fabric or impermeable liner, repair the material in accordance with the geotextile/liner Manufacturer's recommendations.

7.0 Top Backfill (Stone)

- 1. Begin to place the Top Backfill. a. Material should be a 3/4" (19 mm) angular stone meeting Appendix B -Acceptable Fill Material
- b. Place material utilizing an excavator, dozer or conveyor boom (Appendix C -Material Placement) and use a walk-behind plate vibrator to settle the stone and provide an even distribution

DO NOT DRIVE ON THE MODULES WITHOUT A MINIMUM 12" (305 mm) COVER.

- 2. Upon completion of Top Backfilling, wrap the system in geotextile fabric and/or liner per manufacturer's recommendations.
- 3. Install metallic tape around the perimeter of the system to mark the area for future utility detection

Notes:

 If damage occurs to the geotextile fabric or impermeable liner, repair the material in accordance with the geotextile/liner Manufacturer's recommendations.

8.0 Suitable Compactable Fill

Following Top Backfill placement and geotextile fabric wrapping; complete the installation as noted below

Vegetated Area

- 1. Place fill onto the geotextile. a. Maximum 12" (305 mm) lifts, compacted with a vibratory plate or walk behind roller to a minimum of 90% Standard Proctor Density
- b. The minimum top cover to finished grade should not be less than 24" (610 mm) and the maximum depth from final grade to the bottom of the lowest module should not exceed 11' (3.35 m).

2. Finish to the surface and complete with vegetative cover.

Impervious Area

- 1. Place fill onto the geotextile. a. Maximum 12" (305 mm) lifts, compacted with a vibratory plate or walk behind
- roller to a minimum of 90% Standard Proctor Density. b. The minimum top cover to finished grade should not be less than 24" (610 mm)
- and the maximum depth from final grade to the bottom of the lowest module should not exceed 11' (3.35 m).

2. Finish to the surface and complete with asphalt, concrete, etc.

Notes:

- A vibratory roller may only be utilized after a minimum 24" (610 mm) of compacted material has been installed or for the installation of the asphalt wearing course.
- If damage occurs to the geotextile fabric, repair the material in accordance with the geotextile Manufacturer's recommendations.
- For most recent installation guidelines visit: http://www.brentwoodindustries.com/products/stormwater-management/stormtank/module.php#feature5

9.0 Inspection and Maintenance

If the following inspections and maintenance procedures are not followed as specified below then the end-user is responsible for the performance of the modules. These Maintenance procedure must be performed after a heavy rainfall, flooding or any incident that will vary the flow of water drastically.

Inspection

Cleaning:

- 1. Inspect all observation ports, inflow and outflow connection and the discharge area 2. Identify and log any sediment and debris accumulation, system backup, or discharge
- rate changes 3. If there is a sufficient need for a cleanout, contact a local cleaning company for assistance

4. Repeat steps 2 and 3 until no debris is evident.

1. If a pretreatment device is installed, follow manufacturer recommendations. 2. Using vacuum pump truck, evacuate debris from the inflow and outflow points. 3. Flush the system with clean water, forcing debris from the system.

117 Basaltic Rd, Concord, ON L4K 1G4 Canada Ph: (905) 761-9123 www.layfieldgroup.com

DOUBLE STACK MODULE SYSTEM

Total Storage Volume	199.87 m ³
Module Storage Volume	169.36 m ³
Stone Storage Volume	30.51 m ³
System Footprint	109.63 m ²
Estimated Geotextile Fabric	730m ²
Estimated Stone Volume	76.29m ³
Excavation Required	284.02 m ³
Excavation Depth	2.59m
Stone Type	19mm clear
Stone Void Space	40%
Module Type (Bottom)	25 Series ST-36
Module Type (Top)	25 Series ST-36

1871 & 1879 GORDON STREET

Guelph, ON

REV.	Record of Cl	nanges	Date	By
\triangle	Preliminary Dr	rawing	02MAR21	AC
Page Name	²² Supplemer	ntary N	otes	
Drawn by:	AC	Checked	By: AW	
Scale	NTS	Date:	02MAR21	
Sheet:				
	06 C	F	07	

ANSI B Size Page (Horizontal)

