

1242, 1250, 1260, 1270 Gordon Street and 9 Valley Road, Guelph, ON – Environmental Impact Study Addendum Version 2

Final Report

June 17, 2022 File: 161413684

Prepared for:

Tricar Developments Inc. 3800 Colonel Talbot Rd. London, ON N6P 1H5

Prepared by:

Stantec Consulting Ltd. 100-300 Hagey Boulevard Waterloo ON N2L 0A4

The conclusions in the Report titled 1242, 1250, 1260, 1270 Gordon Street and 9 Valley Road, Guelph, ON – Environmental Impact Study Addendum Version 2 are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from Tricar Developments Inc. (the "Client") and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided to applicable authorities having jurisdiction and others for whom the Client is responsible, Stantec does not warrant the services to any third party. The report may not be relied upon by any other party without the express written consent of Stantec, which may be withheld at Stantec's discretion.

Prepared by _____

(signature)

Melissa Straus, M.Sc. Terrestrial Ecologist

Reviewed by ____

(signature)

Daniel Eusebi, BES, MCIP, RPP Senior Environmental Planner

Table of Contents

ABBR	EVIATIONS	IV
1.0		1.1
2.0 2.1	POLICY CONSIDERATIONS	
2.2	GUELPH TRAIL MASTER PLAN, 2021	
3.0	ADDITIONAL FIELD INVESTIGATIONS	
3.1	VEGETATION	
3.2	TREE INVENTORY	
3.3	BAT EXIT SURVEYS	
3.4	BREEDING BIRD SURVEYS	3.2
4.0	EXISTING CONDITIONS	4.1
4.1	HYDROGEOLOGY	
4.2	TERRESTRIAL RESOURCES	
	4.2.1 Vegetation Communities	
	4.2.2 Vascular Plant Species	
	4.2.3 Tree Preservation Plan	
	4.2.4 Bat Exit Surveys	
	4.2.5 Breeding Bird Surveys	
	4.2.6 Snake Habitat Assessment	1.3
5.0	SIGNIFICANT NATURAL HERITAGE FEATURES	5.1
5.1	HABITAT OF ENDANGERED AND THREATENED SPECIES	5.1
	5.1.1 Butternut	5.1
	5.1.2 Bat SAR	
5.2	PROVINCIAL-LEVEL ANALYSIS OF SIGNIFICANCE	5.2
5.3	CITY OF GUELPH ANALYSIS OF SIGNIFICANCE	5.5
	5.3.1 Significant Woodlands	5.5
	5.3.2 Cultural Woodlands	5.6
	5.3.3 Deer Crossing and Ecological Linkage	5.6
	5.3.4 Habitat of Significant Species	5.6
5.4	SIGNIFICANT NATURAL HERITAGE FEATURES SUMMARY	5.9
6.0	PROPOSED DEVELOPMENT	3.1
6.1	STORMWATER MANAGEMENT	3.1
	6.1.1 Water Quantity and Treatment	
	6.1.2 Infiltration Trenches	6.2
	6.1.3 Infiltration Testing and Mounding Assessment	6.2
	6.1.4 Water Balance and Infiltration	
6.2	CITY OF GUELPH TRAIL	3.4

7.0	POTENTIAL IMPACTS OF DEVELOPMENT AND MITIGATION		
	RECOMMENDATIONS	7.1	
7.1	GRADING		
7.2	LIGHTING AND BIRD STRIKES	7.1	
7.3	HYDROLOGIC IMPACTS TO THE WETLANDS	7.2	
7.4	MINIMUM BUFFERS	7.3	
7.5	CITY TRAIL	7.3	
	7.5.1 Vegetation	7.4	
	7.5.2 Wildlife		
	7.5.3 Mitigation	7.6	
8.0	POLICY COMPLIANCE	8.1	
8.1	PROVINCIAL POLICY STATEMENT	8.1	
8.2	CITY OF GUELPH OFFICIAL PLAN	8.1	
8.3	GRAND RIVER CONSERVATION AUTHORITY	8.2	
8.4	ENDANGERED SPECIES ACT	8.2	
9.0	REPORT SUMMARY	9.1	
10.0	RECOMMENDATIONS FOR THE ENVIRONMENTAL IMPLEMENTATI	ON	
	REPORT	10.1	
11.0	REFERENCES	11.1	

List of Tables

Table 3.1:	2021 Survey Dates, Time and Weather Conditions	3.1
	Ecological Land Classification (ELC) Vegetation Types	
Table 4.2:	Bat Survey Results by Station at 1270 Gordon (formerly Montes Place)	4.2
Table 5.1:	Summary of Seasonal Concentrations Areas within the Subject Property	
	and Study Area	5.2
Table 5.2:	Summary of Rare or Specialized Habitat within the Subject Property and	
	Study Area	5.3
Table 5.3:	Summary of Habitat for Species of Conservation Concern within the	
	Subject Property	5.4
Table 5.4:	Summary of Wildlife Movement Corridors	5.4

LIST OF APPENDICES

APPENDIX A FIGURES

Figure 1: Study Area

- Figure 2a: Candidate Significant Wildlife Habitat: Habitat for Species of Conservation Concern
- Figure 2b: Candidate Significant Wildlife Habitat: Seasonal Concentration Areas of Animals
- Figure 2c: Candidate Significant Wildlife Habitat: Specialized Habitat for Wildlife and Animal Movement Corridors
- Figure 3: Confirmed Significant Wildlife Habitat
- Figure 4: Notable Vegetation and Locally Significant Wildlife Observations
- Figure 5: Natural Heritage System

APPENDIX B CITY CONSULTATION

- Appendix B.1 City of Guelph EIS Comments
- Appendix B.2 City of Guelph Consultation
- Appendix B.3 City of Guelph Addendum Comments
- Appendix B.4 Ministry of Environment, Conservation and Parks Correspondence

APPENDIX C COMMENT MATRIX

- Appendix C.1 Comment Matrix for First EIS Submission
- Appendix C.2 Comment Matrix for Addendum Version 1 Submission
- APPENDIX D TREE PRESERVATION PLAN
- APPENDIX E HYDROGEOLOGICAL ASSESSMENT
- APPENDIX F FIELD NOTES
- APPENDIX G BUTTERNUT DOCUMENTATION
- APPENDIX H FUNCTIONAL SERVICING REPORT
- APPENDIX I GRADING AND EROSION AND SEDIMENT CONTROL PLANS
- APPENDIX J LANDSCAPE PLAN

Introduction June 17, 2022

Abbreviations

AMSL	Above Mean Sea Level
ANSI	Significant Areas of Natural and Scientific Interest
СС	Coefficient of Conservatism
cm	Centimeter
DBH	Diameter at Breast Height
ECCC	Environment and Climate Change Canada
EIR	Environmental Implementation Report
EIS	Environmental Impact Study
ELC	Ecological Land Classification
ESA	Endangered Species Act
FSR	Functional Servicing Report
GRCA	Grand River Conservation Authority
ha	Hectare
LID	Low Impact Development
LIO	Land Information Ontario

Introduction June 17, 2022

m	Meter
MBCA	Migratory Bird Convention Act
MECP	Ministry of the Environment, Conservation and Parks
mm	Millimeter
MNRF	Ministry of Natural Resources and Forestry
NHIC	Natural Heritage Information Centre
NHS	Natural Heritage System
NRSI	Natural Resource Solutions Inc.
OP	Official Plan
PPS	Provincial Policy Statement
PSW	Provincially Significant Wetland
SAR	Species at Risk
SARO	Species at Risk in Ontario
SWH	Significant Wildlife Habitat
SWM	Stormwater Management
TPP	Tree Preservation Plan

Introduction June 17, 2022

1.0 INTRODUCTION

The Subject Property is approximately 3.3 hectares (ha) in size and is comprised of five properties located at 1242,1250, 1260, and 1270 Gordon Street and 9 Valley Road in the City of Guelph, Ontario (**Figure 1**, **Appendix A**). At the time this report was written 1270 Gordon (formerly Montes Place) is currently an occupied residence and the remaining residential properties (1242, 1250, and 1260 Gordon Street, 9 Valley Road) have been demolished in accordance with a demolition permit.

Surrounding the Subject Property is a 120-metre (m) Study Area boundary, as shown on **Figure 1** (**Appendix A**), which is comprised of single-family residential lots to the northeast and newly constructed apartments to the east and west. Forest and wetland features associated with the Torrance Creek Swamp Provincially Significant Wetland (PSW) borders the Subject Property at the northeast with the Hanlon Creek PSW located west of Gordon Street.

Stantec Consulting Ltd. (Stantec) was retained by Tricar Developments Inc. (Tricar) to complete an Environmental Impact Study (EIS) in support of a Draft Plan of Subdivision, Official Plan Amendment and Zoning By-law Amendment to accommodate the proposed development of two 10-storey apartment buildings with surface and below grade parking. Following approval, the development will proceed to detailed design and subdivision registration.

An EIS, dated May 4, 2020, was submitted to the City of Guelph and presented results of the 2018 and 2019 field program with an analysis of concordance of the proposed development with existing provincial and municipal policy. The purpose of the EIS was to characterize the significance and sensitivity of existing natural features in the Study Area, identify potential impacts of the project on these natural features, and recommend appropriate measures to avoid or minimize potential negative impacts and demonstrate no negative impact.

An EIS Addendum, dated August 31, 2021 (Version 1), was prepared and submitted to the City of Guelph, the purpose of which was to address City comments received on the original EIS submission (see **Appendix B1**) and update the originally submitted site plan. Since the first EIS submission, the Addendum included building heights that were reduced from 12-storeys to 10-storeys and an additional property to the south (1270 Gordon Street, formerly Montes Place) was added to the Subject Property, as shown on **Figure 1** (**Appendix A**).

The EIS Addendum was based on responses to City comments through the completion of a Comment Matrix (**Appendix C1**) and where topics required additional information or clarification are included in sections found in the body of this report. The Addendum did not reiterate information presented in the original EIS that was not commented on in the City's review. Minor corrections and clarifications were addressed and explained in the Comment Matrix. This approach was developed through consultation with City of Guelph during a July 6, 2021 meeting and follow-up email correspondence (**Appendix B2**).

Introduction June 17, 2022

Subsequent comments received to date on the August 31, 2021 EIS Addendum from City staff can be found in **Appendix B3**. As these comments did not require major conceptual changes to the EIS Addendum, this EIS Addendum (referred to as Version 2) is an update and replaces the August 31, 2021 EIS Addendum. The Comment Matrix found in **Appendix C2** addresses comments received on the EIS Addendum and forms the basis for this EIS Addendum (Version 2).

The only exception to the above noted process is regarding the proposed trail on the Subject Property. This iteration of the EIS Addendum does explore the proposed trail in more detail and discusses comments received on the originally submitted EIS with respect to the trail (see **Appendix B1**, dated August 13, 2021).

To address required updates, the following supporting documentation, all of which required updating from Version 1 except for the Tree Preservation Plan, is appended and include:

- Tree Preservation Plan (Appendix D)
- Hydrogeological Investigation (Appendix E)
- Butternut Health Assessment and Tree Permit Application (Appendix G)
- Functional Servicing Report (Appendix H)
- Grading Plan (Appendix I)
- Erosion and Sediment Control Plan (Appendix I)
- Landscape Plan (Appendix J)

Policy Considerations June 17, 2022

2.0 POLICY CONSIDERATIONS

An assessment of the natural heritage features and functions within the study area was undertaken to comply with the requirements of the following policy and guidance documents in the original EIS and included a review of:

- Provincial Policy Statement
- City of Guelph Official Plan (OP), Zoning By-law, Tree By-law, Subwatershed studies
- Grand River Conservation Authority Policies and Regulations
- Migratory Bird Convention Act
- Endangered Species Act

The original EIS described these policies and addressed concordance of the previous development site plan. The City of Guelph OP has been updated since the first submission and therefore the June 2021 consolidation was consulted during the preparation of this EIS Addendum where required. Both the PPS and City of Guelph OP require the test of no negative impact, which is addressed in **Section 8.0**, below.

As the proposed City trail was not addressed in the previous version of the EIS and addendum, two City guidance documents have since been reviewed with key components highlighted in the sections below.

2.1 ACTIVE TRANSPORTATION NETWORK STUDY, 2017

The Guelph Active Transportation Study (ATS; City of Guelph 2017) was initiated with the goal to provide a viable active transportation network in the City of Guelph to promote active and healthy lifestyles by encouraging people to cycle, walk, and use public transport. The portion of the proposed trail on the Subject Property located within the woodland was included as part of the City's active transportation network.

The study provides design guidelines for trails within their network. Relevant recommendations to the proposed development of the Subject Property include:

- A preferred trail width is 3.0 m, which can be reduced to a minimum of 2.5 m in constrained locations or to minimize impact to the adjacent landscape (i.e., in natural heritage areas)
- A minimum horizontal clear zone of 0.6 m from the edge of the trail to obstructions (e.g., signposts, utility poles, gates, fences, steep slopes etc.).
- Figure 4.6 of the Study outlines considerations for trail surfacing, which includes the recommendation for soft surfaces (e.g., limestone screening) for trails within wooded areas and designated natural heritages areas.

Policy Considerations June 17, 2022

2.2 GUELPH TRAIL MASTER PLAN, 2021

The City of Guelph updated their 2005 Guelph Trail Master Plan (GTMP) in 2021, aiming to reflect changes in their strategic plan and incorporate new approaches, legislation and guidelines in trail planning.

The Guelph Trail Master Plan proposes large north/south trail from Arkell Road to Kortright as well as a local east-west connection on the Subject Property.

Chapter 5 of the GTMP provides design guidelines based on a number of considerations, including:

- Trail classification
 - primary trails those included as part of the active transportation network and are designed to accommodate high volumes of users
 - neighborhood connector trails are designed to support high volumes of local transportation and recreational users to connect components of the neighbourhood
 - secondary trails are primarily for recreational users and typically comprised of a granular surface material
 - stormwater management trails are typically paved and have a specific set of maintenance standards
- Surface treatment options
 - Hard surfaces, typically asphalt, are predominantly used for primary (particularly those in the active transportation network), neighbourhood connector, and stormwater trails
 - o Soft surface, stonedust, woodchips, gravel, etc., typically for secondary trails
- Trail drainage and erosion control

Although the north/south portion of the trail proposed on the Subject Property is located within the active transportation network, and as such should meet the criteria for a primary trail (e.g., asphalt, 10 m preferred corridor (8-15 m range)), the master plan includes considerations for areas where trails are built within or beside important natural and culture features. Trail design, among other things, may consider reducing or increasing the recommended trail width by exceeding or reducing requirements in order to accommodate specific uses or constraints.

A neighbourhood connector trail is also proposed as part of the development, which based on the master plan would require a trail corridor of 5-10 m (preferably 10m).

Overall, the GTMP: recognize[s] that nature trails and passive recreational uses are often compatible with the preservation and protection of natural features. While trails through some particularly sensitive areas are not permitted under these policies and provincial regulations, there are other areas within the NHS where trails can be built as long as they are designed to mitigate potential damage to the natural environment.

Additional Field Investigations June 17, 2022

3.0 ADDITIONAL FIELD INVESTIGATIONS

To supplement field investigations conducted in 2018 and 2019, address City of Guelph comments (specifically Comment 120; **Appendix B**) and accommodate the addition of the parcel of land to the south (formerly Monte's place) additional field studies were conducted in 2021. Survey details are provided in Table 3.1, below.

	Date/Time	Weather					
Survey Type		Temp. (°C)	Wind (Beaufort Scale)	Cloud (%)	PPT / PPT last 24 hours	Surveyors	
Tree Inventory (1270 Gordon)	May 21, 2021	N/A	N/A	N/A	N/A	Natural Resources Solutions Inc. (NRSI)	
Breeding Bird (Early)	June 2, 2021 05:30-08:00	7°C	0	0	None	Melissa Straus	
Ecological Land Classification and Botanical Inventory (1270 Gordon)	June 2, 2021 07:15-08:00	7°C	0	0	None	Melissa Straus	
Infiltration Trench Testing	June 10, 2021 June 11, 2021	N/A	N/A	N/A	N/A	D&J Lockhart Excavators Ltd.	
Bat Exit Survey #1 (1270 Gordon)	June 10, 2021 21:01-22:31	21°C	3	0	None	Melissa Straus	
Bat Exit Survey #2 (1270 Gordon)	June 28, 2021 21:05-22:35	26°C	2	20	None	Melissa Straus	

3.1 VEGETATION

A site visit was completed in 2021 to confirm ELC and complete a botanical inventory of the property to the south (1270 Gordon) which had been surveyed previously from the property boundary (Lee et al. 1998).

Plant species status were considered and evaluated using the Rare Vascular Plants of Ontario, Fourth Edition (Oldham and Brinker 2009) for provincial significance; provincial and federal status is based on Species at Risk in Ontario. Identification of potentially sensitive native plant species will be determined based on their assigned coefficient of conservatism (CC) value, as determined by Oldham et al. (1995). CC values range from 0 (low) to 10 (high) considering a species' tolerance of disturbance and fidelity to a specific natural habitat. Species with a high CC value of 9 or 10 generally exhibit a high degree of fidelity to a narrow range of habitat parameters. Locally significant species were based on *Lo*cally *Significant Species List – City of Guelph 2012.*

Additional Field Investigations June 17, 2022

3.2 TREE INVENTORY

An updated Tree Preservation Plan (TPP) was completed by NRSI to incorporate the property to the south (1270 Gordon Street) and provide a detailed assessment of the City's primarily trail and associated trail connection across the Subject Property.

The following information was recorded for each tree:

- species
- DBH
- crown radius (metres)
- general health (excellent, good, fair, poor, very poor, dead)
- potential for structural failure (improbable, possible, probable, imminent)
- tree location (on-site/boundary/off-site)
- general comments (i.e., disease, aesthetic quality, development constraints, sensitivity to development)

Full details on methods can be found in the TPP in Appendix D.

3.3 BAT EXIT SURVEYS

The property to the south (1270 Gordon) has an existing building on the property that will require removal to facilitate the proposed development. To determine if bats (including bat Species at Risk; SAR) are using this building, bat exit surveys were conducted in accordance with *Surveying for the presence of Little Brown Myotis and Northern Myotis* (MNR 2013). This consisted of observers watching the identified building looking for signs of bats exiting or entering the buildings using binoculars and flashlights, as well as use of an acoustic monitoring device to record bat calls for species identification. Surveys started 30 minutes before sunset and finished 60 minutes after sunset.

3.4 BREEDING BIRD SURVEYS

One breeding bird survey was conducted on the Subject Property in June 2021 in accordance with the Breeding Bird Atlas (Cadman et al., 2007) to compliment surveys completed in previous years. Fieldwork commenced approximately 15 minutes prior to sunrise and concluded at 08:00 under favorable weather conditions.

The survey consisted of recording all species of birds that were seen or heard within each habitat while traversing the Subject Property. A conservative approach to determining breeding status was taken, birds seen or heard in appropriate habitat during the breeding season were assumed to be breeding.

Existing conditions June 17, 2022

4.0 **EXISTING CONDITIONS**

4.1 HYDROGEOLOGY

Existing hydrogeological conditions on the Subject Property were summarized in the first EIS submission and the revised Hydrogeological Assessment report can be found in **Appendix E**.

4.2 TERRESTRIAL RESOURCES

Results of the terrestrial field investigations are summarized in the sections below, with available field notes provided in **Appendix F.**

4.2.1 Vegetation Communities

The vegetation communities identified in the Study Area are shown on **Figures 2-4, Appendix A**. All communities identified are considered common in southern Ontario.

During the botanical inventory conducted in June 2021 at 1270 Gordon, staff concluded that no changes were required to ELC community boundaries. An update to the cultural meadow community description to include a more detailed description of 1270 Gordon is provided below in **Table 4.1**.

ELC Type	Community Description		
Cultural (CU)			
CUM1 Mineral Cultural Meadow	Centralized disturbed meadow, dominated by orchard grass, common Timothy and goldenrod in the ground layer, with common buckthorn and Tartarian honeysuckle in the understory and scattered white elm in the canopy.		
	A small cultural meadow pocket located behind 1242 Gordon consists of predominantly maintained lawn and a few fruit trees.		
	The eastern portion of the cultural meadow, located behind 1270 Gordon, is open with regenerating black walnut and poplars (<10 % canopy coverage) and dominated by grasses (e.g., awnless brome [<i>Bromus inermus</i>]) with goldenrods present.		

4.2.2 Vascular Plant Species

A few vegetation species not previously observed were identified on the Subject Property during the botanical inventory in 2021, none of which are at risk or rare. New observations included large-tooth aspen (*Populus Grandidentata*), common hawkweed (*Hieracium vulgatum*), and highbush cranberry (*Viburnum opulus americanum*).

SAR and rare plants as reported in the original EIS can be found on Figure 4 (Appendix A).

Existing conditions June 17, 2022

4.2.3 Tree Preservation Plan

A total of 867 trees of 40 species were inventoried by NRSI during the preparation of the Tree Preservation Plan. Of the trees assessed, 641 (74%) are native species and 226 (26%) are non-native.

The Tree Preservation Plan can be found in Appendix D.

4.2.4 Bat Exit Surveys

Two bat exit surveys were conducted in June 2021 at the existing residence located at 1270 Gordon. No bats, including SAR, were observed entering or exiting the building. Foraging bats were documented during the survey, identified using software to analyzed calls recorded on hand-held bat detectors to be Big Brown Bats, Red Bats, and Hoary Bats. In some cases, the calls cannot be distinguished due to the quality of the call and as such both species are reported. In two cases, two faint calls were recorded on June 28, 2021 from the northwest corner of the building that appeared to be Little Brown Myotis (Endangered provincially).

The number of bat calls does not provide an indication as to the number of individuals present, as a single bat can result in multiple recorded calls by making several passes over a detector. However, the number of calls can generally be used as an index of bat activity. The bat station locations and number of bat calls recorded are presented in **Table 4.2**.

Date	Detector ID	Detector Location	Species / Guild	Number of Bat Calls Identified
	SM4-I	Southeast side of building	None	-
	SM4-N	Northernmost corner of building	Big Brown Bat	2
lune 10, 2021	SM4-O	North side of building	Big Brown Bat/ Silver-haired Bat	36
June 10, 2021			Big Brown Bat	82
	SM4-S	Southernmost corner of building	Big Brown Bat/ Silver-haired Bat	1
			Big Brown Bat	2
	ETK		Big Brown Bat/ Silver-haired Bat	52
		Northwest corner of building	Big Brown Bat	26
June 28, 2021			Little Brown Bat	2
	ETL	Southeast corner of building	Big Brown Bat/ Silver-haired Bat	1
			Hoary Bat	5

Table 4.2: Bat Survey Results by Station at 1270 Gordon (formerly Montes Place)

Existing conditions June 17, 2022

4.2.5 Breeding Bird Surveys

During breeding bird surveys conducted in June 2021, Stantec observed eight species not recorded during field investigations in 2018. These were Canada Goose, Mourning Dove, Eastern Kingbird, American Crow, Cedar Waxwing, Brown-headed Cowbird, Baltimore Oriole and Northern Waterthrush. Of these eight species, all but the American Crow and Canada Goose were observed displaying breeding evidence.

Three species Northern Flicker, Eastern Kingbird and Baltimore Oriole are locally significant in the City of Guelph. Eastern Kingbird and Baltimore Oriole were observed within the meadow section of the Subject Property and the Northern Flicker was observed in the deciduous woodlot to the northeast. These species, in addition to SAR and locally significant bird species identified previously in the Study Area are shown on **Figure 4** (Appendix A).

4.2.6 Snake Habitat Assessment

Snake habitat and presence was recorded during all surveys conducted on the Subject Property. Hibernacula features such as house foundations, cracks and crevices and stone piles were assessed for access to below ground. Suitable habitat to support snake hibernacula was not identified on the Subject Property.

Snakes were recorded incidentally during surveys conducted on the Subject Property, including one DeKay's Brown Snake, several Eastern Gartersnakes and one Red-bellied Snake during an onsite visit with the City of Guelph during favorable weather conditions on May 16, 2019.

Significant Natural Heritage Features June 17, 2022

5.0 SIGNIFICANT NATURAL HERITAGE FEATURES

5.1 HABITAT OF ENDANGERED AND THREATENED SPECIES

Four (4) species protected under the ESA were identified on the Subject Property and/or in the Study Area and include:

- Butternut
- Barn Swallow
- Bat SAR (Little Brown Myotis and Northern Myotis)

Barn Swallow was observed flying over the Subject Property and as such not expected to be breeding. No evidence of Barn Swallow nesting was observed on site. Butternut and bat SAR are described below, with species occurrences are provided in **Figure 4** (**Appendix A**).

5.1.1 Butternut

Six butternut trees were originally identified on the Subject Property by NRSI during the tree inventory, as shown on **Figure 4** (**Appendix A**). Butternut is provincially ranked S3? (possibly-vulnerable); and is considered endangered provincially and federally. Butternut is afforded habitat protection under the ESA (2007), which includes a 25 m buffer to protect the tree from root damage.

A Notice of Activity was submitted to MECP to facilitate the removal of one Butternut, one Butternut hybrid, and the harm of another Butternut. A tree permit was obtained from the City of Guelph to remove the two Butternuts, which occurred in December 2020. The necessary compensation plantings for these Butternuts as required under the *Endangered Species Act* were installed in the Fall of 2020, consisting of 40 butternuts and 40 companion trees of sugar maple, black cherry, and red oak. The butternut tree removal permit application and butternut health assessment completed by NRSI is provided in **Appendix G**.

5.1.2 Bat SAR

Bat SAR were documented in 2018 within the significant woodland during field studies, and at a distance from the building at 1270 Gordon in 2021, however, bat exit surveys were completed of the residences and snag trees in the development footprint revealed no evidence of SAR bat roosts in the surveyed locations. Although impacts to SAR bats are not anticipated, an Information Gathering Form will be submitted to the Ministry of the Environment, Conservation and Parks (MECP) to confirm the required approach for these species.

Significant Natural Heritage Features June 17, 2022

5.2 PROVINCIAL-LEVEL ANALYSIS OF SIGNIFICANCE

An analysis of feature significance was included in the original EIS submission. For clarity, this section has been divided into jurisdiction (provincial vs. City of Guelph) with additional details provided on Significant Wildlife Habitat (SWH) and the OP, as requested in City of Guelph comments #124-127 (**Appendix C1**).

The analysis of significance based on the Natural Heritage Policy (Section 2.1) of the PPS (OMAH 2014) was completed in the original EIS, identifying significant wetlands (Torrance Creek and Hanlon Creek PSW Complexes), significant woodland, in the Study Area and various types of Significant Wildlife Habitat (SWH) based on criteria set out in *Significant Wildlife Habitat Criteria Schedules for Ecoregion 6E* (MNRF 2015). Tables 5.1-5.4 detail this SWH analysis with candidate or confirmed SWH and mapped where identified on **Figures 2a,b,c and 3** (Appendix A).

Habitat Type	Habitat Features	Presence / Absence within the Subject Property and Study Area
Waterfowl stopover and staging areas		
Shorebird migratory stopover area	Beaches and un-vegetated shorelines of lakes, rivers, and wetlands	Absent
Raptor wintering areas	Combination of fields and woodland (>20 ha)	Absent
Bat hibernacula	Abandoned mine shafts, underground foundations, caves, and crevices	Absent
Bat maternity colonies	Mixed and deciduous forests and swamps with large diameter dead or dying trees with cavities	Candidate SWH present in Study Area
Turtle wintering area	Permanent waterbodies and large wetlands with sufficient dissolved oxygen	Candidate SWH present in Study Area
Reptile hibernacula	Rock piles or slopes, stone fences, crumbling foundations	Absent
Colonially – nesting bird breeding habitat (bank and cliff)	Eroding banks, sandy hills, steep slopes, rock faces or piles	Absent
Colonially – nesting bird breeding habitat (trees/shrubs)	Dead trees in large marshes and lakes, flooded timber, and shrubs, with nests of Great Blue Heron, Great Egret, Green Heron, or Black-crowned Night-Heron	Absent
Colonially – nesting bird breeding habitat (ground)	Rock islands and peninsulas in a lake or large river	Absent

Table 5.1:	Summary of Seasonal Concentrations Areas within the Subject Property and
	Study Area

Significant Natural Heritage Features June 17, 2022

Habitat Type	Habitat Features	Presence / Absence within the Subject Property and Study Area
Migratory butterfly stopover area	Fields and forests that are a minimum of 10 ha and are located within 5 km of Lake Erie or Lake Ontario	Absent
Landbird migratory stopover area	Woodlands of a minimum size located within 5 km of Lake Erie or Lake Ontario	Absent
Deer wintering congregation areas	Deer yards are mapped by MNRF	Confirmed SWH present in Study Area.

Table 5.2: Summary of Rare or Specialized Habitat within the Subject Property and Study Area

Habitat Type	Habitat Features	Presence / Absence within the Subject Property and Study Area			
	Rare Vegetation Communities				
Sand barren, alvar, cliffs and talus slopes	Sand barren, Alvar, Cliff and Talus ELC Community Classes, and other areas of exposed bed rock and patchy soil development, near vertical exposed bedrock and slopes of rock rubble	Absent			
Prairie and savannah	Open canopy habitats (tree cover < 60%) dominated by prairie species	Absent			
Old growth forest	Relatively undisturbed, structurally complex; dominant trees > 100 years' old	Absent			
Other rare vegetation communities	Vegetation communities ranked S1-S3 by the NHIC	Absent			
Specialized Habitats					
Waterfowl nesting areas	Upland habitats adjacent to wetlands (within 120 m)	Absent			
Bald Eagle and Osprey nesting, foraging and perching habitat	Treed communities adjacent to rivers, lakes, ponds, and other wetlands with stick nests of Bald Eagle or Osprey	Absent			
Woodland raptor nesting habitat	Forested ELC communities >30ha with 10 ha of interior habitat	Candidate SWH present in the Study Area			
Turtle nesting areas	Exposed soil, including sand and gravel in open sunny areas in proximity to wetlands	Absent			
Seeps and springs	Any forested area with groundwater at surface within the headwaters of a stream or river system	Candidate SWH present in the Study Area			
Amphibian breeding habitat (woodland and wetland)	Treed uplands with vernal pools, and wetland ecosites	Absent			
Woodland area sensitive breeding bird habitat	Large mature forest stands, woodlots >30 ha	Candidate SWH present in the Study Area			

Significant Natural Heritage Features June 17, 2022

Habitat Type	Habitat Features	Presence / Absence of Rare or Specialized Habitat within the Subject Property and Study Area
Open country bird breeding habitat	Large grasslands and fields (>30 ha)	Absent
Shrub/early successional bird breeding habitat	Large shrub and thicket habitats (>10 ha)	Absent
Marsh bird breeding habitat	Wetlands with shallow water with emergent aquatic vegetation	Absent
Terrestrial Crayfish	Wet meadows and edges of shallow marshes	Candidate SWH present in the Study Area
Special Concern and	Habitat for Special Concern species:	Confirmed SWH.
provincially rare wildlife (as identified in Table 3-1)	 Common Nighthawk: Open habitats with gravel substrate 	Absent
	2. Eastern Wood-Pewee: Deciduous and mixed forests	Confirmed SWH present in Study Area
	 Red-headed Woodpecker: Deciduous and riparian forests, orchards, parks, grasslands 	Absent
	 Snapping Turtle: Ponds, sloughs, streams, rivers, and shallow bays 	Candidate SWH present within Study Area.
	 Wood Thrush: Deciduous and mixed forests 	Absent
	6. Monarch: Milkweed and wildflowers	Absent

Table 5.3: Summary of Habitat for Species of Conservation Concern within the Subject Property

Table 5.4: Summary of Wildlife Movement Corridors

 \bigcirc

Habitat Type	Habitat Feature	Presence / Absence of Wildlife Movement Corridors within the Subject Property
Deer movement corridors	Associated with confirmed deer wintering habitat/area	Absent
Amphibian movement corridors	Associated with confirmed amphibian breeding habitat	Absent

Significant Natural Heritage Features June 17, 2022

5.3 CITY OF GUELPH ANALYSIS OF SIGNIFICANCE

The City of Guelph's Natural Heritage System (NHS) as defined in Section 4.1.1 of the OP is comprised of:

- Significant Natural Areas
 - o Significant Areas of Natural and Scientific Interest (ANSI)
 - o Significant Habitat for Provincially Endangered and Threatened Species
 - o Significant Wetlands
 - o Surface Water Features and Fish Habitat
 - o Significant Woodlands
 - o Significant Valleylands
 - Significant Landform
 - o Significant Wildlife Habitat (SWH; including Ecological Linkages)
 - o Restoration Areas
 - o Minimum or Established buffers (where applicable)
- Natural Areas
 - o Other Wetlands
 - o Cultural Woodlands
 - Habitat of Significant Species
 - o Established buffers (where applicable)

The City of Guelph OP identifies components of the Natural Heritage System within the Study Area on Schedule 4, including:

- locally and provincially significant wetlands (Schedule 4A)
- significant woodlands (Schedule 4C)
- significant wildlife habitat (Schedule 4E)
- deer crossing and ecological linkage (Schedule 4).

Wetlands (PSWs) and SWH were previously discussed in Section 5.1 above while the recommendation to update the locally significant wetland boundary that overlaps with FOC2-2 was previously provided in the original EIS and are not further discussed.

Significant woodlands, deer crossing and ecological linkage, as well as locally significant species (not identified in the OP) are discussed in more detail in the sections below.

5.3.1 Significant Woodlands

Significant Woodlands in the City of Guelph are identified on Schedule 4C of the OP and are defined in Section 4.1.3.6 of the Official Plan:

- woodlands ≥1ha not identified as cultural woodlands or plantations
- woodlands ≥0.5ha consisting of Dry-Fresh Sugar Maple Deciduous Forest

Significant Natural Heritage Features June 17, 2022

- any woodlands ranked S1-S3 by the NHIC.
- Include a 10 m buffer

The forested portion associated with the Torrance Creek PSW (i.e., FOC2-2 and SWM3-2; **Figure 3**, **Appendix A**), adjacent deciduous forest (FOD5-6), two contiguous plantations (CUP3 and CUP3-3) are designed as Significant Woodland on Schedule 4C of the City's Official Plan. The significant woodland boundary was delineated in the field by NRSI with the City of Guelph in 2014 and 2017, which appears to follow the OP designation, as shown on **Figure 4**, **Appendix A**.

No other woodlands in the Study Area are designated significant by the City in their OP.

5.3.2 Cultural Woodlands

One deciduous woodland (WODM4-4), comprised of regenerating black walnut, is present on the Subject Property and was excluded from the Significant Woodland as delineated by the City of Guelph and NRSI.

Cultural Woodlands are defined in the OP as:

- i) equal to or greater than 1 hectare in size, and
- ii) not dominated by non-indigenous, invasive species.

WODM4-4 does not meet the minimum size criteria to be classified as a cultural woodland, which is supported by the lack of cultural woodlands identified on the Subject Property or in the Study Area on Schedule 4C of the OP.

5.3.3 Deer Crossing and Ecological Linkage

Section 7.1.4 of the original EIS provides a detailed analysis of the two deer crossing locations identified in the Study Area on the City of Guelph OP. The results of the analysis concluded that the southern crossing, Crossing A; **Figure 5**, **Appendix A** is the primary crossing and favoured post-development. In addition to being noted as a deer crossing location, this area was also designated as an ecological linkage by the City of Guelph in their OP. The field survey data and analysis identify crossing A as the NHS linkage as depicted on **Figure 5** (**Appendix A**).

5.3.4 Habitat of Significant Species

As per the City's OP Section 4.1.4.4, Significant Natural Areas are intended to provide habitat for the majority of the significant species known to occur in the city. However, some significant species occupy habitat outside the designated Significant Natural Areas. The City requires that this habitat be considered through the development approvals process to help support the maintenance of biodiversity.

Significant Natural Heritage Features June 17, 2022

As detailed in Policy 4.1.1.5 (i), Significant Natural Areas are comprised of:

- a. ANSIs
- b. Significant Habitat for Provincially Endangered and Threatened Species
- c. Significant Wetlands
- d. Surface Water Features and Fish Habitat
- e. Significant Woodlands
- f. Significant Valleylands
- g. Significant Landforms
- h. SWH (including Ecological Linkages)
- i. Restoration Areas
- j. Minimum or established buffers.

Therefore, significant species (described below) occurring within the Significant Woodland and/or the associated established buffer (i.e., Significant Natural Area) on the Subject Property will inherently be protected and therefore detailed analysis is not required under Policy 4.1.4.4.

To determine what constitutes habitat for significant wildlife species, the following habitat must meet the following criteria:

- i. supports species considered:
 - a. globally significant
 - b. federally significant
 - c. provincially significant; and/or
 - d. locally significant, and;
- *ii.* contributes to the quality and diversity of the Natural Heritage System but not to the extent that is determined to be Significant Wildlife Habitat or Significant Habitat of Endangered and Threatened Species.

As with candidate significant species contained within Significant Natural Areas, candidate significant species already designated as SWH or habitat for Endangered and Threatened Species do not require analysis.

Significant Natural Heritage Features June 17, 2022

Finally, habitats for plant species shall be included only where the species is growing naturally in the wild.

Eight locally significant wildlife species were identified within the Study Area during field studies undertaken on the Subject Property in 2018 and 2021:

- Eight bird species: Barn Swallow, Baltimore Oriole, Eastern Wood-Pewee, Eastern Kingbird, Hairy Woodpecker, Northern Flicker, Pileated Woodpecker, Yellow-billed Cuckoo
- One reptile: Red-bellied Snake
- One butterfly (Monarch)

The locations of these species, and the two locally significant plant species, are shown on **Figure 4** (**Appendix A**).

Of these, Barn Swallow, Eastern Kingbird, Eastern Wood-Pewee, Hairy Woodpecker, Northern Flicker, Pileated Woodpecker, and Monarch are located within the NHS (significant woodland or minimum established buffer) and will inherently be protected and do not require analysis under OP Policy 4.1.4.4.

The location of the Yellow-billed Cuckoo and Baltimore Oriole are generalized locations based on auditory field observations with location details coincident with the abutting NHS (Significant Woodland plus 10 m buffer). Yellow-billed Cuckoo was not observed during any of the three (3) breeding bird surveys but was instead observed incidentally in 2018 during ELC surveys. It is possible that this species was just moving through the Subject Property. Baltimore Oriole is a common (S4B; apparently secure during the breeding season) bird of woodland edges, open deciduous woodlands, hedgerows, parks, and residential areas (Rising and Flood 2020). The buffer, woodlot edge, proposed park will provide suitable habitat for this species. Overall, Yellow-billed Cuckoo and Baltimore Oriole observations are understood to be pertinent to the protected NHS.

Three tree species are shown on Figure 4 (**Appendix A**). As butternut is a provincially listed Endangered Species, and further discussed in Section 8.4, additional consideration is not required for butternut as a locally significant species. Additionally, the honey locust is expected to be planted based on the location of the tree along Valley Road and at a property boundary, also not requiring analysis.

Black maple is considered locally significant by the City of Guelph, ranked S4? (rank uncertain; apparently secure) in the province. Four trees were documented in a small pocket within FOCM5, associated with a hedgerow at the back of 1260 Gordon Street. It is unclear if these were planted but the tree plan authored by NRSI (**Appendix D**) identified the black maples on the Subject Property in poor health. Regardless, in accordance with OP policy 4.1.4.4 (4ii), all reasonable efforts have been made to protect the habitat in situ which is not feasible in the context of the proposed development. To offset this removal of 4 black maples (5 trunks), 5 black maples have been included in the planting plan (**Appendix J**).

Significant Natural Heritage Features June 17, 2022

Overall, habitat of significant species was not identified on the Subject Property outside of the NHS. This was determined based on generalized locations during studies completed to date (e.g., Monarch, Eastern Kingbird, etc.), species status considered under other policies (e.g., ESA, butternut), suspected introduction by planting (e.g., honey locust) as well as poor condition and an inability to avoid (e.g., black maple).

5.4 SIGNIFICANT NATURAL HERITAGE FEATURES SUMMARY

Significant natural heritage features identified on the Subject Property and/or Study Area are shown on **Figures 2a,b,c, 3, and 4 (Appendix A)**, and include:

- Hanlon Creek and Torrance Creek PSW (MAS2-1, SWM3-2)
- Significant Woodlands (SWM3-2, FODM6-5, CUP3, CUP3-S4?3)
- habitat of Endangered and Threatened Species (butternut, bat SAR)
- Significant Wildlife Habitat
 - Confirmed SWH (Figure 3, Appendix A)
 - Seasonal Concentration Areas of Animals (deer wintering area; SWM3-2, FOC2-2)
 - Habitat for Species of Conservation Concern (Eastern Wood-Pewee; SWM3-2, FOC2-2)
 - o Candidate SWH
 - Seasonal Concentration Areas of Animals (Figure 2b, Appendix A)
 - bat maternity colonies (SWM3-2, FOD5-6, FOC2-2)
 - turtle wintering area (SWM3-2)
 - woodland raptor nesting habitat (SWM3-2)
 - Habitat for Species of Conservation Concern (Figure 2a, Appendix A)
 - terrestrial crayfish
 - Snapping Turtle
 - Specialized Habitat for Wildlife (Figure 2c, Appendix A)
 - seeps and springs (SWM3-2)
 - woodland area sensitive breeding bird habitat (SWM3-2)

Significant Natural Heritage Features June 17, 2022

- Animal Movement Corridors
 - Deer Movement Corridors
- provincially rare plants (honey locust; planted)
- Locally Significant Features

 \bigcirc

- o locally significant wetland (City of Guelph OP)
- deer crossing and ecological corridor Crossing A; (City of Guelph OP and Stantec EIS analysis of corridor potential and use)
- habitat for locally significant wildlife within the NHS (Barn Swallow, Baltimore Oriole, Eastern Kingbird, Eastern Wood-Pewee, Northern Flicker, Hairy Woodpecker, Pileated Woodpecker, Yellow-billed Cuckoo, Red-bellied Snake, Monarch)
- o locally significant plants where removal is permitted (butternut, black maple)

Proposed Development June 17, 2022

6.0 PROPOSED DEVELOPMENT

Tricar is proposing to construct two 10-storey residential buildings, one fronting on Gordon Street and one adjacent to the southwest boundary of the Subject Property, as shown on **Figure 5** (**Appendix A**). Surface and underground parking, stormwater management infiltration galleries, and internal roadways are proposed to service the development. A park block and primary trail is also included in the proposed development.

6.1 STORMWATER MANAGEMENT

The Functional Servicing Report (FSR; Appendix H) outlines the stormwater management strategy for the proposed development and includes:

- Sanitary service is provided by the proposed upgrade to the municipal system located on Gordon Street just west of the site access.
- Water service is provided from the existing 400 mm watermain on Gordon Street.
- Enhanced (Level 1) water quality control will be provided for the Subject Property by a combination of an Oil Grit Separate (OGS) unit and Isolator Row Plus®.
- Adequate water quality volumes will be provided to meet the Ministry of Environment Conservation and Parks water quality requirements associated with infiltration facilities.
- The proposed rooftop storage and infiltration facility storage will control the 2- to 100-year peak flows to predevelopment levels prior to discharge to Gordon Street.

6.1.1 Water Quantity and Treatment

Water quantity control of stormwater will be achieved by a combination of rooftop controls (both buildings), infiltration gallery and subsurface stormwater detention facility (Gordon Street outlet). Rooftops will be controlled to industry standard 42 L/s/ha during the 100-year event, through the use of Zurn Control Flo Roof Drain (sized per manufacturer's recommendations).

The rooftop runoff on the East Building will connect into an on-site infiltration trench with overflow outletting east to the Torrance Creek PSW. The roof runoff of the West Building will connect to a StormTech® infiltration gallery and a StormTech® subsurface stormwater detention facility>the Permavoid infiltration system with overflow directed into the additional Permavoid storage. This storage will also collect runoff from the on-site parking area, including total flows from the south parking area and minor flows from the north parking area. A 75 mm orifice control will be provided on the downstream end, prior to discharge to the Gordon Street storm sewer.

Proposed Development June 17, 2022

The StormTech® subsurface stormwater detention facility has been sized such that the post-development runoff flow rates to Gordon Street are attenuated to pre-development flow rates.

6.1.2 Infiltration Trenches

As discussed in the *Functional Servicing Report* (Stantec, 2022), the post-development LID infiltration strategy proposed for the Subject Property will involve the construction of two infiltration facilities referred to as the East Infiltration Trench and South Infiltration Trench.

The East Infiltration Trench is sized to capture and infiltrate the 25 mm event over the east building (Building 2) roof area. The total controlled area is 2,400 m² of rooftop. This infiltration trench will be located along the east portion of the development, and trench is sized to drawdown within 48 hours.

The south StormTech® infiltration chamber is sized to capture and infiltrate the 25 mm event over parking areas and the west building (Building 1). The total controlled area is 2,400 m² of rooftop and 6,300 m² of parking area. This infiltration chamber will be located along the south portion of the development and is sized to drawdown within 48 hours after rooftop ponding.

As parking lot infiltration is required to meet water balance targets, salt application is prohibited on site and salt alternatives will be required to perform winter maintenance.

6.1.3 Infiltration Testing and Mounding Assessment

As requested by the City, an assessment of the magnitude of groundwater mounding that could potentially occur beneath the infiltration trenches described above (east and south trenches) was undertaken to determine the ability to support stormwater infiltration strategies proposed for the Subject Property under the post-development conditions.

Based on the input parameters utilized, the maximum groundwater mounding predicted to occur beneath the center of the East Infiltration Trench after a 25 mm event is 0.4 m, equating to an elevation of 339.9 m AMSL based on the seasonally high groundwater elevation. The rise in the groundwater table does not exceed 0.1 m beyond 12 m from the trench center point after a 25 mm storm event.

Maximum groundwater mounding predicted to occur beneath the center of the South Infiltration Trench after a 25 mm event is 0.7 m, equating to an elevation of 340.6 m AMSL based on the seasonally high groundwater elevation. The 25 mm storm event induced mounding will temporarily raise groundwater elevations beneath the underground parking area of the development by 0.1 m along southern limits of this structure, with the mound disappearing once reaching the underside of Building 2.

Since the building and underground parking foundations will be constructed as watertight structures (sealed with a water impermeable membrane) to resist the hydrostatic pressure exerted by the groundwater. As such, no permanent drainage system / dewatering will be required for these structures. The predicted groundwater mound is also not expected to intercept the residential buildings located on the adjacent property immediately to the southeast of the Subject Property.

Proposed Development June 17, 2022

The Design Infiltration Rate for each infiltration facility as per the approach outlined by the CVC/TRCA (2010). The calculated infiltration rate used in the design of the East and South Infiltration Trenches is 32 mm/hour and 23 mm/hour, respectively, indicating that both trenches will maintain or enhance pre-development infiltration volumes to the subwatershed under the post-development condition.

Further details on the infiltration testing and mounding assessment can be found in the hydrogeological investigations provided in **Appendix E**.

6.1.4 Water Balance and Infiltration

Under the post-development condition, impervious surfaces in the former Catchment 101 (lands draining to the Upper Hanlon Creek Subwatershed) are expected to cover approximately 85% of the post-development catchment areas (1.36 ha of 1.60 ha), resulting in a projected infiltration volume deficit of 2,767 m³/year (i.e., from 3,234 m³/year to 467 m³/year). For the former Catchment 102 (lands draining to the Torrance Creek Subwatershed), impervious surfaces will cover approximately 11% of the post-development catchment areas (0.19 ha of 1.73 ha), resulting in a projected infiltration volume deficit of 534 m³/year (i.e., from 3993 m³/year to 3,459 m³/year). Overall, the total volume of infiltration at the Subject Property will be reduced from 6,760 m³/year to 3,926 m³/year (infiltration deficit of 2,834 m³/year) from the pre- to post-development condition.

The East Infiltration Trench is designed return infiltration volumes lost from the pre- to post-development condition within the portion of the Subject Property located within the Torrance Creek Subwatershed. To address the infiltration deficit of 534 m³ projected to occur in this area of the Subject Property under the post-development condition, rooftop runoff captured by Building 2 will be discharged to this infiltration facility. Building 2 is projected to annually capture 1,741 m³ of precipitation, which will subsequently reach the East Infiltration Trench and result in an annual infiltration surplus of 1,207 m³ being added to the subsurface and recharging the local groundwater system post-development (with this groundwater flowing to the northeast towards Torrance Creek Swamp).

The South Infiltration Trench is designed return infiltration volumes lost from the pre- to post-development condition within the portion of the Site located within the Upper Hanlon Creek Subwatershed. To address the infiltration deficit of 2,767 m³ projected to occur in this area of the Site under the post-development condition, rooftop runoff captured by Building 1 and parking areas will be discharged to this infiltration facility. These previously mentioned areas are projected to annually capture 6,406 m³ of precipitation, which will subsequently reach the South Infiltration Trench and result in an annual infiltration surplus of 3,638 m³ being added to the subsurface and recharging the local groundwater system post-development (with this groundwater flowing off-Site to the southwest towards the Hanlon Creek Swamp).

For the area of the Site located within Upper Hanlon Creek Subwatershed, 85% of these lands under the post-development condition will be converted to impervious surfaces, resulting in the generation of 13,062 m³ of stormwater runoff per year and an annual runoff surplus of 9,581 m³. However, under the post development condition, the annual runoff volume generated by Building 2 (of which 62% of this rooftop area covers these lands) will be directed to the East Infiltration Trench, removing approximately

Proposed Development June 17, 2022

1,079 m³ (1,741 m³ x 0.62 = 1,079 m³) of this stormwater from the Upper Hanlon Creek Subwatershed lands and reduce the runoff surplus to 8,242 m³ (9,581 m³ - 1,079 m³ = 8,242 m³). As mentioned previously, approximately 6,406 m³ of the annual stormwater runoff generated from these previously mentioned areas will be directed to the South Infiltration Gallery. Consequently, the infiltration of this runoff will result in the unmitigated runoff surplus of 8,242 m³ being reduced further to a volume of 1,836 m³ (8,242 m³ – 6,406 m³ = 1,836 m³). The annual runoff of volume of 1,836 m³ flowing off-Site will travel southeast along Gordon Street via a drainage ditch and ultimately discharge to a downstream stormwater management facility located near Vaughan Street.

Further details pertaining to the pre- and post-development water balance analyses are presented in the Hydrogeological Assessment Report in **Appendix E**.

6.2 CITY OF GUELPH TRAIL

The proposed trail on the Subject Property is comprised of two sections, a north/south portion within the forested area east of the proposed building envelope and is designated as an Active Transportation Route as well as an east/west local or community connection to this route from Valley Drive through the proposed open space/park block. Both sections of the trail are shown on **Figure 4** (**Appendix A**).

In accordance with guidance provided in the Guelph Trail Master Plan (City of Guelph 2021), the Active Transportation Network Study (City of Guelph 2017) as well as City of Guelph comments (**Appendix B1**), the following design of the trail is described below.

- a 2.5 m wide trail
- the east/west trail will connect the proposed park to the City trail to the east
- meet accessibility criteria outlined in the FADM
- maximum running slope of 5%
- maximum cross slope of 2%
- include rest areas at regular intervals
- have signs
- have sodded drainage swales and culverts where required
- be comprised of a soft surface such as, stonedust, woodchips, gravel, etc. where located within the natural heritage system
- support the requirement for Park Operations vehicular access to both the park block and the north/south trail to the east for maintenance and operational purposes.

Further detail on the trail can also be found in the Landscape Plan in Appendix J.

Potential Impacts of Development and Mitigation Recommendations June 17, 2022

7.0 POTENTIAL IMPACTS OF DEVELOPMENT AND MITIGATION RECOMMENDATIONS

To address City comments #139 and #141, potential impacts and mitigation measures associated with grading, lighting, bird strike, and water balance impacts to the wetland are described below.

7.1 GRADING

To facilitate the proposed development, the grading plan provided in **Appendix I** will require the removal of onsite vegetation including trees as detailed in the TPP (**Appendix D**). The identified NHS components (significant woodland, wetland, etc.) as shown on **Figure 5** (**Appendix A**), including associated buffers, are outside of the proposed areas of grading.

To protect the NHS during grading, tree protection fencing (**Appendix D**) and erosion and sediment control measures (**Appendix I**) will be implemented. With the implementation of these mitigation measures, in addition to those previously discussed in the original EIS, potential impacts are not anticipated to the NHS resulting from grading.

7.2 LIGHTING AND BIRD STRIKES

Impacts of the proposed development on wildlife may occur through bird-building collisions and disturbance due to light intrusion can be mitigated through the implementation of specific design details for both the building and associated lighting.

The City of Guelph's Bird-friendly Design Guideline (2021) and Lighting Guidelines for Lighting Plans (2019) provides guidance on these items and include:

- visual markers where a building faces the natural heritage system (e.g., fritted, etched, or fenestration patterns)
 - o applied to the first 16 m of the height of the building
 - o markers are to be maximum 5 cm apart and minimum of 0.5 cm in diameter
 - o applied a minimum of 85% of exterior glazing that faces natural heritage system
- directing external lights downward
- limit glare

Bird-building collisions are further mitigated by the reduction of building heights from 12- to 10-storeys as well as the location of the Subject Property away from the confluence of migration pathways and the Great Lakes, two factors that make the City of Toronto a high-risk area for these types of collisions (City of Toronto 2016).

Effects of artificial lighting on wildlife may result in changes to:

- movement patterns through attraction or repulsion
- orientation
- interspecies interactions
- communication
- reproduction
- and mortality rates (Longcore and Rich; 2004)

Properly planned lighting can mitigation these potential impacts which, according to Gaston et al., (2012) includes the following considerations:

- i) prevent areas from being artificially lit
- ii) *limit the duration of lighting*
- iii) reduce the 'trespass' of lighting into areas that are not intended to be lit (including the night sky)
- iv) change the intensity of lighting
- v) change the spectral composition of lighting

7.3 HYDROLOGIC IMPACTS TO THE WETLANDS

Typical hydrologic impacts include an increase in overland flow for any given storm event and a reduction in infiltration rates results post-development due to the introduction of impervious ground surfaces. The proposed stormwater management strategy detailed in **Section 6.1** includes LID infiltration trenches designed to match or exceed pre-development infiltration volumes for the Torrance Creek and Upper Hanlon subwatershed. Salt use is prohibited onsite as infiltration is required for the parking lot to meet targets and avoid negative impacts to the NHS.

As detailed in the FSR (**Appendix H**), post-development flows to the Torrance Creek watershed are proposed to have a minor increase over the pre-development flow rates during the modeled storm events. Based on the hydrologic modeling the increase in flows is primarily a result of uncontrolled runoff from Catchments 205 (Future Park Block) and 206 (landscaped area on the east portion of the site) and the result of shorter flow paths than under pre-development conditions. It is not expected that this minor increase in flows (30 L/s in the 100-year storm event) under inundated conditions will have an impact on the downstream Torrance Creek Swamp or downstream infrastructure (which will be buffered by the Torrance Creek Swamp).

Potential Impacts of Development and Mitigation Recommendations June 17, 2022

No hydrologic impacts to the Torrance Creek PSW are anticipated post-development.

7.4 MINIMUM BUFFERS

The minimum buffers set out in the City of Guelph's OP (2021) Table 6.1 were assessed for their appropriateness in consideration of site conditions and wildlife movement and applied to the proposed development such that development is set back at least 10 m from the Significant Woodlot boundary and at least 30 m from the PSW boundary. Based on the shape of the features onsite, buffers to the building edge range from approximately 13 to 69 m from the significant woodland and 127 m to the PSW.

As defined in the Glossary of the OP, [e]*stablished Buffers means: the buffers established and approved by the City following the adjacent lands analysis carried out through the required site specific study (e.g. EIS or EA).* This may (or may not) coincide with the established minimum buffers set out in the OP.

A detailed buffer analysis was undertaken by Dougan & Associates in 2009 during the development of the City of Guelph's Natural Heritage Strategy. They determined that a minimum of 30 m around a PSW was conservative based on science reviewed (e.g., Azous and Horner 2000) and precedents in other jurisdictions at the time (e.g., City of Pickering, City of Hamilton). Of note, both the City of Pickering (2018) and City of Hamilton (2009) still have the same 30 m setback, with nearby municipalities such as the City of Waterloo (2012) and City of Cambridge (2018) requiring a minimum 10 m setback, although the City of Cambridge indicates that a 30 m setback to a PSW "may" be required. A minimum buffer of 10 m from the drip line of significant woodlands is consistent with the City of Waterloo, the City of Guelph, and the City of Pickering.

Based on the analysis undertaken by Dougan & Associates during the development of the NHS for the City of Guelph as well as the precedents in nearby jurisdictions for setbacks to PSWs (30 m) and significant woodlands (10 m), the buffers applied on the Subject Property (ranging from 13-69 m for the edge of building to woodlot boundary and 127 m to the PSW) are considered adequate to mitigation impacts of the proposed development.

7.5 CITY TRAIL

Three candidate trail alignments were reviewed in the field by Stantec and NRSI on March 29, 2022. The preferred route (referred to as Alignment 3 in the TPP; **Appendix D**) will enter the Subject Property from proposed Street A, traverse through the park block on an alignment to be confirmed as part of the park block design being undertaken by the City, continue easterly adjacent and across the significant woodlot buffer and then enters into the NHS to join the north-south active transportation portion of the trail. Trail alignments north and south of the Subject Property site have been designed and approved through the development review process and as such this portion of the trail, the north-south active transportation link, is predetermined and is based on the alignment provided by the City of Guelph in 2014. This section of the trail occurs adjacent and within the significant woodlot boundary, which is a permitted use (i.e., passive recreation) within the NHS according to the City's OP General Permitted Uses (Section 4.1.2).

The requirement to provide a trail alignment that connects the Park block to the City's active transportation link provides the following potential benefits for path users:

- Environmental educational opportunities
- Wildlife viewing
- Nature appreciation
- Connection to nature
- Mental health benefits
- Increase use of active transportation network to reduce road traffic
- Physical fitness
- Sense of community

However, some potential impacts of the trail may include:

- Creation of ad-hoc trails
- Refuse
- Garden waste dumping
- Spread/introduction of invasive/exotic species
- Creating a new edge within the NHS (e.g., altered wind, light regime)
- Vegetation impacts and removal (including butternut, discussed below)
- Buffer reduction
- Disturbance to wildlife by cats and off-leash dogs (discussed below)
- Attraction of nuisance wildlife (e.g., raccoons, skunks)

7.5.1 Vegetation

As outlined in the TPP (**Appendix D**), a total of 191 trees were inventoried in the trail vicinity, with 85 trees anticipated to be impacted to facilitate the installation of the two trails. Of the 191 trees inventoried, 188 are native trees and 3 are non-native trees. Most trees were in fair health and were primarily Eastern White Cedar, American Basswood, and Black Cherry.

Construction works will also occur within the protection zones of some of the compensation Butternuts planted onsite and will further encroach into the protection zone for an existing butternut (JUG-003; see the TPP). The trail will be field fit to avoid encroachment into the protective zones as much as feasible, favoring encroachment on the planted trees which have smaller root zones as opposed to the more mature JUG-003. Butternut is an endangered tree species occurring on the Subject Property with plantings undertaken in the fall of 2020 to compensate for the removal of two (2) butternuts the same year. As detailed in the TPP, it is expected that the root zones of the recently planted butternuts will not be impacted during trail construction, however further correspondence with the MECP has been initiated to ensure that trial alignment is not considered as a contravention of the ESA. A response from the MECP has not yet been received at the time of this submission.

Potential Impacts of Development and Mitigation Recommendations June 17, 2022

7.5.2 Wildlife

As outlined in Section 5.2, bat species at risk, a deer wintering area, and habitat for Eastern Wood-Pewee occur within the significant woodlot in proximity to where the trail is proposed.

Use of the trail, which includes cats and dogs, may create the following impacts:

- Increased stress to animals due to disturbance
- Alteration of movement patterns, particularly during daylight hours when trails are more heavily used
- Destruction of bird and turtle nests as unpaved trails may promote nesting by snapping turtles
- Mortality to songbirds and small mammals by cats and dogs
- Habitat degradation

Deer movement is not expected to be impacted as this species is more active at dusk and dawn which is a time of expected low activity on the trails. As noted in the original EIS:

- Deer are highly mobile animals (e.g., Alverson et al., 1988; Gaughan and DeStefano, 2005, etc.) and as such are not expected to be at risk of fragmentation effects nor direct impact during construction.
- Gordon Street is a 4-lane transportation artery in the City of Guelph with existing impacts to local deer populations. These impacts include disturbance to the species due to high volumes and continuous traffic on Gordon Street and the potential for direct impacts through road mortalities.
- The anticipated reduced traffic flow from 6 pm until 6 am on Gordon Street corresponds to when deer movement across the Subject Property was highest. White-tailed deer are crepuscular, browsing mainly at dawn and dusk), placing them at lower risk of traffic impact and disturbance.
- As southern populations of deer are known to conditionally migrate (Sabine et al., 2002), it is possible that deer in proximity to the Subject Property are conditionally migratory due to a more temperate climate than elsewhere in its range. Therefore, a resident population of deer in the PSW may exist year-round, increasing to some degree in winter, but a mass migration of deer between the Torrance Creek and Hanlon Creek PSW is likely not occurring pre (or post) construction.
- The primary limiting factor for deer in the northeastern part of their range in North America is density dependent foraging competition (Messier 1991; Post and Stenseth, 1998; Dumont et al., 2000; Patterson and Power 2002; as cited in Patterson et al., 2002), which is not expected to change post-construction. Shrubby edge vegetation will persist, with the potential for additional plantings (i.e., food) to be provided post-construction.

• No impact is expected to the function of the woodland or PSW and therefore the quality of the overwintering deer habitat will not change post-construction. Maintenance of this habitat is important to the life cycle processes of deer utilizing the Subject Property and Study Area.

7.5.3 Mitigation

Overall, impacts of the proposed trail may be offset by the benefits as well as mitigating human behaviour through signage and education (e.g., homeowner brochure, educational trail signage) which could address issues such as keeping your cat inside, keeping your dog on a leash, and the negative impacts of dumping garden waste. Provisioning of garbage receptacles will also help protect the natural heritage system. The trail provides the opportunity for interaction between nature and recreational users for a variety of benefits in controlled and unobtrusive environment where motorized vehicles will be prohibited.

Policy Compliance June 17, 2022

8.0 POLICY COMPLIANCE

This addendum report addresses the natural heritage features defined in the PPS, City of Guelph OP, GRCA Regulation 150/06 and the *ESA*, and demonstrates that the recommendations and intent of the relevant provincial and municipal policies have been incorporated in the proposed development.

8.1 PROVINCIAL POLICY STATEMENT

Development is sited outside of the Torrance and Hanlon Creek PSW, consistent with the PPS which does not allow development within significant wetlands. Development is also cited outside of SWH features, with the PPS allowing development in or adjacent to SWH if no negative impacts are anticipated. Although we anticipate redirecting of deer movement around the Subject Property post-development, significant negative impacts to deer and the other identified SWH in the Study Area are not anticipated with the implementation of the avoidance and mitigation recommendations.

Development and site alteration is not permitted within habitat of threatened or endangered species, except in accordance with provincial and federal requirements. Considerations for bat SAR and butternut are discussed under **Section 8.4**

8.2 CITY OF GUELPH OFFICIAL PLAN

The City's OP permits development on lands adjacent to Significant Natural Areas or within Natural Areas if an EIS can demonstrate no negative impacts on the features or on their associated ecological functions. Grading is not proposed within the 10 m buffer adjacent to the significant woodland boundary and at the time of this report, tree plantings have been undertaken in the buffer in accordance with requirements of Section 23.7 of Ontario Regulation 242/08 of the ESA (**Appendix G**). Eighty seedlings (40 butternut and 40 additional trees, referred to as companion trees in **Appendix G**) have been planted which will be supplemented with additional plantings to be detailed in an updated Landscape Plan submitted as part of the EIR. The concept plan is developed to maintain the ecological function of the buffer, attenuation of noise, air, and visual influences on the feature and is consistent with the buffer guideline of the OP. No negative impacts are anticipated from the development with the implementation of the avoidance and mitigation recommendations include in the original EIS and this addendum (e.g., dripline and root zone avoidance, fencing, monitoring). Therefore, the proposed development is in compliance with the polices of the OP. The buffers inclusion in the apartment block zoning will have no negative impacts to the natural heritage features given the aforementioned concept plan, established land use and plantings, and additional initiatives that will be implemented and subject to conditions of Site Plan Approval.

Minimum setbacks required in the OP have been respected by the proposed development (i.e., 30 to PSW, 10 to significant woodland). As detailed in Section 7.4, these minimum buffers are expected to be sufficient to avoid negative impacts to the NHS.

Policy Compliance June 17, 2022

According to the City of Guelph OP, passive recreation includes:

a range of outdoor activities and passive uses compatible with protecting the Natural Heritage features and areas including, but not limited to, wildlife habitat, wetlands and woodlands. Activities and uses include bird watching, hiking, photography, snowshoeing, and may require the construction of a trail, benches or boardwalks in accordance with the Guelph Trail Master Plan or are integral to the scientific, educational or passive recreational use of a property.

Under general permitted uses (Section 4.1.2. of the OP) passive recreation (i.e., the proposed trail) is permissible.

8.3 GRAND RIVER CONSERVATION AUTHORITY

The proposed development is located within the GRCA's regulated area within the area of interference (i.e., 120 m) of the Torrance Creek PSW.

The development is consistent with GRCA policy as the Hydrogeological Assessment Report provided in **Appendix E** indicated that the hydrogeological function of the Torrance Creek PSW to the northeast of the Subject Property will not be impacted by the proposed development. The planned post-development LID infiltration strategy is designed to maintain existing/pre-development groundwater flow volumes towards this PSW.

8.4 ENDANGERED SPECIES ACT

Bat SAR and butternut may be impacted by the proposed development.

A notice of assessment to impact (i.e., remove, construct within 25 m) butternut trees was made under Ontario Regulation 242/08 Section 23.7. A replanting plan has been implemented in accordance with the Regulation.

Although bat exit surveys did not confirm use at any of the identified candidate roost trees located within the hedgerows and residential areas, bat SAR were documented during surveys conducted in 2018 and 2021. An Information Gathering Form will be submitted to MECP to determine requirements under the ESA.

Report Summary June 17, 2022

9.0 REPORT SUMMARY

This EIS Addendum documented the following:

- Results of the background records review identified the following features on the Subject Property and/or in the Study Area
 - o Hanlon Creek and Torrance Creek PSW
 - o deer wintering habitat
 - o locally and provincially significant wetlands (City of Guelph OP Schedule 4A)
 - o significant woodlands (OP, Schedule 4C)
 - o significant wildlife habitat (OP, Schedule 4E)
 - o deer crossing and ecological linkage (OP, Schedule 4).
- Results of the field programs conducted in 2018 and 2021 identified the following features, as shown on **Figures 3** and **4** (**Appendix A**):
 - habitat of Endangered and Threatened Species (butternut, bat SAR)
 - o Significant Wildlife Habitat
 - Confirmed SWH
 - Seasonal Concentration Areas of Animals (deer wintering area; SWM3-2, FOC2-2)
 - Habitat for Species of Conservation Concern (Eastern Wood-Pewee; SWM3-2, FOC2-2)
 - Candidate SWH
 - Seasonal Concentration Areas of Animals
 - o bat maternity colonies (SWM3-2, FOD5-6)
 - o turtle wintering area (SWM3-2)
 - woodland raptor nesting habitat (SWM3-2)
 - Habitat for Species of Conservation Concern
 - o terrestrial crayfish

Report Summary June 17, 2022

- o Snapping Turtle
- Specialized Habitat for Wildlife
 - seeps and springs (SWM3-2)
 - woodland area sensitive breeding bird habitat (SWM3-2)
- One provincially rare plant (honey locust) was documented on the Subject Property but is proposed to be retained. It is possible this tree was planted based on the location along property boundaries.
- The two (2) deer crossings identified in the City of Guelph OP were assessed as part of movement studies and analysis of significance. Crossing A, as shown on **Figure 5** (**Appendix A**) is included as part of the NHS for deer crossing and ecological corridor as addressed in the EIS.
- Locally significant species (Barn Swallow, Baltimore Oriole, Eastern Kingbird, Eastern Wood-Pewee, Hairy Woodpecker, Northern Flicker, Pileated Woodpecker, Yellow-billed Cuckoo, Red-bellied Snake) and plants (butternut, black maple) were identified, predominantly outside of the proposed project footprint.
- The proposed development consists of two 10-storey residential buildings, one fronting on Gordon Street and one adjacent to the southwest boundary of the Subject Property. Surface and underground parking, stormwater management infiltration galleries, and internal roadways are proposed to service the proposed development. A park block is also included in the proposed development however the details of which are to be designed by the City in the future.
- Stormwater quantity control by a combination of rooftop controls over both the west and east building
 and subsurface storage. Two on-site infiltration systems are proposed to promote infiltration of the
 rooftop and parking lot runoff to the groundwater system, with overflows out-letting to the Gordon
 Street storm sewer, controlled to the pre-development flow rate. The infiltration galleries are designed
 to at least maintain pre-development infiltration volumes occurring in the catchment that provides
 groundwater flow to the Torrance Creek PSW and in the catchment that provides groundwater mounding
 calculations were completed to assess the feasibility of the proposed stormwater management
 infiltration trenches.
- Potential impacts of the proposed development and associated mitigation measures were detailed in the previously submitted EIS. This Addendum detailed grading, lighting, recreational trial, and hydrologic impacts to the wetland and mitigation measures such that no negative impacts on the NHS are anticipated as a result of the proposed development. This is in accordance with the PPS, City of Guelph OP, and GRCA policies.

Recommendations for the Environmental Implementation Report June 17, 2022

10.0 RECOMMENDATIONS FOR THE ENVIRONMENTAL IMPLEMENTATION REPORT

It is our understanding that an Environmental Implementation Report (EIR) will be required to provide guidance on how to address recommendations contained within the original EIS and this EIS Addendum. The following topics are recommended for inclusion in the EIR:

- Demonstrate how policies and the conditions of approval have been met
- Demonstrate how municipal infrastructure servicing will be undertaken in a manner that will protect significant natural heritage features and their ecological functions
- Additional details on the landscape plans for the buffer areas and stormwater management facility will be prepared. These plans will be completed by an accredited Landscape Architect and include:
 - o compensation plantings of native species for trees being removed
 - tree protection fencing
 - o demarcation
 - o signage
 - o educational/interpretive and stewardship materials
- A detailed Erosion and Sediment Control Plan
- Detailed guidance on bird-friendly building design to be incorporated as part of detailed design.
- Provide additional details on the proposed post-construction monitoring plan provided in the EIS
- Include a Groundwater Dewatering Assessment and recommendations for monitoring and best practice.
- Invasive species management, monitoring, and removal plan
- Hazard tree management
- Recommendations contained within the TPP for inclusion in the EIR:
 - Polygon A should be inventoried individually to quantify the number of trees to be removed and retained
 - o Tree retention within the park block should be reassessed based on City needs and trail design

Recommendations for the Environmental Implementation Report June 17, 2022

- o Compensation requirements should be updated to reflect the above items
- The compensation plan should be developed by, or reviewed and approved by a Certified Arborist
- Include hardy, native tree species where feasible that are known to thrive in more urban conditions (i.e. compacted soil, drought, high salt tolerance)
- Include a diversity of trees from several genus to increase disease and pest tolerance and discourage monocultures (no more than 30% from a single genus, 10% from a single species)
- o Include a watering and monitoring plan for 2 years following planting
- o Be replaced if they are documented to have died within the 2-year monitoring plan
- o Be spaced so as to allow material to reach its ultimate size and form
- Be provided with appropriate soil types and soil volumes
- o Avoid ash species due to the risk of the emerald ash borer (Agrilus planipennis)
- Avoid 'messy trees', such as fruiting trees or poplars (Populus spp.) where plantings occur in close proximity to driveways and roadways
- Spacing of plant material should account for the ultimate size and form of the selected species and also the purpose of the planting, whether it be for screening, shade, naturalizing, rehabilitation, etc.
- o Special attention to location and height of trees in proximity to utilities.

References June 17, 2022

11.0 **REFERENCES**

- Alverson, W. S., D. M. Waller, and S. L. Solheim. 1988. Forests Too Deer: Edge Effects in Northern Wisconsin. Conservation Biology 2(4): 348-358.
- Azous, A. L. and R. R. Horner, eds. 2000. Wetlands and Urbanization: Implications for the Future. Lewis Publishers, New York.
- Cadman, M. D., D. A. Sutherland, G. G. Beck, D. Lepage and A. R. Couturier (eds.). 2007. Atlas of the Breeding Birds of Ontario, 2001-2005. Bird Studies Canada, Environment Canada, Ontario Field Ornithologists, Ontario Ministry of Natural Resources, and Ontario Nature, Toronto. Xxii + 706 pp.
- City of Cambridge. 2018. Cambridge Official Plan. Online at: <u>https://www.cambridge.ca/en/learn-about/resources/Official-Plan/Cambridge-2018-Official-Plan-Consolidation-AODA-2018-09-25.pdf</u>City of Guelph. 2012. Locally Significant Species List. Online at: http://guelph.ca/wp-content/uploads/LocallySignificantSpeciesListCityofGuelphJune2014.pdf

City of Guelph. 2021. City of Guelph Official Plan 2001; Consolidated July 2021.

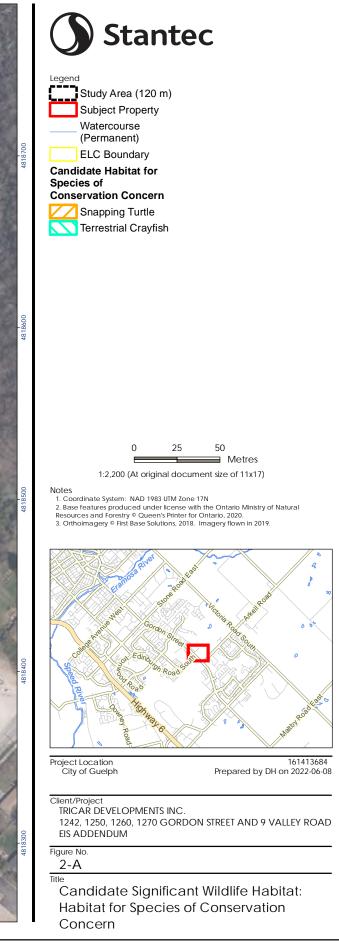
- City of Guelph Engineering and Transportation Services. 2019. Development Engineering Manual. City of Guelph. January 2019.
- City of Hamilton. 2009. Urban Hamilton Official Plan; Effective August 2013. Online at: https://www.hamilton.ca/city-planning/official-plan-zoning-by-law/urban-hamilton-official-plan
- City of Pickering. 2018. Pickering Official Plan, Edition 8. October 2018. Online at: <u>https://www.pickering.ca/en/city-hall/resources/op8ACC.pdf</u>
- City of Toronto. 2016. Bird-friendly Best Practices Glass. https://www.toronto.ca/wpcontent/uploads/2017/08/8d1c-Bird-Friendly-Best-Practices-Glass.pdf
- City of Toronto. 2017. 2017 Best Practices Effective Lighting. <u>https://www.toronto.ca/wp-</u> content/uploads/2018/03/8ff6-city-planning-bird-effective-lighting.pdf
- City of Waterloo. 2012. Official Plan City of Waterloo. Online at: <u>https://www.waterloo.ca/en/government/resources/Documents/Cityadministration/Official-plan/2020/City-of-Waterloo-Official-Plan-Office-Consolidation.pdf</u>
- Credit Valley Conservation Authority and Toronto and Region Conservation Authority. 2010. Low Impact Development Stormwater Management Planning and Design Guide.
- Dougan and Associates. 2009. City of Guelph Natural Heritage Strategy. Phase 2: Terrestrial Inventory & Natural Heritage System Volume 1 Report. March 2009. Online at: <u>https://guelph.ca/wp-content/uploads/NaturalHeritageStrategyPhase2_finalReport.pdf</u>

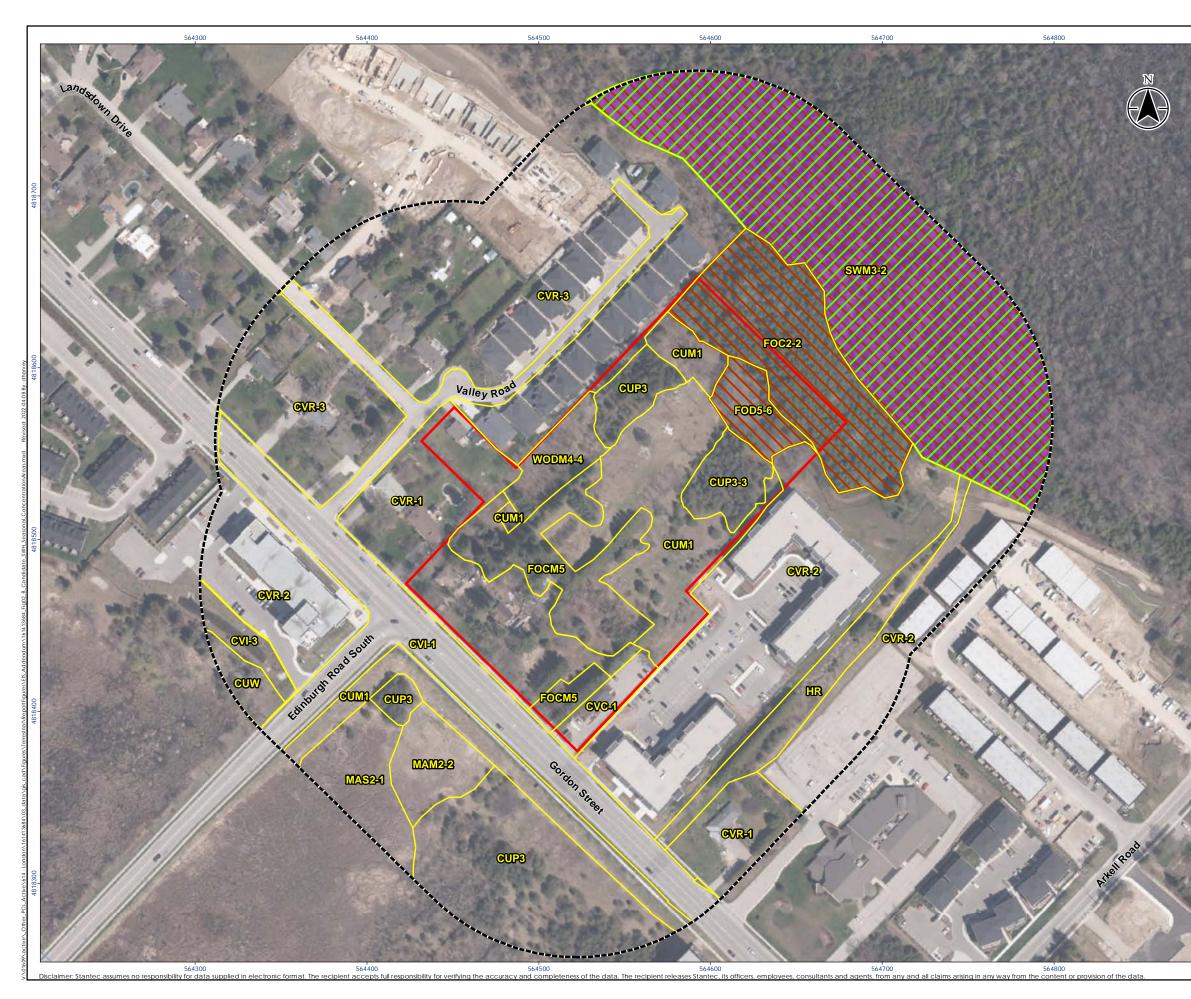
References June 17, 2022

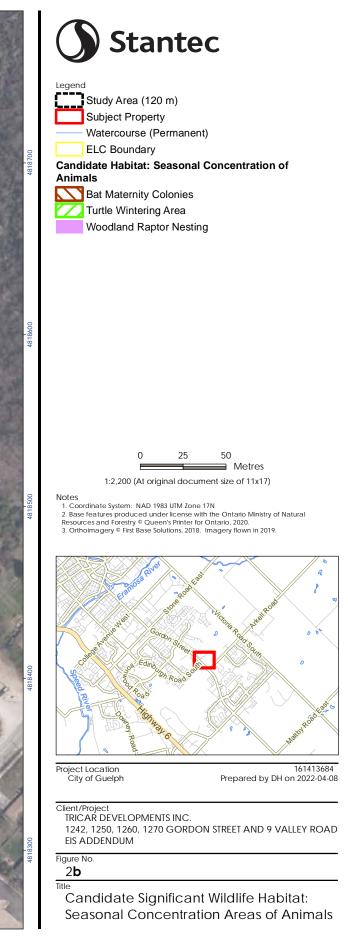
- Gaston, K.J., T.W. Davies, J. Bennie, J. Hopkins. 2012. Review: Reducing the ecological consequences of night-time light pollution: options and developments.
- Gaughan, C. R., and S. DeStefano. 2005. Movement patterns of rural and suburban white-tailed deer in Massachusetts. Urban Ecosystems 8: 191-202
- Grand River Conservation Authority (GRCA). 2015. Policies for the Administration of the Development, Interference with Wetlands and Alterations to Shorelines and Watercourses Regulation. October 2015.
- Grand River Conservation Authority (GRCA). 2020. Mapping produced using information from the Grand River Information Network (GRIN), https://www.grandriver.ca/en/our-watershed/Maps-and-data.aspx.
- Longcore, T., C. Rich. 2004. Ecological Light Pollution. Frontiers in Ecology and the Environment. 2(4): 191-198.
- Lee, H.T., W.D. Bakowsky, J. Riley, J. Bowles, M. Puddister, P. Uhlig and S. McMurray. 1998 (with 2008 ELC code updates). Ecological Land Classification for Southwestern Ontario: first approximation and its application. Ontario Ministry of Natural Resources, South Central Region, Science Development and Transfer Branch. Technical Manual ELC-005.
- Ministry of Natural Resources (MNR). 2013. Surveying for the presence of Little Brown Myotis and Northern Myotis.
- Ministry of Natural Resources and Forestry (MNRF). 2015. Significant Wildlife Habitat Criteria Schedules for Ecoregion 6E. January 2015.
- Ministry of Natural Resources and Forestry (MNRF). 2017. Survey Protocol for Species at Risk Bats within Treed Habitats. Little Brown Myotis, Northern Myotis & Tri-Colored Bat. Guelph District. 13 pp.
- Ministry of Natural Resources and Forestry (MNRF). 2020a. Natural Heritage Information Centre (NHIC). Provincial status of plants, wildlife and vegetation communities database. Ministry of Natural Resources and Forestry, Peterborough. http://www.mnr.gov.on.ca/MNR/nhic/nhic.html
- Ministry of Natural Resources and Forestry (MNRF). 2020b. Land Information Ontario (LIO). On-line Natural Heritage Mapping and Natural Heritage Information Database.
- Ministry of the Environment (MOE). 2003. Stormwater Management Planning and Design Manual (SWMPD Manual).
- Oldham, M., W. Bakowsky and D.A. Sutherland. 1995. Floristic Quality Assessment for Southern Ontario. Natural Heritage Information Centre, Ministry of Natural Resources, Peterborough. 68 pp.

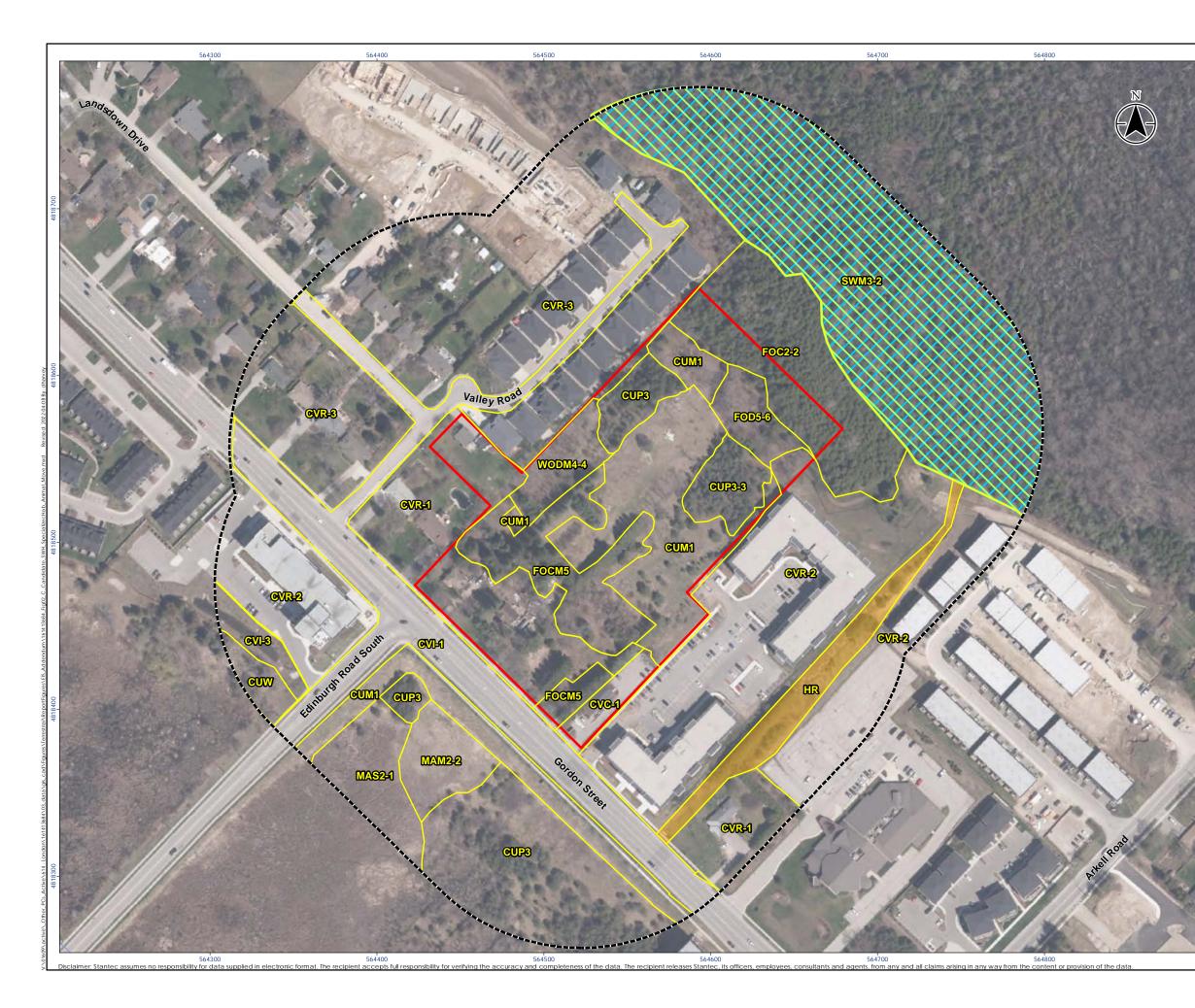
Oldham, M. and Brinker, S. 2009. Rare Vascular Plants of Ontario, Fourth Edition.

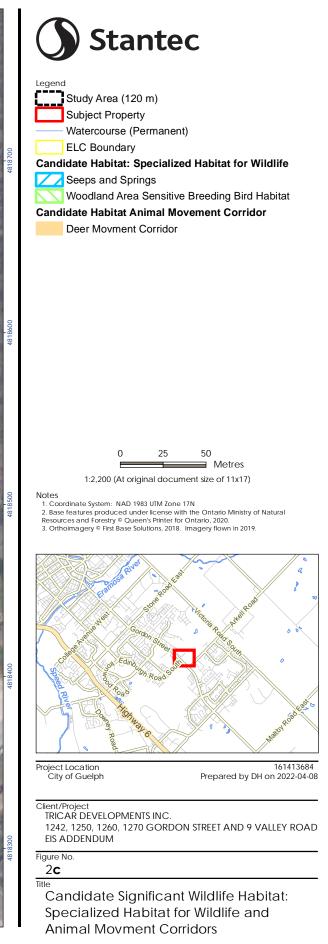
References June 17, 2022

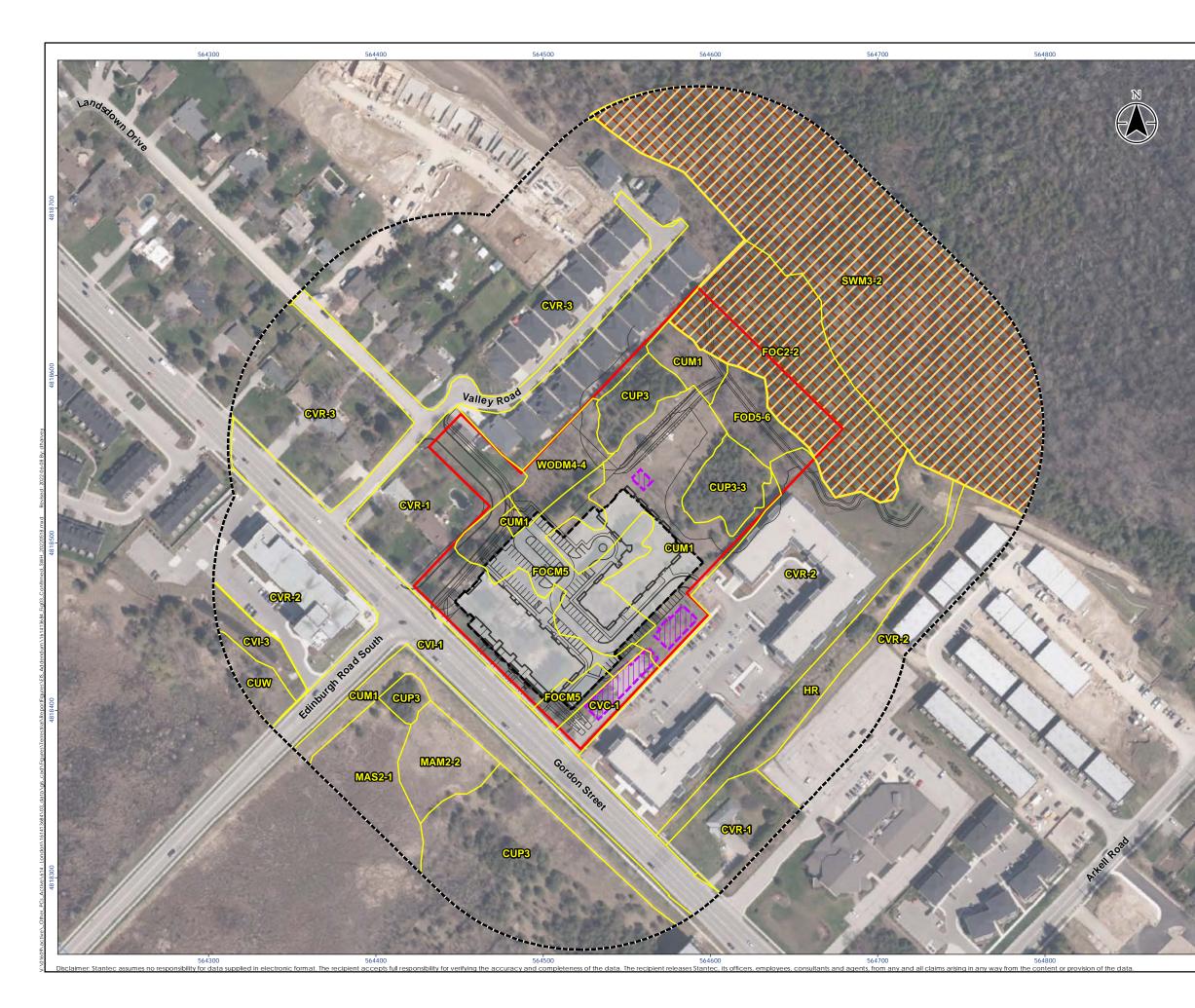

- Ontario Ministry of Municipal Affairs and Housing (OMAH). 2014. Provincial Policy Statement Under the Planning Act. April 2014.
- Patterson, B.R., B. A. MacDonald, B.A.Lock, D.G. Anderson, and L.K. Benjamin. 2002. Proximate factors limiting population growth of White-tailed Deer in Nova Scotia. Journal of wildlife management 66(2): 511-521.
- Rising, J. D. and N. J. Flood (2020). Baltimore Oriole (*Icterus galbula*), version 1.0. In Birds of the World (P. G. Rodewald, Editor). Cornell Lab of Ornithology, Ithaca, NY, USA. <u>https://doi.org/10.2173/bow.balori.01</u>
- Sabine, D.L., S.F. Morrison, H.A. Whitlaw, W.B.Ballard, G.J. Forbes, J. Bowman. 2002. Migration behavior of White-tailed Deer under varying winter climate regimes in New Brunswick. Journal of Wildlife Management. 66(3): 718-728.

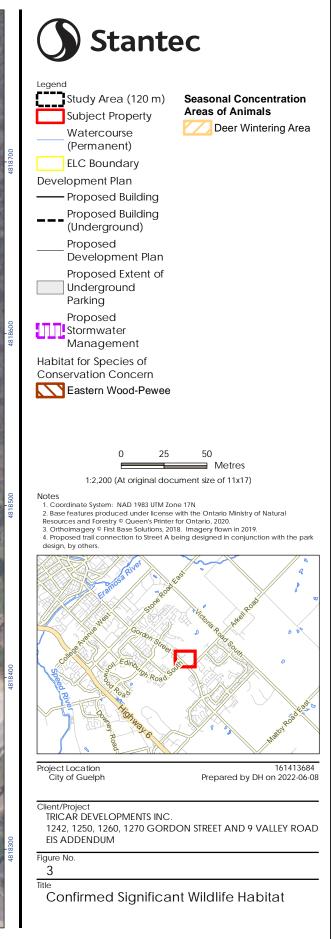

APPENDIX A FIGURES

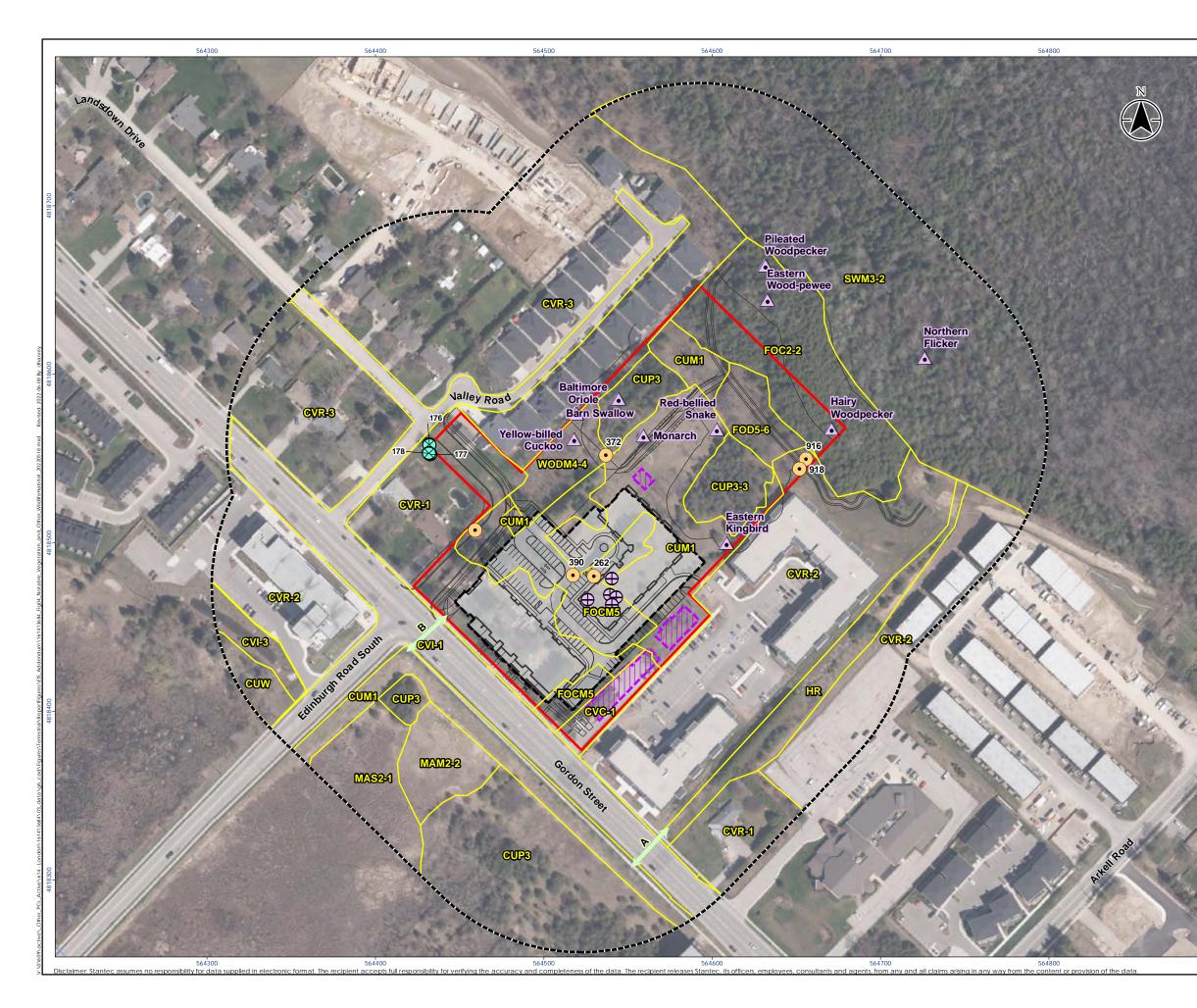


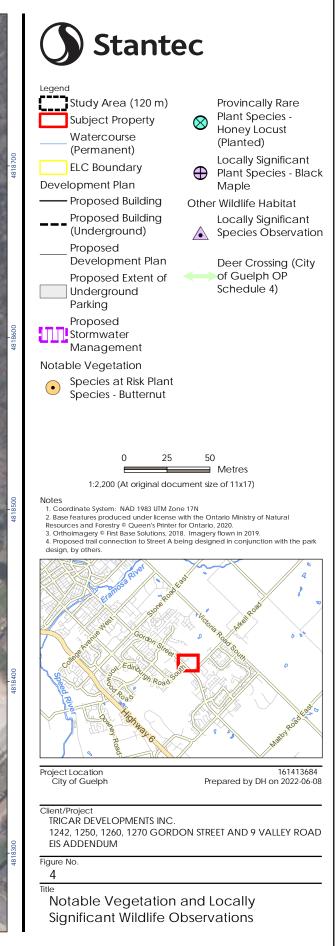


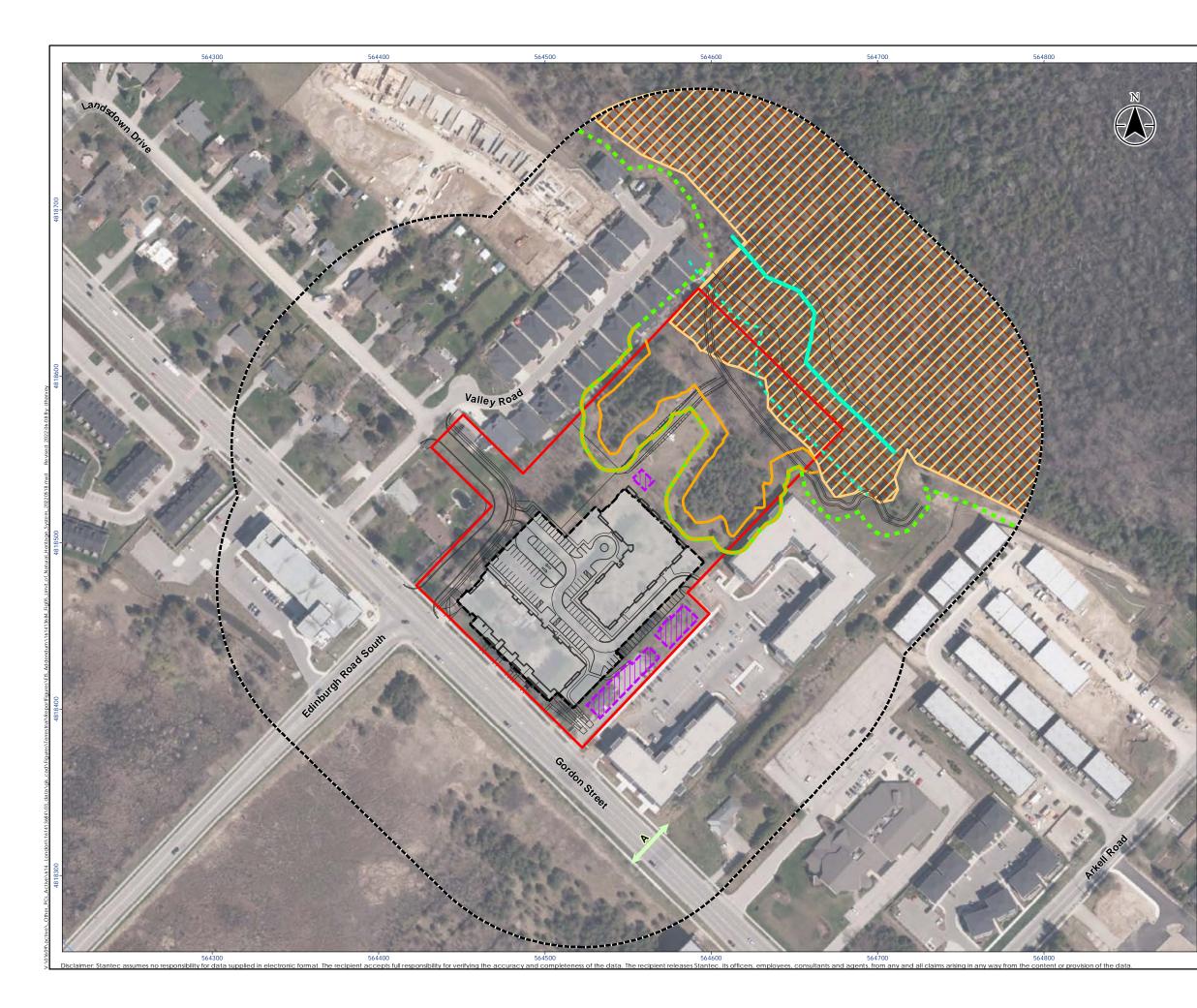














1818400

318300

Title Natural Heritage System

TRICAR DEVELOPMENTS INC.