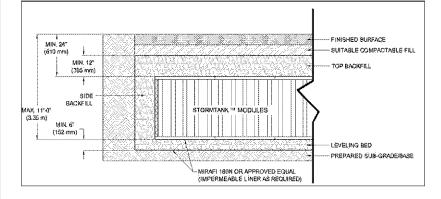
Appendix A - Bearing Capacity Tables

Cover		HS-25 (Unfactored) HS-25 (Factored)		actored)	Cove	r	HS-25 (Unfactor	ed)	HS-25 (Factored)		
English	Metric	English	Metric	English	Metric	English	Metric	English	Metric	English	Metric
(in.)	(mm)	(ksf)	(kPa)	(ksf)	(kPa)	(in.)	(mm)	(ksf)	(kPa)	(ksf)	(kPa)
24	610	1.89	90.45	4.75	227.43	67	1.702	1.12	53.75	2.07	99.1
25	635	1.82	86.96	4.53	216.9	68	1,727	1.13	53.91	2.07	99.1
26	660	1.75	83.78	4.34	207.8	69	1,753	1.13	54.08	2.06	98.63
27	686	1.69	80.88	4.16	199.18	70	1,778	1.13	54.26	2.06	98.63
28	711	1.63	78.24	3.99	191.04	71	1,803	1.14	54.46	2.00	98.6
29	737	1.58	75.82	3.84	183.86	72	1,829	1.14	54.67	2.06	98.6
30	762	1.54	73.62	3.7	177.16	73	1,854	1.15	54.9	2.06	98.6
31	787	1.5	71.6	3.57	170.93	74	1.880	1.15	55.13	2.06	98.6
32	813	1.46	69.75	3.45	165.19	75	1,905	1.16	55.38	2.06	98.63
33	838	1.42	68.06	3.34	159.92	76	1.930	1.16	55.64	2.06	98.6
34	864	1.39	66.51	3.24	155.13	77	1,956	1.17	55.9	2.06	98.63
35	889	1.36	65.1	3.14	150.34	78	1,981	1.17	56.18	2.06	98.63
36	914	1.33	63.8	3.05	146.03	79	2.007	1.18	56.46	2.07	99.1
37	940	1.31	62.62	2.97	142.2	80	2,032	1.19	56.76	2.07	99.1
38	965	1.29	61.54	2.9	138.85	81	2,057	1.19	57.06	2.07	99.1
39	991	1.26	60.55	2.83	135.5	82	2,083	1.2	57.37	2.08	99.5
40	1,016	1.25	59.65	2.76	132.15	83	2.108	1.2	57.69	2.08	99.5
41	1,041	1.23	58.84	2.7	129.28	84	2,134	1.21	58.02	2.09	100.0
42	1,067	1.21	58.09	2.67	127.84	85	2,159	1.22	58.35	2.09	100.0
43	1,00,	1.2	57.42	2.6	124.49	86	2,184	1.23	58.69	2.1	100.5
44	1,118	1.19	56.81	2.55	122.09	87	2,210	1.23	59.04	2.11	101.0
45	1,143	1.18	56.26	2.5	119.7	88	2,235	1.24	59.39	2.11	101.0
46	1,168	1.16	55.77	2.46	117.79	89	2,261	1.25	59.75	2.12	101.5
47	1,194	1.16	55.33	2.42	115.87	90	2,286	1.26	60.11	2.13	101.9
48	1,219	1.15	54.94	2.39	114.43	91	2,311	1.26	60.48	2.13	101.9
49	1,245	1.14	54.59	2.36	113	92	2,337	1.27	60.86	2.14	102.4
50	1,270	1.13	54.29	2.33	111.56	93	2,362	1.28	61.24	2.15	102.9
51	1,295	1.13	54.03	2.3	110.12	94	2,388	1.29	61.62	2.16	103.4
52	1,321	1.12	53.8	2.27	108.69	95	2,413	1.3	62.01	2.17	103.9
53	1,346	1.12	53.62	2.25	107.73	96	2,438	1.3	62.41	2.18	104.3
54	1,372	1.12	53.46	2.23	106.77	97	2,464	1.31	62.81	2.19	104.8
55	1,397	1.11	53.34	2.21	105.82	98	2,489	1.32	63.21	2.2	105.3
56	1,422	1.11	53.24	2.19	104.86	99	2,515	1.33	63.62	2.21	105.8
57	1,448	1.11	53.18	2.17	103.9	100	2,540	1.34	64.03	2.22	106.2
58	1,473	1.11	53.14	2.16	103.42	101	2,565	1.35	64.45	2.23	106.7
59	1,499	1.11	53.12	2.14	102.46	102	2,591	1.35	64.87	2.24	107.2
60	1,524	1.11	53.13	2.13	101.98	103	2,616	1.36	65.29	2.25	107.7
61	1,549	1.11	53.16	2.12	101.51	104	2,642	1.37	65.72	2.27	108.6
62	1,575	1.11	53.21	2.11	101.03	105	2,667	1.38	66.15	2.28	109.1
63	1,600	1.11	53.28	2.1	100.55	106	2,692	1.39	66.58	2.29	109.6
64	1,626	1.11	53.37	2.09	100.07	107	2,718	1.4	67.02	2.3	110.1
65	1,651	1.12	53.48	2.08	99.59	108	2,743	1.41	67.45	2.31	110.
66	1,676	1.12	53.61	2.08	99.59	109	2,769	1.42	67.9	2.33	111.5
67	1,702	1.12	53.75	2.07	99.11	110	2,794	1.43	68.34	2.34	112.0
68	1,727	1.13	53.91	2.07	99.11	111	2,819	1.44	68.79	2.35	112.5
69	1,753	1.13	54.08	2.06	98.63	112	2,845	1.45	69.24	2.36	113
70	1,778	1.13	54.26	2.06	98.63	113	2,870	1.46	69.69	2.38	113.9
71	1,803	1.14	54.46	2.06	98.63	114	2,896	1.47	70.15	2.39	114.4