1242, 1250, 1260, 1270 GORDON STREET AND 9 VALLEY ROAD

Project Location City of Guelph

EIS ADDENDUM

Client/Project

Figure No. 5 161413684 Prepared by DH on 2022-06-08

APPENDIX B CITY CONSULTATION

APPENDIX B.1 CITY OF GUELPH EIS COMMENTS

Internal Memo

Date	December 8, 2020
То	Lindsay Sulatycki, Senior Development Planner
From	Leah Lefler, Environmental Planner
Service Area	Infrastructure, Development and Enterprise Services
Department	Planning and Building Services
Subject	1242-1260 Gordon Street and 9 Valley Road
	Draft Plan of Subdivision, Official Plan Amendment and Zoning By-law Amendment
	Environmental Planning Comments on First Submission

Environmental Planning reviewed the following documents that pertain to the proposed Draft Plan of Subdivision, Official Plan Amendment and Zoning By-law Amendment at 1242-1260 Gordon Street and 9 Valley Road:

Environmental Impact Study, Stantec, May 2020 Functional Servicing Report, Stantec, April 2020 Geotechnical Report, CMT Engineering Inc., April 2018 Hydrogeological Assessment, Stantec, May 2020 Landscape Concept, Stantec, March 2020 Planning Justification Report – May 2020 Tree Inventory and Preservation Plan – March 2020

Based on the review of the materials listed above, Environmental Planning staff offer the following comments at this time:

Environmental Impact Study

- In the Introduction, please note that the planning approval sought by the applicant is a Draft Plan of Subdivision, Official Plan Amendment and Zoning Bylaw Amendment. Following approval, the development will proceed to detailed design and subdivision registration. Text in the third paragraph should be updated accordingly.
- 2. Under 1.1 Agency Consultation, reference is made to a Hydrology Report. Please revise this to Hydrogeological Assessment.
- 3. Under 2.2.1 Official Plan, it is stated that "Natural Areas where development may be permitted provided an EIS can demonstrate that there will be no negative impacts to the natural heritage features or their ecological function". This statement is incorrect. General Permitted uses and feature specific policies apply to Significant Natural Areas and Natural Areas alike. Permitted uses may be more permissive in Natural Areas in comparison to Significant Natural Areas,

but not necessarily. If a feature does not meet criteria for protection, development may be permitted. Conversely, if a feature meets criteria for protection, the general permitted use policies and feature-specific policies apply. Please clarify this.

- 4. The last sentence on page 2.2 states that "The Natural Heritage System also incorporates hazard lands including steep slopes, erosion hazard lands and unstable soils that are under the jurisdiction of the GRCA". This statement is incorrect. Criteria for designating Significant Valleylands (a Significant Natural Area included in the NHS) includes undeveloped portions of the regulatory floodplain. Hazard lands are not outright included in the NHS. Please correct this.
- 5. Under 2.2.3 Tree By-law, it is stated that the "Tree By-law was created to prevent damage or destruction to trees". This statement is incorrect. The Tree By-law 'regulates' the destruction or injuring of trees and enables the City of Guelph to require a tree permit prior to the injury/destruction of a regulated tree, and compensation. The Tree By-law helps protect and enhance the tree canopy cover in the City. Please revise accordingly.
- 6. Under 3.2 Field Investigations on page 3.8, please include bat acoustic surveys as well as bat exit surveys in the list of targeted field surveys.
- 7. Under 3.2.8.2 Bat Exit Surveys on page 3.14, please include the type of device used for acoustic monitoring. For example, was a hand-held unit used, a song meter or both?
- 8. Under 3.2.9.1 Diurnal Surveys on page 3.15, it is stated that "fieldwork was conducted at, or within, half an hour of sunrise". This statement does not match dates and times listed in Table 3.7. Best results are achieved within half an hour of sunrise, especially in noisy urban environments, and especially in forested ecosystems. The first breeding bird survey was completed on June 12, 2018, which is very late for a first visit. Based on timing of field surveys, data should be interpreted accordingly (i.e. lack of record does not indicate absence). Please update the text, as appropriate.
- 9. Under 3.2.9.2 Crepuscular Surveys on page 3.16, mention of moon phase is not made. Were conditions appropriate for surveying crepuscular birds during site visits completed for bats? Refer to MNRF's 'Eastern Whip-poor-will and Common Nighthawk Survey Protocol' for guidance.
- 10. Under 4.4.6 Amphibian Survey and Habitat Assessment on page 4.6, it is stated that suitable habitat for amphibian breeding was not present. This seems odd, given that the Torrance Creek PSW is located within the Study Area, which is known to provide woodland amphibian breeding habitat. Snow melt and a high groundwater table result in seasonal ponding within this wetland complex. Please clarify.
- 11. Under 4.4.14 Incidental Wildlife Observations, the DeKay's Brownsnake observation from May 16, 2019 should be added to the list of incidental wildlife. This species was observed, along with several Eastern Gartersnake and a Redbellied Snake during the feature staking exercise, with City staff. Further, please assess the significance of the snake records recorded with respect to

significant wildlife habitat and the potential for snake hibernacula to occur in the vicinity of the subject property.

- 12. Section 5.0 Significant Natural Heritage Features should be based on the natural heritage and water resources policies of the City of Guelph Official Plan (March 2018 Consolidation), in addition to the policies of the Provincial Policy Statement. Please update this section to address Official Plan policy.
- 13.Section 5.2 Significant Woodlands includes the following statement: "notwithstanding the criteria denoted in the OP excluding plantations". This statement is incorrect. *Plantations* is a defined term in the Official Plan. Cultural Plantation, per ELC, is not the same thing as *plantation* in the Official Plan. A cultural plantation unit must meet the Official Plan's definition of *plantation* to be excluded from the assessment of significant woodland. Please clarify this.
- 14.Section 5.2.1 Other Woodlands refers to a deciduous woodland and claims that it was excluded from Significant Woodland due to composition, origin and size. Please provide the analysis to support this. Do the Cultural Woodlands criteria of the Official Plan to this deciduous woodland? This assessment should also be included in a revised EIS.
- 15. What does the bolded text indicate in Table 5.1? For clarity, please uses bolded text consistently within each Table, and among Tables 5.1 through 5.4. Also, please update Tables 5.1 through 5.4 to accurately assess field data collected against MNRF's Ecoregion 6E Criteria to determine whether or not Candidate or Confirmed SWH is present within the Study Area and/or Subject Property.
- 16.Section 5.3.5 Locally Significant Species should be updated to include the names of the two locally significant plant species. Also, the list of locally significant bird species should be updated to include Northern Flicker. A total of six locally significant bird species were documented, based on field records.
- 17.Section 5.4.1 Butternut should be updated to indicate that an 'authorization' under the *Endangered Species Act* is sought. The EIS should be updated with information from the MECP and Natural Resource Solutions Inc. to reflect the current status of Butternut, ESA requirements and compensation plantings. Correspondence and supporting documentation should be included as an Appendix.
- 18.Section 5.4.3 Bat SAR, please provide a map showing the extent of bat species at risk habitat (roosting habitat, foraging habitat). Please also provide correspondence with MECP confirming support of the proposed approach.
- 19. Section 5.5 Significant Natural Heritage Features Summary, on page 5.8, please update the bullet list to include bat species at risk, and to note that honey locust is a planted specimen. Also, the statement "unable to confirm presence/absence" is incorrect. The field surveys were designed to enable an assessment of SWH. For example, breeding bird survey results in fact confirm the woodland as Woodland Area Sensitive Breeding Bird Habitat. Based on results of field surveys, it may or may not be possible to confirm SWH. Unconfirmed SWH would remain Candidate SWH in areas meeting the criteria of the schedules for 6E. Please clarify this in the text.
- 20.Section 5.5 Significant Natural Heritage Features Summary, on page 5.9, includes other woodlands (WODM4-4). Based on the ELC figure, the WODM4-4

vegetation community appears to be contiguous with an FOCM5 vegetation community. As per comment 14 above, please assess this woodland against the Official Plan's criteria for Cultural Woodland and update the text on page 5.9 accordingly.

- 21.Section 6.1 Stormwater Management should reference stormwater targets prescribed in the Torrance Creek Subwatershed Study for infiltration rates. A portion of the site is located in Catchment 102, where the following targets apply:
 - infiltrate to enhance baseflow in Torrance Creek: 150mm/yr to 200mm/year or match pre- to post-
 - pre- to post- peak flow control for all design events (2 to 100-year events)
 - 24-hour extended detention for 25mm rainfall event
 - minimum 80% TSS removal

Similarly, the Stormwater targets prescribed in the Hanlon Creek Subwatershed Study should be referenced in this section, as a portion of the site is located within the Hanlon Creek Subwatershed. The proposed stormwater outlet drains to Tributary D, where the following targets apply:

- match pre- to post- peak flows for all storm events
- implement infiltration best practice to the great extent feasible
- 22. The Functional Servicing Report (FSR) and Engineering Plans indicate that parking lot water as well as rooftop water will be directed to the infiltration trench. Further, stormwater management does not appear to be provided for a portion of the site, including drainage from the extension of Edinburgh Road. Lastly, sufficient capacity to accommodate flows from the proposed development is not available in the receiving stormwater management pond. Section 6.1 should be updated to provide an accurate and detailed description of the proposed stormwater management system so that all potential impacts can be identified in Section 7.0.
- 23. The first paragraph on page 6.2 states that "the total flow to Gordon Street (inclusive of rooftop-controlled flow) meets the predevelopment target rates". Please provide supporting documentation or provide reference to specific values and/or sections of the FSR.
- 24.On page 6.2, a description of the infiltration trench is provided. Based on this description, it is unclear how groundwater levels factored into the design of the facility. For example, has 1m separation distance from the high-water level mark been factored in?
- 25.Section 6.1.2 Trail, references the Guelph Trail Master Plan and a proposed connection through the subject property. A recommendation is provided that the trail be completed as part of a broader trail design approach, to be completed by the City at a future date. This recommendation conflicts with the requirements set out in the Terms of Reference, which included an assessment of the trail route, recommendation for trail alignment consistent with Official Plan policy (i.e., consistent with permitted uses within the natural heritage system, demonstration of no negative impact, etc.) and identification of best management practices to provide the basis for basic trail design, which is to be

completed as part of the Environmental Implementation Report (refer to pages 18 and 20 of the approved TOR). The Active Transportation Network Study maps the portion of trail through the subject property as a desired Active Transportation route (i.e. for cycling). The feasibility of accommodating an Active Transportation route through the subject project is to be assessed based on Official Plan policy in the EIS. Lastly, a trail connection from the Park Block to the trail network is desired and should be assessed and evaluated through the EIS to inform the design.

- 26.Section 7.0 Potential Impacts of Development and Mitigation Recommendations, reference is made to "net environmental impact assessment". This is not appropriate as the policy test is "no negative impact". Please revise this statement and confirm that the analysis provided is based on the "no negative impact" test.
- 27.Section 7.1 Impacts on Significant Natural Features, given that two 12 storey buildings are proposed, the EIS should evaluate the potential for bird strike impacts, and inform the design, as appropriate. Lighting impacts may also result from the proposal; the EIS should make recommendations for lighting adjacent to the natural heritage system based on best management practices. Lastly, grading impacts should be assessed in the EIS. An analysis of the grading plan should be provided in the context of permitted uses within the natural heritage system. Please update section 7.1 accordingly.
- 28. In Section 7.1.1 Significant Wetlands, it is stated that "incidental runoff impacts associated with sediments, dust, as well as nutrient loads will be reduced by the natural polishing function of the vegetative zone between the feature ad development". It is unclear what this statement means. The Stormwater system is designed to infiltrate the 25mm storm event via an infiltration trench. Surplus runoff will fill a storage tank and then outlet to the storm sewer on Gordon Street, which outlets to a stormwater pond, which discharges to the Hanlon Creek PSW. Further, the last sentence of the first paragraph in this section states that "all surface runoff from the proposed development is directed to the existing storm sewer on Gordon Street". This statement is not consistent with section 6.1 of the EIS or the FSR. Please clarify.
- 29. Also in Section 7.1.1 Significant Wetlands, please demonstrate that infiltration rates and volumes have been matched, pre- to post- in the Torrance Creek and Hanlon Creek Subwatersheds. This section notes that infiltration will "match and likely notably exceed pre-development infiltration volumes" in the catchment that directs flows to Torrance Creek. Torrance PSW has both a recharge and discharge function, depending on the time of year. During periods of an elevated water table and an upward hydraulic gradient, are impacts associated with the infiltration trench anticipated? For example, if infiltration cannot occur due to a high-water table, surplus will fill the storage tank and discharge to Hanlon PSW, likely resulting in a negative impact to both PSWs. Please include an in-depth analysis of stormwater impacts on the natural heritage system's features and functions.
- 30.On page 7.2, discussion is provided on the predicted impacts associated with reduced infiltration to the Hanlon Creek Subwatershed, with a conclusion of no negative impact drawn. Please provide the supporting analysis to support this

claim. For example, what is the difference in pre- to post- infiltration volumes and rates? If infiltration is reduced, is the potential for baseflow impacts in Hanlon Creek? If infiltration is reduced, will more runoff be directed to Hanlon PSW? In addition, the FSR indicates that this runoff would be directed to the storm sewer on Gordon. The EIS fails to address Stormwater impacts associated with unattenuated/untreated runoff from the catchment containing the extension of Valley Road/Edinburgh.

- 31. The Torrance Creek PSW has a recharge and discharge function. What impact does the proposed stormwater management system have on the recharge/discharge function of the wetland? Please update the EIS to include a comparison of pre- to post- monthly differences in vertical hydraulic gradients, infiltration, runoff, etc. Note that this is required to demonstrate no negative impact the PSW.
- 32.Section 7.1.5 Significant Habitat of Endangered and Threatened Species, please provide documentation of correspondence with MECP confirming the proposed mitigation measures for bat species at risk are acceptable. Please also update the Butternut paragraph to include details from NRSI, as requested above.
- 33.Section 7.1.6 Locally Significant Species, please clarify where the Yellow-billed Cuckoo was heard. The text appears to indicate that the Yellow-billed Cuckoo was heard singing from the development area of the site. Please provide an assessment based on the Official Plan's policy on Habitat for Significant Species to establish whether or not this Natura Area designation applies.
- 34.In section 7.3.1.3 Wildlife Friendly Building Design, please note that the EIR should include more detailed guidance on bird-friendly building design to inform detailed design.
- 35. Environmental planning staff are supportive of the timing recommendations made for the removal of debris and woodchip piles to protect snakes. Consider including a recommendation to incorporate snake hibernacula and/or gestation site habitat structures in the buffer portion of the natural heritage system. The Environmental Implementation Report would then provide further information on location, design, etc. to assist with detailed design and implementation.
- 36. In section 7.3.4 on page 7.8, please update the paragraph on Butternut to reflect the outcome of the Butternut Health Assessment and authorization. NRSI should be contacted for this information.
- 37. The details included in the post-construction monitoring program are acceptable for the EIS; however, please note that a requirement of the forthcoming EIR will be to provide a detailed post-construction monitoring plan. Similarly, additional detail on vegetation plantings will also need to be provided in the EIR. Please update the EIS to include a summary section on EIR requirements and a proposed outline for the future report. Please note that this was included within the approved Terms of Reference.
- 38. The following major topics were omitted from the EIS and should be assessed in detail in a revised EIS as part of the next submission:
 - assessment of bat species at risk habitat and supporting documentation from MECP;
 - Butternut assessment details and supporting documentation from MECP;

- assessment of Habitat for Significant Species;
- assessment of Cultural Woodland;
- assessment of the need for Established Buffers;
- assessment of grading impacts;
- assessment of wetland water balance, based on assessment of monthly differences, pre- to post-development, for lands draining to the Torrance PSW and Hanlon PSW, to determine whether or not ecological and/or hydrologic impacts resulting from the proposed development are anticipated; and
- recommended scope for EIR.
- 39. Section 9.0 Policy Compliance should focus on the consistency of the proposal with the "no negative impact test". As written, the focus appears to be on establishing feature-based constraints to development. This is not consistent with the PPS, and the natural heritage system's approach to protecting, enhancing and restoring natural heritage in Ontario.
- 40. Section 10.1 Report Summary, please update the bullet on SWH to indicate Candidate vs Confirmed. Further, the bullet on the proposed stormwater management plan indicates that parking lot runoff will be infiltrated. This detail was not included in the description of the stormwater management system presented earlier in the EIS. Please ensure that all statements are consistent and coordinated with the engineering plans prepared for the proposed development. Please note that infiltration of parking lot water is not supported by the City. Lastly, the report summary should include changes to wetland hydrology and ecology, and removal of accessory habitat to list of potential impacts associated with the proposed development.
- 41.Please update section 10.2 Recommendations to include the erection of Tree Protection Fencing prior to the commencement of site alteration/construction.
- 42.Please update mapping provided in Appendix A to include the following:
 - established wetland buffer;
 - Ecological Land Classification vegetation community information for polygon adjacent to FOD5-6;
 - extent and type of Significant Wildlife Habitat features;
 - limit of the Natural Heritage System; and
 - Cultural Woodland and/or Habitat for Significant Species, as appropriate, based on the criteria-based assessment requested above.

Hydrogeological Assessment

- 43. In section 4.2.4.1, pre-treatment for TSS is suggested to eliminate a number of sediment-bound metals in the discharge effluent. City staff agree that the proposed pre-treatment approach would likely reduce these concentrations; however, please note that samples would still be required to be collected to confirm this assumption, prior to the discharge being authorized to City sewers.
- 44.Please update section 4.2.4.1 to clarify whether or not VOCs were sampled to confirm presence/absence. The City's Sewer Use By-law prohibits discharge of VOC-impacted. Please note that VOC sampling may be required under a future discharge agreement with the City's Wastewater Division.

- 45. The post-development water balance provided in section 5.3 does not appear to account for the lands fronting on Valley Road (0.27ha catchment shown on Figure 15). Please explain why this area was excluded from water balance calculations, or update the water balance to include this catchment. Further, the size of the catchment draining to Torrance provided in the water balance assessment is 1.73ha, which does not match the catchment area of 1.44 ha in the hydrologic model. Please update the calculations ensuring that consistent catchment areas are applied.
- 46. The EIS should refer to Section 6.0 Groundwater Dewatering Assessment and include recommendations for monitoring and best practice. This could be included as an item for the future EIR.
- 47.Section 6.1 It appears that a safety factor was not considered in the calculations of dewatering volume estimation, nor was any basal seepage considered. Although the site typically has observed downward gradients, the hydrological assessment indicates that upward gradients are present. Please add a factor of safety to the calculations and account for basal seepage, or provide text to explain why these elements were not considered in the calculations.
- 48.An infiltration (rock) trench is proposed to address the infiltration deficit. The infiltration (rock) trench is located within the Torrance Creek Subwatershed. Please include an analysis of the post-development water balance per watershed. For example, with LID measures in place, the water balance should demonstrate that the infiltration rate/volume should roughly match pre- to post-rates/volumes within each Subwatershed (i.e. Torrance and Hanlon). A stormwater management design and supporting analysis demonstrate no negative impact to the receiving natural heritage system is required. This is typically achieved by demonstrating that the proposed development and stormwater management system matches pre- to post-monthly infiltration rates/volumes and monthly runoff rates/volumes. Hydrographs depicting monthly differences in runoff volumes and infiltration volumes are helpful in demonstrating consistency with the natural heritage system "no negative impact" policy test.
- 49. In Section 7.2 construction proximity to the nearby municipal well is accounted for; however, there is no discussion provided as to private residential wells in the area. During the filing of an application for PTTW or registration under the EASR, it is recommended that the proponent assess potential impacts to private residential wells.

Tree Preservation Plan

- 50.Please update the Tree Preservation Plan to include recommendations for the EIR and detailed design.
- 51.Environmental planning is generally supportive of using a polygon approach in certain situations; however, based on data provided in Appendix 1 Tree Inventory Data, it is unclear how the stem count column relates to the Polygon. For example, 1 stem is reported from each of Polygons A, B, C, E and F. Given the brief description provided on page 4 of the plan: "If trees were present in monoculture hedgerow features, a polygon method was used". Based on this description, >1 stem per polygon would be expected. Please clarify.

52.Please update Map 2 of the Tree Inventory and Preservation Plan to show Tree Protection Fencing around the perimeter of the natural heritage system.

Functional Servicing Report

- 53.Please update section 5.1.2 Torrance Creek Subwatershed Study to accurately reflect recommended infiltration rates, which in the case of the proposed development is between 150mm/yr to 200 mm/yr.
- 54. The FSR indicates that the area outletting to Gordon Street (Hanlon Creek Subwatershed) will increase, post-development. The infiltration trench is proposed in the Torrance Creek Subwatershed, which means the majority of stormwater originating from the Hanlon Creek catching will be generated as runoff. Please clarify that the receiving stormwater pond has capacity to control the runoff volumes generated by the proposed development. Please note that surcharge of this facility is directed to the Hanlon PSW. Runoff volumes should match pre- to post- per the Hanlon Creek Subwatershed recommendations.
- 55. The description of Catchment 202 provided at the bottom of 5.6 indicates that roof-top water will be directed the storm sewer on Gordon Street, with the 25mm event being directed to the infiltration trench. Please clarify that up to and including the 25mm is intended to be directed to the infiltration trench. Events in excess of 25mm or when back to back events occur prior to drawdown would be directed to the storage tank, eventually draining to the storm sewer when capacity is reached. Environmental planning strongly encourages infiltration of 'clean' water to maintain infiltration and baseflow in Hanlon Creek to the greatest extent feasible. Please consider this comment when updating the FSR.
- 56. The EIS should include an analysis of the findings presented on page 5.8 which relate to pre- to post- differences in runoff and infiltration being directed to the Torrance and Hanlon Subwatersheds under the post-development scenario. Based on the analysis provided in the FSR, the EIS should provide an assessment as to whether or not impacts to the ecology or hydrology of the wetlands are anticipated.
- 57. How would the infiltration trench function in the event of back-to-back storms? Please clarify whether or not a safety factor was incorporated into the sizing and design of the infiltration trench.
- 58. In section 5.6 On-site Infiltration, on page 5.9, it is stated that "The infiltration gallery should only be intercepted by groundwater in spring-time". How was this detail factored into the water balance? The EIS should provide an analysis of potential impacts arising from the proposed stormwater design. For example, if groundwater intercepts the infiltration trench during the spring, infiltration will not occur which would result in more runoff being directed to Hanlon Subwatershed. This is unacceptable and should be addressed in the next submission.
- 59.Please note that in situ permeameter testing is required to demonstrate that the proposed infiltration trench will function as anticipated. Please provide this information in the next submission.

- 60.Drawing SSP-2 Storm Drainage Area Plan It is unclear how the Area IDs relate to the Catchments described in the FSR and Hydrological Investigation report's water balance calculations. Please ensure that this is clarified and coordinated among studies and drawings in the next submission.
- 61. Drawing GP-1 Grading Plan indicates that extensive grading is required adjacent to the natural heritage system. Please provide additional detail on grading requirements (e.g. spot elevations) to enable a proper assessment of consistency with Official Plan policy. Please note that a cross-section can be helpful in demonstrating how the required grading relates to the protection of the natural heritage system. At a minimum, please update GP-1 to show differences in grade adjacent to the natural heritage system, and slope, particularly at the southeast end of the site.
- 62.It is unclear how the proposed erosion and sediment control plan has been coordinated with the proposed grading plan. For example, tree protection fencing and silt fencing is proposed in an area identified for extensive grading on GP-1. Please clarify.

Landscape Concept

63. The Landscape Concept proposes the planting of coniferous and deciduous trees on top of the infiltration facility. Guelph's Engineering Development Manual specifies a minimum 1m offset of plant material from infiltration galleries. Please relocate the proposed trees outside of the infiltration gallery area.

Summary

A revised EIS is required to address the comments provided above. Revisions to the supporting studies, including the Tree Preservation Plan, Hydrological Assessment, Functional Servicing Report and Landscape Plan are required. Environmental planning encourages the applicant to meet with City staff to discuss the comments provided, prior to providing a second submission. Substantial work remains outstanding to adequately demonstrate no negative impact to the natural heritage system's ecological and hydrologic features and functions.

Please note that comments provided by Scott Cousins, City of Guelph Hydrologist, are incorporated into the comments provided under the Hydrogeological Assessment heading above.

Leah Lefler, Environmental Planner Planning and Building Services, Infrastructure, Development and Enterprise Location: City Hall 519-822-1260 extension 2362 leah.lefler@guelph.ca

Copy: Mohsin Talpur, Jyoti Pathak, Scott Cousins

INTERNAL MEMO

SUBJECT	1242-1260 Gordon Street and 9 Valley Road- proposed Draft Plan of Subdivision, Official Plan Amendment and a Zoning By-law
DEPARTMENT	Public Services
DIVISION	Parks and Recreation
FROM	Jyoti Pathak
ТО	Lindsay Sulatycki
DATE	December 18, 2020

Amendment (OZS20-004)

Parks have reviewed the following documents submitted in support of the above noted proposed Draft Plan of Subdivision, Official Plan Amendment and a Zoning By-law Amendment, circulated on July 9, 2020

- Notice of Complete Applications July 2020
- Notice of Public Meeting September 2020
- Draft Plan of Subdivision February 2020
- <u>Angular Plane Diagrams April 2020</u>
- Boundary Survey January 2015
- <u>Conceptual Site Plan May 2020</u>
- Draft Official Plan Amendment May 2020
- Draft Plan Parking Level 2 February 2020
- Draft Plan Parking Plan Level 1 February 2020
- Draft Plan of Subdivision with Concept February 2020
- Draft Zoning By-law May 2020
- Engineering Plans April 2020
- Environmental Impact Study May 2020
- Functional Servicing Report April 2020
- <u>Geotechnical Report April 2018</u>
- Landscape Concept March 2020
- Planning Justification Report May 2020
- <u>Renderings March 2020</u>
- Tree Inventory and Preservation Plan March 2020
- <u>Urban Design Brief April 2020</u>

Parks offer the following comments:

Proposed Draft Plan of Subdivision:

A residential subdivision is proposed on the subject lands which are approximately 3.12 hectares in size and include developable area and natural heritage system. The applicant is proposing a residential block with two, 12-storey apartment buildings with a total of 377 apartment units, a municipal park block and an open space block.

Planning Justification Report:

Revise the parkland dedication information on page 4 of the Planning Justification report to reflect current alternative rate (1 ha per 300 dwelling units for parkland conveyance and 1 ha per 500 dwelling units for payment in lieu of conveyance) for parkland dedication requirement under s.51.1 of the Planning Act and City's Official Plan Policy 7.3.5.1.

Parkland Dedication:

Parkland dedication is required for the proposed subdivision according to the Official Plan (OP) Policy 7.3.5.1. The OP policy states the following:

1. The City will require parkland dedication as a condition of *development*, *consent* or subdivision proposals in an amount up to:

ii) 5% of the land or one hectare for each 300 *dwelling units* for residential purposes

The current draft plan of proposed subdivision includes an area of 3.12 hectares and the proposal includes development of 377 apartment units. In accordance with the Official Plan policy 7.3.5.1 at an alternative rate a park block of 1.25 ha is required. However due to the size of the development parcel Parkland dedication will be required as a combination of parkland and payment in lieu of conveyance for the proposed draft plan.

Park Block Location:

Generally, the park location is satisfactory however City requires parkland to be conveyed free and clear of all encumbrances. The proposed park block is encumbered due to its proposed location on top of an underground parking structure. The park block currently includes a tree protection zone and this impacts usability, functionality and accessibility of this very small park. Park would encourage achieving 0.2 ha park size outside of the tree protection zone.

We intend to provide pedestrian access to the park along the Edinburgh Road extension from Gordon Street and along Landsdown Drive/ boulevard trail/ sidewalk from north and trees would have to be cleared if blocking this access.

Generally, City requires park blocks to meet City's Zoning Bylaw, plans, policies, and guidelines and the following criteria:

- The site provides a critical public trail connection to the proposed Citywide trail/ ATN route west of Torrance Creek PSW from Gordon Street along Edinburgh Road extension through the proposed park block. GTMP and OP Policy 7.3.5.5 (ii) (Parkland Dedication)
- The site satisfies the development criteria for a neighbourhood park; OP Policy 7.3.5.5 (Parkland Dedication)
- The park should contain both active and passive recreational activities (i.e. children's play equipment, shade structure, seating, site furniture and planting etc.). OP
 Policy 7.3.2 (Park Hierarchy)
- The park should be connected to public sidewalks and should be designed as an accessible and barrier free space. Facility Accessibility Design Manual 2015
- The park should be mostly flat (i.e. 80% table land with 2-3% slopes). OP Policy 7.3.2.4 (Park Hierarchy)

- The park should contain adequate public street frontage for high visibility and surveillance and for adequate public and operational access as identified in **Zoning Bylaw Table 9.2 (Row 3)** as follows: A minimum of 50 metres or 1 metre of street frontage for every 100 square metres of park area whichever is greater as identified in Section 9.2 of the City of Guelph's Zoning Bylaw.
- The park should be completely outside of natural heritage features. Natural heritage features and natural hazard lands as outlined in the City of Guelph's Official Plan will not be accepted as parkland dedication. **OP Policy 7.3.5.3 (Parkland Dedication)**
- parkland shall be conveyed free and clear of all encumbrances. Development Charges background study Appendix E- Local Service Policy (basic park development - PAGES E-2 and E-3)
- The park site should be well drained and have access to water, sanitary and storm water drainage servicing. OP Policy 7.3.2.4 (Park Hierarchy), Development Charges background study Appendix E- Local Service Policy (basic park development - PAGES E-2 and E-3)

Park Block Lot Frontage and park access

Park Operations require vehicular access to the park block and to the proposed trail to the east for maintenance and operational purpose. Provide options for review for achieving vehicular access.

Basic Park Development:

The developer is directly responsible for the basic park development according to the Development Charges background study - Appendix E- Local Service Policy (basic park development - PAGES E-2 and E-3):

The basic park development will include clearing, grubbing, site grading, storm water drainage, site servicing, topsoil and sodding of the Park block. The costs of the following items shall be direct developer responsibilities as a local service:

Base parkland development of lands conveyed to the City in connection with development including, but not limited to, the following:

- clearing and grubbing;
- topsoil or any fill or soils shall not be stockpiled on parkland;
- parkland shall be free of any contaminated soil or subsoil;
- servicing water, hydro, stormwater, sanitary, electrical, catch basins as per City's requirements. rough grading (pre-grading) and the supply of topsoil to the required depth as per City's requirements;
- Seek City approval of the structural fill material if park requires filling.
- parkland shall not be mined for engineering fill and replaced with fill or topsoil;
- parkland shall be conveyed free and clear of all encumbrances; all parks are to be developed to the locally accepted "basic park development" standard which includes all aspects up to fine grade, topsoil and sod; which is to be maintained up to park acceptance.

- The park block shall be graded to meet approved parkland grade, including any associated infrastructure requirements (retaining walls, drainage, etc.) and sodded to minimize erosion and dust.
- Temporary fencing may also be required where there is no permanent fence to prevent illegal dumping; temporary park sign advising future residents that the site is a future park. Perimeter fencing of parkland to the City's standard located on the public property side of the property line adjacent land uses (residential or non-residential) as required by the City, or other approval authority.

The developer will be responsible for the Basic park development and City would require a cost estimate and security in the form of cash or a letter of credit based on the City approved estimated costs prior to the registration of the subdivision.

Trail Network:

The Official Plan – Schedule 8 'Trail Network' includes a proposed off-road secondary trail route along western edge of the Torrance Creek provincially significant wetlands through the subject property that connects to the approved proposed trail west of Valley Road condominium to the north and west of 1280 Gordon Street to the south.

Please note that the trail alignments north and south of the subject site have been designed and approved through the development review process and the developer is responsible to identify the trail alignment and preliminary trail design on the subject site as included in the terms of reference for the EIS.

Local trail connection:

Provide a local accessible trail connection, 2.5 m wide, to connect the proposed park to the proposed Citywide trail at the back of the property. This trail connection is to be designed and developed as part of the Landscaping works on the subject site.

Provide conceptual trail alignment for City's review of the following connections:

- North-south Citywide trail connection
- East-west local trail connection

Provide preliminary grading and Drainage plans and other plans as applicable to demonstrate that the trail can be built to the current City standards as follows:

 The design and construction of the trail shall meet the accessibility criteria outlined in the City's Facility Accessibility Design Manual (FADM). The criteria include maximum running slope on trails to be 5% and the maximum cross slope on trails to be 2%, provision of rest areas at regular intervals, information and directional signage etc. Section 4.5.2 OUTDOOR RECREATIONAL FACILITIES of the FADM outlines the accessibility guidelines for trails. This document can be viewed at the following link:

http://guelph.ca/wpcontent/uploads/Guelph_FADM_2015-06-30-FINAL.pdf

- 2. Provide minimum 0.6 metre wide mowed grass strips longitudinally along both sides of the trail surface at a cross slope of 2% away from the trail.
- 3. Provide sodded drainage swales and culverts at appropriate locations if the adjacent ground is higher to the trail surfacing levels.

Environmental Implementation Report:

An environmental implementation report (EIR) will be required to address the recommendations provided through the final approved Environmental Impact Study including Open Space Works and restoration, detailed landscape plans (by an accredited landscape architect); detailed design and mitigation plans to support the trail.

The EIR will address the recommendations related to trail system and natural open space system, including detail design of the trail system; preparation of Landscape Plans and details to address demarcation, removal of invasive species, hazard trees along the trail system and residential properties; clean-up of debris and waste; restoration; compensation and enhancement planting for buffers; invasive species management; design of educational/ interpretive and stewardship materials/ signage.

Detailed trail layout, grading and drainage plans showing trail design details such as signage, structures, etc. will be provided in the Environmental Implementation Report consistent with City of Guelph's current trail standards and other City Guidelines i.e. Facility Accessibility Design Manual and Engineering Development Manual where applicable. The trail plan, design and construction will comply with all relevant regulations applicable to trail management made under the Accessibility for Ontarians with Disabilities Act. **Open Space Works and Restoration:**

Provide planting to enhance ecological buffers and wildlife corridors and compensation for removed trees, etc. and detailed planting plans will be provided with the Environmental Implementation Report. Provide seeding to restore graded areas within the open space

Tree Preservation and removal of invasive species and hazard trees:

Schedule removal of the common buckthorn within the trail corridor prior to trail construction.

A review of hazard trees (e. g. dead, partially dead or dying trees) along the trail route will be conducted at the time of vegetation removal by a qualified arborist. Identify all hazardous trees along the trail route in consultation with Parks staff for removal prior to start of trail construction.

Hazard trees only would be removed within striking distance of the trail.

Environmental Education:

The environmental education/ interpretive signage is proposed to be provided along the trail in the subdivision to provide resident education on the area's environmental features and address the common resident impact items including dumping of yard waste, encroachments, pet waste, etc. The signage will be designed to meet City's accessibility guidelines and the details of the signage will be provided in the EIR- trail and landscape plans.

Open Space Dedication:

Parks recommends conveyance of natural open space block to City for the purpose of the protection of natural heritage system and trail construction.

Demarcation:

The property demarcation will consist of 1.5 m black vinyl Chain Link fence and/or property markers in accordance with the City's Property Demarcation Policy and specification and City approved demarcation plan will be included in EIR.

Summary:

Parks does not support the proposed development based on the current information provided. Parks needs revised documents which reflect the comments provided above for our further review and comments. Draft conditions would be provided upon receiving satisfactory proposal.

Regards,

Jyoti Pathak, Parks Planner Parks Public Services T 519-822-1260 x 2431 E Jyoti.pathak@guelph.ca

APPENDIX B.2 CITY OF GUELPH CONSULTATION

Thanks Melissa. Thank you for taking notes during our meeting. They look great.

I'll be in touch about the bats/MECP ASAP.

Leah

Leah Lefler (she/her), Environmental Planner Planning and Building Services, Infrastructure, Development and Enterprise City of Guelph 519-822-1260 extension 2362 leah.lefler@guelph.ca

From: Straus, Melissa <Melissa.Straus@stantec.com>
Sent: Tuesday, July 06, 2021 4:16 PM
To: Leah Lefler <Leah.Lefler@guelph.ca>
Subject: RE: Resources

[EXTERNAL EMAIL] Do not click links or attachments unless you recognize the sender and know the content is safe.

Thanks Leah,

See attached meeting minutes, if you require any updates just let me know.

Thanks for the links to the resources you provided, much appreciated.

Melissa Straus M.Sc. Terrestrial Ecologist

Direct: 519 780-8103 Mobile: 226 971-2704 Fax: 519 836-2493 Melissa.Straus@stantec.com

Stantec 1-70 Southgate Drive Guelph ON N1G 4P5

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Leah Lefler <Leah.Lefler@guelph.ca>
Sent: Tuesday, July 6, 2021 3:07 PM
To: Straus, Melissa <<u>Melissa.Straus@stantec.com</u>>
Subject: Resources

Meeting Agenda

Meeting Minutes

EIS Comments, 3 files:

1250 Gordon

Virtual: Melissa Straus (Stantec) and Leah Lefler (City of Guelph) July 6, 2021

Other Development Files Discussed Removed from Meeting Minutes

July 6, 2021 EIS Comments, 3 files: 220 Arkell, 855 and 927 Victoria Road South (Bluewater) and 1250 Gordon Page 6 of 7

Stantec file #: 161413684 Comments: EIS comments		
 Species at Risk Section 5.4.3 Bat SAR, please provide a map showing the extent of bat species at risk habitat (roosting habitat, foraging habitat). Please also provide correspondence with MECP confirming support of the proposed approach. 	 Roosting habitat unconfirmed Foraging habitat? 	 City to look into recent MECP consultation approach with respect to bats.
 Species of Conservation Concern Under 3.2.9.2 Crepuscular Surveys on page 3.16, mention of moon phase is not made. Were conditions appropriate for surveying crepuscular birds during site visits completed for bats? Refer to MNRF's 'Eastern Whip-poor-will and Common Nighthawk Survey Protocol' for guidance. 	Conducted incidentally.	 Conducted incidentally as species could occur but unlikely therefore specific surveys not conducted.

X

July 6, 2021 EIS Comments, 3 files: 220 Arkell, 855 and 927 Victoria Road South (Bluewater) and 1250 Gordon Page 7 of 7

 Wetland Impacts The EIS should include an analysis of the findings presented on page 5.8 which relate to pre- to post- differences in runoff and infiltration being directed to the Torrance and Hanlon Subwatersheds under the post- development scenario. Based on the analysis provided in the FSR, the EIS should provide an assessment as to whether or not impacts to the ecology or hydrology of the wetlands are anticipated. 	 Does the City provide guidelines, reference studies, or have input on what type of impact details they are looking for? Applies generally to all 3 projects. 	 Consider percent increase/decrease, will receiving vegetation be required to change? Hydrographs, does it match hydroperiod as per under pre-development conditions? Look at topography and contours, what depth or area will water cover. Is the receiving vegetation be impacted? Stacking of events, tied to SWM. City to provide TRCA/GRCA sensitivity tool to assist.
Deer crossings	•	City to provide Gordon Street EA to reference recommendations.

Hi Melissa,

As promised, here are links to the following documents:

- <u>Guelph Trail Master Plan</u> → refer to Table 3. Trail Classification. Secondary Trail type is the one that would typically be implemented in the buffer of the NHS, like at Bluewater. Design guidelines are flexible to limit impacts to the NHS.
- Gordon Street EA Project File Report and Appendix B EIS and Tree Inventory.
- <u>Wetland Water Balance Risk Evaluation</u>, Appendix 2 lists wetland community types and hydrological sensitivity (High, Medium, Low).
- I learned a lot from reading TRCA's <u>Water Balance for Protection of Natural Features</u> too.

I will follow up with additional information on bats and MECP.

Leah

Leah Lefler, Environmental Planner Planning and Building Services, Infrastructure, Development and Enterprise City of Guelph 519-822-1260 extension 2362 leah.lefler@guelph.ca

This e-mail message (including attachments, if any) is intended for the use of the individual to whom it is addressed and may contain information that is privileged and confidential. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender and erase this e-mail message immediately.

This e-mail message (including attachments, if any) is intended for the use of the individual to whom it is addressed and may contain information that is privileged and confidential. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender and erase this e-mail message immediately. Hi Melissa,

Thanks for confirming your approach. Please submit an EIS Addendum for 220 Arkell, 1250 Gordon and MacAlister/Victoria. The approach outlined in your email below is appropriate.

Regards, Leah

Leah Lefler (she/her), Environmental Planner Planning and Building Services, Infrastructure, Development and Enterprise City of Guelph 519-822-1260 extension 2362 leah.lefler@guelph.ca

From: Straus, Melissa <Melissa.Straus@stantec.com>
Sent: Monday, July 19, 2021 3:25 PM
To: Leah Lefler <Leah.Lefler@guelph.ca>
Subject: EIS resubmissions confirmation

[EXTERNAL EMAIL] Do not click links or attachments unless you recognize the sender and know the content is safe.

Hi Leah,

I know we discussed this but just wanted to make sure I was completely clear on the expectations.

For resubmission of 220 Arkell, Victoria Road at MacAlistar and 1250 Gordon you had indicated that an addendum was appropriate. To me, an addendum contains a comment matrix and only discusses bigger issues brought up in comments. It's not an update of previous version of the reports. So for example, there wouldn't be a repetition of the policy section if comments on that section were minor (grammatical, clarification points only). But if the analysis on say SWH was questioned, that section would be included in the addendum and updated.

Feel free to give me a call on my cell if you'd like to discuss.

Melissa Straus M.Sc. Terrestrial Ecologist

Direct: 519 780-8103 Mobile: 226 971-2704 Fax: 519 836-2493 Melissa.Straus@stantec.com

Stantec 1-70 Southgate Drive Guelph ON N1G 4P5

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

This e-mail message (including attachments, if any) is intended for the use of the individual to whom it is addressed and may contain information that is privileged and confidential. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender and erase this e-mail message immediately.

Hi Melissa,

Please see below for a summary on approach for dealing with bats, bat-related surveys and the MECP. This was provided to me by a consultant and colleague:

I connected with Michelle Karam, who is the bat management biologist with MECP, about what the expected approach is with SAR bats and bat habitat moving forward. Here are the takeaways and what we should now be considering.

- Communication is already required but may vary depending on the project. In general, Southern Ontario will require more discussions and likely an IGF. Northern Ontario may be more along the lines of a 'self-assessment' with the communication of the results.
- Biologists should understand bat behaviour and habitat requirements to make justifiable rational (or all bat questions go to those who do).
- Snag surveys are no longer considered required. If you understand what vegetation communities are habitat, there is no requirement for these surveys.
 - EXEMPTION some cases in Southern Ontario will require snag surveys as habitat is much more restricted, and it really could come down to one tree.
- To document species presence/absence, we are to use the best methods. This means that recorders may not be the best method. MECP strongly supports the use of mist netting for the presence/absence of bat species.
 - Mist netting provides more detail regarding species and individuals. No survey protocol exists (i.e., one night might be suitable).
 - Acoustic recording might be cost-effective or prohibitive depending on the project, hence why there is now another option. If using acoustic recording, place detectors in the best areas, not within woodlands (unless that is the best area), for the best quality recording. There is a template for submitting recording results.
 - I am thrilled there is no more of this 'place in a wooded area' nonsense. Note that there is no guidance on the density of detectors to ensure coverage.
 - In Southern Ontario, it may still be required to place detectors near ideal trees.
 - Detectors should still be deployed in June for ten ideal weather days.

Typically, you can assume the presence of bats, and for areas where habitat is not limited (i.e., northern Ontario) generally, removal of trees will not contravene section 9. As there is plenty of other habitat the removal of a small area of trees outside roosting times is considered avoidance and therefore compliant. The rationale for these cases can be provided to MECP, and they will respond with either next steps or an email detailing agreement.

You can also assume the presence of SAR bats in Southern Ontario and that removal of trees will contravention the ESA (no other habitat for bats to go to). In these cases, an IGF should be provided

to MECP as soon as possible for the next steps/guidance.

Note in both cases, surveys to determine species may be requested, but I would consider these the go-to first steps (caveat, IF there is time) since we should have an understanding of potential SAR on sites/ completing a SAR screening. MECP will not helpful until you have done a good SAR screening and can put together an IGF. I would recommend always deploying detectors during summer surveys for appropriate and accessible Southern Ontario sites if we do not have a response from MECP yet.

Based on the above, MECP should be consulted where there is a potential for SAR bats. MECP's preferred approach is the use of the IGF, ideally based on current fieldwork.

Regarding the development files we discussed a few weeks ago, I would recommend submitting an IGF to MECP as soon as possible so that correspondence and confirmation of approach from MECP can be provided in the EIS addendums.

Leah

Leah Lefler (she/her), Environmental Planner Planning and Building Services, Infrastructure, Development and Enterprise City of Guelph 519-822-1260 extension 2362 leah.lefler@guelph.ca

This e-mail message (including attachments, if any) is intended for the use of the individual to whom it is addressed and may contain information that is privileged and confidential. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender and erase this e-mail message immediately.

APPENDIX B.3 CITY OF GUELPH ADDENDUM COMMENTS

INTERNAL MEMO

DATE	December 14, 2021	File No. 16.152.369
ТО	Lindsay Sulatycki	
FROM DIVISION DEPARTMENT	Mohsin Talpur Engineering Services Infrastructure, Development and Enterp	orise Services
SUBJECT	1242-1260 Gordon Street and 9 Valley Road – Draft Plan of Subdivision, Official Plan Amendment and Zoning By-law Amendment Revised Submission.	

We have reviewed the following plans and reports that were submitted in support of the 1242-1260 Gordon Street and 9 Valley Road Draft Plan of Subdivision, Official Plan Amendment and Zoning By-law Amendment:

- a) Report, Re, Functional Servicing Report for Gordon Street, Guelph ON; dated August 11, 2021; prepared by Stantec;
- b) Report, Re, Hydrogeological Assessment Version 2, 1242, 1250, 1260 Gordon Street, City of Guelph ON; dated August 11, 2021; prepared by Stantec;
- c) Report, Re, Noise Impact Study, 1250 Gordon Street, Guelph ON; dated August 23, 2021; prepared by J.E. Coulter Associates Limited;
- d) Engineering Plans; dated August 24, 2021; prepared by Stantec;
- e) Report, Re, Phase I Environmental Site Assessment 9 Valley Road and 1242, 1250, 1260, and 1270 Gordon Street, Guelph, Ontario; dated July 5, 2021; prepared by XCG Consulting Limited;
- f) Draft Plan of Subdivision 1242, 1250, 1260, 1270 Gordon Street and 9 Valley Road (23T-20001); dated August 27, 2021; prepared by Astrid J. Clos Planning Consultants;
- g) Report, Re, 1242, 1250, 1260 Gordon Street and 9 Valley Road, Traffic Impact Study; dated August 12, 2021; prepared by Stantec.; and

And offer the following comments:

Functional Servicing Report

1. In our previous comment#4, we had asked about the email correspondence from City regarding sanitary capacity. The revised report suggests the correspondence is attached in Appendix A. However, the Appendix A includes Stormceptor EF report. Please provide the correspondence for review.

- The section 3 is not updated based on our previous comments about a 'H' (holding) be placed on the property until such time a new sewer is installed. Please include the information in the text of the section 3 of the FSR report.
- 3. The Section 4 of the report had not been updated regarding City's water supply pressures for the proposed development as per our previous comment#3. Please update the section as per our previous comments.
- 4. The previous comment#6 regarding Steep gradient of Street 'A' over 6% has not been addressed. Please revise the gradient accordingly.
- 5. In our previous comment#7, it was requested to provide a typical crosssection of Street 'A', and label for centerline radius. The typical cross-section and the centerline radius on engineering drawings are still missing. Please provide requested information for review.
- 6. It appears that sidewalk is provided on one side. We had requested to update the drawings in our previous comment#8, but the plan has not been updated as requested. Please show the sidewalk on both sides of Street 'A' plan and provide a typical cross-section for review.
- 7. In section 5.1.4 of FSR, the design criteria for the site are discussed. The Torrance Creek Subwatershed infiltration criteria of 150mm/year were adopted for the site. However, the GRCA mapping for the site (Tributary D of HCWS) shows a recharge of 122-199mm/year, which are consistent with predevelopment water balance analysis recharge rates for the Site ranges from 192mm/year to 222mm/year. Therefore, it is recommended to update recharge criteria of the Site.
- 8. The requested information of traffic geometric plan showing large moving trucks to /from the site was requested in our previous comment#8 had not been provided. Please provide the requested information.
- 9. The Street 'A' ROW area has not been included in the proposed storm drainage conditions in Drawing No. 2 and the Section 5.5 of FSR report. This deficiency was identified in our previous comment #7 as well. Please update the report accordingly.
- 10.The catchment areas numbering on Storm Drainage Plan are not consistent with the FSR brief including notes provided in the drawing no. SSP-2. Please be consistent with numbering and update the documents accordingly.
- 11.Please update the Section 5.5 of FSR that states two 10-storey apartment buildings, one with one level of underground parking and one with one level of underground parking. It seems contradicting the proposed two levels of parking for the buildings. Please update the text.
- 12.It appears that the major overland flows from the site discharging uncontrolled to the Gordon Street including proposed Street 'A'. The City

criteria states that post-development flows shall be controlled to predevelopment (existing) levels for the 2 year through 100year storm events. The proposed site impervious cover is changed over 90% that may cause flooding on Gordon Street at significant events. Please provide onsite storage for all peak flows (2year to 100year) to pre-development rates.

- 13.A 3.5m high acoustic barrier is proposed at the south west corner of the site. The proposed overland flows through southern amenity areas discharge to the Gordon Street will be intercepted by the proposed acoustic barrier walls. The noise barrier walls are not designed to withstand the overland flow pressures and are not designed to pass flows through it. Please provide details of overland flow routes showing controlled flows discharging safely without any obstructions for review.
- 14.The MUDUSS model comment line mentions 1250 Gordon Street. Please update to 1242-1260 Gordon and 9 Valley to be consistent with the proposed application.
- 15.The MIDUSS model shows duration of 180 minutes (3 hours) for all storms including 2year, 5year and 100year storms, which is not appropriate. Please use 5minute duration time for 2year and 5year storm events as per City standards and update the model calculations accordingly.
- 16.The Street 'A' Catchment area (i.e., A18 0.29 ha) has not been included in both existing and proposed conditions of MIDUSS. Please incorporate the area and propose quality and quantity control for the Catchment A-18 and submit updated hydrological model and drawings for review.
- 17. There are no calculations provided for the sizing of sewers. It seems the sewers are designed based on 180-minutes duration, which is not acceptable. Please provide design sheet in excel format for 5 year storm event for review.
- 18.The proposed approach for the rooftop storage to attenuate up to 25mm rainfall events using 75mm diameter orifice, connected through downspout system into on-site infiltration trenches seems reasonable. However, we had concerns on proposed active storage of 136 m³ for West building rooftop and 138 m³ of active storage on East Building rooftop during 100year storm event. The rooftop storage at 100year storm event including number of Catchment areas discharging uncontrolled to Gordon Street should be directed to a storage facility and release runoff to Gordon Street at pre-development rate. The City prefers using open surface SWM facility to control all flows 2year to 100year at pre-development rates. Please adjust grading and explore options for out-letting controlled flows to the Gordon Street.
- 19. The Proposed Permavoid infiltration gallery having 90% voids seems challenging product to be allowed for the infiltration galleries within the City. The City does not accept sizing of the galleries that include infiltration from

the sides of the gallery, only bottom footprints should be considered for infiltration gallery sizing. The calculations provided are not legible. Therefore, provide detailed calculations in excel format with supporting documentation for review and recommended to use conventional stone gallery for infiltrating West building rooftop runoff as well.

- 20.It appears that the Permavoid system is proposed for both quantity control and infiltration located into the southern amenity area. The proposed Permavoid infiltration system will mix the clean rooftop runoff from western building, with runoff from parking, and laneway areas to infiltrate. Based on City's Source Water Protection infiltration policy only clean rooftop runoff can infiltrate. The runoff generated from parking and laneways areas that contains contaminants including road salts during the Winter seasons with suspended sediments should be separated from rooftop runoff and directed to storage tank and release at pre-development rates. Please demonstrate a separate clean rooftop runoff to infiltrate and provide a separate storage for major and minor flows providing quality control and to release flows at predevelopment rates.
- 21.A Pemavoid storage system is proposed just downstream of southern infiltration gallery. The underground perforated system will allow runoff to infiltrate contaminants collected from parking and laneways areas into the ground, which is not acceptable. Please demonstrate that all runoff generated from the site is stored and released at pre-development rates by providing an open surface storage.
- 22.The proposed East infiltration gallery bottom elevation is 340.06m. The seasonal high groundwater elevation at MW5-18 measured is 340.7m, which is located at about 30m from proposed gallery; the horizontal hydraulic gradient calculated is 0.04 m/m towards Torrance Creek Swamp. Thus, the groundwater elevation estimated at bottom of the infiltration gallery is 339.5m with 0.56m separation from bottom of the gallery, which does not meet the minimum 1.0m separation requirements. In addition, Section 6.1 of Hydrogeological assessment report also mentions that the eastern gallery is approximately 0.8m above projected seasonal high groundwater table. Please demonstrate with detailed calculations and ensure gallery bottom had minimum 1.0 m separation from seasonal high groundwater table.
- 23.For quality control a Stormceptor EF4 unit is proposed upstream of Permavoid storage system to maintain 80% TSS removal. However, the Street 'A' runoff is discharging uncontrol without any quality control. Please provide appropriate size Stormceptor EF unit for the Street 'A'.

Hydrogeological Assessment Report

- 24.The meteorological data (precipitation and temperatures) used for hydrographs belongs to Waterloo Airport Station that does not reflect trends comparable with measured groundwater elevations provided for the site. It is recommended to use the local meteorological data from Guelph Arboretum Station for the hydrographs and update the Figures 9 and 10 accordingly
- 25.It appears that the lands fronting Valley Road within the northeastern portion of the Site (i.e., Street 'A' area) not included in the pre- and postdevelopment water balance calculations. The rational provided that these lands are to come under the ownership of the City and, subsequently, will no longer be the responsibility of Tricar. The water balance calculations (preand post-development scenario) must include entire area irrespective of future ownership. Please revise the calculations and update the water balance analysis and provide excel sheet for review.
- 26.The meteorological data used in water balance analysis is from Waterloo Welling ton A Climate Stations that is located approximately 15 km from the site. As mentioned in the report that the climate normal from 1971 to 2000 are available from Guelph Arboretum Climate Station. We prefer using Guelph Arboretum Climate Station for the consistencies in development applications as the Arboretum data will be most representative for the site that is located about 1.5km. Please use the Arboretum data in the updated version.
- 27.The total infiltration deficits calculated are 2,279 m³ using water balance methodology by deducting evapotranspiration, soil storage losses etc. from the rainfall. However, groundwater recharge impacts and mitigation calculations provided in Section 8 are in complete isolation of water balance methodology. The evapotranspiration is generally 60% of the rainfall. Calculating volume of rooftop under 25mm or less event does not account for evaporation from the building roofs. The simple arithmetic sums with assumptions for frequency of rainfall events for mitigation purposes are not reasonable. Please update the pre-development, post-development without mitigation measures scenarios and include additional post-development for material for review.
- 28.The groundwater mounding was estimated using Hantush equation spread sheet prepared by USGS for both east and south infiltration galleries for 25mm event. However, the mounding calculations for the proposed Permavoid storage tank having capacity for storage of greater than 25mm storm was not conducted. Please estimate mounding impacts of Permavoid storage tank for 5year storm storage on adjacent properties.
- 29.In Section 7.1.3, it is mentioned that there will be no permanent drainage system / dewatering planned for the underground parking area due to

construction of waterproof base. Generally, drainage is provided at the bottom of every foundations. We need a written confirmation from building professionals/Architects that there will be no drainage/sump pumps provided for the waterproofed underground parking structures. The building professionals/Architects should quote the supporting Ontario Building Code (OBC) sections that identify that the drainage including weeping tiles, sump pumps are not required for the waterproofed basements. In case of failure in providing supporting information from the OBC, we will consider possibility of permanent dewatering at the Site.

Noise Impact Study

- 30.Section 3.1 Table 1B, page 2: As the ventilation and building component discussion is outlined below, it would be better if this table was consistent with the MECP's sound level limits for OLAs only. I understand the concept, but including POW values here, in this context, is technically incorrect. They could be correctly stated in a table if a table is used to summarize the ventilation and building component description.
- 31.Section 3.1, page 2: If using a separate table to summarize the ventilation and building component review requirements, please note that NPC-300 includes bedrooms and living/dining rooms in both day and nighttime periods (and by extension, evening time periods for stationary noise). The "type of space" would be better described as outside the plane of window, without identifying the type of use inside (or include bedrooms and living/dining rooms in the description). Please note that this type of description (bedrooms at night, living/dining rooms in day) should be corrected throughout this report, most notably Sections 10 & 12).
- 32.Section 3.1, Page 2: Please update Appendix D based on changes made in the body of the report.
- 33.Sections 3.4-3.6: Please update references to the criteria table(s).
- 34.Section 3.6, pages 3-4: Is there a copy/paste error in this section? Not sure why we're talking about STEAM concepts.
- 35.Section 3.7, page 4: Not sure why this section is here, as the details are more specifically/correctly spelled out in the preceding sections.
- 36.Section 3.8 paragraph 1, page 4: Technically, the stationary noise criteria is based on the worst-case scenario for the affected site; while is this often at the point of time of lowest ambient roadway traffic, that isn't always the case, and is not the way NPC-300 defines it.
- 37.Section 3.8 paragraph 3, page 4: Please update based on Class 2 Area.
- 38.Section 3.8 paragraph 4, page 4: Details of the traffic volumes, assumptions and calculations used to set the stationary sound guidelines have not been

included in the submitted study; please provide as part of the next submission.

- 39.Section 4.0: Less traffic data is provided in Appendix B then was provided in the 1st submission; please provide all of the traffic data that was used to determine the volumes used for this study, and include summary page(s) showing how the final values were obtained.
- 40.Section 4.0 Table 2, page 5: Even if existing heavy truck % is zero, why is projected heavy truck % zero? Only valid if road has heavy truck limits (verified to remain in place to horizon year).
- 41.Section 6.0 paragraph 1, page 7: AC is not a noise control feature. See NPC-300 Section C7.8.
- 42.Section 6.0 paragraph 2, page 7: What is the feasibility of mitigating at these locations? Are there options for the developer to consider during future detailed designs?
- 43.Section 6.1 paragraph 2, page 8: The proposed noise barrier height is not consistent with the GNCG specifications for noise barriers.
- 44.Section 6.1 paragraph 2, page 8: The OLA at location 12 has geometric features (mostly in the form of grade changes) that may cause the proposed barrier to become ineffective at some locations within the OLA (for example, only a few meters further back the elevation is 3m higher, and there is the potential for "bright zone" exposure). Please review, and provide some additional context to ensure the final proposed mitigation will provide the required protection throughout the OLA space.
- 45.Section 7.0 paragraph 1, page 8 & Appendix A, Figure 6: The site extents shown in Figure 6 do not match those on the concept/draft plan.
- 46.Section 7.0 paragraph 2 (and list that follows), pages 8 & 9: If CadnaA provides the highest sound level point along each facade of the buildings, is there a reason to call out three specific analysis points that are not at the highest sound level locations on the buildings?
- 47.Section 7.0 paragraph 3, page 9: Please review the wording of this section (and refer to past comments on this), as this description is not technically correct as per NPC-300. This report should analyze the stationary noise based on either the exclusion limits or the worst case impact (or both, and compare the results). Please update the report based on the chosen method, the correct noise criteria and correct time periods, for all appropriate receptors. If ambient noise levels "from the quietest hour" are being used, the calculations used to determine the values must be fully detailed in the report and Appendix, as appropriate.

- 48.Section 7.0 Table 6, page 10: Why are the OLAs only analyzed during evening? Please update for day and evening time periods. The noise criteria used is incorrect: NPC-300 lists the exclusion limit value for OLAs in Class 2 Areas during evening time period as 45 dBA.
- 49.Section 8.0: Provide details of the HVAC equipment assumptions made for these calculations, along with justification of these assumptions for buildings of this type and size. Verify that there are no planned sources of noise at any location on/at/around these proposed buildings other than the roof areas: other elements that may be missing from this analysis include (but not limited to) blowers/exhaust from the underground parking, emergency generators, HVAC equipment on lower roof levels, etc.
- 50.Section 8.0 paragraph 2 (list), page 10: Section 2.0 of this report identifies these buildings (1280 Gordon Street and 1284 Gordon Street) as 6-storey.
- 51.Section 8.0 paragraph 3, page 10: Please update this section based on Class 2 Area, and comments above.
- 52.Section 10.0 paragraph 1, page 12: See comment re: Section 3.1 Table 1B above.
- 53.Section 10.0 paragraph 1, page 12: More information is needed as to the assumptions made for the BPN-56 calculations (can be provided in that section of the Appendix.) There is also no discussion of what STC values are anticipated under standard OBC requirements for this building, so there is no comparison provided between the STC values obtained from the BPN-56 calculations and the statements made in this section.
- 54.Section 10.0 paragraph 2, page 12: This statement is confusing, please review and revise/clarify. Please also state assumptions for window/door-tofloor areas as part of this statement (and in the recommendations section) as was done for the unit calculations above. See also comments above regarding assumptions of anticipated STC values under standard OBC.
- 55.Section 12.0 recommendation #3, page 13: See comment re: Section 3.1 Table 1B above.
- 56.Section 12.0 recommendation #4, page 13: Please update the figure reference.
- 57.Section 12.0 recommendation #6, page 13: Please include requirement for barriers to meet GNCG requirements (this will also be a condition of approval).
- 58.Appendix B: Please label the STAMSON output pages according to the receiver locations as listed in Figure 3.

- 59.Appendix B: All distances used in the STAMSON calculations appear to be off by ~3m when compared to the building placement shown on the submitted engineering drawings.
- 60.Appendix B: Please note that when including a barrier, the three elevation values need to be used. For a feasibility study if unknown and other conservative factors were included, they can remain 0 (but helpful to indicate method used in the report or appendix). For a detailed study, the correct values need to be used.
- 61.Appendix B, filename "b_nw.te": It is unclear which receiver point is being calculated for with this output. The filename suggests Location 8, but the distances used suggests Location 11, but with incorrect values. Please review/clarify.
- 62.Appendix B, filename "b_se.te": Why was an "elevated" topography type used here? If this location meets the definition as per ORNAMENT, please complete the calculation correctly and include additional items (cross section drawing, etc.) to show how and why this was used.
- 63.Appendix B, filename "b_nw2.te": It is unclear which receiver point is being calculated for with this output. The filename/description suggests Location 8 but with incorrect barrier-receiver distance. Please review/clarify.
- 64.Appendix B, filename "ola_b2.te": Please update this calculation to be consistent with the others in this report. (use of single segment, no use of house rows, etc.)
- 65.Appendix B, BPN-56 Calculations: Please provide more information on the assumptions used for these calculations (all BPN-56 calculations). As per previous comments, NPC-300 no longer assumes time of day for type of interior use: to be conservative (for this feasibility noise study) an intermediate room absorption should be the maximum assumed. If assumptions are made for percentage of operable glazing, this needs to be stated in the body of the report also.

Please do not hesitate to contact me if you have any questions regarding my comments. Thanks,

Mohsin Ali Talpur, M.Eng., P.Eng. Development - Environmental Engineer

Internal Memo

Date	December 15, 2021	
То	Lindsay Sulatycki, Senior Development Planner	
From	Leah Lefler, Environmental Planner	
Service Area	Infrastructure, Development and Enterprise Services	
Department	Planning and Building Services	
Subject	1242-1270 Gordon Street and 9 Valley Road	
	Draft Plan of Subdivision, Official Plan Amendment and Zoning By-law Amendment	
	Second Submission Comments	

Environmental Planning reviewed the following documents and plans that pertain to the proposed Draft Plan of Subdivision, Official Plan Amendment and Zoning By-law Amendment at 1242-1270 Gordon Street and 9 Valley Road:

- Environmental Impact Study Addendum, Stantec, August 2021
- Functional Servicing Report, Stantec, August 2021
- Hydrogeological Assessment, Stantec, August 2021
- Landscape Plans, Stantec, August 2021
- Tree Preservation Plan, Natural Resource Solutions Inc., September 2021
- Draft Plan of Subdivision with Concept, August 2021
- Engineering Plans, August 2021

Based on the review of the materials listed above, Environmental Planning staff offer the following comments:

Environmental Impact Study

- 1. Please note that, as of October 2021, the City of Guelph has a <u>Bird-friendly</u> <u>Design Guideline</u>.
- 2. Is Habitat for Significant Species present on the subject property? Please provide an assessment of Official Plan policy 4.1.4.4. Habitat for Significant Species to determine if protection is required. If protection is required, please map Habitat for Significant Species as Natural Areas, within the Natural Heritage System.
- 3. Per Official Plan policy 4.1.2 and 4.1.3.9, development and site alteration are prohibited in Significant Wildlife Habitat. Figure 2 maps Candidate Significant Wildlife Habitat for Species of Conservation. The Environmental Impact Study must demonstrate that areas of Significant Wildlife Habitat do not overlap with proposed development or site alteration. Areas of Candidate Significant Wildlife Habitat that do not meet the criteria for Confirmed Significant Wildlife Habitat should be removed from mapping within the developable portion of the subject

property. Please update Maps 2 and 3 to show the extent of each type of Confirmed Significant Wildlife Habitat as separate layers.

- 4. Please assess the Cultural Woodland (WODM4-4) mapped on Figure 4 against the criteria of the Official Plan for protection of Significant Woodland (4.1.3.6) and Cultural Woodland (4.1.4.3). Based on the text provided in the EIS Addendum and mapping provided on Figure 4, it is unclear if this vegetation community warrants protection. If the Cultural Woodland does not meet the criteria for protection, please remove it from mapping.
- 5. Please update the Figure 5 legend and mapping to reflect the following:
 - Significant Woodland boundary, as approved by the City;
 - Significant Wetland boundary, as approved by GRCA;
 - 10 m Significant Woodland buffer;
 - extent of Confirmed Significant Wildlife Habitat; and
 - Natural Heritage System limit (inclusive of buffers).
- 6. Please provide correspondence from the Ministry of Environment, Conservation and Parks confirming the approach proposed for addressing Species at Risk bats.
- 7. Official Plan policy prescribes minimum buffers per feature type, and policy requiring an assessment of the need for an established buffer. The EIS should assess the need for an established buffer.
- 8. The EIS must demonstrate no negative impact to the Natural Heritage System by demonstrating a feature-based water balance. Please provide monthly comparisons of pre- to post-development conditions in runoff and infiltration, per catchment.
- 9. Stormwater runoff from parking lots is proposed to be infiltrated. As stated in previous comments provided in December 2020, infiltration of parking lot water is not supported by the City. Stormwater quality measures do not treat road salt.
- 10.To permit development on lands adjacent to the Natural Heritage System, the EIS must demonstrate that the entire development does not have a negative impact. Please update the FSR and planning for stormwater management to include the Valley Road parcel.

Functional Servicing Report

11.Section 5.1.4 of the Functional Servicing Report outlines the stormwater management criteria for the proposed development, which includes an infiltration criterion of 150 mm/year for the site, consistent with the Torrance Creek Subwatershed Study. The Hanlon Creek Subwatershed Study recommends a recharge of 122-199 mm/year for Tributary D, which is consistent with pre-development water balance analysis recharge rates provided in the Hydrogeological Assessment (i.e., 192 mm/year to 222 mm/year) and GRCA mapping for the site. Therefore, it is recommended that the recharge target be updated.

Hydrogeological Assessment

- 12. The proposed east infiltration trench appears to maintain a separation of 0.56 m from the seasonal high groundwater level. Per the City's Development Engineering Manual, infiltration gallery designs must demonstrate a minimum 1.0 m separation from the seasonal high groundwater level. Please provide a design that demonstrates a minimum 1.0 m separation from the seasonal high groundwater table.
- 13.Please update Section 6.3 Impact to Natural Heritage Features to include an assessment of impact resulting from the south infiltration trench.
- 14.Please provide a monthly comparison of pre- to post-development runoff and infiltration per catchment in tabular and/or graph form. This information is required to provide an assessment of impact to the Natural Heritage System in the EIS.
- 15.Water balance pre-development conditions shown on Figure 15 include four sub areas. Water balance post-development conditions shown on Figure 16 include three sub areas, with sub-area C and D combined. What is the purpose and effect of basing the water balance on different sub-areas?
- 16.Section 8 refers to two 12-storey towers. Heights have been reduced to two 10storey buildings.
- 17.Figure 12 Groundwater Flow includes "Proposed Monitoring Well (Stantec, 2021)". Please provide a description of the proposed monitoring wells, including what they are intended for.
- 18. In Section 4.2.1, it is stated that there is no marked response from notable precipitation events however in December 2019/January 2020 there was an event of 45mm that has a quick response. Please clarity the statement with respect to this anomaly.
- 19.1s the station referenced in the last paragraph of Section 5.1 the closest station?

Tree Preservation Plan

- 20.Please update the Tree Preservation Plan to exclude removals from the park block. No removals are to occur within the park block, unless they pose a hazard or are in striking distance of an adjacent property.
- 21.Please add a column to the tree table to indicate which trees require compensation and which do not.
- 22.Please update the compensation requirements to exclude removals from the park block. Private trees requiring compensation per the City's private tree protection by-law will be addressed through a vegetation compensation plan, as part of the Environmental Implementation Report. Public trees, such as City-owned street trees, are to be addressed with Urban Forestry staff generally through a Street Tree Planting Plan at site plan.

Landscape Plans

23.Please verify that trees and shrubs are located a minimum of 1.0 m away from infiltration galleries. Please include a note specifying that trees and shrubs are to be planted a minimum of 1.0 m away from infiltration galleries.

Engineering Plans

24. Relocate ESC fencing to the location of the Tree Protection Fencing. Please include a note that no work or stockpiling of materials should occur in the park block or Natural Heritage System.

Draft Plan of Subdivision

- 25.Common amenity areas and park blocks cannot overlap with the Natural Heritage System, including buffers.
- 26. The Draft Plan of Subdivision should be revised to reflect the boundaries of the Natural Heritage System, including buffers, determined through the Environmental Impact Study.

Summary

An EIS addendum is required and dependent upon revisions to the supporting documents and plans. Environmental planning encourages the applicant to meet with City staff to discuss the comments provided, prior to providing a third submission.

Please note that comments provided by Scott Cousins, City of Guelph Hydrogeologist, are included in comments provided under the Hydrogeological Assessment heading above.

Leah Lefler, Environmental Planner

Planning and Building Services, **Infrastructure**, **Development and Enterprise** Location: City Hall 519-822-1260 extension 2362 leah.lefler@guelph.ca

Copy: Mohsin Talpur, Scott Cousins

DATENovember 23, 2021TOLindsay SulatyckiFROMJyoti PathakDIVISIONParks and RecreationDEPARTMENTPublic ServicesSUBJECT1242-1270 Gordon Street ar

SUBJECT1242-1270 Gordon Street and 9 Valley Road- proposed Draft Plan
of Subdivision, Official Plan Amendment and a Zoning By-law
Amendment (OZS20-004) – Second submission

Parks have reviewed the following documents submitted in support of the above noted proposed Draft Plan of Subdivision, Official Plan Amendment and a Zoning By-law Amendment, circulated on September 21, 2021.

- Notice of Revised Submission October 2021
- Draft Plan-August 2021
- Draft Plan with Concept-August 2021
- Environment Impact Study Addendum-August 2021
- Engineering Plans-August 2021
- Environment Site Assessment Phase I-July 2021
- Functioning Servicing Report-August 2021
- Hydrogeological Assessment-August 2021
- Landscape Plans-August 2021
- Noise Study-August 2021
- Pedestrian Wind Study-July 2021
- Planning Report-August 2021
- <u>Reliance Letter-July 2021</u>
- <u>Traffic Impact Study-August 2021</u>
- <u>Tree Preservation Plan-September 2021</u>
- Underground Parking Level 1-August 2021
- <u>Underground Parking Level 2-August 2021</u>
- Urban Design Brief-August 2021

Parks offer the following comments:

Proposed Draft Plan of Subdivision:

A residential subdivision is proposed on the subject lands which are approximately 3.12 hectares in size and include developable area and natural heritage system. The applicant is proposing a residential block with two, 10-storey apartment buildings with a total of 325 apartment units, a municipal park block and an open space block.

Planning Justification Report:

Revise the parkland dedication information on page 4 of the Planning Justification report to reflect current alternative rate (1 ha per 300 dwelling units for parkland conveyance and 1 ha per 500 dwelling units for payment in lieu of conveyance) for parkland dedication requirement under s.51.1 of the Planning Act and City's Official Plan Policy 7.3.5.1.

Parkland Dedication:

Parkland dedication is required for the proposed subdivision according to the Official Plan (OP) Policy 7.3.5.1. The OP policy states the following:

1. The City will require parkland dedication as a condition of *development, consent* or subdivision proposals in an amount up to:

ii) 5% of the land or one hectare for each 300 *dwelling units* for residential purposes

The current proposed draft plan of subdivision includes an area of **3.323** hectares and development of **325** dwelling units. The proposed draft plan includes a park block of **0.247** hectares which accounts for 74 dwelling units at the rate of 1 ha per 300 dwelling units. Parkland dedication for the remaining 251 dwelling units would be required as payment in lieu of conveyance for the proposed draft plan.

Park Block Location:

Generally, the park location is satisfactory.

We intend to provide pedestrian access to the park along the Edinburgh Road extension from Gordon Street and along Landsdown Drive/ boulevard trail/ sidewalk from north and trees would have to be cleared if blocking this access. The park block currently includes a tree protection zone.

Generally, City requires park blocks to meet City's Zoning Bylaw, plans, policies, and guidelines and the following criteria:

- The site provides a critical public trail connection to the proposed Citywide trail/ ATN route west of Torrance Creek PSW from Gordon Street along Edinburgh Road extension through the proposed park block. GTMP and OP Policy 7.3.5.5 (ii) (Parkland Dedication)
- The site satisfies the development criteria for a neighbourhood park; **OP Policy 7.3.5.5 (Parkland Dedication)**
- The park should contain both active and passive recreational activities (i.e. children's play equipment, shade structure, seating, site furniture and planting etc.). OP
 Policy 7.3.2 (Park Hierarchy)
- The park should be connected to public sidewalks and should be designed as an accessible and barrier free space. Facility Accessibility Design Manual 2015
- The park should be mostly flat (i.e. 80% table land with 2-3% slopes). OP Policy 7.3.2.4 (Park Hierarchy)
- The park should contain adequate public street frontage for high visibility and surveillance and for adequate public and operational access as identified in **Zoning** Bylaw Table 9.2 (Row 3) as follows: A minimum of 50 metres or 1 metre of street frontage for every 100 square metres of park area whichever is greater as identified in Section 9.2 of the City of Guelph's Zoning Bylaw.

- The park should be completely outside of natural heritage features. Natural heritage features and natural hazard lands as outlined in the City of Guelph's Official Plan will not be accepted as parkland dedication. **OP Policy 7.3.5.3 (Parkland Dedication)**
- parkland shall be conveyed free and clear of all encumbrances. Development Charges background study Appendix E- Local Service Policy (basic park development - PAGES E-2 and E-3)
- The park site should be well drained and have access to water, sanitary and storm water drainage servicing. OP Policy 7.3.2.4 (Park Hierarchy), Development Charges background study Appendix E- Local Service Policy (basic park development PAGES E-2 and E-3)

Park Block Lot Frontage and park access

Park Operations require vehicular access to the park block and to the proposed trail to the east for maintenance and operational purpose. Provide options for review for achieving vehicular access.

Basic Park Development:

The developer is directly responsible for the basic park development according to the Development Charges background study - Appendix E- Local Service Policy (basic park development - PAGES E-2 and E-3):

The basic park development will include clearing, grubbing, site grading, storm water drainage, site servicing, topsoil and sodding of the Park block. The costs of the following items shall be direct developer responsibilities as a local service:

Base parkland development of lands conveyed to the City in connection with development including, but not limited to, the following:

- clearing and grubbing;
- topsoil or any fill or soils shall not be stockpiled on parkland;
- parkland shall be free of any contaminated soil or subsoil;
- servicing water, hydro, stormwater, sanitary, electrical, catch basins as per City's requirements. rough grading (pre-grading) and the supply of topsoil to the required depth as per City's requirements;
- Seek City approval of the structural fill material if park requires filling.
- parkland shall not be mined for engineering fill and replaced with fill or topsoil;
- parkland shall be conveyed free and clear of all encumbrances; all parks are to be developed to the locally accepted "basic park development" standard which includes all aspects up to fine grade, topsoil and sod; which is to be maintained up to park acceptance.
- The park block shall be graded to meet approved parkland grade, including any associated infrastructure requirements (retaining walls, drainage, etc.) and sodded to minimize erosion and dust.
- Temporary fencing may also be required where there is no permanent fence to prevent illegal dumping; temporary park sign advising future residents that the site is a future park. Perimeter fencing of parkland to the City's standard located on the

public property side of the property line adjacent land uses (residential or nonresidential) as required by the City, or other approval authority.

The developer will be responsible for the Basic park development and City would require a cost estimate and security in the form of cash or a letter of credit based on the City approved estimated costs prior to the registration of the subdivision.

Trail Network:

The City of Guelph Trail Master Plan - 'Trail Network' includes a proposed off-road secondary trail route along western edge of the Torrance Creek provincially significant wetlands through the subject property that connects to the approved proposed trail west of Valley Road condominium to the north and west of 1280 Gordon Street to the south.

Please note that the trail alignments north and south of the subject site have been designed and approved through the development review process and the developer is responsible to identify the trail alignment and preliminary trail design on the subject site as included in the terms of reference for the EIS.

Local trail connection:

Provide a local accessible trail connection, 2.5 m wide, to connect the Gordon Street/ proposed park to the proposed Citywide trail at the back of the property. This trail connection is to be designed as part of the proposed Landscaping works on the subject site.

Provide conceptual trail alignment for City's review of the following connections:

- North-south Citywide trail connection
- East-west local trail connection

Provide preliminary grading and Drainage plans and other plans as applicable to demonstrate that the trail can be built to the current City standards as follows:

 The design and construction of the trail shall meet the accessibility criteria outlined in the City's Facility Accessibility Design Manual (FADM). The criteria include maximum running slope on trails to be 5% and the maximum cross slope on trails to be 2%, provision of rest areas at regular intervals, information and directional signage etc. Section 4.5.2 OUTDOOR RECREATIONAL FACILITIES of the FADM outlines the accessibility guidelines for trails. This document can be viewed at the following link:

http://guelph.ca/wpcontent/uploads/Guelph_FADM_2015-06-30-FINAL.pdf

- 2. Provide minimum 0.6 metre wide mowed grass strips longitudinally along both sides of the trail surface at a cross slope of 2% away from the trail.
- 3. Provide sodded drainage swales and culverts at appropriate locations if the adjacent ground is higher to the trail surfacing levels.

Environmental Implementation Report:

An environmental implementation report (EIR) will be required to address the recommendations provided through the final approved Environmental Impact Study including Open Space Works and restoration, detailed landscape plans (by an accredited landscape architect); detailed design and mitigation plans to support the trail.

The EIR will address the recommendations related to trail system and natural open space system, including detail design of the trail system; preparation of Landscape Plans and details to address demarcation, removal of invasive species, hazard trees along the trail system and residential properties; clean-up of debris and waste; restoration; compensation and enhancement planting for buffers; invasive species management; design of educational/ interpretive and stewardship materials/ signage.

Detailed trail layout, grading and drainage plans showing trail design details such as signage, structures, etc. will be provided in the Environmental Implementation Report consistent with City of Guelph's current trail standards and other City Guidelines i.e. Facility Accessibility Design Manual and Engineering Development Manual where applicable. The trail plan, design and construction will comply with all relevant regulations applicable to trail management made under the Accessibility for Ontarians with Disabilities Act.

Open Space Works and Restoration:

Provide planting to enhance ecological buffers and wildlife corridors and compensation for removed trees, etc. and detailed planting plans will be provided with the Environmental Implementation Report. Provide seeding to restore graded areas within the open space

Tree Preservation and removal of invasive species and hazard trees:

Schedule removal of the common buckthorn within the trail corridor prior to trail construction.

A review of hazard trees (e. g. dead, partially dead or dying trees) on the park block and along the trail route will be conducted at the time of vegetation removal by a qualified arborist. Identify all hazardous trees along the trail route in consultation with Parks staff for removal by the developer.

Hazard trees only would be removed within striking distance of the trail.

Environmental Education:

The environmental education/ interpretive signage is proposed to be provided along the trail in the subdivision to provide resident education on the area's environmental features and address the common resident impact items including dumping of yard waste, encroachments, pet waste, etc. The signage will be designed to meet City's accessibility guidelines and the details of the signage will be provided in the EIR- trail and landscape plans.

Open Space Dedication:

Parks recommends conveyance of natural open space block to City for the purpose of the protection of natural heritage system and trail construction.

Demarcation:

The property demarcation will consist of 1.5 m black vinyl Chain Link fence and/or property markers in accordance with the City's Property Demarcation Policy and specification and City approved demarcation plan will be included in EIR.

Summary:

Parks does not support the proposed development based on the current information provided. Parks needs revised documents which reflect the comments provided above for our further review and comments. Draft conditions would be provided upon receiving satisfactory proposal.

Regards,

Jyoti Pathak, Park Planner Park and Trail Development, Parks Public Services T 519-822-1260 x 2431 E Jyoti.pathak@guelph.ca

P:\PS\Parks\ParkTrailDevelopment\PLANNING\CITY\Subdivisions\1242 -1260 Gordon and 9 Valley\OZS20-004\Resubmission_Sept 2021\Comments\20211123 1242-1270 Gordon 9 Valley -Parks memo.doc

APPENDIX B.4 MINISTRY OF ENVIRONMENT, CONSERVATION AND PARKS CORRESPONDENCE

From:	Straus, Melissa	
To:	Species at Risk (MECP)	
Cc:	Bendig, Brandie; Hendriksen, Chris (Vancouver)	
Subject:	Information Gathering Form for Residential Development in the City of Guelph (1242, 1250, 1260, 1270 Gordon	
	Street South and 9 Valley Road)	
Date:	Friday, March 25, 2022 4:18:00 PM	
Attachments:	<u>iqf-mecp-1250 Gordon 161413684 20220325.pdf</u>	

Good afternoon,

Please find attached an information gathering form for the proposed development located at 1242, 1250, 1260, 1270 Gordon Street South and 9 Valley Road.

Please contact me if you have any questions.

Regards,

Melissa Straus M.Sc. Terrestrial Ecologist

Mobile: 226 971-2704 Melissa.Straus@stantec.com

Stantec Consulting Ltd. 100-300 Hagey Boulevard Waterloo ON N2L 0A4

?

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

1242, 1250, 1260, 1270 GORDON STREET AND 9 VALLEY ROAD, GUELPH, ON – ENVIRONMENTAL IMPACT STUDY ADDENDUM VERSION 2

APPENDIX C COMMENT MATRIX

APPENDIX C.1 COMMENT MATRIX FOR FIRST EIS SUBMISSION

	1242 – 1260 Gordon Street and 9 Valley Road, Guelph		
	Comment Matrix for First Submission Draft Plan of Subdivision, Official Plan and Zoning By-law Amendment		
Diait	Last updated January 14, 2021		
	Leah Lefler, Environmental Planner 519-822-1260 extension 2362		
113	leah.lefler@guelph.ca December Environmental Impact Study	o, 2020 Acknowledged, updated in	
	1. In the Introduction, please note that the planning approval sought by the applicant is a Draft Plan of Subdivision, Official Plan Amendment and Zoning By- law Amendment. Following approval, the development will proceed to detailed design and subdivision registration. Text in the third paragraph should be updated accordingly.	Addendum.	
114	2. Under 1.1 Agency Consultation, reference is made to a Hydrology Report. Please revise this to Hydrogeological Assessment.	Acknowledged, additional details not required in Addendum.	
115	3. Under 2.2.1 Official Plan, it is stated that "Natural Areas where development may be permitted provided an EIS can demonstrate that there will be no negative impacts to the natural heritage features or their ecological function". This statement is incorrect. General Permitted uses and feature specific policies apply to Significant Natural Areas and Natural Areas alike. Permitted uses may be more permissive in Natural Areas in comparison to Significant Natural Areas, but not necessarily. If a feature does not meet criteria for protection, development may be permitted. Conversely, if a feature meets criteria for protection, the general permitted use policies and feature- specific policies apply. Please clarify this.	Acknowledged, additional details not required in Addendum.	
116	4. The last sentence on page 2.2 states that "The Natural Heritage System also incorporates hazard lands including steep slopes, erosion hazard lands and unstable soils that are under the jurisdiction of the GRCA". This statement is incorrect. Criteria for designating Significant Valleylands (a Significant Natural Area included in the NHS) includes undeveloped portions of the regulatory floodplain. Hazard lands are not outright included in the NHS. Please correct this.	Acknowledged, additional details not required in Addendum.	
117	5. Under 2.2.3 Tree By-law, it is stated that the "Tree By-law was created to prevent damage or destruction to trees". This statement is incorrect. The Tree By-law 'regulates' the destruction or injuring of trees and enables the City of Guelph to require a tree permit prior to the injury/destruction of a regulated tree, and compensation. The Tree By-law helps protect and enhance the tree canopy cover in the City. Please revise accordingly.	Acknowledged, additional details not required in Addendum.	

118	6. Under 3.2 Field Investigations on page 3.8, please include bat acoustic surveys as well as bat exit surveys in the list of targeted field surveys.	Additional studies conducted in 2021 and detailed in addendum.
119	7. Under 3.2.8.2 Bat Exit Surveys on page 3.14, please include the type of device used for acoustic monitoring. For example, was a hand-held unit used, a song meter or both?	Additional studies conducted in 2021 and detailed in addendum.
120	8. Under 3.2.9.1 Diurnal Surveys on page 3.15, it is stated that "fieldwork was conducted at, or within, half an hour of sunrise". This statement does not match dates and times listed in Table 3.7. Best results are achieved within half an hour of sunrise, especially in noisy urban environments, and especially in forested ecosystems. The first breeding bird survey was completed on June 12, 2018, which is very late for a first visit. Based on timing of field surveys, data should be interpreted accordingly (i.e. lack of record does not indicate absence). Please update the text, as appropriate.	While June 12 is within the acceptable timing window of breeding bird surveys, we have conducted an additional survey on June 2, 2021 and have included the results in the addendum accordingly.
121	9. Under 3.2.9.2 Crepuscular Surveys on page 3.16, mention of moon phase is not made. Were conditions appropriate for surveying crepuscular birds during site visits completed for bats? Refer to MNRF's 'Eastern Whip-poor-will and Common Nighthawk Survey Protocol' for guidance.	Crepuscular surveys were conducted as per the approved ToR, incidentally in conjunction with bat exit surveys in June during clear evenings. However, surveys were completed between June 12 and June 26, 2018. Full moon dates were on May 29 and June 27, 2018 and therefore at least 3 surveys were conducted 1 week prior to the full moon with two having clear conditions, in accordance with MNRF's protocol. No additional details provided in the Addendum.
122	10. Under 4.4.6 Amphibian Survey and Habitat Assessment on page 4.6, it is stated that suitable habitat for amphibian breeding was not present. This seems odd, given that the Torrance Creek PSW is located within the Study Area, which is known to provide woodland amphibian breeding habitat. Snow melt and a high groundwater table result in seasonal ponding within this wetland complex. Please clarify.	Based on conducted amphibian surveys, suitable habitat for amphibian breeding is not present within the study area. This includes a May 28, 2018 search for vernal pools (as shown on Figure 2) that did not find any pooling areas and

123	11. Under 4.4.14 Incidental Wildlife Observations, the DeKay's Brown123) observation from May 16, 2019 should be added to the list of incidental wildlife. This species was observed, along with several Eastern Gartersnake and a Red-bellied Snake during the feature staking exercise, with City staff. Further, please assess the significance of the snake records recorded with respect to significant wildlife habitat and the potential for snake hibernacula to occur in the vicinity of the subject property.	therefore breeding amphibian habitat is absent. No additional details provided in the Addendum. Updated wildlife list and additional discussion on snake hibernacula provided in the Addendum.
124	12. Section 5.0 Significant Natural Heritage Features should be based on the natural heritage and water resources policies of the City of Guelph Official Plan (March 2018 Consolidation), in addition to the policies of the Provincial Policy Statement. Please update this section to address Official Plan policy.	Analysis included in Addendum.
125	13.Section 5.2 Significant Woodlands includes the following statement: "notwithstanding the criteria denoted in the OP excluding plantations". This statement is incorrect. <i>Plantations</i> is a defined term in the Official Plan. Cultural Plantation, per ELC, is not the same thing as <i>plantation</i> in the Official Plan. A cultural plantation unit must meet the Official Plan's definition of <i>plantation</i> to be excluded from the assessment of significant woodland. Please clarify this.	Acknowledged, additional details not required in Addendum.
126	14.Section 5.2.1 Other Woodlands refers to a deciduous woodland and claims that it was excluded from Significant Woodland due to composition, origin and size. Please provide the analysis to support this. Do the Cultural Woodlands criteria of the Official Plan to this deciduous woodland? This assessment should also be included in a revised EIS.	Analysis included in Addendum.
127	15.What does the bolded text indicate in Table 5.1? For clarity, please uses bolded text consistently within each Table, and among Tables 5.1 through 5.4. Also, please update Tables 5.1 through 5.4 to accurately assess field data collected against MNRF's Ecoregion 6E Criteria to determine whether or not Candidate or Confirmed SWH is present within the Study Area and/or Subject Property.	Bolded text is removed and Tables 5.1-5.4 are reiterated and updated in the Addendum.
128	16.Section 5.3.5 Locally Significant Species should be updated to include the names of the two locally significant plant species. Also, the list of locally	Acknowledged, reiterated in the Addendum.

	significant bird species should be updated to include Northern Flicker. A total of six locally significant bird species were documented, based on field records.	
129	17.Section 5.4.1 Butternut should be updated to indicate that an 'authorization' under the <i>Endangered</i> <i>Species Act</i> is sought. The EIS should be updated with information from the MECP and Natural Resource Solutions Inc. to reflect the current status of Butternut, ESA requirements and compensation plantings. Correspondence and supporting documentation should be included as an Appendix.	NRSI supporting documentation for Butternut provided in Addendum Appendix G.
130	18.Section 5.4.3 Bat SAR, please provide a map showing the extent of bat species at risk habitat (roosting habitat, foraging habitat). Please also provide correspondence with MECP confirming support of the proposed approach.	As per City of Guelph consultation with MECP, project-specific consultation is required. An Information Gathering Form (IGF) will be submitted to MECP. Habitat mapping is not provided and additional details are not required in Addendum.
131	19.Section 5.5 Significant Natural Heritage Features Summary, on page 5.8, please update the bullet list to include bat species at risk, and to note that honey locust is a planted specimen. Also, the statement "unable to confirm presence/absence" is incorrect. The field surveys were designed to enable an assessment of SWH. For example, breeding bird survey results in fact confirm the woodland as Woodland Area Sensitive Breeding Bird Habitat. Based on results of field surveys, it may or may not be possible to confirm SWH. Unconfirmed SWH would remain Candidate SWH in areas meeting the criteria of the schedules for 6E. Please clarify this in the text.	Summary of natural heritage features will be reiterated in the Addendum.
132	20.Section 5.5 Significant Natural Heritage Features Summary, on page 5.9, includes other woodlands (WODM4-4). Based on the ELC figure, the WODM4-4 vegetation community appears to be contiguous with an FOCM5 vegetation community. As per comment 14 above, please assess this woodland against the Official Plan's criteria for Cultural Woodland and update the text on page 5.9 accordingly.	Analysis included in Addendum.
133	21.Section 6.1 Stormwater Management should reference stormwater targets prescribed in the Torrance Creek Subwatershed Study for infiltration rates. A portion of the site is located in Catchment 102, where the following targets apply: – infiltrate to enhance baseflow in Torrance Creek: 150mm/yr to 200mm/year or match pre- to post-	The Stormwater Management (SWM) strategy has been revised to have an LID/rain garden feature at the east portion of property to provide recharge to Torrance Creek subwatershed and a new

	- pre- to post- peak flow control for all design events	gallery in the newly acquired
	 pre- to post- peak now control for all design events (2 to 100-year events) 24-hour extended detention for 25mm rainfall event minimum 80% TSS removal 	south piece of the site to provide recharge to Hanlon Creek subwatershed.
	Similarly, the Stormwater targets prescribed in the Hanlon Creek Subwatershed Study should be referenced in this section, as a portion of the site is located within the Hanlon Creek Subwatershed. The proposed stormwater outlet drains to Tributary D, where the following targets apply: - match pre- to post- peak flows for all storm events - implement infiltration best practice to the great extent feasible	Additional details provided on Stormwater Management in Addendum.
137	25. Section 6.1.2 Trail, references the Guelph Trail Master Plan and a proposed connection through the subject property. A recommendation is provided that the trail be completed as part of a broader trail design approach, to be completed by the City at a future date. This recommendation conflicts with the requirements set out in the Terms of Reference, which included an assessment of the trail route, recommendation for trail alignment consistent with Official Plan policy (i.e., consistent with permitted uses within the natural heritage system, demonstration of no negative impact, etc.) and identification of best management practices to provide the basis for basic trail design, which is to be completed as part of the Environmental Implementation Report (refer to pages 18 and 20 of the approved TOR). The Active Transportation Network Study maps the portion of trail through the subject property as a desired Active Transportation route (i.e. for cycling). The feasibility of accommodating an Active Transportation route through the subject project is to be assessed based	Tricar is deferring trail design and analysis, including potential impacts and compatibility with the Official Plan, to the City of Guelph. This approach allows the City flexibility to complete the trails to their specifications and concordance as determined by City staff. Additional details not included in Addendum.
	on Official Plan policy in the EIS. Lastly, a trail connection from the Park Block to the trail network is desired and should be assessed and evaluated through the EIS to inform the design.	
138	26.Section 7.0 Potential Impacts of Development and Mitigation Recommendations, reference is made to "net environmental impact assessment". This is not appropriate as the policy test is "no negative impact". Please revise this statement and confirm that the analysis provided is based on the "no negative impact" test.	Acknowledged, additional details not required in Addendum.

139	27.Section 7.1 Impacts on Significant Natural Features, given that two 12 storey buildings are proposed, the EIS should evaluate the potential for bird strike impacts, and inform the design, as appropriate. Lighting impacts may also result from the proposal; the EIS should make recommendations for lighting adjacent to the natural heritage system based on best management practices. Lastly, grading impacts should be assessed in the EIS. An analysis of the grading plan should be provided in the context	The updated site plan has changed both buildings to 10 storeys. Bird strikes mitigation and lighting is included in Section 7.3.1.3. Based on updated grading, as shown on Figure 1, Appendix A, grading is located outside of
	of permitted uses within the natural heritage system. Please update section 7.1 accordingly.	the buffer and as such an analysis is not required.
140	28.In Section 7.1.1 Significant Wetlands, it is stated that "incidental runoff impacts associated with sediments, dust, as well as nutrient loads will be reduced by the natural polishing function of the vegetative zone between the feature ad development". It is unclear what this statement means. The Stormwater system is designed to infiltrate the 25mm storm event via an infiltration trench. Surplus runoff will fill a storage tank and then outlet to the storm sewer on Gordon Street, which outlets to a stormwater pond, which discharges to the Hanlon Creek PSW. Further, the last sentence of the first paragraph in this section states that "all surface runoff from the proposed development is directed to the existing storm sewer on Gordon Street". This statement is not consistent with section 6.1 of the EIS or the FSR. Please clarify.	Understood, strike quoted sentences and defer to updated FSR. Additional details not required in Addendum
141	29.Also in Section 7.1.1 Significant Wetlands, please demonstrate that infiltration rates and volumes have been matched, pre- to post- in the Torrance Creek and Hanlon Creek Subwatersheds. This section notes that infiltration will "match and likely notably exceed pre-development infiltration volumes" in the catchment that directs flows to Torrance Creek. Torrance PSW has both a recharge and discharge function, depending on the time of year. During periods of an elevated water table and an upward hydraulic gradient, are impacts associated with the infiltration trench anticipated? For example, if infiltration cannot occur due to a high-water table, surplus will fill the storage tank and discharge to Hanlon PSW, likely resulting in a negative impact to both PSWs. Please include an in-depth analysis of stormwater impacts on the natural heritage system's features and functions.	Engineering strategy for the site has been updated and is described in supporting documents (FSR, Appendix H; Hydrogeological report, Appendix E). There is no conflict with the high ground water table for the east infiltration gallery as the design of the gallery has been revised and the depth reduced. Also note the storage tank in the underground parking garage has been removed as the stormwater management strategy has been revised such that surplus water will be directed overland to the Torrence Creek Watershed.

		Pre- and post-development water balances are matched as described in the Hydrogeological Report. Addendum updated.
142	30.On page 7.2, discussion is provided on the	See above.
	predicted impacts associated with reduced infiltration to the Hanlon Creek Subwatershed, with a conclusion of no negative impact drawn. Please provide the supporting analysis to support this claim. For example, what is the difference in pre- to post- infiltration volumes and rates? If infiltration is reduced, is the potential for baseflow impacts in Hanlon Creek? If infiltration is reduced, will more runoff be directed to Hanlon PSW? In addition, the FSR indicates that this runoff would be directed to the storm sewer on Gordon. The EIS fails to address Stormwater impacts associated with unattenuated/untreated runoff from the catchment	In regard to stormwater at Valley Road and Edinburgh, these are municipal streets and should be treated by existing downstream facilities. Infrastructure within the right of way is to be provided in accordance with municipal standards.
143	containing the extension of Valley Road/Edinburgh. 31.The Torrance Creek PSW has a recharge and discharge function. What impact does the proposed stormwater management system have on the recharge/discharge function of the wetland? Please update the EIS to include a comparison of pre- to post- monthly differences in vertical hydraulic gradients, infiltration, runoff, etc. Note that this is required to demonstrate no negative impact the PSW.	Pre- and post-development water balances are matched as described in the Hydrogeological Report and included in the Addendum.
144	32.Section 7.1.5 Significant Habitat of Endangered and Threatened Species, please provide documentation of correspondence with MECP confirming the proposed mitigation measures for bat species at risk are acceptable. Please also update the Butternut paragraph to include details from NRSI, as requested above.	Information Gathering Form to be prepared for bat species at risk. Butternut information provided as Appendix G.
145	33.Section 7.1.6 Locally Significant Species, please clarify where the Yellow-billed Cuckoo was heard. The text appears to indicate that the Yellow-billed Cuckoo was heard singing from the development area of the site. Please provide an assessment based on the Official Plan's policy on Habitat for Significant Species to establish whether or not this Natura Area designation applies.	Location of Yellow-billed Cuckoo shown on Figure 4. Upon further inspection, it appears that the observation was within the buffer area of the significant woodland (outside development area). However, the single observation of a Yellow-billed Cuckoo (not observed in 2021) does not constitute habitat for significant species.

146	34.In section 7.3.1.3 Wildlife Friendly Building Design, please note that the EIR should include more detailed guidance on bird-friendly building design to inform detailed design.	Included in Addendum. Acknowledged. Additional details not required in Addendum.
147	35.Environmental planning staff are supportive of the timing recommendations made for the removal of debris and woodchip piles to protect snakes. Consider including a recommendation to incorporate snake hibernacula and/or gestation site habitat structures in the buffer portion of the natural heritage system. The Environmental Implementation Report would then provide further information on location, design, etc. to assist with detailed design and implementation.	Acknowledged. Additional details not required in Addendum.
148	36.In section 7.3.4 on page 7.8, please update the paragraph on Butternut to reflect the outcome of the Butternut Health Assessment and authorization. NRSI should be contacted for this information.	Butternut information provided in Appendix G of the Addendum.
149	37.The details included in the post-construction monitoring program are acceptable for the EIS; however, please note that a requirement of the forthcoming EIR will be to provide a detailed post- construction monitoring plan. Similarly, additional detail on vegetation plantings will also need to be provided in the EIR. Please update the EIS to include a summary section on EIR requirements and a proposed outline for the future report. Please note that this was included within the approved Terms of Reference.	EIR requirements included in Addendum.
150	 38. The following major topics were omitted from the EIS and should be assessed in detail in a revised EIS as part of the next submission: - assessment of bat species at risk habitat and supporting documentation from MECP; Butternut assessment details and supporting documentation from MECP; assessment of Habitat for Significant Species; assessment of Cultural Woodland; assessment of grading impacts; assessment of wetland water balance, based on assessment of monthly differences, pre- to post-development, for lands draining to the Torrance PSW and Hanlon PSW, to determine whether or not ecological and/or hydrologic impacts resulting from the proposed development are anticipated; and 	Established buffers are set out in the Official Plan and therefore the analysis required and determined need for those buffers has already been completed during Official Plan Amendment 42 and is therefore not re-examined. An assessment of bat species at risk habitat is not required based on follow up consultation between the City and MECP. However, an Information Gathering Form will be submitted concurrently with this EIS Addendum and follow up documentation will
	 recommended scope for EIR. 	

151	39.Section 9.0 Policy Compliance should focus on the consistency of the proposal with the "no negative impact test". As written, the focus appears to be on establishing feature-based constraints to development. This is not consistent with the PPS, and the natural heritage system's approach to protecting, enhancing and restoring natural heritage in Ontario.	be provided to the City when received. The remaining bulleted items will be addressed in the Addendum. Acknowledged, policy compliance updated in Addendum.
152	40.Section 10.1 Report Summary, please update the bullet on SWH to indicate Candidate vs Confirmed. Further, the bullet on the proposed stormwater management plan indicates that parking lot runoff will be infiltrated. This detail was not included in the description of the stormwater management system presented earlier in the EIS. Please ensure that all statements are consistent and coordinated with the engineering plans prepared for the proposed development. Please note that infiltration of parking lot water is not supported by the City. Lastly, the report summary should include changes to wetland hydrology and ecology, and removal of accessory habitat to list of potential impacts associated with the proposed development.	Stormwater management section of the EIS addendum has been updated to reflect the revised SWM design and are consistent. Parking lot water will be infiltrated. To comply with the City of Guelph 'treatment train' recommendation, an Oil-Grit Separator Unit (Stormceptor EF4) was sized also upstream of the Permavoid storage tank, to treat runoff produced over the parking area (Catchment 204 and 208). In addition, catchbasin shields will be provided on-site. As the Stormceptor EF 4 will provide approximately 90% TSS removal to contributing runoff, this approach will incorporate redundancy into the water quality system and it can be expected that the entire site will have approximately 80% TSS removal. Updated summary of candidate vs. confirmed SWH to be included in Addendum.
153	41.Please update section 10.2 Recommendations to include the erection of Tree Protection Fencing prior	Acknowledged, additional details not required in
	to the commencement of site alteration/construction.	Addendum.
154	42.Please update mapping provided in Appendix A to include the following: – established wetland buffer;	Updated mapping provided in Appendix A.

	 Ecological Land Classification vegetation community information for polygon adjacent to FOD5- 6; extent and type of Significant Wildlife Habitat features; limit of the Natural Heritage System; and Cultural Woodland and/or Habitat for Significant Species, as appropriate, based on the criteria-based assessment requested above. 	
155	Hydrogeological Assessment 43.In section 4.2.4.1, pre-treatment for TSS is suggested to eliminate a number of sediment-bound metals in the discharge effluent. City staff agree that the proposed pre-treatment approach would likely reduce these concentrations; however, please note that samples would still be required to be collected to confirm this assumption, prior to the discharge being authorized to City sewers.	Acknowledged.
156	44.Please update section 4.2.4.1 to clarify whether or not VOCs were sampled to confirm presence/absence. The City's Sewer Use By-law prohibits discharge of VOC-impacted. Please note that VOC sampling may be required under a future discharge agreement with the City's Wastewater Division.	The testing for volatile organic compounds (VOCs) was not completed for the groundwater samples collected from selected on-Site monitoring wells in September 2018. Tricar acknowledges that the testing for VOCs may be required under a future discharge agreement with the City's Wastewater Division.
157	45.The post-development water balance provided in section 5.3 does not appear to account for the lands fronting on Valley Road (0.27ha catchment shown on Figure 15). Please explain why this area was excluded from water balance calculations, or update the water balance to include this catchment. Further, the size of the catchment draining to Torrance provided in the water balance assessment is 1.73ha, which does not match the catchment area of 1.44 ha in the hydrologic model. Please update the calculations ensuring that consistent catchment areas are applied.	As stated under Section 5.0 (Page 5.3) of the Stantec (2020) Hydrogeological Assessment report, "the lands fronting Valley Road within the northeastern portion of the Site are not included in the pre- and post-development water balance calculations, given that these lands are to come under the ownership of the City and, subsequently, will no longer be the responsibility of Tricar." Note that under the initial water balance analysis, this 0.27 ha catchment remains unchanged from the pre- to post- development condition, making the inclusion of this

		land parcel in the analysis unnecessary. As requested, the pre- to post- development water balance calculations have been updated to account for the specified area discrepancy (1.73 ha vs. 1.44 ha). Please refer to the attached Infiltration and Groundwater Mounding Assessment Technical Memorandum (Stantec, 2021) for further details.
158	46.The EIS should refer to Section 6.0 Groundwater Dewatering Assessment and include recommendations for monitoring and best practice. This could be included as an item for the future EIR.	Acknowledged, will be included in EIR recommendations in Addendum.
159	47.Section 6.1 – It appears that a safety factor was not considered in the calculations of dewatering volume estimation, nor was any basal seepage considered. Although the site typically has observed downward gradients, the hydrological assessment indicates that upward gradients are present. Please add a factor of safety to the calculations and account for basal seepage, or provide text to explain why these elements were not considered in the calculations.	Factor of safety will be added to calculations in the Hydrogeology Report.
160	48.An infiltration (rock) trench is proposed to address the infiltration deficit. The infiltration (rock) trench is located within the Torrance Creek Subwatershed. Please include an analysis of the post-development water balance per watershed. For example, with LID measures in place, the water balance should demonstrate that the infiltration rate/volume should roughly match pre- to post- rates/volumes within each Subwatershed (i.e. Torrance and Hanlon). A stormwater management design and supporting analysis demonstrate no negative impact to the receiving natural heritage system is required. This is typically achieved by demonstrating that the proposed development and stormwater management system matches pre- to post- monthly infiltration rates/volumes and monthly runoff rates/volumes. Hydrographs depicting monthly differences in runoff volumes and infiltration volumes are helpful in demonstrating consistency with the natural heritage system "no negative impact" policy test.	Updated water balance calculations based on the revised SWM approach included in Addendum. Pre- and post-development infiltration and runoff rates are matched.

		· · · · · · · · · · · · · · · · · · ·
161	49.In Section 7.2 construction proximity to the nearby municipal well is accounted for; however, there is no discussion provided as to private residential wells in the area. During the filing of an application for PTTW or registration under the EASR, it is recommended that the proponent assess potential impacts to private residential wells.	Acknowledged.
162	Tree Preservation Plan 50.Please update the Tree Preservation Plan to include recommendations for the EIR and detailed design.	Recommendations for the EIR and detailed design stage have been included in the TPP in Section 6.4.
163	51.Environmental planning is generally supportive of using a polygon approach in certain situations; however, based on data provided in Appendix 1 Tree Inventory Data, it is unclear how the stem count column relates to the Polygon. For example, 1 stem is reported from each of Polygons A, B, C, E and F. Given the brief description provided on page 4 of the plan: "If trees were present in monoculture hedgerow features, a polygon method was used". Based on this description, >1 stem per polygon would be expected. Please clarify.	The tree tables in Appendix I have been updated to include the accurate number of trees for each tree polygon.
164	52.Please update Map 2 of the Tree Inventory and Preservation Plan to show Tree Protection Fencing around the perimeter of the natural heritage system.	Updated Tree Preservation Plan provided. Map 2 in the TPP has been updated to show the Tree Protection Fencing around the perimeter of the Natural Heritage System, at the 10m Significant Woodland buffer.
165	Functional Servicing Report 53.Please update section 5.1.2 Torrance Creek Subwatershed Study to accurately reflect recommended infiltration rates, which in the case of the proposed development is between 150mm/yr to 200 mm/yr.	Updated in revised FSR.
166	54. The FSR indicates that the area outletting to Gordon Street (Hanlon Creek Subwatershed) will increase, post-development. The infiltration trench is proposed in the Torrance Creek Subwatershed, which means the majority of stormwater originating from the Hanlon Creek catching will be generated as runoff. Please clarify that the receiving stormwater pond has capacity to control the runoff volumes generated by the proposed development. Please note that surcharge of this facility is directed to the Hanlon PSW. Runoff volumes should match pre- to post- per the Hanlon Creek Subwatershed recommendations.	Revised SWM strategy to match the pre and post Torrence Creek and Hanlon Creek subwatershed water balance.

		· · · · · · · · · · · · · · · · · · ·
167	55. The description of Catchment 202 provided at the bottom of 5.6 indicates that roof-top water will be directed the storm sewer on Gordon Street, with the 25mm event being directed to the infiltration trench. Please clarify that up to and including the 25mm is intended to be directed to the infiltration trench. Events in excess of 25mm or when back to back events occur prior to draw-down would be directed to the storage tank, eventually draining to the storm sewer when capacity is reached. Environmental planning strongly encourages infiltration of 'clean' water to maintain infiltration and baseflow in Hanlon Creek to the greatest extent feasible. Please consider this comment when updating the FSR.	SWM strategy has been revised.
168	56.The EIS should include an analysis of the findings presented on page 5.8 which relate to pre- to post- differences in runoff and infiltration being directed to the Torrance and Hanlon Subwatersheds under the post-development scenario. Based on the analysis provided in the FSR, the EIS should provide an assessment as to whether or not impacts to the ecology or hydrology of the wetlands are anticipated.	Updated water balance calculations based on the revised SWM approach included in Addendum. Pre- and post-development infiltration and runoff rates are matched.
169	57.How would the infiltration trench function in the event of back-to-back storms? Please clarify whether or not a safety factor was incorporated into the sizing and design of the infiltration trench.	A safety factor has been incorporated (2.5 for the South trench, and 3.5 for the East trench). The system is equipped with an overflow and the site designed with an overland flow route to direct major event flow toward the Gordon Street right-of-way.
170	58.In section 5.6 On-site Infiltration, on page 5.9, it is stated that "The infiltration gallery should only be intercepted by groundwater in spring-time". How was this detail factored into the water balance? The EIS should provide an analysis of potential impacts arising from the proposed stormwater design. For example, if groundwater intercepts the infiltration trench during the spring, infiltration will not occur which would result in more runoff being directed to Hanlon Subwatershed. This is unacceptable and should be addressed in the next submission.	The SWM strategy has been revised to incorporate an infiltration gallery (south) while changing the previous eastern infiltration gallery to a rain garden LID feature. The LID feature maintains a separation of 1 m from the high ground water table recorded as 340.3m. Added monitoring wells within the footprint of the LID feature will confirm the high groundwater table and confirm separation.
171	59.Please note that in situ permeameter testing is required to demonstrate that the proposed infiltration trench will function as anticipated. Please provide this information in the next submission.	Onsite testing to be completed in June and is incorporated into the Hydrogeological Report.

172	60.Drawing SSP-2 Storm Drainage Area Plan – It is unclear how the Area IDs relate to the Catchments described in the FSR and Hydrological Investigation report's water balance calculations. Please ensure that this is clarified and coordinated among studies and drawings in the next submission.	Inconsistencies remedied in revised FSR.
173	61.Drawing GP-1 Grading Plan indicates that extensive grading is required adjacent to the natural heritage system. Please provide additional detail on grading requirements (e.g. spot elevations) to enable a proper assessment of consistency with Official Plan policy. Please note that a cross-section can be helpful in demonstrating how the required grading relates to the protection of the natural heritage system. At a minimum, please update GP-1 to show differences in grade adjacent to the natural heritage system, and slope, particularly at the southeast end of the site.	Grading is no longer proposed within established buffers.
174	62.It is unclear how the proposed erosion and sediment control plan has been coordinated with the proposed grading plan. For example, tree protection fencing and silt fencing is proposed in an area identified for extensive grading on GP-1. Please clarify.	Inconsistencies have been rectified in updated plans included in the Addendum.
175	Landscape Concept 63. The Landscape Concept proposes the planting of coniferous and deciduous trees on top of the infiltration facility. Guelph's Engineering Development Manual specifies a minimum 1m offset of plant material from infiltration galleries. Please relocate the proposed trees outside of the infiltration gallery area.	Landscape concept have been revised to not include tree plantings on the infiltration galleries.
176	Summary A revised EIS is required to address the comments provided above. Revisions to the supporting studies, including the Tree Preservation Plan, Hydrological Assessment, Functional Servicing Report and Landscape Plan are required. Environmental planning encourages the applicant to meet with City staff to discuss the comments provided, prior to providing a second submission. Substantial work remains outstanding to adequately demonstrate no negative impact to the natural heritage system's ecological and hydrologic features and functions.	Acknowledged, supporting documentation provided.

Jy	oti Pathak, Parks and Recreation 519-822-1260 x 24 December 18, 2020	31 Jyoti.pathak@guelph.ca
184	Trail Network:	See response to #137
	The Official Plan – Schedule 8 'Trail Network' includes a proposed off-road secondary trail route along western edge of the Torrance Creek provincially significant wetlands through the subject property that connects to the approved proposed trail west of Valley Road condominium to the north and west of 1280 Gordon Street to the south.	
185	Please note that the trail alignments north and south of the subject site have been designed and approved through the development review process and the developer is responsible to identify the trail alignment and preliminary trail design on the subject site as included in the terms of reference for the EIS.	See response to #137
186	Local trail connection: Provide a local accessible trail connection, 2.5 m wide, to connect the proposed park to the proposed Citywide trail at the back of the property. This trail connection is to be designed and developed as part of the Landscaping works on the subject site.	See response to #137
187	 Provide conceptual trail alignment for City's review of the following connections: North-south Citywide trail connection East-west local trail connection 	See response to #137
189	Environmental Implementation Report: An environmental implementation report (EIR) will be required to address the recommendations provided through the final approved Environmental Impact Study including Open Space Works and restoration, detailed landscape plans (by an accredited landscape	Acknowledged. Recommendations for the EIR are included in the Addendum.

190	architect); detailed design and mitigation plans to support the trail. The EIR will address the recommendations related to trail system and natural open space system, including detail design of the trail system; preparation of Landscape Plans and details to address demarcation, removal of invasive species, hazard trees along the trail system and residential properties; clean-up of debris and waste; restoration; compensation and enhancement planting for buffers; invasive species management; design of educational/ interpretive and stewardship materials/ signage. Detailed trail layout, grading and drainage plans showing trail design details such as signage, structures, etc. will be provided in the Environmental Implementation Report consistent with City of Guelph's current trail standards and other City Guidelines i.e. Facility Accessibility Design Manual and Engineering Development Manual where applicable. The trail plan, design and construction will comply with all relevant regulations applicable to trail management made under the Accessibility for Ontarians with Disabilities Act. Open Space Works and Restoration: Provide planting to enhance ecological buffers and wildlife corridors and compensation for removed trees, etc. and detailed planting plans will be provided with the Environmental Implementation Report.	Acknowledged. No additional detail required in Addendum.
	Provide seeding to restore graded areas within the	
	open space	
191	Tree Preservation and removal of invasive species and hazard trees: Schedule removal of the common buckthorn within the trail corridor prior to trail construction. A review of hazard trees (e. g. dead, partially dead or dying trees) along the trail route will be conducted at the time of vegetation removal by a qualified arborist. Identify all hazardous trees along the trail route in consultation with Parks staff for removal prior to start of trail construction. Hazard trees only would be removed within striking distance of the trail.	Acknowledged. No additional detail required in Addendum.
195	Summary: Parks does not support the proposed development based on the current information provided. Parks needs revised documents which reflect the comments provided above for our further review and comments. Draft conditions would be provided upon receiving satisfactory proposal.	Acknowledged. No additional detail required in Addendum.

APPENDIX C.2 COMMENT MATRIX FOR ADDENDUM VERSION 1 SUBMISSION

Comment Matrix for Second Submission OZS20-004,

Draft Plan of Subdivision, Official Plan and Zoning By-law Amendment 1242 – 1270 Gordon Street and 9 Valley Road, Guelph

Last updated June 17, 2022

Мо	Mohsin Ali Talpur, M.Eng., P.Eng. Development - Environmental Engineer, Engineering Services, Guelph December 14, 2021		
#	Comment related to second submission	How comment has been addressed	
1	Functional Servicing Report 1. In our previous comment#4, we had asked about the email correspondence from City regarding sanitary capacity. The revised report suggests the correspondence is attached in Appendix A. However, the Appendix A includes Stormceptor EF report. Please provide the correspondence for review.	Email correspondence is included.	
2	2. The section 3 is not updated based on our previous comments about a 'H' (holding) be placed on the property until such time a new sewer is installed. Please include the information in the text of the section 3 of the FSR report.	Report has been updated to include reference to staff recommendation for an H to be applied.	
3	3. The Section 4 of the report had not been updated regarding City's water supply pressures for the proposed development as per our previous comment #3. Please update the section as per our previous comments.	Report has been updated	
4	4. The previous comment #6 regarding Steep gradient of Street 'A' over 6% has not been addressed. Please revise the gradient accordingly.	The Street A profile has been revised to be 6% or less.	
5	5. In our previous comment #7, it was requested to provide a typical cross-section of Street 'A', and label for centerline radius. The typical cross-section and the centerline radius on engineering drawings are still missing. Please provide requested information for review.	The typical cross section is City of Guelph standard drawing 5-48a of the City of Guelph Linear Infrastructure Standards 2021. This detail drawing is easily referenced and has not been included on the drawing set. The centreline radius is 18m and has been labelled.	
6	6. It appears that sidewalk is provided on one side. We had requested to update the drawings in our previous comment #8, but the plan has not been updated as requested. Please show the sidewalk on both sides of Street 'A' plan and provide a typical cross-section for review.	Sidewalk is provided on one side as per the typical cross section City of Guelph standard drawing 5-48a of the City of Guelph Linear Infrastructure Standards 2021. The sidewalk is on	

		thedevelopment side of
		Street A. Due to
		alignment and lane
		configuration
		considerations, the
		Street A right-of-way
		would require future
		expansion on the north
		side to accommodate a
		2nd sidewalk. This
		widening could be
		obtained in the event
		adjacent lands are the
		subject of a
		redevelopment
1		application similar to
		the creation of Street A
		as part of this
1		application. The lane
		alignment of Edinburg
		St across Gordon
		Street is currently
		skewed and further
		adjustment to provide
		sufficient boulevard for
		a second sidewalk
		would make the traffic
		movement unsafe.
		Furthermore, the
		sidewalk on the
		development side of
		the street will provide
		direct access to the
		future park without
		creating potential
		conflicts with
		pedestrians finding
		themselves needing to
		cross Street A on a
7	7 In position 5.1.4 of ECD the design with the family and	bend Based on the Dro
7	7. In section 5.1.4 of FSR, the design criteria for the site are discussed. The Torrance Creek Subwatershed infiltration	Based on the Pre-
		Development Water
	criteria of 150mm/year were adopted for the site. However,	Balance calculations,
	the GRCA mapping for the site (Tributary D of HCWS) shows	the infiltration volumes
	a recharge of 122-199mm/year, which are consistent with	predicted for the
1	predevelopment water balance analysis recharge rates for	portions of the Site
	the Site ranges from 192mm/year to 222mm/year. Therefore,	located to the northeast
	it is recommended to update recharge criteria of the Site.	of the flow divide
		(Torrance Creek
1		Subwatershed) and
		southwest of the divide

		(Hanlon Creek Subwatershed) add up to 7,227 m ³ .
8	8. The requested information of traffic geometric plan showing large moving trucks to /from the site was requested in our previous comment #8 had not been provided. Please provide the requested information.	Updated geometric plans are included in the TIS memo.
9	9. The Street 'A' ROW area has not been included in the proposed storm drainage conditions in Drawing No. 2 and the Section 5.5 of FSR report. This deficiency was identified in our previous comment #7 as well. Please update the report accordingly.	Street A has now been included.
10	10.The catchment areas numbering on Storm Drainage Plan are not consistent with the FSR brief including notes provided in the drawing no. SSP-2. Please be consistent with numbering and update the documents accordingly.	Catchment numbers have been updated.
11	11.Please update the Section 5.5 of FSR that states two 10- storey apartment buildings, one with one level of underground parking and one with one level of underground parking. It seems contradicting the proposed two levels of parking for the buildings. Please update the text.	Report has been updated
12	12.It appears that the major overland flows from the site discharging uncontrolled to the Gordon Street including proposed Street 'A'. The City criteria states that post- development flows shall be controlled to predevelopment (existing) levels for the 2 year through 100year storm events. The proposed site impervious cover is changed over 90% that may cause flooding on Gordon Street at significant events. Please provide onsite storage for all peak flows (2year to 100year) to pre-development rates.	Water quantity controls have been provided for the subject Site. Street A is a municipal street and external to the Site with quantity controls being provided by existing infrastructure downstream.
13	13.A 3.5m high acoustic barrier is proposed at the south west corner of the site. The proposed overland flows through southern amenity areas discharge to the Gordon Street will be intercepted by the proposed acoustic barrier walls. The noise barrier walls are not designed to withstand the overland flow pressures and are not designed to pass flows through it. Please provide details of overland flow routes showing controlled flows discharging safely without any obstructions for review.	Southern noise barrier has been removed to account for the account for the accessible ramp. A swale has been added to the south side of the property to direct overland flow to the Gordon Street right-of- way. Refer to revised civil drawings.
14	14.The MUDUSS model comment line mentions 1250 Gordon Street. Please update to 1242-1260 Gordon and 9 Valley to be consistent with the proposed application.	Revised
15	15.The MIDUSS model shows duration of 180 minutes (3 hours) for all storms including 2year, 5year and 100year storms, which is not appropriate. Please use 5 minute duration time for 2 year and 5 year storm events as per City standards and update the model calculations accordingly.	Revised

16	16.The Street 'A' Catchment area (i.e., A18 - 0.29 ha) has not been included in both existing and proposed conditions of MIDUSS. Please incorporate the area and propose quality and quantity control for the Catchment A-18 and submit updated hydrological model and drawings for review.	Water quantity controls have been provided for the subject Site. Street A is a municipal street and external to the Site with quantity controls being provided by existing infrastructure downstream.
17	17.There are no calculations provided for the sizing of sewers. It seems the sewers are designed based on 180-minutes duration, which is not acceptable. Please provide design sheet in excel format for 5year storm event for review.	A design sheet supporting sewer sizing has been provided.
18	18. The proposed approach for the rooftop storage to attenuate up to 25mm rainfall events using 75mm diameter orifice, connected through downspout system into on-site infiltration trenches seems reasonable. However, we had concerns on proposed active storage of 136 m3 for West building rooftop and 138 m3 of active storage on East Building rooftop during 100year storm event. The rooftop storage at 100year storm event including number of Catchment areas discharging uncontrolled to Gordon Street should be directed to a storage facility and release runoff to Gordon Street at predevelopment rate. The City prefers using open surface SWM facility to control all flows 2year to 100year at pre-development rates. Please adjust grading and explore options for out-letting controlled flows to the Gordon Street.	Rooftop controls have been revised to include industry standard roof drains 100-year controlled to 42 L/s/ha. Due to grading constraints, an open surface SWM facility was not feasible.
19	19.The Proposed Permavoid infiltration gallery having 90% voids seems challenging product to be allowed for the infiltration galleries within the City. The City does not accept sizing of the galleries that include infiltration from the sides of the gallery, only bottom footprints should be considered for infiltration gallery sizing. The calculations provided are not legible. Therefore, provide detailed calculations in excel format with supporting documentation for review and recommended to use conventional stone gallery for infiltrating West building rooftop runoff as well.	Infiltration calculations consider the bottom area of the gallery for infiltration and does not include sides. See revised calculations attached to the FSR.
20	20.It appears that the Permavoid system is proposed for both quantity control and infiltration located into the southern amenity area. The proposed Permavoid infiltration system will mix the clean rooftop runoff from western building, with runoff from parking, and laneway areas to infiltrate. Based on City's Source Water Protection infiltration policy only clean rooftop runoff can infiltrate. The runoff generated from parking and laneways areas that contains contaminants including road salts during the Winter seasons with suspended sediments should be separated from rooftop runoff and directed to storage tank and release at pre-development rates. Please demonstrate a separate clean rooftop runoff to infiltrate and	To meet water balance targets, the infiltration of parking lot runoff is required. Salt application will be prohibited on site, and salt alternatives will be required for winter maintenance.

	· · ·	
	provide a separate storage for major and minor flows	
	providing quality control and to release flows at	
04	predevelopment rates.	The cubeurfees
21	21.A Pemavoid storage system is proposed just downstream of southern infiltration gallery. The underground perforated system will allow runoff to infiltrate contaminants collected from parking and laneways areas into the ground, which is not acceptable. Please demonstrate that all runoff generated from the site is stored and released at pre-development rates by providing an open surface storage.	The subsurface retention facility will be lined with an impermeable liner.
22	22. The proposed East infiltration gallery bottom elevation is 340.06m. The seasonal high groundwater elevation at MW5- 18 measured is 340.7m, which is located at about 30m from proposed gallery; the horizontal hydraulic gradient calculated is 0.04 m/m towards Torrance Creek Swamp. Thus, the groundwater elevation estimated at bottom of the infiltration gallery is 339.5m with 0.56m separation from bottom of the gallery, which does not meet the minimum 1.0m separation requirements. In addition, Section 6.1 of Hydrogeological assessment report also mentions that the eastern gallery is approximately 0.8m above projected seasonal high groundwater table. Please demonstrate with detailed calculations and ensure gallery bottom had minimum 1.0 m separation from seasonal high groundwater table.	The gallery has been sited such that 1 m of separation has been provided from the high groundwater elevation.
23	23.For quality control a Stormceptor EF4 unit is proposed upstream of Permavoid storage system to maintain 80% TSS removal. However, the Street 'A' runoff is discharging uncontrol without any quality control. Please provide appropriate size Stormceptor EF unit for the Street 'A'.	Oil/Grit separators have been provided for parking lot runoff and for Street A.
24	Hydrogeological Assessment Report 24.The meteorological data (precipitation and temperatures) used for hydrographs belongs to Waterloo Airport Station that does not reflect trends comparable with measured groundwater elevations provided for the site. It is recommended to use the local meteorological data from Guelph Arboretum Station for the hydrographs and update the Figures 9 and 10 accordingly	Daily air temperature and precipitation data is only available online from the Guelph Arboretum Station to August 1997. The Region of Waterloo Int'l Airport climate station (16 km from Site) is the closest station that provides precipitation
		and air temperature data over the period of groundwater level monitoring presented in the Hydrogeological Assessment report (July 2018 to June 2020).

	included in the pre- and post development water balance calculations. The rational provided that these lands are to come under the ownership of the City and, subsequently, will no longer be the responsibility of Tricar. The water balance calculations (pre and post-development scenario) must include entire area irrespective of future ownership. Please revise the calculations and update the water balance analysis and provide excel sheet for review.	post-development water balance calculations.
26	26. The meteorological data used in water balance analysis is from Waterloo Wellington A Climate Stations that is located approximately 15 km from the site. As mentioned in the report that the climate normal from 1971 to 2000 are available from Guelph Arboretum Climate Station. We prefer using Guelph Arboretum Climate Station for the consistencies in development applications as the Arboretum data will be most representative for the site that is located about 1.5km. Please use the Arboretum data in the updated version.	The pre- and post- development water balance have been updated to the climate normal (1971-2000) from the Guelph Arboretum Climate Station.
27	27. The total infiltration deficits calculated are 2,279 m3 using water balance methodology by deducting evapotranspiration, soil storage losses etc. from the rainfall. However, groundwater recharge impacts and mitigation calculations provided in Section 8 are in complete isolation of water balance methodology. The evapotranspiration is generally 60% of the rainfall. Calculating volume of rooftop under 25mm or less event does not account for evaporation from the building roofs. The simple arithmetic sums with assumptions for frequency of rainfall events for mitigation purposes are not reasonable. Please update the pre-development, post-development without mitigation measures scenarios and include additional post-development scenario with mitigation measures and provide digital copies in excel format for review.	The analysis method has been adjusted to calculate the annual volume of precipitation captured by rooftops for discharge to the East and South Infiltration Trenches
28	28. The groundwater mounding was estimated using Hantush equation spread sheet prepared by USGS for both east and south infiltration galleries for 25mm event. However, the mounding calculations for the proposed Permavoid storage tank having capacity for storage of greater than 25mm storm was not conducted. Please estimate mounding impacts of Permavoid storage tank for 5 year storm storage on adjacent properties.	The infiltration galleries have been re-designed. Only the South Infiltration Trench is now equipped with a Stormtech storage tank, which will be wrapped in an impermeable liner (no infiltration can occur).
29	29.In Section 7.1.3, it is mentioned that there will be no permanent drainage system / dewatering planned for the underground parking area due to construction of waterproof base. Generally, drainage is provided at the bottom of every foundations. We need a written confirmation from building professionals/Architects that there will be no drainage/sump pumps provided for the waterproofed underground parking structures. The building professionals/Architects should quote	This will be addressed further with detailed design of the building however the building foundation is intended to be waterproofed and permanent dewatering

	the supporting Ontario Building Code (OBC) sections that identify that the drainage including weeping tiles, sump pumps are not required for the waterproofed basements. In case of failure in providing supporting information from the OBC, we will consider possibility of permanent dewatering at the Site.	is not anticipated to be required.
30	Noise Impact Study 30.Section 3.1 Table 1B, page 2: As the ventilation and building component discussion is outlined below, it would be better if this table was consistent with the MECP's sound level limits for OLAs only. I understand the concept, but including POW values here, in this context, is technically incorrect. They could be correctly stated in a table if a table is used to summarize the ventilation and building component description.	Report has been adjusted.
31	31.Section 3.1, page 2: If using a separate table to summarize the ventilation and building component review requirements, please note that NPC-300 includes bedrooms and living/dining rooms in both day and nighttime periods (and by extension, evening time periods for stationary noise). The "type of space" would be better described as outside the plane of window, without identifying the type of use inside (or include bedrooms and living/dining rooms in the description). Please note that this type of description (bedrooms at night, living/dining rooms in day) should be corrected throughout this report, most notably Sections 10 & 12).	Report has been adjusted.
32	32.Section 3.1, Page 2: Please update Appendix D based on changes made in the body of the report.	Report has been adjusted.
33	33.Sections 3.4-3.6: Please update references to the criteria table(s).	Report has been adjusted.
34	34.Section 3.6, pages 3-4: Is there a copy/paste error in this section? Not sure why we're talking about STEAM concepts.	Report has been adjusted.
35	35.Section 3.7, page 4: Not sure why this section is here, as the details are more specifically/correctly spelled out in the preceding sections.	Report has been adjusted.
36	36.Section 3.8 paragraph 1, page 4: Technically, the stationary noise criteria is based on the worst-case scenario for the affected site; while is this often at the point of time of lowest ambient roadway traffic, that isn't always the case, and is not the way NPC-300 defines it.	The calculations were conducted using the highest sound level (100% duty) during the quietest time of the day when the equipment is operating provided the largest difference between the two. As per MECP's NPC-300 guideline as the greatest noise impact relative to the limit in any hour.

37	37.Section 3.8 paragraph 3, page 4: Please update based on Class 2 Area.	Report has been adjusted.
38	38.Section 3.8 paragraph 4, page 4: Details of the traffic volumes, assumptions and calculations used to set the stationary sound guidelines have not been included in the submitted study; please provide as part of the next submission.	Report includes detailed traffic data provided by the City.
39	39.Section 4.0: Less traffic data is provided in Appendix B then was provided in the 1st submission; please provide all of the traffic data that was used to determine the volumes used for this study, and include summary page(s) showing how the final values were obtained.	Updated traffic counts were provided by the City and the calculations updated.
40	40.Section 4.0 Table 2, page 5: Even if existing heavy truck % is zero, why is projected heavy truck % zero? Only valid if road has heavy truck limits (verified to remain in place to horizon year).	Updated traffic counts were provided by the City and the calculations updated.
41	41.Section 6.0 paragraph 1, page 7: AC is not a noise control feature. See NPC300 Section C7.8.	Report has been adjusted.
42	42.Section 6.0 paragraph 2, page 7: What is the feasibility of mitigating at these locations? Are there options for the developer to consider during future detailed designs?	Solid railings (at least 1.1m high) may be considered. This would be reviewed during the final design stage.
43	43.Section 6.1 paragraph 2, page 8: The proposed noise barrier height is not consistent with the GNCG specifications for noise barriers.	Site design and report have been modified where acoustic fencing is not required.
44	44.Section 6.1 paragraph 2, page 8: The OLA at location 12 has geometric features (mostly in the form of grade changes) that may cause the proposed barrier to become ineffective at some locations within the OLA (for example, only a few meters further back the elevation is 3m higher, and there is the potential for "bright zone" exposure). Please review, and provide some additional context to ensure the final proposed mitigation will provide the required protection throughout the OLA space.	Site design and report have been modified where acoustic fencing is not required.
45	45.Section 7.0 paragraph 1, page 8 & Appendix A, Figure 6: The site extents shown in Figure 6 do not match those on the concept/draft plan.	Report has been adjusted.
46	46.Section 7.0 paragraph 2 (and list that follows), pages 8 & 9: If CadnaA provides the highest sound level point along each facade of the buildings, is there a reason to call out three specific analysis points that are not at the highest sound level locations on the buildings?	It is not clear what the reviewer is referring to. The sound levels from CadnaA show the highest sound level at each façade (i.e., 48 dB at south facade). A single point was selected (at the highest sound level at 48 dBA) in order to extract from

47	47.Section 7.0 paragraph 3, page 9: Please review the wording of this section (and refer to past comments on this), as this description is not technically correct as per NPC-300. This report should analyze the stationary noise based on either the exclusion limits or the worst case impact (or both, and compare the results). Please update the report based on the chosen method, the correct noise criteria and correct time periods, for all appropriate receptors. If ambient noise levels "from the quietest hour" are being used, the calculations used to determine the values must be fully detailed in the report and Appendix, as appropriate.	CadnaA, the details of all sources at that particular point of reception. Updated traffic counts were provided by the City and the calculations updated to reflect the hourly sound levels to determine the quietest hour. Hour by hour calculations were conducted (shown in Appendix B) based on a Class 2 Area designation. Where the calculated hourly sound level is greater than the MECP's exclusion limit (45 or 50 dB as applicable), this higher value is used. It is assumed, for example, that the all mechanical ventilation equipment is operating at a 100% duty cycle during the day (the highest sound
		quietest hour sound level (i.e., the greater change between the source and the ambient sound level).
48	48.Section 7.0 Table 6, page 10: Why are the OLAs only analyzed during evening? Please update for day and evening time periods. The noise criteria used is incorrect: NPC-300 lists the exclusion limit value for OLAs in Class 2 Areas during evening time period as 45 dBA.	Report has been adjusted.
49	49.Section 8.0: Provide details of the HVAC equipment assumptions made for these calculations, along with justification of these assumptions for buildings of this type and size. Verify that there are no planned sources of noise at any location on/at/around these proposed buildings other than the roof areas: other elements that may be missing from this analysis include (but not limited to) blowers/exhaust from the underground parking, emergency generators, HVAC equipment on lower roof levels, etc.	Based on a data from similar building developed by Tricar, the preliminary rooftop sound levels have been calculated. This includes a cooling tower (Sound Power Level: 96 dB) and MUA unit (Sound Power Level: 81 dBA).

50	50.Section 8.0 paragraph 2 (list), page 10: Section 2.0 of this report identifies these buildings (1280 Gordon Street and 1284 Gordon Street) as 6-storey.	This is not correct. The report states the building heights as 5 storeys which is correct.
51	51. Section 8.0 paragraph 3, page 10: Please update this section based on Class 2 Area, and comments above.	Report has been adjusted.
52	52. Section 10.0 paragraph 1, page 12: See comment re: Section 3.1 Table 1B above.	Report has been adjusted.
53	53. Section 10.0 paragraph 1, page 12: More information is needed as to the assumptions made for the BPN-56 calculations (can be provided in that section of the Appendix.) There is also no discussion of what STC values are anticipated under standard OBC requirements for this building, so there is no comparison provided between the STC values obtained from the BPN-56 calculations and the statements made in this section.	Report has been updated including BPN56 outputs.
54	54. Section 10.0 paragraph 2, page 12: This statement is confusing, please review and revise/clarify. Please also state assumptions for window/door-to floor areas as part of this statement (and in the recommendations section) as was done for the unit calculations above. See also comments above regarding assumptions of anticipated STC values under standard OBC.	The text has been revised and includes assumptions used for window area to floor area ratios and STC rating assumed.
55	55. Section 12.0 recommendation #3, page 13: See comment re: Section 3.1 Table 1B above.	Report has been adjusted.
56	56. Section 12.0 recommendation #4, page 13: Please update the figure reference.	Report has been adjusted.
57	57. Section 12.0 recommendation #6, page 13: Please include requirement for barriers to meet GNCG requirements (this will also be a condition of approval).	Report has been adjusted; barriers not required.
58	58. Appendix B: Please label the STAMSON output pages according to the receiver locations as listed in Figure 3.	Report has been adjusted.
59	59. Appendix B: All distances used in the STAMSON calculations appear to be off by ~3m when compared to the building placement shown on the submitted engineering drawings.	Any differences were found to be typically less than 1m and acoustically insignificant. All calculations have been updated.
60	60. Appendix B: Please note that when including a barrier, the three elevation values need to be used. For a feasibility study if unknown and other conservative factors were included, they can remain 0 (but helpful to indicate method used in the report or appendix). For a detailed study, the correct values need to be used.	If barriers are considered in the final noise study, the calculations are always use 3 points in determining the barrier effect between the source and receiver.
61	61. Appendix B, filename "b_nw.te": It is unclear which receiver point is being calculated for with this output. The	The calculation is for the NW facade of the

	filename suggests Location 8, but the distances used suggests Location 11, but with incorrect values. Please	east/west leg of Building B (Location
	review/clarify.	11). The distance to Gordon Street is correct (77.3m) for Location 11. There was
		no error found in the STAMSON file. File b_nw2.te is Location 8 (Distance: 123m).
62	62.Appendix B, filename "b_se.te": Why was an "elevated" topography type used here? If this location meets the definition as per ORNAMENT, please complete the calculation correctly and include additional items (cross section drawing, etc.) to show how and why this was used.	The use of an elevated topography (3) has no bearing on the result because a reflective ground surface (2) was used. There is no ground effect used in the calculation because of the height of the receiver (30m). In all cases, there is no ground effect. The calculation now shows Topography 1.
63	63.Appendix B, filename "b_nw2.te": It is unclear which receiver point is being calculated for with this output. The filename/description suggests Location 8 but with incorrect barrier-receiver distance. Please review/clarify.	The calculation is correct (distance, partial exposure to Gordon St. and receiver elevation). The calculation is demonstrating the sound level at the NW facade of building B, similar to all of the other points of reception outlined in the report.
64	64.Appendix B, filename "ola_b2.te": Please update this calculation to be consistent with the others in this report. (use of single segment, no use of house rows, etc.)	It would be technically incorrect not to use the row of housing for grade level receptors and they remain as part of the calculation. The row of housing was not used for the top floors of the buildings (worst case) as the row of housing would have no acoustic benefit for these areas because of the elevated receivers.

65	65.Appendix B, BPN-56 Calculations: Please provide more information on the assumptions used for these calculations (all BPN-56 calculations). As per previous comments, NPC- 300 no longer assumes time of day for type of interior use: to be conservative (for this feasibility noise study) an intermediate room absorption should be the maximum assumed. If assumptions are made for percentage of operable glazing, this needs to be stated in the body of the report also.	BPN-56 allows the use of hard (kitchen), intermediate (living room) and soft (bedrooms) for the calculations. Given that no special measures are expected in any case, changing to an intermediate absorptive is not likely to result in any change to the exterior façade requirements.
	Leah Lefler, Environmental Planner, Guelp	
	519-822-1260 extension 2362 leah.lefler@guel	
	December 15, 2021	
66	Environmental Impact Study 1. Please note that, as of October 2021, the City of Guelph has a Bird-friendly Design Guideline.	Section 7.2 was updated using this reference and removing the City of Toronto guidelines.
		Bird fritted pattern has been applied and shown on elevations according to the City of Guelph's Bird-friendly Design Guideline.
67	2. Is Habitat for Significant Species present on the subject property? Please provide an assessment of Official Plan policy 4.1.4.4. Habitat for Significant Species to determine if protection is required. If protection is required, please map Habitat for Significant Species as Natural Areas, within the Natural Heritage System.	Updated Section 5.3.4 to include an analysis under Official Plan Policy 4.1.4.4.
68	3. Per Official Plan policy 4.1.2 and 4.1.3.9, development and site alteration are prohibited in Significant Wildlife Habitat. Figure 2 maps Candidate Significant Wildlife Habitat for Species of Conservation. The Environmental Impact Study must demonstrate that areas of Significant Wildlife Habitat do not overlap with proposed development or site alteration. Areas of Candidate Significant Wildlife Habitat that do not meet the criteria for Confirmed Significant Wildlife Habitat should be removed from mapping within the developable portion of the subject property. Please update Maps 2 and 3 to show the extent of each type of Confirmed Significant Wildlife Habitat as separate layers.	Figure 2 (candidate Significant Wildlife Habitat; SWH) was updated to show individual SWH types, as opposed to the grouping used in version 1. Divided now into Figures 2a, b, c for clarity. Figure 3 (confirmed SWH) was also updated to show individual SWH types.

		Two (2) types of SWH were documented on the Subject Property/Study Area, Deer Wintering Area and Habitat for Species of Conservation Concern for Eastern Wood-Pewee, neither
		of which are included within the development
69	4. Please assess the Cultural Woodland (WODM4-4) mapped on Figure 4 against the criteria of the Official Plan for protection of Significant Woodland (4.1.3.6) and Cultural Woodland (4.1.4.3). Based on the text provided in the EIS Addendum and mapping provided on Figure 4, it is unclear if this vegetation community warrants protection. If the Cultural Woodland does not meet the criteria for protection, please remove it from mapping.	area. WODM4-4 does not meet the minimum size criteria for cultural woodland designation outlined in Official Plan Policy 4.1.3.4 as detailed in Section 5.3.2 of the EIS Addendum. Figure 4 was updated to concur with this assessment.
70	 5. Please update the Figure 5 legend and mapping to reflect the following: Significant Woodland boundary, as approved by the City; Significant Wetland boundary, as approved by GRCA; 10 m Significant Woodland buffer; extent of Confirmed Significant Wildlife Habitat; and Natural Heritage System limit (inclusive of buffers). 	Figure 5 was updated as requested
71	6. Please provide correspondence from the Ministry of Environment, Conservation and Parks confirming the approach proposed for addressing Species at Risk bats.	An Information Gathering Form (IGF) was submitted on March 25, 2022 to outline studies completed to date on the Subject Property with respect to bat Species at Risk as well as proposed mitigation strategies to avoid impacts during construction. Correspondence received from MECP
		will be forwarded to the City of Guelph upon receipt.

		
72	7. Official Plan policy prescribes minimum buffers per feature type, and policy requiring an assessment of the need for an established buffer. The EIS should assess the need for an established buffer.	Section 7.4 added to discuss minimum and established buffers for the Subject Property.
73	8. The EIS must demonstrate no negative impact to the Natural Heritage System by demonstrating a feature-based water balance. Please provide monthly comparisons of pre- to post-development conditions in runoff and infiltration, per catchment.	Section 6.1.4 provides details on the water balance while 7.3 outlines hydrogeological impacts. No negative impacts are anticipated on the NHS based on the results of the catchment-based water balance.
74	9. Stormwater runoff from parking lots is proposed to be infiltrated. As stated in previous comments provided in December 2020, infiltration of parking lot water is not supported by the City. Stormwater quality measures do not treat road salt.	A non-chloride based solution is proposed for winter maintenance, which in conjunction with the proposed quality treatment infrastructure, will allow parking lot water to be infiltrated.
75	10.To permit development on lands adjacent to the Natural Heritage System, the EIS must demonstrate that the entire development does not have a negative impact. Please update the FSR and planning for stormwater management to include the Valley Road parcel.	Section 8.2 of the EIS provides details on the negative impact test. The EIS has been updated to include the Valley Road parcel. The Valley Road parcel has been included in the calculations for water balance
76	Functional Servicing Report 11.Section 5.1.4 of the Functional Servicing Report outlines the stormwater management criteria for the proposed development, which includes an infiltration criterion of 150 mm/year for the site, consistent with the Torrance Creek Subwatershed Study. The Hanlon Creek Subwatershed Study recommends a recharge of 122-199 mm/year for Tributary D, which is consistent with pre-development water balance analysis recharge rates provided in the Hydrogeological Assessment (i.e., 192 mm/year to 222 mm/year) and GRCA mapping for the site. Therefore, it is recommended that the recharge target be updated.	Report has been revised
77	Hydrogeological Assessment	Proposed infrastructure
i		design has been

	12. The proposed east infiltration trench appears to maintain a separation of 0.56 m from the seasonal high groundwater level. Per the City's Development Engineering Manual, infiltration gallery designs must demonstrate a minimum 1.0 m separation from the seasonal high groundwater level. Please provide a design that demonstrates a minimum 1.0 m separation from the seasonal high groundwater table.	revised to provide the 1.0 m separation from high groundwater.
78	13.Please update Section 6.3 Impact to Natural Heritage Features to include an assessment of impact resulting from the south infiltration trench.	Updated
79	14.Please provide a monthly comparison of pre- to post- development runoff and infiltration per catchment in tabular and/or graph form. This information is required to provide an assessment of impact to the Natural Heritage System in the EIS.	Updated
80	15.Water balance pre-development conditions shown on Figure 15 include four sub areas. Water balance post- development conditions shown on Figure 16 include three sub areas, with sub-area C and D combined. What is the purpose and effect of basing the water balance on different sub-areas?	Post-development water balance catchment areas have changed, and water balance calculations have subsequently been re-done / updated. A series of new Sub-Areas have been created and/or revised to reflect post- development land use changes and the introduction of various impervious surface coverages associated with each catchment.
81	16.Section 8 refers to two 12-storey towers. Heights have been reduced to two 10- storey buildings.	Updated
82	17.Figure 12 Groundwater Flow includes "Proposed Monitoring Well (Stantec, 2021)". Please provide a description of the proposed monitoring wells, including what they are intended for.	Please refer to Section 3.1 of Hydrogeological Assessment Report (Version 3). New monitoring wells installed to confirm groundwater table depth below proposed post-development infiltration galleries and provide additional data to better construct groundwater elevation contour mapping and interpret flow direction(s) (Figure 12).

83	18.In Section 4.2.1, it is stated that there is no marked response from notable precipitation events however in December 2019/January 2020 there was an event of 45mm that has a quick response. Please clarify the statement with respect to this anomaly.	The report reflects our interpretation of the data processed for the site.
84	19.Is the station referenced in the last paragraph of Section 5.1 the closest station?	Yes. The Region of Waterloo Int'l Airport climate station (16 km from Site) is the closest station that provides precipitation and air temperature data over the period of groundwater level monitoring presented in the Hydrogeological Assessment report (July 2018 to June 2020).
85	Tree Preservation Plan 20.Please update the Tree Preservation Plan to exclude removals from the park block. No removals are to occur within the park block, unless they pose a hazard or are in striking distance of an adjacent property.	The TPP has been updated to exclude removals in the park block, except for hazard trees that are within a striking distance of an adjacent property.
86	21.Please add a column to the tree table to indicate which trees require compensation and which do not.	The table in Appendix I of the TPP now includes a column for whether compensation is required.
87	22.Please update the compensation requirements to exclude removals from the park block. Private trees requiring compensation per the City's private tree protection by-law will be addressed through a vegetation compensation plan, as part of the Environmental Implementation Report. Public trees, such as City owned street trees, are to be addressed with Urban Forestry staff generally through a Street Tree Planting Plan at site plan.	Trees within the park block have been noted as not requiring compensation.
88	Landscape Plans 23.Please verify that trees and shrubs are located a minimum of 1.0 m away from infiltration galleries. Please include a note specifying that trees and shrubs are to be planted a minimum of 1.0 m away from infiltration galleries. Engineering Plans	Note added to sheet L- 1 on Landscape Plans.
89	24.Relocate ESC fencing to the location of the Tree Protection Fencing. Please include a note that no work or stockpiling of materials should occur in the park block or Natural Heritage System.	Note has been added

90	Draft Plan of Subdivision 25.Common amenity areas and park blocks cannot overlap with the Natural Heritage System, including buffers.	The Draft Plan of Subdivision has been amended to ensure that common amenity areas and park blocks do not overlap with the Natural Heritage System including buffers.
91	26.The Draft Plan of Subdivision should be revised to reflect the boundaries of the Natural Heritage System, including buffers, determined through the Environmental Impact Study.	The Draft Plan of Subdivision has been amended to reflect the boundaries of the Natural Heritage System, including buffers.
92	Summary An EIS addendum is required and dependent upon revisions to the supporting documents and plans. Environmental planning encourages the applicant to meet with City staff to discuss the comments provided, prior to providing a third submission. Please note that comments provided by Scott Cousins, City of Guelph Hydrogeologist, are included in comments provided under the Hydrogeological Assessment heading above.	Noted
	Gwen Zhang, P.Eng., Transportation Planning Engin 519-822-1260 x 2638 <u>Gwen.Zhang@guelph</u> November 17, 2021	-
93	Staff are generally in agreement with the study findings and conclusions that the subject development can be accommodated by the area road network with some improvements to Gordon Street, including a new east approach at the Edinburgh Road intersection, a centre left- turn lane along Gordon Street, and an exclusive northbound right-turn lane at the Arkell Road intersection. These improvements are in line with recommendations in the	Noted.
	Gordon Street Improvements Study (2020).	

95	2. Update the sightline assessment as a result of road	The sightline
90	closure of Valley Road at Gordon Street.	assessment is updated.
96	3. Revise Figure 2 and Figure 23 by modifying the lane configurations on Gordon Street to reflect recommendations in the Gordon Street Improvements study. In Figure 23, correct the pavement marking symbol for the southbound left- turn lane at Edinburgh Road. In the new east approach, consider including a bike box design.	Both figures are updated.
97	4. Provide traffic geometric plans for northbound trucks turning right from Gordon Street to Street A.	All traffic geometric plans are updated by adding northbound right turn paths.
98	5. Add traffic geometric plans for heavy single-unit trucks.	This new geometric plan has been added.
99	 Transportation Demand Management related comments are offered below. 1. Please expand the TDM section. This development is located within a very sustainable transportation friendly corridor, which is well served by transit and will be receiving significant cycling infrastructure upgrades within the next 5-10 years. A number of measures to consider include the followings. a. Unbundled vehicular parking for residents. b. Meeting but not exceeding the provision of vehicular parking. c. Provision of a community carshare vehicle on-site. d. Wayfinding/travel times to nearby amenities by foot, bike, and transit. e. High quality cycling and pedestrian connections between the Gordon Street ROW and apartment buildings. f. A bicycle repair station on site. 	These TDM measures are added in the memo including the bike repair station that is located on parking level 1 and parking level 2 of the revised parking plans from Kasian.
100	2. Table 14 of the study indicates that 358 bicycle parking spaces are recommended, and 521 are being provided. Is this correct? Staff would prefer to see a variety of high quality long-term bicycle parking spaces (for instance, horizontal lift- assist racks, over-sized bike parking for cargo bikes/recumbents/bikes with trailers, regular floor-mounted racks etc.) rather than an over-supply of vertical wall mounted racks which can be inconvenient and challenging for many users.	Bicycle Parking has been reduced to 358 as per recommended. Regular size and oversized bicycle parking have been provided on site.
101	3. Please ensure the majority of bike parking is located on the first floor of underground structures, to maximize convenience and safety for cyclists.	Majority of the bicycle parking have been relocated to P1. 274 bike parking spaces are within Parking Level 1 and 84 bike parking spaces within Parking Level 2.
102	4. Per previous comments, staff would like to see a 3.0m	An accessible pathway
	wide shared pathway along the south side of development,	is proposed in the

	for pedestrians and cyclists connecting the Gordon Street ROW with Building 2. The current pedestrian route requires residents living in Building 2 to take a circuitous route using Street A in order to travel southbound. Stronger active transportation connections support trips by foot and bike, by shortening travel times. Kyle VanderMeer, P. Eng., Environmental Engineer E	latest site plan at the southwest corner and is addressed in the response memo. A passageway has been introduced to provide connection between Gordon Street and Res 2.
	519-822-1260 x 3892 <u>kyle.vandermeer@guelp</u> October 7, 2021	
103	COMMENTS 1. The former use of the property at 1270 Gordon Street as "Montes Place" flower shop meets the definition of commercial use in Ontario Regulation (O. Reg.) 153/04 (as amended), particularly "any use of land or a building on the property for an enterprise or activity involving the exchange of goods or services". Therefore a Record of Site Condition (RSC) is a mandatory requirement for the Site development at 1270 Gordon Street if agricultural, parkland, residential, or institutional property use is intended for the property.	XCG Consulting Limited is preparing the RSC.
104	2. XCG identified concentrations of xylenes greater than the associated MECP Table 2 Site Condition Standard in surface soils where retail-sized containers of diesel fuel conditioner were observed around a burn pit on-Site at 1260 Gordon Street. XCG does not interpret the soil impacts detected in the vicinity of the burn pile to represent a source of significant environmental concern, with the caveat that the detected soil impacts could be addressed through excavation and appropriate off-site disposal during future site development activities.	XCG Consulting Limited is preparing the RSC.
105	RECOMMENDATION Engineering will support the Official Plan Amendment, Zone Change Application and/or Draft Plan of Subdivision from an environmental impact perspective. However, it should be noted the Owner/Developer will be required to fulfill the following conditions: 1. For the 1270 Gordon Street property: a. Proof of RSC filling and acknowledgement must be submitted to the City prior to Site Plan approval; Or, b. A QP must provide a letter report prior to Site Plan approval that states the planned use of the property will not be agricultural, parkland, residential, or institutional property use, as defined in O. Reg. 153/04 (as amended).	XCG Consulting Limited is preparing the RSC.
106	2. A stamped plan and/or drawing(s) for the excavation and disposal of the xylene impacted surface soil identified by XCG at 1260 Gordon Street in the vicinity of the former burn pile must be submitted to the City prior to Site Plan approval .	Noted.

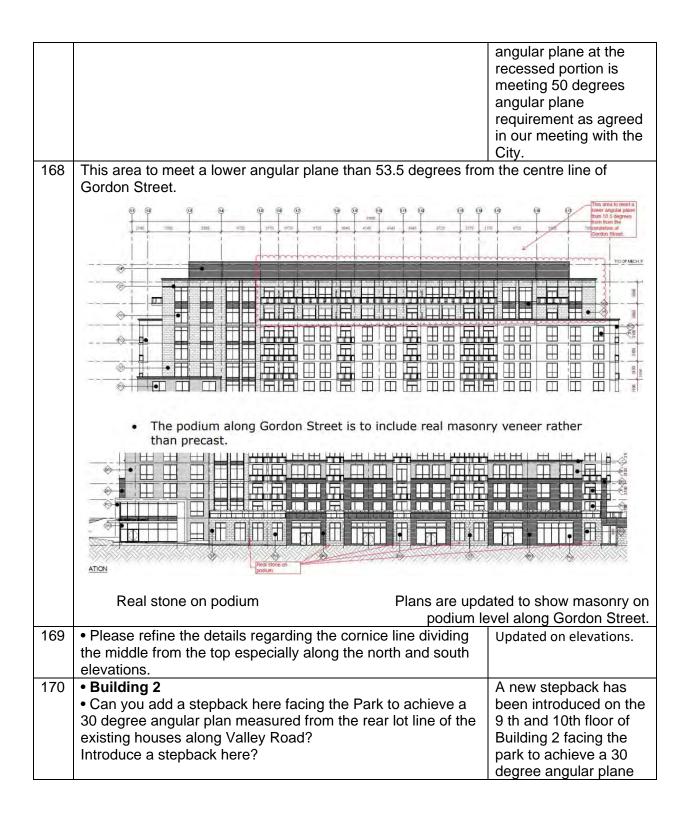
107	CLOSURE	Noted.
107	It should be noted that staff's review pertains to whether the	Noted.
	report was conducted in a manner consistent with the Act	
	(EPA), the Regulations (O. Reg. 154/03, as amended) or	
	CSA Standard, and associated guidance documents.	
	Although majority of the information included in the report	
	were looked at during the review process, the City Staff does	
	not independently verify information and data, the quality of	
	which are solely the responsibility of the QP who prepared	
	the report.	
	Jyoti Pathak, Park Planner Park and Trail Development, Par	ks Public Services
	519-822-1260 x 2431 Jyoti.pathak@guelph	
	November 23, 2021	
108	Proposed Draft Plan of Subdivision:	Noted.
	A residential subdivision is proposed on the subject lands	
	which are approximately 3.12 hectares in size and include	
	developable area and natural heritage system. The applicant	
	is proposing a residential block with two, 10-storey apartment	
	buildings with a total of 325 apartment units, a municipal park	
	block and an open space block.	
109	Planning Justification Report: Revise the parkland dedication	The addendum to the
	information on page 4 of the Planning Justification report to	PJR indicates that
	reflect current alternative rate (1 ha per 300 dwelling units for	parkland requirements
	parkland conveyance and 1 ha per 500 dwelling units for	will be satisfied in
	payment in lieu of conveyance) for parkland dedication	accordance with the
	requirement under s.51.1 of the Planning Act and City's	legal requirements in
	Official Plan Policy 7.3.5.1.	effect at the relevant
		timeframe.
110	Parkland Dedication:	Noted.
	Parkland dedication is required for the proposed subdivision	
	according to the Official Plan (OP) Policy 7.3.5.1. The OP	
	policy states the following:	
	1. The City will require parkland dedication as a condition of	
	development, consent or subdivision proposals in an amount	
	up to:	
	i) 5% of the land or one hectare for each 300 dwelling units	
	for residential purposes	
111	The current proposed draft plan of subdivision includes an	The addendum to the
	area of 3.323 hectares and development of 325 dwelling	PJR indicates that
	units. The proposed draft plan includes a park block of 0.247	parkland requirements
	hectares which accounts for 74 dwelling units at the rate of 1	will be satisfied in
	ha per 300 dwelling units. Parkland dedication for the	accordance with the
	remaining 251 dwelling units would be required as payment	legal requirements in
	in lieu of conveyance for the proposed draft plan.	effect at the relevant
	······································	timeframe.
112	Park Block Location: Generally, the park location is	Noted.
	satisfactory.	
113	We intend to provide pedestrian access to the park along the	The Park Block has
	Edinburgh Road extension from Gordon Street and along	been modified.
	Landsdown Drive/ boulevard trail/ sidewalk from north and	
		1

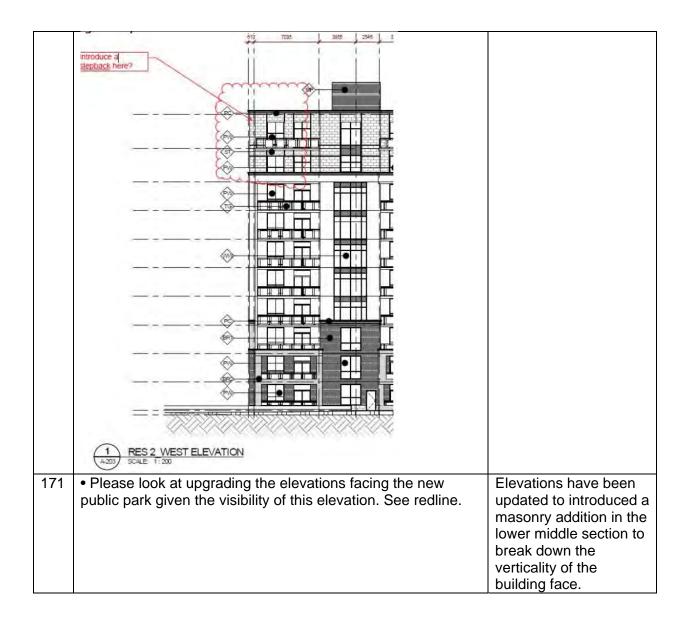
	ter en source de la constant de la c	
	trees would have to be cleared if blocking this access. The park block currently includes a tree protection zone.	
114	 Generally, City requires park blocks to meet City's Zoning Bylaw, plans, policies, and guidelines and the following criteria: The site provides a critical public trail connection to the proposed Citywide trail/ ATN route west of Torrance Creek PSW from Gordon Street along Edinburgh Road extension through the proposed park block. GTMP and OP Policy 7.3.5.5 (ii) (Parkland Dedication) 	Draft Plan has been modified to include a trail block where identified in the EIS.
115	• The site satisfies the development criteria for a neighbourhood park; OP Policy 7.3.5.5 (Parkland Dedication)	Noted.
116	The park should contain both active and passive recreational activities (i.e. children's play equipment, shade structure, seating, site furniture and planting etc.). OP Policy 7.3.2 (Park Hierarchy)	Noted. City to design municipal park.
117	• The park should be connected to public sidewalks and should be designed as an accessible and barrier free space. Facility Accessibility Design Manual – 2015	Noted. City to design municipal park.
118	• The park should be mostly flat (i.e. 80% table land with 2- 3% slopes). OP Policy 7.3.2.4 (Park Hierarchy)	The park is being retained in its current state and future grading can be addressed by the park design. Existing average slope is about 5%.
119	• The park should contain adequate public street frontage for high visibility and surveillance and for adequate public and operational access as identified in Zoning Bylaw Table 9.2 (Row 3) as follows: A minimum of 50 metres or 1 metre of street frontage for every 100 square metres of park area whichever is greater as identified in Section 9.2 of the City of Guelph's Zoning Bylaw.	The park has adequate street frontage.
120	• The park should be completely outside of natural heritage features. Natural heritage features and natural hazard lands as outlined in the City of Guelph's Official Plan will not be accepted as parkland dedication. OP Policy 7.3.5.3 (Parkland Dedication)	The Draft Plan has been revised so that the park is completely outside of natural heritage features.
121	• parkland shall be conveyed free and clear of all encumbrances. Development Charges background study Appendix E- Local Service Policy (basic park development - PAGES E-2 and E-3)	Noted.
122	• The park site should be well drained and have access to water, sanitary and storm water drainage servicing. OP Policy 7.3.2.4 (Park Hierarchy), Development Charges background study Appendix E- Local Service Policy (basic park development - PAGES E-2 and E-3)	The park design is to be completed by the City at a future date and basic park development requirements would be premature as part of

123	Park Block Lot Frontage and park access Park Operations require vehicular access to the park block and to the proposed trail to the east for maintenance and operational purpose. Provide options for review for achieving vehicular access.	this application. If determined to be warranted, municipal services can be extended along Street A with detailed design. A vehicular access has been shown
124	 Basic Park Development: The developer is directly responsible for the basic park development according to the Development Charges background study - Appendix E- Local Service Policy (basic park development - PAGES E-2 and E-3): The basic park development will include clearing, grubbing, site grading, storm water drainage, site servicing, topsoil and sodding of the Park block. The costs of the following items shall be direct development of lands conveyed to the City in connection with development including, but not limited to, the following: clearing and grubbing; topsoil or any fill or soils shall not be stockpiled on parkland; parkland shall be free of any contaminated soil or subsoil; servicing – water, hydro, stormwater, sanitary, electrical, catch basins as per City's requirements. rough grading (pregrading) and the supply of topsoil to the required depth as per City's requirements; Seek City approval of the structural fill material if park requires filling. parkland shall be conveyed free and clear of all encumbrances; all parks are to be developed to the locally accepted "basic park development" standard which includes all aspects up to fine grade, topsoil and sod; which is to be maintained up to park acceptance. The park block shall be graded to meet approved parkland grade, including any associated infrastructure requirements (retaining walls, drainage, etc.) and sodded to minimize erosion and dust. Temporary fencing may also be required where there is no permanent fence to prevent illegal dumping; temporary park sign advising future residents that the site is a future park. Perimeter fencing of parkland to the City's standard located on the public property side of the property line adjacent land 	The park design is to be completed by the City at a future date and basic park development requirements would be premature as part of this application.

	uses (residential or non-residential) as required by the City,	
125	or other approval authority. The developer will be responsible for the Basic park development and City would require a cost estimate and security in the form of cash or a letter of credit based on the City approved estimated costs prior to the registration of the	Noted.
	subdivision.	
126	Trail Network:	This trail network has been provided in the revised submisison.
127	The City of Guelph Trail Master Plan - 'Trail Network' includes a proposed off-road secondary trail route along western edge of the Torrance Creek provincially significant wetlands through the subject property that connects to the approved proposed trail west of Valley Road condominium to the north and west of 1280 Gordon Street to the south.	Noted.
128	Please note that the trail alignments north and south of the subject site have been designed and approved through the development review process and the developer is responsible to identify the trail alignment and preliminary trail design on the subject site as included in the terms of reference for the EIS.	Trail design has been included in this submission
129	Local trail connection: Provide a local accessible trail connection, 2.5 m wide, to connect the Gordon Street/ proposed park to the proposed Citywide trail at the back of the property. This trail connection is to be designed as part of the proposed Landscaping works on the subject site.	Trail design has been included in this submission
130	Provide conceptual trail alignment for City's review of the following connections: • North-south Citywide trail connection • East-west local trail connection	Trail design has been included in this submission
131	Provide preliminary grading and Drainage plans and other plans as applicable to demonstrate that the trail can be built to the current City standards as follows:	Preliminary design information is provided on the included civil drawing set

<u>г</u>		1
	1. The design and construction of the trail shall meet the	
	accessibility criteria outlined in the City's Facility Accessibility	
	Design Manual (FADM). The criteria include maximum	
	running slope on trails to be 5% and the maximum cross	
	slope on trails to be 2%, provision of rest areas at regular	
	intervals, information and directional signage etc. Section	
	4.5.2 OUTDOOR RECREATIONAL FACILITIES of the FADM	
	outlines the accessibility guidelines for trails. This document	
	can be viewed at the following link:	
132	http://guelph.ca/wpcontent/uploads/Guelph_FADM_2015-06-30-FINAL.pdf 2. Provide minimum 0.6 metre wide mowed grass strips	This has been provided
132	e .	This has been provided
	longitudinally along both sides of the trail surface at a cross	
100	slope of 2% away from the trail.	Addrogood
133	3. Provide sodded drainage swales and culverts at	Addressed
	appropriate locations if the adjacent ground is higher to the	
124	trail surfacing levels.	Notod
134	Environmental Implementation Report: An environmental	Noted.
	implementation report (EIR) will be required to address the	
	recommendations provided through the final approved	
	Environmental Impact Study including Open Space Works	
	and restoration, detailed landscape plans (by an accredited	
	landscape architect); detailed design and mitigation plans to	
105	support the trail.	
135	The EIR will address the recommendations related to trail	Noted.
	system and natural open space system, including detail	
	design of the trail system; preparation of Landscape Plans	
	and details to address demarcation, removal of invasive	
	species, hazard trees along the trail system and residential	
	properties; clean-up of debris and waste; restoration;	
	compensation and enhancement planting for buffers; invasive	
	species management; design of educational/ interpretive and	
	stewardship materials/ signage.	
136	Detailed trail layout, grading and drainage plans showing trail	Noted.
	design details such as signage, structures, etc. will be	
	provided in the Environmental Implementation Report	
	consistent with City of Guelph's current trail standards and	
	other City Guidelines i.e. Facility Accessibility Design Manual	
	and Engineering Development Manual where applicable. The	
	trail plan, design and construction will comply with all relevant	
	regulations applicable to trail management made under the	
	Accessibility for Ontarians with Disabilities Act.	
137	Open Space Works and Restoration: Provide planting to	Noted.
	enhance ecological buffers and wildlife corridors and	
	compensation for removed trees, etc. and detailed planting	
	plans will be provided with the Environmental	
	Implementation Report. Provide seeding to restore graded	
	areas within the open space	
138	Tree Preservation and removal of invasive species and	Noted.
	hazard trees: Schedule removal of the common buckthorn	
	within the trail corridor prior to trail construction.	


139	A review of hazard trees (e. g. dead, partially dead or dying trees) on the park block and along the trail route will be conducted at the time of vegetation removal by a qualified arborist. Identify all hazardous trees along the trail route in consultation with Parks staff for removal by the developer. Hazard trees only would be removed within striking distance	Noted.
	of the trail.	
140	Environmental Education: The environmental education/ interpretive signage is proposed to be provided along the trail in the subdivision to provide resident education on the area's environmental features and address the common resident impact items including dumping of yard waste, encroachments, pet waste, etc. The signage will be designed to meet City's accessibility guidelines and the details of the signage will be provided in the EIR- trail and landscape plans.	Noted.
141	Open Space Dedication: Parks recommends conveyance of	Noted.
	natural open space block to City for the purpose of the	
	protection of natural heritage system and trail construction.	
142	Demarcation: The property demarcation will consist of 1.5	Noted.
	m black vinyl Chain Link fence and/or property markers	
	in accordance with the City's Property Demarcation Policy	
	and specification and City approved demarcation plan will be	
	included in EIR.	
143	Summary: Parks does not support the proposed development	Updated documents
	based on the current information provided. Parks needs	addressing the above
	revised documents which reflect the comments provided	have been provided.
	above for our further review and comments. Draft conditions	
	would be provided upon receiving satisfactory proposal.	
	David de Groot, Senior Urban Designer	
	519.822.1260 ext. 2358 David.deGroot@guelp	h.ca
	January 18, 2022	
144	Through this process, staff has concentrated on a number of	Noted.
	key issues which have been positively addressed by the	
	applicant including:	
	 Improving the interface with Gordon Street (e.g. 6m 	
	setback, new entrance at the corner, multiple building	
	entrances located at regular intervals etc.)	
	 The inclusion of 1270 Gordon creates an opportunity to 	
	create a stronger landscape and integrated open space	
	system. Further direction regarding development of this area	
	should be developed. See further discussion below.	
	 Urban Design Staff are still strongly supportive of the 	
	inclusion of the new public road and park. Staff support the	
	extension of an accessible street grid to improve connectivity	
	for all travel modes.	
	 The reduction in building height. 	
	 Better building articulation along Gordon Street including 	
	marking the corner of Edinburgh/Gordon Street and the	
1	multiple stepbacks.	
145	Urban Design Brief Comments	


	 2.1.3 Amenity Facilities Please revise approach to Residence 1 Common Amenity Area to avoid the need for a large noise wall. Rather an at- street level space should consider a design that embraces the opportunity to meet the noise study requirements, such as a passive, walk-through only space, filled with plantings, perhaps a sculptural element for viewing, etc., that also provides adequate space for a transitioning zone (i.e. terraced and planted area) to a Common Amenity Area further into the site, perhaps is a better option to explore. On the higher common amenity area, noise study requirements might be easier to meet with the use of low earth berming and planting, permitting more activities to occur such as sitting, tables and programs such as kicking a ball or a dog run area. To permit an adequate transition zone from lower common amenity area to higher, please explore the configuration of the underground garage. Opportunities for a gentler step back through terraced walls and landscaping, void of high guards and railings, would provide a better solution rather than seeing the abrupt 5m high wall of the parking garage wall. 	Sound wall has been eliminated and replaced with an accessible ramp to provide access to Res 2 from Gordon Street and create sound barrier for amenity area behind ramp.
146	• Urban design staff is not supportive of a noise mitigation wall as this could be an aesthetically unpleasing feature along the right of way at 3.5m high. It would also create a tight, unusable and uncomfortable space between itself and the proposed underground parking garage wall when exiting/entering the indoor common amenity	Noise wall is not longer included.
147	 Please suggest further direction for programming along the southern property link such as: o Raised Community Garden Plots that are barrier-free o An off-leash dog area (consider fencing to define this space). o Treed sitting area with informal, moveable chairs (for reading a book or socializing). 	Notes and pictures added to Landscape Plans for possible future design considerations.
148	 2.1.4 Transitions Staff have concerns with the proposed angular planes. Please see further comments under "Comments on Submitted Design Concept". 	The current angular plane at the Gordon Street and Street A corner is at 53.4 degrees. However, 67% of the elevation along Gordon Street are recessed on the 9 th and 10 th floor. The angular plane at the recessed portion is meeting 50 degrees angular plane requirement as agreed in our meeting with the City.

149	 2.1.7 Access, accessibility, circulation, loading storage. The pedestrian circulation should be further developed. Please see further comments under "Comments on Submitted Design Concept". 	The angular plane from the property line at the residentials on Valley Road has been updated to satisfy City's requirements at 30 degrees by setting back the 9 th and 10 th floor on the elevation facing the park. Additional pedestrian pathways is provided for Res 2 residents to have easier access to Gordon Street at the
150	 2.1.8 Materials The material choices of the building along Gordon Street should reflect the importance of this street. Staff support the use of real masonry products within building base rather than replica materials. Pre-cast panels or replica materials (such as pre-cast concrete panels made to look like stone) should only be shown above the podium along Gordon Street. 	south of site. The podium level has been updated to have all masonry materials along Gordon Street. We have also looked at the suggestion from the city to look at buff bricks for the development. We updated the elevations to use buff bricks for the lighter brick and changed the dark grey brick to a dark brown brick to compliment the buff brick.
151	 2.1.11 High Density Development Staff are supportive of the building entrances located at regular intervals. Staff are also supportive of the general stepback at floor 2 and 5 along Gordon Street in order to break up the massing. Marking the corner of Edinburgh and Gordon is supported. 	Noted. Stepbacks are provided a several locations on floor 2 and 5 along Gordon Street.
152	 Given, policy 8.9 and 9.3.1.1 of the Official Plan. Staff feel that Zoning Bylaw should include the following: Restricting building length; Ensuring adequate spacing between buildings; Only allowing a 53.35 degree angular plane at the intersection of Edinburgh and Road 'A' with a reduced angular plane for the balance of the building. Please provide the angular plan for the balance of the building (e.g. approximately 27m south of the intersection); Ensuring adequate spacing between buildings; Limiting the amount of surface parking. and, Ensuring building floorplates are limited. 	Noted.

153	See further discussion below.	Noted.
	2.1.11.3 Shadows	
154	 See comments below for comments on the Shadow Study. 2.1.11.4 Wind 	Noted.
154	• See comments below for comments on the Pedestrian Wind	Noted.
	Study.	
155	2.2 Interaction with Public Realm	Noted.
	• Urban design staff appreciate the introduction of an outdoor space at the corner of Gordon and Street 'A'. The design and layout of this plaza will be further explored during the Site Plan Review process to enhance its function and connection to the ROW, however its general location is supported by staff.	
156	 2.2.1 Integration with the Streetscape Ensure to add not only a visual connection, but that there will be physical connections to the street via proposed doors (as shown on the Gordon Street Elevation). 	Physical connections and doors are proposed along Gordon Street Elevation from the amenity areas.
157	 Shadow Study Comments Can you please include a concluding statement as to whether the proposed development form has met the criteria of the City of Guelph Sun and Shadow Study Terms of Reference? Please also show the location of the pool on the adjacent property (swimming pools are specifically mentioned in criteria 1). 	A concluding statement is provided in a letter format that the proposed development has met the criteria of the City of Guelph Sun and Shadow Study ToR.
158	 Pedestrian-level Wind Study Comments No comments on the wind study itself. The Landscape Plan does not appear to be responding to the recommendations of the study – suggesting coniferous trees be used along the north and west façades of Residence 1 to mitigate uncomfortable conditions during winter months. Opportunities to adjust proposed landscaping and parking layout to accommodate these recommendations is to be explored. 	Marcescent deciduous trees have been added along the NW frontage of Building 1 per Wind Study recommendations.
159	 Comments on the Submitted Development Concept a. Comments on the Site Plan Please ensure to show the full extent of the required buffer along the easterly edge of the proposed development. Ensure Common Amenity Spaces are shown and calculated outside the required buffers. 	The Draft Plan has been revised.
160	• Please ensure to provide adequate landscape buffer and setback to ground floor units facing the at-grade parking lot. Ensure sidewalks running perpendicular, at the head of parking stalls, are a minimum 2m wide.	The proposed design balances the needs of landscape space (buffers between buildings and hard surfaces), pedestrian circulation, and parking. Accessibility requirements are met

		without providing
		excess hard surfaces
		that would further limit
		landscaping
		opportunities.
161	Please look at removing parking stalls 64/65 to improve	Parking stalls 64/65
	pedestrian circulation.	have been removed to
		improve pedestrian
		circulation.
162	• Providing greater opportunity for trees and/or a grouping of	Adjustments to the
	trees within the at-grade parking lot that would be consistent	parking layout have
	with the Urban Design Brief's goal of managing heat island	been made north of
	effect of hard surfaces (Landscaping 2.1.2). Please explore	building 2 to improve
	further opportunities to include planting islands – especially	opportunities for tree
	along the east elevation of Residence 1.	planting.
163	Further development of 1270 Gordon Street lands to allow	Notes and pictures
	for pedestrian circulation and landscaping should be shown.	added to Landscape
	See comments provided above.	Plans for possible
		future design
401		considerations.
164	The proposed storm water tank along the south property is	Tank configuration can
	very shallow (400-1000mm deep), leading landscape staff to	be explored further with
	believe this area won't be viable for tree planting. However,	detailed design. Tree
	given the extent of proposed tree removals and the need to	planting is currently
	restore canopy on the site, alternative tank configurations	proposed around the
	need to be considered to optimize plantable spaces.	perimeter of the amenity space,
		creating a central open
		space at the south end
		of the development
165	Further discussion regarding sustainable site design that	Refer to the Urban
	integrates LID measures, green/white roofs, should be	Design Brief for the full
	explored.	list of sustainable
		initiatives being
		considered with this
		project.
166	b. Comments on Elevations and Massing	Noted.
	• Building 1:	
	Staff are also supportive of the general stepback at floor 2	
	and 5 along Gordon Street in order to break up the massing.	
	Marking the corner of Edinburgh and Gordon is supported.	
167	Staff still have concern about the proposed angular planes	The current angular
	and resulting massing. The Official Plan Policies for high-rise	plane at the Gordon
	buildings (e.g. Official Plan Policy 8.9) discusses limiting the	Street and Street A
	floor plate sizes above the 5th storey, adequate tower	corner is at 53.4
	spacing and ensuring building massing addresses impacts to	degrees. However,
	the surrounding neighbourhood. Please look at reducing the	67% of the elevation
	angular plane in the area indicated below the 53.5 degrees	along Gordon Street
	shown at the corner.	are recessed on the 9 th
		and 10 th floor. The

172	• Please refine the details regarding the cornice line dividing	Updated on elevations.
	the middle from the top especially along the north and south	
173	 elevations. Site Plan Issues As part of the site plan process further detailed comments will be discussed including: Developing the elevations including materials and colours. The use of real masonry products within base of the buildings should be used rather than replica materials along the Gordon Street podium in particular. Adequate soil volumes for trees over the underground parking is critical. Consideration of alternative technologies (Silva Cell) to achieve soil volumes, especially in areas where there is competing need for hard pavement, is strongly encouraged. Provide a detail for pedestrian level lighting and street lighting for the internal streets. Street furniture such as bicycle parking, benches etc. Keep in mind bird-friendliness strategies in the design of the elevations. Architectural details. Continued encouragement of green roofs and LID systems. 	Noted.

	The Urban Design Brief Addendum and economy plan should	These revisions have
	The Urban Design Brief Addendum and concept plan should	These revisions have
475	be revised based on the above comments.	been made.
175	Urban design suggest that the following be considered for	Noted.
	inclusion in the Zoning Bylaw:	
	• Minimum tower separation between buildings (e.g. 25m);	
	Consider requiring a 30 degree angular plane measured	
	from the rear lot line of the existing houses along Valley	
	Road;	
	• Revision to the centreline angular plane requirement from	
	Gordon Street to have a steeper angular plane and the	
	corner and a lower angular plane to the south of the intersection.	
	 Include maximum building length; and floorplates maximum 	
	for upper storeys should also be considered; and,	
	Limit the amount of surface parking.	
	Lindsay Sulatycki, MCIP, RPP Senior Developmen	t Planner
	(T) 519-822-1260 x 3313 Lindsay.Sulatycki@guel	
	January 21, 2022	ipri.ca
176	Planning comments to be addressed through next	The Draft Plan has
170	submission:	been amended.
	Submission.	been amenaea.
	Draft Plan	
	 The Draft Plan of Subdivision should be revised to 	
	reflect the boundaries of the Natural Heritage System	
	including buffers. The current draft plan shows the	
	residential block and common amenity area within	
	part of the buffer.	
177	 Common amenity space, as per the Zoning Bylaw, is 	The Draft Plan has
	not a permitted use within the Natural Heritage	been amended.
	System, including buffers. Please ensure that	
	common amenity space is provided outside of the	
	Natural Heritage System.	
178	A revised submission will be required to address staff	Noted.
	comments on the 2 nd submission prior to scheduling a	
	Council date. Please let me know if you have any questions	
	or would like to set up a meeting with any commenting staff.	

1242, 1250, 1260, 1270 GORDON STREET AND 9 VALLEY ROAD, GUELPH, ON – ENVIRONMENTAL IMPACT STUDY ADDENDUM VERSION 2

APPENDIX D TREE PRESERVATION PLAN

9 Valley Road, 1242, 1250, 1260, and 1270 Gordon Street, Guelph

Tree Preservation Plan

Prepared for:

Tricar Developments Inc. 3800 Colonel Talbot Road, London, ON N6P 1H5

Project No. 2347A | May 2022

9 Valley Road, 1242, 1250, 1260, and 1270 Gordon Street, Guelph

Tree Preservation Plan

Project Team

David Stephenson	Senior Biologist, Project Advisor
Laura Hockley	Environmental Analyst, Project Manager
Jeremy Bannon	Terrestrial & Wetland Biologist, Certified Arborist
Sophia Muñoz	Terrestrial & Wetland Biologist, Certified Arborist

Report Submission #1: March 27, 2020 Report Submission #2: September 1, 2021 Report Submission #3 (current): May 25, 2022

Lama Hackey

Laura Hockley, B.E.S Environmental Analyst

forentam

Jeremy Bannon, B.E.S. Certified Arborist ON-1921A Terrestrial and Wetland Biologist

Table of Contents

1.0	Introduction1
2.0	Tree Inventory and Methodology 4
2.1	Trail Alternative Assessment5
3.0	Summary of Tree Inventory Findings
3.1	Development Area6
3.2	Trail Area6
4.0	Tree Retention Analysis8
4.1	Development Area8
4.2	Trail Area8
4.3	Impacts to Butternut9
5.0	Tree Compensation Plan10
6.0	Tree Protection Measures and Recommended Mitigation12
6.1	Prior to Construction12
6.2	During Construction12
6.3	Post-Construction13
6.4	Mitigation13
7.0	References15

List of Tables

Table 1	. Preliminary (Compensation Plan1	11
---------	-----------------	--------------------	----

List of Appendices

Appendix I Tree Inventory Data Appendix II Tree Health and Potential for Structural Failure Assessment Criteria Appendix III Conditions of Assessment Appendix IV Tree Data and Summary Tables

Maps

Map 1. Subject Property Map 2. Tree Inventory and Preservation Plan

1.0 Introduction

Natural Resource Solutions Inc. (NRSI) was previously retained in 2014 by the previous landowner to complete a variety of natural heritage studies in support of a development proposal. As part of these studies, NRSI completed a tree inventory of the subject property. Before the development proposal was realized, the property was sold to Tricar Developments Inc. This Tree Preservation Plan represents updated information incorporating the original inventory data with more recent inventory data provided by Stantec Consulting (Stantec Consulting 2020).

NRSI was retained again in October 2019 by Tricar Developments Inc. to complete a Tree Preservation Plan (TPP) for a proposed residential development located at 9 Valley Road, 1242, 1250, 1260, and 1270 Gordon Street, in the City of Guelph. This TPP has been updated to align with recent changes to the site plan and grading plan (Stantec 2022), including the acquisition of an adjacent lot to the south (1270 Gordon Street), which will provide lands for an additional infiltration trench. The major updates to this plan are as follows:

- An assessment of three trail connection alternatives;
- An updated tree inventory for the City trail and the preferred trail connection alternative;
- An updated analysis of the park block to align with comments received by the City;
- An updated discussion regarding potential impacts to Butternut (Juglans cinerea);
- The omission of trees previously removed in accordance with acquired building permits; and
- Other minor edits as requested by the City, largely regarding compensation.

The subject property is approximately 3.32ha in area and contains empty lots (previously containing single-dwelling homes), driveways, cultural meadows, cultural plantations, and other planted and naturally regenerating trees. The subject property is bound by Gordon Street to the west, residential dwellings fronting Valley Road to the north, the Torrence Creek Swamp Provincially Significant Wetland Complex to the east, and the Liberty Square apartment complex to the south. Mostly rectangular in shape, the subject property includes an additional lot extending north to Valley Road, and an additional property acquired to the south in 2021 (Map 1).

The Tree Preservation Plan was conducted in accordance with the City of Guelph By-law (2010)-19058. This by-law states that if an owner wishes to destroy or injure a regulated tree and if none of the exemptions set out in this by-law are applicable, then the owner shall submit the information required in Part 5 of the by-law, including a Landscaping, Replanting and Replacement Plan. Within the By-law, a regulated tree is defined as

"a specimen of any species of deciduous or coniferous growing woody perennial plant, supported by a single root system, which has reached, or could have reached a height at least 4.5m from the ground at physiological maturity, is located on a lot that is greater than 0.2 hectares (0.5 acres) in size and has a [Diameter at Breast Height] (DBH) of at least 10cm".

According to the By-law, the destruction or injury of a regulated tree is exempt from the requirement for a permit if the regulated tree is:

"A tree on lands used for Institution, golf course, commercial or industrial purposes, provided that a Tree Management Plan has been submitted to, and approved, by an Inspector, subject to such as the Inspector may have considered necessary" [Part 4, section (k)].

The City of Guelph's Official Plan (City of Guelph 2022) also requires that a Tree Inventory and Preservation Plan be required for the replacement of all healthy indigenous trees measuring over 10cm DBH.

Section 4.2.4 Tree Inventory and Tree Preservation Plan within the Official Plan notes:

- 1. "Tree Inventory and Tree Preservation Plans shall as a minimum include:
 - A Tree Inventory measuring all trees over 10cm diameter at breast height [DBH], including the size, species composition and health, and indigenous shrubs in accordance with the City's tree inventory guidelines,
 - A Tree Preservation Plan identifying healthy indigenous and non-invasive trees to be protected, including those that may be transplanted (e.g. small specimens),
 - *iii)* The protective measures required for tree protection during construction, and
 - iv) Measures for avoiding disturbance to any breeding birds during construction"

This report provides the findings of all tree inventories, an analysis of grading, servicing and site plans against the overall health and the potential for structural failure of trees, protection

measures for trees to be retained, and recommended mitigation and compensation measures. The tree data and mapping has been compared to the layout of the proposed site plan and trail alignment. Map 2 shows the tree inventory data overlaying the proposed site plan. This plan shows the proposed building layout, and trees inventoried. Avoidance, mitigation, and protection measures for trees were examined to determine which trees would be impacted and which could be retained. In the case of trees requiring removal, compensation for removal is discussed.

Butternut is Endangered Provincially and is therefore regulated by the Ministry of Environment, Conservation and Parks (MECP). Two Butternuts (JUG-002 & JUG-003) and one Butternut hybrid (JUG-001) are known to occur on the subject property (Map 1). Correspondence and permitting processes have occurred with MECP to facilitate the proposed site plan. A Notice of Activity was submitted to MECP to facilitate the removal of one Butternut (JUG-002) and one Butternut hybrid (JUG-001), and the harm of one Butternut (JUG-002). A tree permit was obtained from the City of Guelph to remove the two Butternuts, which occurred in December 2020. The necessary compensation plantings for these Butternuts as required under the *Endangered Species Act* were installed in the Fall of 2020. Potential impacts to planted and naturally occurring Butternuts associated with proposed trail are discussed in Section 4.3.

2.0 Tree Inventory and Methodology

Comprehensive inventories of trees ≥10cm in DBH have been completed routinely on the subject property. NRSI first completed a tree inventory of the eastern portions of the subject property in 2014. Since then, Stantec completed an updated inventory of all trees on the subject property in 2018 and 2019. NRSI completed a site visit on December 19, 2019 to verify tree information, and compiled original NRSI data with the updated information provided by Stantec, accounting for a complete set of tree inventory data. Subsequently, NRSI completed an inventory of trees on the additional lot to the south (1270 Gordon Street) on May 21, 2021. Most recently, NRSI inventoried trees associated with the proposed City trail and trail connection on April 18, 2022. The location of some trees inventoried in the northeastern Eastern White Cedar (Thuja occidentalis) community could not be accurately collected, and will require more accurate surveying at the detailed design stage. The average accuracy of these trees is approximately 2m, and are still mapped on Map 2. Some inventories were conducted in the leaf-off period; therefore, the assessor was able to collect the overall health and potential for structural failure of inventoried trees, but not the foliar characteristics of deciduous individuals. Trees that were ≥10cm in DBH were tagged with a pre-numbered aluminum forestry tag (if located on the subject property) and assessed by a Certified Arborist. In some circumstances, if trees were present in monoculture hedgerow features, a polygon method was used. During inventories completed by NRSI Certified Arborists, the location of trees inventoried was surveyed using an SXBlue II GNSS GPS unit. A complete list of the trees that were assessed and their overall health and potential for structural failure is shown on Map 2, and listed in Appendix I. No bat habitat assessments were completed in conjunction with the tree assessments by NRSI Arborists; refer to the EIS prepared by Stantec for bat habitat information.

The following information was recorded for each tree:

- species,
- DBH,
- crown radius (metres),
- general health (excellent, good, fair, poor, very poor, dead),
- potential for structural failure (improbable, possible, probable, imminent, or low, medium, high),
- tree location (on-site/boundary/off-site), and,
- general comments (i.e. disease, aesthetic quality, development constraints, sensitivity to development).

For trees inventoried by NRSI Certified Arborists, the overall health and potential for structural failure of each tree was assessed based on the criteria outlined in Appendix II (Dunster 2009) (Dunster et al. 2013). NRSI has exercised a reasonable standard of care, skill and diligence as would be customarily and normally provided in carrying out these assessments. The assessments have been made using accepted arboricultural techniques. These include a visual examination of each tree for structural defects, scars, external indications of decay such as fungal fruiting bodies, evidence of insect attack, the condition of any visible root structures, the degree and direction of lean (if any), the general condition of the tree(s) and the surrounding site, and the current or planned proximity of property and people. None of the trees examined on the property were dissected, cored, probed, or climbed and detailed root crown examinations involving excavation were not undertaken. The conditions for this assessment, including restrictions, professional responsibility, and third-party liability can be found in Appendix III.