70	1,778	1.13	54.26	2.06	98.63					69.69		
71	1,803	1.14	54.46	2.06	98.63		114	2,896	1.47	70.15	2.39	114.43
Notes: .	1. Additional	load ratings a	nd associ	ated bea	ring capa	cities may	/be appli	cable on	a case by	r case bas	is. Please	e contact

your local Brentwood Representative.

Revision Date: 8/20/15


Page 8 of 10

Revision Date: 8/20/15	
------------------------	--

Notes:

Appendix B - ACCEPTABLE FILL MATERIALS

Material Location	Description	AASHTO M43 Designation	ASTM D2321 Class	Compaction/Density
Finished Surface	Topsoil, hardscape, stone, concrete or asphalt per engineer of record.	N/A	N/A	Prepare per engineered plans.
Suitable Compaction Fill	Granular well graded soil/aggregate, typically road base or earthen fill, maximum 4" particle size.	56, 57, 6, 67, 68 Earth	I & II III (Earth Only)	Place in max. 12" lifts to a min. 90% standard procto density.
Top Backfill	Crushed angular stone placed	56, 57, 6, 67, 68	I & II	Plate compacted to provide evenly distributed layers.
Side Backfill	Crushed angular stone placed between earthen walls amd modules.	56, 57, 6, 67, 68	I&II	Place in uniform 12" lifts around the system.
Leveling Bed	Crushed angular stone placed to provide level surface for installation of modules.	56, 57, 6, 67, 68	I & II	Plate vibrated to achieve level surface.
* See Appendix C	- Material Placement for limitat	ions		

All stone must be angular stone meeting ASTMD2321. Recycled concrete may be utilized when meeting acceptable gradation and ASTM standards.
 The sub-grade is to be prepared to meet bearing and compaction requirements. Please see engineer of record's design.

4. Storage of materials such as construction materials, equipment, soils, etc. over the StormTank® system is strictly prohibit. 5. Please contact a Geotechnical Engineer and the Brentwood representative prior to utilization of any material not listed abov.