2.1 Trail Alternative Assessment

Stantec and NRSI worked together to create three potential options for trail locations (labelled Alternatives 1-3) that could connect the proposed city trail to the development area and the existing residential neighborhood to the north. The three trail options, which can be seen on Map 1, are located within the northeastern portion of the subject property. On March 29, 2022, NRSI and Stantec biologists met to complete an assessment of each alternative to ensure that the most feasible option was chosen, which considered property access, potential tree removal requirements, and impacts to recently planted and naturally occurring Butternut. It was confirmed that significantly less impacts to existing trees would occur through the implementation of Alternative 3, the southernmost option proposed to the south of the existing woodland, as all other alternatives would include significant portions of the woodland to be removed. On April 18, 2022, a tree inventory was completed by NRSI arborists for the preferred Alternative 3 and the City trail within the subject property. This tree inventory was then compiled with previous inventory data conducted by Stantec and NRSI, as presented in the previous submission of this report.

3.0 Summary of Tree Inventory Findings

In total, 867 trees were inventoried, comprising 40 species. Of the trees inventoried and assessed, 641 are native species and 226 are non-native. Several Eastern White Cedar hedgerows are present, as well as a hedgerow each of Freeman's Maple (*Acer X freemanii*) and Norway Spruce (*Picea abies*). These trees were inventoried as groups (Polygon A-F) due to the similarity of species, location, age and conditions. A complete list of trees inventoried is provided in Appendix I, with summarizing tables in Appendix IV. Tree locations are shown on Map 2.

3.1 Development Area

The assessment of the development area includes trees identified in Appendix I as located within several categories, which comprise:

- Public: these include 2 trees located along the Right-of-Way (ROW) of Valley Road to the north;
- Off-property: these include trees that overlap the subject property, but are owned by adjacent landowners;
- Boundary: the stems of these trees are expected to cross the property boundary, and are therefore owned by the developer and at least one adjacent landowner; and
- Development: these trees are located within the footprint of the development area, and are entirely owned by the developer.

In total, 676 trees were inventoried within the Development Area, which includes trees in polygon features. This comprises 453 native trees, and 223 non-native trees. The majority of trees were assessed to be in Fair health with a Low or Medium potential for structural failure. The most common tree species include Eastern White Cedar, Norway Spruce (*Picea abies*), and Black Walnut (*Juglans nigra*). A complete list of trees inventoried is provided in Appendix I, with summarizing tables in Appendix IV. Tree locations are shown on Map 2.

3.2 Trail Area

In total, 191 trees were inventoried within the Trail Area. This comprises 188 native trees, and 3 non-native trees. The majority of trees were assessed to be in Fair health with an Improbable potential for structural failure. The most common tree species include Eastern White Cedar, American Basswood (*Tilia americana*), and Black Cherry (*Prunus serotina*). A complete list of

trees inventoried is provided in Appendix I, with summarizing tables in Appendix IV. Tree locations are shown on Map 2.

4.0 Tree Retention Analysis

Tree removal and retention was based on two considerations:

- Trees identified as having a probable or imminent potential for structural failure or poor or very poor health, or identified as dead: The removal of these trees may be recommended for safety, especially if they are located within striking distance of a component of the proposed development, or existing off-site pathways, roads or buildings.
- Trees that require removal based on the extent of proposed site grading: The location of the trees was compared to the location of the components of the grading plan, as shown on Map 2 (Stantec 2022).

4.1 Development Area

Of the 676 trees inventoried, 531 are anticipated to be removed, and an additional 51 Eastern White Cedar and Freeman Maple that were inventoried as polygons will be retained where they occur within the protected park block and buffers (Map 2). These trees will be inventoried individually and assessed as part of the Detailed Design of this area, through further correspondence with the City of Guelph. This includes trees situated along the grading limit or in close proximity that may incur root damage as a result of grading. Most of these trees are in fair health with a low to medium potential for structural failure, and range in size from 10cm DBH to 105cm DBH.

Several boundary trees are proposed for removal, which are in-part owned by private landowners to the north of the subject property. NRSI is not aware of any existing written consent from these landowners at this time. Removal of boundary, off-site and municipal trees will require the written permission of all owners involved. If the main stem of any tree is located on multiple properties, all owners of those properties must be consulted before any tree removal occurs. This includes damage to the root zones of boundary trees that may be considered damage to property.

4.2 Trail Area

Of the 191 trees inventoried, 85 are anticipated to be removed. This includes trees situated along the grading limit or in close proximity that may incur root damage as a result of trail installation. Most of these trees are in fair health with an improbable potential for structural failure, and range in size from 10cm DBH to 74cm DBH. The location of some trees inventoried in the northeastern Eastern White Cedar community could not be accurately collected, and will

require more accurate surveying at the detailed design stage. This has the potential to affect the final retention analysis when it is updated at that time. Additionally, this trail alternative will impact recently planted compensation trees within the Significant Woodland and buffer. These trees were not inventoried, but will require relocation to areas elsewhere on the property.

4.3 Impacts to Butternut

A Notice of Activity was submitted to the MECP to facilitate the removal of one Butternut (JUG-002) and one Butternut hybrid (JUG-001), and the harm of one Butternut (JUG-003). A tree permit was obtained from the City of Guelph to remove the two Butternuts, which occurred in December 2020. The necessary compensation plantings for these Butternuts as required under the *Endangered Species Act* were installed in the Fall of 2020. Trail Alternative 3 will require construction works to occur within the protection zones of some planted Butternuts, and will further encroach into the protection zone for JUG-003. It is expected that the root zones of the recently planted butternuts will not be impacted during trail construction, however further correspondence with the MECP has been initiated to ensure that this plan is not considered as a contravention of the ESA. A response from the MECP has not yet been received at the time of this submission.

5.0 Tree Compensation Plan

Section 5 (h) in the City's tree by-law (2010)-19058 states that "where three or more trees are proposed for Destruction or Injuring, and where the Inspector so requires, a Landscaping, Replanting and Replacement Plan" is required. Overall compensation for tree loss is a requirement of the City's by-law which notes that "each tree Destroyed or Injured be replaced with one or more replacements trees to be planted and maintained to the satisfaction of the Inspector in accordance with the Landscaping, Replanting and Replacement Plans approved by the Inspector" [Section 7 (b)].

According to City of Guelph Tree By-law Number (2010)-19058, trees exempt from compensation must have the following site-specific criteria:

"A tree having no living tissue, having 70% or more of its crown dead, or being infected by a lethal pathogen, fungus or insect (including the Emerald Ash Borer or the Asian Long-horned Beetle), and where required, a certificate issued by an Arborist, confirming this justification for Destruction or Injuring, has been submitted to an Inspector" [Part 4, section (a)],

"A tree which is Hazardous, and where required, a certificate issued by an Arborist, confirming this justification for Destruction or Injuring, has been submitted to an Inspector" [Part 4, section (b)]

"A specimen of *Rhamnus cathartica* (Common Buckthorn), *Rhamnus frangula* (Glossy Buckthorn), *Alnus glutinosa* (Black Alder), *Elaeagnus umbellata* (Autumn Olive), or *Morus alba* (White Mulberry)" [Part 4, section (g)],

"A fruit tree that is capable of producing fruit for human consumption" [Part 4, section (h)].

Trees proposed for removal that have poor structural integrity and thus a probable potential for structural failure, and/or are in poor to very poor health, and/or are dead, are exempt pursuant to Section 4 of the City's tree by-law and do not require compensation. A total of 3 trees require removal based on their structural integrity, and an additional 8 trees are also in poor or very poor health. Table 1 provides a summary of the trees inventoried throughout the property, total number proposed for removal and the proposed compensation plan. Note that these numbers will require further assessment at the detailed design stage to accommodate for the proposed partial removal of Polygon A, the development of detailed plans for the park block, and the creation of City-owned trails, in cooperation with the City of Guelph. A complete list of

inventoried trees, including a determination of whether trees require compensation, is provided in Appendix I.

Preliminary Compensation Plan	
Total number of trees inventoried	714
Off-property	4
Public ROW	2
Boundary	17
Development Area (excluding the above categories)	653
Trail Area	191
Total trees to be removed for the proposed development	531
Total trees to be removed in fair-good condition (requiring compensation)	461
Total trees to be removed in poor health or worse (exempt from compensation)	70
Total trees to be removed for the proposed trail	85
Total trees to be removed in fair-good condition (requiring compensation)	75
Total trees to be removed in poor health or worse (exempt from compensation)	10
Total trees requiring compensation for the proposed development	461
On-site trees	453
Boundary trees	7
Off-Property trees	0
ROW trees	1
Total trees requiring compensation for the proposed trail	
Primary Trail	74
Alternative 3	1
Trees in polygons to be partially removed (explored at detailed design)	51

Table 1. Preliminary Compensation Plan

Compensation may be in the form of 3:1 replacement 60mm caliper trees, \$500 cash-in-lieu value, 5:1 shrubs, or 5:1 of smaller stock trees (to be determined at the detailed design stage). Most likely, a combination of these methods will be used. Other compensation measures may be discussed with the City, and should be finalized in the Detailed Design stage. The retention analysis should also be refined at the Detailed Design stage, and will account for the loss of a portion of Polygons A and E.

6.0 Tree Protection Measures and Recommended Mitigation

6.1 Prior to Construction

This plan still contains preliminary details, and should be updated again at the Detailed Design stage. The updated plan should be referred to during the construction process, not this preliminary iteration.

Alongside the commencement of construction activities, the City has requested that a hazard tree assessment be completed once more along the length of the proposed trail. It is recommended that the extent of the trail, and Alternative 3 be assessed by a Certified Arborist to ensure that no additional trees require removal due to an increased potential for structural failure. This should again be completed when construction of the trails and development are complete, detailed in Section 6.3.

Temporary tree protection fencing (TPF) will be situated where trees are adjacent to the limit of disturbance/grading as shown on Map 2. The temporary TPF will be installed and maintained by the Developer. Prior to any construction activities (rough grading, vegetation and tree removal), the TPF will be installed at the limit of development. Prior to works commencing onsite, fence installation and location is to be inspected by a Certified Arborist. Signage indicating the purpose of protection fencing will be attached to the paige-wire fencing every 100-150m. Recommended fencing locations are along property and trail edges, as shown on Map 2.

The TPP is to be reviewed and approved by the City of Guelph. Upon approval of TPP, and prior to any on-site works (i.e. rough grading, tree removal), a qualified environmental consultant is to submit written verification to the City that all of the recommended tree protection measures have been installed in accordance with the final TPP.

6.2 During Construction

Temporary TPF is to be maintained by the Developer during the entire construction period to ensure that off-site trees being retained and their root systems are protected. Any minimal damage (i.e. damage to limbs or roots) to trees to be retained during construction must be pruned using proper arboricultural techniques. Should any of the trees intended to be retained be seriously damaged or die as a result of construction activities, the owner will remove and replace the tree at their own expense at a 3:1 ratio. Replacement species are to be reviewed by a Certified Ontario Landscape Architect (OLA) or Certified Arborist. Watering and pruning of newly planted trees will be carried out by the owner/contractor as required during the warranty period (approximately 2 years).

6.3 Post-Construction

It is recommended that the temporary tree protection fencing be removed upon completion of all construction activities and adjacent areas are stabilized with a vegetative cover (i.e. sod) to the satisfaction of the Environmental Inspector or qualified biologist. At the time of fencing removal, it is recommended that a Certified Arborist assess the boundaries of all development and trail footprints to ensure that no further removals are required due to any increases in the potential for structural failure of adjacent trees.

6.4 Mitigation

Some compensation trees have already been planted within the subject property as part of the demolition permitting and to compensate for trees previously removed without a tree permit. A small number of these compensation trees may require relocation to facilitate the installation of the proposed trail option. Due to the small size of these trees (currently approximately 1m in height), relocation is expected to be feasible, and no further compensation for these trees should be required. Details regarding the number of trees to be relocated and their final destination within the subject property should be provided during the Detailed Design stage.

Species used for compensation plantings, with the exception of street trees, should be native to Wellington County and not include any species that are listed as introduced, or locally, provincially or federally significant. The use of non-native species that are sometimes more tolerant of urban conditions (i.e. salt and drought tolerant) may be suitable as long as they do not include invasive species such as Norway Maple (*Acer platanoides*) or Sweet Cherry (*Prunus avium*).

It is recommended that the following criteria be followed during the development of proposed planting plans and during the Detailed Design stage, which are to be finalized in an Environmental Implementation Report (EIR) and updated TPP:

- Polygon A and E should be inventoried individually to properly quantify the number of trees to be removed and retained;
- Tree retention within the park block should be reassessed based on City needs and trail design;

- Compensation requirements should be updated to reflect more refined details as they become available;
- The compensation plan should be developed by, or reviewed and approved by a Certified Arborist;
- Include hardy, native tree species where feasible that are known to thrive in more urban conditions (i.e. compacted soil, drought, high salt tolerance),
- Include a diversity of trees from several genus to increase disease and pest tolerance and discourage monocultures (no more than 30% from a single genus, 10% from a single species),
- Include a monitoring plan that is appropriate for the planting and compensation objectives,
- Trees should be replaced if the compensation objectives have not been met,
- Trees should be spaced so as to allow material to reach its ultimate size and form;
- Trees should be provided with appropriate soil types and soil volumes;
- Avoid ash species due to the risk of the emerald ash borer (Agrilus planipennis),
- Avoid 'messy trees', such as fruiting trees or poplars (*Populus* spp.) where plantings occur in close proximity to driveways and roadways;
- Spacing of plant material should account for the ultimate size and form of the selected species and also the purpose of the planting, whether it be for screening, shade, naturalizing, rehabilitation, etc.; and
- Special attention to location and height of trees in proximity to utilities.

7.0 References

City of Guelph. 2010. The Official Plan of The City of Guelph By-law Number (2010)-19058.

- City of Guelph. 2022. The City of Guelph Official Plan, February 2022 Consolidation. (https://guelph.ca/plans-and-strategies/official-plan/).
- Dunster, J. A. 2009. Tree Risk Assessment in Urban Areas and the Urban/Rural Interface: Course Manual. Pacific Northwest Chapter, International Society of Arboriculture, Silverton, Oregon.
- Dunster, J. A., E. T. Smiley, N. Matheny, and S. Lily. 2013. Tree Risk Assessment Manual. International Society of Arboriculture, Champaign, Illinois.

Appendix I Tree Inventory Data

1250 Gordon Street Tree Preservation Plan Tree Inventory Data

No. of	Tree			Native/ Non-	Stem		Crown Radius	Potential for Structural	Overall		Proposed	Compensation	
Trees	Number	Common Name	Scientific Name	native/ Non-	Count	DBH (cm)	(m)	Failure Rating	Condition	Location	Action	Required	Comments
1	A	Freeman's Maple	Acer X freemanii	Native	1	75	7.0	Medium	Fair	Development	Remove	Yes	
1	В	Eastern White Cedar	Thuja occidentalis	Native	1	16	1.0	Low	Fair	Development	Remove	Yes	
1	С	Eastern Cottonwood	Populus deltoides	Native	1	17	2.0	Low	Good	Development	Remove	Yes	
1	D	Black Walnut	Juglans nigra	Native	1	12	0.5	Low	Good	Development	Remove	Yes	no tag
1	E	Butternut	Juglans cinerea	Native	1	20	4.0	Medium	Fair	Development	Remove	Yes	
1	F	Sugar Maple	Acer saccharum ssp. saccharum	Native	1	30	3.0	Low	Good	Development	Retain	No	off-site, move point 1.5m out
1	G	Sugar Maple	Acer saccharum ssp. saccharum	Native	1	45	4.0	High	Poor	Off-Property	Retain	No	
1	I	Norway Spruce	Picea abies	Non-Native	1	45	5.0	Medium	Fair	Development	Remove	Yes	didn't tag since behind low fence
1	J	Sugar Maple	Acer saccharum ssp. saccharum	Native	1	45	3.0	High	Poor	Development	Retain	No	
41		Norway Spruce	Picea abies	Non-Native	1	30	2.0	Low	Good	Development	Retain where Feasible	No	20 spruce hedge,
207		Eastern White Cedar	Thuja occidentalis	Native	1	16	1.0	Low	Fair	Development	Remove	Yes	
18	Polygon C	Eastern White Cedar	Thuja occidentalis	Native	1	18	2.0	Medium	Fair	Development	Remove	Yes	behind fence, 4m south - 10m south
5		Norway Spruce	Picea abies	Non-Native	5	34	4.0	Medium	Fair	Development	Remove	Yes	
10		Freeman's Maple	Acer X freemanii	Native	1	32	4.0	Medium	Fair	Development	Retain where Feasible	No	
8		Norway Spruce	Picea abies	Non-Native	1	30	3.0	Low	Good	Development	Remove	Yes	Hedgerow
1	101	Sugar Maple	Acer saccharum ssp. saccharum	Native	1	65	7.0	Medium	Fair	Boundary	Remove	Yes	
1	102	Sugar Maple	Acer saccharum ssp. saccharum	Native	1	46	5.0	Medium	Fair	Development	Remove	Yes	on-property, few stress cracks on scaffold branches, 1 dead branch
1	103	White Spruce	Picea glauca	Native	1	24	3.0	Medium	Fair	Boundary	Remove	Yes	crown uneven due to competition for sunlight with maple
1	104	Sugar Maple	Acer saccharum ssp. saccharum	Native	1	60	6.0	High	Poor	Boundary	Remove	No	codominant branches with included bark, 40% dieback
1	105	Norway Maple	Acer platanoides	Non-Native	1	20	3.5	Medium	Fair	Boundary	Remove	Yes	boundary tree
1	106	Manitoba Maple	Acer negundo	Native	1	22	4.0	Medium	Fair	Boundary	Remove	Yes	boundary tree, stem grows on 90 degree angle before self correcting
1	107	Eastern White Cedar	Thuja occidentalis	Native	2	11	1.5	High	Poor	Boundary	Remove	No	boundary tree, root flare impacted by dumped debris - angled
1	108	Eastern White Cedar	Thuja occidentalis	Native	2	10	1.0	Medium	Poor	Boundary	Remove	No	boundary tree, codominant stems with included bark, root flare impacted - angled
1	109	Black Walnut	Juglans nigra	Native	1	21	5.0	Medium	Fair	Development	Remove	Yes	boundary tree, codominant branches with included bark
1	110	Eastern White Cedar	Thuja occidentalis	Native	1	14	2.5	Medium	Fair	Development	Remove	Yes	boundary tree
1	111	Eastern White Cedar	Thuja occidentalis	Native	1	23	2.5	Medium	Fair	Development	Remove	Yes	boundary tree
1	112	Norway Spruce	Picea abies	Non-Native	1	56	4.0	Medium	Fair	Development	Remove	Yes	
1	113	Common Pear	Pyrus communis	Non-Native	1	27	3.0	High	Very Poor	Development	Remove	No	open wounds in stem + root flare, lean
1	114	Eastern White Cedar	Thuja occidentalis	Native	1	22	2.0	High	Poor	Development	Remove	No	40% dieback, crown leans 30 degrees
1	115	Eastern White Cedar	Thuja occidentalis	Native	1	10	1.0	High	Poor	Development	Remove	No	

No.	Tree			Netion / New	C		Crown	Potential for	0		Deserves	Commenceation	
of Trees	Tree Number	Common Name	Scientific Name	Native/ Non- native	Stem Count	DBH (cm)	Radius (m)	Structural Failure Rating	Overall Condition	Location	Proposed Action	Compensation Required	Comments
1	116	Eastern White Cedar	Thuja occidentalis	Native	1	14	1.0	High	Poor	Development	Remove	No	
1	117	Eastern White Cedar	Thuja occidentalis	Native	1	11	1.0	High	Poor	Development	Remove	No	
1	118	Eastern White Cedar	Thuja occidentalis	Native	2	12	2.0	High	Poor	Development	Remove	No	wire around stem, secondary vertical branches
1	119	Eastern White Cedar	Thuja occidentalis	Native	2	17	1.0	High	Poor	Development	Remove	No	
1	120	Eastern White Cedar	Thuja occidentalis	Native	1	16	2.0	High	Poor	Development	Remove	No	competition for sunlight
1	121	Eastern White Cedar	Thuja occidentalis	Native	1	17	1.5	High	Poor	Development	Remove	No	
1	123	Eastern White Cedar	Thuja occidentalis	Native	2	14	3.0	Medium	Fair	Development	Remove	Yes	codominant stems with included bark
1	124	Eastern White Cedar	Thuja occidentalis	Native	1	15	1.0	High	Poor	Boundary	Remove	No	
1	125	Eastern White Cedar	Thuja occidentalis	Native	2	21	3.0	High	Poor	Development	Remove	No	
1	126	Eastern White Cedar	Thuja occidentalis	Native	1	30	3.0	High	Poor	Development	Remove	No	
1	127	Eastern White Cedar	Thuja occidentalis	Native	2	21	3.0	High	Poor	Development	Remove	No	
1	128	Eastern White Cedar	Thuja occidentalis	Native	1	16	1.0	High	Poor	Development	Remove	No	
1	129	Norway Spruce	Picea abies	Non-Native	1	36	4.0	Low	Fair	Development	Remove	Yes	
1	130	Eastern White Cedar	Thuja occidentalis	Native	1	19	1.5	Medium	Fair	Development	Remove	Yes	
1	131	Eastern White Cedar	Thuja occidentalis	Native	1	15	2.0	Medium	Fair	Development	Remove	Yes	
1	133	Norway Spruce	Picea abies	Non-Native	1	28	4.0	Low	Good	Development	Remove	Yes	
1	134	Norway Spruce	Picea abies	Non-Native	1	38	4.0	Medium	Fair	Development	Remove	Yes	
1	135	Norway Spruce	Picea abies	Non-Native	1	21	3.0	High	Poor	Development	Remove	No	
1	136	Common Pear	Pyrus communis	Non-Native	1	23	4.0	High	Poor	Development	Remove	No	open wounds in stem
1	137	Common Apple	Malus domestica	Non-Native	3	29	5.0	High	Poor	Development	Remove	No	2 stems broken off with decay
1	138	Common Apple	Malus domestica	Non-Native	1	22	5.0	High	Poor	Development	Remove	No	wounds on stem compartmentalizing, 2 dead scaffold branches
1	139	Norway Spruce	Picea abies	Non-Native	1	51	5.0	Low	Good	Development	Remove	Yes	
1	140	Eastern White Cedar	Thuja occidentalis	Native	1	15	3.0	Medium	Fair	Development	Remove	Yes	
1	141	Eastern White Cedar	Thuja occidentalis	Native	4	21	1.5	Medium	Fair	Development	Remove	Yes	
1	142	Eastern White Cedar	Thuja occidentalis	Native	2	12	2.0	High	Poor	Development	Remove	No	
1	143	Eastern White Cedar	Thuja occidentalis	Native	2	16	2.0	High	Poor	Development	Remove	No	competition for sunlight
1	144	Eastern White Cedar	Thuja occidentalis	Native	1	17	1.0	Medium	Fair	Development	Remove	Yes	
1	145	Eastern White Cedar	Thuja occidentalis	Native	2	19	3.0	High	Poor	Development	Remove	No	competition for sunlight
1	146	Eastern White Cedar	Thuja occidentalis	Native	2	19	2.0	Medium	Fair	Development	Remove	Yes	competition for sunlight
1	148	Colorado Spruce	Picea pungens	Non-Native	1	11	1.5	Low	Excellent	Development	Remove	Yes	
1	149	Norway Maple	Acer platanoides	Non-Native	1	25	5.0	Medium	Fair	Development	Remove	Yes	
1	150	Colorado Spruce	Picea pungens	Non-Native	1	10	1.0	High	Dead	Development	Remove	No	

No.							Crown	Potential for					
of	Tree			Native/ Non-	Stem		Radius	Structural	Overall		Proposed	Compensation	
Trees 1	Number 151	Common Name Sugar Maple	Scientific Name	native Native	Count	DBH (cm) 61	(m) 5.0	Failure Rating Medium	Condition Fair	Location Development	Action Remove	Required Yes	Comments
1	151	Sugar Maple	Acer saccharum ssp. saccharum	Native	1	01	5.0	wealum	Fair	Development	Remove	res	
1	152	Sugar Maple	Acer saccharum ssp.	Native	1	53	5.0	Medium	Fair	Development	Remove	Yes	
		0 1	, saccharum										
1	153	Sugar Maple	Acer saccharum ssp.	Native	1	64	5.0	High	Poor	Development	Remove	No	50% dieback
			saccharum								_		
1	154	White Ash	Fraxinus americana	Native	1	23	4.0	Low	Good	Development	Remove	Yes	
1	155 156	Norway Spruce Eastern White	Picea abies Thuja occidentalis	Non-Native Native	2	43 24	3.0 4.0	Low Medium	Good Fair	Development Development	Remove Remove	Yes Yes	
'	150	Cedar	Thuja Occidentalis	Induve	2	24	4.0	Medium	1 all	Development	Remove	163	
1	157	Eastern White Cedar	Thuja occidentalis	Native	1	15	1.5	High	Poor	Development	Remove	No	
1	158	Norway Spruce	Picea abies	Non-Native	1	45	4.0	Low	Good	Development	Remove	Yes	
1	159	Norway Spruce	Picea abies	Non-Native	1	40	4.0	Low	Good	Development	Remove	Yes	
1	160	Norway Spruce	Picea abies	Non-Native	1	32	2.0	Medium	Fair	Development	Remove	Yes	
1	161	Eastern White	Thuja occidentalis	Native	3	18	3.5	High	Dead	Development	Remove	No	
		Cedar	,					0					
1	162	Eastern White Cedar	Thuja occidentalis	Native	2	19	2.0	High	Dead	Development	Remove	No	
1	163	Norway Spruce	Picea abies	Non-Native	1	38	4.0	Low	Good	Development	Remove	Yes	
1	164	Eastern White Cedar	Thuja occidentalis	Native	1	16	2.0	Medium	Fair	Development	Remove	Yes	
1	165	Norway Spruce	Picea abies	Non-Native	1	29	3.0	Low	Good	Development	Remove	Yes	
1	166	Norway Spruce	Picea abies	Non-Native	1	36	3.5	Medium	Fair	Development	Remove	Yes	
1	167	Norway Spruce	Picea abies	Non-Native	1	15	2.0	Medium	Fair	Development	Remove	Yes	
1	168	Norway Spruce	Picea abies	Non-Native	1	40	4.0	Low	Good	Development	Remove	Yes	
1	169	Norway Spruce	Picea abies	Non-Native	1	14	1.0	High	Dead	Development	Remove	No	
1	170	Norway Spruce	Picea abies	Non-Native	1	28	3.5	Medium	Fair	Development	Remove	Yes	
1	171	Norway Spruce	Picea abies	Non-Native	1	25	5.0	Medium	Fair	Development	Remove	Yes	
1	172	Norway Spruce	Picea abies	Non-Native	1	27	3.0	Medium	Fair	Development	Remove	Yes	
1	173	Siberian Elm	Ulmus pumila	Non-Native	1	52	8.0	Medium	Fair	Boundary	Remove	Yes	crown leans 70 degree angle
1	174	European Weeping Birch	Betula pendula	Non-Native	2	26	4.0	Medium	Fair	Public	Remove	Yes	
1	176	Honey Locust	Gleditsia triacanthos	Native	1	40	6.0	Medium	Fair	Public	Retain	No	
1	177	Honey Locust	Gleditsia triacanthos	Native	1	21	5.0	Medium	Fair	Off-Property	Retain	No	
1	178	Honey Locust	Gleditsia triacanthos	Native	1	14	4.0	Medium	Fair	Off-Property	Retain	No	
1	179	Norway Spruce	Picea abies	Non-Native	1	41	4.0	Medium	Fair	Boundary	Retain	No	
1	180	Norway Maple	Acer platanoides	Non-Native	1	67	6.0	High	Poor	Boundary	Retain	No	numerous large cracks in stem and branches
1	181	Tamarack	Larix laricina	Native	1	30	4.0	Medium	Fair	Boundary	Remove	Yes	
1	182	Sugar Maple	Acer saccharum ssp. saccharum	Native	1	53	7.0	Medium	Fair	Development	Remove	Yes	
1	183	Norway Maple	Acer platanoides	Non-Native	1	51	7.0	Medium	Fair	Development	Remove	Yes	hanger, 10% dieback
1	184	American Basswood	Tilia americana	Native	3	42	6.0	Medium	Fair	Development	Remove	Yes	10% dieback
1	185	Sugar Maple	Acer saccharum ssp. saccharum	Native	1	17	4.0	Low	Good	Boundary	Remove	Yes	
1	186	Linden	Tilia sp.	Non-Native	1	28	5.0	Medium	Fair	Development	Remove	Yes	
1	187	Common Apple	Malus domestica	Non-Native	1	44	4.0	High	Poor	Development	Remove	No	
1	188	Linden	Tilia sp.	Non-Native	1	19	3.0	Medium	Fair	Development	Remove	Yes	
1	189	Sugar Maple	Acer saccharum ssp. saccharum	Native	1	47	5.0	Medium	Fair	Development	Remove	Yes	
1	190	Eastern White Cedar	Thuja occidentalis	Native	1	12	1.0	Low	Good	Development	Remove	Yes	
1	191	Eastern White Cedar	Thuja occidentalis	Native	2	20	1.0	Medium	Fair	Development	Remove	Yes	

No.							Crown	Potential for					
of	Tree			Native/ Non-	Stem		Radius	Structural	Overall		Proposed	Compensation	
Trees	Number	Common Name	Scientific Name	native	Count	DBH (cm)	(m)	Failure Rating	Condition	Location	Action	Required	Comments
1	192	Eastern White	Thuja occidentalis	Native	3	16	2.0	Medium	Fair	Development	Remove	Yes	
1	193	Cedar Norway Spruce	Picea abies	Non-Native	1	50	3.5	Low	Excellent	Development	Remove	Yes	
1	193	Norway Spruce	Picea abies	Non-Native	1	52	3.0	Low	Good	Development	Remove	Yes	
1	195	Linden	Tilia sp.	Non-Native	1	22	3.5	Medium	Fair	Development	Remove	Yes	
1	196	Norway Spruce	Picea abies	Non-Native	1	35	3.0	Low	Excellent	Development	Remove	Yes	
1	197	Linden	Tilia sp.	Non-Native	1	23	4.0	Medium	Fair	Development	Remove	Yes	
1	198	Norway Spruce	Picea abies	Non-Native	1	39	3.0	Low	Excellent	Development	Remove	Yes	
1	199	Linden	Tilia sp.	Non-Native	1	13	3.0	Medium	Fair	Development	Remove	Yes	
1	200	Norway Spruce	Picea abies	Non-Native	1	34	3.0	Low	Good	Development	Remove	Yes	
1	201	Norway Spruce	Picea abies	Non-Native	1	41	5.0	Medium	Fair	Development	Remove	Yes	
1	202	Norway Spruce	Picea abies	Non-Native	1	19	2.0	High	Poor	Development	Remove	No	
1	204	Sugar Maple	Acer saccharum ssp. saccharum	Native	1	52	7.0	Medium	Fair	Development	Remove	Yes	
1	205	Norway Spruce	Picea abies	Non-Native	1	15	1.5	Medium	Fair	Development	Remove	Yes	
1	205	Norway Spruce	Picea abies Picea abies	Non-Native	1	15	2.0	Medium	Fair	Development	Remove	Yes	
1	200	Norway Spruce	Picea abies	Non-Native	2	21	2.0	Medium	Poor	Development	Remove	No	
1	208	Norway Spruce	Picea abies	Non-Native	1	27	3.0	Medium	Fair	Development	Remove	Yes	
1	209	Norway Spruce	Picea abies	Non-Native	1	23	2.0	Medium	Poor	Development	Remove	No	
1	210	Scots Pine	Pinus sylvestris	Non-Native	1	36	4.0	High	Poor	Development	Remove	No	
1	211	Common Apple	Malus domestica	Non-Native	1	37	6.0	Medium	Fair	Development	Remove	No	behind low fence
1	212	Norway Spruce	Picea abies	Non-Native	1	32	4.0	Low	Good	Development	Remove	Yes	
1	213	Norway Spruce	Picea abies	Non-Native	1	24	3.0	Medium	Fair	Development	Remove	Yes	
1	214	Norway Spruce	Picea abies	Non-Native	1	36	4.0	Low	Good	Development	Remove	Yes	
1	215	Norway Spruce	Picea abies	Non-Native	1	41	4.0	Low	Good	Development	Remove	Yes	
1	216	Scots Pine	Pinus sylvestris	Non-Native	1	38	4.0	Medium	Fair	Development	Remove	Yes	
1		Norway Spruce	Picea abies	Non-Native	1	26	2.0	Medium	Fair	Development	Remove	Yes	
1		Norway Maple	Acer platanoides	Non-Native	1	40	4.0	Medium	Fair	Development	Remove	Yes	
1		Norway Spruce	Picea abies	Non-Native	1	32	3.0	Low	Good	Development	Remove	Yes	
1		Norway Spruce	Picea abies	Non-Native	1	31	3.0	Medium	Fair	Development	Remove	Yes	
1	222	Norway Spruce	Picea abies	Non-Native	1	43	3.0	Medium	Fair	Development	Remove	Yes	
1		Norway Spruce	Picea abies	Non-Native	1	35 18	3.0 3.0	Medium	Fair	Development	Remove	Yes Yes	
1		Pine Species Black Walnut	Pinus sp. Juqlans nigra	Non-Native Native	1	65	6.0	Medium Medium	Fair Fair	Development Development	Remove Remove	Yes	
1	229	Norway Spruce	Picea abies	Non-Native	1	31	3.0	Medium	Fair	Development	Remove	Yes	
1	223	Scots Pine	Pinus sylvestris	Non-Native	1	42	3.0	Low	Good	Development	Remove	Yes	
1	233	Scots Pine	Pinus sylvestris	Non-Native	1	29	2.5	Low	Good	Development	Retain	No	
1	235	Scots Pine	Pinus sylvestris	Non-Native	1	23	3.0	Medium	Fair	Development	Remove	Yes	
1	236	Scots Pine	Pinus sylvestris	Non-Native	1	15	2.5	Low	Good	Development	Retain	No	
1	237	Scots Pine	Pinus sylvestris	Non-Native	1	16	2.5	Medium	Fair	Development	Retain	No	
1	238	Scots Pine	Pinus sylvestris	Non-Native	2	19	3.0	Medium	Fair	Development	Remove	Yes	
1	239	Scots Pine	Pinus sylvestris	Non-Native	1	11	1.0	Medium	Good	Development	Retain	No	
1	240	Scots Pine	Pinus sylvestris	Non-Native	1	14	2.0	Medium	Fair	Development	Retain	No	
1	241	Scots Pine	Pinus sylvestris	Non-Native	1	11	1.0	Low	Good	Development	Retain	No	
1	242	Scots Pine	Pinus sylvestris	Non-Native	1	12	1.0	Medium	Fair	Development	Remove	Yes	
1	243	Scots Pine	Pinus sylvestris	Non-Native	1	20	3.0	Medium	Fair	Development	Remove	Yes	
1	244	Scots Pine	Pinus sylvestris	Non-Native	1	17	2.0	Low	Good	Development	Remove	Yes	
1	245	Scots Pine	Pinus sylvestris	Non-Native	1	23	2.0	Low	Good	Development	Remove	Yes	
1	246	Black Walnut	Juglans nigra	Native	1	21	3.5	Medium	Fair	Development	Remove	Yes	
1	247	Norway Spruce	Picea abies	Non-Native	1	20	2.0	Low	Excellent	Development	Remove	Yes	
1	248	White Spruce	Picea glauca	Native	1	12	1.5	Low	Excellent	Development	Remove	Yes	
1	249	White Spruce	Picea glauca	Native	1	12	1.5	Low	Good	Development	Remove	Yes	
1	250	Eastern White Cedar	Thuja occidentalis	Native	1	14	1.5	Low	Good	Development	Remove	Yes	
								•					1

No.							Crown	Potential for					
of	Tree			Native/ Non-	Stem		Radius	Structural	Overall		Bronocod	Componention	
Trees	Number	Common Name	Scientific Name	native/ Non-	Count	DBH (cm)		Failure Rating	Condition	Location	Proposed Action	Compensation Required	Comments
1	251	Eastern White	Thuja occidentalis	Native	1	22	2.0	Low	Good	Development	Remove	Yes	Comments
	251	Cedar	muja occidentalis	Nauve	1	22	2.0	LOW	Good	Development	Remove	res	
1	252	Black Walnut	Juglans nigra	Native	1	10	1.5	Medium	Fair	Development	Remove	Yes	
1	252	Scots Pine	Pinus sylvestris	Non-Native	1	10	1.5	Low	Good	Development	Remove	Yes	
1	254	Scots Pine	Pinus sylvestris	Non-Native	1	17	2.0	Low	Good	Development	Remove	Yes	
1	255	Common Pear	Pyrus communis	Non-Native	3	17	1.0	High	Poor	Development	Remove	No	
1	255	Scots Pine	Pinus sylvestris	Non-Native	3	30	2.5	Low	Good	Development	Remove	Yes	
1	257	Scots Pine	Pinus sylvestris	Non-Native	1	21	2.5	Low	Good	Development	Remove	Yes	
1	258	Common Pear	Pyrus communis	Non-Native	2	16	2.5	Medium	Poor	Development	Remove	No	
1	259	Common Apple	Malus domestica	Non-Native	3	32	4.0	Medium	Poor	Development	Remove	No	1 cavity, sapsucker feeding
1		Black Maple	Acer saccharum ssp.	Native	1	14	3.0		Poor	Development	Remove	No	i cavity, sapsucker reeding
	200	DIACK IVIAPIE	niarum	INduve		14	3.0	High	FUUI	Development	Remove	NO	
1	261	Green Ash	Fraxinus	Native	1	27	5.0	Low	Good	Dovelopment	Remove	Yes	
'	201	Green Asti	pennsylvanica	inalive	'	21	5.0	LOW	Guu	Development	Reniove	res	
1	262	Puttorput		Native	1	20	5.0	Medium	Fair	Dovelopment	Pomovo	Yes	
1	262 263	Butternut Groop Ash	Juglans cinerea			28 23	3.0			Development	Remove	No	
'	203	Green Ash	Fraxinus	Native	1	23	3.0	Medium	Poor	Development	Remove	110	
1	264	Crean Ash	pennsylvanica	Nativo	1	10	2.0	Low	Fair	Development	Domou/-	Vaa	
1	264	Green Ash	Fraxinus	Native	1	10	2.0	Low	Fair	Development	Remove	Yes	
4	265	White Craws	pennsylvanica	Notice	4	23	3.0	Madhim	Fair	Develorment	Dam	V	
1		White Spruce	Picea glauca	Native	1			Medium		Development	Remove	Yes	
1	266	Black Maple	Acer saccharum ssp.	Native	1	105	9.0	High	Poor	Development	Remove	No	
	007	0	nigrum	N. C.	4	10	0.0		0 1	D 1 1	_	N/	
1	267	Green Ash	Fraxinus	Native	1	12	2.0	Low	Good	Development	Remove	Yes	
			pennsylvanica										
1	268	Black Maple	Acer saccharum ssp.	Native	1	19	4.0	High	Poor	Development	Remove	No	
		D I 1 D I 1	nigrum			10							
1	269	Black Maple	Acer saccharum ssp.	Native	1	12	2.0	High	Poor	Development	Remove	No	
			nigrum										
1	270	Black Maple	Acer saccharum ssp.	Native	1	11	2.5	High	Poor	Development	Remove	No	
			nigrum										
1	271	Red Oak	Quercus rubra	Native	1	52	7.0	Medium	Fair	Development	Remove	Yes	
1	272	Red Oak	Quercus rubra	Native	1	20	2.0	High	Very Poor	Development	Remove	No	
1	273	Red Oak	Quercus rubra	Native	1	23	5.0	Medium	Fair	Development	Remove	Yes	
1	274	Red Oak	Quercus rubra	Native	1	13	1.5	Low	Good	Development	Remove	Yes	
1	276	Red Oak	Quercus rubra	Native	1	65	8.0	Low	Fair	Development	Remove	Yes	
1	277	Red Oak	Quercus rubra	Native	1	18	4.0	Low	Fair	Development	Remove	Yes	
1	278	Red Oak	Quercus rubra	Native	1	21	4.0	Medium	Fair	Development	Remove	Yes	
1		Red Oak	Quercus rubra	Native	1	13	4.0	Medium	Fair	Development	Remove	Yes	
1		Red Oak	Quercus rubra	Native	1	11	2.0	Medium	Fair	Development	Remove	Yes	
1		Norway Spruce	Picea abies	Non-Native	1	10	1.0	High	Dead	Development	Remove	No	
1		Red Oak	Quercus rubra	Native	1	65	8.0	Medium	Fair	Development	Remove	Yes	
1	283	Norway Spruce	Picea abies	Non-Native	1	16	2.5	Medium	Poor	Development	Remove	No	
1	284	Norway Spruce	Picea abies	Non-Native	1	18	4.0	Medium	Fair	Development	Remove	Yes	
1	285	Norway Spruce	Picea abies	Non-Native	1	23	3.0	Medium	Fair	Development	Remove	Yes	
1	286	Norway Spruce	Picea abies	Non-Native	1	16	2.5	Medium	Fair	Development	Remove	Yes	
1	287	Norway Spruce	Picea abies	Non-Native	1	18	1.5	Medium	Poor	Development	Remove	No	
1	288	Norway Spruce	Picea abies	Non-Native	1	13	1.5	Medium	Poor	Development	Remove	No	
1	289	American	Tilia americana	Native	1	25	4.0	Medium	Fair	Development	Remove	Yes	
		Basswood											
1	290	Norway Spruce	Picea abies	Non-Native	1	11	1.5	Medium	Fair	Development	Remove	Yes	
1	291	Norway Spruce	Picea abies	Non-Native	1	35	5.0	Low	Good	Development	Remove	Yes	
1	292	Norway Spruce	Picea abies	Non-Native	1	15	1.0	Medium	Fair	Development	Remove	Yes	slight lean
1		Norway Spruce	Picea abies	Non-Native	1	35	3.5	Low	Good	Development	Remove	Yes	
1	294	Norway Spruce	Picea abies	Non-Native	1	27	3.0	High	Poor	Development	Remove	No	
1	295	Norway Maple	Acer platanoides	Non-Native	2	19	3.0	High	Poor	Development	Remove	No	

No.							Crown	Potential for					
of	Tree			Native/ Non-	Stem		Radius	Structural	Overall		Proposed	Compensation	
Trees	Number		Scientific Name	native		DBH (cm)	(m)	Failure Rating	Condition	Location	Action	Required	Comments
1	296	Norway Spruce	Picea abies	Non-Native	1	32	4.0	Low	Good	Development	Remove	Yes	
1	297	Norway Spruce	Picea abies	Non-Native	1	40	4.0	Low	Good	Development	Remove	Yes	
1	298	Fir species	Abies sp.	Non-Native	1	37	4.0	Medium	Fair	Development	Remove	Yes	
1	299	Balsam Fir	Abies balsamea	Native	1	15	2.0	Low	Good	Development	Remove	Yes	
1	300	Black Walnut	Juglans nigra	Native	1	12	1.5 3.0	Low	Good	Development	Remove	Yes	
1	301 302	Norway Spruce Crack Willow	Picea abies Salix fragilis	Non-Native Non-Native	1	31 73	3.0	Low High	Good Poor	Development	Remove	Yes No	unquitable bet equities at old branch unions frace
						-				Development	Remove		unsuitable bat cavities at old branch unions - frass, decay
1	303	Red Maple	Acer rubrum	Native	1	12	1.0	High	Dead	Development	Remove	No	
1	304	White Elm	Ulmus americana	Native	1	11	4.0	High	Poor	Development	Remove	No	
1		Manitoba Maple	Acer negundo	Native	1	10	2.0	High	Poor	Development	Remove	No	grapevine throughout crown, 40% dieback
1		Manitoba Maple	Acer negundo	Native	1	17	2.0	High	Poor	Development	Remove	No	epicormic shoots, grapevine, 30% dieback
1		Black Walnut	Juglans nigra	Native	1	11	2.0	Low	Good	Development	Remove	Yes	
1		White Elm	Ulmus americana	Native	2	10	4.0	High	Fair	Development	Remove	Yes	
1	-	White Elm	Ulmus americana	Native	1	16	1.5	Medium	Fair	Development	Retain	No	
1	312	White Elm	Ulmus americana	Native	1	33	4.0 3.5	High	Poor	Development	Retain	No	on-property
1	313	White Elm	Ulmus americana	Native		25		Medium	Fair	Development	Retain	No	on-property
1	<u>314</u> 315	Black Walnut Black Walnut	Juglans nigra	Native	1	10	3.0	Low	Good	Development	Retain	No	
			Juglans nigra	Native		14 14	3.0	Low	Good	Development	Retain	No	
1	316 317	Black Walnut White Elm	Juglans nigra	Native Native	1	14	3.0 2.5	Low Medium	Good	Development	Retain Retain	No No	
1	317	Black Walnut	Ulmus americana Juglans nigra	Native	1	49	6.0	Low	Fair Good	Development Development	Remove	Yes	
1	310	White Elm	Ulmus americana	Native	1	49 15	3.0	High	Dead	Development	Remove	No	
1	320	Black Walnut	Juglans nigra	Native	1	62	7.0	Medium	Fair	Development	Retain	No	codominant branches with included bark, few small
4	204		1	Mathia	4	40	2.0	Maaliuwa	E e in	Development	Detain	N	branches previously lost
1		White Elm White Elm	Ulmus americana Ulmus americana	Native Native	1	13 12	3.0 3.0	Medium High	Fair Dead	Development Development	Retain Remove	No No	epicormic shoots, leans 45 degrees leans on 45 degree angle
1	-	White Elm	Ulmus americana	Native	1	31	3.0	High	Dead	Development	Remove	No	leans on 45 degree angle
1		Black Walnut	Juqlans nigra	Native	1	15	2.5	Low	Good	Development	Retain	No	
1		Black Walnut	Jugians nigra	Native	1	15	2.0	High	Poor	Development	Retain	No	40% dieback
1		White Elm	Ulmus americana	Native	1	18	3.0	Medium	Good	Development	Retain	No	
1		Black Walnut	Juglans nigra	Native	1	12	2.0	Medium	Fair	Development	Retain	No	
1		Black Walnut	Juqlans nigra	Native	1	12	3.0	Medium	Fair	Development	Retain	No	
1	329	Black Walnut	Juqlans nigra	Native	1	26	3.0	Medium	Fair	Development	Retain	No	boundary tree
1	330	White Elm	Ulmus americana	Native	1	31	5.0	Medium	Poor	Development	Remove	No	boundary noo
1	331	White Elm	Ulmus americana	Native	1	14	3.0	Medium	Poor	Development	Remove	No	
1	332		Crataegus sp.	Native	1	14	2.0	High	Poor	Development	Retain	No	
1	333	White Elm	Ulmus americana	Native	1	10	2.0	Medium	Fair	Development	Retain	No	
1	334	Scots Pine	Pinus sylvestris	Non-Native	1	15	1.0	High	Poor	Development	Retain	No	
1		Black Walnut	Juqlans nigra	Native	1	26	3.0	Medium	Fair	Development	Retain	No	
1	336	Eastern Red Cedar	Juniperus virginiana	Native	2	14	1.5	Medium	Fair	Development	Retain	No	
1	337	Black Walnut	Juglans nigra	Native	1	17	3.0	Medium	Fair	Development	Retain	No	
1	338	White Elm	Ulmus americana	Native	1	11	3.0	Medium	Fair	Development	Retain	No	1 large vine in crown - may impact health, 1 dead branch, crown leans
1	339	White Elm	Ulmus americana	Native	1	14	2.0	High	Dead	Development	Remove	No	
1		Black Walnut	Juglans nigra	Native	1	11	2.0	High	Poor	Development	Retain	No	
1		Black Cherry	Prunus serotina	Native	2	15	2.0	High	Poor	Development	Retain	No	boundary tree
1	-	Manitoba Maple	Acer negundo	Native	1	36	6.0	High	Poor	Development	Retain	No	codominant branches with included bark
1	343	Black Cherry	Prunus serotina	Native	1	37	6.0	High	Dead	Development	Remove	No	should be removed
1		Black Walnut	Juglans nigra	Native	1	11	2.0	High	Poor	Development	Retain	No	
1	345	White Elm	Ulmus americana	Native	1	12	2.0	High	Poor	Development	Retain	No	
1	346	Black Walnut	Juglans nigra	Native	1	12	1.0	High	Dead	Development	Retain	No	
1	347	Black Walnut	Juglans nigra	Native	1	17	3.0	High	Dead	Development	Retain	No	

No.							Crown	Potential for					
of	Tree			Native/ Non-	Stem		Radius	Structural	Overall		Proposed	Compensation	
Trees	Number	Common Name	Scientific Name	native	Count	DBH (cm)	(m)	Failure Rating	Condition	Location	Action	Required	Comments
1	348	Black Walnut	Juglans nigra	Native	1	11	2.0	Low	Fair	Development	Retain	No	
1	349	Common Apple	Malus domestica	Non-Native	2	10	4.0	High	Poor	Development	Retain	No	
1	350	Black Walnut	Juglans nigra	Native	1	12	3.0	Low	Good	Development	Retain	No	
1	351	White Elm	Ulmus americana	Native	1	23	5.0	High	Dead	Development	Retain	No	
1	352	Black Cherry	Prunus serotina	Native	2	13	4.0	Medium	Fair	Development	Retain	No	
1	353	Scots Pine	Pinus sylvestris	Non-Native	1	12	2.0	Low	Good	Development	Retain	No	
1	355	Hawthorn Species	Crataegus sp.	Native	2	12	3.0	High	Poor	Development	Retain	No	354 tag missing
1	356	White Elm	Ulmus americana	Native	1	22	4.0	High	Dead	Development	Retain	No	
1	357	White Elm	Ulmus americana	Native	1	27	4.0	Medium	Fair	Development	Retain	No	
1	358	Black Walnut	Juglans nigra	Native	1	12	3.0	Medium	Fair	Development	Retain	No	
1	359	White Elm	Ulmus americana	Native	1	16	4.0	Medium	Poor	Development	Remove	No	
1		Black Walnut	Juglans nigra	Native	1	39	5.0	High	Poor	Boundary	Remove	No	
1		Black Walnut	Juglans nigra	Native	1	48	7.0	Medium	Fair	Development	Retain	No	
1		Black Walnut	Juglans nigra	Native	1	38	5.0	Medium	Fair	Boundary	Retain	No	
1		Black Walnut	Juglans nigra	Native	1	39	6.0	Low	Good	Boundary	Retain	No	
1	365	Black Cherry	Prunus serotina	Native	3	23	3.0	High	Very Poor	Boundary	Remove	No	80% dieback
1	366	White Elm	Ulmus americana	Native	1	10	2.0	Low	Good	Development	Retain	No	
1	367	White Elm	Ulmus americana	Native	1	26	5.0	High	Very Poor	Development	Remove	No	
1	368	White Elm	Ulmus americana	Native	1	13	3.0	Low	Good	Development	Retain	No	
1	369	White Elm	Ulmus americana	Native	1	15	3.0	High	Dead	Development	Retain	No	
1	370	Scots Pine	Pinus sylvestris	Non-Native	1	17	3.0	High	Dead	Development	Retain	No	
1	371	White Elm	Ulmus americana	Native	1	12	3.0	Medium	Fair	Development	Retain	No	
1	372	Butternut	Juglans cinerea	Native	1	17	3.0	Medium	Fair	Development	Retain	No	
1	373	Scots Pine	Pinus sylvestris	Non-Native	1	34	4.0	Improbable	Fair	Trail	Remove	Yes	Minor dead branches.
1	374	White Elm	Ulmus americana	Native	1	32	3.0	Medium	Fair	Trail	Retain	No	
1	375	White Elm	Ulmus americana	Native	1	12	1.5	Probable	Dead	Trail	Remove	No	Standing snag.
1	379	White Elm	Ulmus americana	Native	1	21	2.0	Probable	Dead	Trail	Remove	No	Standing snag.
1	380	White Elm	Ulmus americana	Native	1	16	3.0	Medium	Fair	Trail	Retain	No	
1	381	White Elm	Ulmus americana	Native	1	28	3.0	Probable	Dead	Trail	Remove	No	Standing snag.
1		White Elm	Ulmus americana	Native	1	19	2.0	Probable	Dead	Trail	Remove	No	Standing snag.
1	383	White Elm	Ulmus americana	Native	1	27	2.5	Probable	Dead	Trail	Remove	No	Standing snag.
1	384	White Elm	Ulmus americana	Native	1	30	4.0	Medium	Fair	Development	Remove	Yes	
1	385	Norway Spruce	Picea abies	Non-Native	1	28	4.0	Low	Good	Development	Remove	Yes	
1	386	Norway Spruce	Picea abies	Non-Native	1	78	4.0	Medium	Fair	Development	Remove	Yes	
1	387	Silver Maple	Acer saccharinum	Native	1	36	4.5	Medium	Fair	Development	Remove	Yes	
1	388	Eastern White Cedar	Thuja occidentalis	Native	5	22	2.0	Medium	Fair	Development	Retain	No	
1	389	Black Walnut	Juglans nigra	Native	1	10	3.0	Medium	Fair	Development	Remove	Yes	
1	390	Butternut	Juglans cinerea	Native	2	12	3.0	Medium	Fair	Development	Remove	Yes	codominant stems with included bark, butternut canker - some open
1	391	Norway Spruce	Picea abies	Non-Native	1	27	3.0	Medium	Fair	Development	Remove	Yes	
1	392	Norway Spruce	Picea abies	Non-Native	1	44	4.0	Medium	Fair	Development	Remove	Yes	
1		Norway Spruce	Picea abies	Non-Native	1	53	4.0	Medium	Fair	Development	Remove	Yes	
1	394	White Birch	Betula papyrifera	Native	2	19	3.0	Medium	Fair	Development	Remove	Yes	
1	395	Norway Spruce	Picea abies	Non-Native	1	31	3.0	Medium	Fair	Development	Remove	Yes	
1	396	Norway Spruce	Picea abies	Non-Native	1	19	2.0	Medium	Fair	Development	Remove	Yes	
1	397	Norway Spruce	Picea abies	Non-Native	1	24	2.5	Medium	Poor	Development	Remove	No	
1		Norway Spruce	Picea abies	Non-Native	1	21	2.5	Medium	Fair	Development	Remove	Yes	competition for sunlight, top half of crown only, u- bend in branch
1	399	Freeman's Maple	Acer X freemanii	Native	1	30	4.0	Medium	Fair	Development	Remove	Yes	
1	400	Freeman's Maple	Acer X freemanii	Native	1	38	7.0	Medium	Fair	Development	Remove	Yes	
1	410	Horsechestnut	Aesculus hippocastanum	Non-Native	1	14	1.5	Low	Good	Development	Remove	Yes	
1	411	Norway Maple	Acer platanoides	Non-Native	1	19	2.0	Medium	Fair	Development	Remove	Yes	
					• •		2.0	mound		_ 51 610 p.1.10 fit			1

No.							Crown	Potential for					
of	Tree			Native/ Non-	Stem		Radius	Structural	Overall		Proposed	Compensation	
Trees	Number	Common Name	Scientific Name	native	Count	DBH (cm)	(m)	Failure Rating	Condition	Location	Action	Required	Comments
1	412	Common Apple	Malus domestica	Non-Native	3	34	4.0	Medium	Poor	Development	Remove	No	
1	413	Norway Maple	Acer platanoides	Non-Native	1	49	6.0	Medium	Fair	Development	Remove	Yes	
1	414	Eastern	Populus deltoides	Native	1	22	3.5	Low	Good	Development	Remove	Yes	
		Cottonwood											
1	415	Eastern White	Thuja occidentalis	Native	1	14	1.0	Medium	Fair	Development	Remove	Yes	
		Cedar											
1	416	Eastern White Cedar	Thuja occidentalis	Native	1	13	1.5	Medium	Fair	Development	Remove	Yes	
1	417	Eastern Cottonwood	Populus deltoides	Native	1	26	2.0	Low	Good	Development	Remove	Yes	
1	438	Norway Maple	Acer platanoides	Non-Native	1	50	5.0	Medium	Fair	Development	Remove	Yes	
1	439	Norway Maple	Acer platanoides	Non-Native	1	59	7.0	Medium	Fair	Development	Remove	Yes	
1	440	Sugar Maple	Acer saccharum ssp.	Native	1	61	5.0	Medium	Fair	Development	Remove	Yes	
			saccharum										
1	441	Freeman's Maple	Acer X freemanii	Native	1	37	5.0	Medium	Fair	Development	Remove	Yes	
1	442	Norway Spruce	Picea abies	Non-Native	1	39	5.0	Low	Fair	Development	Remove	Yes	
1	443	Norway Spruce	Picea abies	Non-Native	1	35	4.0	Medium	Fair	Development	Remove	Yes	
1	444	Norway Spruce	Picea abies	Non-Native	1	43	5.0	Low	Fair	Development	Remove	Yes	
1	445	Norway Spruce	Picea abies	Non-Native	1	29	4.0	Low	Good	Development	Remove	Yes	
1	446	Norway Spruce	Picea abies	Non-Native	1	28	4.0	Low	Good	Development	Remove	Yes	
1	447	Eastern White	Thuja occidentalis	Native	1	15	1.0	Medium	Fair	Development	Remove	Yes	
		Cedar											
1	448	Eastern White Cedar	Thuja occidentalis	Native	1	20	1.0	Medium	Fair	Development	Remove	Yes	
1	449	Eastern White Cedar	Thuja occidentalis	Native	1	23	1.0	Medium	Fair	Development	Remove	Yes	
1	450	Norway Maple	Acer platanoides	Non-Native	1	56	6.0	Medium	Fair	Development	Remove	Yes	
1	451	Eastern White	Thuja occidentalis	Native	1	11	1.0	Medium	Fair	Development	Remove	Yes	
		Cedar	inga ooonaontaho	induito				mound		Development			
1	452	Sugar Maple	Acer saccharum ssp. saccharum	Native	1	47	5.0	Medium	Fair	Development	Remove	Yes	
1	453	White Birch	Betula papyrifera	Native	2	25	4.0	Medium	Fair	Development	Remove	Yes	
1	454	White Birch	Betula papyrifera	Native	1	27	5.0	Medium	Fair	Development	Remove	Yes	
1	455	Sugar Maple	Acer saccharum ssp. saccharum	Native	1	38	5.0	Medium	Fair	Development	Remove	Yes	
1	456	Black Walnut	Juglans nigra	Native	1	11	3.0	Low	Fair	Development	Remove	Yes	
1	502	Norway Spruce	Picea abies	Non-Native	1	1	4.0	Low	Fair	Development	Remove	Yes	Pruned lower branches.
1	503	Norway Spruce	Picea abies	Non-Native	1		4.0	Low	Fair	Development	Remove	Yes	Pruned lower branches.
1	504	Norway Spruce	Picea abies	Non-Native	1		4.0	Low	Fair	Development	Remove	Yes	Pruned lower branches.
1	506	Norway Spruce	Picea abies	Non-Native	1		4.0	Low	Fair	Development	Remove	Yes	Pruned lower branches.
1	507	Norway Spruce	Picea abies	Non-Native	1		4.0	Low	Fair	Development	Remove	Yes	Pruned lower branches.
1	508	Norway Spruce	Picea abies	Non-Native	1		4.0	Low	Fair	Development	Remove	Yes	Pruned lower branches.
1	509	Norway Spruce	Picea abies	Non-Native	1		4.0	Low	Fair	Development	Remove	Yes	Pruned lower branches.
1	510	Norway Spruce	Picea abies	Non-Native	1		4.0	Low	Fair	Development	Remove	Yes	Pruned lower branches.
1	511	Norway Spruce	Picea abies	Non-Native	1		4.0	Low	Fair	Development	Remove	Yes	Pruned lower branches.
1	512	Norway Spruce	Picea abies	Non-Native	1		4.0	Low	Fair	Development	Remove	Yes	Pruned lower branches.
1	513	Norway Spruce	Picea abies	Non-Native	1		4.0	Low	Fair	Development	Remove	Yes	Pruned lower branches.
1	514	Norway Spruce	Picea abies	Non-Native	1		4.0	Low	Fair	Development	Remove	Yes	Pruned lower branches.
1	516	Norway Spruce	Picea abies	Non-Native	1	1	4.0	Low	Fair	Development	Remove	Yes	Pruned lower branches.
1	517	Norway Spruce	Picea abies	Non-Native	1		4.0	Low	Fair	Development	Remove	Yes	Pruned lower branches.
1	518	Norway Spruce	Picea abies	Non-Native	1		4.0	Low	Fair	Development	Remove	Yes	Pruned lower branches.
1	519	Norway Spruce	Picea abies	Non-Native	1		4.0	Low	Fair	Development	Remove	Yes	Pruned lower branches.
1	522	Trembling Aspen	Populus tremuloides	Native	1		4.0	Low	Fair	Development	Remove	Yes	
1	551	Eastern White	Thuja occidentalis	Native	1	25	3.0	Low	Good	Development	Remove	Yes	Rear yard
		Cedar	· · · · · · · · · · · · · · · · · · ·							· · · · · · ·			

No.							Crown	Potential for					
of	Tree			Native/ Non-	Stem		Radius	Structural	Overall		Proposed	Compensation	
Trees	Number	Common Name	Scientific Name	native	Count	DBH (cm)	(m)	Failure Rating	Condition	Location	Action	Required	Comments
1	552		Populus tremuloides	Native	1	23	4.5	Low	Good	Development	Remove	Yes	Rear vard
1	582	Black Walnut	Juglans nigra	Native	1	13	3.0	Low	Fair	Development	Remove	Yes	Suppressed; small dead branches.
1	583	Black Walnut	Juglans nigra	Native	1	13	3.0	Low	Fair	Development	Remove	Yes	Minor dieback.
1	584	Black Walnut	Juglans nigra	Native	1	13	2.5	Low	Fair	Development	Remove	Yes	Dead branches; vines.
1	585	Eastern White	Thuja occidentalis	Native	1	12	2.0	Low	Fair	Development	Remove	Yes	Small crown.
		Cedar											
1	586	White Spruce	Picea glauca	Native	1	16	3.0	Low	Fair	Development	Remove	Yes	Small crown.
1	587	White Spruce	Picea glauca	Native	1	15	3.0	Low	Fair	Development	Remove	Yes	Small crown.
1	588	White Spruce	Picea glauca	Native	1	13	3.0	Low	Fair	Development	Remove	Yes	Small crown.
1	589	Black Walnut	Juglans nigra	Native	1	11	2.0	Low	Fair	Development	Remove	Yes	Minor dieback.
1	590	White Spruce	Picea glauca	Native	1	13	3.0	Low	Fair	Development	Remove	Yes	Small crown; dieback.
1	591		Picea glauca	Native	1	20	3.0	Low	Fair	Development	Remove	Yes	Small crown; minor dieback.
1	592	Black Walnut	Juglans nigra	Native	2	15.1+10.6	3.5	Low	Fair	Development	Remove	Yes	Codominant stems; cankers.
1	593	Black Walnut	Juglans nigra	Native	1	13	3.5	Low	Fair	Development	Remove	Yes	Codominant stems; cankers.
1	594	Scots Pine	Pinus sylvestris	Non-Native	1	11	1.0	Medium	Fair	Development	Retain	No	Thinning, dieback.
1	595	Black Walnut	Juglans nigra	Native	1	11	2.0	Low	Good	Development	Remove	Yes	
1	596	Weeping Birch	Betula pendula	Non-Native	1	10	2.0	Low	Good	Development	Remove	Yes	
1	597	Scots Pine	Pinus sylvestris	Non-Native	1	14	2.5	Low	Fair	Development	Remove	Yes	Minor dieback.
1	599	Black Walnut	Juglans nigra	Native	1	18	3.0	Low	Good	Development	Remove	Yes	Minor dieback.
1	600	Black Walnut	Juglans nigra	Native	1	11	2.0	Low	Good	Development	Remove	Yes	Minor dieback.
1	601		Pinus sylvestris	Non-Native	1	12	2.0	Low	Fair	Development	Remove	Yes	Minor dieback.
1	602	Scots Pine	Pinus sylvestris	Non-Native	1	13	2.0	Low	Fair	Development	Remove	Yes	Minor dieback.
1	603	Scots Pine	Pinus sylvestris	Non-Native	1	14	2.5	Low	Fair	Development	Remove	Yes	Minor dieback.
1	613	Black Walnut	Juglans nigra	Native	1	16	3.0	Low	Fair	Development	Remove	Yes	Cankers; small dead branches.
1	617	Scots Pine	Pinus sylvestris	Non-Native	1	11	2.5	Low	Good	Development	Retain	No	
1	619	Elm Species	Ulmus sp.	Native	1	10	2.0	Low	Good	Development	Retain	No	
1	620	Black Walnut	Juglans nigra	Native	1	10	3.0	Low	Good	Development	Retain	No	
1	622	Eastern White Cedar	Thuja occidentalis	Native	1	10	2.0	Low	Good	Development	Retain	No	
1	624	Eastern White Cedar	Thuja occidentalis	Native	1	10	2.0	Low	Good	Development	Retain	No	
1	686	Eastern White Cedar	Thuja occidentalis	Native	1	14	3.0	Improbable	Fair	Off-Property	Retain	No	Asymmetrical crown to southwest.
1	687	Black Walnut	Juglans nigra	Native	1	17	3.5	Improbable	Fair	Trail	Retain	No	Canker.
1	688	Black Cherry	Prunus serotina	Native	1	13	3.0	Probable	Very Poor	Trail	Remove	No	One dead codominant leader; fruiting bodies on live trunk; minor broken branches.
1	689	Eastern White Cedar	Thuja occidentalis	Native	2	28.5+11.9	3.5	Improbable	Fair	Trail	Retain	No	Suppressed on northeast.
1	690	Black Walnut	Juglans nigra	Native	1	27	4.0	Improbable	Good	Trail	Retain	No	Good form.
1	691	Black Walnut	Juqlans niqra	Native	1	24	4.0	Improbable	Fair	Trail	Remove	Yes	Wound at base.
1	692	Eastern White Cedar	Thuja occidentalis	Native	1	27	4.0	Improbable	Fair	Trail	Retain	No	Split leader; healthy remaining crown.
1	693	Black Walnut	Juglans nigra	Native	1	12	2.5	Improbable	Good	Trail	Retain	No	No notable defects.
1	694	Black Cherry	Prunus serotina	Native	1	19	2.0	Probable	Dead	Trail	Remove	No	Tall snag.
1	695	Black Cherry	Prunus serotina	Native	1	10	3.0	Improbable	Fair	Trail	Retain	No	Heavy lean over proposed trail.
1	696	Eastern White Cedar	Thuja occidentalis	Native	1	20	3.0	Improbable	Fair	Trail	Retain	No	Slightly suppressed.
1	697	Eastern White Cedar	Thuja occidentalis	Native	1	15	4.0	Improbable	Fair	Trail	Retain	No	Codominant leaders.
1	698	Eastern White Cedar	Thuja occidentalis	Native	1	13	2.5	Improbable	Good	Trail	Retain	No	Small crown.
1	699	Eastern White Cedar	Thuja occidentalis	Native	1	20	2.5	Improbable	Fair	Trail	Retain	No	Suppressed all around.
1	700	Black Cherry	Prunus serotina	Native	2	28.1+22.3	5.0	Improbable	Fair	Trail	Retain	No	Basal decay; dead lower branches.
1	712		Juglans nigra	Native	1	14	4.0	Low	Good	Development	Remove	Yes	Healthy crown.
	114	BIGON WAIHUL	ougiano nigra	Hauve			ч.U	LOW	0000	Development	Renitive	103	In rouniny or own.

No.							Crown	Potential for					
of	Tree			Native/ Non-	Stem		Radius	Structural	Overall		Proposed	Compensation	
rees	Number	Common Name	Scientific Name	native	Count	DBH (cm)	(m)	Failure Rating	Condition	Location	Action	Required	Comments
1	713	Black Walnut	Juglans nigra	Native	1	13	3.5	Low	Good	Development	Retain	No	
1	714	Black Walnut	Juglans nigra	Native	1	12	2.5	Low	Good	Development	Retain	No	
1	715	Black Walnut	Juglans nigra	Native	1	12	2.0	Low	Good	Development	Retain	No	
1	775	Eastern White Cedar	Thuja occidentalis	Native	1	34	4.0	Improbable	Fair	Trail	Retain	No	Codominant leaders; slightly suppressed.
1	776	Eastern White Cedar	Thuja occidentalis	Native	1	23	2.5	Improbable	Fair	Trail	Retain	No	Suppressed on west, east.
1	777	Eastern White Cedar	Thuja occidentalis	Native	1	13	2.0	Improbable	Fair	Trail	Retain	No	Low live crown ratio.
1	778	Eastern White Cedar	Thuja occidentalis	Native	1	15	2.0	Improbable	Fair	Trail	Remove	Yes	Slightly suppressed all around.
1	779	Eastern White Cedar	Thuja occidentalis	Native	1	22	2.0	Improbable	Fair	Trail	Retain	No	Suppressed on north, east.
1	780	Eastern White Cedar	Thuja occidentalis	Native	1	23	2.0	Improbable	Fair	Trail	Retain	No	Suppressed on north, east, south.
1	781	Eastern White Cedar	Thuja occidentalis	Native	1	11	1.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	782	Eastern White Cedar	Thuja occidentalis	Native	1	21	2.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	783	Eastern White Cedar	Thuja occidentalis	Native	1	11	1.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	784	Eastern White Cedar	Thuja occidentalis	Native	1	25	2.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	785	Black Cherry	Prunus serotina	Native	1	10	2.0	Possible	Poor	Trail	Retain	No	Small unbalanced crown.
1	786	Eastern White Cedar	Thuja occidentalis	Native	1	11	1.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	787	Eastern White Cedar	Thuja occidentalis	Native	1	24	2.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	788	Eastern White Cedar	Thuja occidentalis	Native	1	19	2.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	789	Black Cherry	Prunus serotina	Native	1	21	5.0	Possible	Fair	Trail	Retain	No	Unbalanced; generally healthy.
1	790	Eastern White Cedar	Thuja occidentalis	Native	1	24	2.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	791	Eastern White Cedar	Thuja occidentalis	Native	1	17	1.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	793	Eastern White Cedar	Thuja occidentalis	Native	1	17	1.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	794	Eastern White Cedar	Thuja occidentalis	Native	3	21+18.7+1 3.6	2.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	795	Eastern White Cedar	Thuja occidentalis	Native	1	18	2.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	796	Eastern White Cedar	Thuja occidentalis	Native	1	17	1.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	797	Black Cherry	Prunus serotina	Native	1	35	6.0	Improbable	Fair	Trail	Remove	Yes	Large tall crown.
1	798	Eastern White Cedar	Thuja occidentalis	Native	1	11	1.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	799	Eastern White Cedar	Thuja occidentalis	Native	1	25	2.5	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	800	Black Walnut	Juglans nigra	Native	1	16	3.5	Improbable	Good	Trail	Retain	No	Good form.
1	813	American Basswood	Tilia americana	Native	6	45	5.5	Improbable	Fair	Trail	Retain	No	Codominant leaders; included bark.
1	816	American Basswood	Tilia americana	Native	3	36+24+15	5.5	Improbable	Fair	Trail	Retain	No	Codominant leaders; included bark.
1	817	American Basswood	Tilia americana	Native	1	25	4.0	Improbable	Fair	Trail	Retain	No	Minor dieback.

							-						
No. of	Tree			Native/ Non-	Stem		Crown Radius	Potential for Structural	Overall		Proposed	Compensation	
Trees	Number	Common Name	Scientific Name	native	Count	DBH (cm)	(m)	Failure Rating	Condition	Location	Action	Required	Comments
1	818	American Basswood	Tilia americana	Native	1	30	3.0	Improbable	Fair	Trail	Remove	Yes	Minor dieback.
1	819	American Basswood	Tilia americana	Native	1	18	3.0	Improbable	Fair	Trail	Remove	Yes	Bowed crown east.
1	820	American Basswood	Tilia americana	Native	1	14	5.5	Improbable	Fair	Trail	Remove	Yes	Small crown.
1	821	American Basswood	Tilia americana	Native	2	16+15	4.0	Improbable	Fair	Trail	Remove	Yes	Leaning east; twisted codominant leaders.
1	822	American Basswood	Tilia americana	Native	1	16	4.0	Improbable	Fair	Trail	Remove	Yes	Leaning east.
1	823	American Basswood	Tilia americana	Native	1	12	3.0	Improbable	Fair	Trail	Remove	Yes	Bowed crown east.
1	824	American Basswood	Tilia americana	Native	1	15	3.0	Improbable	Fair	Trail	Remove	Yes	
1	825	American Basswood	Tilia americana	Native	1	21	3.5	Improbable	Fair	Trail	Remove	Yes	Pistol butt.
1	827	Black Cherry	Prunus serotina	Native	1	28	4.0	Improbable	Fair	Trail	Remove	Yes	Vines in lower crown; minor dead branches.
1	828	Black Cherry	Prunus serotina	Native	2	22.6+18.8	4.5	Improbable	Fair	Trail	Retain	No	Large trunk wound; some deadwood.
1	829	Black Cherry	Prunus serotina	Native	1	34	6.0	Possible	Fair	Trail	Retain	No	Generally healthy with minor dead branches.
1	830	Eastern White Cedar	Thuja occidentalis	Native	1	22	2.0	Improbable	Good	Trail	Retain	No	Good form.
1	831	Eastern White Cedar	Thuja occidentalis	Native	1	21	3.0	Improbable	Fair	Trail	Retain	No	Vine present; partially suppressed on north side.
1	832	Eastern White Cedar	Thuja occidentalis	Native	1	20	2.5	Improbable	Fair	Trail	Remove	Yes	Suppressed on east and west.
1	833	Eastern White Cedar	Thuja occidentalis	Native	1	18	2.0	Improbable	Fair	Trail	Remove	Yes	Suppressed all around.
1	834	Eastern White Cedar	Thuja occidentalis	Native	1	14	3.0	Improbable	Fair	Trail	Retain	No	Suppressed on east, north, west.
1	835	Eastern White Cedar	Thuja occidentalis	Native	1	21	3.0	Improbable	Fair	Trail	Remove	Yes	Suppressed on east, north, south.
1	836	Eastern White Cedar	Thuja occidentalis	Native	1	14	2.5	Improbable	Fair	Trail	Remove	Yes	Suppressed on west, south.
1	837	Eastern White Cedar	Thuja occidentalis	Native	1	15	2.0	Improbable	Fair	Trail	Retain	No	Suppressed all around.
1	838	Eastern White Cedar	Thuja occidentalis	Native	1	20	2.5	Improbable	Fair	Trail	Retain	No	Suppressed south, east side.
1	839	Black Cherry	Prunus serotina	Native	1	22	3.0	Improbable	Fair	Trail	Remove	Yes	Dead lower branches.
1	840	Eastern White Cedar	Thuja occidentalis	Native	1	16	2.5	Improbable	Fair	Trail	Retain	No	Lightly suppressed on east, west.
1	841	American Basswood	Tilia americana	Native	1	32	5.0	Improbable	Fair	Trail	Remove	Yes	Minor dead branches.
1	842	American Basswood	Tilia americana	Native	1	24	4.5	Improbable	Fair	Trail	Remove	Yes	Minor dead branches.
1	843	American Basswood	Tilia americana	Native	1	18	3.0	Improbable	Fair	Trail	Remove	Yes	Tall crown; slightly unbalanced.
1	844	American Basswood	Tilia americana	Native	1	24	4.0	Improbable	Fair	Trail	Remove	Yes	Tall crown; slightly unbalanced.
1	845	American Basswood	Tilia americana	Native	3	36+25.5+1 4.5	6.0	Improbable	Fair	Trail	Retain	No	Codominant leaders; open crown.
1	846	Black Cherry	Prunus serotina	Native	1	37	5.0	Improbable	Fair	Trail	Remove	Yes	Minor dead branches.
1	847	American Basswood	Tilia americana	Native	2	33.6+22	5.0	Improbable	Fair	Trail	Remove	Yes	Minor dead branches.
1	848	White Birch	Betula papyrifera	Native	1	20	3.0	Improbable	Fair	Trail	Retain	No	Dead lower branches.

							_						
No. of	Tree			Native/ Non-	Stem		Crown Radius	Potential for Structural	Overall		Proposed	Compensation	
Trees	Number	Common Name	Scientific Name	native	Count	DBH (cm)	(m)	Failure Rating	Condition	Location	Action	Required	Comments
1	849	Eastern White Cedar	Thuja occidentalis	Native	1	17	2.5	Improbable	Fair	Trail	Remove	Yes	Lower trunk wound; minor dead branches.
1	850	Black Cherry	Prunus serotina	Native	1	31	4.0	Improbable	Fair	Trail	Retain	No	Lower trunk wound; dead lower branches.
1	851	White Ash	Fraxinus americana	Native	1	12	2.0	Improbable	Poor	Trail	Remove	No	EAB; watersprouts.
1	852	American Basswood	Tilia americana	Native	1	25	4.0	Improbable	Good	Trail	Remove	Yes	Good health.
1	853	American Basswood	Tilia americana	Native	1	32	4.5	Improbable	Good	Trail	Remove	Yes	Good health.
1	855	Sugar Maple	Acer saccharum ssp. saccharum	Native	1	73	7.0	Improbable	Good	Trail	Retain	No	Minor deadwood.
1	856	American Basswood	Tilia americana	Native	1	35	8.5	Improbable	Good	Trail	Retain	No	Minor deadwood.
1	857	American Basswood	Tilia americana	Native	1	21	4.0	Improbable	Fair	Trail	Remove	Yes	Rubbing and intertwined with adjacent tree.
1	858	American Basswood	Tilia americana	Native	1	28	4.0	Improbable	Fair	Trail	Remove	Yes	Trunk wound; rubbing and intertwined with adjacent tree.
1	859	American Basswood	Tilia americana	Native	2	20+15.3	4.0	Improbable	Fair	Trail	Remove	Yes	Suppressed on south; rubbing leaders.
1	860	Hop Hornbeam	Ostrya virginiana	Native	1	12	3.5	Improbable	Fair	Trail	Retain	No	Dead lower branches; suppressed leader.
1	861	Sugar Maple	Acer saccharum ssp. saccharum	Native	1	74	8.5	Improbable	Good	Trail	Retain	No	Minor deadwood.
1	865	American Basswood	Tilia americana	Native	1	46	3.5	Possible	Poor	Trail	Remove	No	One leader good; one dying leader with broken top.
1	866	American Basswood	Tilia americana	Native	1	26	3.5	Improbable	Good	Trail	Remove	Yes	Good form.
1	867	American Basswood	Tilia americana	Native	2	16.6+10.6	3.0	Improbable	Fair	Trail	Remove	Yes	1 crooked leader from old failure.
1	868	American Basswood	Tilia americana	Native	1	24	3.0	Improbable	Fair	Trail	Remove	Yes	Codominant leader pruned at base.
1	869	American Basswood	Tilia americana	Native	2	24.7+19.3	5.0	Improbable	Fair	Trail	Remove	Yes	Codominant leaders; leader leaning northward.
1	870	American Basswood	Tilia americana	Native	2	31.1+28.5	5.0	Improbable	Fair	Trail	Remove	Yes	Codominant leaders; included bark.
1	871	Eastern White Cedar	Thuja occidentalis	Native	1	16	2.0	Improbable	Fair	Trail	Remove	Yes	Slightly suppressed on north.
1	872	Eastern White Cedar	Thuja occidentalis	Native	1	17	2.0	Improbable	Fair	Trail	Remove	Yes	Slightly suppressed on south, east.
1	875	Sugar Maple	Acer saccharum ssp. saccharum	Native	1	60	6.0	Improbable	Good	Trail	Retain	No	Minor dead branches.
1	876	Eastern White Cedar	Thuja occidentalis	Native	1	22	2.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	877	Eastern White Cedar	Thuja occidentalis	Native	1	17	2.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	886	White Ash	Fraxinus americana	Native	1	35	5.0	Possible	Poor	Trail	Retain	No	Dieback; vines; in decine.
1	901	White Spruce	Picea glauca	Native	1	12	2.0	Low	Good	Development	Remove	Yes	Debris around base.
1	917	Hawthorn species	Crataegus sp.	Native	1	14	3.5	Improbable	Fair	Trail	Remove	Yes	Minor dead branches.
1	918	Black Cherry	Prunus serotina	Native	6	18+17+16	4.0	Improbable	Fair	Trail	Retain	No	Low vigor; extensive vines.
1	919	Hawthorn species	Crataegus sp.	Native	1	13	2.5	Improbable	Fair	Trail	Remove	Yes	Minor dead branches.
1	935	Norway Spruce	Picea abies	Non-Native	1	44	6.0	Improbable	Fair	Trail	Remove	Yes	Open wound with galleries; codominant leaders.
1	943	Norway Spruce	Picea abies	Non-Native	1	16	2.5	Medium	Fair	Development	Retain	No	Lopsided, minor dieback.
1	944	Norway Spruce	Picea abies	Non-Native	1	15	2.0	Low	Fair	Development	Retain	No	Vines, minor dieback.
1	945	Norway Spruce	Picea abies	Non-Native	1	14	2.0	Low	Fair	Development	Retain	No	Vines, minor dieback.
1	989	Scots Pine	Pinus sylvestris	Non-Native	1	15	2.0	Low	Good	Development	Retain	No	Small closed wound.

No. of	Tree			Native/ Non-	Stem		Crown Radius	Potential for Structural	Overall		Proposed	Compensation	
Trees	Number	Common Name	Scientific Name	native	Count	DBH (cm)	(m)	Failure Rating	Condition	Location	Action	Required	Comments
1	990	Scots Pine	Pinus sylvestris	Non-Native	1	13	2.0	Low	Good	Development	Retain	No	Curled twigs.
1	1001	White Ash	Fraxinus americana	Native	1	13	2.5	Improbable	Poor	Trail	Retain	No	EAB; vines; dieback.
1	1002	Eastern White Cedar	Thuja occidentalis	Native	1	14	2.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1003	Eastern White Cedar	Thuja occidentalis	Native	1	24	2.5	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1004	Eastern White Cedar	Thuja occidentalis	Native	1	17	2.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1005	Eastern White Cedar	Thuja occidentalis	Native	1	18	2.0	Improbable	Poor	Trail	Retain	No	Broken top; suppressed crown; dead lower branches.
1	1006	Eastern White Cedar	Thuja occidentalis	Native	1	11	2.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1007	Eastern White Cedar	Thuja occidentalis	Native	1	21	3.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1008	Eastern White Cedar	Thuja occidentalis	Native	1	12	2.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1009	Eastern White Cedar	Thuja occidentalis	Native	1	17	2.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1010	Eastern White Cedar	Thuja occidentalis	Native	1	24	3.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1011	Eastern White Cedar	Thuja occidentalis	Native	1	16	3.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1012	Eastern White Cedar	Thuja occidentalis	Native	1	20	4.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1013	Black Cherry	Prunus serotina	Native	1	12	3.0	Improbable	Fair	Trail	Retain	No	Minor dieback; small crown.
1	1014	Eastern White Cedar	Thuja occidentalis	Native	1	17	2.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1015	Eastern White Cedar	Thuja occidentalis	Native	1	19	2.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1016	Eastern White Cedar	Thuja occidentalis	Native	1	15	2.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1017	Black Cherry	Prunus serotina	Native	1	14	3.5	Improbable	Fair	Trail	Remove	Yes	Minor dieback.
1	1018	Eastern White Cedar	Thuja occidentalis	Native	2	21+12	3.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1019	Eastern White Cedar	Thuja occidentalis	Native	1	25	4.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1020	Eastern White Cedar	Thuja occidentalis	Native	1	32	4.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1021	Black Cherry	Prunus serotina	Native	1	36	7.0	Improbable	Fair	Trail	Remove	Yes	Minor dead branches; large crown.
1	1022	Eastern White Cedar	Thuja occidentalis	Native	1	12	3.5	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1023	Eastern White Cedar	Thuja occidentalis	Native	1	21	2.5	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1024	Eastern White Cedar	Thuja occidentalis	Native	2	16.2+13	3.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1025	Eastern White Cedar	Thuja occidentalis	Native	1	20	2.5	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1026	Eastern White Cedar	Thuja occidentalis	Native	1	19	2.5	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1027	Black Cherry	Prunus serotina	Native	2	23.8+20	5.5	Improbable	Fair	Trail	Retain	No	Minor dead branches; minor vines.
1	1028	Eastern White Cedar	Thuja occidentalis	Native	1	14	2.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1029	Eastern White Cedar	Thuja occidentalis	Native	1	11	2.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1030	Trembling Aspen	Populus tremuloides	Native	1	29	5.0	Improbable	Fair	Trail	Remove	Yes	Tall crown.

No. of rees	Tree Number	Common Name	Scientific Name	Native/ Non- native	Stem Count	DBH (cm)	Crown Radius (m)	Potential for Structural Failure Rating	Overall Condition	Location	Proposed Action	Compensation Required	Comments
1	1032	Eastern White Cedar	Thuja occidentalis	Native	1	18	1.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1033	Eastern White Cedar	Thuja occidentalis	Native	1	11	1.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1034	Black Cherry	Prunus serotina	Native	1	23	5.0	Improbable	Fair	Trail	Retain	No	Tall crown; minor dieback.
1	1035	Eastern White Cedar	Thuja occidentalis	Native	4	34.5+27.6 +23.0	3.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1036	Black Cherry	Prunus serotina	Native	1	30	6.0	Improbable	Fair	Trail	Retain	No	Tall crown; minor dieback.
1	1037	Eastern White Cedar	Thuja occidentalis	Native	1	20	1.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1038	Eastern White Cedar	Thuja occidentalis	Native	1	18	2.5	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1039	Eastern White Cedar	Thuja occidentalis	Native	1	14	2.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1040	Eastern White Cedar	Thuja occidentalis	Native	1	20	2.5	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1041	Eastern White Cedar	Thuja occidentalis	Native	1	26	3.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1042	Eastern White Cedar	Thuja occidentalis	Native	1	12	2.5	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1043	Eastern White Cedar	Thuja occidentalis	Native	1	18	2.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1044	Eastern White Cedar	Thuja occidentalis	Native	1	25	3.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1045	Eastern White Cedar	Thuja occidentalis	Native	1	13	2.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1046	Eastern White Cedar	Thuja occidentalis	Native	1	22	2.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1047	Eastern White Cedar	Thuja occidentalis	Native	2	24.7+13	3.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1048	Eastern White Cedar	Thuja occidentalis	Native	1	13	2.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1049	Eastern White Cedar	Thuja occidentalis	Native	1	14	2.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1050	Eastern White Cedar	Thuja occidentalis	Native	1	19	1.5	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1051	Eastern White Cedar	Thuja occidentalis	Native	1	12	1.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1052	Eastern White Cedar	Thuja occidentalis	Native	1	15	1.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1054	Eastern White Cedar	Thuja occidentalis	Native	1	10	1.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1055	Eastern White Cedar	Thuja occidentalis	Native	1	11	1.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1056	Eastern White Cedar	Thuja occidentalis	Native	2	51+34.8	3.0	Improbable	Fair	Trail	Retain	No	Low trunk cavity; suppressed crown; dead lower branches.
1	1057	Eastern White Cedar	Thuja occidentalis	Native	1	19	1.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1058	Eastern White Cedar	Thuja occidentalis	Native	4	19+17.0+1 4.1+11.3	2.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1059	Eastern White Cedar	Thuja occidentalis	Native	2	14.8+14.5	1.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1060	Eastern White Cedar	Thuja occidentalis	Native	1	10	1.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.

No. of Trees	Tree Number	Common Name	Scientific Name	Native/ Non- native	Stem Count	DBH (cm)	Crown Radius (m)	Potential for Structural Failure Rating	Overall Condition	Location	Proposed Action	Compensation Required	Comments
1	1062	Eastern White Cedar	Thuja occidentalis	Native	1	22	3.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1063	Eastern White Cedar	Thuja occidentalis	Native	1	16	3.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1064	Eastern White Cedar	Thuja occidentalis	Native	1	14	3.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1065	Black Cherry	Prunus serotina	Native	2	24	5.0	Possible	Fair	Trail	Retain	No	Broken branches; extensive vines; codominant leaders.
1	1066	Eastern White Cedar	Thuja occidentalis	Native	1	18	3.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1067	Black Cherry	Prunus serotina	Native	2	14.5+13.3	4.0	Improbable	Fair	Trail	Remove	Yes	Codominant and unbalanced.
1	1068	Eastern White Cedar	Thuja occidentalis	Native	1	27	2.5	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1069	Common Apple	Malus domestica	Non-Native	1	21	6.0	Possible	Poor	Trail	Remove	No	Maior dieback.
1	1071	Eastern White Cedar	Thuja occidentalis	Native	1	21	1.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1072	Eastern White Cedar	Thuja occidentalis	Native	1	11	1.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1073	Eastern White Cedar	Thuja occidentalis	Native	1	21	1.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1074	Eastern White Cedar	Thuja occidentalis	Native	1	18	1.5	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1075	Eastern White Cedar	Thuja occidentalis	Native	1	18	2.0	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1076	Eastern White Cedar	Thuja occidentalis	Native	1	19	1.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1077	Eastern White Cedar	Thuja occidentalis	Native	1	15	1.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1078	Eastern White Cedar	Thuja occidentalis	Native	1	17	1.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1079	Eastern White Cedar	Thuja occidentalis	Native	1	23	1.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1080	Eastern White Cedar	Thuja occidentalis	Native	1	11	1.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1081	Eastern White Cedar	Thuja occidentalis	Native	1	24	3.5	Improbable	Fair	Trail	Retain	No	Suppressed crown; dead lower branches.
1	1082	Eastern White Cedar	Thuja occidentalis	Native	1	16	3.0	Improbable	Fair	Trail	Remove	Yes	Suppressed crown; dead lower branches.
1	1146	Scots Pine	Pinus sylvestris	Non-Native	1	16	2.0	Medium	Fair	Development	Retain	No	Thinning, curled twigs.
1	1395	Manitoba Maple	Acer negundo	Native	1	70	5.0	Medium	Poor	Development	Remove	No	30% dieback evenly spread throughout crown.
1	1396	Black Walnut	Juglans nigra	Native	1	13	3.0	Low	Good	Development	Remove	Yes	Large open crown.
1	1397	Black Walnut	Juglans nigra	Native	1	21	4.0	Low	Good	Development	Remove	Yes	Asymmetrical crown south.
1	1398	Trembling Aspen	Populus tremuloides	Native	1	13	2.5	Low	Fair	Development	Remove	Yes	Dead lower levels.
1	1399	Trembling Aspen	Populus tremuloides	Native	1	10	2.5	Low	Good	Development	Remove	Yes	Small crown.
1 1	1400 1401	Trembling Aspen Eastern White	Populus tremuloides Thuja occidentalis	Native Native	1 1	10 19	2.0 3.0	Low Low	Fair Good	Development Development	Remove Retain	Yes No	Dead lower branches. Minor thinning.
1	1402	Cedar Scots Pine	Pinus sylvestris	Non-Native	1	15	2.0	Medium	Fair	Development	Retain	No	Reduced crown, thinning.
1	1402	White Ash	Fraxinus americana	Native	1	20	2.0	High	Poor	Trail	Retain	No	Leaning, dead branches, vines.
1	1410	Black Walnut	Juglans nigra	Native	1	20	4.0	Medium	Fair	Trail	Retain	No	Codominant stems with included bark, old wounds broken branches.
1	1418	Black Walnut	Juqlans nigra	Native	1	19	3.0	Medium	Fair	Trail	Retain	No	Lopsided, reduced crown.
1	1419	Black Walnut	Juqlans nigra	Native	1	23	4.0	High	Poor	Trail	Retain	No	History of branch failure, unbalanced crown.
1	1420	Black Walnut	Juglans nigra	Native	1	31	5.0	Medium	Fair	Trail	Retain	No	Codominant stems with included bark, poor branch union.

No. of Trees	Tree Number	Common Name	Scientific Name	Native/ Non- native			Crown Radius (m)	Potential for Structural Failure Rating	Overall Condition	Location	Proposed Action	Compensation Required	Comments
1	1442	Black Walnut	Juglans nigra	Native	1	33	5.0	Medium	Poor	Development	Retain	No	Codominant stems with included bark, woopecker damage, dead branches.
1	1443	Black Walnut	Juglans nigra	Native	1	36	5.0	Medium	Poor	Development	Retain	No	Codominant stems with included bark, woopecker damage, dead branches, previously pruned.
1	1444	Black Walnut	Juglans nigra	Native	1	35	5.0	Medium	Poor	Development	Retain	No	Codominant stems with included bark, woopecker damage, dead branches, previously pruned.
1	1455	Norway Spruce	Picea abies	Non-Native	1	36	1.0	Medium	Fair	Development	Retain	No	Lopsided, self pruned branches.
1	1480	Norway Spruce	Picea abies	Non-Native	1	17		High	Dead	Development	Retain	No	
1	1481	Norway Spruce	Picea abies	Non-Native	1	21		High	Dead	Development	Retain	No	
1	1482	Norway Spruce	Picea abies	Non-Native	1	19	0.5	High	Very Poor	Development	Retain	No	Dying, significant dieback, very small crown.
1	1552	Scots Pine	Pinus sylvestris	Non-Native	1	13		High	Dead	Development	Retain	No	
1	1553	Scots Pine	Pinus sylvestris	Non-Native	1	12	1.0	Medium	Fair	Development	Retain	No	Thinning, dieback.
1	1555	Eastern White Cedar	Thuja occidentalis	Native	1	11	1.5	Low	Fair	Development	Retain	No	Thinning, vines.
1	1579	Scots Pine	Pinus sylvestris	Non-Native	1	11	1.0	High	Poor	Development	Retain	No	Dieback, topped, codominant leaders.
1	1583	Scots Pine	Pinus sylvestris	Non-Native	1	13	1.0	Medium	Fair	Development	Retain	No	Thinning, reduced crown.
1	1584	Scots Pine	Pinus sylvestris	Non-Native	1	12	1.0	Medium	Fair	Development	Retain	No	Thinning, reduced crown.

Appendix II Tree Health and Potential for Structural Failure Assessment Criteria

Tree Health Assessment Criteria

Assessment Criteria	Definition ¹
Excellent	Represents a tree in near perfect form, health, and vigour. This tree would exhibit no deadwood, no decline, and no visible defects.
Good	Represents a tree ranging from a generally healthy tree to a near perfect tree in terms of health, vigour and structure. This tree exhibits a complete, balanced crown structure with little to no deadwood and minimal defects as well as a properly formed root flare.
Fair	Represents a tree with minor health, balance or structural issues with minimal to moderate deadwood. Branching structure shows signs of included bark or minor rot within the branch connections or trunk wood. The root flare shows minimal signs of mechanical injury, decay, poor callusing, or girdling roots. Trees in the category require minor remedial actions to improve the vigour and structure of the tree.
Poor	Represents a tree that exhibits a poor vigour, reduced crown size (<30% of crown typical of species caused by overcrowding or decline), extreme crown imbalance, or extensive rot in the branching and trunk wood. Fungus could be seen from these rotting areas, suggesting further decay. These trees have extensive crown die back with a large amount of deadwood, and possibly dead sections. These weakened areas can lead to a potential failure of tree sections. Rooting zones show signs of extensive root decay or damage (fruiting bodies or mechanical damage) or girdling roots. Trees in this category require more extensive actions to prevent failure. A tree identified as poor would be a candidate for removal in the near future.
Very Poor	Represents a tree that exhibits major health and structural defects. Quite often the defects or diseases affecting this tree will be fatal. Large quantities of fungus, large dead sections with possible cavities and bark falling off all are signs that a tree is in a major state of decline and would be identified as very poor. These trees have a probable or imminent potential for structural failure. These trees should be identified for removal.
Dead	Represents a tree that exhibits no sign of new growth, including buds, foliage, or shoot growth. These trees have a probable or imminent potential for structural failure. These trees should be identified for removal.

¹ (Dunster 2009)

Potential for Structural Failure Assessment Criteria

Assessment Criteria*	Definition ¹
Improbable	The tree or branch is not likely to fail during normal weather conditions and may not fail in many severe weather conditions within the specified time frame.
Possible	Failure could occur, but it is unlikely during normal weather conditions within the specified time frame.
Probable	Failure may be expected under normal weather conditions within the specified time frame.
Imminent	Failure has started or is most likely to occur in the near future, even if there is no significant wind or increased load. This is a rare occurrence for an assessor to encounter, and it may require immediate action to protect people from harm.
*A specified tim	e frame of 1 year will be used when assessing potential for structural failure.

¹ (Dunster et al. 2013)

Appendix III Conditions of Assessment

Conditions of Tree Assessment

Limitations

This tree inventory and assessment is based on the circumstances and observations by Natural Resource Solutions Inc. (NRSI) as they existed at the time of the site inspection(s) of the Client's Property as described in this report (the "Property") and the trees situated thereon, and upon information provided by the Client to NRSI. The opinions in this assessment are given based on observations made and using generally accepted professional judgment, however, because trees are living organisms and subject to change, damage and disease, the results, observations, recommendations, and analysis as set out in this assessment are valid only at the date any such observations and analysis took place. No guarantee, warranty, representation or opinion is offered or made by NRSI as to the length of the validity of the results, observations, recommendations and analysis contained within this assessment. As a result, the Client shall not rely upon this assessment, save and except for representing the circumstances and observations at the date of site inspection(s), and the analysis and recommendations made in relation to the proposed undertaking. It is recommended that the inventoried trees discussed in this assessment should be re-assessed periodically, where required (i.e. after 2 years).

Further Services

Neither NRSI, nor any assessor employed or retained by NRSI (the "Assessor") for the purpose of preparing or assisting in the preparation of this assessment shall be required to provide any further consultation or services to the Client including, without limitation, acting as an expert witness or witness in any court in any jurisdiction unless the Client has first made specific arrangements with respect to such further services, including providing payment of the Assessor's regular hourly billing fees.

NRSI accepts no responsibility for the implementation of all or any part of this report, unless specifically requested to examine the implementation of such activities recommended herein. Any request for the inspection or supervision of all or part of the implementation shall be made in writing and the details agreed to in writing by both parties.

Assumptions

The Client is hereby notified that where any of the information set out and referenced in this assessment are based on assumptions, facts or information provided to NRSI, NRSI will in no way be responsible for the veracity or accuracy of any such information. Further, the Client acknowledges and agrees that NRSI has, for the purposes of preparing their assessment, assumed that the Property is in full compliance with all applicable federal, provincial, municipal and local statutes, regulations, by-laws, guidelines and other related laws. NRSI explicitly denies any legal liability for any and all issues with respect to non-compliance with any of the above-referenced statutes, regulations, by-laws, guidelines and laws as it may pertain to or affect the Property.

Restriction of Assessment

The assessment carried out was restricted to the areas as described in this report. NRSI is not legally liable for any other trees except those expressly discussed herein. The conclusions of this assessment do not apply to any areas, trees, or any other property not covered or referenced in this assessment.

Professional Responsibility

In carrying out this assessment, NRSI and any Assessor appointed for and on behalf of NRSI to perform and carry out the assessment has exercised a reasonable standard of care, skill and diligence. The assessment has been made using accepted arboricultural techniques. These include a visual examination of each tree for structural defects, scars, external indications of decay such as fungal fruiting bodies, evidence of insect attack, discolored foliage (during the leaf-on period), the condition of any visible root structures, the degree and direction of lean (if any), the general condition of the tree(s) and the surrounding site, and the current or planned proximity of property and people. Except where specifically noted in the assessment, none of the trees examined on the property were dissected, cored, probed, or climbed, and detailed root crown examinations involving excavation were not undertaken.

No guarantees are offered, or implied, that trees recommended for retention, or all parts of them, will remain standing. It is professionally impossible to predict with absolute certainty the behaviour of any single tree or group of trees, or all their component parts, in all given circumstances. Inevitably, a standing tree will always pose some risk. Most trees have the potential to fall, lean, or otherwise pose a danger to property and persons in the event of extreme weather conditions, and this risk can only be eliminated if the tree is removed.

Without limiting the foregoing, no liability is assumed by NRSI or its directors, officers, employers, contractors, agents or Assessors for:

a) any legal description provided with respect to the Property;

b) issues of title and/or ownership with respect to the Property;

c) the accuracy of the Property line locations or boundaries with respect to the Property; and

d) the accuracy of any other information provided to NRSI by the Client or third parties;

e) any consequential loss, injury or damages suffered by the Client or any third parties, including but not limited to replacement costs, loss of use, earnings and business interruption; and

f) the unauthorized distribution of the assessment.

Third Party Liability

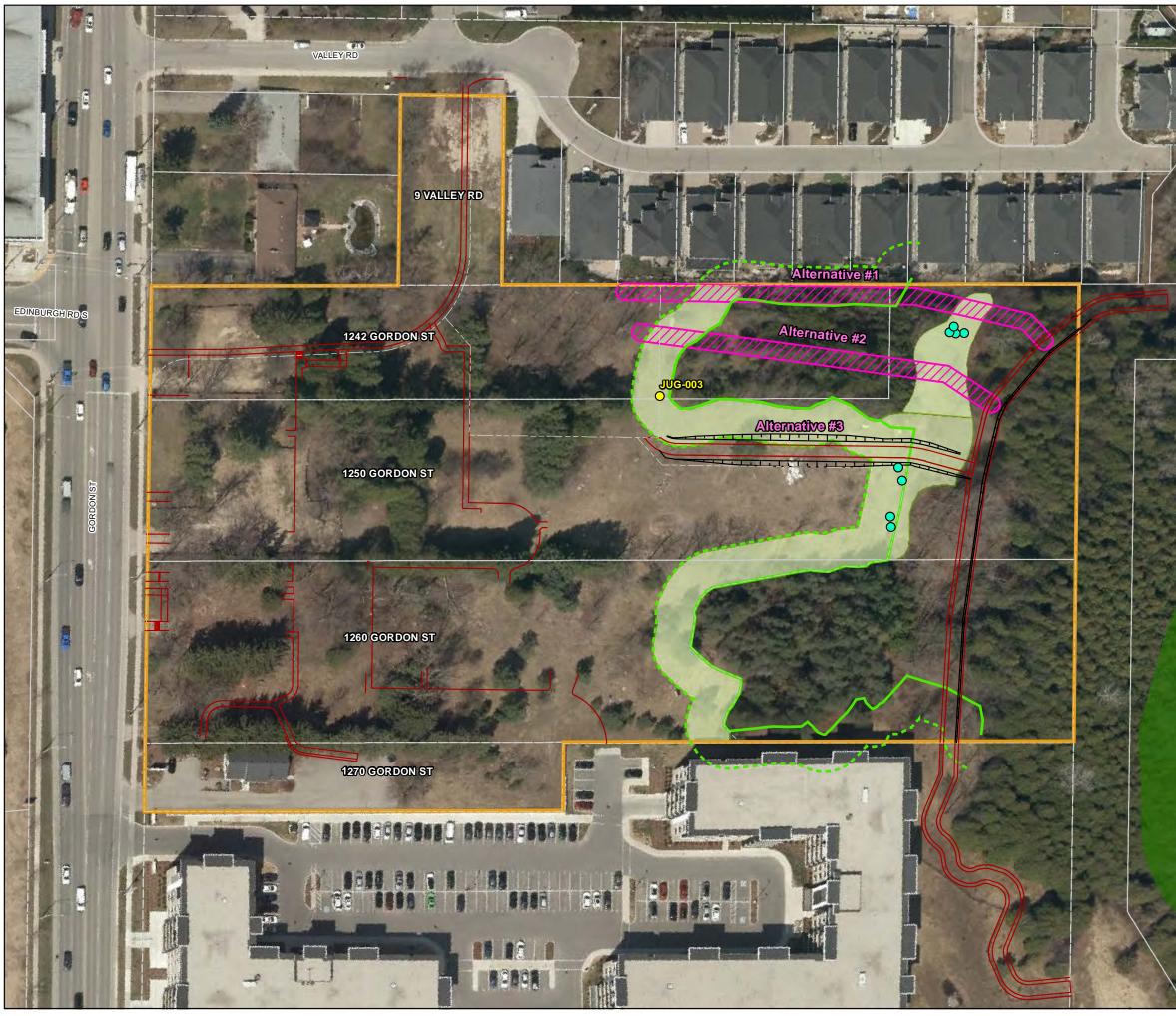
This assessment was prepared by NRSI for the Client. The data collected reflect NRSI's best assessment of the inventoried trees situated on the Property with the information available at the time of observation. Data analysis and the assessment of potential impacts to inventoried trees is specific to the proposed undertaking as described in this report. NRSI accepts no responsibility for any damages or loss suffered by any third party or by the Client as a result of decisions made or actions based upon the use of this assessment for purposes unrelated to the proposed undertaking.

General

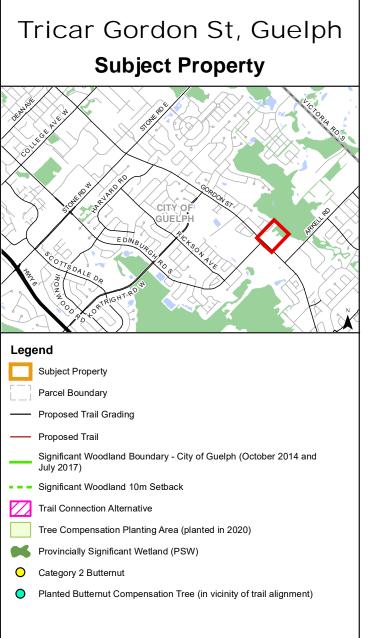
Any plans and/or illustrations in this assessment are included only to help the Client visualize the issues in this assessment and shall not be relied upon for any other purpose.

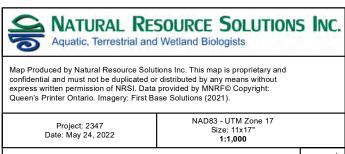
This report shall be considered as a whole, no sections are severable, and the assessment shall be considered incomplete if any pages are missing.

Appendix IV Tree Data and Summary Tables


Tree Inventory Data Summarized by Species

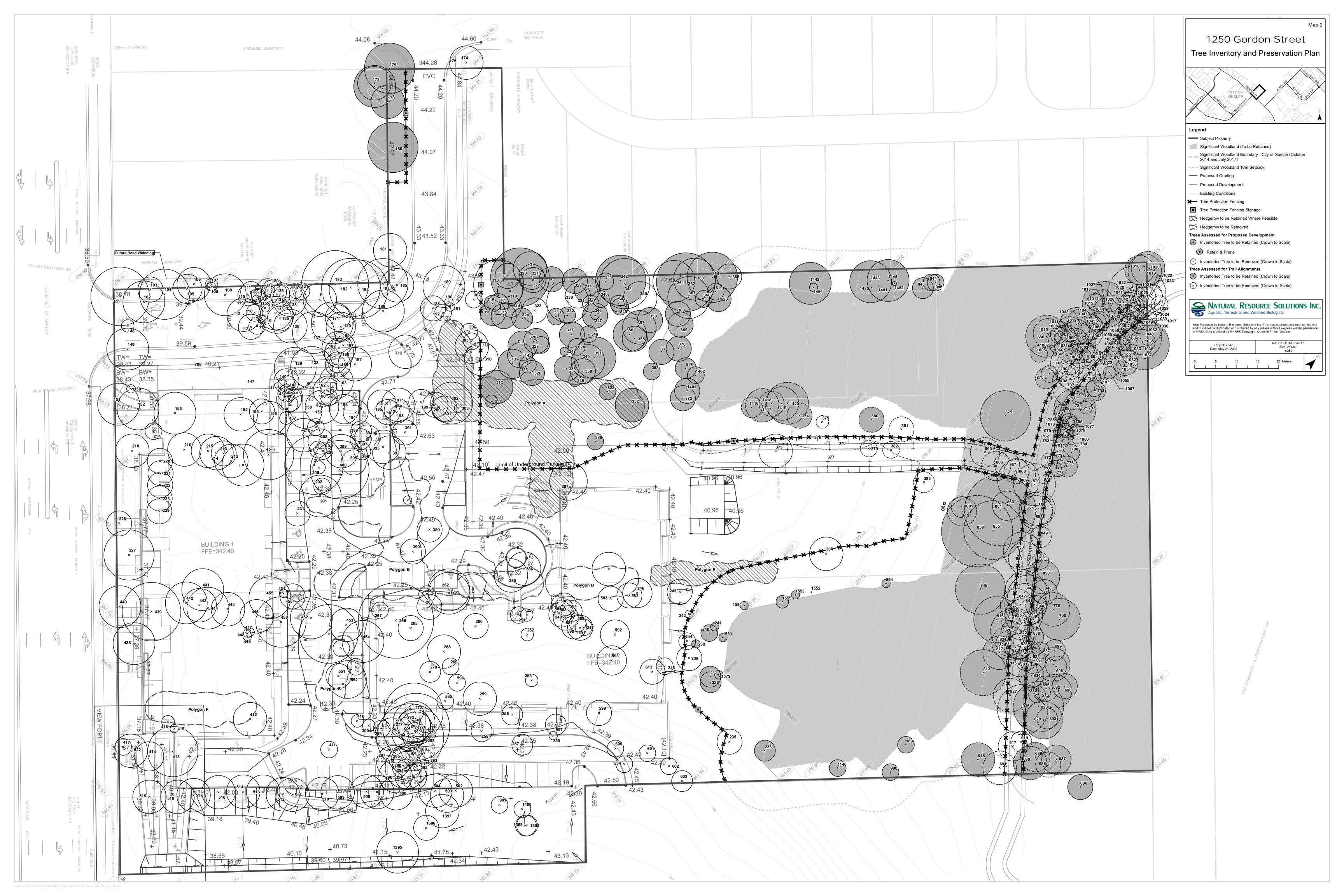
Common Name	Scientific Name	Excellent	Good	Fair	Poor	Very Poor	Dead	Total
Native Species		Execution	0000	ran	1 001	1001	Deau	Total
American Basswood	Tilia americana		4	26	1			31
Balsam Fir	Abies balsamea		1					1
Black Cherry	Prunus serotina			20	2	2	2	26
Black Maple	Acer saccharum ssp. nigrum				5			5
Black Walnut	Juglans nigra		23	28	8		2	61
Butternut	Juglans cinerea			4				4
Eastern Cottonwood	Populus deltoides		3					3
Eastern Red Cedar	Juniperus virginiana			1				1
Eastern White Cedar	Thuja occidentalis		9	355	20		2	386
Elm Species	Ulmus sp.		1					1
Freeman's Maple	Acer X freemanii			14				14
Green Ash	Fraxinus pennsylvanica		2	1	1			4
Hawthorn Species	Crataegus sp.			2	2			4
Honey Locust	Gleditsia triacanthos			3				3
Hop Hornbeam	Ostrya virginiana			1				1
Manitoba Maple	Acer negundo			1	4			5
Red Maple	Acer rubrum						1	1
Red Oak	Quercus rubra		1	8		1		10
Silver Maple	Acer saccharinum			1				1
0	Acer saccharum ssp.		-	40				40
Sugar Maple	saccharum		5	10	4			19
Tamarack	Larix laricina			1				1
Trembling Aspen	Populus tremuloides		2	4				6
White Ash	Fraxinus americana		1		4			5
White Birch	Betula papyrifera			4			4.0	4
White Elm	Ulmus americana		3	12	6	1	12	34
White Spruce	Picea glauca	1	2	7			40	10
Total		1	57	503	57	4	19	641
Non-Native Species	Diago purporto	4		1	1		4	
Colorado Spruce	Picea pungens	1					1	2


						Very		
Common Name	Scientific Name	Excellent	Good	Fair	Poor	Poor	Dead	Total
Common Apple	Malus domestica			1	7			8
Common Pear	Pyrus communis				3	1		4
Crack Willow	Salix fragilis				1			1
European Weeping Birch	Betula pendula			1				1
Fir species	Abies sp.			1				1
Horsechestnut	Aesculus hippocastanum		1					1
Linden	<i>Tilia</i> sp.			5				5
Norway Maple	Acer platanoides			9	2			11
Norway Spruce	Picea abies	4	71	62	9	1	4	151
Pine Species	<i>Picea</i> sp.			1				1
Scots Pine	Pinus sylvestris		15	18	3		2	38
Siberian Elm	Ulmus pumila			1				1
Weeping Birch	Betula pendula		1					1
Total		5	88	99	25	2	7	226
Overall Total		6	145	602	82	6	26	867


Summary of Health and Risk Assessment

Potential for			Overall	Conditio	n	_	
Structural Failure Rating	Excellent	Good	Fair	Poor	Very Poor	Dead	Total
Improbable		12	156	3			171
Low	6	131	255				392
Possible			3	4			7
Medium		2	187	18			207
Probable					1	6	7
High			1	57	5	20	83
Grand Total	6	145	602	82	6	26	867

Path: X:\2347 TricarGordonStreet\NRSI 2347 Map1 SubjectProperty 1K 2022 05 24 LEH.m



20	40	
20	10	

60 Metres

1242, 1250, 1260, 1270 GORDON STREET AND 9 VALLEY ROAD, GUELPH, ON – ENVIRONMENTAL IMPACT STUDY ADDENDUM VERSION 2

APPENDIX E HYDROGEOLOGICAL ASSESSMENT

Hydrogeological Assessment

1242, 1250 and 1260 Gordon Street and 9 Valley Road City of Guelph, ON

FINAL REPORT Version 3

June 17, 2022

Prepared for:

Tricar Developments Inc. 3800 Colonel Talbot Road London, ON N6P 1H5

Prepared by:

Stantec Consulting Ltd. 100-300 Hagey Blvd. Waterloo, ON N2L 0A4

First Submission: May 2020 Second Submission: August 2021 Third Submission: June 2022

Sign-off Sheet

This document entitled Hydrogeological Assessment, 1242, 1250 and 1260 Gordon Street and 9 Valley Road, City of Guelph, ON was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Tricar Developments Inc. (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

(signature) Grant Whitehead, MES, P.Geo. (Limited) Senior Hydrogeologist

Reviewed by

(signature)

Roger Freymond, P.Eng. Senior Hydrogeologist

Table of Contents

ABBI	REVIATIONS	IV
1.0	INTRODUCTION	1.1
2.0	PHYSICAL SETTING	2.1
2.1	PHYSIOGRAPHY AND TOPOGRAPHY	2.1
2.2	REGIONAL GEOLOGY AND HYDROSTRATIGRAPHY	2.1
2.3	REGIONAL HYDROGEOLOGY	2.2
2.4	SOURCE WATER PROTECTION	2.3
3.0	METHODOLOGY	
3.1	BOREHOLE DRILLING AND MONITORING WELL INSTALLATIONS	-
3.2	DRIVE-POINT PIEZOMETER INSTALLATIONS	-
3.3	GROUNDWATER LEVEL MONITORING	
3.4	GROUNDWATER SAMPLING AND TESTING	
3.5	HYDRAULIC RESPONSE TESTING	
3.6	INFILTRATION TESTING	3.5
4.0	LOCAL GEOLOGY AND HYDROGEOLOGY	
4.1	GEOLOGY	
4.2	HYDROGEOLOGY	
	4.2.1 Groundwater Levels and Flow	
	4.2.2 Groundwater-Surface Water Interaction4.2.3 Infiltration Potential	
	4.2.3 Initiation Potential	
5.0	WATER BALANCE	5.1
5.1	METHODOLOGY	
5.2	PRE-DEVELOPMENT WATER BALANCE	5.4
	5.2.1 Catchments Contributing to Upper Hanlon Creek Subwatershed	5.4
	5.2.2 Catchments Contributing to Torrance Creek Subwatershed	5.4
5.3	POST-DEVELOPMENT WATER BALANCE	
	5.3.1 Catchments Contributing to Upper Hanlon Creek Subwatershed	
	5.3.2 Catchments Contributing to Torrance Creek Subwatershed	5.5
6.0	GROUNDWATER MOUNDING ASSESSMENT	
6.1	EAST INFILTRATION TRENCH	
6.2	SOUTH INFILTRATION TRENCH	
6.3	IMPACT TO NATURAL HERITAGE FEATURES	6.4
7.0	GROUNDWATER DEWATERING ASSESSMENT	
7.1	GROUNDWATER DEWATERING – QUANTITY	
	7.1.1 Construction Dewatering Volumes	
	7.1.2 Dewatering Radius of Influence	

10.0	REFERENCES	
9.0	CONCLUSIONS	9.1
8.4	SPILL CONTAINMENT AND RESPONSE	8.4
8.3	SOURCE WATER PROTECTION	8.3
8.2	GROUNDWATER DEWATERING	
8.1	GROUNDWATER RECHARGE	8.1
8.0	IMPACT ASSESSMENT AND MITIGATION MEASURES	8.1
	7.2.2 Discharging to Sanitary Sewer	
	7.2.1 Discharging to Storm Sewer	7.4
7.2	GROUNDWATER DEWATERING – QUALITY	7.4
	7.1.3 Long-term Drainage	7.4

LIST OF APPENDICES

APPENDIX A: FIGURES

- Figure 1: Site Location
- Figure 2: Physiography
- Figure 3: Topography
- Figure 4: Surficial Geology
- Figure 5: Wellhead Protection Areas
- Figure 6: WHPA Vulnerability Scores
- Figure 7: WHPA-E Vulnerability Scores
- Figure 8: Significant Groundwater Recharge Area
- Figure 9: Hydrographs MW1-18 to MW4-18
- Figure 10: Hydrographs MW5-18 to MW7-18 and DP1-19(S/D)
- Figure 11: Piper Diagram
- Figure 12: Groundwater Flow
- Figure 13: Cross-Section A-A'
- Figure 14: Cross-Section B-B'
- Figure 15: Water Balance Pre-Development Condition
- Figure 16: Water Balance Post-Development Condition
- Figure 17: Groundwater Mounding 25mm Storm Event
- Figure 18: Dewatering Radius of Influence

APPENDIX B: TABLES

- Table 1:Well Construction Details
- Table 2:Groundwater Level Data Monitoring Wells
- Table 3: Groundwater Level Data Drive-Point Piezometers
- Table 4:Groundwater Quality Results City of Guelph Sanitary and Sewer By-Law
(1996)-15202
- Table 5:
 Groundwater Quality Results Ontario Drinking Water Quality Standards
- Table 6:
 Infiltration Rates Estimated from Horizontal Hydraulic Conductivity Results
- Table 7:Infiltration Rate Testing Results (2021)
- Table 8:Design Infiltration Rate Calculations

- Table 9:Pre-Development Monthly Water Balance Calculations Catchment 101
(Upper Hanlon Creek Subwatershed)
- Table 10:Pre-Development Monthly Water Balance Calculations Catchment 102
(Torrance Creek Subwatershed)
- Table 11:
 1971 To 2000 Canadian Climate Normals (Guelph Arboretum)
- Table 12:Post-Development Monthly Water Balance Calculations Catchments 201,
202, 204 and 207 to 210 (Upper Hanlon Creek Subwatershed)
- Table 13:Post-Development Monthly Water Balance Calculations Catchments 203,
205, and 206 (Lands to Northeast of Flow Divide / Draining to the Torrance
Creek Subwatershed)
- Table 14:Groundwater Mounding Analysis

APPENDIX C: REGIONAL GROUNDWATER FLOW MAPPING

- **APPENDIX D: REGIONAL GROUNDWATER RECHARGE MAPPING**
- **APPENDIX E: BOREHOLE LOGS**

APPENDIX F: LABORATORY CERTIFICATES OF ANALYSIS

APPENDIX G: HYDRAULIC CONDUCTIVITY ANALYTICAL SOLUTIONS

APPENDIX H: DEWATERING CALCULATIONS

- APPENDIX I: SOURCE PROTECTION PLAN THREAT POLICY APPLICABILITY MAPPING
- APPENDIX J: CORRESPONDENCE WITH CITY OF GUELPH

Abbreviations

AMSL	above mean sea level
ASTM	American Society for Testing and Materials
BGS	below ground surface
City	City of Guelph
EASR	Environmental Activity Sector Registry
GRCA	Grand River Conservation Area
GRIN	Grand River Information Network
GUDI	Groundwater Under the Direct Influence of Surface Water
DNAPL	dense non-aqueous phase liquid
GUDI	Groundwater Under the Direct Influence
HDPE	high-density polyethylene
HVA	Highly Vulnerable Aquifer
ID	inside diameter
IPZ	Intake Protection Zone
LID	Low Impact Development
Maxxam	Maxxam Analytics Inc.
MECP	Ontario Ministry of the Environment, Conservation and Parks
ODWQS	Ontario Drinking Water Quality Standards
ORP	oxidation reduction potential
PTTW	Permit to Take Water
PVC	polyvinyl chloride

Site	1242, 1250 & 1260 Gordon Street, within the City of Guelph, Ontario
SGRA	Significant Groundwater Recharge Area
Stantec	Stantec Consulting Ltd.
Tricar	Tricar Developments Inc.
WHPA	Well Head Protection Area

Introduction June 17, 2022

1.0 INTRODUCTION

Tricar Developments Inc. (Tricar) retained Stantec Consulting Limited (Stantec) to complete a hydrogeological investigation of the property located at 1242, 1250 & 1260 Gordon Street, within the City of Guelph, Ontario (Site) (Figure 1). The Site is approximately 3.1 hectares (ha) in size and is bounded to the northwest by existing residential subdivision, to the northeast by protected woodlot affiliated with the Torrance Creek Swamp, to the southeast by existing high-density development (i.e., Liberty Square apartment complex), and to the southwest by Gordon Street.

The purpose of the hydrogeological investigation is to support Zoning By-law and Official Plan Amendments and the Site Plan Application to permit the construction of the proposed residential development, which will consist of two 10-storey apartment buildings consisting of 325 units. The development will have a combination of surface parking and two levels of underground parking. The proposed underground parking footprint will cover an area of approximately 11,450 m², with the anticipated base of the underground parking garage being located at an elevation of 335.7 m AMSL.

As per input initially provided by the City of Guelph (City) (2018) (Appendix J) and comments provided by the City (2020) following the first submission of this report (Appendix J), this hydrogeological assessment consists of meeting the following objectives:

- Characterize current geological and hydrogeological conditions at the Site, including a discussion of overburden and bedrock stratigraphy, hydrostratigraphic units, seasonal fluctuations in groundwater levels and hydraulic gradients, flow direction across the Site, soil infiltration potential, and groundwater quality conditions.
- Evaluate the hydraulic relationship between the groundwater system present beneath the Site and the adjacent Torrance Creek Swamp and assess whether the future development of the Site could potentially disrupt the hydrogeological form and/or function of this wetland.
- Evaluate pre-development infiltration volumes at the Site and assess the impact that proposed land use changes could potentially have on these volumes under the post-development condition, including an evaluation of potential measures that could be employed throughout the Site under the post-development condition to mitigate these impacts.
- Perform infiltration testing and groundwater mounding analysis to support stormwater infiltration strategies proposed for the Site under the post-development condition.
- Assess whether proposed buildings, site servicing and associated construction activities will intercept the groundwater table and if construction dewatering may be required and assess whether any measures are required to mitigate these potential disturbances to pre-development groundwater levels, flow patterns, and groundwater-surface water interactions.

Introduction June 17, 2022

• Evaluate whether proposed land use activities conform to Source Water Protection requirements as stipulated in the Clean Water Act, S.O. 2006, Chapter 22.

This report is arranged into ten sections, including this introduction (Section 1). Section 2 presents the physical setting of the Site at a regional scale. Section 3 outlines the methods utilized to evaluate the Site hydrogeological conditions. Section 4 presents the results of the Site investigation, with Section 5 presenting the water balance assessment. Section 6 presents the groundwater mounding assessment in support of the post-development stormwater infiltration strategy. Section 7 presents the groundwater dewatering assessment and Section 8 discusses the potential hydrogeological impacts of the project and recommended mitigation measures. Report conclusions and references are listed in Sections 9 and 10, respectively. All figures and tables referenced in this report are presented in Appendices A and B, respectively. Appendices C to J include Regional Groundwater Flow Mapping, Regional Groundwater Recharge Mapping, Borehole Logs, Laboratory Certificates of Analysis, Hydraulic Conductivity Analytical Solutions, Dewatering Calculations, Source Protection Plan - Threat Policy Applicability Mapping, and City of Guelph Correspondence, respectively.

Physical Setting June 17, 2022

2.0 PHYSICAL SETTING

2.1 PHYSIOGRAPHY AND TOPOGRAPHY

The Site is situated within the physiographic region referred to by Chapman and Putnam (1984) as the Guelph Drumlin Field. The Guelph Drumlin Field consists of a series of broad oval type hills with axes trending in a northwest to southeast direction (i.e., drumlins). As shown in Figure 2, most of the Site is situated upon a drumlin, which is further supported by the regional topographic setting (Figure 3). The drumlins and associated till plain of the physiographic region consist of stony, calcareous till derived from dolostone of the Goat Island and Gasport Formations (formerly referred to as the Amabel Formation) and consists of sand (50%; average content based on grain-size analysis completed on till samples), silt (35%) and clay (15%) (Chapman and Putnam, 1984). The drumlin groupings occur in swampy valleys that are flanked by terraced spillway channels of sand and gravel, which contain tributaries of the Grand River (e.g., Torrance Creek Swamp located northeast of the Site; Figure 2). Gravel ridges or eskers are also known to cut through the till plain in the same general direction as the drumlins.

Most of the Site lies within the Torrance Creek Subwatershed (Totten Sims Hubicki Associates *et al.*, 1998), with the southwestern portions of the property being located within the Upper Hanlon Creek Subwatershed (Golder, 2011; Gamsby & Mannerow, 1993). Both subwatersheds occur within the Grand River Watershed and are under the jurisdiction of the Grand River Conservation Authority (GRCA). The Torrance Creek Subwatershed is characterized by hummocky terrain associated with the drumlins and by the network of broad, relatively flat spillway channels that cut through the drumlin fields. As shown on Figure 3, topographic high points occur along the northwestern and southeastern boundaries within the central portion of the Site, with the topography generally sloping to the northeast towards Torrance Creek Swamp and the southwest towards Gordon Street. As shown on Figure 1, topographic contours throughout the Site range from highs of 344.5 m AMSL near Valley Road (northwest boundary) and 342.5 m AMSL near Borehole 4 (southeast boundary), to lows of 337 m AMSL near Gordon Street and 335 m AMSL along the northeast boundary of the Site near Torrance Creek Swamp.

As shown on Figure 15 and discussed in the Stantec (2021) *Functional Servicing Report*, the direction of surface water runoff occurring within the Site under existing conditions is split between two catchments. Catchment 101 directs surface water runoff westward to an existing storm sewer on Gordon Street, whereas surface water runoff occurring within Catchment 102 flows overland to the east and eventually discharges to Torrance Creek Swamp.

2.2 REGIONAL GEOLOGY AND HYDROSTRATIGRAPHY

Geological conditions within the region have been mapped and described by Matrix Solutions Inc. (2017), the Lake Erie Region Source Protection Committee (LERSPC, 2015a), Golder Associates Limited (2011), Totten Sims Hubicki Associates *et al.* (1998), Gamsby & Mannerow (1993), and Jagger Hims Limited (1998). Based on these previous studies, overburden and bedrock geology near the Site is summarized as follows, listed from ground surface downward:

Physical Setting June 17, 2022

Organic Deposits: Accumulations of peat and/or muck associated with wetland areas (Figure 4, Unit 20).

Glaciofluvial Deposits: Glaciofluvial outwash and glaciolacustrine deposits of sand and gravel with minor silt and clay associated with the spillway channels (Figure 4, Units 7a and 7b).

Ice-Contact Deposits: Predominantly sand and gravel containing lenses of silt and clay left behind by the melting of enclosed ice blocks (i.e., eskers, kames) (Figure 4, Unit 6).

Port Stanley Till: An occasionally stony, silty sand to sandy silt till, forming the till plain and drumlins that characterize the region (Figure 4, Unit 5b). Some of the drumlins, however, can consist of an older clayey silt till core that is subsequently covered by a veneer of Port Stanley Till (Karrow, 1968). In the areas south of the Speed River, the till plain is often covered by a layer of glaciofluvial and glaciolacustrine sediments (i.e., fine to silty sand, sandy silt, sand and gravel) deposited from melting glacier ice, with the till extending to the bedrock surface.

Bedrock: The Eramosa Formation (Reformatory Quarry Member), representing the uppermost bedrock unit beneath the Site is described as a light brown to cream coloured, pseudonodular, thickly bedded and coarsely crystalline dolostone, which may act as an aquitard (Brunton, 2008). As per Golder (2011), the bedrock surface near the Site appears to be located at an elevation of 320 m AMSL and will not be encountered with the proposed development.

2.3 REGIONAL HYDROGEOLOGY

Based on previous groundwater modeling work completed by Matrix Solutions Inc. (2017), the following aquifer and aquitard systems are identified as occurring throughout the region in which the Site resides:

Upper Sand and Gravel Aquifer: an unconfined aquifer system consisting predominantly of outwash sand and gravel deposits. This unit is reported to have a horizontal hydraulic conductivity ranging from 7.0 x 10^{-4} m/s to 6.0 x 10^{-6} m/s, with the vertical hydraulic conductivity being one tenth (0.1) to an order (1.0) of magnitude lower than the horizontal hydraulic conductivity (Golder, 2011). Soil permeability testing using a Guelph Permeameter indicates that the sandy soils of this unit have vertical hydraulic conductivities in the range of 10^{-5} m/s (Totten Sims Hubicki Associates *et al.*, 1998).

Lower Till Aquitard: dense sandy to silty glacial till (i.e., Port Stanley Till) that is occasionally interbedded with discontinuous lenses of coarse sand and gravel. This unit is reported to have a horizontal hydraulic conductivity ranging from 1.0×10^{-4} m/s to 2.0×10^{-9} m/s, with the vertical hydraulic conductivity being one half (0.5) to an order (1.0) of magnitude lower than the horizontal hydraulic conductivity (Golder, 2011).

Physical Setting June 17, 2022

Contact Zone Aquifer: coarse, unconsolidated granular deposits directly overlying, and hydraulically connected to, upper weathered / fractured bedrock. This unit typically forms a thin aquifer having an assumed thickness of four meters (two meters above and below bedrock surface) (Golder, 2011). This aquifer is reported to have a horizontal hydraulic conductivity ranging from 1.0×10^{-4} m/s to 1.0×10^{-5} m/s, with the vertical hydraulic conductivity being one half (0.5) to an order (1.0) of magnitude lower than the horizontal hydraulic conductivity (Golder, 2011).

Bedrock Aquifer: consisting of medium to thick bedded fossiliferous dolostone of the Guelph Formation. This unit is reported to have a horizontal hydraulic conductivity ranging from 8.0×10^{-3} m/s to 7.0×10^{-9} m/s, with the vertical hydraulic conductivity being one tenth (0.1) to an order (1.0) of magnitude lower than the horizontal hydraulic conductivity (Golder, 2011).

As presented in Figure 4.3 of Matrix Solutions Inc. (2017) (Appendix C), simulated groundwater table surface elevations produced via a calibrated steady-state groundwater flow model suggests that regional groundwater movement is to the northwest through the overburden aquifer located beneath the Site, eventually discharging to the Speed River. However, groundwater flow interpretations presented in Totten Sims Hubicki Associates *et al.* (1998) (Figure 4.4.7, Appendix C) suggest that at a local scale, groundwater movement through the shallow overburden near the Site is to the northeast and east, with these flows potentially being influenced by pumping from the Burke and/or Carter Municipal Production Wells.

Regionally, the lands containing the Site are characterized by groundwater recharge conditions. Mapping created using the Grand River Information Network (GRIN) (GRCA, 2019) indicates that downward vertical hydraulic gradients are present beneath the Site, with annual recharge rates across the property ranging from 100 to 200 mm/year (Appendix D).

2.4 SOURCE WATER PROTECTION

As established under the Ontario Clean Water Act, 2006, S.O., 2006, c. 22, source protection areas and associated land use restrictions exist for all municipal drinking water sources located throughout the Grand River Source Protection Area (i.e., defined by the boundaries of the Grand River Watershed). Within the Source Protection Area (SPA), the Ministry of the Environment, Conservation and Parks (MECP) has designated four types of vulnerable areas that apply to drinking water sources.

Wellhead Protection Areas (WHPA): an area delineated on the ground surface that represents the capture zone for the underlying aquifer in which a given municipal well draws its water. The zone represents the total amount of time it would take for groundwater to flow through the aquifer system and reach the intake of a given municipal well. The zones are defined as follows:

- WHPA-A: 100 m radius around the municipal well.
- WHPA-B: Horizontal time of travel to the municipal well is two years or less.
- WHPA-C: Horizontal time of travel to the municipal well is equal to or less than five years and greater than two years.

Physical Setting June 17, 2022

- WHPA-D: Horizontal time of travel to the municipal well is equal to or less than 25 years and greater than five years.
- WHPA-E: Area where groundwater is under the direct influence of surface water (GUDI), where horizontal time of travel to the municipal well is two hours or less from the surface water body to the well.

As shown on Figure 5, the Site is located within the WHPA for the Burke Municipal Production Well (Burke Well), with this production well located approximately 165 m to the southwest of the Site. Specifically, the Site is intercepted by Burke Well WHPA-B and -C, noting that the footprint for the proposed development is confined to the WHPA-C (i.e., representing an area where it takes greater than two years but less than five years for precipitation that has recharged the aquifer to flow through this aquifer to the production well intake). The WHPA-C has an assigned vulnerability score ranging from four (4) to six (6) (Figure 6). Development on municipal services in areas where vulnerability scores are in the 4 to 6 range represent a low threat to drinking water supplies.

The northeastern portion of the Site also lies within the WHPA-E (vulnerability score of 7.2, MECP, 2020; Figure 7) of the Burke Well, with this well being classified as Groundwater Under the Direct Influence (GUDI) of surface water (i.e., a surface water source has a direct connection to the groundwater system and is drawn into the production well during pumping). The extents of the WHPA-E are equivalent to the area of an Intake Protection Zone (IPZ); that is, a capture zone delineated for those drinking-water systems that obtain their potable water from surface water bodies. The WHPA-E is equivalent to an IPZ-3, which represents surface water bodies and adjacent lands (i.e., GRCA Regulation Limit or 120 m, whichever is greater) that may be impacted by extreme events such as storms (e.g., 100-year rainfall event) and subsequently, potentially contribute surface water to the municipal well. For the Burke Well, the IPZ-3 encompasses the nearby Torrance Creek Swamp.

Significant Groundwater Recharge Areas (SGRA): This is an area where it is desirable to regulate drinking water threats that may affect recharge of an aquifer. Recharge areas are classified as "significant" when they supply more water to an aquifer used as a drinking water source than the surrounding area. As shown in Figure 8, the SGRA represents an area where the rate of annual recharge to the underlying aquifer system is greater than the average annual rate of recharge within the Grand River SPA by a factor of 1.15 or more (i.e., at least 15% greater than the average recharge rate). Based on the modeling results presented in AquaResource (2009), the average annual rate of recharge within the Grand River SPA is calculated to be 176 mm/year; consequently, a SGRA threshold is defined as an area within the watershed where the annual recharge rate equals or is greater than 202 mm/year. A similar SGRA threshold of 200 mm/year was calculated for those lands located within the City of Guelph and Township of Guelph/Eramosa as described in Matrix Solutions Inc. (2017). For the Site, the SGRA is assigned a vulnerability score of four (4), indicating that activities occurring in this area of the property that limit recharge to the underlying aquifer pose a moderate threat to groundwater quantities in the aquifer, which is or may be used as a source of drinking water.

Highly Vulnerable Aquifers (HVA): Defined as subsurface, geologic formations that are sources of drinking water, which could be easily affected by the release of pollutants on the ground surface. The

Physical Setting June 17, 2022

HVA is identified using variables that include depth to the aquifer, physical properties of the overlying soil and/or rock, and the aquifer composition. In general, an HVA will consist of granular aquifer materials (i.e., sands and gravels) that are exposed near the ground surface and where a relatively shallow groundwater table is present. As per the mapping provided by the MECP (2020), the Site does not occur in an area defined as HVA.

Intake Protection Zones (IPZ): A zone established around a drinking / surface water intake within which a spill or leak may get to the intake too quickly for the operators of the municipal water treatment plant to shut the intake down until the pollutant passes by. These zones also include land adjacent to streams and storm sewers where surface water runoff can quickly reach the intake. As discussed above, the northeastern portion of the Site is intercepted by an IPZ-3.

Methodology June 17, 2022

3.0 METHODOLOGY

The hydrogeological site investigation included the:

- drilling of boreholes
- installation of monitoring wells
- installation of drive-point piezometers
- monitoring of groundwater levels
- collection of groundwater samples for quality testing
- performing hydraulic response (hydraulic conductivity) testing
- completion of infiltration (soil permeability) testing.

The methodology for these tasks is described in Section 3.1 to 3.6 below.

3.1 BOREHOLE DRILLING AND MONITORING WELL INSTALLATIONS

Between July 9 and 30, 2018 boreholes were advanced at seven locations across the Site. Five of the locations involved the drilling of a borehole, which was then equipped with a single monitoring well (i.e., MW1-18 to MW3-18, MW6-18, MW7-18; Figure 1). The remaining two locations involved the installation of a multi-level monitoring well (i.e., MW4-18(S/D) and MW5-18(S/D); Figure 1) where two boreholes (one shallow and one deep) were drilled within meters of each other, with each of these boreholes then being equipped with a single monitoring well. Overall, the boreholes were strategically positioned throughout the Site to obtain a spatially representative understanding of soil conditions, groundwater depths and fluctuations, and to evaluate local patterns of groundwater flow.

In August 2021, boreholes were advanced at an additional four locations throughout the Site. The purpose of this drilling was to confirm soil conditions and groundwater depths and fluctuations beneath those areas of the Site considered for the construction of post-development infiltration facilities. Three of the locations involved the drilling of a borehole, which was then equipped with a single monitoring well (i.e., MW102-21 to MW104-21; Figure 1). The remaining location involved the installation of a multi-level monitoring well (i.e., MW101-21(S/D); Figure 1) where two boreholes (one shallow and one deep) were drilled within meters of each other, with each of these boreholes then being equipped with a single monitoring well.

Stantec on behalf of Tricar retained Aardvark Drilling Inc. to complete the borehole drilling and monitoring well installations. The boreholes were drilled using a CME track-mounted drilling rig equipped with a hollow stem auger drilling system (i.e., to permit the installation of monitoring wells). Soil samples were collected using split-spoon sampling techniques. Soil sampling occurred using a 0.6 m long stainless-

Methodology June 17, 2022

steel split spoon sampler at 0.75 m (2.5 feet) to 1.5 m (5 feet) intervals to the termination depth of the borehole. The completed depths of the boreholes ranged from 7.6 m to 15.8 m below ground surface (BGS). Stantec personnel directed the drilling and soil sampling operations and logged the borehole stratigraphy using the American Society for Testing and Materials (ASTM) guideline for the description and identification of soils (ASTM, 2009). The borehole logs contain descriptions (where relevant and possible) of soil type, texture, colour, structure, consistency, plasticity, moisture content, and other visual and olfactory observations. Copies of the borehole logs are provided in Appendix E.

The drilling contractor installed the monitoring wells adhering to the construction requirements as outlined under Ontario Regulation 903 (O. Reg. 903) (MOE, 1990). Installation details for each of the monitoring wells are summarized in Table 1. Each monitoring well is constructed of 50 mm inside diameter, Schedule 40 polyvinyl chloride (PVC) pipe, having a No. 10 slot screen (0.01-inch slot) measuring 3.0 m in length. Backfilling of the screened interval consisted of silica sand to a height of approximately 0.3 m above the top of screen, followed by granular bentonite to ground surface prevent a hydraulic connection from occurring between the screened formation and overlying soils. The completion of each monitoring well involved encasing the pipe stick-up within a lockable steel casing. Stantec Geomatics surveyed the ground surface and top-of-pipe elevations at each monitoring well location to a geodetic benchmark using the Can-Net GPS Survey system, having a spatial accuracy of \pm 0.03 m and \pm 0.02 m in the vertical and horizontal plane, respectively.

Following installation, Stantec personnel purged each monitoring well using dedicated 16 mm (2/3 inch) inside diameter high density polyethylene (HDPE) tubing connected to a D-25 Waterra[™] foot valve. Using the dedicated tubing, Stantec personnel purged 10 standing column volumes from each well (where possible) to clear out any fine-grained sediments and, subsequently, establish a proper hydraulic connection with the native aquifer material.

3.2 DRIVE-POINT PIEZOMETER INSTALLATIONS

On April 10, 2019 Stantec personnel installed one multi-level drive-point piezometer, consisting of a shallow and a deep piezometer (i.e., DP1-19(S) and DP1-19(D)), within a section of the Torrance Creek Swamp located approximately 75 m to the northeast of the Site (Figure 1). The multi-level piezometer was installed to evaluate whether this wetland functions as a groundwater recharge feature (i.e., contributes water to subsurface), discharge feature (receives water from the subsurface), or a combination of both.

Each drive-point piezometer is constructed of a 0.42 m long steel screen (19 mm diameter) that is connected to 25 mm diameter steel riser pipes. Stantec personnel drove the drive-point piezometers into the substrate using a fence post driver, with shallow and deep pipes being constructed within one meter of each other and their screens being separated by a vertical distance of approximately 1.7 m. Construction details for the drive-point piezometers are summarized in Table 1.

Methodology June 17, 2022

3.3 GROUNDWATER LEVEL MONITORING

Groundwater levels were recorded at MW1-18 to MW7-18 and DP1-19(S/D) from July 2018 to June 2020 using a combination of automated and manual measurement methods. Data loggers (i.e., Solinst[®] Leveloggers[®]) were installed at all monitoring well and piezometer locations to allow automatic measurement of water levels. The Leveloggers were suspended into the water column at each monitoring well and drive-point piezometer and set to record water levels at 60-minute intervals. Leveloggers are not vented to the atmosphere and therefore record total pressure (where total pressure is the sum of the atmospheric pressure and the height of water column). To obtain an accurate measurement of the groundwater level at each well, the water level data obtained from the Leveloggers were corrected for atmospheric pressure using data obtained from a Solinst® Edge Barologger® (Barologger), which was suspended in the air column at monitoring well MW5-18(S).

In January 2022, the previously mentioned monitoring wells (i.e., MW1-18 to MW7-18) together with MW101-21(S/D) to MW104-21 were re-equipped with Leveloggers. These Leveloggers are currently recording groundwater level fluctuations in the monitoring wells; however, these data have not been downloaded by Stantec personnel to date and, subsequently, are not presented in this report.

Groundwater levels were manually measured several times from the onsite monitoring wells between July 2018 and June 2020, and between January 2022 and April 2022. The groundwater level measurements were recorded in metres to the nearest 0.01 m using a battery-operated water level indicator. Manual groundwater level measurements were used to verify data recorded by the Leveloggers. Manual water levels collected from the monitoring wells and drive-point piezometer are presented in Tables 2 and 3, respectively. Hydrographs presenting both the automatic and manually measured groundwater level data are provided in Figures 9 and 10.

3.4 GROUNDWATER SAMPLING AND TESTING

Groundwater quality samples were collected from MW2-18, MW4-18(S), MW6-18, and MW7-18 on September 11, 2018. The samples were collected to help evaluate pre-development groundwater quality conditions at the Site. Specifically, all samples were analyzed for general inorganic parameters and dissolved metals and compared against their corresponding Ontario Drinking Water Quality Standard (ODWQS) (MOE, 2006) concentrations, with MW2-18 results being compared against those parameters listed under the City of Guelph Sanitary and Storm Sewer By-law (1996)-15202.

Stantec personnel collected groundwater samples from the onsite monitoring wells using dedicated HDPE tubing connected to a foot valve. Prior to collecting the samples, wells were purged and field parameters including pH, temperature, electrical conductivity, oxidation reduction potential (ORP), and dissolved oxygen (DO) were monitored periodically during the purging process using a multi-parameter water quality meter and flow through cell. The meter was calibrated prior to use according to the manufacturer's specifications with the appropriate calibration standards. Groundwater sampling occurred after these field parameter concentrations had stabilized, indicating that water being pumped from the

Methodology June 17, 2022

monitoring wells was representative of groundwater flowing into the well from surrounding geological formations.

The groundwater sample collected from each monitoring well consisted of pouring water directly from the HDPE tubing into lab supplied sample bottles. Groundwater samples collected for metals analysis were field-filtered using disposable in-line 0.45 µm (micron) filters attached to the HDPE tubing. The groundwater samples were carefully packed into coolers with ice, which was added to maintain sample temperatures below 10°C during transport to the analytical laboratory. Samples were delivered to Maxxam Analytics Inc. (Maxxam) for analysis. Chain of custody forms were completed and included with the samples.

The results of the groundwater quality testing are summarized in Tables 4 (Sewer By-law) and 5 (ODWQS) and illustrated in a piper diagram on Figure 11. A copy of the Laboratory Certificate of Analysis is presented in Appendix F.

3.5 HYDRAULIC RESPONSE TESTING

Stantec performed in-situ hydraulic response testing at each monitoring well between July 26 and 27, 2018 to estimate the horizontal hydraulic conductivity of the deposits beneath the Site. The testing consisted of creating an instantaneous change in the well water level by removing a known volume of water followed by recording the time taken for the water level to return to static conditions (i.e., a rising head or bail test). Data were analyzed using the Bouwer and Rice (1976) solution for a bail test in an unconfined aquifer as provided in the software package AQTESOLV ™ Pro Version 4.5 (Duffield, 2014). Testing provided an estimate of the horizontal hydraulic conductivity of the sediments within the screened interval for each monitoring well. Table 1 provides a summary of the calculated horizontal hydraulic conductivities, with the analytical solutions for the data being presented in Appendix G.

Since hydraulic conductivity in the horizontal direction is generally an order (potentially two orders for clay-based deposits) of magnitude higher than hydraulic conductivity in the vertical direction (Todd 1980; Freeze and Cherry 1979), the vertical hydraulic conductivities for overburden deposits surrounding the well screens were assumed to be one order of magnitude lower than in-situ measured horizontal hydraulic conductivities calculated at MW2-18 to MW7-18. Infiltration rates were calculated based on an established relationship between vertical hydraulic conductivity and infiltration rate presented in the Credit Valley Conservation and Toronto and Region Conservation Authority (CVC-TRCA, 2010) Low Impact Stormwater Management Planning and Design Guideline - Version 1.0. Table 6 provides a summary of estimated infiltration rates based on the results of the horizontal hydraulic conductivity testing.

Methodology June 17, 2022

3.6 INFILTRATION TESTING

As discussed in the Stantec (2022) *Functional Servicing Report*, the revised stormwater management strategy for the Site will include the construction of the East Infiltration Trench (i.e., clearstone infiltration gallery) immediately to the northeast of Building 2 (Figure 12). The South Infiltration Trench (i.e., StormTech® SC-310 units) will be constructed along the southwestern limits of the Site immediately to the south of Building 2 (Figure 12).

On June 10 and 11, 2021 D&J Lockhart Excavators Ltd. (Lockhart) excavated a series of test pits within locations of the Site where the previously mentioned post-development stormwater infiltration facilities are planned. The excavation of three test pits (TP1 to TP3) occurred near the southeastern limits of the Site where the South Infiltration Trench is proposed for construction, and two test pits (TP4 and TP5) within the central portion of the property at the future location of the East Infiltration Trench (Figure 12). Stantec notes that the locations of TP4 and TP5 occurred in the original footprint of the East Infiltration Trench (as presented in the Stantec (2020) *Hydrogeological Assessment* report); however, the extents of this facility have since been revised resulting in the test pits now being located from five to 22 m outside of the new footprint. However, given that the subsurface deposits characterizing the Site are relatively ubiquitous (i.e., silty to sandy glacial till), the testing results obtained from these test pits are still considered to be representative of infiltration conditions within the new East Infiltration Trench footprint.

Under the supervision of Stantec personnel, the test pit excavations extended to the projected base elevation of each infiltration trench for the performing of soil infiltration testing. Once completing the soil infiltration testing at the proposed base elevation of each trench, the test pits were then excavated further to depths of at least 1.5 m below these base elevations, with the soils at these depths also being subjected to infiltration testing as per the protocols outlined in the Credit Valley Conservation (CVC) and Toronto and Region Conservation (TRCA) (2010) *Low Impact Stormwater Management Planning and Design Guideline*. Stantec personnel classified the soils targeted for infiltration testing using the ASTM guideline for visual-manual description and identification of soils (ASTM D2488-00) and once the test pit was no longer required, Lockhart backfilled the excavations to the existing grade.

Assessment of the infiltration potential for the on-Site soils involved the use of a Guelph Permeameter (a constant head permeameter designed to measure in-situ vertical hydraulic conductivities of a given substrate). At the various excavated depths of the test pits, Stantec personnel used a hand auger to drill an approximately 0.5 m deep, 50 mm diameter cylindrical hole into the native soil to be tested. The Guelph Permeameter was then filled with water, inserted into the hole while making a concerted effort to avoid knocking debris into the excavation, and then stabilized against the substrate. Stantec personnel then proceeded to record the eventual steady-state rate of water recharge into the soil. The infiltration rate for each soil tested was converted from the measured vertical hydraulic conductivity using the established relationship between vertical hydraulic conductivity and infiltration rate presented by the CVC/TRCA (2010). Table 7 presents the results of this soil infiltration testing.

Methodology June 17, 2022

Using the infiltration testing results, Stantec proceeded to calculate the Design Infiltration Rate for each infiltration facility as per the approach outlined by the CVC/TRCA (2010). The calculated infiltration rate used in the design of the East and South Infiltration Trenches is 32 mm/hour and 23 mm/hour, respectively (Table 8).

Local Geology and Hydrogeology June 17, 2022

4.0 LOCAL GEOLOGY AND HYDROGEOLOGY

4.1 GEOLOGY

Figure 4 presents the surficial geology throughout the Site as mapped by the OGS (2010), with this mapping indicating that the entire Site is covered by stone-poor, silty to sandy glacial till (i.e., the Port Stanley Till). Figure 1 shows the locations of Cross-Section A-A' (Figure 13) and B-B' (Figure 14), which were constructed using geological information obtained from the onsite drilling completed at the Site by CMT Engineering (2018) and Stantec (Appendix E). Although onsite drilling results confirm that silty sand to sandy silt till (Port Stanley Till) predominantly forms a horizontally and vertically contiguous unit beneath the Site, this unit is overlain by a 2.3 to 4.8 m thick diamicton deposit consisting of very loose to dense sand and silt, with some gravel and trace clay (CMT, 2018). A 2.4 m thick, discontinuous layer of sand was encountered in the Port Stanley Till at a depth of 11.3 m BGS (331.7 m AMSL) at MW2-18. The Port Stanley Till occurs at elevations ranging from 341.6 to 334.7 m AMSL beneath the Site, with this unit extending to the termination depth of the onsite boreholes (333.4 to 324.6 m AMSL). Locally, the bedrock surface is reported to occur at an elevation of approximately 320 m AMSL (Golder, 2011).

4.2 HYDROGEOLOGY

4.2.1 Groundwater Levels and Flow

Figures 9 and 10 and Table 2 present the continuous and manual water levels recorded within the monitoring wells between July 2018 and June 2020, and between January 2022 and April 2022. Groundwater elevations across the Site ranged from 0.9 m BGS (at MW5-18) to 9.2 m BGS (at MW1-18) over the monitoring period, equating to elevations ranging from 332.6 m to 340.7 m AMSL.

As shown in the hydrographs (Figures 9 and 10), the groundwater table demonstrated a similar pattern in fluctuations across the Site, with high groundwater conditions predominantly occurring in the spring (i.e., early March to early June) due to lower evapotranspiration losses and a melting snowpack, which in turn provided a greater volume of water available to infiltrate and recharge the groundwater system. Starting in mid-June, the groundwater table across the entire Site begins to experience a steady decline, reaching its lowest elevation in late October to early November as a response to more water being drawn from the subsurface over this period to meet evapotranspiration demands. Overall, the groundwater table decline that occurred from the early summer to late fall at the monitoring well locations ranged from 1.4 m (MW7-18) to 5.6 m (MW2-18).

In general, groundwater levels showed a limited response to notable precipitation events (i.e., immediate spike/rise in the groundwater table) throughout the Site, suggesting that there is a limited hydraulic connection between the ground surface and the groundwater system (i.e., via vertical fissures/fractures in the overburden). The subdued response to precipitation events is not surprising, given that dense to very densely packed native deposits of silty sand to sandy silt till are present beneath the Site, with these deposits being characterized by horizontal hydraulic conductivities in the range of 10⁻⁷ to 10⁻⁹ m/s (Table

Local Geology and Hydrogeology June 17, 2022

1; Appendix G). However, Stantec notes that infiltration testing completed in the shallower native deposits of silty sand to sandy silt till (i.e., 0.5 to 3.5 m BGS) suggest that horizontal hydraulic conductivities are higher within certain areas of the Site (e.g., near proposed locations of the proposed infiltration trenches) where estimated values range from 10⁻⁵ to 10⁻⁷ m/s (Table 7).

Figure 12 presents groundwater elevation contours and the interpreted direction of horizontal flow through the groundwater system beneath the Site using level measurements collected from the on-site monitoring wells in May 2019. In general, groundwater contours mimic the prevailing topography of the Site, with a localized groundwater divide running along the northeast-southwest axis of the drumlin upon which the property is situated (Figure 3). From the divide, groundwater is shown to flow to the northeast across the Site towards Torrance Creek Swamp at a calculated horizontal hydraulic gradient of 0.04 m/m, which is in general agreement with regional flow patterns presented in Totten Sims Hubicki Associates *et al.* (1998) (Figure 4.4.7, Appendix C). However, groundwater is also shown to flow to the southwest from the divide towards Gordon Street at a calculated horizontal hydraulic gradient of 0.09 m/m and onward towards Hanlon Creek Swamp. These groundwater flow patterns also mimic existing surface water runoff / drainage patterns occurring at the Site as discussed in Stantec (2021).

Horizontal hydraulic conductivity estimates calculated from onsite hydraulic response testing completed at the onsite monitoring wells, which are all screened within sandy silt till, ranged from 5.4×10^{-7} m/s to 1.6×10^{-9} m/s (Table 1; Appendix G). These calculated values are consistent with the literature values of hydraulic conductivity provided for these deposits (Fetter, 1994) and with values provided for the Lower Till Aquitard (Port Stanley Till) as reported in Golder (2011). Overall, the estimated bulk (i.e., geometric mean) horizontal hydraulic conductivity calculated for the overburden deposits is 3.7×10^{-8} m/s (Table 1).

The velocity at which groundwater horizontally flows through the subsurface is calculated through the application of Darcy's law, where:

$$v = \frac{K \nabla}{\theta}$$

where: v = velocity (m/yr) K = hydraulic conductivity $\nabla =$ hydraulic gradient $\theta =$ effective porosity

Assuming a soil porosity of 0.2 for glacial till (Fetter, 1994), an average horizontal hydraulic gradient of 0.04 m/m for groundwater moving towards the northeast, and geometric mean hydraulic conductivity of 3.7×10^{-8} m/s, the estimated velocity of groundwater flowing through the overburden beneath the Site towards Torrance Creek Swamp is calculated to be approximately 0.23 m/year (i.e., one meter every 4.3 years). Using the same input parameters as above, except for an average horizontal hydraulic gradient of 0.09 m/m, the estimated velocity of groundwater flowing through the overburden beneath the Site towards Gordon Street is calculated to be approximately 0.52 m/year (i.e., one meter every 1.9 years).

Local Geology and Hydrogeology June 17, 2022

The Site is also characterized by downward vertical hydraulic gradients as recorded at MW4-18(S/D) (Figure 9) and MW5-18(S/D) (Figure 10). Vertical hydraulic gradients ranged from -0.5 to -1.0 over the monitoring period, confirming that the Site is a groundwater recharge area.

4.2.2 Groundwater-Surface Water Interaction

Data available on the Grand River Information Network (GRIN) (GRCA, 2019) indicates that downward vertical hydraulic gradients are present beneath the Site and in the surrounding area, with annual recharge rates within the boundaries of the Site ranging from 100 to 200 mm/year (Appendix D). As shown in Figure 10, over the monitoring period (i.e., April 2019 to June 2020) groundwater levels recorded in the multi-level drive-point piezometer (i.e., DP1-19(S/D)) installed within Torrance Creek Swamp approximately 75 m to the northeast of the Site show that the groundwater table occurred at or above ground surface during the spring, declining to depths up to 1.1 m BGS by the late summer to early fall (Table 3; Figure 10). Neutral to upward vertical hydraulic gradients consistently occur beneath this area of the Torrance Creek Swamp, although the vertical gradient did switch to downward over the monitoring period. Overall, vertical hydraulic gradients at DP1-19(S/D) have ranged from -0.06 to 0.17, indicating that this area of the wetland functions as both a groundwater recharge and discharge feature. However, the potential volume of groundwater discharging to the Torrance Creek Swamp during those periods where discharge conditions are present is expected to be minimal, given that groundwater moves at a very slow rate through the overburden deposits (i.e., one meter every 4.3 years).

4.2.3 Infiltration Potential

Estimated infiltration rates for the overburden deposits are provided in Tables 6 and 7. Infiltration rates were calculated based on an established relationship between vertical hydraulic conductivity and infiltration rate presented in CVC-TRCA (2010), with vertical hydraulic conductivities being estimated based on both the results of in-situ hydraulic response testing completed at each monitoring well (Section 3.5) and Guelph Permeameter testing completed within the footprints of the proposed infiltration trenches (Section 3.6). Vertical hydraulic conductivities for the deeper deposits of sandy silt till (i.e., 5.0 m to 15.1 m BGS) are assumed to be one order of magnitude lower than in-situ measured horizontal hydraulic conductivities, resulting in values ranging from 5.6×10^{-8} to 1.6×10^{-10} m/s for these till deposits (Table 6). However, results of infiltration testing completed in the areas of the Site where the East and South Infiltration Trenches will be constructed had vertical hydraulic conductivities ranging from 3.9×10^{-5} m/s to 1.8×10^{-7} m/s (i.e., from depths of 0.5 to 3.6 m BGS) (Table 7). Based on these values, the calculated infiltration rates for the previously mentioned deposits can range from as low as 5 mm/hour to an upper value of 123 mm/hour (Tables 6 and 7).

Local Geology and Hydrogeology June 17, 2022

4.2.4 Groundwater Quality

Groundwater quality results from the sample collected from MW2-18 on September 11, 2018 was assessed against City of Guelph Sanitary and Storm Sewer By-law (1996)-15202 guidelines (i.e., for quality of water potentially discharged to storm or sanitary sewage works during dewatering) (Table 4). Groundwater samples collected from MW4-18(S), MW6-18, and MW7-18, together with the previously mentioned sample results, were also compared against the ODWQS (Table 5). A summary of the results is discussed in the sections below.

4.2.4.1 City of Guelph Sanitary and Sewer By-Law

Results of groundwater quality analysis for the sample collected from MW2-18 (Table 4), which was not field-filtered (i.e., representing the quality of groundwater that would be pumped from an open excavation and discharged to the sewer system without treatment), indicate that this groundwater does not meet the City of Guelph Storm Sewer By-law guidelines due to the following parameter concentrations being exceeded:

- Fecal Coliform (200 MPN/100mL): exceeded the storm sewer limit with a count of 350 MPN/100 mL.
- Total Cadmium (0.001 mg/L): exceeded the storm sewer limit with a concentration of 0.0019 mg/L.
- Total Copper (0.01 mg/L): exceeded the storm sewer limit with a concentration of 0.03 mg/L.
- Total Lead (0.05 mg/L): exceeded the storm sewer limit with a concentration of 0.13 mg/L.
- Total Suspended Solids (15 mg/L): exceeded the storm sewer limit with a count of 2,500 mg/L.
- Total Zinc (0.05 mg/L): exceeded the storm sewer limit with a concentration of 0.64 mg/L.

The groundwater also does not meet the City of Guelph Sanitary Sewer By-law guidelines due to the following parameter concentrations being exceeded:

• Total Suspended Solids (350 mg/L): exceeded the sanitary sewer limit with a count of 2,500 mg/L.

Stantec notes that results for the set of groundwater samples that were field-filtered and collected from MW4-18(S), MW6-18, and MW7-18 indicate that if groundwater pumped as part of construction dewatering (if required) is treated for TSS prior to leaving the Site that the removal of the associated sediment-bound metals from the groundwater would result in the remaining dissolved concentrations of cadmium (<0.0001 mg/L), copper (<0.001 mg/L), lead (<0.00056 mg/L), and zinc (<0.005 mg/L) (Table 5) not exceeding the corresponding City of Guelph Storm Sewer By-law concentrations for these parameters.

Local Geology and Hydrogeology June 17, 2022

4.2.4.2 Ontario Drinking Water Quality Standards

Results of the quality testing indicates that the groundwater beneath the Site is classified as calciumbicarbonate type groundwater (Figure 11), which is typical of shallow fresh groundwater systems in Ontario. The parameters tested in the groundwater samples (i.e., MW4-18(S), MW6-18, and MW7-18) did not exceed any corresponding ODWQS health-related criteria; however, the following tested parameters did exceed their corresponding ODWQS Aesthetic Objectives (non-health related):

- Hardness (100 mg/L): exceeded with concentrations ranging from 320 mg/L to 520 mg/L.
- Total Dissolved Solids (500 mg/L): exceeded at MW4-18(S) (540 mg/L) and MW7-18 (530 mg/L).

In addition, the Medical Officer of Health Reporting Limit (Ontario) of 20 mg/L for sodium was exceeded at MW7-18 (34 mg/L).

Water Balance June 17, 2022

5.0 WATER BALANCE

Water balance calculations were completed to quantify infiltration volumes at the Site and confirm the recharge function. A comparison of water balance data under existing (i.e., pre-development) and proposed (i.e., post-development) conditions was completed to determine the potential impacts of development on the Site's recharge function. The methodology for the water balance calculations is provided in Section 5.1. Results of the pre- and post-development water balance analysis are presented in Sections 5.2 and 5.3, respectively.

5.1 METHODOLOGY

Within the hydrologic cycle, the flow of water into and out of system can be described through a simplified water balance equation as follows:

$$P = ET + S + R + INF$$
 Equation 1

Where:

P = precipitation
ET = evapotranspiration
S = change in groundwater storage
R = runoff
INF = infiltration (groundwater recharge)

Equation 1 may be further simplified by ignoring the change in groundwater storage (S), which trends over time to zero. The various components of the hydrologic cycle may be estimated through calculations or based on measurements made in the field. Precipitation (P) is typically a measured value. Evapotranspiration (ET) is calculated based on measured air temperatures. The Water Surplus (WS) is calculated based the difference between P and ET, with this surplus then being available for either Infiltration (INF) or Runoff (R) as follows:

$$WS = P - ET$$
 Equation 2

Where WS is used to calculate INF after applying an infiltration factor (IF),

$$INF = WS \times IF$$
 Equation 3

And R is estimated by subtracting INF from WS,

$$R = WS - INF$$
 Equation 4

For this assessment, ET was calculated using the soil moisture balance model by Thornthwaite and Mather (1955). In the Thornthwaite and Mather model monthly potential evapotranspiration (PET) is

Water Balance June 17, 2022

calculated based on the measured average monthly daily temperature (T_a) and a heat index (H_i) value assuming 12 hours of daylight in a day and 30 days in a month, as follows:

$$PET = 16 \times \left(\frac{10T_a}{H_i}\right)^{\alpha}$$
 Equation 5

Where T_a is taken as 0 degrees Celsius for months with negative temperatures, and H_i, the heat index is estimated as,

$$H_i = \sum_{i=1}^{12} \left(\frac{10T_a}{5}\right)^{1.514}$$
 Equation 6

For α

 $\alpha = 0.49 + (0.0179 \times H_i) - (0.0000771 \times H_i^2) + (0.000000675 \times H_i^3)$ Equation 7

PET values are then multiplied by an adjustment factor, after Thornthwaite and Mather (1957), which represents the average number of daylight hours per month at the latitude of the subject property to give the Adjusted Potential Evapotranspiration (PET_{adj}).

Actual Evapotranspiration (AET) is derived as,

$$AET = PET_{adj} - \Delta S$$
 Equation 8

Where ΔS is the change in storage for the month, calculated as,

$$\Delta S = S_{mc} \times e^{\left(\frac{APWL}{S_{mc}}\right)}$$
 Equation 9

Where:

S_{mc} = soil moisture capacity

APWL = accumulated potential water loss, calculated for $\Delta P < 0$ as $APWL = -\sum_{i=0}^{12} PET_i$, and for $\Delta P > 0$ by rearranging equation 8; with ΔP = net precipitation = P - PET_{adj}

WS is derived by subtracting AET from the monthly precipitation,

$$WS = P - AET$$
 Equation 10

And the infiltration and runoff calculated per Equations 3 and 4 above.

Water Balance June 17, 2022

The infiltration factor shown in Equation 3 is estimated based on the topography, soil type and land cover after MOE (2003) and the Ministry of the Environment and Energy (MOEE) (1995). To define appropriate infiltration factors, the Site under the pre-development condition is divided into four Sub-Areas based on similarities in soil type, topography and vegetation cover as follows:

Sub-Area A	Fine sandy to silt loam, rolling topography, woodland cover
Sub-Area B	Fine sandy to silt loam, rolling topography, pasture and shrubs land cover
Sub-Area C	Fine sandy to silt loam, rolling topography, urban lawn
Sub-Area D	Fine sandy to silt loam, rolling topography, urban lawn, 95% impervious cover

The delineated Sub-Areas are shown on Figure 15 and the infiltration factors assigned for each Sub-Area under existing conditions (i.e., pre-development) within Catchment 101 (i.e., drainage directed westward towards Upper Hanlon Creek Watershed) and Catchment 102 (i.e., drainage directed eastward towards Torrance Creek subwatershed) is presented in Tables 9 and 10, respectively.

Soil moisture capacity was set between 75 mm to 300 mm among the Sub-Areas depending on the soil type and land cover as specified under MOE (2003). In Sub-Area A, where the fine sandy to silt loam and woodland cover is present, soil moisture was set at 75 mm. For Sub-Area B, soil moisture content was set at 150 mm corresponding to a fine sandy to silt loam covered with pasture and shrub vegetation. For Sub-Areas C and D, soil moisture content was set at 300 mm corresponding to fine sandy to silt loam having urban lawn type cover associated with the existing onsite residential and commercial properties.

For this water balance assessment, climate normals (1981 to 2010) as recorded at the Guelph Arboretum Climate Station were used to obtain monthly values of precipitation and temperature. The climate data were obtained from Environment Canada (2022) and are summarized in Table 11. The Guelph Arboretum Climate Station is located within approximately 1.5 km to the northwest of the Site and precipitation and air temperatures recorded at this station are assumed to be reflective of climatic conditions occurring at the Site.

Water Balance June 17, 2022

5.2 PRE-DEVELOPMENT WATER BALANCE

5.2.1 Catchments Contributing to Upper Hanlon Creek Subwatershed

The average annual precipitation at the Site is estimated at 923 mm based on data obtained from the Guelph Arboretum Climate Station (Environment Canada, 2022). In Sub-Areas A, B, and C/D, annual actual evapotranspiration from pervious areas is estimated as 563 mm, 554 mm, and 541 mm, respectively. This means that 353 mm of surplus water is available for runoff and infiltration across Sub-Area A on an annual basis, with annual surpluses of 362 mm and 375 mm being available across Sub-Areas B and C/D, respectively. Applying the estimated infiltration factors of 0.65 for Sub-Area A, 0.60 for Sub-Area B and 0.50 for Sub-Area C/D, the calculated annual infiltration for these sub-areas is 240 mm, 226 mm, and 195 mm, respectively.

Based on the previously mentioned water balance components, the average annual volume of infiltration occurring within Catchment 101 (Figure 15) under the pre-development condition is estimated at 3,234 m³, equating to a rate of 202 mm/year (Table 9). This infiltration rate slightly exceeds the 100 mm/year to 200 mm/year groundwater recharge rate range modeled for the Site as per GRIN mapping (Appendix D).

The average annual volume of surface water runoff occurring within Catchment 101 (Figure 15) under the pre-development condition is 3,481 m³ (217 mm/year) (Table 9).

5.2.2 Catchments Contributing to Torrance Creek Subwatershed

The average annual precipitation at the Site is estimated at 923 mm based on data obtained from the Guelph Arboretum Climate Station (Environment Canada, 2022). In Sub-Areas A, B, and C, annual actual evapotranspiration from pervious areas is estimated as 554 mm, 546 mm, and 533 mm, respectively. This means that 369 mm of surplus water is available for runoff and infiltration across Sub-Area A on an annual basis, with annual surpluses of 377 mm and 390 mm being available across Sub-Areas B and C, respectively. Applying the estimated infiltration factors of 0.65 for Sub-Area A, 0.60 for Sub-Area B and 0.50 for Sub-Area C, the calculated annual infiltration for these sub-areas is 240 mm, 226 mm, and 195 mm, respectively.

Based on the previously mentioned water balance components, the average annual volume of infiltration occurring within Catchment 102 (Figure 15) under the pre-development condition is estimated at 3,993 m³, equating to a rate of 231 mm/year (Table 10). This infiltration rate slightly exceeds the 200 mm/year groundwater recharge rate range modeled for the Site as per GRIN mapping (Appendix D).

The average annual volume of surface water runoff occurring within Catchment 101 (Figure 15) under the pre-development condition is 2,542 m³ (147 mm/year) (Table 10).

Water Balance June 17, 2022

5.3 POST-DEVELOPMENT WATER BALANCE

5.3.1 Catchments Contributing to Upper Hanlon Creek Subwatershed

Under the post-development condition in the former area of Catchment 101, Stantec has assumed for the water balance calculations that the topography and physical characteristics of the surficial soil deposits (i.e., fine sandy to silt loam) in each of the Sub-Areas will remain relatively unchanged; however, land cover was adjusted to reflect the projected imperviousness cover percentages of the new catchment areas that will occur under proposed conditions (i.e., Catchments 201, 202, 204 and 207 to 210) (Figure 16). Stantec also assumes that the remaining pervious areas within the new catchment areas will consist of urban lawns and other vegetation associated with urban landscaping. Overall, approximately 85% (1.36 ha) of the Site area covered by the previously mentioned catchments will be converted to impervious surfaces. Under this scenario, the annual volume of infiltration occurring across these lands will decline from 3,234 m³ to 467 m³, resulting in an annual infiltration deficit of 2,767 m³ (Table 12). Annual volumes of surface water runoff from these lands will concurrently increase from 3,481 m³ to 13,062 m³, for a runoff increase of 9,581 m³ (Table 12).

5.3.2 Catchments Contributing to Torrance Creek Subwatershed

In the former Catchment 102, which will be replaced largely by Catchments 203, 205, and 206, the topography, soil deposits (i.e., fine sandy to silt loam), and vegetation cover of these lands will remain mostly unchanged between pre- and post-development conditions. Overall, approximately 11% (0.19 ha) of the Site area covered by the previously mentioned catchments will be converted to impervious surfaces. Under this scenario, the annual volume of infiltration occurring across these lands will decline from 3,993 m³ to 3,459 m³, resulting in an annual infiltration deficit of 534 m³ (Table 13). Annual volumes of surface water runoff from these lands will concurrently increase from 2,542 m³ to 4,070 m³, for a runoff increase of 1,528 m³ (Table 13).

Groundwater Mounding Assessment June 17, 2022

6.0 GROUNDWATER MOUNDING ASSESSMENT

As requested by the City, Stantec completed an assessment of the magnitude of groundwater mounding that could potentially occur directly beneath the East Infiltration Trench and South Infiltration Trench following a 25 mm storm event. Stantec calculated the projected height of groundwater mounding up to 36 m away from each infiltration gallery using a spreadsheet developed by the United States Geological Survey (USGS) applying the Hantush equation (Carelton, 2010). The equation consists of the following input parameters:

- R = recharge (Infiltration) rate (feet/day)
- Sy = specific yield (unitless)
- K = horizontal hydraulic conductivity (feet/day)
- x = 1/2 length of infiltration gallery
- y = 1/2 width of infiltration gallery
- t = duration of infiltration (drawdown) period (days)
- hi(0) = initial thickness of saturated zone receiving recharge (feet)

The specific values entered in the equation and the subsequent results for each infiltration gallery assessment are discussed below.

The projected high groundwater condition occurring in both areas where the East and South Infiltration Trenches will be constructed is based on groundwater elevation monitoring completed at the Site and the groundwater elevation contours constructed from these data as documented in this report. The groundwater elevation contour mapping presented on Figure 12 (based on data collected in April 2022) represents the period of the monitoring program where groundwater elevations recorded across the Site were at their seasonal high point. As shown in Figure 12, groundwater elevations underlying the East Infiltration Trench slope to the northeast from an elevation of 339.5 m AMSL to 339.0 m AMSL and, as such, Stantec used a groundwater elevation of 339.5 m AMSL for the mounding assessment beneath this facility. For the South Infiltration Trench, the seasonal high groundwater elevation underlying this facility is estimated to be 339.9 m AMSL based on measurements obtained from MW101-21(S) (Figure 12, Table 2).

The specific values entered in the USGS spreadsheet and the subsequent results for each infiltration trench groundwater mounding assessment are discussed below.

Groundwater Mounding Assessment June 17, 2022

6.1 EAST INFILTRATION TRENCH

The proposed construction location for the East Infiltration Trench will be in the central portion of the Site (Catchment 206) immediately to the northeast of Building 2 (Figure 16), with this facility being situated within the Torrance Creek Subwatershed. The East Infiltration Trench will receive stormwater runoff from the rooftop of Building 2 (Catchment 203). The invert (base) of this trench will be constructed at an elevation of 340.5 m AMSL, placing the base elevation of the gallery 1.0 m above the projected seasonally high groundwater table in this area of the Site (i.e., 339.5 m AMSL) (Figure 12).

The projected elevation and extents of the groundwater mound are based on the following equation inputs:

- R Design Infiltration Rate of 32 mm/hour (Table 8).
- **Sy** A specific yield of 0.23 based on the average of specific yields for silt, fine sand, medium sand, coarse sand, and gravelly sand as reported by Johnson (1967).
- K A geometric vertical hydraulic conductivity of 2.0 x10⁻⁶ m/s is calculated for the subsurface deposits situated from five to 22 m from the trench footprint based on in-situ Guelph Permeameter testing completed on various soil horizons located at elevations ranging from 340.4 m AMSL to 337.4 m AMSL (Table 7). Since hydraulic conductivity in the horizontal direction is generally an order of magnitude higher than hydraulic conductivity in the vertical direction (Todd 1980; Freeze and Cherry 1979), the horizontal hydraulic conductivity of the shallow groundwater system is assumed to be 2.0 x 10⁻⁵ m/s (5.62 feet/day). This estimated horizontal hydraulic conductivity falls within the range of conductivities reported for the silty sand and gravel to sandy gravelly silt deposits that characterize the subsurface of the Upper Hanlon Creek Watershed (i.e., 10⁻³ m/s to 10⁻⁶ m/s; Gamsby and Mannerow Ltd. 1993).
- **x**, **y** The dimensions of the infiltration trench are 10 m (16.4 feet) long by 7.5 m (12.3 feet) wide.
- t The time taken for the infiltration gallery to drain following a 25 mm storm event is 12.5 hours (0.54 days).
- hi(0) A saturated zone thickness of 19.5 m (64 feet) (i.e., high groundwater elevation of 339.5 m AMSL minus bedrock surface elevation of 320.0 m AMSL that underlies the Site).

Table 14 presents the results of the groundwater mounding analysis for the East Infiltration Trench. Based on the above input parameters, the maximum groundwater mounding predicted to occur beneath the center of the East Infiltration Trench after a 25 mm event is 0.4 m, equating to an elevation of 339.9 m AMSL based on the seasonally high groundwater elevation (i.e., 339.5 m AMSL + 0.4 m = 339.9 m AMSL). As shown on Table 14 and Figure 17, the rise in the groundwater table does not exceed 0.1 m beyond 12 m from the trench center point after a 25 mm storm event.

Groundwater Mounding Assessment June 17, 2022

Although storm event induced mounding will temporarily raise groundwater elevations beneath the foundation of Building 2, the magnitude of this mounding not expected to exceed more than 0.1 m (Figure 17). Stantec notes that this building foundation (as with all onsite building foundations) will be constructed as a watertight structure (sealed with a water impermeable membrane), with the floor slab designed to structurally resist the hydrostatic pressure exerted by the groundwater. Consequently, no permanent drainage system / dewatering will be required for Building 2. The groundwater mound is also not expected to extend below the residential homes fronting Valley Road to the northwest of the Site.

Stantec notes that East Infiltration Trench overflows potentially occurring following a greater than 25 mm storm event will be directed overland to the northeast where this runoff will eventually discharge to the Torrance Creek Swamp (refer to Stantec (2022) *Functional Servicing Report* for additional details).

6.2 SOUTH INFILTRATION TRENCH

The proposed construction location for the South Infiltration Trench is near the southwest limits of the Site, with this facility being situated within the Upper Hanlon Creek Subwatershed (Figure 16). The South Infiltration Trench will receive stormwater runoff from the rooftop of Building 1 (Catchment 202) and associated parking areas (Catchments 204 and 209). The invert (base) of this StormTech® SC-310 infiltration trench will be constructed at an elevation of 340.9 m AMSL, placing the base elevation of the gallery approximately 1.0 m above the projected seasonally high groundwater table in this area of the Site (i.e., 339.9 m AMSL) (Table 2).

The projected elevation and extents of the groundwater mound are based on the following equation inputs:

- **R** Design Infiltration Rate of 23 mm/hour (Table 8).
- **Sy** A specific yield of 0.23 based on the average of specific yields for silt, fine sand, medium sand, coarse sand, and gravelly sand as reported by Johnson (1967).
- K A geometric vertical hydraulic conductivity of 1.8 x10⁻⁶ m/s is calculated for the subsurface deposits situated within the trench footprint based on in-situ Guelph Permeameter testing completed on various soil horizons located at elevations ranging from 341.6 m AMSL to 339.1 m AMSL (Table 7). Since hydraulic conductivity in the horizontal direction is generally an order of magnitude higher than hydraulic conductivity in the vertical direction (Todd 1980; Freeze and Cherry 1979), the horizontal hydraulic conductivity of the shallow groundwater system is assumed to be 1.8 x10⁻⁵ m/s (5.02 feet/day). This estimated horizontal hydraulic conductivity falls within the range of conductivities reported for the silty sand and gravel to sandy gravelly silt deposits that characterize the subsurface of the Upper Hanlon Creek Watershed (i.e., 10⁻³ m/s to 10⁻⁶ m/s; Gamsby and Mannerow Ltd. 1993).
- x, y The dimensions of the infiltration trench are 24.2 m (79.4 feet) long by 11.2 m (36.7 feet) wide.
- **t** The time taken for the infiltration gallery to drain following a 25 mm storm event is 24 hours (one day).
- **hi(0)** A saturated zone thickness of 19.5 m (64 feet) (i.e., high groundwater elevation of 339.5 m AMSL minus bedrock surface elevation of 320.0 m AMSL that underlies the Site).

Groundwater Mounding Assessment June 17, 2022

Table 14 presents the results of the groundwater mounding analysis for the South Infiltration Trench. Based on the above input parameters, the maximum groundwater mounding predicted to occur beneath the center of the South Infiltration Trench after a 25 mm event is 0.7 m, equating to an elevation of 340.6 m AMSL based on the seasonally high groundwater elevation (i.e., 339.9 m AMSL + 0.7 m = 340.6 m AMSL). As shown on Table 14 and Figure 17, the rise in the groundwater table does not exceed 0.1 m beyond 18 m from the trench center point after a 25 mm storm event.

As shown in Figure 17, storm event induced mounding will temporarily raise groundwater elevations beneath the underground parking area of the development by 0.1 m along southern limits of this structure, with the mound disappearing once reaching the underside of Building 2. As previously mentioned, the building and underground parking foundations will be constructed as watertight structures (sealed with a water impermeable membrane) to resist the hydrostatic pressure exerted by the groundwater. As such, no permanent drainage system / dewatering will be required for these structures. The predicted groundwater mound is also not expected to intercept the residential buildings located on the adjacent property immediately to the southeast of the Site.

Stantec notes that any overflows from the South Infiltration Trench following a greater than 25 mm storm event will be directed to an underground storage tank and ultimately outlet to the Gordon Street storm sewer (refer to Stantec (2021) *Functional Servicing Report* for additional details).

6.3 IMPACT TO NATURAL HERITAGE FEATURES

As shown in Figure 17, groundwater mounding predicted to occur beneath the East Infiltration Trench under the previously mentioned storm event scenario will not intercept the Torrance Creek Swamp, which is located approximately 75 m to the northeast from where the groundwater mounding effects cease. As such, there is no opportunity for the groundwater mounding to potentially reverse vertical hydraulic gradients observed to occur beneath this wetland (i.e., reversing from a groundwater discharge to recharge function).

Eventually, when storm water exiting the East Infiltration Trench and infiltrating to the groundwater table equals the rate at which the receiving groundwater system can transport this water away, the mounding will subside. This recharge water will flow through the groundwater system to the northeast and discharge to the Torrance Creek Swamp. Stantec's opinion is that this increased recharge will not only help to maintain, but likely enhance, groundwater inputs to the wetland.

Groundwater Dewatering Assessment June 17, 2022

7.0 GROUNDWATER DEWATERING ASSESSMENT

The following section evaluates the potential onsite needs for construction dewatering and/or the installation of a permanent drainage system, and what mitigation measures could be employed at the Site to minimize any potential disturbances these activities may cause to the form and function of the groundwater system. If dewatering is anticipated, the section will also provide an indication of the quantity and quality of groundwater that will be discharged to the City sewer system. The evaluation is based on information collected from the Site as part of the field investigation together with a review of available background hydrogeological information.

7.1 GROUNDWATER DEWATERING – QUANTITY

7.1.1 Construction Dewatering Volumes

The proposed residential development is to consist of two 10-storey apartment buildings having nine townhouse units and 368 apartment units. The development will have a combination of surface parking and two levels of underground parking. The proposed footprint of the underground parking area will cover approximately 11,450 m², with the anticipated base of the second level of underground parking being located at an elevation of 335.7 m AMSL. Since seasonally high groundwater depths measured within the proposed underground parking area range from 1.0 m to 4.8 m BGS (334.0 m to 340.3 m AMSL), Stantec anticipates that the excavation for this sturcture will intercept the groundwater table.

Stantec utilized the Dupuit-Forchheimer equation (Powers et al., 2007) to calculate what volume of dewatering could be required to lower the groundwater elevation in the excavation of the underground parking area:

$$Q = \frac{\pi \mathsf{K} (H^2 - {h_w}^2)}{\ln R_o / r_w}$$

where Q = steady state pumping rate (m³/s)

- K = representative hydraulic conductivity (m/s)
- H = height of static water level above assigned datum (m)
- h_w = depth of dewatering relative to assigned datum (m)
- r_w = equivalent radius of dewatering area (m)
- R_o = dewatering radius of influence (m)

The input parameters required for this equation were taken from the findings of this hydrogeological investigation, regional geological studies (Golder, 2011), and the layout for the proposed underground parking area (Figure 1), such as information pertaining to the projected area of the excavation, horizontal hydraulic conductivity of the subsurface material, the base elevation of the aquifer being pumped, and the targeted groundwater dewatering elevation.

Groundwater Dewatering Assessment June 17, 2022

For the excavation, the groundwater dewatering volume potentially required during construction is calculated based on the following assumptions:

- The groundwater table resides within the native diamicton deposits of sand and silt to silty sand / sandy silt till (Port Stanley Till) that underly the Site, which is characterized by horizontal conductivities ranging from 5.4 x 10⁻⁷ m/s to 1.6 x 10⁻⁹ m/s. The calculated bulk horizontal hydraulic conductivity for the overburden is 3.7 x 10⁻⁸ m/s, representing the geometric mean of the above field-tested hydraulic conductivities. For the purposes of the dewatering calculations, Stantec used the bulk horizontal hydraulic conductivity of 3.7 x 10⁻⁸ m/s (Table 1).
- The highest groundwater levels measured in the overburden monitoring wells constructed within the proposed footprint of the underground parking area over the monitoring period (i.e., July 2018 to June 2020) ranged from 1.0 m to 4.8 m BGS, corresponding to elevations of 334.0 m to 340.3 m AMSL. A high groundwater elevation of 340.3 m AMSL was assumed to occur over the full area of the proposed underground parking, with this assumption contributing to the overall conservative nature of the analysis.
- The depth of dewatering is set to 1.0 m below the elevation of the second parking level, which will be constructed at an elevation of 335.7 m AMSL (i.e., 335.7 m 1.0 m = 334.7 m AMSL).
- The base of the groundwater flow system is set to the elevation of the bedrock surface, which is estimated to occur at an elevation of 320 m AMSL.
- The area of the proposed underground parking structure is estimated to be 11,450 m².

Based on the above assumptions, the predicted maximum daily volume of groundwater that will be pumped from the subsurface within the footprint of the underground parking area is approximately 37,700 L (Table H1, Appendix H). Stantec notes that this predicted groundwater volume will likely only be realized during the initial stages of dewatering, with the bulk of this volume representing groundwater that is stored in the overburden deposits. Once this overburden storage is drained and removed from the subsurface, Stantec anticipates that the pumping volumes will lower to reflect a reduced rate of groundwater flowing into the excavation (i.e., normalize to a steady state discharge rate). To account for the initial removal of overburden storage volumes and potential basal groundwater seepage into the excavation, a 3.0 factor of safety is applied to the previously mentioned calculated steady state inflow rate, resulting in a projected dewatering volume of **113,100 L/day**. Stantec notes that these dewatering calculations are estimates and will be subject to adjustments if any changes are made to the input parameters discussed above.

Stantec notes that the predicted dewatering volume does not account for any runoff that may enter the open excavation during construction following a rainfall and/or snowmelt event. Assumming that the excavation required to construct the underground parking garage area is fully open (i.e., 11,450 m²) during a 25 mm precipitation event, the resulting volume of stormwater accumulating in the excavation together with groundwater inflow volumes could be in the range of **399,350 L**.

Groundwater Dewatering Assessment June 17, 2022

Under O. Reg. 64/16 and O. Reg. 63/16, a MECP Permit to Take Water (PTTW) is required when construction dewatering rates are anticipated to exceed 400,000 L/day, whereas an Environmental Activity and Sector Registry (EASR) is required when dewatering volumes are expected to range between 50,000 L/day and 400,000 L/day. Consequently, Stantec's opinion is that Site will require an EASR to complete construction dewatering for the proposed underground parking garage.

The MECP has made recent amendments to EASR requirements for construction dewatering that came into effect July 1, 2021. The following provides a brief summary of the changes:

- The ability to register multiple dewatering pits for a single project under the same EASR.
- Allowing construction dewatering of up to 400,000 L/day for each dewatering pit as long as the dewatering area of influence do not overlap.
- Stormwater will no longer be counted in the 400,000 L/day water taking limit, however, registrants will at a minimum be required to keep a record of precipitation events, or if determined by a Qualified Person, detailed monitoring/documentation.
- EASRs will apply to linear projects including transit and pipelines.
- Registrants will be required to notify the local municipalities and conservation authorities if the water taking is intended to continue for more than 365 days.

Based on the predicted volumes to be pumped from the native diamicton deposits of sand and silt to silty sand / sandy silt till (Port Stanley Till), groundwater dewatering is expected to be handled using conventional pumping methods (i.e., standard sump pumps).

7.1.2 Dewatering Radius of Influence

One of the key issues of concern with the performing of dewatering activities for construction purposes is the potential impact that pumping water from the groundwater system could have on the hydrogeological form and function of nearby natural heritage features, such as the Torrance Creek Swamp.

Based on the above calculations, temporary construction dewatering will likely be required for the shortterm cut and cover works associated with the building construction. The effects of local dewatering in general cannot be mitigated, since dewatering deliberately seeks to create an effect (i.e., temporary lowering of groundwater levels); however, the amount of drawdown to occur due to construction activities is expected to remain within a relatively small distance around the excavations due to the low permeability of the surrounding deposits. The lateral extent of groundwater level drawdown from the excavation areas is calculated using the Sichart and Kryieleis method (Powers et al., 2007):

$$R_o = r_w + 3000(H - h_w)\sqrt{K}$$

Groundwater Dewatering Assessment June 17, 2022

where R_o = dewatering radius of influence (m)

- K = representative hydraulic conductivity (m/s)
- H = height of static water level above assigned datum (m)
- h_w = depth of dewatering relative to assigned datum (m)
- r_w = equivalent radius of dewatering area from center of the excavation (m)

According to the calculation, the predicted dewatering radius of influence from the proposed development is approximately 64 m from the edge of the excavation area (Table H1, Appendix H). Overall, the radius of influence from short-term construction dewatering is not expected to extend into nearby natural heritage features (Figure 18).

7.1.3 Long-term Drainage

The proposed foundation of the underground parking area will be constructed with a waterproof base and, as such, no permanent drainage system / dewatering is planned for this structure.

7.2 GROUNDWATER DEWATERING – QUALITY

7.2.1 Discharging to Storm Sewer

As discussed in Section 4.2.4, groundwater quality results for the sample collected from MW2-18 (Table 4) indicate that any potential dewatering volumes cannot be discharged to the City storm sewer system as the following parameters exceed the City of Guelph Sanitary and Storm Sewer By-law (1996)-15202 limits due to concentrations exceeding the following parameters:

- Fecal Coliform (200 MPN/100mL): exceeded the storm sewer limit with a count of 350 MPN/100 mL.
- Total Cadmium (0.001 mg/L): exceeded the storm sewer limit with a concentration of 0.0019 mg/L.
- Total Copper (0.01 mg/L): exceeded the storm sewer limit with a concentration of 0.03 mg/L.
- Total Lead (0.05 mg/L): exceeded the storm sewer limit with a concentration of 0.13 mg/L.
- Total Suspended Solids (15 mg/L): exceeded the storm sewer limit with a count of 2,500 mg/L.
- Total Zinc (0.05 mg/L): exceeded the storm sewer limit with a concentration of 0.64 mg/L.

7.2.2 Discharging to Sanitary Sewer

Groundwater at the Site does largely satisfy the bylaw limits to permit discharging to the City sanitary sewer system, except for TSS:

• Total Suspended Solids (350 mg/L): exceeded the sanitary sewer limit with a count of 2,500 mg/L.

Groundwater Dewatering Assessment June 17, 2022

However, if groundwater is treated for TSS (e.g., filtration or sedimentation measures) prior to leaving the Site, the concentration for this parameter can be reduced to levels that would allow for this groundwater to be discharged to the sanitary sewer system.

Prior to discharging groundwater pumped from the excavation (during construction dewatering) to the sanitary sewer, the Contractor retained to complete the dewatering will be expected to implement measures to reduce TSS in the discharge water to below the corresponding concentrations mentioned above.

The Contractor should consult with the City to confirm whether there are preferred methods and/or policies for reducing TSS concentrations in discharge water (including monitoring requirements). In Stantec's experience, common mitigation measures utilized to reduce TSS concentrations in discharge water can include:

- wrapping of the inlet pump head (i.e., sump/trash pumps) with filter fabric and surrounding the inlet with clear stone, or equivalent
- passing discharge water through geotextile filter bags or straw bale/filter fabric device
- directing discharge through a tank, allowing time for the suspended solids to settle out prior to being released to the sewer

In addition, the Contractor's responsibilities will often include:

- obtaining a sewer use permit prior to discharging to the sanitary sewer
- ensuring that the quality of the pumped groundwater meets required By-law limits
- complete any additional groundwater quality testing as required by the City of Guelph

Impact Assessment and Mitigation Measures June 17, 2022

8.0 IMPACT ASSESSMENT AND MITIGATION MEASURES

8.1 GROUNDWATER RECHARGE

As per the proposed Site Plan (Figure 1), development is to include the construction of two 10-storey apartment consisting of 325 units, internal roadways, surface parking, and two levels of underground parking. In the areas of the Site where this development is to occur, there will also be the introduction of impervious surfaces (e.g., rooftops, concrete/asphalt roadways, and walkways) and, subsequently, a corresponding reduction in the volume of water infiltrating to the subsurface. The potential impacts associated with the introduction of impervious surfaces on the recharge function of the Site are discussed below.

Under the post-development condition, impervious surfaces in the former Catchment 101 (lands draining to the Upper Hanlon Creek Subwatershed) are expected to cover approximately 85% of the post-development catchment areas (1.36 ha of 1.60 ha), resulting in a projected infiltration volume deficit of 2,767 m³/year (i.e., from 3,234 m³/year to 467 m³/year) (Tables 9 and 12). For the former Catchment 102 (lands draining to the Torrance Creek Subwatershed), impervious surfaces will cover approximately 11% of the post-development catchment areas (0.19 ha of 1.73 ha), resulting in a projected infiltration volume deficit of 534 m³/year (i.e., from 3993 m³/year to 3,459 m³/year) (Tables 10 and 13). Overall, the total volume of infiltration at the Site will be reduced from 6,760 m³/year to 3,926 m³/year (infiltration deficit of 2,834 m³/year) from the pre- to post-development condition.

Low impact development (LID) is a stormwater management strategy that seeks to mitigate the impacts of increased stormwater runoff by managing this runoff as close to source as possible, with the implementation of such strategies also providing the residual benefit of offsetting potential infiltration losses associated with the increase in impervious surfaces associated with a given development. Infiltration augmentation options (as described in CVC-TRCA *Low Impact Development Stormwater Management Planning and Design Guide*, 2010) that could potentially be available for use across the Site to assist in maximizing infiltration under the post-development condition include:

- roof downspout disconnection
- soakaways / infiltration trenches
- bioretention cells
- vegetated filter strips
- grass swales or enhanced grassed swales

Impact Assessment and Mitigation Measures June 17, 2022

As discussed in the *Functional Servicing Report* (Stantec, 2022), the post-development LID infiltration strategy proposed for the Site will involve the construction of two infiltration facilities referred to as the East Infiltration Trench and South Infiltration Trench (Figure 12).

The East Infiltration Trench is designed return infiltration volumes lost from the pre- to post-development condition within the portion of the Site located within the Torrance Creek Subwatershed. To address the infiltration deficit of 534 m³ projected to occur in this area of the Site under the post-development condition, rooftop runoff captured by Building 2 (Catchment 203) will be discharged to this infiltration facility. As outlined in Table 13, Catchment 203 is projected to annually capture 1,741 m³ of precipitation, which will subsequently reach the East Infiltration Trench and result in an annual infiltration surplus of 1,207 m³ being added to the subsurface and recharging the local groundwater system post-development (with this groundwater flowing to the northeast towards Torrance Creek Swamp; Figure 12).

The South Infiltration Trench is designed return infiltration volumes lost from the pre- to post-development condition within the portion of the Site located within the Upper Hanlon Creek Subwatershed. To address the infiltration deficit of 2,767 m³ projected to occur in this area of the Site under the post-development condition, rooftop runoff captured by Building 1 (Catchment 202) and parking areas (Catchments 204 and 209) will be discharged to this infiltration facility. As outlined in Table 12, Catchments 202, 204, and 209 are projected to annually capture 6,406 m³ of precipitation, which will subsequently reach the South Infiltration Trench and result in an annual infiltration surplus of 3,638 m³ being added to the subsurface and recharging the local groundwater system post-development (with this groundwater flowing off-Site to the southwest towards the Hanlon Creek Swamp; Figure 12).