Page 9 of 12

Material Location	Placement Methods	Tired Equipment Limitations	Tracked Equipment Limitations	Roller Limitations					
Finished Surface	Numerous methods may be utilized. Material dumping on to system be limited unless otherwise noted.	Asphalt can be dumped into pavers.		Vibratory rollers may only be utilized if compacted cover exceeds 24" (610 mm) or for pavement installation.					
Suitable Compactable Fill		No DUMPING by dump trucks. No wheel loads unit ill approved by Engineer of Record.	SMALL DOZERS ONLY (Max. gross operating load of 6,000 lbs. [2,721 kg] or less).	Static rollers ONLY are permitted until compacted oover exceeds 24" (610 mm).					
Top Backfill	Utilize an excavator bucket or stone conveyor, positioned off of system, to uniformly backfill on the top of modules. No DUMPING directly onto modules by dump trucks.	No DUMPING by dump trucks. No wheel loads unitill approved by Engineer of Record.	Utilize an excavator or skid loader (Max. gross operating load of 6,000 lbs. [2,721 kg] once a min. 12" (305 mm) has been placed and compacted.	No rollers allowed at this time.					
Side Backfill									
Levelling Bed		No limitations							

prohibited. Please contact a Brentwood representative/distributor prior to utilization of any equipment not listed above.
 During paving operations, it may be necessary to utilize dump operations for paving equipment. Additional precautions should be utilized to limit hen dump distance and prevent rutting of road base.

4. It is recommended that all backfilling operations be completed with low ground pressure vehicles such as mini excavators, skid steers, etc. All equipment is to access system by a level approach to the system.

Revision Date: 8/20/15

Notes

Page 10 Of 12

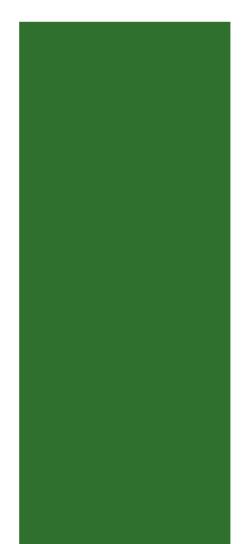
117 Basaltic Rd, Concord, ON L4K 1G4 Canada Ph: (905) 761-9123 www.layfieldgroup.com

DOUBLE STACK MODULE SYSTEM

Total Storage Volume	199.87 m ³
Module Storage Volume	169.36 m ³
Stone Storage Volume	30.51 m ³
System Footprint	109.63 m ²
Estimated Geotextile Fabric	730m ²
Estimated Stone Volume	76.29m ³
Excavation Required	284.02 m ³
Excavation Depth	2.59m
Stone Type	19mm clear
Stone Void Space	40%
Module Type (Bottom)	25 Series ST-36
Module Type (Top)	25 Series ST-36

1871 & 1879 GORDON STREET

Guelph, ON


REV.	Record of Cl	nanges	Date	By
\triangle	Preliminary Dr	awing	02MAR21	AC
Page Name	[»] Supplemer	ntary N	otes	
Drawn by:	AC	Checked	By: AW	
Scale	NTS	Date:	02MAR21	
Sheet:				
	07 O	F	07	

Appendix C - MATERIAL PLACEMENT GUIDELINES

1. Storage of materials such as construction materials, equipment, soils, etc. over the StormTank® system is strictly

Appendix C Water Budget Analysis

EXISTING	CONDITION
----------	-----------

Contributing Catchments:	100
Contributing Area =	0.329 ha
Percent Impervious =	35%

Soil Type: Fine Sand Vegetation: Shallow-rooted crops Root Zone Depth = 0.5m Soil Moisture Retention Capacity = 50mm