For the area of the Site located within Upper Hanlon Creek Subwatershed, 85% of these lands under the post-development condition will be converted to impervious surfaces, resulting in the generation of 13,062 m³ of stormwater runoff per year and an annual runoff surplus of 9,581 m³. However, under the post development condition, the annual runoff volume generated by Building 2 / Catchment 203 (of which 62% of this rooftop area covers these lands) will be directed to the East Infiltration Trench, removing approximately 1,079 m³ (1,741 m³ x 0.62 = 1,079 m³ of this stormwater from the Upper Hanlon Creek Subwatershed lands and reduce the runoff surplus to 8,242 m³ (9,581 m³ - 1,079 m³ = 8,242 m³). As mentioned previously, approximately 6,406 m³ of the annual stormwater runoff generated from Catchments 202, 204, and 209 will be directed to the South Infiltration Gallery. Consequently, the infiltration of this runoff will result in the unmitigated runoff surplus of 8,242 m³ being reduced further to a volume of 1,836 m³ (8,242 m³ – 6,406 m³ = 1,836 m³) (Table 12). The annual runoff of volume of 1,836 m³ flowing off-Site will travel southeast along Gordon Street via a drainage ditch and ultimately discharge to a downstream stormwater management facility located near Vaughan Street.

8.2 GROUNDWATER DEWATERING

One of the key issues of concern with the performing of dewatering activities for construction purposes is the potential impact that pumping water from the groundwater system could have on nearby natural heritage features.

Impact Assessment and Mitigation Measures June 17, 2022

The effects of local dewatering in general cannot be mitigated, since dewatering deliberately seeks to create an effect (i.e., temporary lowering of groundwater levels); however, the amount of drawdown expected to occur due to construction activities is expected to remain within a small distance around the development excavation. According to the dewatering calculations, the predicted maximum horizontal distance that the pumping zone of influence will extend outward from the active zone of dewatering is estimated at 64 m. As shown in Figure 17, this predicted dewatering radius of influence will not intercept the Torrance Creek Swamp to the northeast or Hanlon Creek Swamp to the southwest of the Site. Stantec notes that the residual effects of short-term construction dewatering are reversible seeing that once pumping ceases, groundwater levels will recover and re-equilibrate to the local groundwater table.

Since the proposed underground parking area will be constructed with a waterproof base, no permanent drainage system / dewatering is planned for this structure. As such, there will be no long-term effects of permanent dewatering associated with this development.

8.3 SOURCE WATER PROTECTION

A <u>drinking-water threat</u> is an activity or condition that adversely affects or has the potential to adversely affect the quality or quantity of any water that is or may be used as a source of drinking water. The following activities are prescribed by the province of Ontario under O. Reg. 287/07 to be drinking water threats (i.e., Significant Drinking Water Threat Policy Categories):

- 1. The establishment, operation, or maintenance of a waste disposal site within the meaning of Part V of the *Environmental Protection Act*.
- 2. The establishment, operation or maintenance of a system that collects, stores, transmits, treats, or disposes of sewage.
- 3. The application of agricultural source material to land.
- 4. The storage of agricultural source material.
- 5. The management of agricultural source material.
- 6. The application of non-agricultural source material to land.
- 7. The handling and storage of non-agricultural source material.
- 8. The application of commercial fertilizer to land.
- 9. The handling and storage of commercial fertilizer.
- 10. The application of pesticide to land.
- 11. The handling and storage of pesticide.

Impact Assessment and Mitigation Measures June 17, 2022

- 12. The application of road salt.
- 13. The handling and storage of road salt.
- 14. The storage of snow.
- 15. The handling and storage of fuel.
- 16. The handling and storage of a dense non-aqueous phase liquid (DNAPL).
- 17. The handling and storage of an organic solvent.
- 18. The management of runoff that contains chemicals used in the de-icing of aircraft.
- 19. An activity that takes water from an aquifer or a surface water body without returning the water taken to the same aquifer or surface water body.
- 20. An activity that reduces the recharge of an aquifer.
- 21. The use of land as livestock grazing or pasturing land, an outdoor confinement area or a farm-animal yard. O. Reg. 385/08, s. 3.

The Site is intercepted by the Burke Well WHPA-B and -C, noting that the footprint for the proposed development is confined to the WHPA-C. The WHPA-C has an assigned vulnerability score ranging from four (4) to six (6) (Figure 6), indicating that the threat of an activity or condition occurring at ground surface within this area, and subsequently adversely affecting the quality and/or quantity of the aquifer system in which the Burke Well draws its groundwater supply, is low to medium, respectively.

As per the Source Protection Plan (SPP) (LERSPC, 2015b), the Site is only subject to the protection policies specified under Significant Drinking Water Threat Policy Category 16 (DNAPLs). Since the planned use for the Site does not involve the onsite handling and storage of a DNAPL, the policies under Category 16 does not apply.

No protection policies are specified in the SPP (LERSPC, 2015b) that apply to the Site's designation as a SGRA or WHPA-E (intercepts the northeast portion of the property).

8.4 SPILL CONTAINMENT AND RESPONSE

The potential exists for spills during any construction activity, with the most probable type of spill occurring being attributable to the refuelling of construction equipment that cannot readily leave the Site (e.g., earth movers). The potential impacts of a spill could be the contamination of soils, groundwater and/or surface water. By implementing proper protocols for the handling of fuels and lubricants during construction, the risk of a spill occurring will be greatly reduced. The procedures to be implemented to prevent onsite spills are as follows:

Impact Assessment and Mitigation Measures June 17, 2022

- all trucks or other road vehicles would be refuelled and maintained offsite, where practicable
- refuelling and lubrication of other construction equipment would not be allowed within 30 m of a drainage system or dewatering excavation
- regular inspections of hydraulic and fuel systems on machinery, with leaks being repaired immediately upon detection or the equipment being removed from Site
- spill kits containing absorbent materials would be kept on hand
- implement best management practices and develop an emergency spill response plan

Given that anticipated construction activities at the Site are not expected to involve the storage or use of bulk chemicals or fuels, any potential spill that does occur would be localized and involve a small volume of material. Standard containment facilities and emergency response materials are to be maintained onsite as required, with refuelling, equipment maintenance, and other potentially contaminating activities being confined to designated areas. As appropriate, spills are to be reported immediately to the MECP Spills Action Centre.

Conclusions June 17, 2022

9.0 CONCLUSIONS

Based on the hydrogeological assessment, using the existing data collected at the Site and information obtained from a background review of regional data, the following conclusions are provided:

- Subsurface conditions across the Site consist of silty sand to sandy silt till (Port Stanley Till), which
 predominantly forms a horizontally and vertically contiguous unit beneath the Site, with this unit being
 overlain by a 2.3 to 4.8 m thick diamicton deposit consisting of very loose to dense sand and silt,
 with some gravel and trace clay. The Port Stanley Till occurs at elevations ranging from 341.6 to
 334.7 m AMSL beneath the Site, with this unit extending to the termination depth of the onsite
 boreholes (333.4 to 324.6 m AMSL). Locally, the bedrock surface is reported to occur at an elevation
 of approximately 320 m AMSL and does not factor into the construction of the proposed development.
- 2. Groundwater depths across the Site range from 0.9 m to 9.2 m BGS over the monitoring period (July 2018 to June 2020), fluctuating between elevations of 332.6 m to 340.7 m AMSL. Overall, the highest groundwater table occurred in the spring, declining by up to 5.6 m to its lowest elevation by late fall.
- 3. Groundwater contours mimic the prevailing topography of the Site, with a localized groundwater divide running along the northeast-southwest axis of the drumlin upon which the property is situated (Figure 12). Groundwater flows from the divide to the northeast and southwest towards Torrance Creek Swamp and Gordon Street, respectively.
- 4. The estimated velocity of groundwater flowing through the overburden beneath the Site towards Torrance Creek Swamp is calculated to be approximately 0.23 m/year (i.e., one meter every 4.3 years). Groundwater flow towards Gordon Street is estimated to move at a velocity of approximately 0.52 m/year (i.e., one meter every 1.9 years).
- 5. Neutral to upward vertical hydraulic gradients consistently occur beneath the area of the Torrance Creek Swamp that is located approximately 75 m to the northeast of the Site, although noting that the vertical hydraulic gradient is observed to switch downward over the year. Overall, vertical hydraulic gradients beneath this wetland ranged from -0.06 to 0.17, indicating that the wetland functions as both a groundwater recharge and discharge feature. However, the potential volume of groundwater discharging to the Torrance Creek Swamp during those periods where discharge conditions are present is expected to be minimal, given that groundwater moves at a very slow rate through the overburden deposits (i.e., one meter every 4.3 years).
- 6. Vertical hydraulic conductivities for the sandy silt till range from 5.6 x 10⁻⁸ to 1.6 x 10⁻¹⁰ m/s at depths ranging from 5.0 m to 15.1 m BGS throughout the Site. However, results of infiltration testing completed in the areas of the Site where the East and South Infiltration Trenches will be constructed had vertical hydraulic conductivities ranging from 3.9 x 10⁻⁵ m/s to 1.8 x 10⁻⁷ m/s (i.e., from depths of 0.5 to 3.6 m BGS). Based on these values, the calculated infiltration rates for the previously

Conclusions June 17, 2022

mentioned deposits can range from as low as 5 mm/hour to an upper value of 123 mm/hour at the Site.

- 7. Groundwater beneath the Site is classified as calcium-bicarbonate type water. No tested parameters having health-related ODWQS were detected above their applicable standards. The ODWQS for hardness was exceeded in samples collected at all wells. The presence of elevated hardness concentrations is typical of groundwater in southern Ontario.
- 8. The proposed development footprint for the Site is located within the WHPA-C for the Burke Municipal Well. Subsequently, as per the Source Protection Plan, the Site is only subject to the protection policies specified under Significant Drinking Water Threat Policy Category 16 (DNAPLs). Since the planned use for the Site does not involve the onsite handling and storage of a DNAPL, the policies under Category 16 do not apply to the development.
- 9. Tricar is proposing to construct an infiltration facility (i.e., East Infiltration Trench) within the portion of the Site that lies within the Torrance Creek Subwatershed. Water balance calculations indicate that the proposed development of the Site will reduce infiltration volumes to the Torrance Creek Subwatershed by 534 m³/year. However, calculations indicate that the East Infiltration Trench as currently designed will maintain to enhance pre-development infiltration volumes to this subwatershed under the post-development condition.
- 10. The maximum groundwater mounding predicted to occur beneath the center of the East Infiltration Trench after a 25 mm event is 0.4 m, equating to an elevation of 339.9 m AMSL based on the seasonally high groundwater elevation. Although storm event induced mounding will temporarily raise groundwater elevations beneath the foundation of Building 2, the magnitude of this mounding is not expected to exceed more than 0.1 m. Stantec notes that this building foundation (as with all onsite building foundations) will be constructed as a watertight structure (sealed with a water impermeable membrane), with the floor slab designed to structurally resist the hydrostatic pressure exerted by the groundwater.
- 11. Tricar is proposing to construct an infiltration facility (i.e., South Infiltration Trench) within the portion of the Site that lies within the Upper Hanlon Creek Subwatershed. Water balance calculations indicate that the proposed development of the Site will reduce infiltration volumes to the Upper Hanlon Creek Subwatershed by 2,767 m³/year. However, calculations indicate that the South Infiltration Trench as currently designed will maintain to enhance pre-development infiltration volumes to the subwatershed under the post-development condition.
- 12. The maximum groundwater mounding predicted to occur beneath the center of the South Infiltration Trench after a 25 mm event is 0.7 m, equating to an elevation of 340.6 m AMSL based on the seasonally high groundwater elevation. The rise in the groundwater table does not exceed 0.1 m beyond 18 m from the trench center point after a 25 mm storm event. This groundwater storm event induced mounding will temporarily raise groundwater elevations beneath the underground parking

Conclusions June 17, 2022

area of the development by 0.1 m along southern limits of this structure, with the mound disappearing once reaching the underside of Building 2.

- 13. The predicted groundwater mounds for the East and South Infiltration Trenches are not expected to intercept the residential buildings located on surrounding properties.
- 14. Groundwater mounding predicted to occur beneath the East Infiltration Trench will not intercept the Torrance Creek Swamp, which is located approximately 75 m to the northeast from where the groundwater mounding effects cease. As such, there is no opportunity for the groundwater mounding to potentially reverse vertical hydraulic gradients beneath this wetland (i.e., reversing from a groundwater discharge to recharge function).
- 15. The steady-state groundwater pumping rate for construction dewatering activities is predicted to be 37,700 L/day. Higher dewatering rates could be realized at the start of construction and during storm / snowmelt events. A design dewatering rate of 399,350 L/day reflects a factor of safety to provide an adequate dewatering volume to account for wet weather events and potential basal groundwater seepage into the excavation. Consequently, an MECP EASR will be required to complete construction dewatering activities, given that pumped volumes will exceed 50,000 L/day and remain below 400,000 L/day. Based on the volumes predicted and the type of material (dense till), groundwater dewatering is expected to be handled using conventional pumping methods (i.e., standard sump pumps).
- 16. The proposed underground parking area associated with the development will be constructed with a waterproof base and, as such, no permanent drainage system / dewatering is planned for this structure.
- 17. According to the dewatering calculations, the predicted maximum horizontal distance that the pumping zone of influence will extend is 64 m outward from the active zone of dewatering (Figure 18). This predicted dewatering radius of influence will not intercept the Torrance Creek Swamp to the northeast or Hanlon Creek Swamp to the southwest of the Site and, consequently, not interfere with the hydrogeological function of these wetlands.

References June 17, 2022

10.0 REFERENCES

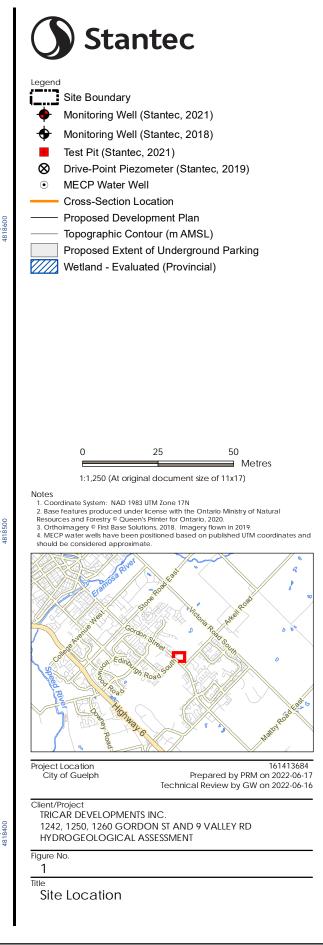
- American Society for Testing and Materials International. 2009. ASTM-D2488-09a. Standard Practice for Description and Identification of Soils (Visual-Manual Procedure).
- AquaResource Inc. 2009. Tier 2 Water Quantity Stress Assessment Report, Grand River Watershed. Report prepared for the Grand River Conservation Authority. Breslau, Ontario. December 2009.
- Brunton, F.R., 2008. Preliminary Revisions to the Early Silurian Stratigraphy of Niagara Escarpment: Integration of Sequence Stratigraphy, Sedimentology and Hydrogeology to Delineate Hydrogeologic Units. In Summary of Field Work and Other Activities 2008, Ontario Geological Survey, Open File Report 6226, p. 31-1 to 31-18. Bouwer, H., 1989. The Bouwer and Rice slug test--an update, Ground Water 27 (3): 304-309.
- Bouwer, H., and Rice, R.C., 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. *Water Resources Research* 12 (3): 423-428.
- Carleton, G.B. 2010. Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins: U.S. Geological Survey Scientific Investigations Report 2010-5102, 64 p. (https://pubs.usgs.gov/sir/2010/5102/)
- Chapman, L.J. and D.F. Putnum, 1984. The Physiography of Southern Ontario: Third Edition. Ontario Geological Survey, Special Volume 2.
- Credit Valley Conservation Toronto and Region Conservation Authority (CVC-TRCA), 2010. Low Impact Development Stormwater Management Planning and Design Guide – Version 1.0.
- Duffield, G.M., 2014. AQTESOLV[™] for Windows, Version 4.5 Professional. HydroSOLVE Inc., Reston, VA.
- Environment Canada, 2022. Canadian Climate Normals 1971-2000, Guelph Arboretum Climate Station, Climate ID 6143069. [Online] http://climate.weather.gc.ca/climate_normals/index_e.html Accessed June 2022.
- Fetter, C.W. 1994. Applied Hydrogeology, Third Edition. Prentice-Hall, New Jersey.
- Freeze, R.A. and J.A. Cherry. 1979. Groundwater. Prentice Hall, New Jersey, 604 p.
- Gamsby and Mannerow Ltd. 1993. A Watershed Management Strategy for the Upper Hanlon Creek and its Tributaries. June 1993.
- Golder Associates Ltd. 2011. City of Guelph Tier Three Water Budget and Local Area Risk Assessment. Appendix A: Characterization Final Report.

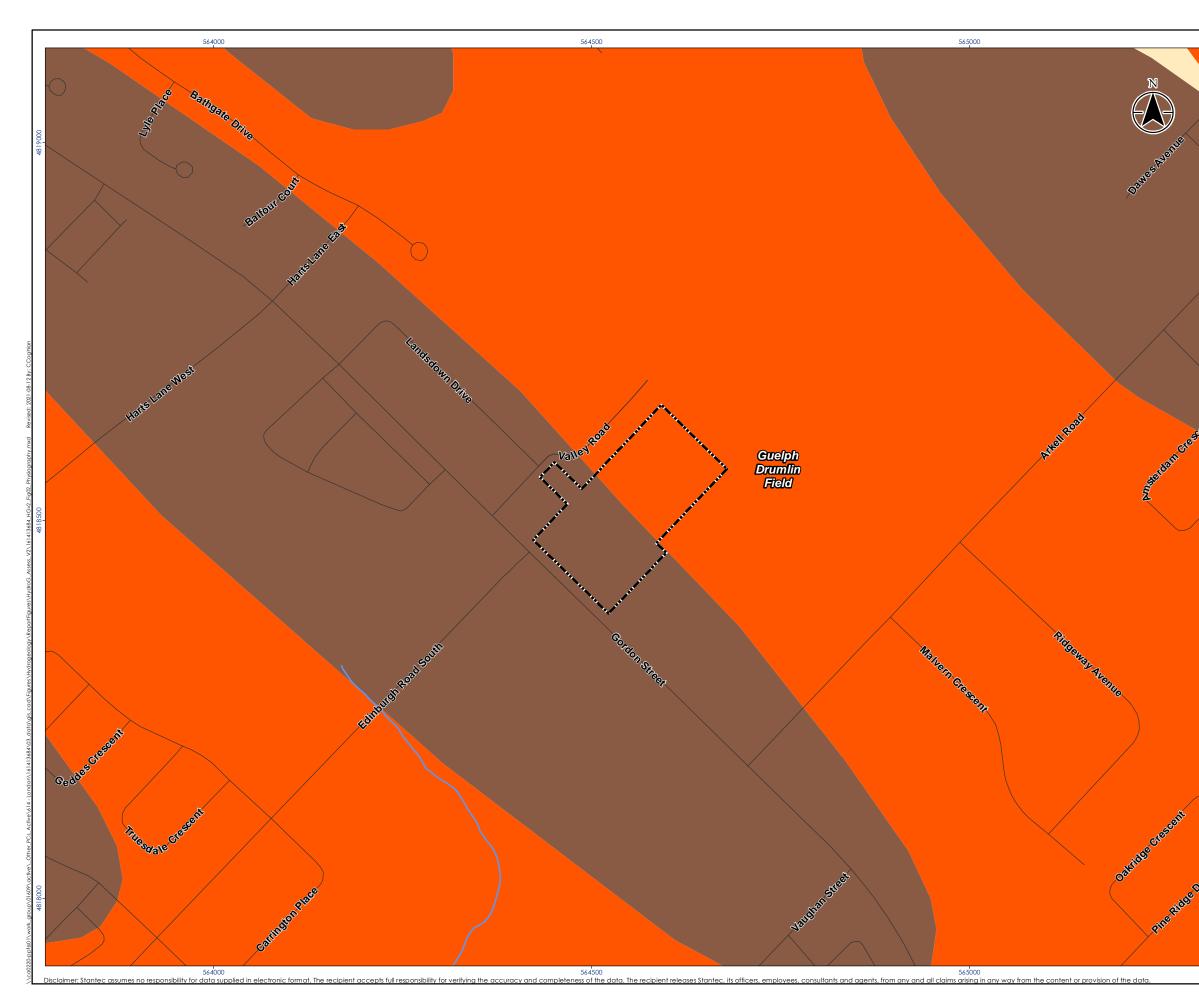
HYDROGEOLOGICAL ASSESSMENT, 1242, 1250 AND 1260 GORDON STREET AND 9 VALLEY ROAD, CITY OF GUELPH, ON

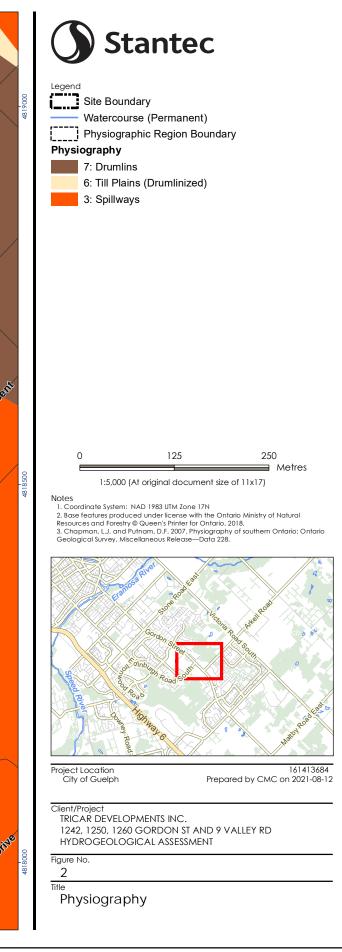
References June 17, 2022

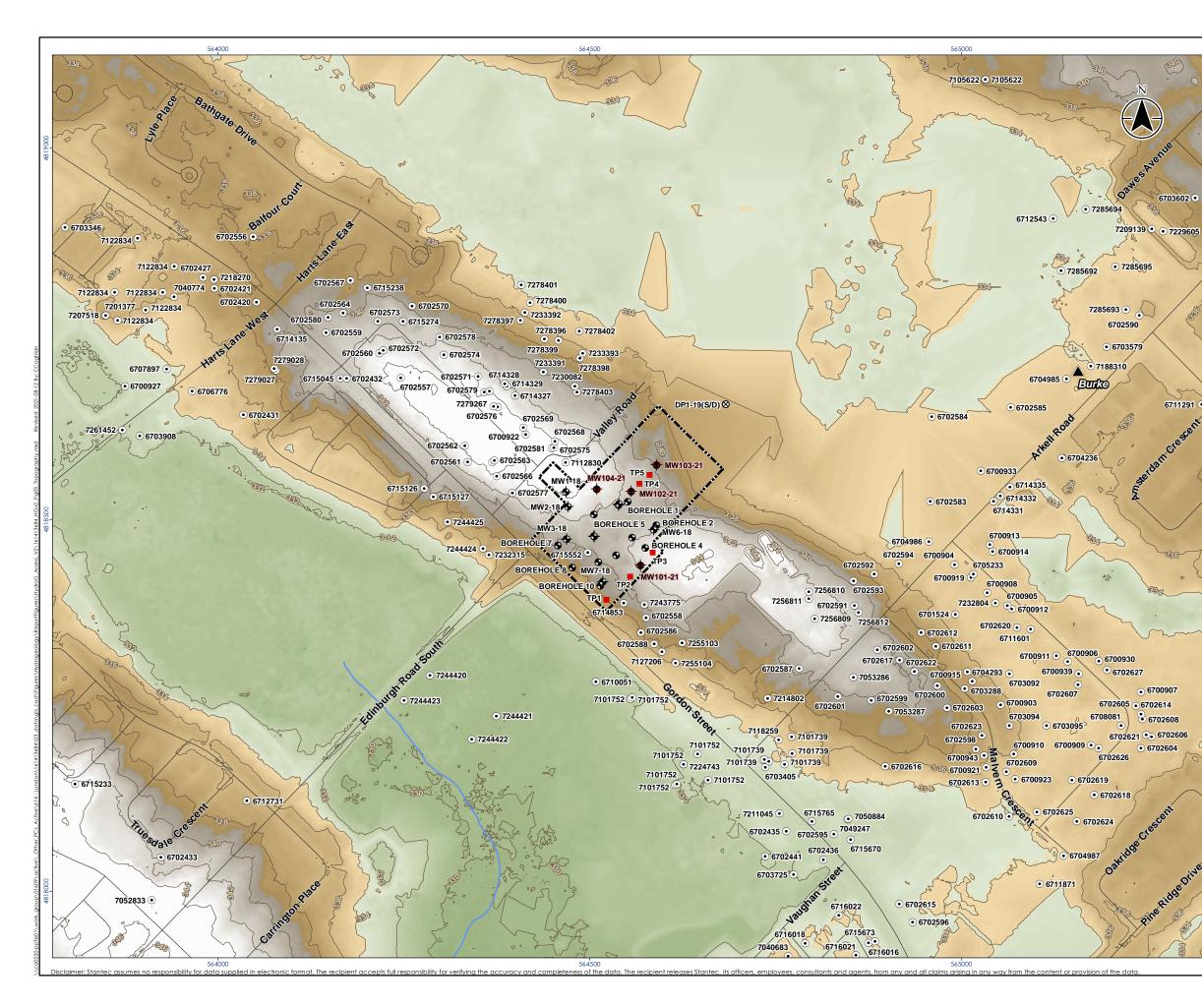
- Grand River Conservation Authority. 2019. Mapping produced using information from the Grand River Information Network (GRIN), https://www.grandriver.ca/en/our-watershed/Maps-and-data.aspx.
- Jagger Hims Limited. 1998. Volume 1 Aquifer Performance Evaluation, Southwest Quadrant, City of Guelph. Prepared for The Corporation of the City of Guelph, November 1998.
- Johnson, A.I. 1967. Specific yield compilation of specific yields for various materials. U.S. Geological Survey Water Supply Paper 1662-D. 74 p
- Karrow, P.F. 1968. Pleistocene Geology of the Guelph Area, Southern Ontario; Ontario Department of Mines Report No.61 with map No. 2153.
- Lake Erie Region Source Protection Committee (LERSPC). 2015a. Approved Assessment Report for the Grand River Source Protection Area within the Lake Erie Source Protection Region. November 25, 2015.
- Lake Erie Region Source Protection Committee (LERSPC). 2015b. Grand River Source Protection Area, Approved Source Protection Plan – Volumes I & II. November 26, 2015.
- Matrix Solutions Inc. 2017. City of Guelph and Township of Guelph/Eramosa Tier Three Water Budget and Local Area Risk Assessment. Prepared for Lake Erie Source Protection Region. March 2017.
- Ministry of the Environment, Conservation and Parks (MECP). 2020. Source Water Protection Information Atlas. Accessed March 2020. <u>https://www.gisapplication.Irc.gov.on.ca/SourceWaterProtection/Index.html?viewer=SourceWater</u> Protection.SWPViewer&locale=en-US
- Ministry of the Environment (MOE). 2006. Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines. Original publication June, 2003, revised June 2006 in support of O. Reg. 169/03 (January 1, 2018).
- Ministry of the Environment (MOE). 2003. Stormwater Management Planning and Design Manual. March, 2003.
- Ministry of the Environment (MOE). 1990. Wells. Regulation under the Ontario Water Resources Act. Regulation 903 of the Revised Regulations of Ontario, 1990.
- Ministry of Environment and Energy. 1995. MOEE Hydrogeological Technical Information Requirements for Land Development Applications. April 1995.
- Ontario Geological Survey (OGS), 2010. Surficial geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release -- Data 128-REV, ISBN 978-1-4435-2483-4.
- Powers, J.P., A.B. Corwin, P.C. Schmall, and W.E. Kaeck, 2007. Construction Dewatering and Groundwater Control, New Methods and Applications. John Wiley & Sons, Inc., 3rd Edition.

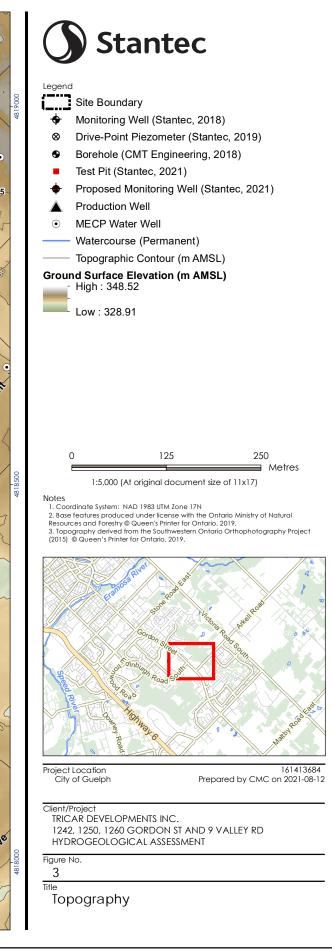
HYDROGEOLOGICAL ASSESSMENT, 1242, 1250 AND 1260 GORDON STREET AND 9 VALLEY ROAD, CITY OF GUELPH, ON

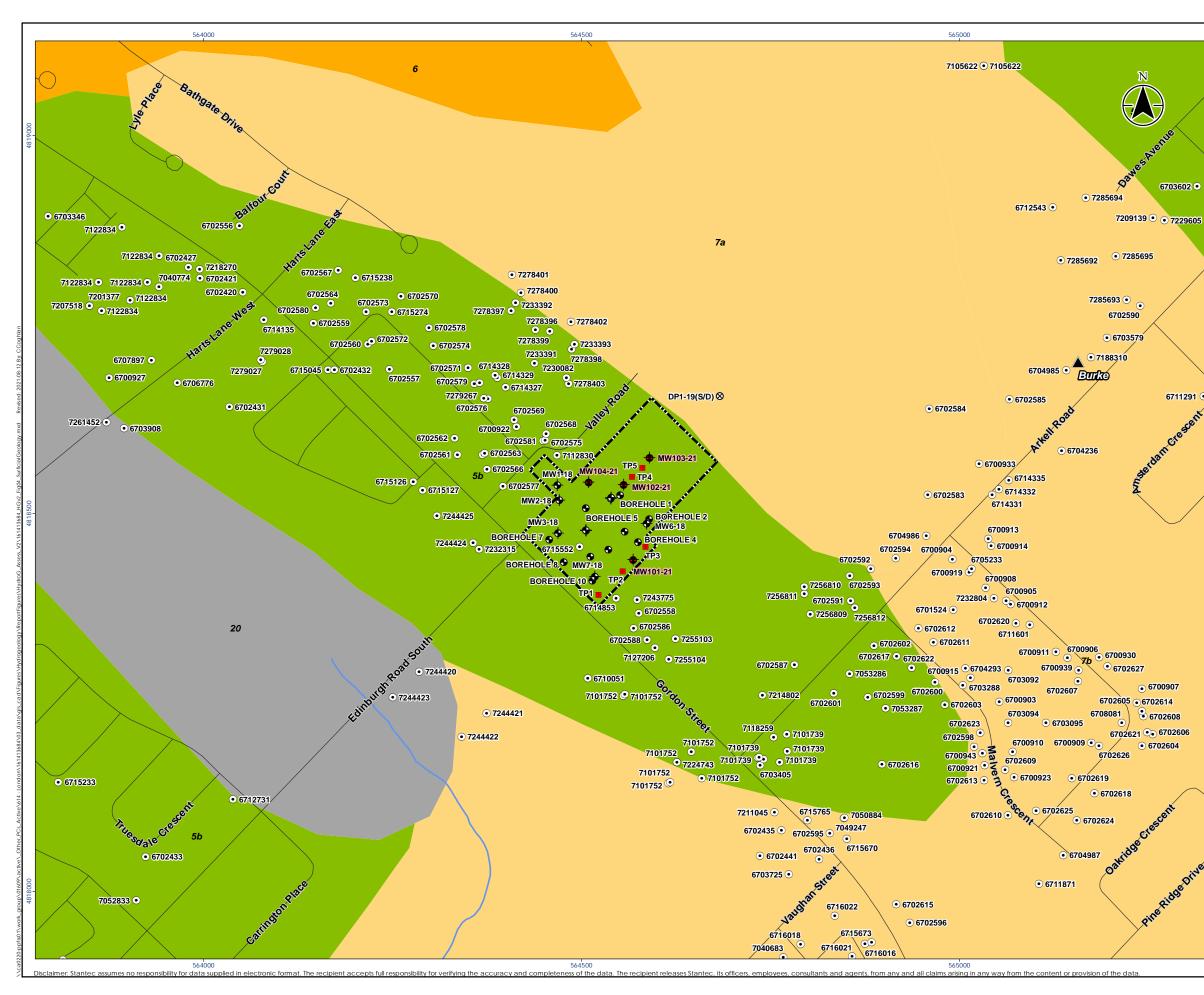

References June 17, 2022

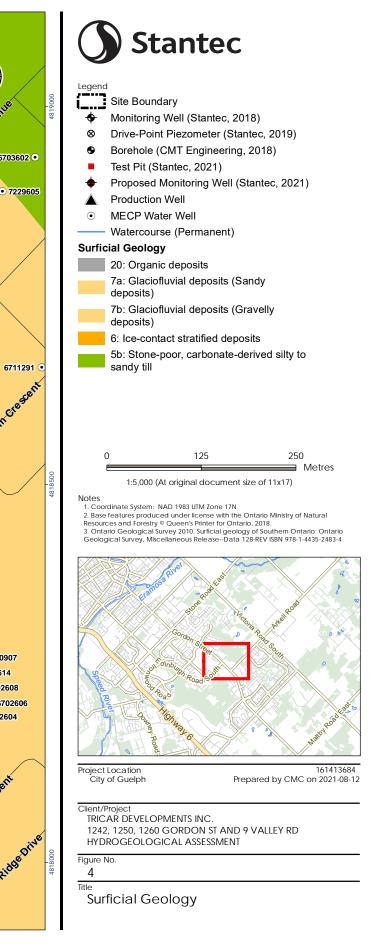

- Stantec Consulting Limited (Stantec). 2022. Functional Servicing Report for 1242, 1250, 1260 & 1270 Gordon Street and 9 Valley Road – Guelph, ON. June 2022.
- Stantec Consulting Limited (Stantec). 2020. Hydrogeological Assessment, 1242, 1250 and 1260 Gordon Street and 9 Valley Road – Guelph, ON. May 2020.
- Thornthwaite, C.W. and Mather, J.W. 1955. The water balance. Philadelphia, PA: Drexel Institute of Technology, Climatological Laboratory Publication No.8.
- Thornthwaite, C.W., and Mather J.W., 1957. Instructions and Tables for Computing Potential Evapotranspiration and the water balance. Drexel Institute of Technology, Laboratory of Climatology, Publications in Climatology, Volume X, No. 3. Centerton, New Jersey.

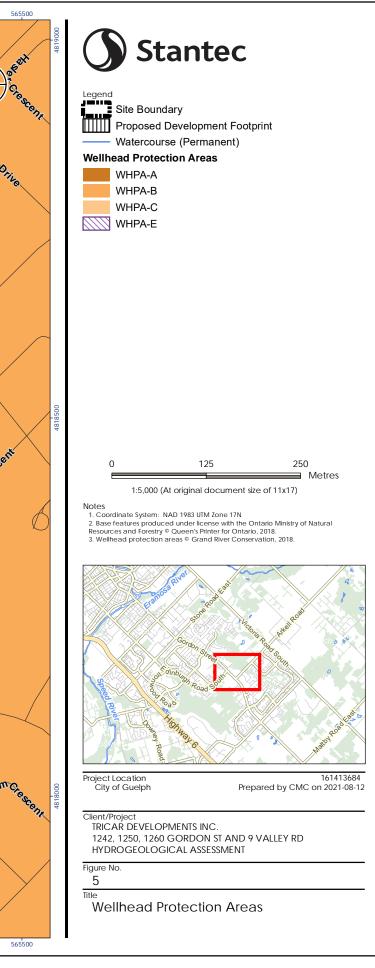

Todd, D.K. 1980. Groundwater Hydrology, 2nd Edition. Wiley, New York, 552 p.

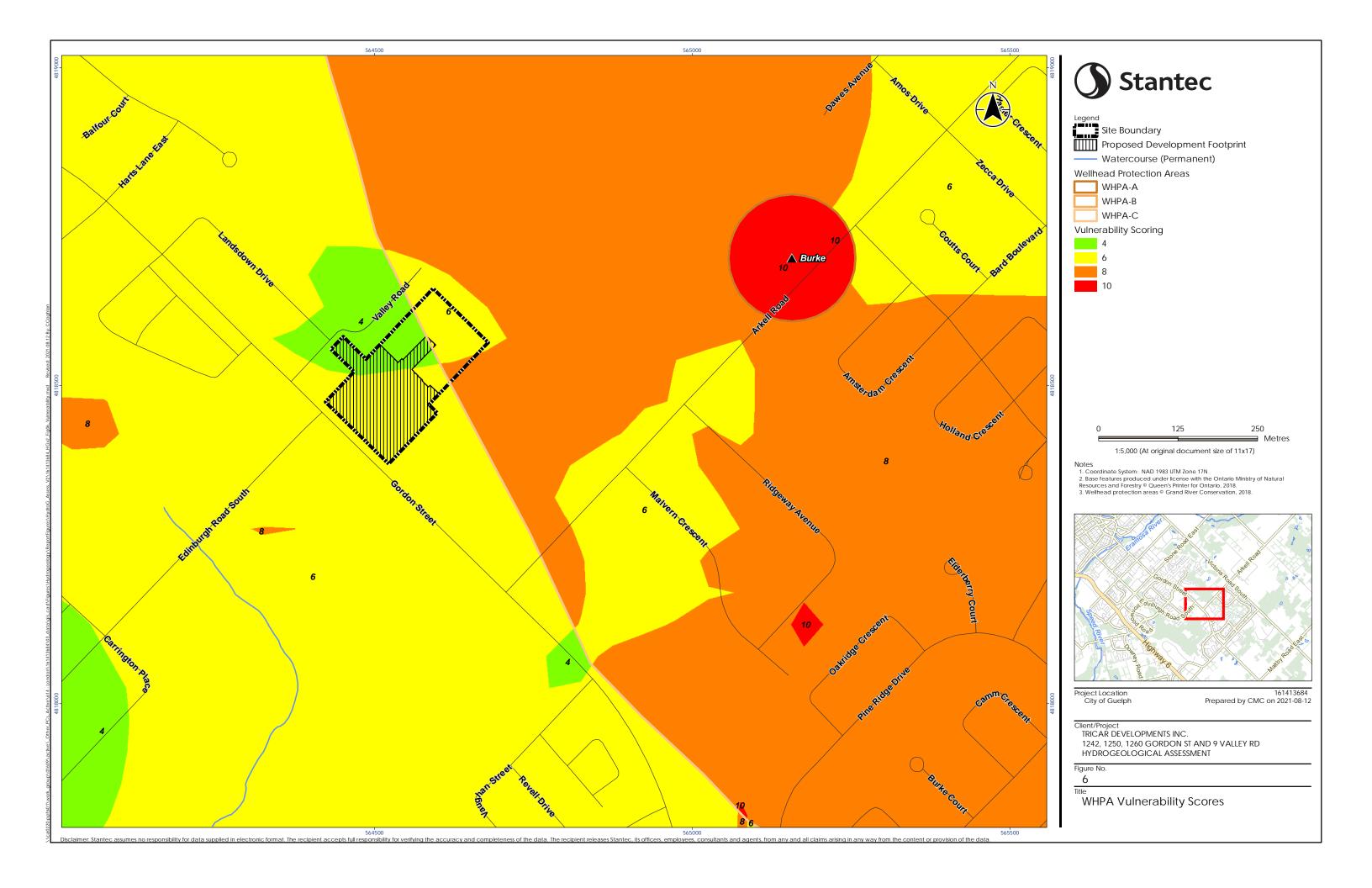

Totten Sims Hubicki Associates, Ecological Services Group, Ray Blackport, Mark L. Dorfman Planner Inc., Shroeter & Associates, and Donald G. Weatherbe Associates. 1998. Torrance Creek Subwatershed Study - Management Study. Prepared for City of Guelph and Grand River Conservation Authority, September 1998, September 1998, Revised November 1998. APPENDIX A: FIGURES

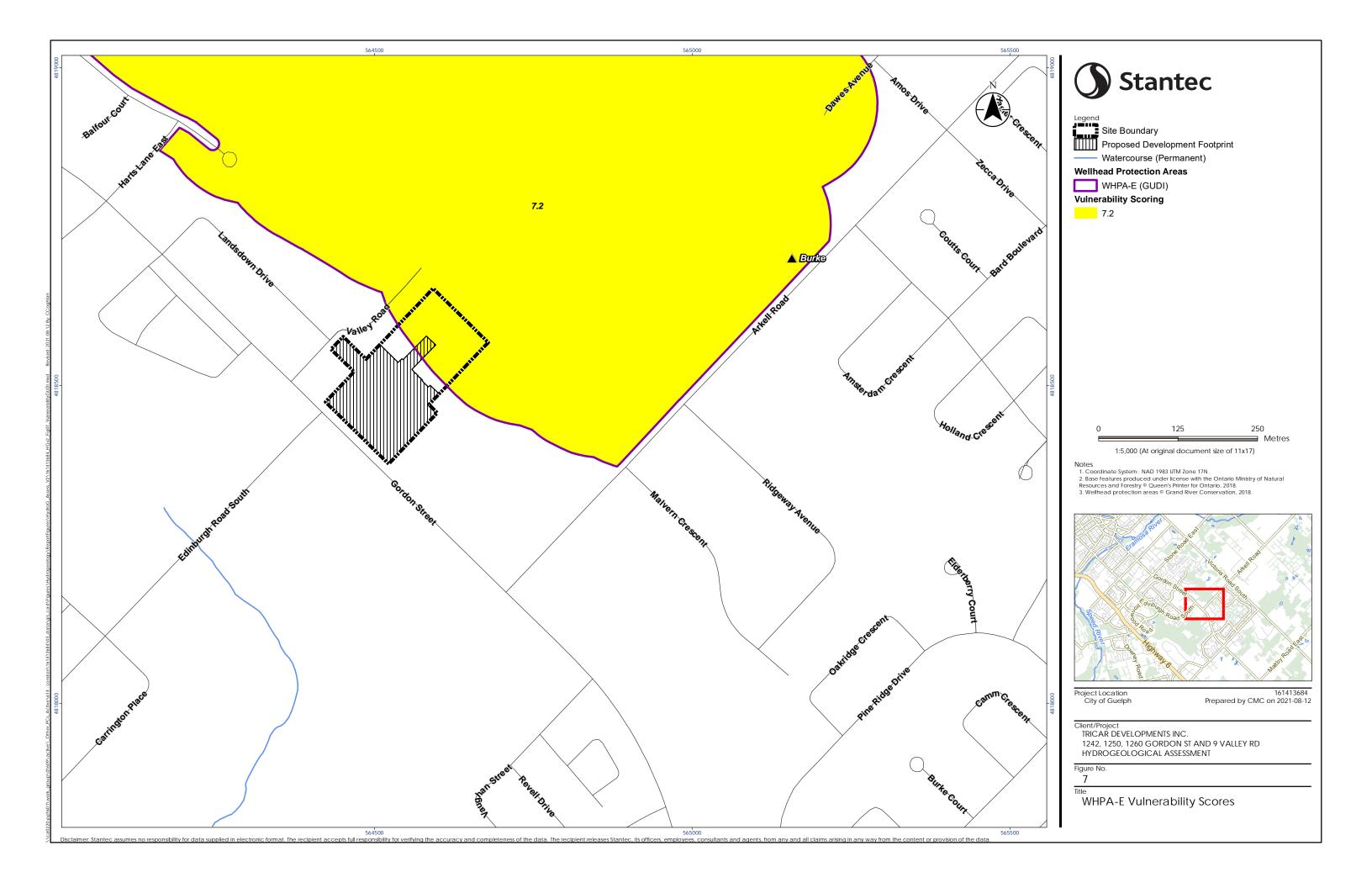


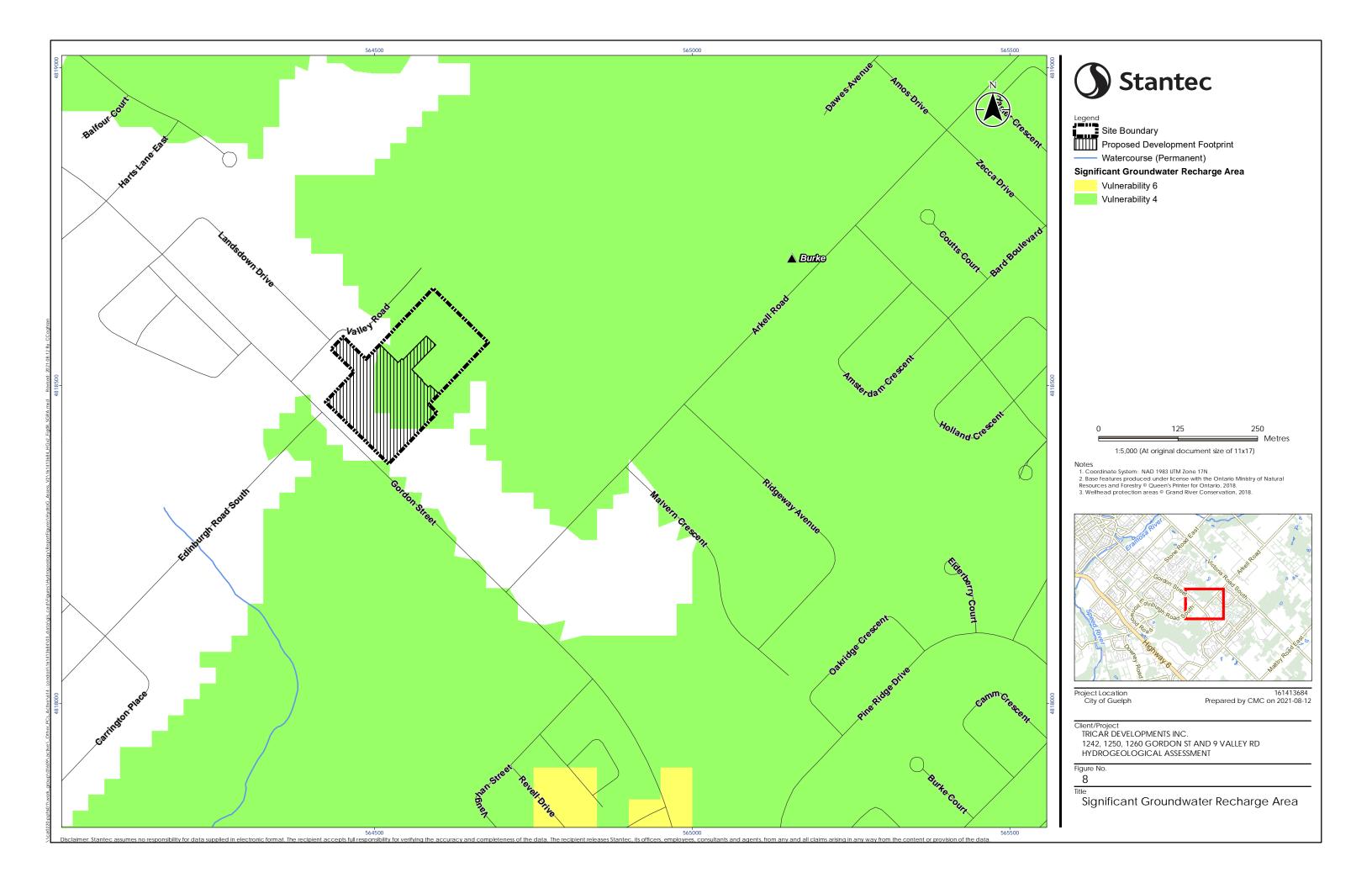


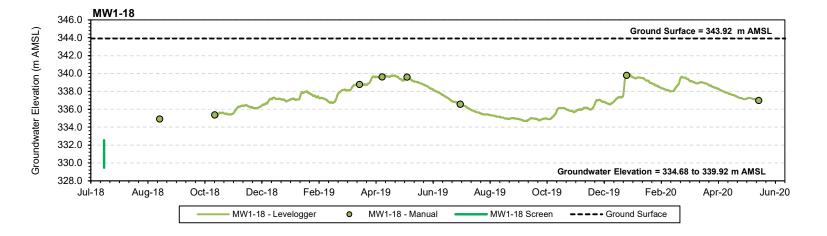


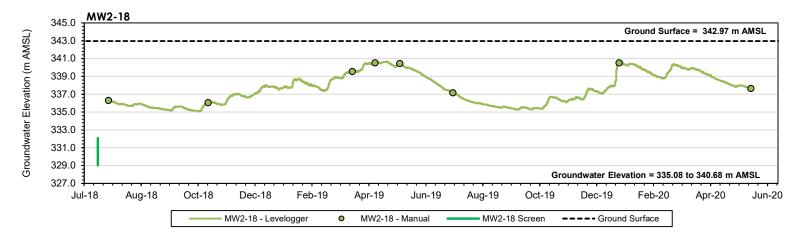


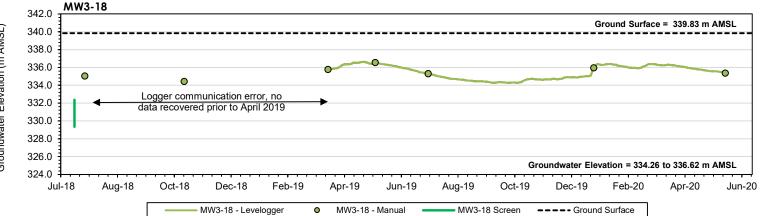


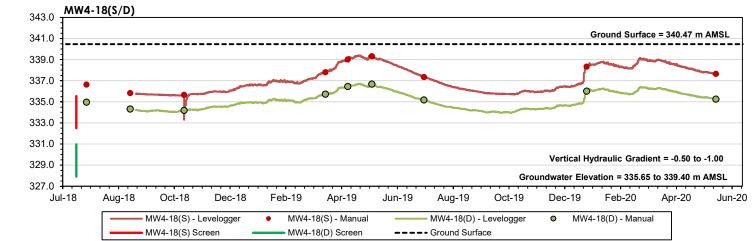


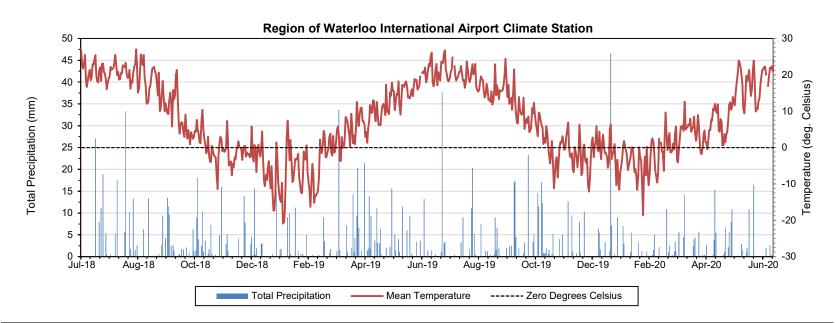












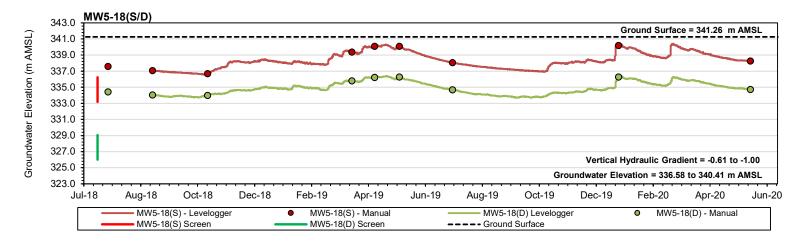
Groundwater Elevation (m AMSL)

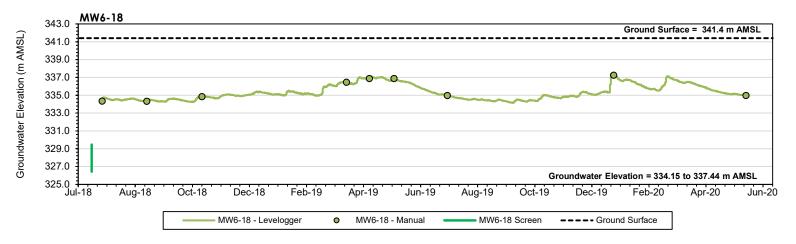
Groundwater Elevation (m AMSL)

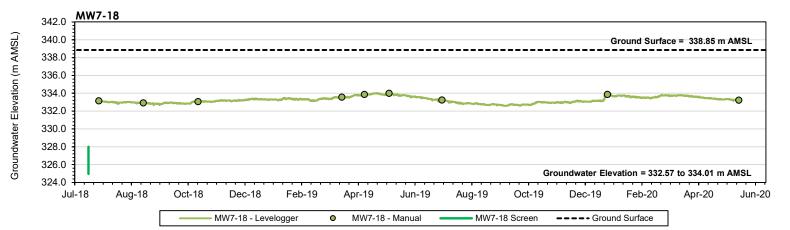
Precipitation and temperature data obtained from Environment Canada for the Region of Waterloo International Airport Climate Station (ID 6144239), accessed June 2020.

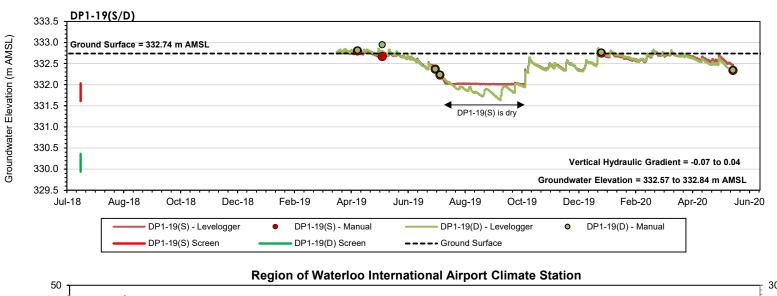
Client/Project

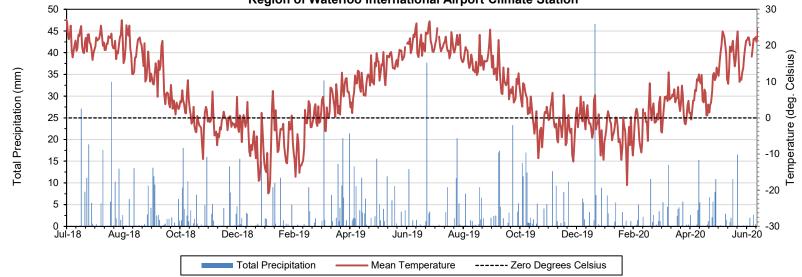
Tricar Developments Inc.


1242, 1250, 1260 Gordon Street and 9 Valley Road, Guelph Hydrogeological Assessment


Figure No.

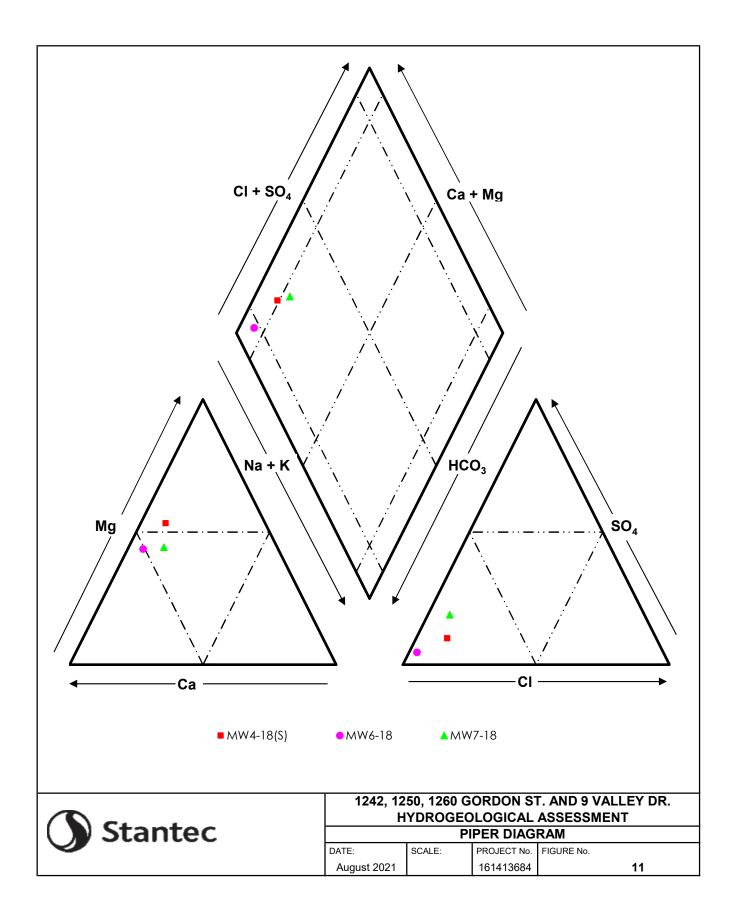

9

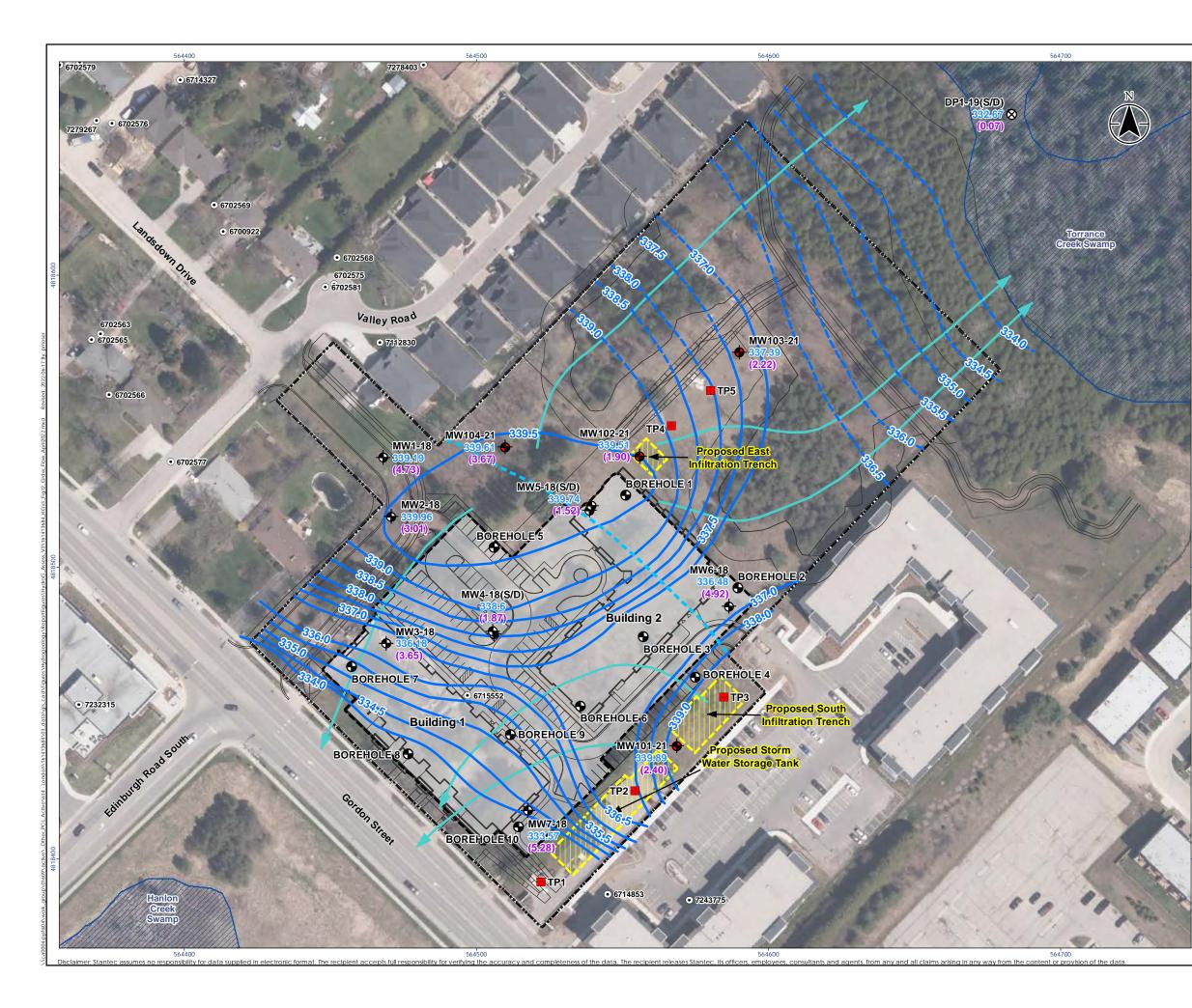

Title HYDROGRAPHS MW1-18 to MW4-18

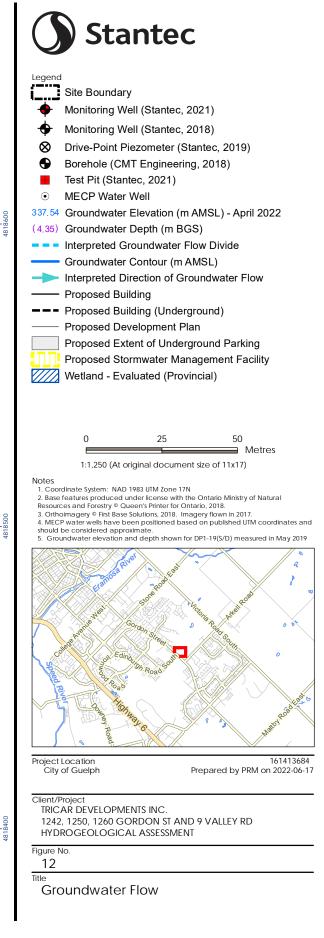


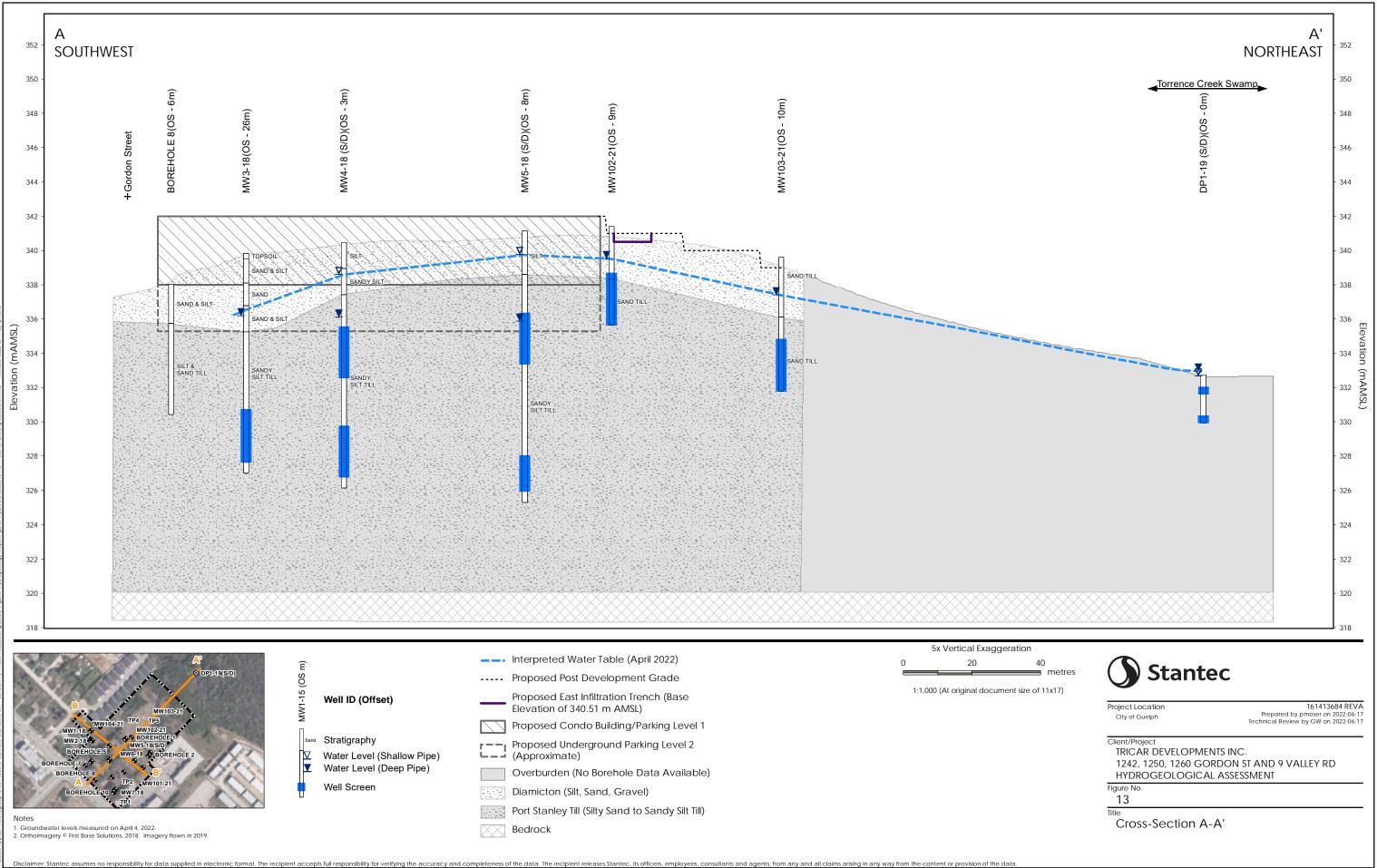
Precipitation and temperature data obtained from Environment Canada for the Region of Waterloo International Airport Climate Station (ID 6144239), accessed June 2020.

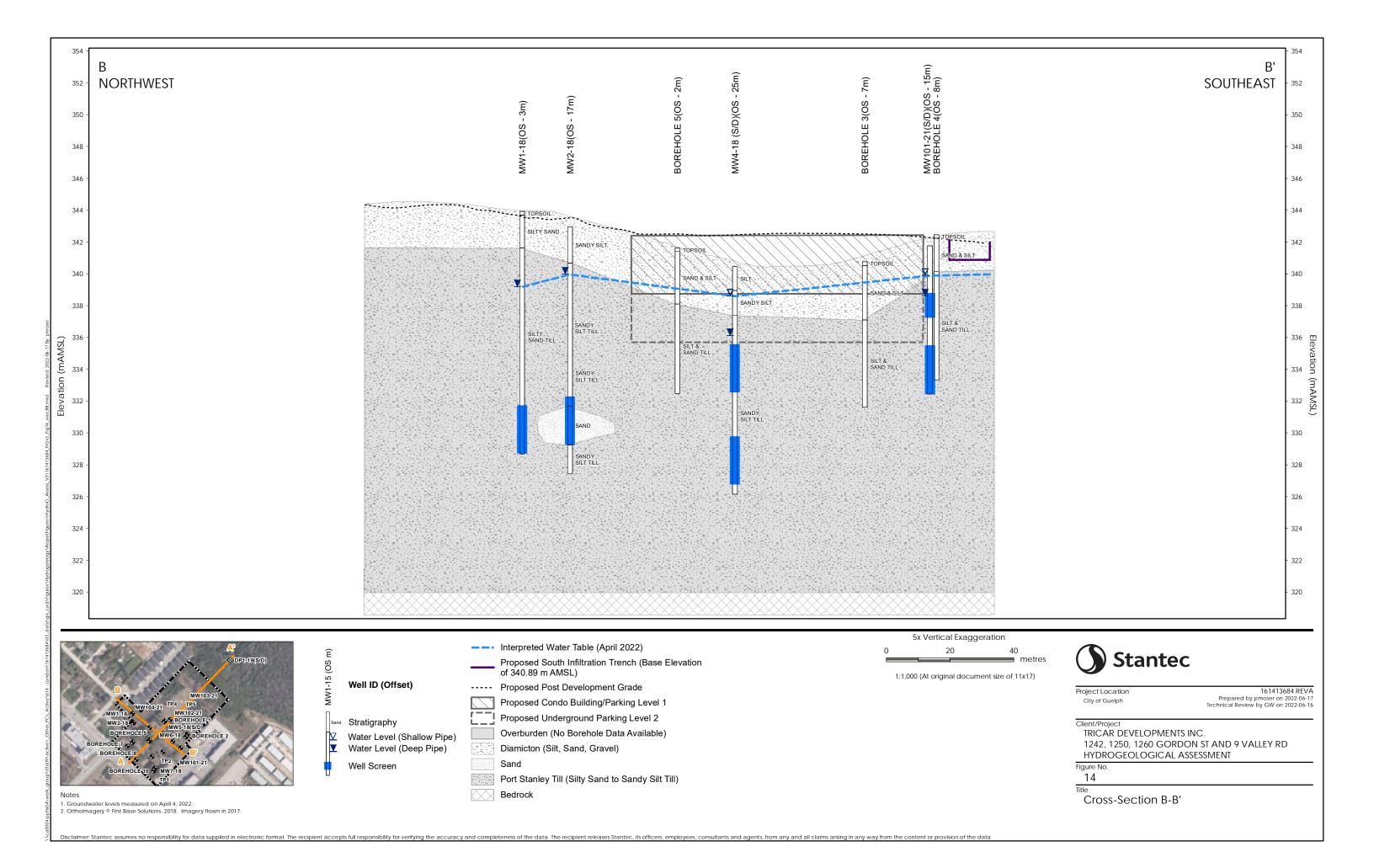
Client/Project

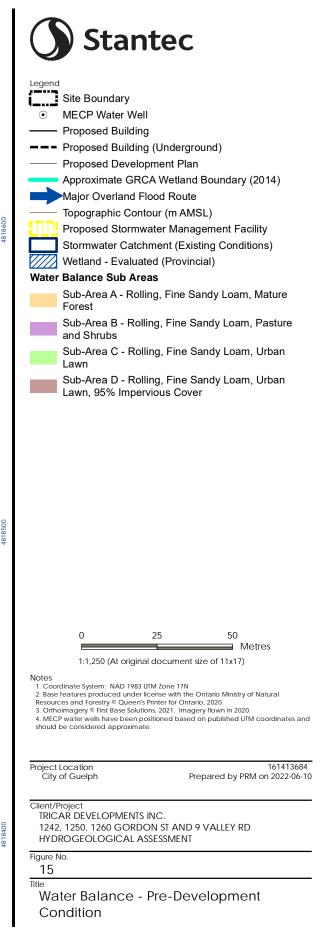

Tricar Developments Inc. 1242, 1250, 1260 Gordon Street and 9 Valley Road, Guelph Hydrogeological Assessment


Figure No.

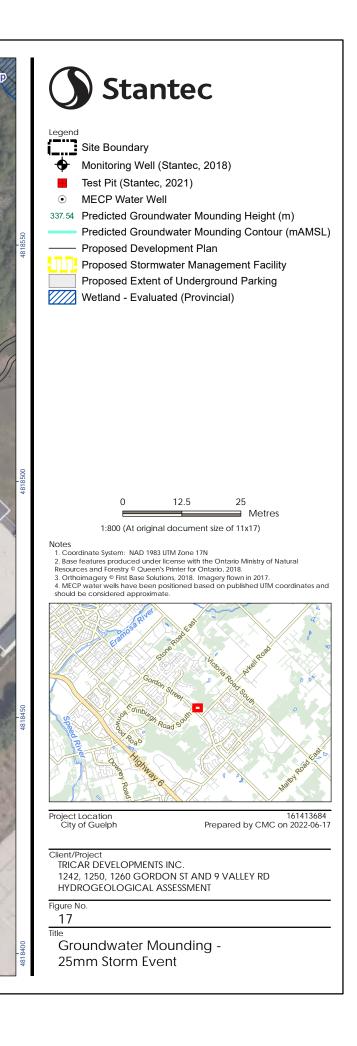

10

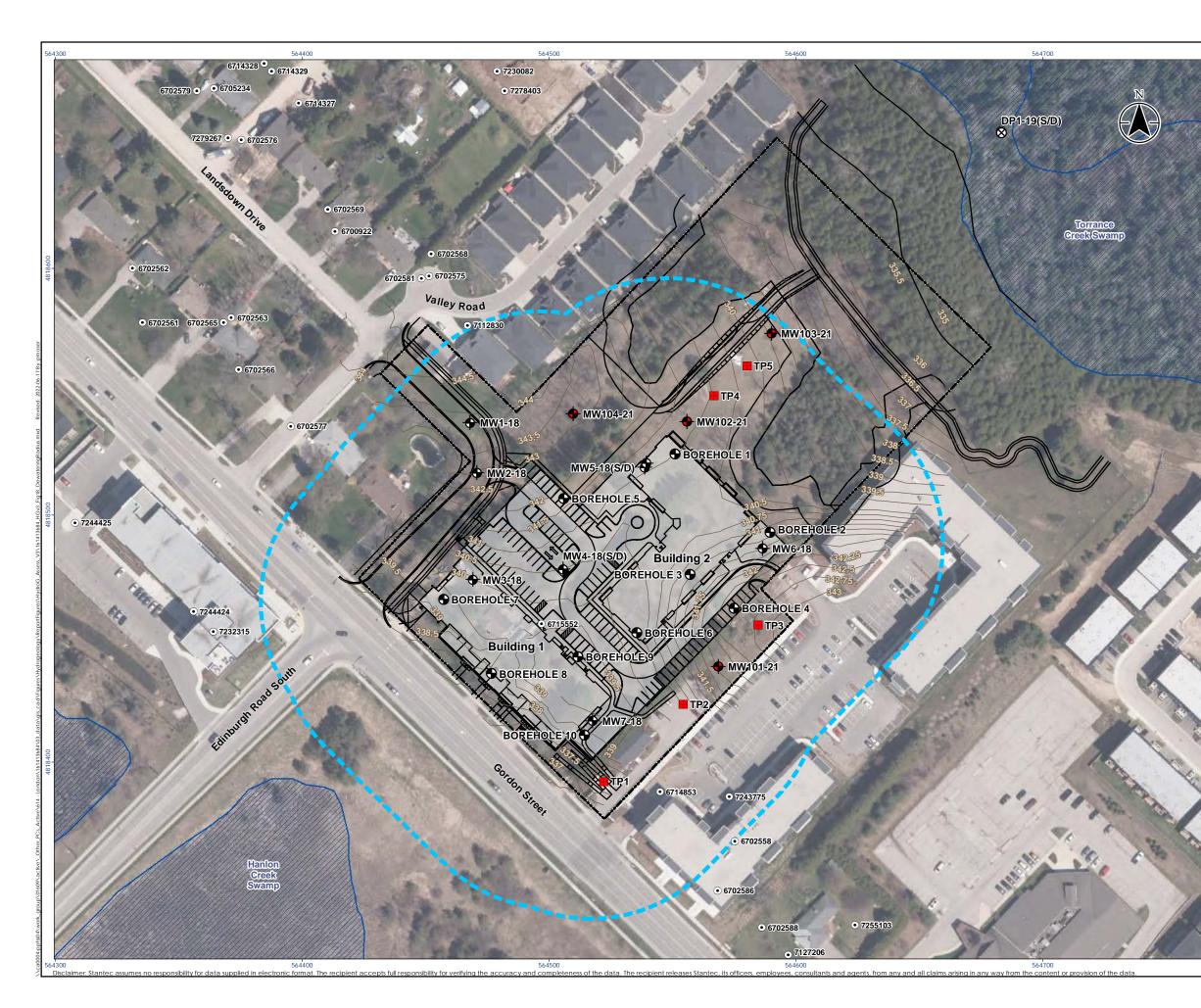

Title HYDROGRAPHS MW5-18 to MW7-18 and DP1-19(S/D)

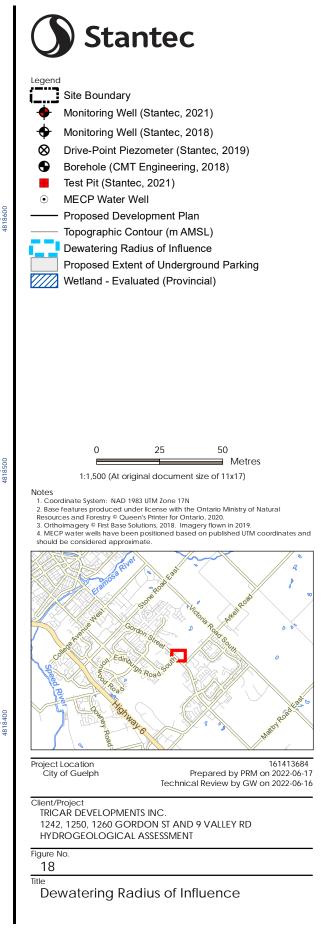











1:1,250 (At original document size of 11x17) Notes 1. Coordinate System: NAD 1983 UTM Zone 17N 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2020. 3. Orthoimagery © First Base Solutions, 2021. Imagery flown in 2020. 4. MECP water wells have been positioned based on published UTM coordinates should be considered approximate. Project Location 161413 City of Guelph Prepared by PRM on 2022-0 Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT	Legenc					
 Monitoring Well (Stantec, 2018) Test Pit (Stantec, 2021) Drive-Point Piezometer (Stantec, 2019) MECP Water Well Major Overland Flood Route Proposed Building Proposed Development Plan Interpreted Groundwater Flow Divide Approximate GRCA Wetland Boundary (2014) Proposed Topographic Contour (m AMSL) Proposed Topographic Contour (m AMSL) Proposed Stormwater Management Facility Stormwater Catchment (Proposed Conditions) Wetland - Evaluated (Provincial) Water Balance Sub Areas Sub-Area A - Rolling, Fine Sandy Loam, Mature Forest Sub-Area B - Rolling, Fine Sandy Loam, Urban Lawn Sub-Area C - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area F - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area F - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Carcer I Fit Base Solutions, 221. Imagery flow in 222. Attempt Personal Perstave Solutions, 221. Imagery flow in 22	i_ <u>_</u> i					
 Test Pit (Stantec, 2021) Drive-Point Piezometer (Stantec, 2019) MECP Water Well Major Overland Flood Route Proposed Building Proposed Building Proposed Development Plan Interpreted Groundwater Flow Divide Approximate GRCA Wetland Boundary (2014) Proposed Topographic Contour (m AMSL) Proposed Stormwater Management Facility Stormwater Catchment (Proposed Conditions) Wetland - Evaluated (Provincial) Water Balance Sub Areas Sub-Area A - Rolling, Fine Sandy Loam, Mature Forest Sub-Area B - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Pine Sandy Loam, Urban Lawn, 100% Impervious Cover Continite System: MAD 1983 UM Zone 171 Condense with the Ontario	+	Monito	ring Well (S	Stantec, 20	21)	
 Drive-Point Piezometer (Stantec, 2019) MECP Water Well Major Overland Flood Route Proposed Building Proposed Development Plan Interpreted Groundwater Flow Divide Approximate GRCA Wetland Boundary (2014) Proposed Topographic Contour (m AMSL) Proposed Stormwater Management Facility Stormwater Catchment (Proposed Conditions) Wetland - Evaluated (Provincial) Water Balance Sub Areas Sub-Area A - Rolling, Fine Sandy Loam, Mature Forest Sub-Area B - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Area H - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Contains System: NAD 1933 UM Zone 171 Abere Matter Veels have been positioned based on published UM coordinates should be considered approximate. 	•	Monito	ring Well (S	Stantec, 20	18)	
 MECP Water Well Major Overland Flood Route Proposed Building Proposed Development Plan Interpreted Groundwater Flow Divide Approximate GRCA Wetland Boundary (2014) Proposed Topographic Contour (m AMSL) Proposed Stormwater Management Facility Stormwater Catchment (Proposed Conditions) Wetland - Evaluated (Provincial) Water Balance Sub Areas Sub-Area A - Rolling, Fine Sandy Loam, Mature Forest Sub-Area B - Rolling, Fine Sandy Loam, Urban Lawn Sub-Area C - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover McCP water web have been positioned to Ministry of Natural Resources and Foresty 9 Ouers Printer for Ontario, 200. Othoimagery 6 Fits Base Solutions, 2021. Imagery flown in 2022. MCCP water web have been positioned based on published UTM coordinates should be considered approximate. 			•	,		
Proposed Building Proposed Development Plan Interpreted Groundwater Flow Divide Approximate GRCA Wetland Boundary (2014) Proposed Topographic Contour (m AMSL) Proposed Topographic Contour (m AMSL) Stormwater Catchment (Proposed Conditions) Wetland - Evaluated (Provincial) Water Balance Sub Areas Sub-Area A - Rolling, Fine Sandy Loam, Mature Forest Sub-Area B - Rolling, Fine Sandy Loam, Urban Lawn Sub-Area C - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Project Location 11171 Prepared by PRM on 2022.0 Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HydrogeolologicAL ASSESSMENT	-				ntec, 2019)	
Proposed Development Plan Interpreted Groundwater Flow Divide Approximate GRCA Wetland Boundary (2014) Proposed Topographic Contour (m AMSL) Proposed Stormwater Management Facility Stormwater Catchment (Proposed Conditions) Wetland - Evaluated (Provincial) Water Balance Sub Areas Sub-Area A - Rolling, Fine Sandy Loam, Mature Forest Sub-Area B - Rolling, Fine Sandy Loam, Urban Lawn Sub-Area C - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover 3. Geordinate System: NAD 1983 UM Zone 17N 2. Gase features produced under lecane with the Ontatio Ministry of Natural Resources and Foresty 9 Oueen's Pinter for Ontatio, 2020. 3. Otholmagery 9 First Base Solutions, 2021. Imagery flown in 2020. 4. MECP water wells have been positioned based on published UM coordinates should be considered approximate. Project Location 161413 Prepared by PRM on 2022-C Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT	-	Major C	Overland Fl	ood Route		
 Interpreted Groundwater Flow Divide Approximate GRCA Wetland Boundary (2014) Proposed Topographic Contour (m AMSL) Proposed Stormwater Management Facility Stormwater Catchment (Proposed Conditions) Wetland - Evaluated (Provincial) Water Balance Sub Areas Sub-Area A - Rolling, Fine Sandy Loam, Mature Forest Sub-Area B - Rolling, Fine Sandy Loam, Urban Lawn Sub-Area E - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Metre I:1,250 (At original document size of 11x17) 			-	•		
Approximate GRCA Wetland Boundary (2014) Proposed Topographic Contour (m AMSL) Proposed Stormwater Management Facility Stormwater Catchment (Proposed Conditions) Wetland - Evaluated (Provincial) Water Balance Sub Areas Sub-Area A - Rolling, Fine Sandy Loam, Mature Forest Sub-Area B - Rolling, Fine Sandy Loam, Pasture and Shrubs Sub-Area C - Rolling, Fine Sandy Loam, Urban Lawn Sub-Area E - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover 1.250 (At original document size of 11x17) Notes 1.250 (At original document size of 11x17)		Propos	ed Develop	oment Plan	I	
Proposed Topographic Contour (m AMSL) Proposed Stormwater Management Facility Stormwater Catchment (Proposed Conditions) Wetland - Evaluated (Provincial) Water Balance Sub Areas Sub-Area A - Rolling, Fine Sandy Loam, Mature Forest Sub-Area B - Rolling, Fine Sandy Loam, Urban Lawn Sub-Area C - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area F - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover 11,250 (At original document size of 11x17) Notes 1. Coordinate System: NAD 1983 UM Zone 17N 2. Base features produced under license with the Ontatio Ministry of Natural Resources and Forestry 9 Uncens Pinter for Ontatio, 202. 3. Orthoimagery 9 First Base Solutions, 2021. Imagery flown in 2020. 4. MECP water wells have been positioned based on published UTM coordinates should be considered approximate. Project Location 161413 Prepared by PRM on 2022-CO Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT		Interpre	eted Groun	dwater Flo	w Divide	
Proposed Stormwater Management Facility Stormwater Catchment (Proposed Conditions) Wetland - Evaluated (Provincial) Water Balance Sub Areas Sub-Area A - Rolling, Fine Sandy Loam, Mature Forest Sub-Area B - Rolling, Fine Sandy Loam, Mature and Shrubs Sub-Area C - Rolling, Fine Sandy Loam, Urban Lawn Sub-Area E - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Sub-Area I - Rolling, Fine Sandy Loam, Urban I - Rolling, Propertit		••				· /
Stormwater Catchment (Proposed Conditions) Wetland - Evaluated (Provincial) Water Balance Sub Areas Sub-Area A - Rolling, Fine Sandy Loam, Mature Forest Sub-Area B - Rolling, Fine Sandy Loam, Pasture and Shrubs Sub-Area C - Rolling, Fine Sandy Loam, Urban Lawn Sub-Area E - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Metre 1:1,250 (At original document size of 11x17) Notes 1. Coordinate System: NAD 1983 UM Zone 17N 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queer's Printer for Ontario, 2020. 3. Orthoimagery © Fint Base Solutions, 2021. Imagery flown in 2020. 4. MECP water wells have been positioned based on published UTM coordinates should be considered approximate. Project Location 161413 Prepared by PRM on 2022-CO Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT						
Wetland - Evaluated (Provincial) Water Balance Sub Areas Sub-Area A - Rolling, Fine Sandy Loam, Mature Forest Sub-Area B - Rolling, Fine Sandy Loam, Pasture and Shrubs Sub-Area C - Rolling, Fine Sandy Loam, Urban Lawn Sub-Area E - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area F - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam , Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sa					-	-
Water Balance Sub Areas Sub-Area A - Rolling, Fine Sandy Loam, Mature Forest Sub-Area B - Rolling, Fine Sandy Loam, Pasture and Shrubs Sub-Area C - Rolling, Fine Sandy Loam, Urban Lawn Sub-Area E - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover 1.1,250 (At original document size of 11x17) Notes 1. Coordinate System: NAD 1983 UIM Zone 17N 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2020. 4. MECP water wells have been positioned based on published UIM coordinates should be considered approximate. Project Lo				· ·		ditions)
Sub-Area A - Rolling, Fine Sandy Loam, Mature Forest Sub-Area B - Rolling, Fine Sandy Loam, Pasture and Shrubs Sub-Area C - Rolling, Fine Sandy Loam, Urban Lawn Sub-Area E - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover (11,250 (At original document size of 11x17) Notes 1 Coordinate System: NAD 1983 UIM Zone 17N 2 Base features produced under Icense with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2020. 3 Orthoimager © First Base Solutions, 2021. Imagery flown in 2020. 4 MECP water wells have been positioned based on published UIM coordinates should be considered approximate. Project Location 1611413 Prepared by PRM on 2022-C Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT		Wetlan	d - Evaluat	ed (Provin	cial)	
Sub-Area B - Rolling, Fine Sandy Loam, Pasture and Shrubs Sub-Area C - Rolling, Fine Sandy Loam, Urban Lawn Sub-Area E - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area F - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover (11,250 (At original document size of 11x17) Notes 1 Coordinate System: NAD 1983 UTM Zone 17N 3 Corthoimager © First Base Solutions, 2021. Imagery fown in 2020. 3 Orthoimager © First Base Solutions, 2021. Imagery fown in 2020. 4 MECP water wells have been positioned based on published UTM coordinates should be considered approximate. Project Location 161113 City of Guelph 16113 Prepared by PRM on 2022-C Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT	Water	Sub-Ar			andy Loam	, Mature
Sub-Area C - Rolling, Fine Sandy Loam, Urban Lawn Sub-Area E - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area F - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover 11,250 (At original document size of 11x17) Notes 1 Coordinate System: NAD 1983 UTM Zone 17N 2 Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2020. 3 Orthoimager © First Base Solutions, 2021. Imager flown in 2020. 4 MECP water wells have been positioned based on published UTM coordinates should be considered approximate.		Sub-Ar		ing, Fine S	andy Loam	ı, Pasture
Sub-Area E - Rolling, Fine Sandy Loam, Urban Lawn, 10% Impervious Cover Sub-Area F - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover (11,250 (At original document size of 11x17) Notes 1. Coordinate System: NAD 1983 UTM Zone 17N 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2020. 3. Orthoimager © First Base Solutions, 2021. Imager flown in 2020. 4. MECP water wells have been positioned based on published UTM coordinates should be considered approximate.		Sub-Ar		ing, Fine S	andy Loarr	ı, Urban
Lawn, 10% Impervious Cover Sub-Area F - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover 0 25 50 Metre 1:1,250 (At original document size of 11x17) Notes 1. Coordinate System: NAD 1983 UTM Zone 17N 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2020. 3. Orthoimagery © First Base Solutions, 2021. Imager flown in 2020. 4. MECP water wells have been positioned based on published UTM coordinates should be considered approximate. Project Location 161113 City of Guelph 161113 Prepared by PRM on 2022-C Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT				ing Fine C	andulaam	lirbon
Sub-Area F - Rolling, Fine Sandy Loam, Urban Lawn, 50% Impervious Cover Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover (11,250 (At original document size of 11x17) (At original document size of 11x17) Sources Continate System: NAD 1983 UTM Zone 17N 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2020. 3. Orthoimagery © First Base Solutions, 2021. Imagery flown in 2020. 4. MECP water wells have been positioned based on published UTM coordinates should be considered approximate. Project Location 161113 City of Guelph 161113 Prepared by PRM on 2022-CI Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT						i, Urban
Sub-Area G - Rolling, Fine Sandy Loam, Urban Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover 0 25 50 Metre 1:1,250 (At original document size of 11x17) Notes 1. Coordinate System: NAD 1983 UTM Zone 17N 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2020. 3. Orthoimagery © First Base Solutions, 2021. Imagery flown in 2020. 4. MECP water wells have been positioned based on published UTM coordinates should be considered approximate. Project Location 161413 City of Guelph 161413 Prepared by PRM on 2022-C Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT		Sub-Ar	ea F - Rolli	ng, Fine S	andy Loam	, Urban
Lawn, 70% Impervious Cover Sub-Area H - Rolling, Fine Sandy Loam, Urban Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover 0 25 50 Metre 1:1,250 (At original document size of 11x17) Notes 1: Coordinate System: NAD 1983 UTM Zone 17N 2: Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2020. 3: Orthoimagery © First Base Solutions, 2021. Imagery flown in 2020. 4: MECP water wells have been positioned based on published UTM coordinates should be considered approximate. Project Location 161413 City of Guelph 161413 Prepared by PRM on 2022-0 Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT						ı. Urban
Lawn, 90% Impervious Cover Sub-Area I - Rolling, Fine Sandy Loam, Urban Lawn, 100% Impervious Cover 0 25 50 Metro 1:1,250 (At original document size of 11x17) Notes 1. Coordinate System: NAD 1983 UTM Zone 17N 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2020. 3. Orthoimagery © First Base Solutions, 2021. Imagery flown in 2020. 4. MECP water wells have been positioned based on published UTM coordinates should be considered approximate. Project Location 161413 City of Guelph 161413 Prepared by PRM on 2022-0 Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT						, -
Lawn, 100% Impervious Cover 0 25 50 Metro 1:1,250 (At original document size of 11x17) Notes 1. Coordinate System: NAD 1983 UIM Zone 17N 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry & Queen's Phinter for Ontario, 2020. 3. Ortholmagery 6 Pirst Base Solutions, 2021. Imagery flown in 2020. 4. MECP water wells have been positioned based on published UTM coordinates should be considered approximate. Project Location 161413 Prepared by PRM on 2022-C Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT						ı, Urban
Image: Constraint of the system: Notes 1. Coordinate System: NAD 1983 UTM Zone 17N 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry & Queen's Printer for Ontario, 2020. Notation Ministry of Natural Resources and Forestry & Queen's Printer for Ontario, 2020. 3. Orthoimagery & First Base Solutions, 2021. Imagery flown in 2020. MECP water wells have been positioned based on published UTM coordinates should be considered approximate. Project Location 161413 City of Guelph Prepared by PRM on 2022-C Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT						Urban
Image: Constraint of the system: Notes 1. Coordinate System: NAD 1983 UTM Zone 17N 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry & Queen's Printer for Ontario, 2020. Notation Ministry of Natural Resources and Forestry & Queen's Printer for Ontario, 2020. 3. Orthoimagery & First Base Solutions, 2021. Imagery flown in 2020. MECP water wells have been positioned based on published UTM coordinates should be considered approximate. Project Location 161413 City of Guelph Prepared by PRM on 2022-C Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT			0	25		50
Notes 1. Coordinate System: NAD 1983 UTM Zone 17N 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry & Queen's Printer for Ontario, 2020. 3. Orthoimagery 6 First Base Solutions, 2021. Imagery flown in 2020. 4. MECP water wells have been positioned based on published UTM coordinates should be considered approximate. Project Location 161413 City of Guelph Prepared by PRM on 2022-0 Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT			0	25		50 Metre
Coordinate System: NAD 1983 UTM Zone 17N Coordinate System: NAD 1983 UTM Zone 17N Subset features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2020. Orthoimagery © First Base Solutions, 2021. Imagery flown in 2020. MECP water wells have been positioned based on published UTM coordinates should be considered approximate. Project Location 161413 City of Guelph Prepared by PRM on 2022-C Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT		1:1,2	50 (At origina	l document s	ize of 11x17)	
MECP water wells have been positioned based on published UTM coordinates should be considered approximate. Project Location 161413 City of Guelph Prepared by PRM on 2022-0 Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT	1. Coor 2. Base Resourc	features pro	oduced under li estry © Queen's	cense with the (Printer for Ontar	io, 2020.	
City of Guelph Prepared by PRM on 2022-C Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT	4. MEC	P water well	ls have been po	sitioned based		
TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON ST AND 9 VALLEY RD HYDROGEOLOGICAL ASSESSMENT			1	Pr	epared by PF	161413 M on 2022-0
HYDROGEOLOGICAL ASSESSMENT			LOPMENTS	INC.		
Figure No.	HYD	ROGEOL			9 VALLEY RE)

Other PCs. Active: 1614 - London: 161413684.08 data.tojs. cadV.Figures/Hydrogeology/ReportFigures/HydroG. Assess V.

APPENDIX B: TABLES

TABLE 1 WELL CONSTRUCTION DETAILS

Well ID	UTM Coo	rdinates	Eleva	itions			Well	Well		Screene	d Interval		Screened	Hydraulic
	Northing	Easting	Top of	Ground	Well	Well	Depth	Base	Т	ор	Bot	tom	Material Description ^(a)	Conductivity ^(b)
		-	Casing	Surface	Stick-up	Depth		Elevation	Elev	vation	Elev	ation		
			(m AMSL)	(m AMSL)	(m)	(m BTOC)	(m BGS)	(m AMSL)	(m BGS)	(m AMSL)	(m BGS)	(m AMSL)		(m/s)
Stantec Monito	oring Wells		. ,			, ,		. ,			. ,			
MW1-18	4818537	564468	344.72	343.92	0.77	15.99	15.22	328.70	12.17	331.75	15.22	328.70	Sandy SILT TILL	-
MW2-18	4818517	564471	343.77	342.97	0.80	14.74	13.94	329.03	10.89	332.08	13.94	329.03	Sandy SILT TILL (19%) / SAND (81%)	4.7E-07
MW3-18	4818474	564469	340.91	339.83	1.08	13.30	12.22	327.61	9.17	330.66	12.22	327.61	Sandy SILT TILL	1.6E-09
MW4-18(S)	4818478	564506	341.32	340.47	0.85	8.82	7.97	332.50	4.92	335.55	7.97	332.50	Sandy SILT TILL	1.8E-07
MW4-18(D)	4818478	564506	341.28	340.47	0.81	14.51	13.70	326.77	10.65	329.82	13.70	326.77	Sandy SILT TILL	3.4E-09
MW5-18(S)	4818521	564540	342.02	341.26	0.76	8.84	8.08	333.18	5.03	336.23	8.08	333.18	Sandy SILT TILL	1.2E-08
MW5-18(D)	4818519	564539	342.02	341.14	0.88	16.01	15.13	326.01	13.61	327.53	15.13	326.01	Sandy SILT TILL	2.0E-08
MW6-18	4818487	564586	342.55	341.40	1.15	16.14	14.99	326.41	13.47	327.93	14.99	326.41	Sandy SILT TILL	5.4E-07
MW7-18	4818416	564518	339.64	338.85	0.79	14.69	13.90	324.95	12.38	326.47	13.90	324.95	Sandy SILT TILL	5.8E-08
MW101-21(S)	4818453	564564	342.91	342.29	0.62	5.65	5.03	337.26	3.51	338.78	5.03	337.26	Sandy SILT TILL	-
MW101-21(D)	4818445	564558	342.52	341.76	0.76	10.08	9.32	332.44	6.27	335.49	9.32	332.44	Sandy SILT TILL	-
MW102-21	4818538	564556	342.25	341.41	0.84	6.60	5.76	335.65	2.71	338.70	5.76	335.65	Sandy SILT TILL	-
MW103-21	4818574	564590	340.20	339.61	0.59	8.42	7.83	331.78	4.78	334.83	7.83	331.78	Sandy SILT TILL	-
MW104-21	4818539	564513	344.05	343.28	0.77	8.64	7.87	335.41	4.82	338.46	7.87	335.41	Sandy SILT TILL	-
													GEOMEAN =	3.7E-08
Stantec Drive-	Point Piezo	meters												
DP1-19(S)	4818655	564683	333.74	332.74	1.00	2.13	1.13	331.61	0.71	332.03	1.13	331.61	-	-
DP1-19(D)	4818655	564683	333.89	332.74	1.15	3.95	2.80	329.94	2.38	330.36	2.80	329.94	-	-

Notes:

(a) Refer to Appendix E for borehole and well construction logs

(b) Refer to Appendix G hydraulic conductivity analytical solutions

m AMSL = meters above mean sea level

m BGS = meters below ground surface

m BTOC = meters below top of well casing

- = data not available

TABLE 2 GROUNDWATER LEVEL DATA - MONITORING WELLS

Well ID	UTM Cod	ordinates	Date	Time		Well Depth		Screen Length	Screen Separation ⁽¹⁾	Top of Casing Elevation (m AMSL)	Ground Surface Elevation (m AMSL)	Pipe Stick-up (m)	G	roundwater Lev	rel	Vertical Hydraulic Gradient ⁽³⁾
	Northing	Easting			(m BTOC)	(m BGS)	(m AMSL)	(m)	(m)				(m BGS) ⁽²⁾	(m BTOC)	(m AMSL)	(+) = Upward (-) = Downward
MW1-18	4818537	564468	26-Jul-18 11-Sep-18 8-Nov-18 9-Apr-19 3-May-19 29-May-19 24-Jul-19 15-Jan-20 2-Jun-20 24-Jan-22 4-Apr-22	10:15 AM 9:17 AM 9:10 AM 2:14 PM 8:41 AM 11:07 AM 11:30 AM 10:55 AM 12:06 PM 12:04 PM 12:20 PM	15.99	15.22	329.50	3.05		344.72	343.92	0.77	9.03 8.57 5.16 4.34 4.36 7.38 4.15 6.97 7.40 4.73	9.80 9.34 5.93 5.11 5.13 8.15 4.92 7.74 8.17 5.50	- 334.89 335.35 338.76 339.58 339.56 336.54 339.77 336.95 336.52 339.19	
MW2-18	4818517	564471	26-Jul-18 11-Sep-18 8-Nov-18 9-Apr-19 3-May-19 29-May-19 24-Jul-19 15-Jan-20 2-Jun-20 24-Jan-22 4-Apr-22	3:58 PM 9:33 AM 2:14 PM 8:52 AM 11:15 AM 11:41 AM 11:04 AM 11:56 AM 1:09 PM 12:22 PM	14.74	13.94	329.83	3.05		343.77	342.97	0.80	6.65 - 6.90 3.42 2.44 2.52 5.80 2.45 5.31 5.84 3.01	7.45 - 7.70 4.22 3.24 3.32 6.60 3.25 6.11 6.64 3.81	336.32 - 336.07 339.55 340.53 340.45 337.17 340.52 337.66 337.13 339.96	
MW3-18	4818474	564469	26-Jul-18 11-Sep-18 8-Nov-18 9-Apr-19 3-May-19 29-May-19 24-Jul-19 15-Jan-20 2-Jun-20 24-Jan-22 4-Apr-22	2:56 PM 9:45 AM 3:29 PM 10:55 AM 11:22 AM 11:41 AM 11:11 AM 11:52 AM 1:06 PM 12:25 PM	13.30	12.22	328.69	3.05		340.91	339.83	1.08	4.81 - 5.41 4.07 - 3.29 4.54 3.89 4.47 4.86 3.65	5.89 - 6.49 5.15 - 4.37 5.62 4.97 5.55 5.94 4.73	335.02 - 334.42 335.76 - 336.54 335.29 335.94 335.36 334.97 336.18	
MW4-18(S)	4818478	564506	26-Jul-18 11-Sep-18 8-Nov-18 9-Apr-19 3-May-19 29-May-19 24-Jul-19 15-Jan-20 2-Jun-20 24-Jan-22 4-Apr-22	10:15 AM 1:18 PM 10:54 AM 3:26 PM 10:34 AM 12:20 PM 11:56 AM 12:06 PM 11:22 AM 1:03 PM 12:30 PM	8.82	7.97	333.35	3.05		341.32	340.47	0.85	3.83 4.63 4.81 2.66 1.45 1.15 3.11 2.12 2.82 3.80 1.87	4.68 5.48 5.66 3.51 2.30 2.00 3.96 2.97 3.67 4.65 2.72	336.64 335.84 335.66 337.81 339.02 339.32 337.36 338.35 337.65 336.67 338.60	

TABLE 2 GROUNDWATER LEVEL DATA - MONITORING WELLS

Well ID	UTM Cod	ordinates	Date	Time		Well Depth		Screen Length	Screen Separation ⁽¹⁾	Top of Casing Elevation (m AMSL)	Ground Surface Elevation (m AMSL)	Pipe Stick-up (m)	Gi	roundwater Lev	vel	Vertical Hydraulic Gradient ⁽³⁾
	Northing	Easting			(m BTOC)	(m BGS)	(m AMSL)	(m)	(m)				(m BGS) ⁽²⁾	(m BTOC)	(m AMSL)	(+) = Upward (-) = Downward
MW4-18(D)	4818478	564506	26-Jul-18 11-Sep-18 8-Nov-18 9-Apr-19 3-May-19 29-May-19 24-Jul-19 15-Jan-20 2-Jun-20 24-Jan-22 4-Apr-22	10:16 AM 1:20 PM 10:54 AM 3:23 PM 10:35 AM 12:18 PM 11:59 AM 12:08 PM 11:20 AM 1:01 PM 12:29 PM	14.51	13.70	327.58	3.05	2.68	341.28	340.47	0.81	5.49 6.15 6.27 4.73 4.01 3.79 5.28 4.46 5.21 5.75 4.37	6.30 6.96 7.08 5.54 4.82 4.60 6.09 5.27 6.02 6.56 5.18	334.98 334.32 334.20 335.74 336.46 336.68 335.19 336.01 335.26 334.72 336.10	-0.62 -0.57 -0.54 -0.77 -0.96 -0.99 -0.81 -0.87 -0.89 -0.73 -0.93
MW5-18(S)	4818521	564540	26-Jul-18 11-Sep-18 8-Nov-18 9-Apr-19 3-May-19 29-May-19 24-Jul-19 15-Jan-20 2-Jun-20 24-Jan-22 4-Apr-22	11:27 AM 10:17 AM 10:28 AM 3:11 PM 10:13 AM 11:57 AM 12:29 PM 11:20 AM 11:30 AM 12:12 PM 1:19 PM	8.84	8.08	333.94	3.05		342.02	341.26	0.76	3.67 4.20 4.57 1.89 1.17 1.18 3.21 1.06 3.01 3.33 1.52	4.43 4.96 5.33 2.65 1.93 1.94 3.97 1.82 3.77 4.09 2.28	337.59 337.06 336.69 339.37 340.09 340.08 338.05 340.20 338.25 337.93 339.74	
MW5-18(D)	4818519	564539	26-Jul-18 11-Sep-18 8-Nov-18 9-Apr-19 3-May-19 29-May-19 24-Jul-19 15-Jan-20 2-Jun-20 24-Jan-22 4-Apr-22	11:24 AM 10:18 AM 10:23 AM 3:09 PM 10:14 AM 11:51 AM 12:31 PM 11:22 AM 11:29 AM 12:15 PM 1:17 PM	14.69	13.81	328.21	1.52	4.21	342.02	341.14	0.88	6.72 7.11 7.15 5.35 4.92 4.87 6.46 4.87 6.41 6.72 5.27	7.60 7.99 8.03 6.23 5.80 5.75 7.34 5.75 7.29 7.60 6.15	334.42 334.03 333.99 335.79 336.22 336.27 334.68 336.27 334.73 334.42 335.87	-0.75 -0.72 -0.64 -0.85 -0.92 -0.90 -0.80 -0.93 -0.84 -0.83 -0.92
MW6-18	4818487	564586	26-Jul-18 11-Sep-18 8-Nov-18 9-Apr-19 3-May-19 29-May-19 24-Jul-19 15-Jan-20 2-Jun-20 24-Jan-22 4-Apr-22	1:05 PM 11:20 AM 10:14 AM 2:52 PM 10:03 AM 11:43 AM 12:18 PM 11:45 AM 11:44 AM 12:44 PM 1:14 PM	16.14	14.99	327.56	3.05		342.55	341.40	1.15	7.05 7.07 6.55 4.93 4.51 4.51 6.42 4.15 6.41 6.64 4.92	8.20 8.22 7.70 6.08 5.66 5.66 7.57 5.30 7.56 7.79 6.07	334.35 334.33 334.85 336.47 336.89 336.89 334.98 337.25 334.99 334.76 336.48	

TABLE 2 **GROUNDWATER LEVEL DATA - MONITORING WELLS**

Well ID	UTM Coc	ordinates	Date	Time		Well Depth		Screen Length	Screen Separation ⁽¹⁾	Top of Casing Elevation (m AMSL)	Ground Surface Elevation (m AMSL)	Pipe Stick-up (m)	G	roundwater Lev	vel	Vertical Hydraulic Gradient ⁽³⁾
	Northing	Easting			(m BTOC)	(m BGS)	(m AMSL)	(m)	(m)				(m BGS) ⁽²⁾	(m BTOC)	(m AMSL)	(+) = Upward (-) = Downward
MW7-18	4818416	564518	26-Jul-18 11-Sep-18 8-Nov-18 9-Apr-19 3-May-19 29-May-19 24-Jul-19 15-Jan-20 2-Jun-20 24-Jan-22 4-Apr-22	2:04 PM 12:00 PM 10:03 AM 2:42 PM 9:51 AM 11:34 AM 12:07 PM 11:55 AM 11:48 AM 12:55 PM 12:34 PM	14.69	13.90	325.74	1.52		339.64	338.85	0.79	5.71 5.93 5.29 5.00 4.86 5.61 4.99 5.62 5.93 5.28	6.50 6.72 6.59 6.08 5.79 5.65 6.40 5.78 6.41 6.72 6.07	333.14 332.92 333.05 333.56 333.85 333.99 333.24 333.86 333.23 332.92 333.57	
MW101-21(S)	4818453	564564	24-Jan-22 4-Apr-22	12:48 PM 1:01 PM	5.65	5.03	337.88	1.52		342.91 342.52	342.29 341.76	0.62 0.76	3.54 2.40	4.16 3.02	338.75 339.89	
MW101-21(D)	4818445	564558	24-Jan-22 4-Apr-22	12:50 PM 12:40 PM	10.08	9.32	333.20	3.05	1.24	342.52	341.76	0.76	5.27 3.16	6.03 3.92	336.49 338.60	-0.54 -0.31
MW102-21	4818538	564556	24-Jan-22 4-Apr-22	12:18 PM 12:40 PM	6.60	5.76	336.49	3.05		342.25	341.41	0.84	3.68 1.90	4.52 2.74	337.73 339.51	
MW103-21	4818574	564590	24-Jan-22 4-Apr-22	12:22 PM 1:39 PM	8.42	7.83	332.37	3.05		340.20	339.61	0.59	4.79 2.22	5.38 2.81	334.82 337.39	
MW104-21	4818539	564513	24-Jan-22 4-Apr-22	12:09 PM 2:06 PM	8.64	7.87	336.18	3.05		344.05	343.28	0.77	4.78 3.67	5.55 4.44	338.50 339.61	

Notes:

(1) Distance between the top of the screen in the deep well and the bottom of screen in the shallow well.

(2) A negative value indicates that the water level measured within the pipe is located above ground surface
 (3) Negative and positive values indicate downward and upward gradients, respectively.

m BGS = meters below ground surface

m BTOC = meters below top of casing

DRY = no groundwater or surface water was observed in the piezometer or watercourse, respectively

TABLE 3 GROUNDWATER LEVEL DATA - DRIVE-POINT PIEZOMETERS

Piezometer ID	UTM Coc	ordinates	Total	Depth	Screen Length	Screen Separation ⁽¹⁾	Pipe Stick-up	Ground Surface Elevation	Top of Casing Elevation	Date	Time	Gro	oundwater Le	evel	Surface Lev		Vertical Hydraulic Gradient ⁽⁴⁾ (+) = Upward
	Northing	Easting	(m BTOC)	(m BGS)	(m)	(m)	(m)	(m AMSL)	(m AMSL)			(m BGS) ⁽²⁾	(m BTOC)	(m AMSL)	(m BTOC) ⁽³⁾	(m AMSL)	(-) = Downward
DP1-19(S)	4818655	564683	2.13	1.13	0.30		1.00	332.74	333.74	3-May-19 29-May-19 24-Jul-19 29-Jul-19 15-Jan-20 2-Jun-20	9:10 AM 10:48 AM 11:02 AM 3:08 PM 10:34 AM 11:35 AM	-0.06 0.07 0.37 0.51 -0.01 0.40	0.94 1.07 1.37 1.51 0.99 1.40	332.80 332.67 332.37 332.23 332.75 332.34	0.90 DRY DRY DRY DRY DRY	332.84 - - - - -	
DP1-19(D)	4818655	564683	3.95	2.80	0.30	1.67	1.15	332.74	333.89	3-May-19 29-May-19 24-Jul-19 29-Jul-19 15-Jan-20 2-Jun-20	9:15 AM 10:48 AM 11:02 AM 3:08 PM 10:37 AM 11:34 AM	-0.08 -0.21 0.37 0.50 -0.03 0.39	1.07 0.94 1.52 1.65 1.12 1.54	332.82 332.95 332.37 332.24 332.77 332.35	1.03 DRY DRY DRY DRY DRY	332.86 - - - - -	0.01 0.17 0.00 0.01 0.01 0.01

Notes:

(1) Distance between the mid-point of the screened intervals of the shallow and deep piezometer.

(2) A negative value indicates that the water level measured within the pipe is located above ground surface.

(3) A negative value indicates that the surface water level is above the top of the piezometer.

(4) Vertical hydraulic gradient between the surface water feature substrate and the piezometer screened interval.

m BGS = meters below ground surface

m BTOC = meters below top of casing

DRY = no groundwater or surface water was observed in the piezometer or surface water feature, respectively n/a = measurement not available

TABLE 4 - GROUNDWATER QUALITY RESULTS CITY OF GUELPH SANITARY AND SEWER BY-LAW (1996)-15202

Sample Location			M	W2-18
Sample Date			11-Sep-18	11-Sep-18
Sample ID			WG-161413684-	WG-161413684-20180911
Sampling Company			20180911-DS-04 STANTEC	DS-04 Lab-Dup STANTEC
Laboratory			MAXX	MAXX
Laboratory Work Order			B8N6455	B8N6455
Laboratory Sample ID		City of	HSJ715	HSJ715
Sample Type	Units	Guelph		Lab Replicate
General Chemistry				
Chloride	mg/L	1.500 ^A	46	
Cyanide	mg/L	1,500 2 ^A	<0.0050	-
Fluoride	mg/L	2 10 ^A	0.13	-
bH, lab	S.U.	5.5-9.5 ^A 6.0-9.0 ^B	7.90	
Phenols-4AAP	mg/L	5.5-9.5 6.0-9.0 n/v	<0.0010	_
Sulfate	mg/L	1.500 ^A	40	_
Total Suspended Solids	mg/L	350 ^A 15 ^B	2.500 ^{AB}	_
Carbonaceous BOD - 5 Day	mg/L	n/v	<2	<2
Total Kjeldahl Nitrogen	mg/L	100 ^A	1.7	-
Petroleum Hydrocarbons		100		
Animal/Veg Oil & Grease	mg/L	100 ^A	<0.50	-
/ineral Oil and Grease	mg/L	n/v	<0.50	-
Dil and Grease, Total	mg/L	n/v	<0.50	-
Metals, Total				
Numinum	mg/L	50 ^A	15	-
Antimony	mg/L	5 ^A	<0.00050	-
Arsenic	mg/L	1 ^A	0.0062	-
Bismuth	mg/L	5 ^A	<0.0010	-
Cadmium	mg/L	1 ^A 0.001 ^B	0.0019 ^B	-
Chromium	mg/L	5 ^A 0.2 ^B	0.040	-
Cobalt	mg/L	5 ^A	0.0096	-
Copper	mg/L	3 ^A 0.01 ^B	0.030 ^B	-
ron	mg/L	50 ^A	23	-
.ead	mg/L	5 ^A 0.05 ^B	0.13 ^B	-
<i>l</i> anganese	mg/L	5 ^A	1.3	-
Mercury	mg/L	0.1 ^A 0.001 ^B	< 0.0001	-
Molybdenum	mg/L	5 ^A	0.0032	-
lickel	mg/L	3 ^A 0.05 ^B	0.021	-
Phosphorus	mg/L	10 ^A	1.1	-
Selenium	mg/L	5 ^A	<0.0020	-
Silver	mg/L	5 ^A	<0.00010	-
lin .	mg/L	5 ^A	0.0011	-
Titanium (Contraction)	mg/L	5 ^A	0.49	-
/anadium	mg/L	5 ^A	0.031	-
Zinc	mg/L	3 ^A 0.05 ^B	0.64 ^B	-
Microbiological				
ecal Coliform	5TMPN/100ML	200 (MPN/100mL) ^B	350 ^B	_

Guelph City of Guelph City of Guelph Sanitary Sewer-Use By-Law No. (1996)-15202 А в City of Guelph Storm Sewer-Use By-Law 6.5^A Concentration exceeds the indicated standard. 15.2 Measured concentration did not exceed the indicated standard. Laboratory reporting limit was greater than the applicable standard. <0.50 < 0.03 Analyte was not detected at a concentration greater than the laboratory reporting limit. No standard/guideline value. Parameter not analyzed / not available. n/v .

TABLE 5 - GROUNDWATER QUALITY RESULTS **ONTARIO DRINKING WATER QUALITY STANDARDS**

Sample Location	1		MW2-18	MW4-18(S)	MW6-18	MW7-18
Sample Date			11-Sep-18	11-Sep-18	11-Sep-18	11-Sep-18
Sample ID			WG-161413684- 20180911-DS-04	WG-161413684- 20180911-DS-03	WG-161413684- 20180911-DS-01	WG-161413684- 20180911-DS-02
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			MAXX	MAXX	MAXX	MAXX
Laboratory Work Order			B8N6455	B8N6455	B8N6455	B8N6455
Laboratory Sample ID	Units	ODWS	HSJ715	HSJ714	HSJ712	HSJ713
General Chemistry	•			I		I
Alkalinity, Carbonate (as CaCO3)	mg/L	n/v	-	5.3	3.7	4.7
Alkalinity, Total (as CaCO3)	mg/L	30-500 ^E	-	410	310	340
Ammonia (as N)	mg/L	n/v	-	0.071	<0.050	<0.050
Anion Sum	me/L	n/v	-	10.7	6.67	9.3
Bicarbonate(as CaCO3, Calculated)	mg/L	n/v	-	410	300	330
Cation Sum Chloride	me/L	n/v 250 ^c	- 46	10.9 43	6.66 7	11.8 27
Dissolved Organic Carbon (DOC)	mg/L mg/L	250 5 ^C	40	1.4	0.83	1
Electrical Conductivity, Lab	µmhos/cm	o' n/v	-	950	580	830
Hardness (as CaCO3)	mg/L	80-100 ^E	-	490 ^E	320 ^E	520 ^E
Ion Balance	%	n/v	-	1.08	0.05	12.1
Langelier Index (at 20 C)	none	n/v	-	1.2	1.01	1.25
Langelier Index (at 4 C)	none	n/v	-	0.947	0.762	0.997
Nitrate (as N)	mg/L	10.0 _d ^B	-	1.93	0.25	0.12
Nitrate + Nitrite (as N)	mg/L	10.0 _d ^B	-	1.96	0.25	0.12
Nitrite (as N)	mg/L	1.0 _d ^B	-	0.026	<0.010	<0.010
Orthophosphate(as P)	mg/L	n/v	-	0.012	<0.010	<0.010
pH, lab	S.U.	6.5-8.5 ^E	7.90	8.14	8.11	8.18
Saturation pH (at 20 C)	none	n/v	-	6.95	7.1	6.93
Saturation pH (at 4 C)	none	n/v	- 40	7.2 50	7.35	7.18 84
Sulfate	mg/L	500 ^{, C}	40		15	
Total Dissolved Solids (Calculated)	mg/L	500 ^c	-	540 [°]	330	530 ^c
Total Suspended Solids Metals, Dissolved	mg/L	n/v	-	100	1,800	1,200
,		o dE	_	0.0064	10.0050	0.000
Aluminum Antimony	mg/L mg/L	0.1 ^E 0.006 ^B	-	<0.00050	<0.0050 <0.00050	0.063 <0.00050
Arsenic	mg/L	0.006 0.01 ^B	-	<0.00030	<0.00030	0.0015
Barium	mg/L	1 ^B	-	0.13	0.032	0.076
Beryllium	mg/L	n/v	-	<0.00050	< 0.00050	<0.00050
Boron	mg/L	5 ^B	-	0.11	0.014	0.013
Cadmium	mg/L	0.005 ^B	-	<0.00010	<0.00010	<0.00010
Calcium	mg/L	n/v	-	82	69	100
Chromium	mg/L	0.05 ^B	-	<0.0050	<0.0050	<0.0050
Cobalt	mg/L	n/v	-	< 0.00050	<0.00050	<0.00050
Copper	mg/L	1 ^C	-	<0.0010	<0.0010	<0.0010
lron Lead	mg/L	0.3 ^C 0.01 ^B	-	<0.10 <0.00050	<0.10 <0.00050	0.19 0.00056
Magnesium	mg/L mg/L	0.01 n/v	-	71	36	63
Manganese	mg/L	0.05 ^c	-	0.02	0.011	0.046
Molybdenum	mg/L	n/v	-	0.0042	0.00079	0.003
Nickel	mg/L	n/v	-	<0.0010	<0.0010	<0.0010
Phosphorus	mg/L	n/v	-	0.11	<0.10	<0.10
Potassium	mg/L	n/v	-	5.9	1.1	2.6
Selenium Silicon	mg/L mg/L	0.05 ^B n/v	-	0.0022 5.2	<0.0020 6.3	<0.0020 7.9
Silver	mg/L	n/v	-	<0.00010	<0.00010	<0.00010
Sodium	mg/L	200 [°] _g 20 [°] _g	-	20	5.4	34 ^D
Strontium	mg/L	n/v	-	0.23	0.13	0.2
Thallium	mg/L	n/v	-	<0.000050	<0.000050	<0.000050
Titanium	mg/L	n/v	-	<0.0050	<0.0050	0.0051
Uranium	mg/L	0.02 ^B	-	0.003	0.00063	0.0022
Vanadium	mg/L	n/v	-	0.0012	<0.00050	0.0014
Zinc	mg/L	5 ^c	-	<0.0050	<0.0050	<0.0050

Notes:

ODWS O.Reg 169/03 - Ontario Drinking Water Quality Standards (January 1, 2018); Technical Support Document for Ontario Drinking Water Standards,

Objectives and Guidelines (MOE, 2006), in support of O.Reg 169/03 (January 1, 2018) Schedule 1 - Microbiological Standards (expressed as a maximum) А

в Schedule 2 - Chemical Standards (expressed as a maximum acceptable concentration)

С

ODWS Table 4 - Chemical/Physical Objectives and Guidelines, Aesthetic Objectives D

ODWS Table 4 - Medical Officer of Health Reporting Limit

E ODWS Table 4 - Chemical/Physical Objectives and Guidelines, Operational Guidelines
--

6.5^A Concentration exceeds the indicated standard.

15.2 Measured concentration did not exceed the indicated standard.

<0.50 Laboratory reporting limit was greater than the applicable standard.

<0.03 Analyte was not detected at a concentration greater than the laboratory reporting limit.

n/v No standard/guideline value.

Parameter not analyzed / not available. -

Where both nitrate and nitrite are present, the total of the two should not exceed 10 mg/L (as nitrogen). d

The aesthetic objective for sodium in drinking water is 200 mg/L. The local Medical Officer of Health should be notified when the sodium concentration g exceeds 20 mg/L so that this information may be communicated to local physicians for their use with patients on sodium restricted diets.

When sulfate levels exceed 500 mg/L, water may have a laxative effect on some people. h

TABLE 6 - INFILTRATION RATES ESTIMATED FROM HORIZONTAL HYDRAULIC CONDUCTIVITY TESTING RESULTS

Testing	Horizontal	Vertical H	lydraulic	Infiltration	Pit Depth	Screened	Soil Substrate Tested	Surficial Deposit or
Location ID	Hydraulic	Condu	ictivity	Rate		Interval		Hydrostratigraphic Unit
	Conductivity							
	(m/s)	(cm/s)	(m/s)	(mm/hr)	(m BGS)	(m BGS)		
In-situ Hydrau	lic Response T	esting (Mon	itoring Well	s)				
MW2-18	4.7E-07	-	4.7E-08	20	-	10.9 - 13.9	Sandy SILT TILL (19%) / SAND (81%)	Lower Till Aquitard (Sand Layer)
MW3-18	1.6E-09	-	1.6E-10	5	-	7.5 - 10.5	Sandy SILT TILL	Lower Till Aquitard
MW4-18(S)	1.8E-07	-	1.8E-08	15	-	5.0 - 8.0	Sandy SILT TILL	Lower Till Aquitard
MW4-18(D)	3.4E-09	-	3.4E-10	5	-	9.5 - 12.5	Sandy SILT TILL	Lower Till Aquitard
MW5-18(S)	1.2E-08	-	1.2E-09	8	-	5.0 - 8.0	Sandy SILT TILL	Lower Till Aquitard
MW5-18(D)	2.0E-08	-	2.0E-09	9	-	12.1 - 15.1	Sandy SILT TILL	Lower Till Aquitard
MW6-18	5.4E-07	-	5.4E-08	21	-	12.0 - 15.0	Sandy SILT TILL	Lower Till Aquitard
MW7-18	5.8E-08	-	5.8E-09	12	-	10.9 - 13.9	Sandy SILT TILL	Lower Till Aquitard

Notes:

(1) Infiltration rate calculated based on established relationship between vertical hydraulic conductivity and infiltration rate presented in Credit Valley Conservation and Toronto and Region Conservation (2010) Low Impact Stormwater Management Planning and Design Guideline - Version 1.0.

(2) Vertical hydraulic conductivities for deeper overburden deposits assumed to be one order of magnitude lower than in-situ measured horizontal hydraulic conductivities

TABLE 7 - INFILTRATION RATE TESTING RESULTS (2021)

Testing Location ID	Ground Surface	Vertical F Condu	lydraulic Ictivity	Infiltration Rate ⁽¹⁾	Horizontal Hydraulic		ing Depth	Soil Substrate Tested
	Elevation (m AMSL)	(cm/s)	(m/s)	(mm/hr)	Conductivity ⁽²⁾ (m/s)	(m BGS)	(m AMSL)	
East Infiltration Tren					(11/3)	(11 200)		
TP4-21	340.9	3.9E-03	3.9E-05	123	3.9E-04	0.6	340.4	Clayey SAND TILL, fine to medium grained sand
TP5-21	340.3	1.8E-03	1.8E-05	100	1.8E-04	0.6	339.7	Clayey SAND TILL, fine to medium grained sand
TP4-21	340.9	1.1E-04	1.1E-06	48	1.1E-05	2.0	339.0	Clayey SAND TILL, fine to medium grained sand
TP5-21	340.3	2.0E-06	2.0E-08	16	2.0E-07	2.9	337.4	Clayey SAND TILL, fine to medium grained sand
MW5-18(S)	341.3	-	-	8	1.2E-08	5.0 - 8.0	336.2 - 333.2	Sandy SILT TILL
MW5-18(D)	341.1	-	-	9	2.0E-08	13.6 - 15.1	327.5 - 326.0	Sandy SILT TILL
South Infiltration Tre	nch - designed	base elevation	n: 340.43 m AM	SL				
TP1-21 (Test 1)	337.9	8.7E-06	8.7E-08	24	8.7E-07	0.5	337.4	Silty Clay FILL, trace fine grained sand and cobbles
TP1-21 (Test 2)	337.9	2.9E-05	2.9E-07	33	2.9E-06	0.5	337.4	Silty Clay FILL, trace fine grained sand and cobbles
TP1-21	337.9	3.5E-03	3.5E-05	120	3.5E-04	1.4	336.5	Silty Clay FILL, trace fine grained sand and cobbles
TP2-21	340.5	1.2E-03	1.2E-05	89	1.2E-04	0.6	340.0	Sandy SILT TILL, fine to medium grained sand
TP2-21	340.5	1.8E-05	1.8E-07	29	1.8E-06	1.5	339.1	Sandy SILT TILL, fine to medium grained sand
TP3-21 (Test 1)	342.8	2.7E-04	2.7E-06	60	2.7E-05	1.2	341.6	Sandy SILT TILL, fine to medium grained sand
TP3-21 (Test 2)	342.8	2.2E-04	2.2E-06	57	2.2E-05	1.2	341.6	Sandy SILT TILL, fine to medium grained sand
TP3-21 (Test 1)	342.8	1.4E-04	1.4E-06	51	1.4E-05	2.6	340.2	Sandy SILT TILL, fine to medium grained sand
TP3-21 (Test 2)	342.8	5.1E-04	5.1E-06	71	5.1E-05	2.6	340.2	Sandy SILT TILL, fine to medium grained sand
TP3-21 (Test 1)	342.8	4.6E-04	4.6E-06	70	4.6E-05	3.5	339.3	Sandy SILT TILL, fine to medium grained sand
TP3-21 (Test 2)	342.8	2.3E-05	2.3E-07	31	2.3E-06	3.6	339.3	Sandy SILT TILL, fine to medium grained sand
MW6-18	342.5	-	-	21	5.4E-07	13.5 - 15.0	327.9 - 326.4	Sandy SILT TILL
MW7-18	339.6	-	-	12	5.8E-08	12.4 - 13.9	326.5 - 324.9	Sandy SILT TILL

Notes:

(1) Infiltration rate calculated based on established relationship between vertical hydraulic conductivity and infiltration rate presented in *Credit Valley Conservation and Toronto and Region Conservation (2010)* Low Impact Stormwater Management Planning and Design Guideline - Version 1.0.

(2) Horizontal hydraulic conductivity assumed to be one order of magnitude greater than Guelph Permeameter tested / calculated vertical hydraulic conductivity as per Freeze and Cherry (1979) and Todd (1980). Note that horizontal hydraulic conductivities for provided MW5-18(S/D), MW6-18 and MW7-18 calculated from in-situ hydraulic response testing completed on each monitoring well.

TABLE 8 - DESIGN INFILTRATION RATE CALCULATIONS

East Infiltration Trench			
	Calculated Vertical Hydraulic Conductivities (m/s)	Geomean	Infiltration Rate (mm/hr)
Base (340.00 m AMSL)	3.9E-05 1.8E-05	2.6E-05	111
~1.5 m below Base (338.5 m AMSL)	1.1E-06	1.1E-06	48
Ratio (Base / 1.5 m)			2.3
Safety Factor			3.5
Design Infiltration Rate		•	32

South Infiltration Trench			
	Calculated Vertical Hydraulic Conductivities (m/s)	Geomean	Infiltration Rate (mm/hr)
Base (340.43 m AMSL)	2.7E-06 2.2E-06	2.4E-06	58
~1.5 m below Base (338.93 m AMSL)	1.4E-06 5.1E-06 1.2E-05	4.4E-06	69
Ratio (Base / 1.5 m)			0.8
Safety Factor			2.5
Design Infiltration Rate			23

TABLE 9 - PRE-DEVELOPMENT MONTHLY WATER BALANCE CALCULATIONS

CATCHMENT 101 (LANDS TO SOUTHWEST OF FLOW DIVIDE / DRAINING TO THE UPPER HANLON CREEK SUBWATERSHED)

Pre-Development

Model Type: Thornthwaite and Mather (1955)

Client: Tricar Developments Inc.

Location Catchment 101 (Lands to Southwest of Flow Divide / Draining to Upper Hanlon Creek Subwatershed) Total Site Area (ha) 1.60

Land Description Factors (Sub-area descriptions provided below)	Sub-Area A	Sub-Area B	Sub-Area C	Sub-Area D					Total
Topography Soils Cover	0.20 0.25 0.20	0.20 0.25 0.15	0.20 0.25 0.05	0.20 0.25 0.05					
Cover Sum (Infiltration Factor) [†]	0.65	0.60	0.50	0.50					
Soil Moisture Capacity (mm) Site area (ha) Imperviousness Coefficient	300 0.58 0.00	150 0.26 0.00	75 0.64 0.00	75 0.12 0.95					1.60
Impervious Area (ha) Percentage of Total Site Area Remaining Pervious Area (ha)	0.00 0.0% 0.58	0.00 0.0% 0.26	0.00 0.0% 0.64	0.12 7.3% 0.01					0.12 7% 1.48
Total Pervious Site Area (ha) Percentage of Total Site Area	0.58 36.2%	0.26 16.1%	0.64 40.0%	0.01 0.4%					1.48 93%

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Climate Data (Guelph Arboretum Climate Normals	s, 1971 - 2000) [‡]											
Average Daily Temperature (°C)	-7.6	-6.9	-1.3	5.9	12.3	16.9	19.7	18.6	14.1	7.9	2.4	-4	6.5
Precipitation (mm)	56.4	50.8	72.1	78.3	79.9	76	88.5	95.9	92.1	69.2	86.3	77.7	923
Potential Evapotranspiration Analysis for Site	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Heat Index	0.0	0.0	0.0	1.3	3.9	6.3	8.0	7.3	4.8	2.0	0.3	0.0	34
Unadjusted Potential Evapotranspiration (mm)	0.0	0.0	0.0	28.4	60.7	84.3	98.8	93.1	69.9	38.4	11.2	0.0	485
Potential Evapotranspiration Adjusting Factor for Latitude*	0.77	0.87	0.99	1.12	1.23	1.29	1.26	1.16	1.04	0.92	0.81	0.75	
Adjusted Potential Evapotranspiration (PET)(mm)	0	0	0	32	75	108	124	108	73	35	9	0	564
Precipitation - PET (mm)	56	51	72	47	5	-32	-36	-12	19	34	77	78	359

Evapotranspiration Analysis													
Sub-Area A	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-56	-18	0	0	
Storage (S)	300	300	300	300	300	269	239	229	249	283	300	300	
Change in Storage	0	0	0	0	0	-31	-30	-10	19	34	17	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	107	119	106	73	35	9	0	554
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	60	78	369
Potential Infiltration (I)	37	33	47	30	3	0	0	0	0	0	39	51	240
Potential Direct Surface Water Runoff (R)	20	18	25	16	2	0	0	0	0	0	21	27	129
Potential Infiltration (mm)	0	0	0	197	3	0	0	0	0	0	39	0	240
Pervious Evapotranspiration (m ³)	0	0	0	184	432	619	689	613	422	204	52	0	3,216
Pervious Runoff (m ³)	114	103	146	95	11	0	0	0	0	0	121	158	749
Pervious Infiltration (m ³)	0	0	0	1144	20	0	0	0	0	0	225	0	1,390
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0

TABLE 9 - PRE-DEVELOPMENT MONTHLY WATER BALANCE CALCULATIONS

CATCHMENT 101 (LANDS TO SOUTHWEST OF FLOW DIVIDE / DRAINING TO THE UPPER HANLON CREEK SUBWATERSHED)

Evapotranspiration Analysis													
Sub-Area B	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-51	-9	0	0	
Storage (S)	150	150	150	150	150	121	95	88	107	141	150	150	
Change in Storage	0	0	0	0	0	-29	-26	-8	19	34	9	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	105	114	104	73	35	9	0	546
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	68	78	377
Potential Infiltration (I)	34	30	43	28	3	0	0	0	0	0	41	47	226
Potential Direct Surface Water Runoff (R)	23	20	29	19	2	0	0	0	0	0	27	31	151
Potential Infiltration (mm)	0	0	0	182	3	0	0	0	0	0	41	0	226
Pervious Evapotranspiration (m ³)	0	0	0	82	192	271	295	267	188	91	23	0	1,410
Pervious Runoff (m ³)	58	52	74	48	6	0	0	0	0	0	70	80	389
Pervious Infiltration (m ³)	0	0	0	470	8	0	0	0	0	0	106	0	584
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0

Evapotranspiration Analysis													
Sub-Area C	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	203	477	654	685	643	466	225	58	0	3,411
Pervious Runoff (m ³)	180	163	231	149	17	0	0	0	0	0	260	249	1,248
Pervious Infiltration (m ³)	0	0	0	971	17	0	0	0	0	0	260	0	1,248
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0

Evapotranspiration Analysis													
Sub-Area D	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	2	5	6	7	6	4	2	1	0	33
Pervious Runoff (m ³)	2	2	2	1	0	0	0	0	0	0	3	2	12
Pervious Infiltration (m ³)	0	0	0	9	0	0	0	0	0	0	3	0	12
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	66	60	85	92	94	89	104	113	108	81	101	91	1,083

TABLE 9 - PRE-DEVELOPMENT MONTHLY WATER BALANCE CALCULATIONS

CATCHMENT 101 (LANDS TO SOUTHWEST OF FLOW DIVIDE / DRAINING TO THE UPPER HANLON CREEK SUBWATERSHED)

Monthly Summary (m ³)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Pre-Development Infiltration (INF)	0	0	0	2,595	46	0	0	0	0	0	593	0	3,234
Pre-Development Runoff (R)	421	379	538	385	128	89	104	113	108	81	555	580	3,481
Pre-Development Evapotranspiration (ET)	0	0	0	471	1,106	1,551	1,675	1,529	1,081	523	134	0	8,070
Total = INF + R + ET	421	379	538	3,451	1,280	1,640	1,779	1,642	1,189	604	1,282	580	14,785

Pre-Development Summary - Catchment 101 (Lands to Southwest of Flow Divide / Draining to Upper Hanlon Creek Subwatershed)

SUMMARY - NO INFILTRATION AUGMENTATION / MITIGATION MEASURES Pre-Development Infiltration (INF) 3.234 m³/yr 202 0.1 L/s mm/yr Pre-Development Runoff (R) 3,481 m³/yr 217 mm/yr 0.1 L/s Pre-Development Evapotranspiration (ET) 8,070 m³/yr 504 mm/yr 0.3 L/s Total = INF + R + ET 14,785 m³/yr 923 0.5 L/s mm/yr Precipitation 14,785 m³/yr 923 mm/yr 0.5 L/s Error 0.000 (m³/yr) 0.255 0.000 L/s mm/yr

Sub-Area Descriptions (topography, soils,	cover)
Sub-Area A	Rolling, Fine Sandy to Silt Loam, Mature Forest
Sub-Area B	Rolling, Fine Sandy to Silt Loam, Pasture and Shrubs
Sub-Area C	Rolling, Fine Sandy to Silt Loam, Urban Lawn
Sub-Area D	Rolling, Fine Sandy to Silt Loam, Urban Lawn, 95% Impervious Cover

Notes:

† Infiltration factors after Ontario Ministry of the Environment, 2003. Stormwater Management Planning and Design Manual. March 2003.; and Ontario Ministry of Environment and Energy (MOEE). 1995. MOEE Hydrogeological Technical Information Requirements for Land Development Applications. April 1995.

* PET adjustment factors after Thornthwaite, C.W., and J.R. Mather, 1957. Instructions and Tables for Computing Potential Evapotranspiration and the water balance. Drexel Institute of Technology, Laboratory of Climatology, Publications in Climatology, Volume X, No. 3. Centerton, New Jersey.

[‡] Climate Data after Environment Canada, 2022. Canadian Climate Normals 1971-2000, Guelph Arboretum Station, Climate ID 6143069. [Online] http://climate.weather.gc.ca/climate_normals/index_e.html Accessed February 8, 2022.

Assumptions:

[1] The monthly average precipitation collected at the Guelph Arboretum climate station is reflective of the precipitation trends that have historically occurred at the Site.

[2] Surplus water is not available for runoff and recharge during months where water losses from actual evapotranspiration exceed precipitation inputs.

[3] Runoff, infiltration and evapotranspiration do not occur in months where the average daily temperature is below 0°C, which is the case for the months of December through March at the Site.

[4] Precipitation during freezing months (i.e., December to March) is assumed to accumulate as snow and result in additional precipitation in the first month thereafter where the average temperature is greater than 0°C (i.e., April). [5] Soil moisture capacity is at a maximum in April.

TABLE 10 - PRE-DEVELOPMENT MONTHLY WATER BALANCE CALCULATIONS CATCHMENT 102 (LANDS TO NORTHEAST OF FLOW DIVIDE / DRAINING TO TORRANCE CREEK SUBWATERSHED)

Pre-Development

Model Type: Thornthwaite and Mather (1955)

Client: Tricar Developments Inc.

Location Catchment 102 (Lands to Northeast of Flow Divide / Draining to Torrance Creek Subwatershed) Total Site Area (ha) 1.73

Land Description Factors (Sub-area descriptions provided below)	Sub-Area A	Sub-Area B	Sub-Area C					Total
Topography	0.20	0.20	0.20					
Soils	0.25	0.25	0.25					
Cover	0.20	0.15	0.05					
Sum (Infiltration Factor) [†]	0.65	0.60	0.50					
Soil Moisture Capacity (mm)	300	150	75					
Site area (ha)	0.98	0.72	0.03					1.73
Imperviousness Coefficient	0.01	0.01	0.01					
Impervious Area (ha)	0.01	0.01	0.00					0.02
Percentage of Total Site Area	0.6%	0.4%	0.0%					1%
Remaining Pervious Area (ha)	0.97	0.71	0.03					1.71
Total Pervious Site Area (ha)	0.97	0.71	0.03					1.71
Percentage of Total Site Area	56.1%	41.2%	1.6%					99%

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Climate Data (Guelph Arboretum Climate Normals, 1	971 - 2000) [‡]												
Average Daily Temperature (°C)	-7.6	-6.9	-1.3	5.9	12.3	16.9	19.7	18.6	14.1	7.9	2.4	-4	6.5
Precipitation (mm)	56.4	50.8	72.1	78.3	79.9	76	88.5	95.9	92.1	69.2	86.3	77.7	923
Potential Evapotranspiration Analysis for Site	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Heat Index	0.0	0.0	0.0	1.3	3.9	6.3	8.0	7.3	4.8	2.0	0.3	0.0	34
Unadjusted Potential Evapotranspiration (mm)	0.0	0.0	0.0	28.4	60.7	84.3	98.8	93.1	69.9	38.4	11.2	0.0	485
Potential Evapotranspiration Adjusting Factor for Latitude*	0.77	0.87	0.99	1.12	1.23	1.29	1.26	1.16	1.04	0.92	0.81	0.75	
Adjusted Potential Evapotranspiration (PET)(mm)	0	0	0	32	75	108	124	108	73	35	9	0	564
Precipitation - PET (mm)	56.4	50.8	72.1	46.6	5.4	-32.3	-35.8	-12.5	19.3	34.0	77.3	77.7	359
	0	0	0	100	100	100	100	100	100	100	100	0	
Evapotranspiration Analysis	1	0	0	100		100	100	100				Ū	
Sub-Area A	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Precipitation (m ³)	553	498	707	767	783	745	867	940	903	678	846	761	9,047
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-56	-18	0	0	
Storage (S)	300	300	300	300	300	269	239	229	249	283	300	300	
Change in Storage	0	0	0	0	0	-31	-30	-10	19	34	17	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	107	119	106	73	35	9	0	554
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	60	78	369
Potential Infiltration (I)	37	33	47	30	3	0	0	0	0	0	39	51	240
Potential Direct Surface Water Runoff (R)	20	18	25	16	2	0	0	0	0	0	21	27	129
Potential Infiltration (mm)	0	0	0	197	3	0	0	0	0	0	39	0	240
Pervious Evapotranspiration (m ³)	0	0	0	308	723	1035	1153	1025	707	342	87	0	5,379
Pervious Runoff (m ³)	192	172	245	158	18	0	0	0	0	0	203	264	1,252
Pervious Infiltration (m ³)	0	0	0	1914	34	0	0	0	0	0	377	0	2,325
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	6	5	7	8	8	7	9	9	9	7	8	8	90

CATCHMENT 102 (LANDS TO NORTHEAST OF FLOW DIVIDE / DRAINING TO TORRANCE CREEK SUBWATERSHED)

vapotranspiration Analysis													
Sub-Area B	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Precipitation (m ³)	406	366	519	564	575	547	637	691	663	498	621	559	6,648
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-51	-9	0	0	
Storage (S)	150	150	150	150	150	121	95	88	107	141	150	150	
Change in Storage	0	0	0	0	0	-29	-26	-8	19	34	9	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	105	114	104	73	35	9	0	546
Recharge/Runoff Analysis													
Vater Surplus (mm)	56	51	72	47	5	0	0	0	0	0	68	78	377
Potential Infiltration (I)	34	30	43	28	3	0	0	0	0	0	41	47	226
Potential Direct Surface Water Runoff (R)	23	20	29	19	2	0	0	0	0	0	27	31	151
Potential Infiltration (mm)	0	0	0	182	3	0	0	0	0	0	41	0	226
Pervious Evapotranspiration (m ³)	0	0	0	226	531	749	814	738	519	251	64	0	3,893
Pervious Runoff (m ³)	161	145	206	133	15	0	0	0	0	0	194	222	1,075
Pervious Infiltration (m ³)	0	0	0	1298	23	0	0	0	0	0	291	0	1,613
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
mpervious Runoff (m ³)	4	4	5	6	6	5	6	7	7	5	6	6	66
vapotranspiration Analysis Sub-Area C	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Precipitation (m ³)	16	14	20	22	23	22	25	27	26	20	24	22	262
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis													
Vater Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	9	21	29	30	28	20	10	3	0	150
Pervious Runoff (m ³)	8	7	10	7	1	0	0	0	0	0	11	11	55
Pervious Infiltration (m ³)	0	0	0	43	1	0	0	0	0	0	11	0	55
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
	0	0	0	0	0	0	0	0	0	0	0	0	3
mpervious Runoff (m ³)													
mpervious Runoff (m³) Pre-Development Summary - Catchment 102 (Land	s to Northeas	st of Flow Divi	de / Draining	to Torrance C	reek Subwate	rshed)							

Jun Monthly Summary (m³) Jan Feb Mar Apr May Jul Aug Sep Oct Nov Dec 3,255 311 Pre-Development Infiltration (INF) 0 333 58 48 0 17 680 0 0 0 0 0 0 0 370 473 13 15 16 12 424 510 Pre-Development Runoff (R) Pre-Development Evapotranspiration (ET) 543 1,275 1,813 1,996 1,791 1,246 603 154 0 0 0 0

1,381

1,826

2,012

1,808

1,262

615

1,258

510

4,109

SUMMARY - NO INFILTRATION AUGMENTATION /	MITIGATION N	IEASURES				
Pre-Development Infiltration (INF)	3,993	m³/yr	231	mm/yr	0.1	L/s
Pre-Development Runoff (R)	2,542	m³/yr	147	mm/yr	0.1	L/s
Pre-Development Evapotranspiration (ET)	9,422	m³/yr	545	mm/yr	0.3	L/s
Total = INF + R + ET	15,956	m³/yr	923	mm/yr	0.5	L/s
Precipitation	15,956	m³/yr	923	mm/yr	0.5	L/s
Error	0.000	m³/yr	0.000	mm/yr	0.000	L/s

333

473

Sub-Area Descriptions (topography, soils, cover)	
Sub-Area A	Rolling, Fine Sandy to Silt Loam, Mature Forest
Sub-Area B	Rolling, Fine Sandy to Silt Loam, Pasture and Shrubs
Sub-Area C	Rolling, Fine Sandy to Silt Loam, Urban Lawn

370

Total = INF + R + ET

3,993 2,542

9,422

15,956

CATCHMENT 102 (LANDS TO NORTHEAST OF FLOW DIVIDE / DRAINING TO TORRANCE CREEK SUBWATERSHED)

Notes:

† Infiltration factors after Ontario Ministry of the Environment, 2003. Stormwater Management Planning and Design Manual. March 2003.; and Ontario Ministry of Environment and Energy (MOEE). 1995. MOEE Hydrogeological Technical Information Requirements for Land Development Applications. April 1995.

* PET adjustment factors after Thornthwaite, C.W., and J.R. Mather, 1957. Instructions and Tables for Computing Potential Evapotranspiration and the water balance. Drexel Institute of Technology, Laboratory of Climatology, Publications in Climatology, Volume X, No. 3. Centerton, New Jersey.

[‡] Climate Data after Environment Canada, 2022. Canadian Climate Normals 1971-2000, Guelph Arboretum Station, Climate ID 6143069. [Online] http://climate.weather.gc.ca/climate_normals/index_e.html Accessed February 8, 2022.

Assumptions:

[1] The monthly average precipitation collected at the Guelph Arboretum climate station is reflective of the precipitation trends that have historically occurred at the Site.

[2] Surplus water is not available for runoff and recharge during months where water losses from actual evapotranspiration exceed precipitation inputs.

[3] Runoff, infiltration and evapotranspiration do not occur in months where the average daily temperature is below 0°C, which is the case for the months of December through March at the Site.

[4] Precipitation during freezing months (i.e., December to March) is assumed to accumulate as snow and result in additional precipitation in the first month thereafter where the average temperature is greater than 0°C (i.e., April). [5] Soil moisture capacity is at a maximum in April.

TABLE 11 1971 TO 2000 CANADIAN CLIMATE NORMALS (GUELPH ARBORETUM)

Climate Normals 1971-2000 Station Data

STATION_NAME	PROVINCE	LATITUDE	LONGITUDE	ELEVATION	CLIMATE_ID	WMO_ID	TC_ID
GUELPH ARBORETUM	ON	43°33'00" N	80°13'00" W	327.7 m	6143069		

Legend A = WMO "3 and 5 rule" (i.e. no more than 3 consecutive and no more than 5 total missing for either temperature or precipitation)

B = At least 25 yearsC = At least 20 yearsD = At least 15 years

1971 to 2000 Canadian Climate Normals station data

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Temperature					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Daily Average (°C)	-7.6	-6.9	-1.3	5.9	12.3	16.9	19.7	18.6	14.1	7.9
Standard Deviation	3.1	2.8	2	1.6	1.8	1.3	1.1	1.3	0.9	1.5
Daily Maximum (°C)	-3.7	-2.6	3.4	11.3	18.5	23.3	25.9	24.5	19.8	12.8
Daily Minimum (°C)	-11.4	-11.1	-6	0.5	6	10.6	13.5	12.6	8.4	3
Extreme Maximum (°C)	13.9	13.5	23.5	29.2	31.6	36.2	36.5	33.9	32.6	25.2
Date (yyyy/dd)	1995/14	1984/23	1990/15	1990/25	1987/28	1988/25	1988/07	1975/01	1983/10	1988/01
Extreme Minimum (°C)	-34.4	-31.7	-26.8	-11.4	-4.3	-0.6	3.3	-0.6	-5	-8.3
Date (yyyy/dd)	1994/10	1979/17	1984/08	1982/07	1978/01	1977/03	1977/27	1982/29	1989/27	1975/31
Precipitation										
Rainfall (mm)	17.6	22.1	46.9	71.5	79.9	76	88.5	95.9	92.1	67.5
Snowfall (cm)	45.8	33.1	25.8	6.3	0.1	0	0	0	0	1.5
Precipitation (mm)	56.4	50.8	72.1	78.3	79.9	76	88.5	95.9	92.1	69.2
Extreme Daily Rainfall (mm)	33.4	38.3	32.6	37.3	33.3	69.8	62.6	72.9	76.4	27.7
Date (yyyy/dd)	1993/04	1990/22	1991/27	1992/16	1976/06	1982/28	1991/29	1975/23	1986/10	1977/08
Extreme Daily Snowfall (cm)	24.6	25	30	14	1	0	0	0	0	6.6
Date (yyyy/dd)	1978/26	1985/12	1985/03	1979/04	1989/07	1976/01	1975/01	1975/01	1975/01	1989/20
Extreme Daily Precipitation (mm)	33.4	38.7	42	37.3	33.3	69.8	62.6	72.9	76.4	27.7
Date (yyyy/dd)	1993/04	1981/10	1985/04	1992/16	1976/06	1982/28	1991/29	1975/23	1986/10	1977/08
Extreme Snow Depth (cm)	31	41	37	13	0	0	0	0	0	5
Date (yyyy/dd)	1984/27	1982/06	1982/09	1976/26	1976/01	1976/01	1975/01	1975/01	1975/01	1976/23
Days with Maximum Temperature										
<= 0 °C	23.1	18.2	9.3	0.85	0	0	0	0	0	0
> 0 °C	7.9	10.1	21.8	29.2	31	30	31	31	30	31
> 10 °C	0.17	0.35	5.1	16.5	29.1	29.9	31	31	29.5	21.3
> 20 °C	0	0	0.45	3.3	11.5	23	29.5	27.5	13.9	3
> 30 °C	0	0	0	0	0.35	1.3	2.9	1.3	0.19	0
> 35 °C	0	0	0	0	0	0.05	0.19	0	0	0
Days with Minimum Temperature							- <i>i</i>	- <i>i</i>		
> 0 °C	0.83	1.4	4.7	15	26.8	29.8	31	31	28.3	21.9
<= 2 °C	30.8	27.7	28.7	19.9	7.7	0.95	0	0.14	3.6	14.6
<= 0 °C	30.2	26.8	26.3	15.1	4.2	0.19	0	0.05	1.7	9.1
< -2 °C	28.4	24.7	22.1	9.5	1.2	0	0	0	0.33	4.5
< -10 °C	16.8	15.6	7.6	0.3	0	0	0	0	0	0
< -20 °C < - 30 °C	3.9	3.4	0.85	0 0	0 0	0 0	0 0	0 0	0 0	0
< - 30 C Days with Rainfall	0.44	0.21	0	U	U	0	U	U	0	0
>= 0.2 mm	3.7	3.8	7.8	12	12.7	11.4	11.4	12.9	13.4	13.9
>= 5 mm	3.7 1.1	3.0 1.3	7.8 3.4	4.6	5.3	5.2	5.4	5.9	5.3	4.9
>= 10 mm	0.78	0.58	2	2.5	2.8	5.2 2.8	3.4 3.4	3.3	3.2	4.9 2.4
>= 25 mm	0.06	0.38	0.06	0.4	0.35	0.43	0.65	0.76	0.76	0.15
F = 20 mm	0.00	0.21	0.00	0.4	0.00	0.40	0.00	0.70	0.70	0.10

Nov	Dec	Year	Code
2.4 1.5 6.2 -1.4 20.6 1987/03 -15.1 1987/22	-4 2.8 -0.5 -7.6 19.1 1982/03 -30.4 1980/25	6.5 2.5 11.6 1.4	С С С С
75.3 9.7 86.3 47.4 1992/12 20 1986/20 47.4 1992/12 17 1992/17	38.1 38.5 77.7 30 1979/24 24.3 1992/10 38 1990/03 28 1992/11	771.4 160.6 923.3	D D
3.7	15.8	70.8	D
26.3	15.3	294.4	D
7.3	1.2	202.3	D
0.1	0	112.1	D
0	0	6	D
0	0	0.24	D
10.9	2.7	204.2	D
23.5	30.2	187.6	D
19.2	28.3	161	D
13.6	24	128.3	D
1.2	9.7	51.3	D
0	1.2	9.3	D
0	0.05	0.7	D
12.5	6.4	121.8	D
5.2	2.9	50.4	D
2.5	1.3	27.4	D
0.3	0.11	4.2	D

TABLE 111971 TO 2000 CANADIAN CLIMATE NORMALS (GUELPH ARBORETUM)

Climate Normals 1971-2000 Station Data

STATION_NAME GUELPH ARBORETUM	PROVINCE ON	LATITUDE 43°33'00" N	LONGITUDE 80°13'00" W	ELEVATION 327.7 m	CLIMATE_ID 6143069	WMO_ID	TC_ID			
Days With Snowfall										
>= 0.2 cm >= 5 cm >= 10 cm >= 25 cm	14.4 3.1 1 0	10.3 1.9 0.83 0.06	6.8 1.6 0.56 0.22	1.9 0.4 0.15 0	0.05 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0.5 0.1 0 0
Days with Precipitation	-			-	-	-	-	-	_	-
>= 0.2 mm >= 5 mm >= 10 mm >= 25 mm	17.3 3.4 1.6 0.11	13.1 2.9 1.4 0.28	13.3 4.9 2.7 0.22	13.5 5.1 2.7 0.4	12.7 5.3 2.8 0.35	11.4 5.2 2.8 0.43	11.4 5.4 3.4 0.65	12.9 5.9 3.3 0.76	13.4 5.3 3.2 0.76	14 5 2.5 0.15
Degree Days	_	_	_	_	_					_
Above 24 °C Above 18 °C Above 15 °C Above 10 °C Above 5 °C Above 0 °C Below 0 °C Below 5 °C Below 10 °C Below 15 °C Below 18 °C	0 0 0 0.4 4.9 245.2 395.7 550.3 705.3 798.3	0 0 0 0.6 9.8 207.3 339.1 479.6 620.6 705.3	0 0.3 2.8 15.1 55.7 95.2 209.6 352.4 504.9 597.6	0 1 5 22 73.9 184.3 7.7 47.2 145.3 278.3 364.4	0 9.7 28.9 98.5 226.3 379.8 0 1.6 28.7 114.2 187.9	0.9 32.1 80.1 209 357.7 507.7 0 0 1.3 22.3 64.4	4.2 72.5 148.9 301.8 456.8 611.8 0 0 0 2.2 18.7	$ \begin{array}{r} 1.8\\ 51\\ 117.3\\ 265.9\\ 420.8\\ 575.8\\ 0\\ 0\\ 0\\ 0.1\\ 6.5\\ 33.2\\ \end{array} $	0.3 13.6 40.1 133.3 272.6 422.4 0 0.2 10.9 67.6 131.2	0 0.5 3.3 30.3 108.7 247.6 0.5 16.6 93.1 221.2 311.4
Bright Sunshine	190.3	705.5	597.0	304.4	107.9	04.4	10.7	33.Z	131.2	511.4
Extreme Daily Date (yyyy/dd)	8.7 1984/31	10.3 1982/25	11.2 1982/28	13.5 1976/28	14.7 1977/30	14.6 1976/02	14.3 1977/02	13.9 1976/01	12.6 1991/01	10.5 1983/09

	4.3 0.4 0.2 0	12.3 2.8 0.56 0	50.5 10.3 3.3 0.28	D D D D	
			100 5	_	
	16 5.8 2.8 0.3	17.6 5.3 1.9 0.17	166.5 59.2 31.1 4.6	D D D D	
				_	
	0 0.1 3.9 28.4 98.2 25.7 106 231.5 377.7 467.6	0 0 0.3 3.2 20.7 134.8 272.3 424.5 579.2 672.2	7.3 180.5 424 1067.8 1964.3 3118.5 716.3 1388.2 2317.7 3500 4352.1		
)	9.3 1981/03	8.3 1985/03		D	

CATCHMENTS 201, 202, 204, and 207 to 210 (LANDS TO SOUTHWEST OF FLOW DIVIDE / DRAINING TO THE UPPER HANLON CREEK SUBWATERSHED)

Post-Development

Model Type: Thornthwaite and Mather (1955)

Client: Tricar Developments Inc.

Location Former Catchment 101 (Lands to Southwest of Flow Divide / Draining to Upper Hanlon Creek Subwatershed)

Post-Development Catchments 201, 202, 204, and 207 to 210

Total Site Area (ha) 1.60

Land Description Factors (See end of table for sub-area descriptions)	Sub-Area A	Sub-Area B	Sub-Area C	Sub-Area E	Sub-Area F	Sub-Area G	Sub-Area H	Sub-Area I	Sub-Area X	Total				
Topography	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.00	0.00	0.00	
Soils	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.00	0.00	0.00	0.00	0.00	
Cover	0.20	0.15	0.05	0.05	0.05	0.05	0.05	0.05	0.00	0.00	0.00	0.00	0.00	
Sum (Infiltration Factor) [†]	0.65	0.60	0.50	0.50	0.50	0.50	0.50	0.50	0.00	0.00	0.00	0.00	0.00	
Soil Moisture Capacity (mm)	300	150	75	75	75	75	75	75	0	0	0	0	0	
Site area (ha)	0.00	0.00	0.00	0.10	0.15	0.17	0.28	0.91	0.00	0.00	0.00	0.00	0.00	1.60
Imperviousness Coefficient	0.00	0.00	0.00	0.10	0.50	0.70	0.90	1.00	0.00	0.00	0.00	0.00	0.00	
Impervious Area (ha)	0.00	0.00	0.00	0.01	0.07	0.12	0.25	0.91	0.00	0.00	0.00	0.00	0.00	1.36
Percentage of Total Site Area	0.0%	0.0%	0.0%	0.6%	4.6%	7.3%	15.5%	57.0%	0.0%	0.0%	0.0%	0.0%	0.0%	85%
Remaining Pervious Area (ha)	0.00	0.00	0.00	0.09	0.07	0.05	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.24
Total Pervious Site Area (ha)	0.00	0.00	0.00	0.09	0.07	0.05	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.24
Percentage of Total Site Area	0.0%	0.0%	0.0%	5.5%	4.6%	3.1%	1.7%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	15%
		E.L		•				•	0	0.1		D	Veee	

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Climate Data (Guelph Arboretum Climate Normals	, 1971 - 2000) [‡]												
Average Daily Temperature (°C)	-7.6	-6.9	-1.3	5.9	12.3	16.9	19.7	18.6	14.1	7.9	2.4	-4	6.5
Precipitation (mm)	56.4	50.8	72.1	78.3	79.9	76	88.5	95.9	92.1	69.2	86.3	77.7	923
Potential Evapotranspiration Analysis for Site	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Heat Index	0.0	0.0	0.0	1.3	3.9	6.3	8.0	7.3	4.8	2.0	0.3	0.0	34
Unadjusted Potential Evapotranspiration (mm)	0.0	0.0	0.0	28.4	60.7	84.3	98.8	93.1	69.9	38.4	11.2	0.0	485
Potential Evapotranspiration Adjusting Factor for Latitude*	0.77	0.87	0.99	1.12	1.23	1.29	1.26	1.16	1.04	0.92	0.81	0.75	
Adjusted Potential Evapotranspiration (PET)(mm)	0	0	0	32	75	108	124	108	73	35	9	0	564
Precipitation - PET (mm)	56	51	12	47	5	-32	-36	-12	19	34	(1	78	359

Post-Development Catchment 205 - Portion that only lies to southwest of Surface Water-Groundwater Flow Divide (Figure 16)

Evapotranspiration Analysis													
Sub-Area E	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	28	65	89	94	88	64	31	8	0	466
Pervious Runoff (m ³)	25	22	32	20	2	0	0	0	0	0	35	34	171
Pervious Infiltration (m ³)	0	0	0	133	2	0	0	0	0	0	35	0	171
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	5	5	7	8	8	7	9	9	9	7	8	8	90

CATCHMENTS 201, 202, 204, and 207 to 210 (LANDS TO SOUTHWEST OF FLOW DIVIDE / DRAINING TO THE UPPER HANLON CREEK SUBWATERSHED)

Post-Development Catchment 207 (Figure 16)

Evapotranspiration Analysis													
Sub-Area F	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	24	55	76	79	75	54	26	7	0	395
Pervious Runoff (m ³)	21	19	27	17	2	0	0	0	0	0	30	29	145
Pervious Infiltration (m ³)	0	0	0	113	2	0	0	0	0	0	30	0	145
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	42	38	53	58	59	56	66	71	68	51	64	58	685

Post-Development Catchments 201 and 208 (Figure 16)

Evapotranspiration Analysis													
Sub-Area G	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis													-
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	16	37	51	53	50	36	18	4	0	266
Pervious Runoff (m ³)	14	13	18	12	1	0	0	0	0	0	20	19	97
Pervious Infiltration (m ³)	0	0	0	76	1	0	0	0	0	0	20	0	97
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	66	59	84	91	93	88	103	112	107	81	100	90	1,075

Post-Development Catchment 210 (Figure 16)

Evapotranspiration Analysis													
Sub-Area H	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	9	21	28	30	28	20	10	2	0	148
Pervious Runoff (m ³)	8	7	10	6	1	0	0	0	0	0	11	11	54
Pervious Infiltration (m ³)	0	0	0	42	1	0	0	0	0	0	11	0	54
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	141	127	180	195	199	189	221	239	229	172	215	194	2,300

CATCHMENTS 201, 202, 204, and 207 to 210 (LANDS TO SOUTHWEST OF FLOW DIVIDE / DRAINING TO THE UPPER HANLON CREEK SUBWATERSHED)

Post-Development Catchments 202, 204, 209, and 203 (portion of 203 that only lies to southwest of Surface Water-Groundwater Flow Divide) (Figure 16)

Evapotranspiration Analysis													
Sub-Area I	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Pervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Pervious Infiltration (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	516	465	660	716	731	695	810	877	843	633	790	711	8,447

Lands to Southwest of Flow Divide / Draining to Upper Hanlon Creek Subwatershed

POST-DEVELOPMENT - NO INFILTRATION AUGMENTATION / MITIGATION MEASURES

Post-Development Infiltration	467	m³/yr	29	mm/yr	0.0	L/s
Post-Development Runoff	13,062	m³/yr	814	mm/yr	0.4	L/s
Post-Development Evapotranspiration	1,275	m³/yr	80	mm/yr	0.0	L/s
Total	14,804	m ³ /yr	923	mm/yr	0.5	L/s
Original Precipitation	14,804	m³/yr	923	mm/yr	0.5	L/s
Error	0.000	m³/yr	-0.246	mm/yr	0.000	L/s

PRE-Development Infiltration	3,234	m³/yr
Infiltration Deficit	-2,767	m³/yr
PRE-Development Runoff	3,481	m³/yr
Runoff Surplus	9,581	m³/yr
Runoff Surplus - Adjusted (1)	8,242	m³/yr

Sub-Area Descriptions (topography, soils, cover)	
Sub-Area A	Rolling, Fine Sandy to Silt Loam, Mature Forest
Sub-Area B	Rolling, Fine Sandy to Silt Loam, Pasture and Shrubs
Sub-Area C	Rolling, Fine Sandy to Silt Loam, Urban Lawn, No Impervious Cover
Sub-Area E	Rolling, Fine Sandy to Silt Loam, Urban Lawn, 10% Impervious Cover
Sub-Area F	Rolling, Fine Sandy to Silt Loam, Urban Lawn, 50% Impervious Cover
Sub-Area G	Rolling, Fine Sandy to Silt Loam, Urban Lawn, 70% Impervious Cover
Sub-Area H	Rolling, Fine Sandy to Silt Loam, Urban Lawn, 90% Impervious Cover
Sub-Area I	Rolling, Fine Sandy to Silt Loam, Urban Lawn, 100% Impervious Cover

Note that runoff volume from the are
will be directed to the Torrance Cree
from full rooftop of Building 2 (Catch
Hanlon Creek Subwatershed, will be
post-development

Catchment 205 (Su	ub-Area E	- this Table)	Catchment 203 (r	efer to Table	e 12 for volume calculation)
Total Runoff	260	m³/yr	Total Runoff 62%	1,741 1,079	

Total Runoff volume from portions of Catchments 203 and 205 (located to southwest of flow divide) that will beflowing to Torrance Creek Subwatershed post-development = $1,340 \text{ m}^3/\text{yr}$ This runoff volume has been subtracted from the calculated surplus presented above.

POST-DEVELOPMENT - WITH INFILTRA	TION AUGM	IENTATION	/ MITIGATIO	ON MEASURES
Land Description Factors	Catchment	Catchment	Catchment	Stormwater runoff captured by these Catchment impervous surfaces will be directed to the South Infiltration Gallery
(Sub-Area I)	202	204	209	Stornwater runon captured by these Catchinerit impervous surfaces will be directed to the South minitation Gallery
Topography	0.20	0.20	0.20	
Soils	0.25	0.25	0.25	
Cover	0.05	0.05	0.05	
Sum (Infiltration Factor) [†]	0.50	0.50	0.50	
Soil Moisture Capacity (mm)	75	75	75	
Catchment Area (ha)	0.249	0.501	0.117	
Imperviousness Coefficient	1.00	1.00	1.00	
Impervious Area (ha)	0.249	0.501	0.117	
Percentage of Catchment Area	29%	58%	14%	
Remaining Pervious Area (ha)	0.00	0.00	0.00	
Total Pervious Site Area (ha)	0.00	0.00	0.00	
Percentage of Catchment Area	0.0%	0.0%	0.0%	Catchment Area = 0.867 ha

rea of Catchment 205 (Sub-Area E) accounted for in this table eek Subwatershed post-development. Runoff generated from chment 203), of which 62% covers the lands draining to the be directed to the Torrance Creek Subwatershed

CATCHMENTS 201, 202, 204, and 207 to 210 (LANDS TO SOUTHWEST OF FLOW DIVIDE / DRAINING TO THE UPPER HANLON CREEK SUBWATERSHED)

Evapotranspiration Analysis													
Catchment 202 (Sub-Area I)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis		-	-	-	-	-	-	-	-		-	-	
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
	0	0	0	0	0	0	0	0	0	0	0	0	0
Pervious Evapotranspiration (m ³)	0	0	0		-	0	•	•	-	0	0	Ũ	-
Pervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Pervious Infiltration (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	140	126	179	195	199	189	220	239	229	172	215	193	2,297
										. –			,
Evapotranspiration Analysis													
Catchment 204 (Sub-Area I)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)		0		0	0	-32	-68	-81	-39	4	0	0	(eai
	75	0 75	75	0 75	0 75		-68 30	-81	-39 45	4 79	0 75	0 75	
Storage (S)						49							
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis			-			-		-				-	
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Pervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Pervious Infiltration (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	283	255	361	392	400	381	444	481	462	347	433	389	4,627
Evapotranspiration Analysis										•			
Catchment 209 (Sub-Area I)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Pervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	n n
		0	0	•	0	0	0	0	0	0	0	0	
Pervious Infiltration (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	U O
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	66	60	85	92	94	89	104	112	108	81	101	91	1,083

Precipitation captured by Catchment 202 (Building 1) and Catchments 204 and 209 (Paved Areas) that is directed to the South Infiltration Gallery post-development

Monthly Summary (m ³)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	
Post-Development Runoff (R)	489	441	625	679	693	659	768	832	799	600	
Assumption that 80% Reaches Gallery	391	352	500	543	554	527	614	665	639	480	
					-	-			_		

Pre- to Post INFILTR Pre- to Post Infiltration (Wit

Pre- to Post Rl

Pre- to Post Infiltration (With

Nov	Dec	Year					
748	674	8,007					
599	539	6,406					
RATION (N	o Mitigation) =	-2,767					
/ith East Ga	llery Inputs) =	3,638					
RUNOFF (N	8,242						
th South Ga	h South Gallery Inputs) =						

TABLE 12 - POST-DEVELOPMENT MONTHLY WATER BALANCE CALCULATIONS CATCHMENTS 201, 202, 204, and 207 to 210 (LANDS TO SOUTHWEST OF FLOW DIVIDE / DRAINING TO THE UPPER HANLON CREEK SUBWATERSHED)

Notes:

+ Infiltration factors after Ontario Ministry of the Environment, 2003. Stormwater Management Planning and Design Manual. March 2003.; and Ontario Ministry of Environment and Energy (MOEE). 1995. MOEE Hydrogeological Technical Information Requirements for Land Development Applications. April 1995.

* PET adjustment factors after Thornthwaite, C.W., and J.R. Mather, 1957. Instructions and Tables for Computing Potential Evapotranspiration and the water balance. Drexel Institute of Technology, Laboratory of Climatology, Publications in Climatology, Volume X, No. 3. Centerton, New Jersey.

[‡] Climate Data after Environment Canada, 2022. Canadian Climate Normals 1971-2000, Guelph Arboretum Station, Climate ID 6143069. [Online] http://climate.weather.gc.ca/climate_normals/index_e.html Accessed February 8, 2022.

Assumptions:

[1] The monthly average precipitation collected at the Guelph Arboretum climate station is reflective of the precipitation trends that have historically occurred at the Site.

[2] Surplus water is not available for runoff and recharge during months where water losses from actual evapotranspiration exceed precipitation inputs.

[3] Runoff, infiltration and evapotranspiration do not occur in months where the average daily temperature is below 0°C, which is the case for the months of December through March at the Site.

[4] Precipitation during freezing months (i.e., December to March) is assumed to accumulate as snow and result in additional precipitation in the first month thereafter where the average temperature is greater than 0°C (i.e., April).

[5] Soil moisture capacity is at a maximum in April.

TABLE 13 - POST-DEVELOPMENT MONTHLY WATER BALANCE CALCULATIONS CATCHMENTS 203, 205, and 206 (LANDS TO NORTHEAST OF FLOW DIVIDE / DRAINING TO THE TORRANCE CREEK SUBWATERSHED)

Post-Development

Model Type: Thornthwaite and Mather (1955)

Client: Tricar Developments Inc.

Location Former Catchment 102 (Lands to Northeast of Surface Water-Groundwater Flow Divide / Draining to Torrance Creek Subwatershed) Post-Development Catchments 203, 205, and 206

Total Site Area (ha) 1.73

Land Description Factors (Sub-area descriptions provided below)	Sub-Area A	Sub-Area B	Sub-Area C	Sub-Area E	Sub-Area F	Sub-Area G	Sub-Area H	Sub-Area I	Sub-Area X	Sub-Area X	Sub-Area X	Sub-Area X	Total
Topography	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.00	0.00	
Soils	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.00	0.00	0.00	0.00	
Cover	0.20	0.15	0.05	0.05	0.05	0.05	0.05	0.05	0.00	0.00	0.00	0.00	
Sum (Infiltration Factor) [†]	0.65	0.60	0.50	0.50	0.50	0.50	0.50	0.50	0.00	0.00	0.00	0.00	
Soil Moisture Capacity (mm)	300	150	75	75	75	75	75	75	0	0	0	0	
Site area (ha)	0.82	0.35	0.24	0.13	0.00	0.00	0.10	0.09	0.00	0.00	0.00	0.00	1.73
Imperviousness Coefficient	0.00	0.00	0.00	0.10	0.50	0.70	0.90	1.00	0.00	0.00	0.00	0.00	
Impervious Area (ha) Percentage of Total Site Area Remaining Pervious Area (ha)	0.00 0.0% 0.82	0.00 0.0% 0.35	0.00 0.0% 0.24	0.01 0.8% 0.12	0.00 0.0% 0.00	0.00 0.0% 0.00	0.09 5.1% 0.01	0.09 5.3% 0.00	0.00 0.0% 0.00	0.00 0.0% 0.00	0.00 0.0% 0.00	0.00 0.0% 0.00	0.19 11.1% 1.54
Total Pervious Site Area (ha) Percentage of Total Site Area	0.82 47.6%	0.35 20.35%	0.24 13.6%	0.12 6.8%	0.00 0.0%	0.00 0.0%	0.01 0.6%	0.00 0.0%	0.00 0.0%	0.00 0.0%	0.00 0.0%	0.00 0.0%	1.54 88.9%
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Climate Data (Guelph Arboretum Climate Normal													
Average Daily Temperature (°C)	-7.6	-6.9	-1.3	5.9	12.3	16.9	19.7	18.6	14.1	7.9	2.4	-4	6.5

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	
Climate Data (Guelph Arboretum Climate Normals	, 1971 - 2000) [‡]										
Average Daily Temperature (°C)	-7.6	-6.9	-1.3	5.9	12.3	16.9	19.7	18.6	14.1	7.9	
Precipitation (mm)	56.4	50.8	72.1	78.3	79.9	76	88.5	95.9	92.1	69.2	

Average Daily Temperature (°C)	-7.6	-6.9	-1.3	5.9	12.3	16.9	19.7	18.6	14.1	7.9	2.4	-4	6.5
Precipitation (mm)	56.4	50.8	72.1	78.3	79.9	76	88.5	95.9	92.1	69.2	86.3	77.7	923
Potential Evapotranspiration Analysis for Site	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Heat Index	0.0	0.0	0.0	1.3	3.9	6.3	8.0	7.3	4.8	2.0	0.3	0.0	34
Unadjusted Potential Evapotranspiration (mm)	0.0	0.0	0.0	28.4	60.7	84.3	98.8	93.1	69.9	38.4	11.2	0.0	485
Potential Evapotranspiration Adjusting Factor for Latitude*	0.77	0.87	0.99	1.12	1.23	1.29	1.26	1.16	1.04	0.92	0.81	0.75	
Adjusted Potential Evapotranspiration (PET)(mm)	0	0	0	32	75	108	124	108	73	35	9	0	564
Precipitation - PET (mm)	56	51	72	47	5	-32	-36	-12	19	34	77	78	359

Evapotranspiration Analysis													
Sub-Area A	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-56	-18	0	0	
Storage (S)	300	300	300	300	300	269	239	229	249	283	300	300	
Change in Storage	0	0	0	0	0	-31	-30	-10	19	34	17	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	107	119	106	73	35	9	0	554
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	60	78	369
Potential Infiltration (I)	37	33	47	30	3	0	0	0	0	0	39	51	240
Potential Direct Surface Water Runoff (R)	20	18	25	16	2	0	0	0	0	0	21	27	129
Potential Infiltration (mm)	0	0	0	197	3	0	0	0	0	0	39	0	240
Pervious Evapotranspiration (m ³)	0	0	0	261	613	878	978	869	599	290	74	0	4,562
Pervious Runoff (m ³)	162	146	208	134	15	0	0	0	0	0	172	224	1,062
Pervious Infiltration (m ³)	0	0	0	1624	29	0	0	0	0	0	320	0	1,972
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0

TABLE 13 - POST-DEVELOPMENT MONTHLY WATER BALANCE CALCULATIONS CATCHMENTS 203, 205, and 206 (LANDS TO NORTHEAST OF FLOW DIVIDE / DRAINING TO THE TORRANCE CREEK SUBWATERSHED)

Evapotranspiration Analysis													
Sub-Area B	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-51	-9	0	0	
Storage (S)	150	150	150	150	150	121	95	88	107	141	150	150	
Change in Storage	0	0	0	0	0	-29	-26	-8	19	34	9	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	105	114	104	73	35	9	0	546
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	68	78	377
Potential Infiltration (I)	34	30	43	28	3	0	0	0	0	0	41	47	226
Potential Direct Surface Water Runoff (R)	23	20	29	19	2	0	0	0	0	0	27	31	151
Potential Infiltration (mm)	0	0	0	182	3	0	0	0	0	0	41	0	226
Pervious Evapotranspiration (m ³)	0	0	0	112	262	370	402	364	256	124	32	0	1,923
Pervious Runoff (m ³)	79	72	102	66	8	0	0	0	0	0	96	109	531
Pervious Infiltration (m ³)	0	0	0	641	11	0	0	0	0	0	144	0	797
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0

Evapotranspiration Analysis	1												
Sub-Area C	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	75	176	241	252	237	172	83	21	0	1,258
Pervious Runoff (m ³)	67	60	85	55	6	0	0	0	0	0	96	92	460
Pervious Infiltration (m ³)	0	0	0	358	6	0	0	0	0	0	96	0	460
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0

Evapotranspiration Analysis	1												
Sub-Area E	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	37	88	121	126	119	86	42	11	0	629
Pervious Runoff (m ³)	33	30	43	27	3	0	0	0	0	0	48	46	230
Pervious Infiltration (m ³)	0	0	0	179	3	0	0	0	0	0	48	0	230
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	7	7	9	10	10	10	12	13	12	9	11	10	121

TABLE 13 - POST-DEVELOPMENT MONTHLY WATER BALANCE CALCULATIONS CATCHMENTS 203, 205, and 206 (LANDS TO NORTHEAST OF FLOW DIVIDE / DRAINING TO THE TORRANCE CREEK SUBWATERSHED)

Evapotranspiration Analysis													
Sub-Area F	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Pervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Pervious Infiltration (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0

Evapotranspiration Analysis													
Sub-Area G	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Pervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Pervious Infiltration (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0

Evapotranspiration Analysis]												
Sub-Area H	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	3	7	10	10	10	7	3	1	0	52
Pervious Runoff (m ³)	3	2	3	2	0	0	0	0	0	0	4	4	19
Pervious Infiltration (m ³)	0	0	0	15	0	0	0	0	0	0	4	0	19
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	49	44	63	68	70	66	77	84	80	60	75	68	807

TABLE 13 - POST-DEVELOPMENT MONTHLY WATER BALANCE CALCULATIONS CATCHMENTS 203, 205, and 206 (LANDS TO NORTHEAST OF FLOW DIVIDE / DRAINING TO THE TORRANCE CREEK SUBWATERSHED)

Evapotranspiration Analysis													
Sub-Area I	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Pervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Pervious Infiltration (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	51	46	66	71	73	69	81	87	84	63	79	71	840

POST-DEVELOPMENT - NO INFILTRATION	ON AUGME	NTATION /	MITIGATIO	N MEASUR	ES	
Post-Development Infiltration (INF)	3,459	m³/yr	200	mm/yr	0.1	L/s
Post-Development Runoff (R)	4,070	m³/yr	235	mm/yr	0.1	L/s
Post-Development Evapotranspiration (ET)	8,424	m³/yr	487	mm/yr	0.3	L/s
Total = INF + R + ET	15,952	m³/yr	922	mm/yr	0.5	L/s
Precipitation	15,971	m³/yr	923	mm/yr	0.5	L/s
Error	-19	(m ³ /yr)	-1	mm/yr	-0.001	L/s

PRE-Development Infiltration	3,993	m³/yr
Infiltration Deficit	-534	m³/yr
PRE-Development Runoff	2,542	m³/yr
Runoff Surplus	1,528	m ³ /yr

Sub-Area Descriptions (topography, soil	s, cover)
Sub-Area A	Rolling, Fine Sandy to Silt Loam, Mature Forest
Sub-Area B	Rolling, Fine Sandy to Silt Loam, Pasture and Shrubs
Sub-Area C	Rolling, Fine Sandy to Silt Loam, Urban Lawn, No Impervious Cover
Sub-Area E	Rolling, Fine Sandy to Silt Loam, Urban Lawn, 10% Impervious Cover
Sub-Area F	Rolling, Fine Sandy to Silt Loam, Urban Lawn, 50% Impervious Cover
Sub-Area G	Rolling, Fine Sandy to Silt Loam, Urban Lawn, 70% Impervious Cover
Sub-Area H	Rolling, Fine Sandy to Silt Loam, Urban Lawn, 90% Impervious Cover
Sub-Area I	Rolling, Fine Sandy to Silt Loam, Urban Lawn, 100% Impervious Cover

TABLE 13 - POST-DEVELOPMENT MONTHLY WATER BALANCE CALCULATIONS CATCHMENTS 203, 205, and 206 (LANDS TO NORTHEAST OF FLOW DIVIDE / DRAINING TO THE TORRANCE CREEK SUBWATERSHED)

POST-DEVELOPMENT - WITH INFILTRATION AUGMENTATION / MITIGATION MEASURES

Land Description Factors	Catchment	
(Sub-Area I)	203	
Topography	0.20	
Soils	0.25	
Cover	0.05	
Sum (Infiltration Factor) [†]	0.50	
Soil Moisture Capacity (mm)	75	
Catchment Area (ha)	0.236	= area located northeast of groundwater flow divide (0.091 ha) + area located southwest of groundflow flow divide (0.145 ha)
Imperviousness Coefficient	1.00	
Impervious Area (ha)	0.236	
Percentage of Catchment Area	100%	
Remaining Pervious Area (ha)	0.00	
Total Pervious Site Area (ha)	0.00	
Percentage of Catchment Area	0.0%	Catchment Area = 0.236 ha

Evapotranspiration Analysis													
Catchment 203 (Sub-Area I)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-32	-68	-81	-39	4	0	0	
Storage (S)	75	75	75	75	75	49	30	26	45	79	75	75	
Change in Storage	0	0	0	0	0	-26	-18	-5	19	34	-4	0	
Actual Evapotranspiration (mm)	0	0	0	32	75	102	107	101	73	35	9	0	533
Recharge/Runoff Analysis													
Water Surplus (mm)	56	51	72	47	5	0	0	0	0	0	81	78	390
Potential Infiltration (I)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Direct Surface Water Runoff (R)	28	25	36	23	3	0	0	0	0	0	41	39	195
Potential Infiltration (mm)	0	0	0	152	3	0	0	0	0	0	41	0	195
Pervious Evapotranspiration (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Pervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Pervious Infiltration (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Evaporation (mm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Potential Impervious Runoff (mm)	56	51	72	78	80	76	89	96	92	69	86	78	923
Impervious Runoff (m ³)	133	120	170	185	188	179	209	226	217	163	203	183	2,176

Precipitation captured by Catchment 203 (Building 2) that is directed to the East Infiltration Gallery

Monthly Summary (m ³)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Post-Development Runoff (R)	133	120	170	185	188	179	209	226	217	163	203	183	2,176
Assumption that 80% Reaches Gallery	106	96	136	148	151	143	167	181	174	130	163	147	1,741
				-						Pre- to Pos	st Infiltration (No	o Mitigation) =	-534
									Pre- to I	Post Infiltration	ı (With East Ga	llery Inputs) =	1,207

Notes:

+ Infiltration factors after Ontario Ministry of the Environment, 2003. Stormwater Management Planning and Design Manual. March 2003.; and Ontario Ministry of Environment and Energy (MOEE). 1995. MOEE Hydrogeological Technical Information Requirements for Land Development Applications. April 1995.

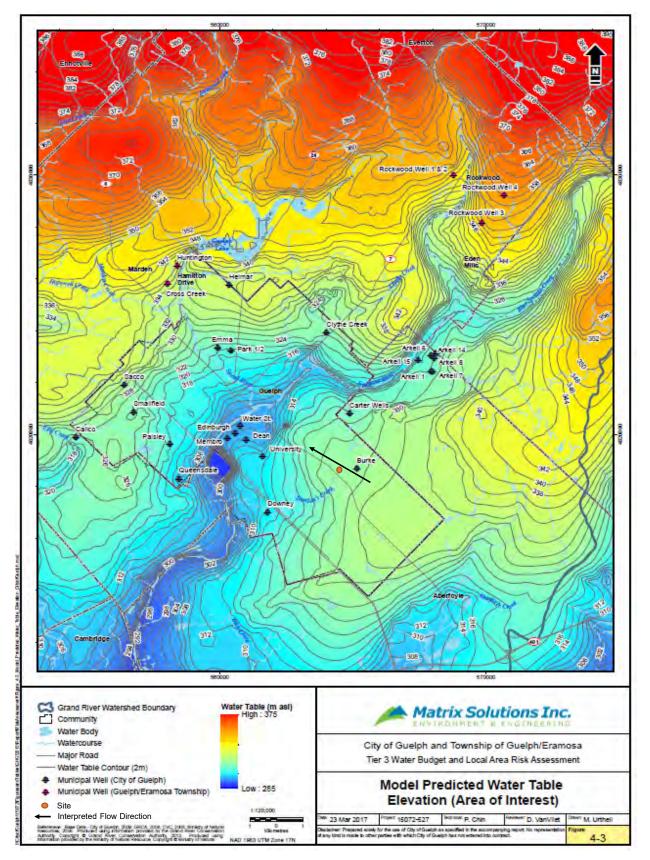
* PET adjustment factors after Thornthwaite, C.W., and J.R. Mather, 1957. Instructions and Tables for Computing Potential Evapotranspiration and the water balance. Drexel Institute of Technology, Laboratory of Climatology, Publications in Climatology, Volume X, No. 3. Centerton, New Jersey.

[‡] Climate Data after Environment Canada, 2022. Canadian Climate Normals 1971-2000, Guelph Arboretum Station, Climate ID 6143069. [Online] http://climate.weather.gc.ca/climate_normals/index_e.html Accessed February 8, 2022.

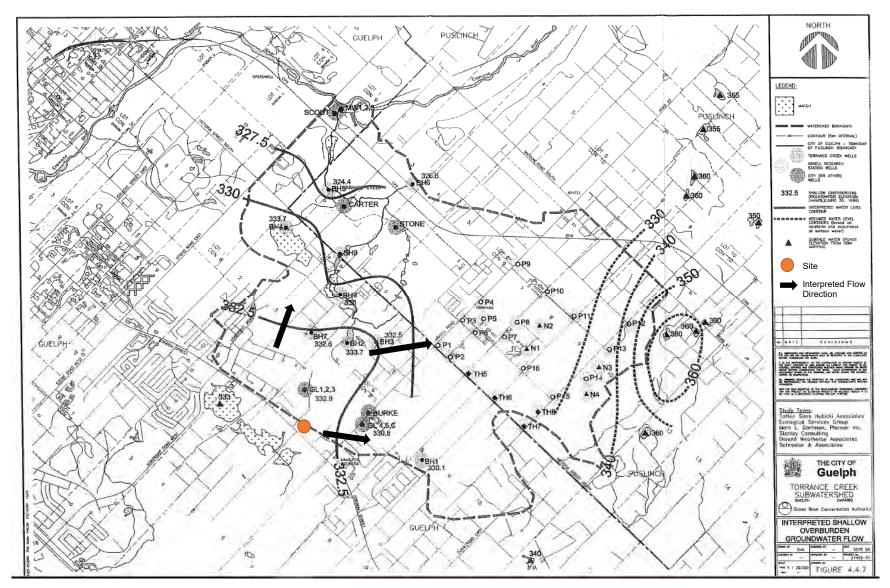
Assumptions:

[1] The monthly average precipitation collected at the Guelph Arboretum climate station is reflective of the precipitation trends that have historically occurred at the Site.

[2] Surplus water is not available for runoff and recharge during months where water losses from actual evapotranspiration exceed precipitation inputs.

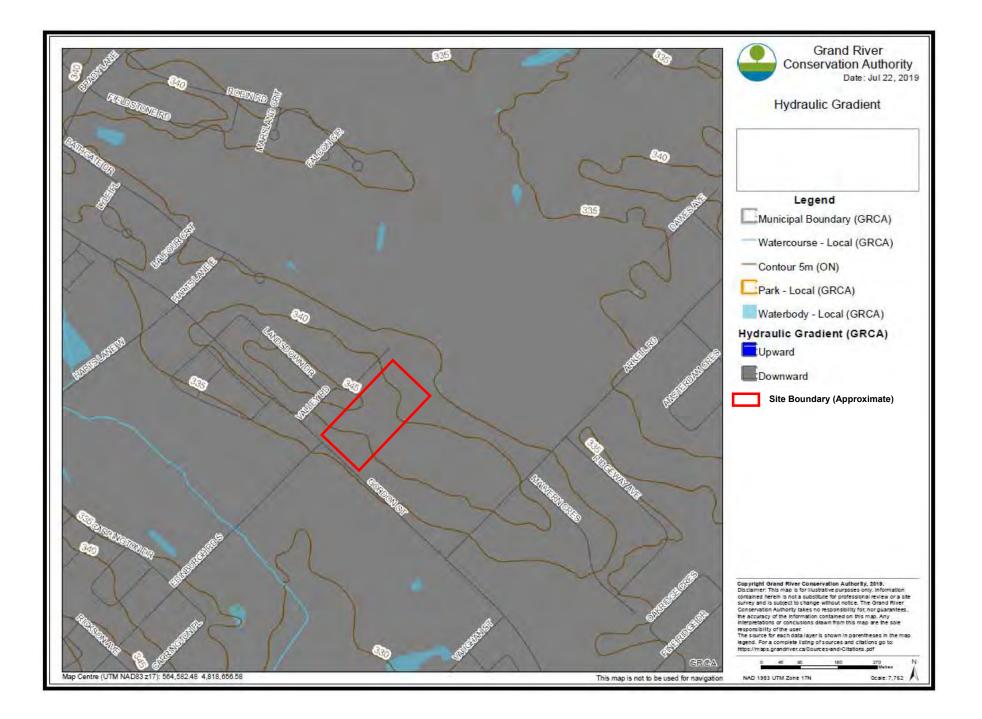

[3] Runoff, infiltration and evapotranspiration do not occur in months where the average daily temperature is below 0°C, which is the case for the months of December through March at the Site.

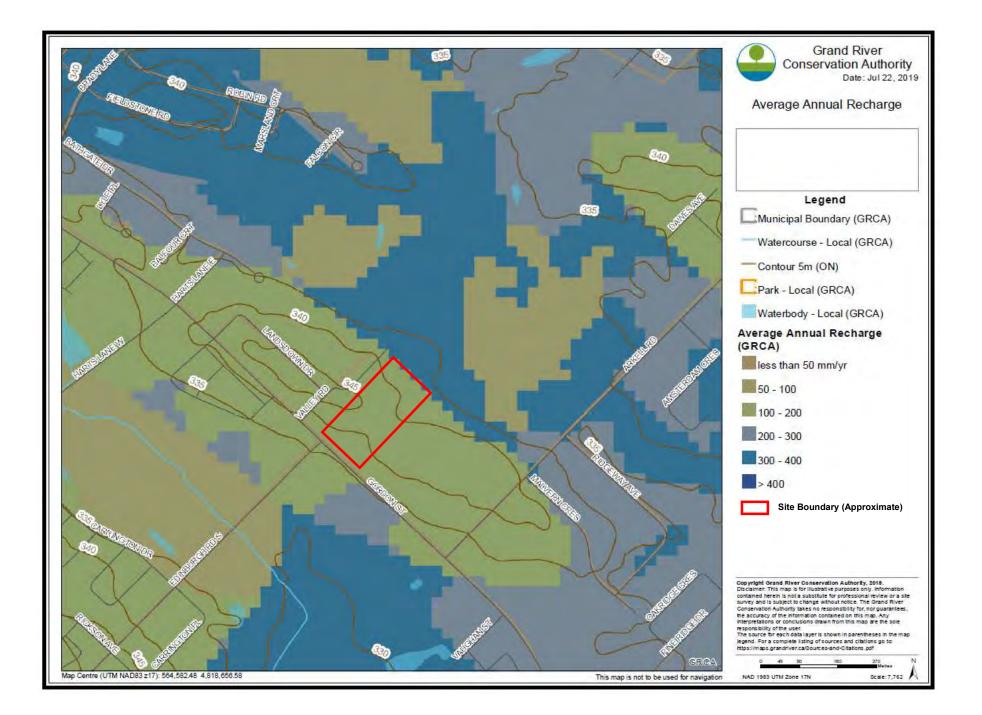
[4] Precipitation during freezing months (i.e., December to March) is assumed to accumulate as snow and result in additional precipitation in the first month thereafter where the average temperature is greater than 0°C (i.e., April). [5] Soil moisture capacity is at a maximum in April.


TABLE 14 - GROUNDWATER MOUNDING ANALYSIS

Storm Event					Groun	dwater Mou	nding H	leight Above	e Seasoi	nal High Wa	ter Table	at Distance	e (d) fron	n Center of I	nfiltrati	on Gallery				
	Infiltration Period ⁽¹⁾	d = 0 m	d	= 6 m	d =	12 m	d	= 15 m	d	= 18 m	d =	= 21 m	d :	=24 m	d	= 27 m	d	= 30 m	d =	= 36 m
	(days)	(m) (m AMSL)	(m)	(m AMSL)	(m)	(m AMSL)	(m)	(m AMSL)	(m)	(m AMSL)	(m)	(m AMSL)	(m)	(m AMSL)	(m)	(m AMSL)	(m)	(m AMSL)	(m)	(m AMSL)
East Infiltration	on Trench																			
Obvert (Top) E	Elevation =	341.51 m AMSL																		
Invert (Base)	Elevation =	340.51 m AMSL																		
High Groundw	vater =	339.51 m AMSL	as estin	nated from	MW102-2	1														
25 mm	0.52	0.40 339.91	0.21	339.72	0.08	339.59	0.05	339.56	0.03	339.54	0.01	339.52	0.01	339.52	0.00	339.51	0.00	339.51	0.00	339.51
South Infiltra	tion Trench		-											·		•				
Obvert (Top) E	Elevation =	m AMSL																		
Invert (Base)	Elevation =	340.89 m AMSL																		
High Groundw	vater =	339.89 m AMSL	as estin	nated from	MW101-2	1														
25 mm	0.64	0.70 340.59	0.49	340.38	0.21	340.10	0.13	340.02	0.08	339.97	0.05	339.94	0.03	339.92	0.01	339.90	0.01	339.90	0.00	339.89
		· · · · · · · · · · · · · · · · · · ·			-															

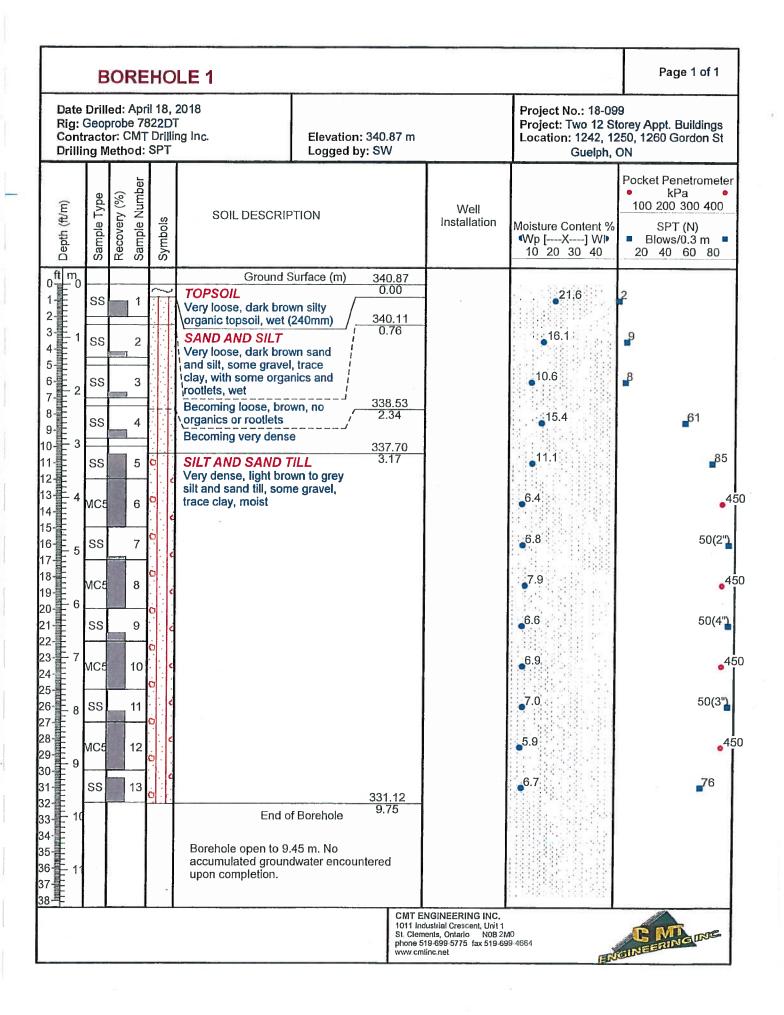
APPENDIX C: REGIONAL GROUNDWATER FLOW MAPPING

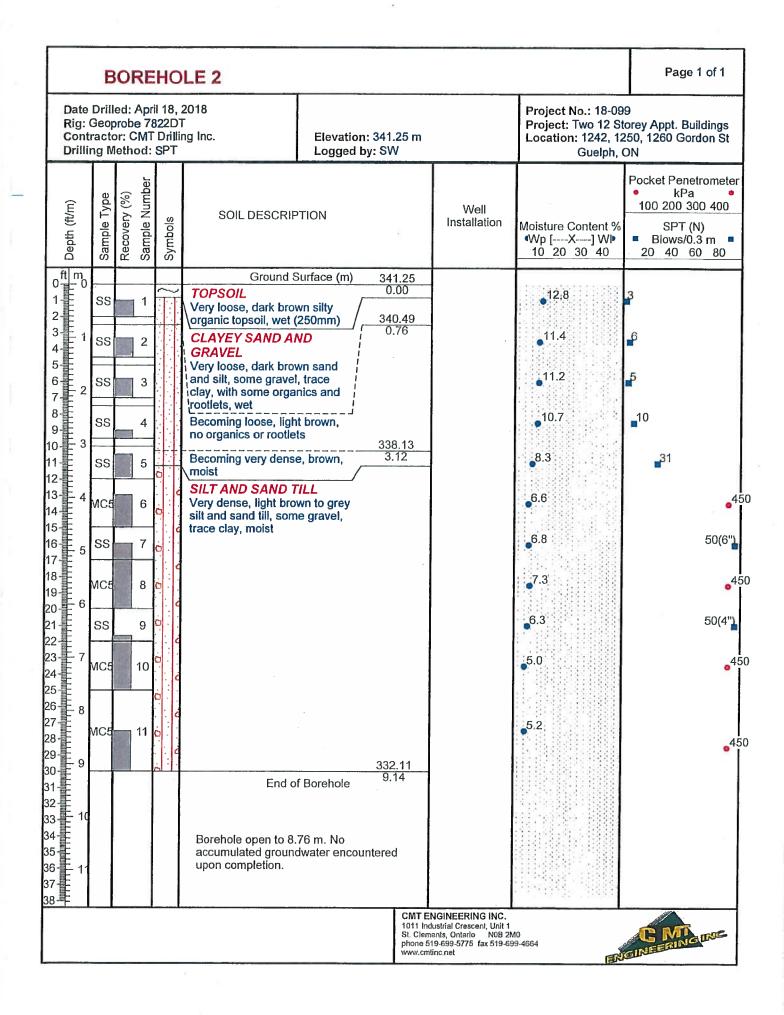



Source: Matrix Solutions Inc. 2017. City of Guelph and Township of Guelph/Eramosa Tier Three Water Budget and Local Area Risk Assessment.