Runoff Factor =

0.48

			Evapotranspiration	Factors	Evapotranspiration	Precipitation		Water Loss	Storage	ΔS	Evapotrans- piration	Surplus	Runoff	Runoff	Recharge & Runoff	Runoff	Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-6.5	0.00	0.0	24.3	0.0	65.2	65.2		186.4	0.0	0.0	0.0	11.8	0.0	11.8	5.6	19	20
Feb	-5.5	0.00	0.0	24.6	0.0	54.9	54.9		241.3	0.0	0.0	0.0	5.9	0.0	5.9	2.8	9	10
Mar	-1.0	0.00	0.0	30.6	0.0	61.0	61.0		302.3	0.0	0.0	0.0	2.9	0.0	2.9	1.4	5	5
Apr	6.2	1.39	1.0	33.6	33.6	74.5	40.9		50.0	0.0	25.8	48.7	24.3	25.2	49.6	23.8	78	85
May	12.5	4.00	2.0	37.8	75.6	82.3	6.7		50.0	0.0	58.1	24.2	24.3	113.5	137.8	66.1	218	236
Jun	17.6	6.72	2.9	38.4	111.4	82.4	-29.0	-29.0	27.0	-23.0	81.0	24.4	24.3	56.8	81.1	38.9	128	139
Jul	20.0	8.16	3.4	38.7	131.6	98.6	-33.0	-61.9	14.9	-12.1	85.1	25.6	24.9	28.4	53.3	25.6	84	91
Aug	18.9	7.49	3.2	36.0	115.2	83.9	-31.3	-93.2	7.0	-7.9	70.6	21.2	23.1	14.2	37.3	17.9	59	64
Sep	14.5	5.01	2.4	31.2	74.9	87.8	12.9		19.9	12.9	57.6	17.3	20.2	7.3	27.5	13.2	43	47
Oct	8.2	2.12	1.3	28.5	37.1	67.4	30.4		50.0	30.1	28.5	8.8	14.5	3.9	18.4	8.8	29	32
Nov	2.5	0.35	0.4	24.3	9.7	87.1	77.4		50.0	0.0	7.5	79.6	47.1	2.0	49.1	23.6	77	84
Dec	-3.3	0.00	0.0	23.1	0.0	71.2	71.2		121.2	0.0	0.0	0.0	23.5	1.0	24.5	11.8	39	42
Total		35.2				916.3	327.3				414.2	249.8	246.8	252.3	499.1	239.6	788	854

Contributing Catchments:	200, 201, 202, 203
Contributing Area =	0.329 ha
Percent Impervious =	77%

Vegetation: Shallow-rooted crops Root Zone Depth = 0.5mSoil Moisture Retention Capacity (mm)= 50mm

Evapotranspiration Factor for Impervious Surfaces = 0.34

Month	Daily Average Temperature	Monthly Heat Index	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration	Average Precipitation	P-PE	Accum. Pot. Water Loss	Storage	ΔS	Actual Evapotrans- piration	Moisture Surplus	Water Runoff	Snow Melt Runoff	Total Recharge & Runoff	Total Recharge & Runoff	Enhanced Recharge	Runoff Volume	Recharge Through Pervious Surfaces	Total Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)	(m ³)	(m ³)	(m ³)
Jan	-6.5	0.00	0.0	24.3	0.0	65.2	65.2		186.4	0.0	0.0	0.0	14.2	0.0	14.2	46.7	34	10	2	36
Feb	-5.5	0.00	0.0	24.6	0.0	54.9	54.9		241.3	0.0	0.0	0.0	7.1	0.0	7.1	23.4	17.1	5.1	1.2	18.2
Mar	-1	0.00	0.0	30.6	0.0	61.0	61.0		302.3	0.0	0.0	0.0	3.5	0.0	3.5	11.7	8.5	2.6	0.6	9.1
Apr	6.2	1.39	1.0	33.6	33.6	74.5	40.9		50.0	0.0	16.5	58.0	29.0	25.2	54.2	178.4	130.3	39.2	8.8	139.2
May	12.5	4.00	2.0	37.8	75.6	82.3	6.7		50.0	0.0	37.2	45.1	37.1	113.5	150.6	495.5	362.0	108.9	24.6	386.5
Jun	17.6	6.72	2.9	38.4	111.4	82.4	-29.0	-29.0	27.0	-23.0	51.8	53.6	45.3	56.8	102.1	335.9	245.4	73.9	16.7	262.0
Jul	20	8.16	3.4	38.7	131.6	98.6	-33.0	-61.9	14.9	-12.1	54.4	56.3	50.8	28.4	79.2	260.5	190.3	57.3	12.9	203.3
Aug	18.9	7.49	3.2	36.0	115.2	83.9	-31.3	-93.2	7.0	-7.9	45.1	46.7	48.7	14.2	62.9	207.0	151.3	45.5	10.3	161.5
Sep	14.5	5.01	2.4	31.2	74.9	87.8	12.9		19.9	12.9	36.8	38.1	43.4	7.3	50.7	166.8	121.9	36.7	8.3	130.1
Oct	8.2	2.12	1.3	28.5	37.1	67.4	30.4		50.0	30.1	18.2	19.1	31.3	3.9	35.2	115.7	84.5	25.4	5.7	90.2
Nov	2.5	0.35	0.4	24.3	9.7	87.1	77.4		50.0	0.0	4.8	82.3	56.8	2.0	58.8	193.4	141.3	42.5	9.6	150.9
Dec	-3.3	0.00	0.0	23.1	0.0	71.2	71.2		121.2	0.0	0.0	0.0	28.4	1.0	29.4	96.7	70.7	21.3	4.8	75.4
Total		35.2				916.3	327.3				264.8	399.2	395.6	252.3	647.9	2,131.7	1,557.3	468.7	105.7	1,663.0

Notes: Precipitation and Temperature data from Environment Canada Climate Normals 1981-2010 for Waterloo Wellington A

Monthly water balance strategy as outlined in the document Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance (Thornthwaite and Mather, 1957)

1871 and 1879 Gordon Street City of Guelph Table 1 : Monthly Water Balance - Infiltration Gallery GMBP Prj #: 118070

Infiltration Gallery #1

Site Infiltration Gallery							
Structure Length =	18.29	m					
Structure Width =	6.40	m					
Structure Depth =	1.80	m					
Contact Area of Gallery =	205.94	sq m	Volume of G	allery =	207.65	cu m	
			Storage Vol	lume of Galle	ery =	207.65	cu m
A = contact area of structure = V = runoff volume to be infiltrated = P = percolation rate of native soils = n = porosity of storage media (weighted) = T = retention time =			205.94 207.65 61.5 0.49 Solve for T	sq m cu m mm/hr	based on sides an	awdown is I flow from Id bottom allery	
T = (1000 x V) / (P x n x A)	=	33.46	hours or	1.4	day drain	down perio	bd
Contributing Area Recharge Time Recharge Volume Potential		0.253 33.46 207.65	hours /	(Area to Infi 1.39	iltration Gal 9 days	llery)	

Month	Total Recharge & Runoff	No. of days	Max Potential Recharge	Available Recharge	Enhanced Recharge
	(mm)		(m ³)	(m ³)	(m ³)
Jan	14.2	31	4,617	36	34
Feb	7.1	28	4,170	18	17
Mar	3.5	31	4,617	9	9
Apr	54.2	30	4,468	137	130
May	150.6	31	4,617	381	362
Jun	102.1	30	4,468	258	245
Jul	79.2	31	4,617	200	190
Aug	62.9	31	4,617	159	151
Sep	50.7	30	4,468	128	122
Oct	35.2	31	4,617	89	85
Nov	58.8	30	4,468	149	141
Dec	29.4	31	4,617	74	71
Total	647.9	365.0	54,364.6	1,639.3	1,557.3

1871 and 1879 Gordon Street City of Guelph Table 3 : Monthly Water Balance Summary GMBP Prj #: 118170

	Site							
Month	Existing Recharge Volume	Proposed Recharge Volume	Percent Change					
	(m ³)	(m ³)	(%)					
Jan	20	36	81.0%					
Feb	10	18	81.0%					
Mar	5	9	81.0%					
Apr	85	139	64.1%					
May	236	387	64.0%					
Jun	139	262	88.9%					
Jul	91	203	122.8%					
Aug	64	162	153.3%					
Sep	47	130	176.7%					
Oct	32	90	186.5%					
Nov	84	151	79.7%					
Dec	42	75	79.7%					
Total	854	1,663	94.8%					

	Site						
	Existing	Proposed	Percent				
Month	Runoff	Runoff	Change				
	Volume	Volume	Change				
	(m ³)	(m ³)	(%)				
Jan	19	10	-44.7%				
Feb	9	5	-44.7%				
Mar	5	3	-44.7%				
Apr	78	39	-49.9%				
May	218	109	-49.9%				
Jun	128	74	-42.3%				
Jul	84	57	-32.0%				
Aug	59	46	-22.7%				
Sep	43	37	-15.5%				
Oct	29	25	-12.5%				
Nov	77	43	-45.1%				
Dec	39	21	-45.1%				
Total	788	469	-40.5%				