Source: Totten Sims Hubicki Associates, Ecological Services Group, Ray Blackport, Mark L. Dorfman Planner Inc., Shroeter & Associates, and Donald G. Weatherbe Associates. 1998. Torrance Creek Subwatershed Study - Management Study. Prepared for City of Guelph and Grand River Conservation Authority, September 1998, September 1998, Revised November 1998.

APPENDIX D: REGIONAL GROUNDWATER RECHARGE MAPPING



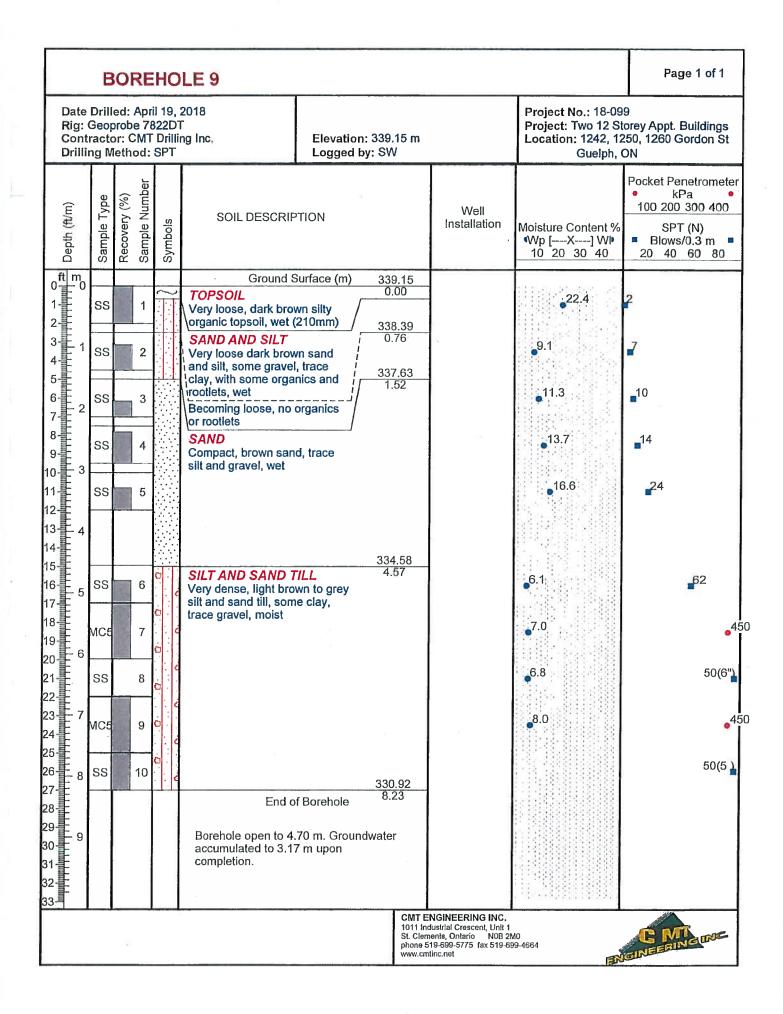


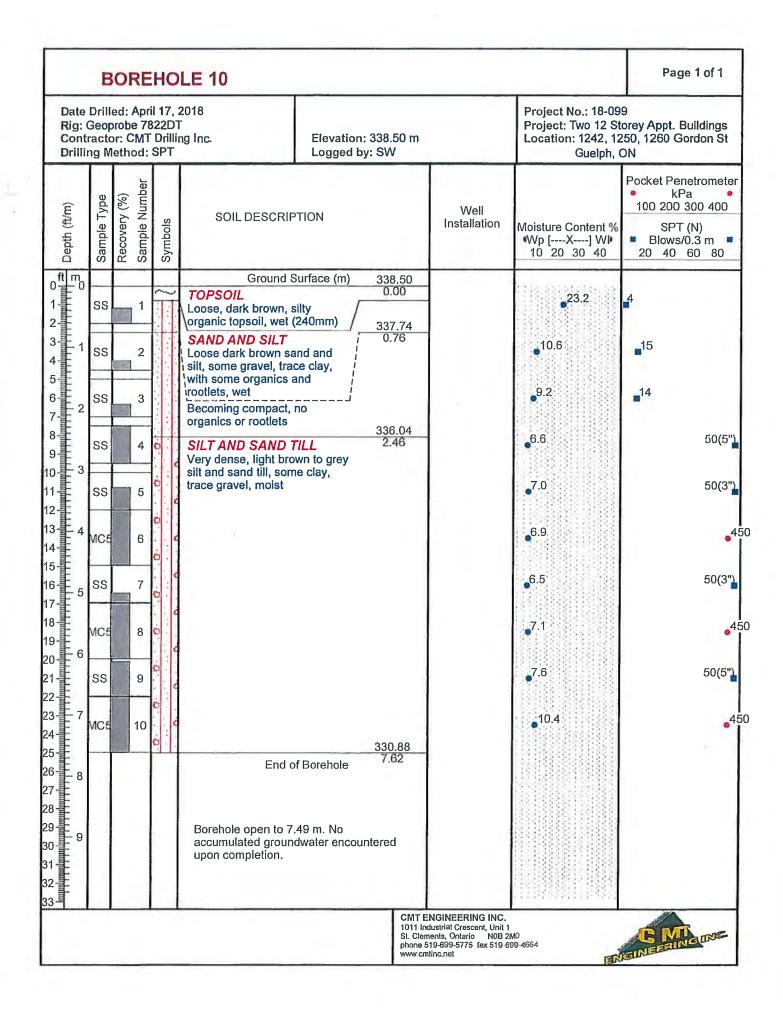
APPENDIX E: BOREHOLE LOGS

inkell Rd. Well #21) '	2100		6. Nº :	983 -	PW2/66(COG)
Nontario Water Resource	es Co	mmission Ad	:t	\sim /		<u> </u>
WATED WELL		RFCO	RD	X	d'al n'h	Burke Wall
si- 12-31 Litellington	mship,	, Village, Tov	vn or City	XX.UITY OI		
	e com	Diction in the	∩÷h ∆uror	16400 - CCC	,	
	-	Guelph.	Ont	·····		
n Lot				Test		
Casing and Screen Record				3.7.2		
	Statio	c level . LC	1000		G.P.M.	
ot length of casing		pumping	20 IU I	T THOMOD		
vine of screen	Dur	ation of test P	oumping 27	hours	•••	
ength of screen	Wat	er clear or clo	oudy at end of	test clear		
)e to top of screen nil	Rec	commended F	oumping rate	800	Cr. 7 . 191.	
)iameter of finished hole 12 inch	wit	h pump settir	ng of 100	feet below	w ground surface	
				1	Record Kind of water	
Well Log		From	To 4 ft.	Depth(s) at which water(s) found	(fresh, salty, sulphur)	
black muck and grand Bedrock Record		0 ft. -4	24	136 ft	fresh	
- anovel		-24				
sandy blue clay blue clay		-55	64			
		64 95	104			
dark brown rock dark brown & black rock		104 140	140 			-
dork grev rock		b45	-258			-
dark blue rock blue shale		253				-
			Locatio	n of Well	1 NORTH	-
Ty what purpose(s) is the water to be used?		In diag	- halow cho	w distances of v	ven nom -v	
Corporation of the offs		road a	nd lot line. 1	indicate north b	y arrow.	
well on upland, in valley, or on hillside?			_			
illing or Boring Firm Graham Well Drilling		VIATO	KIN RD.	CON. IX	<u>}</u>	
				CONTUN		
ddress Guelph Ont.		4 -	,	7	10 12	
2076		Д9	46			• •
ATTNUP TILUS				4.4 BC-	× °el	
Eremosa Rd. <u>Gueipn Unv</u>				Kernel us	× ¥ K	,
Aug 31st 1966						والمراجع والمنافع والمراجع والمنافع والمنافع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع
$\tau \tau c - D P T ' C C C C C C C C C C C C C C C C C C$		}	Highrany	# 6		
(Signature of Licensed Drilling or Boring Contractor)		• .		a.		
7 15M-50-4138	ł			a		•
OWRC COPY	ļ	•				
······································						
					a sa ta s	
	1. S. S.					

,

Date Drilled: April 17,	2018				0
Rig: Geoprobe 7822D Contractor: CMT Drill Drilling Method: SPT	T ing Inc.	Elevation: 340.76 п Logged by: SW	1	Project No.: 18-09 Project: Two 12 St Location: 1242, 12 Guelph, 0	orey Appt. Buildings 250, 1260 Gordon St
Depth (ft/m) Sample Type Recovery (%) Sample Number Symbols	SOIL DESCRIF Ground S	PTION Surface (m) 340.76	Well Installation	Moisture Content % ●Wp [X] W 10 20 30 40	Pocket Penetromete
ft m 0 SS 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TOPSOIL Loose, dark brown s topsoil, moist (240m SAND AND SILT Loose, dark brown s silt, some gravel, tra- wet Becoming very dens	0.00 ilty organic m) and and ce clay, 338.17		15.9 .12.7 .12.3 7.7 8.3	6 10 4 18 82
SS 5 4 MCE 6 5 SS 7 6 MCE 8 6 SS 9 0 7 7 MCE 10	SILT AND SAND T Very dense, light bro silt and sand till, som trace clay, moist	wn to grey		6.9 6.2 6.8 7.3 8.3	50(3") 50(4")
8 SS 11 0 MC5 12 0	End o Cave at 8.05 m. No groundwater encou completion.			6 .5 7 .4	50(3") 50(2")

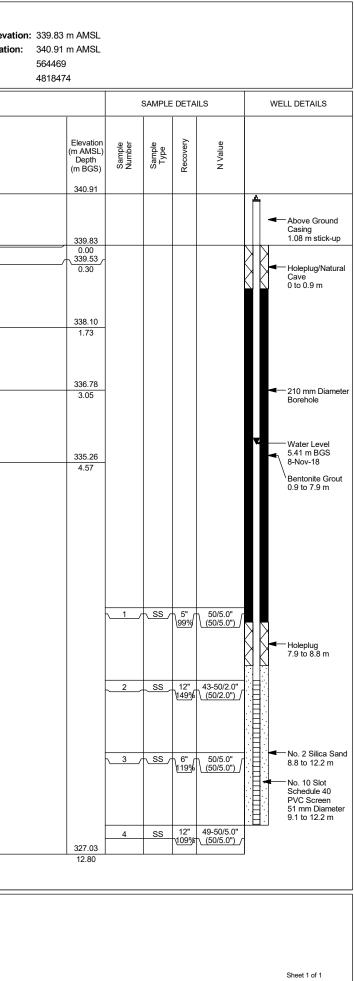

Rig:	Geop racto	orob or: C	e 78 MT	Drilli	- ng Inc. Eie	evation: 342.45 m gged by: SW		Project No.: 18-09 Project: Two 12 St Location: 1242, 12 Guelph,	orey Appt. Building 50, 1260 Gordon
Depth (ft/m)	Sample Type	Recovery (%)	Sample Number	Symbols	SOIL DESCRIPTION		Well Installation	Moisture Content % ●Wp [X] Wi 10 20 30 40	Pocket Penetrome
international and the second	SS SS SS SS SS MCE SS MCE SS SS MCE		7 8 9 10 11		Ground Surface TOPSOIL Very loose, dark brown silt organic topsoil, wet (210m) SAND AND SILT Very loose dark brown san and silt, some gravel, trace clay, with some organics a irootilets, wet No organics or rootlets Becoming compact, brown SILT AND SAND TILL Very dense, light brown to silt and sand till, some clay trace gravel, moist End of Bore	$\begin{array}{c c} 0.00 \\ y \\ m) & 341.69 \\ 0.76 \\ 1 \\ 0.76 \\ 1 \\ 1.52 \\ 1 \\ 1.52 \\ 1 \\ 1.52 \\ 1 \\ 2.31 \\ 340.14 \\ \\ 2.31 \\ grey \\ 7 \\ 7 \\ 1 \\ 333.31 \\ 0.14 \\ \end{array}$		13,1 12.0 9.3 7.0 7.3 8.4 8.3 6.7 6.6 7.6 7.6 7.7 6.7	3 10 61 50(70 50(50(
					Borehole open to 8.89 m. accumulated groundwater upon completion.		4		


BOREHC	DLE 5				Page 1 of 1
Date Drilled: April 19, Rig: Geoprobe 7822D Contractor: CMT Drill Drilling Method: SPT	T ing Inc.	Elevation: 341.62 m Logged by: SW		Project No.: 18-09 Project: Two 12 St Location: 1242, 12 Guelph,	orey Appt. Buildings 250, 1260 Gordon St
Depth (ft/m) Sample Type Recovery (%) Sample Number Symbols	SOIL DESCRIF	PTION	Well Installation	Moisture Content % ≪Wp [X] W⊮ 10_20_30_40	Pocket Penetrometer
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TOPSOIL Loose, dark brown s topsoil, wet (210mm SAND AND SILT Loose, dark brown s silt, some gravel, tra with some organics a rootlets, wet Becoming compact, organics or rootlets Becoming dense, bro SILT AND SAND T Very dense, light bro silt and sand till, som trace gravel, moist	340.86 0.76 and and ce clay, and no 338.57 own, moist 3.05 338.11 <i>TLL</i> 3.51 wn to grey e clay, and 338.57 338.11 <i>TLL</i> 3.51 wn to grey e clay, 332.48 f Borehole 9.14 accumulated		9,8 ,11. ,12.7 7.5 7.5 7.5 7.3 6.2 5.6 6.6 5.9	7 10 26 34 50(5') 45 50(4'') 45 50(4'') 45

BOREHO)LE 6				Page 1 of 1
Date Drilled: April 19, Rig: Geoprobe 7822D Contractor: CMT Drill Drilling Method: SPT	T ing Inc.	Elevation: 340.48 m Logged by: SW		Project No.: 18-09 Project: Two 12 St Location: 1242, 12 Guelph, 0	orey Appt. Buildings 250, 1260 Gordon St
Depth (ft/m) Sample Type Recovery (%) Sample Number Symbols	SOIL DESCRIF	PTION	Well Installation	Moisture Content % ●Wp [X] W∳ 10 20 30 40	Pocket Penetrometer
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TOPSOIL Loose, dark brown s topsoil, wet (190mm) SAND AND SILT Very loose, dark brown and silt, some gravel clay, with some orgat rootlets, wet Becoming compact, organics or rootlets SAND Dense, brown sand, moist Becoming wet SAND AND SILT Compact, brown san some gravel, trace c SILT AND SAND T Very dense, light bro silt and sand till, som trace gravel, moist End of Borehole open to 8	339.72 0.76 wn sand 1.trace nics and 338.65 1.83 no trace silt, 337.43 trace silt, 335.60 7/LL 4.88 wn to grey te clay, 331.34 9.14 69 m. No dwater encountered		20.1 9.5 6.0 10.6 13.8 8.6 7.4 7.4 7.5 7.6 7.6 7.6 7.4 7.4 7.4	1 11 12 33 37 450 50(4") 450 50(4") 450
		1011 Inc St. Clem	NGINEERING INC. Justrial Crescent, Unit 1 ients, Ontario NOB 2M 19-699-5775 fax 519-69 linc.net	40 19-4664	GINE BING ING

BOREHO	DLE 7				Page 1 of 1
Date Drilled: April 19 Rig: Geoprobe 7822D Contractor: CMT Dril Drilling Method: SPT	OT ling Inc.	Elevation: 339.88 m Logged by: SW		Project No.: 18-09 Project: Two 12 SI Location: 1242, 12 Guelph,	orey Appt. Buildings 250, 1260 Gordon St
Drilling Method: SPT	SOIL DESCRIF	Logged by: SW PTION Surface (m) 339.88 0.00 ilty organic 339.12 wn sand I, trace inics and 338.15 1.73 no 337.59 7.229 trace 336.83 and clay, 3.05 nd and silt, lay, moist 335.31 TILL 4.57 wn to grey	Well Installation	Location: 1242, 12 Guelph, 4 Moisture Content % Wp [X] WP 10 20 30 40 .11,2 9.8 12.3 18.4 .14.0 .6.9	250, 1260 Gordon St
MC5 7 6 SS 8 7 MC5 9 0 8 9	e End c Borehole open to 6	332.26 of Borehole 7.62 .91 m. No dwater encountered		6.5 8.5 6.2	50(3"

Date Drilled: April 19, 2018Project No.: 18-099Rig: Geoprobe 7822DTProject: Two 12 StoreContractor: CMT Drilling Inc.Elevation: 338.04 mDrilling Method: SPTLogged by: SW						
Depth (ft/m) Sample Type Recovery (%) Sample Number	SOIL DESCRIP	PTION Surface (m) 338.04	Well Installation	Moisture Content % ●Wp [X] WI 10 20 30 40	Pocket Penetrometer	
ft m0 SS 1 1 SS 1 2 SS 3 2 SS 3 3 SS 4 3 SS 5 4 MC£ 6 5 SS 7 MC5 8 9 7 MC5 10 8 9 10	Borehole open to 7	and , 0.76 ets 336.52 own, 1.52 <u>335.75</u> T/LL 2.29 own to grey ne clay, 330.42 of Borehole 7.62		7.5 11.4 8.8 6.7 7.2 6.5 6.4 6.3 7.6 8.5		


	Mor	nitoring	y Well: MW1-18			
	Project: Client: Location	-	and 1260 Gordon Street and 9 Valley Road opments Inc.	Field Investigator: Contractor: Drilling method: Date started/completed:	C. Davis Aardvark Drilling, Inc Hollow Stem Auger 30-Jul-2018	Ground surface el Top of casing elev Easting: Northing:
					SUBSURFACE PROFILE	
	Depth	Graphic Log			Lithologic Description	
	(ft) (m					
	-	,				
	0 0	<u>x 1x x 1x x 1x x x 1</u>	Ground Surface TOPSOIL			
	-		Loose, very dark brown (7.5 YR 2/3), silty sand, fine to medium grained san SILTY SAND Compact, yellowish brown (10 YR 5/4), fine to coarse grained sand, trace fii			
	-		Becoming moist at 1.1 m BGS	ne gravel, trace to some clay in dry clumps, dry to moist		
	5		Clay and gravel content increases at 1.5 m BGS Colour change to brown (10 YR 5/3) at 1.6 m BGS			
	2		Becomes moist to wet at 1.9 m BGS Limestone cobble at 2.1 m BGS			
	-		SILTY SAND TILL Compact, pale brown (10 YR 6/3), fine to coarse grained sand, limestone fr	agments, trace to some clay in clumps, fine gravel and cobble	es (angular), dry to moist	
1			Becoming dense at 3.0 m BGS			
			Metamorphic rock fragments at 3.6 m BGS Very dense, increased clay content starting at 3.8 m BGS			
	_ 15					
	+		Cobble/boulders from 5.5 to 6.7 m BGS			
2	20 - 6					
	+		At 6.8 m BGS, becomes very dense, grey, fine silty sand, trace medium and	d coarse grained sand, trace gravel, dry		
2	25		Some rounded fine gravel at 7.6 m BGS			
	- 8					
z	-					
	30					
	_ 1(0				
	,,,, 		Becoming less compact, trace limestone fragments, moist at 10.7 m BGS			
			Cobble at 11.2 m BGS			
- 	+0 12	2				
	+					
2 4	45					
		4	Becoming moist at 14.0 m BGS			
	50 — —		End of Borehole			
				Notes:		
				m AMSL - metro m BGS - metro	es above mean sea level s below ground surface es below top of casing	
	5	C+-	ntoc	SS - split-spoor n/a - not availab	n sample	
	U	sta	ntec		Denve Bridgested De All (OD (OV)	
					Drawn By/Checked By: AH / SR / GW	

evation: ation:							
			Ş	Sample	DETA	ILS	WELL DETAILS
		Elevation (m AMSL) Depth (m BGS) 344.72	Sample Number	Sample Type	Recovery	N Value	
		343.92					Above Ground Casing
	[0.00 \343.69 0.23	1	SS	6" 25%	2-5-6-4 (11)	o o 0.77 m stick-up o o o o o o o o o o o o o o o o o o o
			2	SS	18" 75%	5-8-8-11 (16)	
		341.63	3	SS	21" 88%	4-6-7-10 (13)	
	ſ	2.29	4	SS	24" 100%	5-8-10-12 (18)	
			5	SS	24" 100%	9-20-15-40 (35)	210 mm Diameter Borehole
			6	SS	24" 100%	29-37-50 (87)	
			7	SS	24" 100%	29-31-49-50 (80)	
			8	SS	10.5" \ <u>88%</u>	13-50 \(50)/	 Bentonite Grout 0.91 to 10.7 m
			9	SS	11" \ <u>92%</u>	40-50 ∖(50)/	-
			<u>10</u>	<u>_ SS</u> _/	<u>_n/a</u> _	50 (0)	
			<u>11_</u> _∕	<u>_ SS</u> _/	\ <mark>83%</mark> ∫	50 (0)	▼ Water Level 9.03 m BGS 11-Sep-18
			12	SS	22" _122%	28-40-50 (90)	Holeplug 10.7 to 11.9 m
			<u>13</u>	<u>_ ss</u> _⁄	1 <u>00%</u>	∑(0)	
			14	SS	19" _ <u>106%</u>	47-35-50 (85)	No. 10 Slot Schedule 40 PVC Screen 51 mm Diameter 12.2 to 15.2 m
		328.70 15.22	~ <u>15</u>	<u>SS_</u> _/	0"	50 (0)	<u> :==]:</u> r
							Sheet 1 of 1

Мс	nitorin	g Well: MW2-18				
Project Client: Locatio	: 1242, 1250	and 1260 Gordon Street and 9 Valley Road lopments Inc.	Field Investigator: Contractor: Drilling method: Date started/completed:	A. Healey Aardvark Drilling, Inc Hollow Stem Auger : 09-Jul-2018 / 10-Jul-2018		Ground surface el Top of casing elev Easting: Northing:
				SUBSURFACE PROFILE		
Depth	Graphic Log			Lithologic Description		
(ft)	m)					
		Ground Surface				
0	0	Ground Surface SANDY SILT Loose, 10 YR 4/3 brown, with organics (roots) and some subangular coarse gravel, dry				
		Compact, organics no longer visible, increased subangular fine and coarse gravel, change in colour to	o 10 YR 6/3 pale brown at 0.76 m E	3GS, crumbles easily		
5	2	becoming more silt with some sand, some subangular fine and coarse gravel, moist to dry				
		SANDY SILT TILL Compact, 10 YR 5/3 brown, fine sand with some clay and angular fine and coarse gravel, trace coarse	e sand, moist			
10		Very dense, trace 10 YR 6/1 gray coarse gravel/cobble				
	4					
15						
		10 YR 6/1 gray cobble at 5.0 m BGS				
		becoming slightly more moist than above				
20	6					
25						
	8	change in colour to 10 YR 6/2 light brownish gray				
30						
	10					
1 1	40	SAND Very dense, medium to coarse sand, some subangular fine gravel, trace coarse gravel, wet				
40 -	12					
45 —						
	14	SANDY SILT TILL Very dense, 10 YR 6/2 light brownish gray, some medium sand and fine to coarse gravel, trace clay, r crushed cobble at 13.8 m BGS	moist			
		increased clay content at 13.9 m BGS				
50		crushed cobble at 15.3 m BGS				
	16	End of Borehole				
55 —						
	Sta	ntec	m BGS - metre	res above mean sea level s below ground surface res below top of casing n sample ble/applicable		
		1213-221-221-221-221-221-221-221-221-221		Drawn By/Checked By: AH / SR	/ GW	

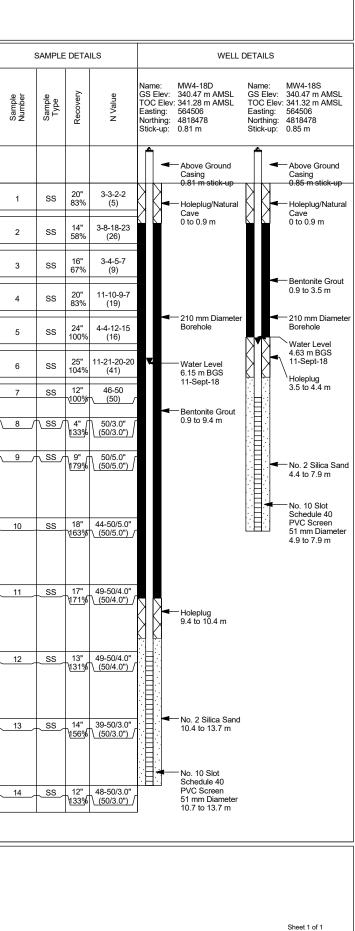
56	3.77 m AMSL 4471 18517						
		5	Sample	E DETA	ILS	w	ELL DETAILS
	Elevation (m AMSL) Depth (m BGS)	Sample Number	Sample Type	Recovery	N Value		
	343.77					Î 🗖 🕳	- Above Ground
	<u>342.97</u> 0.00	1	SS	17"	3-3-3-10	XX-	Casing 0.8 m stick-up
		2	SS	71%	(6) 8-11-14-17		Holeplug/Natural Cave 0 to 0.9 m
		3	SS	79% 20"	(25) 10-11-11-12		
	340.68 2.29	4	ss	83% 24"	(22) 4-7-9-18		
		5	ss	100% 19"	(16)		—210 mm Diamete Borehole
		γ <u>6</u>	<u></u>	106%			
		7	SS	\ <u>33%</u>	(0) 30-50		
		8	SS	1 <u>17%</u>	(50) 26-39-50		Bentonite Grout 0.9 to 9.1 m
		9	SS	<u>111%</u> 23"	<u>(89)</u> 30-42-50		
		0		128%	(92)		Water Level 6.90 m BGS 8-Nov-18
		10	SS	13" \108%	31-50 ∖ (50) /		
				100 %	((30))		
		۲ <u>11</u>	<u>ss_</u> _	6" 119%	50/5.0" (50/5.0")	X X	
				10%	(00/0.0)		Holeplug 9.1 to 10.4 m
		<u>12</u>	<u>SS_</u> _/	8" 159%	50/5.0" (50/5.0")		
	331.69 11.28			100 /0	(30/3.0)		
		<u>13</u> _r	<u>_ ss</u> _	4" \79%	50/5.0" (50/5.0")		— No. 2 Silica San
				1.3.9	(30/3.0)		10.4 to 13.9 m - No. 10 Slot Schedule 40
	329.25 13.72	14	SS	15" \167%	47-50/3.0" \ (50/3.0") /		PVC Screen 51 mm Diameter 10.9 to 13.9 m
				10730	(30/3.0)		— Holeplug
	327.43					\bigotimes	14.0 to 15.2 m
	15.54	15	SS	18" ` <u>\150%</u>	41-50 \(50)/	-	
							Sheet 1 of 1

M	Monitoring Well: MW3-18								
Proj	Project: 1242, 1250 and 1260 Gordon Street and 9 Valley Road Fiel				A. Healey		Ground surface elev		
					Aardvark Drilling, Inc		Top of casing eleva		
					Hollow Stem Auger 12-Jul-2018 / 13-Jul-2018		Easting: Northing:		
					SUBSURFACE PROFILE				
De	pth	Graphic Log			Lithologic Description				
(ft)	(m)								
-									
			Ground Surface						
0	0		Ground Surface TOPSOIL Loose, dark brown silty organic topsoil, wet						
	-		SAND AND SILT Very loose, dark brown sand and silt, some gravel, trace clay, with some organics and rootlets, wet becoming compact, no organics or rootlets						
-			becoming compact, no organics or rootiets						
5 —	-								
-	- 2		SAND Dense, brown sand, trace gravel, moist						
	-		becoming trace silt and clay, wet						
10	-		SAND AND SILT						
-	 -		Compact, brown, sand and silt, some gravel, trace clay, moist						
-	- 4								
15	-								
-			SANDY SILT TILL Very dense, 10 YR 6/1 gray, fine sand with trace coarse sand and fine gravel, trace clay, moist						
-									
	6								
20									
25 -	-								
	-								
30	-								
	-		wet at 9.4 m BGS						
	- 10								
	-		trace coarse gravel at 10.8 m BGS						
1914 –									
	- 12								
loz 40 — −	1								
	-	<u> 282 위</u> 외원1. 	f End of Borehole						
				Notes: m AMSL - metre	es above mean sea level	Well was straight drilled to 7.6 m due to proximity of well in comparison to recently drilled borehole (BH7, drilled April 19, 2018 by CMT Drilling Inc.). Stratigraphy from 0-7.6 m is inferred from this			
				SS - split-spoon	es above mean sea level below ground surface es below top of casing sample	drilled April 19, 2018 by CMT Drilling Inc.). Stratigraphy from 0-7.6 m is inferred from this borehole log.			
	D	Sta	ntec	n/a - not availab	le/applicable				
					Drawn By/Checked By:	AH / SR / GW			

Monitoring Well: MW4-18 (S/D)

Project: 1242, 1250 and 1260 Gordon Street and 9 Valley Road Client: Tricar Developments Inc. Location: Guelph, Ontario

Number: 161413684


Field Investigator: Contractor: Drilling method:

Hollow Stem Auger Date started/completed: 11-Jul-2018 / 12-Jul-2018

A. Healey

Aardvark Drilling, Inc

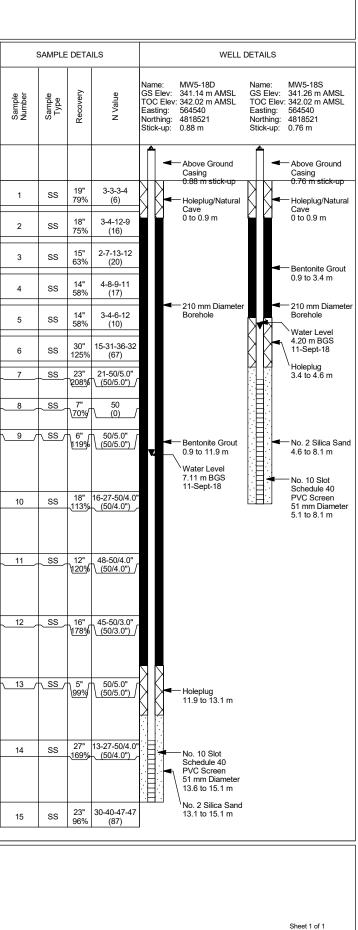
		SUBSURFACE PROFILE	
Depth	Graphic Log	Lithologic Description	Elevation (m AMSL) Depth (m BGS)
(ft) (m)			341.32
		Ground Surface	340.47
		Ground Surface SILT (TOPSOIL) Loose, 10 YR 5/3 brown to 10 YR 5/4 yellowish brown, trace to some fine sand, some organics and fine and coarse gravel (subangular) in top 2 cm, moist	0.00
5			338.95
2		SANDY SILT Loose, 10 YR 5/4 yellowish brown, fine sand with some medium to coarse sand and fine to coarse subangular gravel, trace clay, moist	1.52
		compact, crushed coarse gravel/cobble at 2.5 m BGS	i F
10			337.42 3.05
		SANDY SILT TILL Compact, 10 YR 5/3 brown, fine sand and some medium to coarse sand, some fine to coarse gravel, trace clay, moist minor reddish brown mottling at 3.4 m BGS	3.05
4		dense, increased sand and gravel content from 3.8 to 4.4 m BGS	
15		crushed coarse gravel/cobble at 4.6 and 4.8 m BGS	i F
		crushed coarse gravel/cobble at 5.3 and 6.2 m BGS	i F
20 - 6		change in colour to 10 YR 5/1 gray at 6.1 m BGS, wet	
25 —			
- 8			
30 —			
35			i F
- 12			
40		coarse gravel at 12.3 m BGS becoming slightly softer at 12.5 m BGS	
45			
14			326.14
	<u> </u>	End of Borehole	14.33
	1	Notes:	
		m AMSL - metres above mean sea level m BGS - metres below ground surface m BTOC - metres below top of casing	
	Sta	ntec	
	JLd	Drawn By/Checked By: AH / SR / GW	
1			

Monitoring Well: MW5-18 (S/D)

Project: 1242, 1250 and 1260 Gordon Street and 9 Valley Road Client: Tricar Developments Inc. Location: Guelph, Ontario

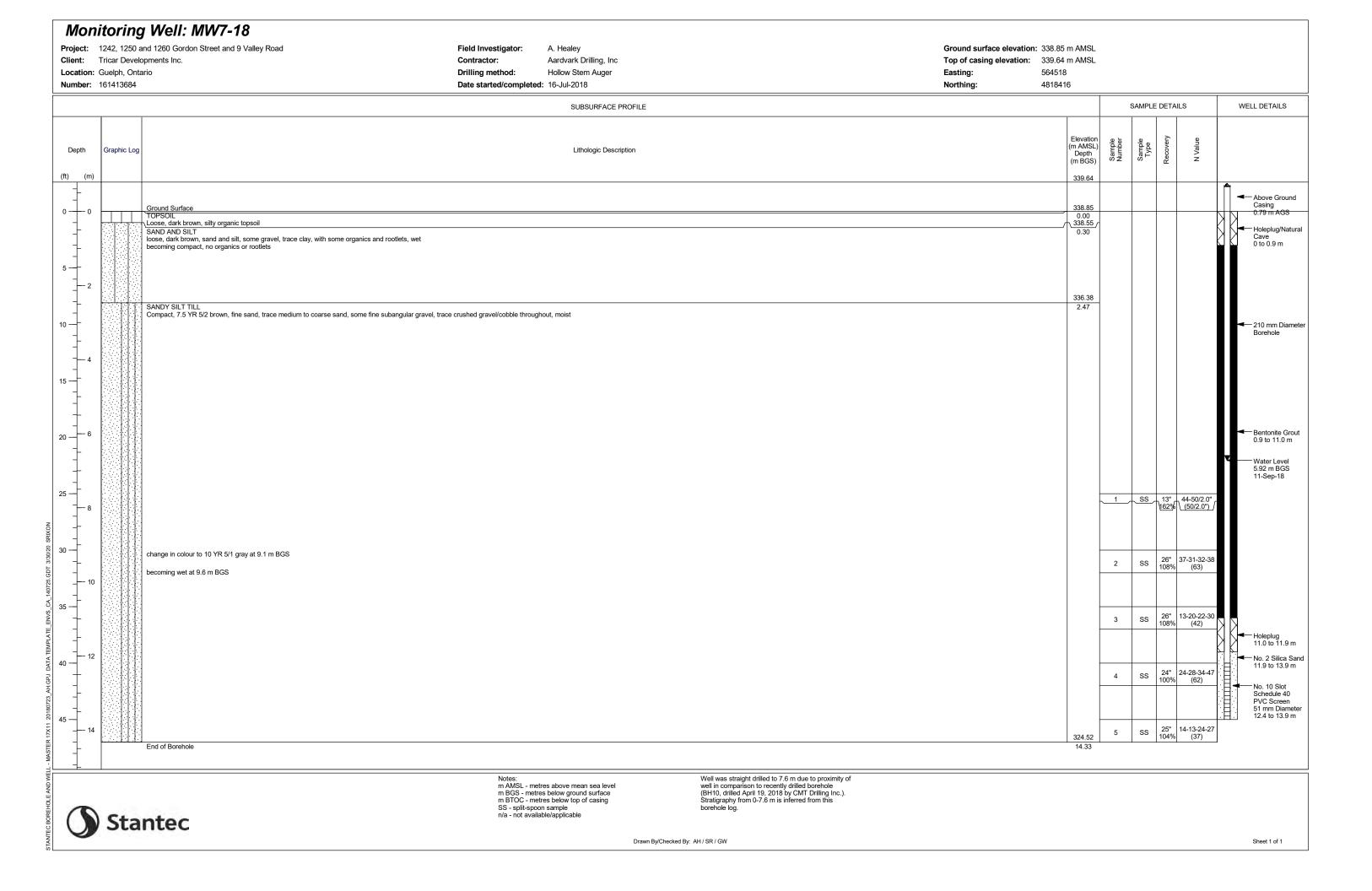
Number: 161413684

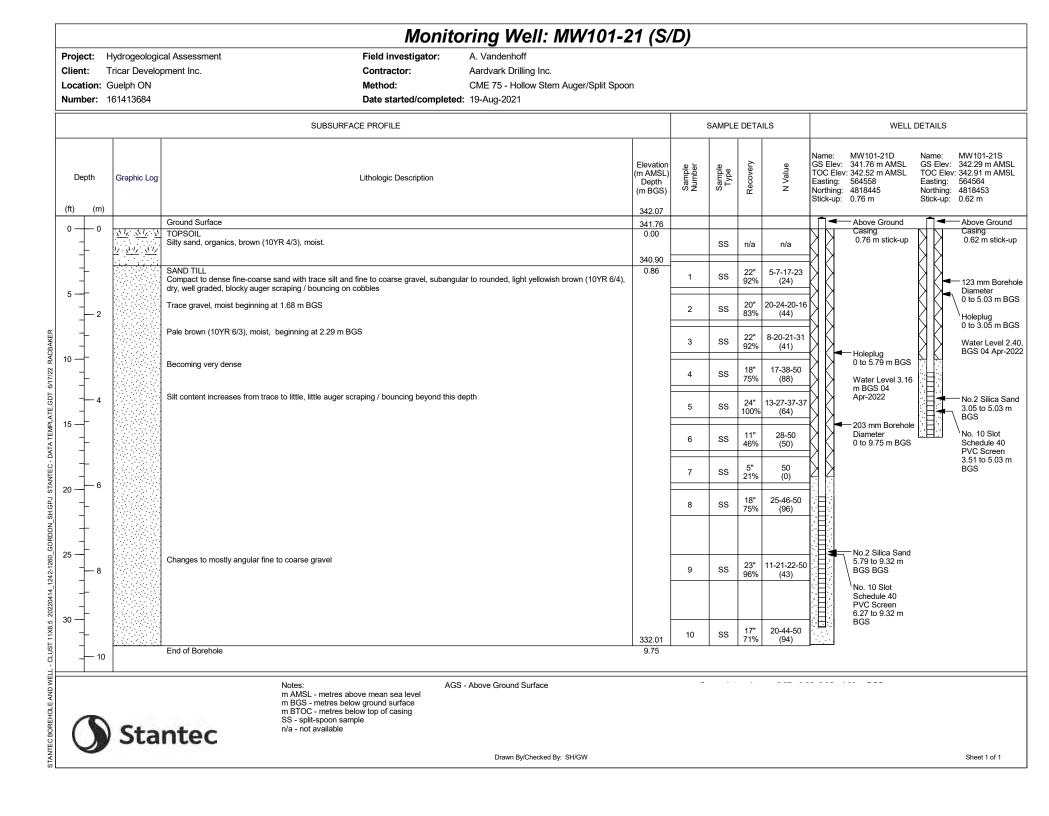
Field Investigator: Contractor: Drilling method:


Date started/completed: 10-Jul-2018 / 11-Jul-2018

A. Healey

Aardvark Drilling, Inc


Hollow Stem Auger


		SUBSURFACE PROFILE	
			Elevation
Depth	Graphic Log	Lithologic Description	Elevation (m AMSL) Depth (m BGS)
(ft) (m)			342.02
0 0		Ground Surface SILT Loose, 10 YR 4/2 dark grayish brown with organics, trace clay and fine to coarse sand, moist	341.14 0.00 340.78
		SILT Compact, 10 YR 4/3 brown, trace clay and fine to coarse sand, moist	0.36
		increased coarse sand content, trace subangular fine gravel crushed 10 YR 6/1 gray coarse gravel, cobbles	
5		further increase of coarse sand and fine gravel content, increased moisture content	
		some coarse gravel starting at 2.0 m BGS	338.60
- 10 -		SANDY SILT TILL Compact, 10 YR 6/3 pale brown, fine sand, some medium to coarse sand and fine to coarse subangular gravel, moist 10 YR 6/1 gray coarse gravel/cobble at 2.8 m BGS becoming less compact from 3.0 to 3.6 m BGS	2.54
		very dense, some coarse gravel starting at 3.7 m BGS	
15		minor reddish brown mottling from 4.3 to 7.6 m BGS	
		coarse gravel/cobble at 4.9 m BGS	
20 - 6		change in colour to 10 YR 6/2 light brownish grav at 6.1 m BGS	
		change in colour to 10 YR 6/2 light brownish gray at 6.1 m BGS coarse gravel/cobble at 6.2 m BGS	
25 —			-
- 8		coarse gravel/cobble at 8.1 m BGS	
30			
35 —		medium to coarse sand content increasing starting at 10.8 m BGS	
40 12			
+			
45			
		becomes less dense and moisture content increases at 13.8 m BGS, reduced sand content	-
50			-
16		End of Borehole	325.29 15.85
	1	Notes: m AMSL metres shows mean sea lavel	
0	Sta	m AMSL - metres above mean sea level m BGS - metres below ground surface m BTOC - metres below top of casing SS - split-spoon sample n/a - not available/applicable	
		Drawn Bv/Checked Bv: AH / SR / GW	

Elevation (m AMSL) Depth (m BGS) a b g g g g g g a b g g <tha b="" b<br="">g g a b b <tha< th=""><th>40</th><th>18487</th><th>5</th><th>SAMPLE</th><th>DETA</th><th>ILS</th><th colspan="4">WELL DETAILS</th></tha<></tha>	40	18487	5	SAMPLE	DETA	ILS	WELL DETAILS			
341.40 1 S 18'' 3.45-12 Above Ground Casing 1.15 m stick-up 2 SS 20'' 10-9-8-7 10 - Heleplug/Natural Case 3 SS 13'' 5.54.7 - - Heleplug/Natural Case 3 SS 13'' 5.54.7 - - Heleplug/Natural Case 3 SS 13'' 5.54.7 - - - - - - - - - - - - - - - - - - - 210 mm Diamete - - - - - - - - - - - <		(m AMSL) Depth (m BGS)	Sample Number	Sample Type	Recovery	N Value				
0.00 1 SS 18" 75% 34.5-12 (9) 2 SS 20" 10-9.8-7 (17) 3 SS 13" 5-5.4-7 (9) 4 SS 21" 3-5.13-20 (18) 3.05 5 SS 5 SS 12" 8-21-26-37 (14% 62) 6 SS 12" 44-500 60" 6 SS 12" 44-500 60" 9 SS 504.0" 9 SS 500 (10) 8 SS 12" 44-500 (20) 9 SS 500 (0) 9 SS 500 (0) 10 SS 13" 60" (50).0" 11 SS 0" 500 (0) 12 SS 11" (50) (50".0") 13 SS 11" (50) (50".0") 14 SS 14" (45.50) 14 SS 14" (50) (50".0") 14 SS 15" (505.0") 15 SS 15" (500.0")							-	Casing		
2 SS 83% (17) 3 SS 13" 55-54-7 0 to 2.4 m 3 SS 21" 3-5-54-7 0 to 2.4 m 338.35 4 SS 21" 3-5-54-7 338.35 4 SS 21" 3-5-54-7 338.35 4 SS 21" 3-5-54-7 338.35 5 SS 21" 3-5-54-7 6 SS 25" 44-39-43-37 20 mm Diamete Borehole 7 SS 12" 44-505.0° 50/4.0° 24 to 12.5 m 9 SS 6" 50/4.0° 50 24 to 12.5 m 10 SS 9" 50 00 24 to 12.5 m 11 SS 9" 50/5.0° 11-Sept-18 11 SS 19% 50/5.0° 12-Sept-18 11 SS 12" 40-50/3.0° No. 2 Silics 3m 13 SS 14" 45-50 No. 10 Slot			1	SS			RR	1.15 m stick-up		
3 SS 13° 55-64-7 0 0 to 2.4 m 338.35 4 SS 21° 3-5-13-20 0 to 2.4 m 338.35 5 SS 13% (47) 10 SS 27° 8-21-26-37 6 SS 25° 44-39-43-37 (47) 6 SS 104% (82) 7 SS 12° 44-50/5.0° 6 SS 12° 44-50/5.0° 8 SS 12° 44-50/5.0° 6 SS 12° 44-50/5.0° 9 SS 16° 50/6.0° 10 SS 10° 24 to 12.5 m 10 SS 18° 50 00 11 SS 11 SS 11 Sept-18 11 SS 10° 50/5.0° 11 Sept-18 11 Sept-18 11 SS 11° 40-50/3.0° 11 Sept-18 11 No. 2 Silica Sand 13.1 to 15.0 m			2	SS				- Holeplug/Natural		
338.35 4 55 88% (18) 3.05 5 SS 27' 8-21-26-37 6 SS 104% (82) (47) 6 SS 104% (82) 7 SS 7 SS 12'' 44-50 6 8 SS 100% (50) 0'' 9 9 SS 6'' 500 0'' 10 SS 8'' 50 0'' 10 SS 6'' 50 0'' 11 SS 6'' 50 0'' 11 SS 6'' 50 0'' 11 SS 6'' 50 0'' 12 SS 6'' 50 0'' 13 SS 11'' 40-50'3.0'' 11'' 13 SS 11'' 44-50 13'' 12'' 13 SS 11'' 44-50'' 10'' 10'' 12 5'' 6''' 50'' 0'' 10'' 13 SS 11''			3	SS						
3.03 5 SS 27" 8.21-26-37 Borehole 6 SS 113% (47) 6 SS 12" 7 SS 12" 44-50/5.0" 6 SS 10" 9 SS 16" 50/(50) 9 SS 10" SS 10" 2.4 to 12.5 m 10 SS 10" SS 10" 50 10" Value 7.45 m Beck 11 SS 6" 50/(50") 10" 7.45 m Beck 11-5 ept-18 11 SS 10" 50 50 11-5 ept-18 11-5 ept-18 11 SS 11" 40-50/3.0" 11-5 ept-18 11-5 ept-18 12 SS 11" 40-50/3.0" 13.1 to 15.0 m No. 2 Silica Sand 14 SS 14" 45-50 13.1 to 15.0 m No. 10 Silica Sand 13.1 to 15.0 m 325.55 15 59% 50/5.0" 13.5 to 15.0 m 13.5 to 15.0 m			4	SS				— 210 mm Diameter		
0 SS 104% (82) 7 SS 12" 44-50 7 SS 12" 44-50 8 SS 12" 44-50 9 SS 6" 504.0" 9 SS 6" 504.0" 10 SS 6" 50 10 SS 6" 50 11 SS 6" 50 11 SS 6" 50 11 SS 6" 50/5.0" 12 SS 11" 40-50/3.0" 13 SS 11" 40-50/3.0" 13 SS 11" No. 2 Silica Sand 14 SS 14" 45-50 14 SS 6" 50/5.0" 14 SS 6" 50/5.0" 15 SS 50/5.0" 13.1 to 15.0 m 325.55 15 50/5.0" 15		3.05	5	SS	113%	(47)				
10 50 12" 44-50 9 SS 6" 50/4.0" 9 SS 6" 50/4.0" 10 SS 8" 50 10 SS 6" 50/4.0" 10 SS 8" 50 11 SS 6" 50/5.0" 11 SS 6" 50/5.0" 11 SS 6" 50/5.0" 12 SS 6" 50/5.0" 13 SS 11" 40-50/3.0" 13 SS 11" 40-50/3.0" 14 SS 14" 45-50 14 SS 14" 45-50 14 SS 6" 50/5.0" 325.55 59% 50/5.0" 50/5.0"					104%	(82)				
10 SS 6" 50/4.0" 10 SS 8" 50 10 SS 8" 50 10 SS 6" 50 11 SS 6" 50 12 SS 6" 50/5.0" 13 SS 11" SS 13 SS 11" SS 14 SS 14" 45-50 14 SS 8" 50/5.0" 14 SS 8" 50/5.0" 13.5 to 15.0 m 13.5 to 15.0 m					109%	\ <u>(50/5.0")</u>				
10 SS 8" 50 10 SS 8" 50 11 SS 6" 50 11 SS 6" 50 11 SS 6" 50 12 SS 6" 50/5.0" 12 SS 6" 50/5.0" 13 SS 11" 40-50/3.0" 13 SS 11" No. 2 Silica Sand 14 SS 14" 45-50 14 SS 14" 45-50 14 SS 8" 50/5.0" 13.1 to 15.0 m Schedule 40 PVC Screen 51 m m Diameter 325.55 15 59%					1 <u>00%</u> 16" [<u>(50)</u> 50/4.0" [
10 SS 8" 50 2.4 to 12.5 m Water Level 7.45 m BGS 11-Sept-18 11 SS 6" 50 12 SS 6" 50/5.0" 13 SS 11" 40-50/3.0" 13 SS 11" 40-50/3.0" 14 SS 14" 45-50 14 SS 14" 45-50 15 SS 8" 50/5.0" 13.1 to 15.0 m 13.5 to 15.0 m 14 SS 14" 45-50 159% 50/5.0" 15 SS 8" 15 SS 8"					152%	(50/4.0")				
12 SS 6" 50/5.0" 13 SS 11" 40-50/3.0" 13 SS 11" 40-50/3.0" 14 SS 14" 45-50 14 SS 14" 45-50 14 SS 14" 45-50 15 SS 8" 50/5.0" 325.55 15 59% 50/5.0"			<u>10</u>	<u>ss</u>	8" 1 <u>33%</u>			2.4 to 12.5 m Water Level 7.45 m BGS		
13 SS 11" 40-50/3.0" 13 SS 11" 40-50/3.0" 14 SS 14" 45-50 14 SS 14" 45-50 14 SS 14" 45-50 15 SS 8" 50/5.0" 15 SS 8" 50/5.0" 15 SS 8" 50/5.0"			<u>11</u>	<u>ss</u>	<u>}6</u> " <u>100%</u>	50 (0)				
14 SS 14" 45-50 Holeplug 12.5 to 13.1 m 14 SS 14" 45-50 No. 2 Silica Sand 13.1 to 15.0 m Schedule 40 PVC Screen Schedule 40 9VC Screen 51 mm Diameter 13.5 to 15.0 m 13.5 to 15.0 m			<u>12</u>	<u>ss</u>						
14 SS 14" 45-50 13.1 to 15.0 m 14 SS 117% (50) 15.0 m 15 SS 8" 50/5.0" 51 mm Diameter 13.1 to 15.0 m 13.1 to 15.0 m 13.1 to 15.0 m 13.1 to 15.0 m 14 SS 15 50/5.0" 13.1 to 15.0 m			13	<u></u> SS				12.5 to 13.1 m		
325.55 15.0 m			14	SS				13.1 to 15.0 m No. 10 Slot Schedule 40 PVC Screen		
15.85			<u>∖15_</u> ∕	<u>ss</u>	8" 159%					
		15.85								
								Sheet 1 of 1		

			Mon	nitoring Well: MW102-21								
							Ground surface elevation:341.41 m AMSLTop of casing elevation:342.25 m AMSLEasting:564564Northing:4818453					
			SUBSURFACE PROFILE				SAMPLE	E DETAI	LS	WELL DETAILS		
Depth	Graphic Log		Lithologic Des	cription	Elevation (m AMSL) Depth (m BGS)	Sample Number	Sample Type	Recovery	N Value			
(ft) (m)				342.25					Above Ground		
		Ground Surface Direct drilled. Refer to MW5-18(S/D) for soil descripti			341.41					Casing 0.84 m stick-up		
					336.84		SS	n/a	n/a	203 mm Borehole Diameter 0 to 5.76 m BGS Holeplug 0 to 1.87 m BGS Water level 1.90 n BGS 04 Apr-2022 No. 10 Slot Schedule 40 PVC Screen 2.71 to 5.76 m BGS No.2 Silica Sand 1.87 to 5.76 m BGS		
		SAND TILL Very dense, fine sand, trace to little silt, trace fine to	coarse gravel, pale brown (10YR	6/3), moist, trace oxidation stains	4.57	1	SS	21" 88%	48-36-26-62 (62)	BGS		
		Fissured				2	SS	9" 38%	48-50 (50)			
		End of Borehole				3	SS	10" 42%	48-50 (50)			
T - CLUST 11X8.5 20220414_1242-1280_GORDON												
	Sta	Notes: m AMSL - metres a m BGS - metres be m BTOC - metres b SS - spilt-spon sa n/a - not available	bove mean sea level low ground surface elow top of casing	- Above Ground Surface Drawn By/Checked By: SH/GW						Sheet 1 of 1		

			Mon	itoring Well: MW103-21						
Client: Location:	Hydrogeologi Tricar Develo Guelph ON 161413684	cal Assessment pment Inc.	Field investigator: Contractor: Method: Date started/completed:	Aardvark Drilling Inc.TopCME 75 - Hollow Stem Auger/Split SpoonEast		ce elevation: 339.61 m AMSL g elevation: 340.20 m AMSL 564590 4818574				
			SUBSURFACE PROFILE				SAMPLE	DETAI	LS	WELL DETAILS
Depth	Graphic Log		Lithologic Des	cription	Elevation (m AMSL) Depth (m BGS)	Sample Number	Sample Type	Recovery	N Value	
(ft) (m)				340.20					Above Ground
0 0		Ground Surface			339.61					Casing 0.59 m stick-up
		Not logged.			0.00		SS	n/a	n/a	
5		SAND Compact, fine sand, trace to little silt, little fine to coar	se gravel, angular, to subrounde	d, pale brown (10YR 6/3), moist	0.76	1	SS	18" 75%	4-6-6-6 (12)	203 mm Borehole Diameter 0 to 5.76 m BGS
		Down				2	SS	20" 83%	6-7-7-9 (14)	Water Level 2.20 m BGS 04 Apr-2022
		Dense SAND TILL			336.56	3	SS	22" 92%	8-15-25-37 (40)	Holeplug 0 to 4.27 m BGS
	° () °		and, trace fine to coarse gravel,	pale brown (10YR 6/3), mosit, blocky, auger scraping / bouncing on cobbles	3.05	4	SS	10" 42%	40-50 (50)	
						5	SS	6" 25%	50 (0)	
	• () •	Trace oxidation stains from 4.57 to 5.33 m BGS				6	SS	9" 38%	44-50 (50)	
						7	SS	10" 42%	48-50 (50)	
5 -	∘ () °	Wet beginning at 6.25 m BGS				8	SS	20" 83%	18-33-28-29 (61)	4.27 to 7.83 m BGS
	° () °				004 70					Schedule 40 PVC Screen 4.78 to 7.83 m
8	····	End of Borehole			331.78 7.83					BGS
) Sta	Notes: m AMSL - metres ab m BGS - metres bek m BTOC - metres be SS - split-spoon sam n/a - not available	ove mean sea level ow ground surface low top of casing	- Above Ground Surface		·				Sheet 1 of 1

			Mon	itoring Well: MW104-21						
Client: Location:	Hydrogeologic Tricar Develog Guelph ON 161413684	cal Assessment oment Inc.	Field investigator: Contractor: Method: Date started/completed:	Aardvark Drilling Inc. CME 75 - Hollow Stem Auger/Split Spoon	Ground surfac Top of casing Easting: Northing:		n: 344. 564	05 m AMSL		
			SUBSURFACE PROFILE				SAMPLE	DETAILS		WELL DETAILS
Depth (ft) (m	Graphic Log		Lithologic Desc	cription	Elevation (m AMSL) Depth (m BGS) 344.05	Sample Number	Sample Type	Recovery N Value		
-									Î	 Above Ground Casing 0.90 m stick-up
	۲ [.] ۲	Ground Surface Not logged.			<u>343.28</u> 0.00		SS	n/a n/a		
		SAND Dense, fine sand, little silt, little cobbles (crushed limes	tone), pale brown (10YR 6/3), d	ry, auger scraping cobbles	342.52 0.76 341.75	1	SS	1" 4-11-28-2 4% (39)	9	 203 mm Borehole Diameter 0 to 7.87 m BGS
5 — - - 2	0 () () 0 () ()	SAND Dense, fine sand, little silt and cobbles (crushed limest	one), trace coarse sand and fine	e gravel, pale brown (10Y/R 6/3), dry to moist, auger scraping cobbles	1.52 340.99	2	SS	20" 10-19-21- 83% (40)	12	Holeplug 0 to 4.27 m
		SAND Dense, trace to little silt, trace coarse sand, pale brown	n (10Y/R 6/3), moist, auger scra	ping cobbles	2.29 340.23	3	SS	22" 46-17-16- 92% (33)		0 to 4.27 m Water Level 3.67
		SAND TILL Dense to very dense, fine sand, trace to little silt, little f	ine to coarse gravel, trace coars	se sand, pale brown (10YR 6/3), moist, blocky, irregular horizontal breakin	3.05 g	4	SS	24" 17-23-31-4 100% (54)		m BGS 04 Apr-2022
4 						5		24" 23-29-33-4 (62)	12	- -
						6	SS	9" 45-50 38% (50)		
20 - 6						7	SS	10" 46-50 42% (50) 5" 50		No.2 Silica Sand
						8		5" 50 21% (0) 9" 60-50		BGS No. 10 Slot Schedule 40
						9	22	38% (50) 6" 50		PVC Screen 4.82 to 7.87 BGS
		End of Borehole			334.90 8.38	10	00	25% (0)		
30 — 										
Q	Sta	Notes: m AMSL - metres abu m BGS - metres belo m BTOC - metres belo SS - split-spoon sam, n/a - not available	ove mean sea level w ground surface ow top of casing	- Above Ground Surface	•. •					
				Drawn By/Checked By: SH/GW						Sheet 1 of 1

APPENDIX F: LABORATORY CERTIFICATES OF ANALYSIS

Your Project #: 161413684 Site Location: GUELPH, ON Your C.O.C. #: 111362

Attention: Grant Whitehead

Stantec Consulting Ltd 300 Hagey Blvd Suite 100 Waterloo, ON CANADA N2L 0A4

> Report Date: 2018/09/19 Report #: R5406235 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8N6455

Received: 2018/09/11, 16:40

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Alkalinity	2	N/A	2018/09/14	CAM SOP-00448	SM 23 2320 B m
Alkalinity	1	N/A	2018/09/19	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	3	N/A	2018/09/14	CAM SOP-00102	APHA 4500-CO2 D
Carbonaceous BOD	1	2018/09/12	2018/09/17	CAM SOP-00427	SM 23 5210B m
Chloride by Automated Colourimetry	1	N/A	2018/09/13	CAM SOP-00463	EPA 325.2 m
Chloride by Automated Colourimetry	2	N/A	2018/09/14	CAM SOP-00463	EPA 325.2 m
Chloride by Automated Colourimetry	1	N/A	2018/09/19	CAM SOP-00463	EPA 325.2 m
Conductivity	3	N/A	2018/09/14	CAM SOP-00414	SM 23 2510 m
Total Cyanide	1	2018/09/13	2018/09/13	CAM SOP-00457	OMOE E3015 5 m
Dissolved Organic Carbon (DOC) (1)	3	N/A	2018/09/14	CAM SOP-00446	SM 23 5310 B m
Fluoride	1	2018/09/12	2018/09/13	CAM SOP-00449	SM 23 4500-F C m
Hardness (calculated as CaCO3)	3	N/A	2018/09/17	CAM SOP 00102/00408/00447	SM 2340 B
Mercury in Water by CVAA	1	2018/09/14	2018/09/14	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	1	N/A	2018/09/14	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS	1	N/A	2018/09/17	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS	1	N/A	2018/09/19	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	1	N/A	2018/09/13	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	3	N/A	2018/09/17		
Anion and Cation Sum	3	N/A	2018/09/17		
Fecal coliform, (5TMPN/100mL)	1	N/A	2018/09/11	BBY4 SOP-000127	MFHPB-19
Total Ammonia-N	3	N/A	2018/09/18	CAM SOP-00441	EPA GS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (2)	3	N/A	2018/09/13	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Animal and Vegetable Oil and Grease	1	N/A	2018/09/14	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2018/09/14	2018/09/14	CAM SOP-00326	EPA1664B m,SM5520A m
pH	1	N/A	2018/09/13	CAM SOP-00413	SM 4500H+ B m
рН	3	N/A	2018/09/14	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2018/09/14	CAM SOP-00444	OMOE E3179 m
Orthophosphate	3	N/A	2018/09/14	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	3	N/A	2018/09/17		

Page 1 of 20

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Your Project #: 161413684 Site Location: GUELPH, ON Your C.O.C. #: 111362

Attention: Grant Whitehead

Stantec Consulting Ltd 300 Hagey Blvd Suite 100 Waterloo, ON CANADA N2L 0A4

> Report Date: 2018/09/19 Report #: R5406235 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8N6455

Received: 2018/09/11, 16:40

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Sat. pH and Langelier Index (@ 4C)	3	N/A	2018/09/17		
Sulphate by Automated Colourimetry	1	N/A	2018/09/13	CAM SOP-00464	EPA 375.4 m
Sulphate by Automated Colourimetry	3	N/A	2018/09/14	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	3	N/A	2018/09/17		
Total Kjeldahl Nitrogen in Water	1	2018/09/17	2018/09/17	CAM SOP-00938	OMOE E3516 m
Mineral/Synthetic O & G (TPH Heavy Oil) (3)	1	2018/09/14	2018/09/14	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	4	2018/09/12	2018/09/13	CAM SOP-00428	SM 23 2540D m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(3) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 2 of 20

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Your Project #: 161413684 Site Location: GUELPH, ON Your C.O.C. #: 111362

Attention: Grant Whitehead

Stantec Consulting Ltd 300 Hagey Blvd Suite 100 Waterloo, ON CANADA N2L 0A4

> Report Date: 2018/09/19 Report #: R5406235 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8N6455 Received: 2018/09/11, 16:40

Encryption Key

Colby Coutu Project Manager Assistant 19 Sep 2018 17:12:27

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 218 Tel. (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Stantec Consulting Ltd Client Project #: 161413684 Site Location: GUELPH, ON Sampler Initials: DS

THE CITY OF GUELPH SANITARY SEWER BYLAW (WATER)

Maxxam ID		HSJ715			HSJ715		
Sampling Date		2018/09/11 15:05			2018/09/11 15:05		
COC Number		111362			111362		
	UNITS	WG-161413684- 20180911-DS-04	RDL	QC Batch	WG-161413684- 20180911-DS-04 Lab-Dup	RDL	QC Batch
Calculated Parameters				,			
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	5724443			
Inorganics				<u> </u>			i
Total Carbonaceous BOD	mg/L	<2	2	5726645	<2	2	5726645
Fluoride (F-)	mg/L	0.13	0.10	5727841			1
Total Kjeldahl Nitrogen (TKN)	mg/L	1.7	0.10	5734882		1	
рН	pН	7.90		5727848			
Phenols-4AAP	mg/L	<0.0010	0.0010	5729249			
Total Suspended Solids	mg/L	2500	33	5727677			
Dissolved Sulphate (SO4)	mg/L	40	1.0	5727421			
Total Cyanide (CN)	mg/L	<0.0050	0.0050	5729123			
Dissolved Chloride (Cl-)	mg/L	46	1.0	5727413			
Petroleum Hydrocarbons				·			
Total Oil & Grease	mg/L	<0.50	0.50	5731988			1
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	5732048			
Metals			•	·			
Mercury (Hg)	mg/L	<0.0001	0.0001	5731153		T	
RDL = Reportable Detection Limit				•		-	
QC Batch = Quality Control Batch							
Lab-Dup = Laboratory Initiated Duplicate	2						

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2LB Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Stantec Consulting Ltd Client Project #: 161413684 Site Location: GUELPH, ON Sampler Initials: DS

Maxxam ID		HSJ715		
Sampling Date		2018/09/11		
		15:05		
COC Number		111362		
	UNITS	WG-161413684- 20180911-DS-04	RDL	QC Batch
Metals				
Total Aluminum (Al)	mg/L	15	0.025	5728921
Total Antimony (Sb)	mg/L	<0.00050	0.00050	5728921
Total Arsenic (As)	mg/L	0.0062	0.0010	5728921
Total Bismuth (Bi)	mg/L	<0.0010	0.0010	5728921
Total Cadmium (Cd)	mg/L	0.0019	0.00010	5728921
Total Chromium (Cr)	mg/L	0.040	0.0050	5728921
Total Cobalt (Co)	mg/L	0.0096	0.00050	5728921
Total Copper (Cu)	mg/L	0.030	0.0010	5729988
Total Iron (Fe)	mg/L	23	0.10	5728921
Total Lead (Pb)	mg/L	0.13	0.00050	5728921
Total Manganese (Mn)	mg/L	1.3	0.0020	5728921
Total Molybdenum (Mo)	mg/L	0.0032	0.00050	5728921
Total Nickel (Ni)	mg/L	0.021	0.0010	5728921
Total Phosphorus (P)	mg/L	1.1	0.10	5728921
Total Selenium (Se)	mg/L	<0.0020	0.0020	5728921
Total Silver (Ag)	mg/L	<0.00010	0.00010	5728921
Total Tin (Sn)	mg/L	0.0011	0.0010	5728921
Total Titanium (Ti)	mg/L	0.49	0.0050	5728921
Total Vanadium (V)	mg/L	0.031	0.00050	5728921
Total Zinc (Zn)	mg/L	0.64	0.0050	5728921
Microbiological				
Fecal coliform	5TMPN/100mL	350	1.8	5726125
RDL = Reportable Detection	Limit			
QC Batch = Quality Control	Batch			

THE CITY OF GUELPH STORM SEWER BYLAW (WATER)

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Stantec Consulting Ltd Client Project #: 161413684 Site Location: GUELPH, ON Sampler Initials: DS

Maxxam ID		HSJ712		HSJ713		
Sampling Date		2018/09/11		2018/09/11		
		12:40		13:10	ļ	<u>,0</u>
COC Number		111362		111362		
	UNITS	WG-161413684- 20180911-DS-01	QC Batch	WG-161413684- 20180911-DS-02	RDL	QC Batch
Calculated Parameters						
Anion Sum	me/L	6.67	5724250	9.30	N/A	5724250
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	300	5724251	330	1.0	5724251
Calculated TDS	mg/L	330	5724255	530	1.0	5724255
Carb. Alkalinity (calc. as CaCO3)	mg/L	3.7	5724251	4.7	1.0	5724251
Cation Sum	me/L	6.66	5724250	11.8	N/A	5724250
Hardness (CaCO3)	mg/L	320	5724254	520	1.0	5724254
Ion Balance (% Difference)	%	0.0500	5724249	12.1	N/A	5724249
Langelier Index (@ 20C)	N/A	1.01	5724252	1.25	1	5724252
Langelier Index (@ 4C)	N/A	0.762	5724253	0.997		5724253
Saturation pH (@ 20C)	N/A	7.10	5724252	6.93		5724252
Saturation pH (@ 4C)	N/A	7.35	5724253	7.18		5724253
Inorganics			- -			·
Total Ammonia-N	mg/L	<0.050	5732437	<0.050	0.050	5732437
Conductivity	umho/cm	580	5727479	830	1.0	5727479
Dissolved Organic Carbon	mg/L	0.83	5727802	1.0	0.50	5727802
Orthophosphate (P)	mg/L	<0.010	5727668	<0.010	0.010	5727668
рН	рН	8.11	5727480	8.18		5727480
Dissolved Sulphate (SO4)	mg/L	15	5727661	84	1.0	5727661
Alkalinity (Total as CaCO3)	mg/L	310	5727466	340	1.0	5738172
Dissolved Chloride (Cl-)	mg/L	7.4	5727647	27	1.0	5738161
Nitrite (N)	mg/L	<0.010	5727425	<0.010	0.010	5727425
Nitrate (N)	mg/L	0.25	5727425	0.12	0.10	5727425
Nitrate + Nitrite (N)	mg/L	0.25	5727425	0.12	0.10	5727425
Metals					÷	-
Dissolved Aluminum (Al)	mg/L	<0.0050 ·	5728244	0.063	0.0050	5738013
Dissolved Antimony (Sb)	mg/L	<0.00050	5728244	<0.00050	0.00050	5738013
Dissolved Arsenic (As)	mg/L	<0.0010	5728244	0.0015	0.0010	5738013
Dissolved Barium (Ba)	mg/L	0.032	5728244	0.076	0.0020	5738013
Dissolved Beryllium (Be)	mg/L	<0.00050	5728244	<0.00050	0.00050	5738013
Dissolved Boron (B)	mg/L	0.014	5728244	0.013	0.010	5738013
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable	1				1	

Stantec Consulting Ltd Client Project #: 161413684 Site Location: GUELPH, ON Sampler Initials: DS

Maxxam ID	500	HSJ712		HSJ713		
Sampling Date	0	2018/09/11 12:40		2018/09/11 13:10		
COC Number		111362		111362		
	UNITS	WG-161413684- 20180911-DS-01	QC Batch	WG-161413684- 20180911-DS-02	RDL	QC Batch
Dissolved Cadmium (Cd)	mg/L	<0.00010	5728244	<0.00010	0.00010	5738013
Dissolved Calcium (Ca)	mg/L	69	5728244	100	0.20	5738013
Dissolved Chromium (Cr)	mg/L	<0.0050	5728244	<0.0050	0.0050	5738013
Dissolved Cobalt (Co)	mg/L	<0.00050	5728244	<0.00050	0.00050	5738013
Dissolved Copper (Cu)	mg/L	<0.0010	5728244	<0.0010	0.0010	5738013
Dissolved Iron (Fe)	mg/L	<0.10	5728244	0.19	0.10	5738013
Dissolved Lead (Pb)	mg/L	<0.00050	5728244	0.00056	0.00050	5738013
Dissolved Magnesium (Mg)	mg/L	36	5728244	63	0.050	5738013
Dissolved Manganese (Mn)	mg/L	0.011	5728244	0.046	0.0020	5738013
Dissolved Molybdenum (Mo)	mg/L	0.00079	5728244	0.0030	0.00050	5738013
Dissolved Nickel (Ni)	mg/L	<0.0010	5728244	<0.0010	0.0010	5738013
Dissolved Phosphorus (P)	mg/L	<0.10	5728244	<0.10	0.10	5738013
Dissolved Potassium (K)	mg/L	1.1	5728244	2.6	0.20	5738013
Dissolved Selenium (Se)	mg/L	<0.0020	5728244	<0.0020	0.0020	5738013
Dissolved Silicon (Si)	mg/L	6.3	5728244	7.9	0.050	5738013
Dissolved Silver (Ag)	mg/L	<0.00010	5728244	<0.00010	0.00010	5738013
Dissolved Sodium (Na)	mg/L	5.4	5728244	34	0.10	5738013
Dissolved Strontium (Sr)	mg/L	0.13	5728244	0.20	0.0010	5738013
Dissolved Thallium (Tl)	mg/L	<0.000050	5728244	<0.000050	0.000050	5738013
Dissolved Titanium (Ti)	mg/L	<0.0050	5728244	0.0051	0.0050	5738013
Dissolved Uranium (U)	mg/L	0.00063	5728244	0.0022	0.00010	5738013
Dissolved Vanadium (V)	mg/L	<0.00050	5728244	0.0014	0.00050	5738013
Dissolved Zinc (Zn)	mg/L	<0.0050	5728244	<0.0050	0.0050	5738013
RDL = Reportable Detection Limit QC Batch = Quality Control Batch					2	•

Stantec Consulting Ltd Client Project #: 161413684 Site Location: GUELPH, ON Sampler Initials: DS

Maxxam ID HSJ714 2018/09/11 **Sampling Date** 13:55 **COC Number** 111362 WG-161413684-UNITS RDL QC Batch 20180911-DS-03 **Calculated Parameters** Anion Sum me/L N/A 5724250 10.7 Bicarb. Alkalinity (calc. as CaCO3) mg/L 410 1.0 5724251 Calculated TDS mg/L 540 1.0 5724255 Carb. Alkalinity (calc. as CaCO3) mg/L 5.3 1.0 5724251 Cation Sum me/L 10.9 N/A 5724250 Hardness (CaCO3) mg/L 490 1.0 5724254 Ion Balance (% Difference) % 1.08 N/A 5724249 Langelier Index (@ 20C) N/A 1.20 5724252 Langelier Index (@ 4C) 0.947 N/A 5724253 Saturation pH (@ 20C) N/A 6.95 5724252 Saturation pH (@ 4C) N/A 7.20 5724253 Inorganics Total Ammonia-N mg/L 0.071 0.050 5732437 Conductivity 950 5727479 umho/cm 1.0 **Dissolved Organic Carbon** mg/L 1.4 0.50 5727802 Orthophosphate (P) 0.012 0.010 mg/L 5727668 pН 8.14 5727480 pН **Dissolved Sulphate (SO4)** mg/L 50 1.0 5727661 Alkalinity (Total as CaCO3) 410 1.0 5727466 mg/L Dissolved Chloride (Cl-) mg/L 43 1.0 5727647 Nitrite (N) 0.026 0.010 mg/L 5727425 Nitrate (N) mg/L 1.93 0.10 5727425 Nitrate + Nitrite (N) 5727425 mg/L 1.96 0.10 Metals **Dissolved Aluminum (AI)** mg/L 0.0064 0.0050 5728244 Dissolved Antimony (Sb) mg/L < 0.00050 0.00050 5728244 Dissolved Arsenic (As) mg/L < 0.0010 0.0010 5728244 Dissolved Barium (Ba) mg/L 0.13 0.0020 5728244 Dissolved Beryllium (Be) mg/L < 0.00050 0.00050 5728244 Dissolved Boron (B) mg/L 0.11 0.010 5728244 RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable

Stantec Consulting Ltd Client Project #: 161413684 Site Location: GUELPH, ON Sampler Initials: DS

Maxxam ID		HSJ714		
Sampling Date		2018/09/11 13:55		
COC Number		111362	1	
	UNITS	WG-161413684- 20180911-DS-03	RDL	QC Batcl
Dissolved Cadmium (Cd)	mg/L	<0.00010	0.00010	5728244
Dissolved Calcium (Ca)	mg/L	82	0.20	5728244
Dissolved Chromium (Cr)	mg/L	<0.0050	0.0050	5728244
Dissolved Cobalt (Co)	mg/L	<0.00050	0.00050	5728244
Dissolved Copper (Cu)	mg/L	<0.0010	0.0010	5728244
Dissolved Iron (Fe)	mg/L	<0.10	0.10	5728244
Dissolved Lead (Pb)	mg/L	<0.00050	0.00050	5728244
Dissolved Magnesium (Mg)	mg/L	71	0.050	572824
Dissolved Manganese (Mn)	mg/L	0.020	0.0020	572824
Dissolved Molybdenum (Mo)	mg/L	0.0042	0.00050	5728244
Dissolved Nickel (Ni)	mg/L	<0.0010	0.0010	5728244
Dissolved Phosphorus (P)	mg/L	0.11	0.10	572824
Dissolved Potassium (K)	mg/L	5.9	0.20	572824
Dissolved Selenium (Se)	mg/L	0.0022	0.0020	572824
Dissolved Silicon (Si)	mg/L	5.2	0.050	5728244
Dissolved Silver (Ag)	mg/L	<0.00010	0.00010	5728244
Dissolved Sodium (Na)	mg/L	20	0.10	5728244
Dissolved Strontium (Sr)	mg/L	0.23	0.0010	5728244
Dissolved Thallium (TI)	mg/L	<0.000050	0.000050	5728244
Dissolved Titanium (Ti)	mg/L	<0.0050	0.0050	5728244
Dissolved Uranium (U)	mg/L	0.0030	0.00010	5728244
Dissolved Vanadium (V)	mg/L	0.0012	0.00050	5728244
Dissolved Zinc (Zn)	mg/L	<0.0050	0.0050	572824
RDL = Reportable Detection Limit QC Batch = Quality Control Batch			•	L

RCAP - COMPREHENSIVE (WATER)

Page 9 of 20

Stantec Consulting Ltd Client Project #: 161413684 Site Location: GUELPH, ON Sampler Initials: DS

RESULTS OF ANALYSES OF WATER

Maxxam ID		HSJ712	HSJ713		HSJ714		
Sampling Date		2018/09/11 12:40	2018/09/11 13:10		2018/09/11 13:55		
COC Number		111362	111362		111362		
	UNITS	WG-161413684- 20180911-DS-01	WG-161413684- 20180911-DS-02	RDL	WG-161413684- 20180911-DS-03	RDL	QC Batch
Inorganics							
Total Suspended Solids	mg/L	1800	1200	25	100	1.3	5727677
RDL = Reportable Detectio	n Limit	· · · · · · · · · · · · · · · · · · ·	-			-	
QC Batch = Quality Control	l Batch						

Stantec Consulting Ltd Client Project #: 161413684 Site Location: GUELPH, ON Sampler Initials: DS

TEST SUMMARY

Maxxam ID:	HSJ712
Sample ID:	WG-161413684-20180911-DS-01
Matrix:	Water

Collected: 2018/09/11 Shipped: Received: 2018/09/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	5727466	N/A	2018/09/14	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	5724251	N/A	2018/09/14	Automated Statchk
Chloride by Automated Colourimetry	KONE	5727647	N/A	2018/09/14	Deonarine Ramnarine
Conductivity	AT	5727479	N/A	2018/09/14	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	5727802	N/A	2018/09/14	Shivani Shivani
Hardness (calculated as CaCO3)		5724254	N/A	2018/09/17	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	5728244	N/A	2018/09/17	Arefa Dabhad
Ion Balance (% Difference)	CALC	5724249	N/A	2018/09/17	Automated Statchk
Anion and Cation Sum	CALC	5724250	N/A	2018/09/17	Automated Statchk
Total Ammonia-N	LACH/NH4	5732437	N/A	2018/09/18	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5727425	N/A	2018/09/13	Chandra Nandlal
рН	AT	5727480	N/A	2018/09/14	Surinder Rai
Orthophosphate	KONE	5727668	N/A	2018/09/14	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	5724252	N/A	2018/09/17	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	5724253	N/A	2018/09/17	Automated Statchk
Sulphate by Automated Colourimetry	KONE	5727661	N/A	2018/09/14	Deonarine Ramnarine
Total Dissolved Solids (TDS calc)	CALC	5724255	N/A	2018/09/17	Automated Statchk
Total Suspended Solids	BAL	5727677	2018/09/12	2018/09/13	Jingwei (Alvin) Shi

Maxxam ID: HSJ713 Sample ID: WG-161413684-20180911-DS-02 Matrix: Water Collected: 2018/09/11 Shipped: Received: 2018/09/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	5738172	N/A	2018/09/19	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	5724251	N/A	2018/09/14	Automated Statchk
Chloride by Automated Colourimetry	KONE	5738161	N/A	2018/09/19	Deonarine Ramnarine
Conductivity	AT	5727479	N/A	2018/09/14	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	5727802	N/A	2018/09/14	Shivani Shivani
Hardness (calculated as CaCO3)		5724254	N/A	2018/09/17	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	5738013	N/A	2018/09/19	Thao Nguyen
Ion Balance (% Difference)	CALC	5724249	N/A	2018/09/17	Automated Statchk
Anion and Cation Sum	CALC	5724250	N/A	2018/09/17	Automated Statchk
Total Ammonia-N	LACH/NH4	5732437	N/A	2018/09/18	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5727425	N/A	2018/09/13	Chandra Nandlal
рН	AT	5727480	N/A	2018/09/14	Surinder Rai
Orthophosphate	KONE	5727668	N/A	2018/09/14	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	5724252	N/A	2018/09/17	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	5724253	N/A	2018/09/17	Automated Statchk
Sulphate by Automated Colourimetry	KONE	5727661	N/A	2018/09/14	Deonarine Ramnarine
Total Dissolved Solids (TDS calc)	CALC	5724255	N/A	2018/09/17	Automated Statchk
Total Suspended Solids	BAL	5727677	2018/09/12	2018/09/13	Jingwei (Alvin) Shi

Stantec Consulting Ltd Client Project #: 161413684 Site Location: GUELPH, ON Sampler Initials: DS

TEST SUMMARY

 Maxxam ID:
 HSJ714

 Sample ID:
 WG-161413684-20180911-DS-03

 Matrix:
 Water

Collected: 2018/09/11 Shipped: Received: 2018/09/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	5727466	N/A	2018/09/14	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	5724251	N/A	2018/09/14	Automated Statchk
Chloride by Automated Colourimetry	KONE	5727647	N/A	2018/09/14	Deonarine Ramnarine
Conductivity	AT	5727479	N/A	2018/09/14	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	5727802	N/A	2018/09/14	Shivani Shivani
Hardness (calculated as CaCO3)	2	5724254	N/A	2018/09/17	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	5728244	N/A	2018/09/14	Arefa Dabhad
Ion Balance (% Difference)	CALC	5724249	N/A	2018/09/17	Automated Statchk
Anion and Cation Sum	CALC	5724250	N/A	2018/09/17	Automated Statchk
Total Ammonia-N	LACH/NH4	5732437	N/A	2018/09/18	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5727425	N/A	2018/09/13	Chandra Nandlal
рН	AT	5727480	N/A	2018/09/14	Surinder Rai
Orthophosphate	KONE	5727668	N/A	2018/09/14	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	5724252	N/A	2018/09/17	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	5724253	N/A	2018/09/17	Automated Statchk
Sulphate by Automated Colourimetry	KONE	5727661	N/A	2018/09/14	Deonarine Ramnarine
Total Dissolved Solids (TDS calc)	CALC	5724255	N/A	2018/09/17	Automated Statchk
Total Suspended Solids	BAL	5727677	2018/09/12	2018/09/13	Jingwei (Alvin) Shi

 Maxxam ID:
 HSJ715

 Sample ID:
 WG-161413684-20180911-DS-04

 Matrix:
 Water

Collected: 2018/09/11 Shipped: Received: 2018/09/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonaceous BOD	DO	5726645	2018/09/12	2018/09/17	Frank Zhang
Chloride by Automated Colourimetry	KONE	5727413	N/A	2018/09/13	Alina Dobreanu
Total Cyanide	SKAL/CN	5729123	2018/09/13	2018/09/13	Xuanhong Qiu
Fluoride	ISE	5727841	2018/09/12	2018/09/13	Surinder Rai
Mercury in Water by CVAA	CV/AA	5731153	2018/09/14	2018/09/14	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5728921	N/A	2018/09/13	Arefa Dabhad
Fecal coliform, (5TMPN/100mL)	INC	5726125	N/A	2018/09/11	Sirimathie Aluthwala
Animal and Vegetable Oil and Grease	BAL	5724443	N/A	2018/09/14	Automated Statchk
Total Oil and Grease	BAL	5731988	2018/09/14	2018/09/14	Amjad Mir
рН	AT	5727848	N/A	2018/09/13	Surinder Rai
Phenois (4AAP)	TECH/PHEN	5729249	N/A	2018/09/14	Bramdeo Motiram
Sulphate by Automated Colourimetry	KONE	5727421	N/A	2018/09/13	Alina Dobreanu
Total Kjeldahl Nitrogen in Water	SKAL	5734882	2018/09/17	2018/09/17	Rajni Tyagi
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	5732048	2018/09/14	2018/09/14	Amjad Mir
Total Suspended Solids	BAL	5727677	2018/09/12	2018/09/13	Jingwei (Alvin) Shi

Carbonaceous BOD

Stantec Consulting Ltd Client Project #: 161413684 Site Location: GUELPH, ON Sampler Initials: DS

2018/09/17

Frank Zhang

TEST SUMMARY

Matrix:	Water		Received:	2018/09/11
Sample ID:	HSJ715 Dup WG-161413684-20180911-DS-04		Shipped:	2018/09/11

2018/09/12

5726645

DO

Page 13 of 20

Stantec Consulting Ltd Client Project #: 161413684 Site Location: GUELPH, ON Sampler Initials: DS

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt
Package 16.7°C
Sample HSJ713 [WG-161413684-20180911-DS-02] : Elevated ion balance result was confirmed by re-analysis.
Sample HSJ715, Total Metals Analysis by ICPMS: Test repeated.
Results relate only to the items tested.

Page 14 of 20

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel. (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

	Ċ.						Site San	Site Location: GU Sampler Initials: DS	GUELPH, ON ls: DS	7		
			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	Blank	RPD		QC Sta	QC Standard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5726645	Total Carbonaceous BOD	2018/09/17					<2	mg/L	NC	30	86	85 ±115
5727413	Dissolved Chloride (CI-)	2018/09/13	NC	80 - 120	104	80 - 120	<1.0	mg/L	0.80	20		
5727421	Dissolved Sulphate (SO4)	2018/09/13	NC	75 - 125	97	80 - 120	<1.0	mg/L	0.58	20		
5727425	Nitrate (N)	2018/09/13	89	80 - 120	102	80 - 120	<0.10	mg/L	NC	20		
5727425	Nitrite (N)	2018/09/13	104	80 - 120	104	80 - 120	<0.010	mg/L	NC	20		
5727466	Alkalinity (Total as CaCO3)	2018/09/14			97	85 - 115	<1.0	mg/L	0.90	20		
5727479	Conductivity	2018/09/14			101	85 - 115	<1.0	umho/c m	0.36	25		
5727480	Hd	2018/09/14			101	98 - 103			0.24	N/A		
5727647	Dissolved Chloride (Cl-)	2018/09/14	114	80 - 120	101	80 - 120	<1.0	mg/L	13	20		
5727661	Dissolved Sulphate (SO4)	2018/09/14	104	75 - 125	103	80 - 120	<1.0	mg/L	0.21	20		
5727668	Orthophosphate (P)	2018/09/14	109	75 - 125	66	80 - 120	<0.010	mg/t	NC	25		
5727677	Total Suspended Solids	2018/09/13					<10	mg/L	NC	25	95	85 - 115
5727802	Dissolved Organic Carbon	2018/09/14	95	80 - 120	98	80 - 120	<0.50	mg/L	5.0	20		
5727841	Fluoride (F-)	2018/09/13	97	80 - 120	66	80 - 120	<0.10	mg/L	6.7	20		
5727848	Hd	2018/09/13			102	98 - 103			0.24	N/A		
5728244	Dissolved Aluminum (Al)	2018/09/14	102	80 - 120	100	80 - 120	<0.0050	mg/L				
5728244	Dissolved Antimony (Sb)	2018/09/14	105	80÷120	101	80 - 120	<0.00050	mg/L	NC	20		
5728244	Dissolved Arsenic (As)	2018/09/14	101	80 - 120	100	80 - 120	<0.0010	mg/L	NC	20		
5728244	Dissolved Barium (Ba)	2018/09/14	102	80 - 120	100	80 - 120	<0.0020	mg/L	1.7	20		
5728244	Dissolved Beryllium (Be)	2018/09/14	112	80 - 120	105	80 - 120	<0.00050	mg/L	NC	20		
5728244	Dissolved Boron (B)	2018/09/14	112	80 - 120	104	80 - 120	<0.010	mg/L	NC	20		
5728244	Dissolved Cadmium (Cd)	2018/09/14	103	80 - 120	101	80 - 120	<0.00010	mg/L	NC	20		
5728244	Dissolved Calcium (Ca)	2018/09/14	NC	80 - 120	94	80 - 120	<0.20	mg/L				
5728244	Dissolved Chromium (Cr)	2018/09/14	66	80 - 120	94	80 - 120	<0.0050	mg/L	NC	20		
5728244	Dissolved Cobalt (Co)	2018/09/14	95	80 - 120	96	80=120	<0.00050	mg/L	NC	20		
5728244	Dissolved Copper (Cu)	2018/09/14	101	80 - 120	96	80 - 120	<0.0010	mg/L	NC	20		
5728244	Dissolved Iron (Fe)	2018/09/14	103	80 - 120	101	80 - 120	<0.10	mg/L				
5728244	Dissolved Lead (Pb)	2018/09/14	66	80 - 120	100	80 - 120	<0.00050	mg/L	NC	20		
5728244	Dissolved Magnesium (Mg)	2018/09/14	106	80 - 120	102	80 - 120	<0.050	mg/L				
5728244	Dissolved Manganese (Mn)	2018/09/14	100	80 - 120	98	80 - 120	<0.0020	mg/L		11		
	1.81			i c	0							

QUALITY ASSURANCE REPORT

Maxa am A Bureau Verticas Group Company

Maxxam Job #: B8N6455 Report Date: 2018/09/19

Stantec Consulting Ltd Client Project #: 161413684 Site Location: GUELPH, ON

Maxaam Analytics International Corporation o/a Maxxam Analytics 5740 Campobello Road, Mississauga, Ontario, ISN 218 Tet: [905] 817-5700 Toll-Free: 800-563-6266 Fax: (905] 817-5777 www maxxam ca Page 15 of 20

Report Date:	Report Date: 2018/09/19	(nh)	QUALITY ASSURANCE REPORT(CONT D)	KANCE KE	PORI (CON	(a.)	Clie	nt Project	Client Project #: 161413684			
							Site Sam	Site Location: GU Sampler Initials: DS	GUELPH, ON ls: DS	7		
			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	llank	RPD		QC Standard	dard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery C	QC Limits
5728244	Dissolved Molybdenum (Mo)	2018/09/14	105	80 - 120	103	80 - 120	<0.00050	mg/L	8.3	20		
5728244	Dissolved Nickel (Ni)	2018/09/14	96	80 - 120	95	80 - 120	<0.0010	mg/L	3.1	20		
5728244	Dissolved Phosphorus (P)	2018/09/14	115	80 - 120	116	80 - 120	<0.10	mg/L				
5728244	Dissolved Potassium (K)	2018/09/14	106	80 - 120	104	80 - 120	<0.20	mg/L				
5728244	Dissolved Selenium (Se)	2018/09/14	66	80 - 120	66	80 - 120	<0.0020	mg/L	NC	20		
5728244	Dissolved Silicon (Si)	2018/09/14	100	80 - 120	102	80 - 120	<0.050	mg/L	:			
5728244	Dissolved Silver (Ag)	2018/09/14	98	80 - 120	98	80 - 120	<0.00010	mg/L	NC	20		
5728244	Dissolved Sodium (Na)	2018/09/14	NC	80 - 120	101	80 - 120	<0.10	mg/L	3.9	20		
5728244	Dissolved Strontium (Sr)	2018/09/14	101	80 - 120	98	80 - 120	<0.0010	mg/L				
5728244	Dissolved Thallium (TI)	2018/09/14	100	80 - 120	97	80 - 120	<0.000050	mg/L	NC	20		
5728244	Dissolved Titanium (Ti)	2018/09/14	105	80 - 120	103	80 - 120	<0.0050	mg/L				
5728244	Dissolved Uranium (U)	2018/09/14	102	80 - 120	101	80 - 120	<0.00010	mg/L	4.9	20		
5728244	Dissolved Vanadium (V)	2018/09/14	97	80 - 120	93	80 - 120	<0.00050	mg/L	NC	20		
5728244	Dissolved Zinc (Zn)	2018/09/14	98	80 - 120	97	80 - 120	<0.0050	mg/L	4.0	20		
5728921	Total Aluminum (Al)	2018/09/13	112	80 - 120	101	80 - 120	0.0062, RDL=0.0050	mg/L	0.18	20		
5728921	Total Antimony (Sb)	2018/09/13	101	80 - 120	66	80 - 120	<0.00050	mg/L	NC	20		
5728921	Total Arsenic (As)	2018/09/13	66	80 - 120	100	80 - 120	<0.0010	mg/L	NC	20		
5728921	Total Bismuth (Bi)	2018/09/13	89	80 - 120	91	80 - 120	<0.0010	mg/L	NC	20		
5728921	Total Cadmium (Cd)	2018/09/13	100	80 - 120	66	80 - 120	<0.00010	mg/L	NC	20	_	
5728921	Total Chromium_(Cr)	2018/09/13	98	80 - 120	95	80 - 120	<0.0050	mg/L	NC	20		
5728921	Total Cobalt (Co)	2018/09/13	66	80 - 120	97	80 - 120	<0.00050	mg/L	NC	20	4	
5728921	Total Iron (Fe)	2018/09/13	66	80 - 120	98	80 - 120	<0.10	mg/L	1.5	20		
5728921	Total Lead (Pb)	2018/09/13	92	80 - 120	92	80 - 120	<0.00050	mg/L	1.7	20		
5728921	Total Manganese (Mn)	2018/09/13	95	80 - 120	96	80 - 120	<0.0020	mg/L	2.3	20		
5728921	Total Molybdenum (Mo)	2018/09/13	97	80 - 120	100	80 - 120	<0.00050	mg/L	3.9	20		
5728921	Total Nickel (Ni)	2018/09/13	91	80 - 120	92	80 - 120	<0.0010	mg/L	NC	20		
5728921	Total Phosphorus (P)	2018/09/13	NC	80 - 120	111	80 - 120	<0.10	mg/L				
5728921	Total Selenium (Se)	2018/09/13	105	80 - 120	105	80 - 120	<0.0020	mg/L	NC	20		
5728921	Total Silver (Ag)	2018/09/13	95	80 - 120	95	80 - 120	<0.00010	mg/L	NC	20		
5728921	Total Tin (Sn)	2018/09/13	98	80 - 120	97	80 - 120	<0.0010	mg/i	NC	20		

QUALITY ASSURANCE REPORT(CONT'D)

Max kam A Bureau Verilas Group Company

Maxxam Job #: B8N6455

Stantec Consulting Ltd

Page 16 of 20

Marcian Analytics international Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 218 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Maxxam Job #: B8N6455	Report Date: 2018/09/19
Maxxam Job	Report Date

QUALITY ASSURANCE REPORT(CONT'D)

Stantec Consulting Ltd Client Project #: 161413684 Site Location: GUELPH, ON Sampler Initials: DS

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	Slank	RPD		QC Sta	QC Standard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery QC Limits	QC Limits
5728921	Total Titanium (Ti)	2018/09/13	96	80 - 120	98	80 - 120	<0.0050	mg/L	6.5	20		
5728921	Total Vanadium (V)	2018/09/13	94	80 - 120	94	80 - 120	<0.00050	mg/L	7.8	20		
5728921	Total Zinc (Zn)	2018/09/13	66	80 - 120	100	80 - 120	<0.0050	mg/L	1.6	20		
5729123	Total Cyanide (CN)	2018/09/13	85	80 - 120	97	80 - 120	<0.0050	mg/L	1.6	20		
5729249	Phenols-4AAP	2018/09/13	93	80 - 120	94	80 - 120	<0.0010	mg/L	NC	20		
5729988	Total Copper (Cu)	2018/09/14	102	80 - 120	103	80 - 120	<0.0010	mg/L	NC	20		
5731153	Mercury (Hg)	2018/09/14	95	75 - 125	92	80 - 120	<0.0001	mg/L	NC	20		
5731988	Total Oil & Grease	2018/09/14	91	75 - 125	96	85 - 115	<0.50	mg/L	1.6	25		
5732048	Total Oil & Grease Mineral/Synthetic	2018/09/14	93	75 - 125	92	85 - 115	<0.50	mg/L	2.7	25	10	
5732437	Total Ammonia-N	2018/09/18	101	75 - 125	102	80 - 120	<0.050	mg/L	NC	20		
5734882	Total Kjeldahl Nitrogen (TKN)	2018/09/17	86	80 - 120	100	80 - 120	<0.10	mg/L	1.7	20	66	80 - 120
5738013	Dissolved Aluminum (Al)	2018/09/19	105	80 - 120	66	80 - 120	<0.0050	mg/L				
5738013	Dissolved Antimony (Sb)	2018/09/19	110	80 - 120	100	80 - 120	<0.00050	mg/L	NC	20		
5738013	Dissolved Arsenic (As)	2018/09/19	103	80 - 120	100	80 - 120	<0.0010	mg/L	NC	20 🔬		
5738013	Dissolved Barium (Ba)	2018/09/19	107	80-120	66	80= 120	<0.0020	mg/L	1.1	20		
5738013	Dissolved Beryllium (Be)	2018/09/19	66	80 - 120	66	80 - 120	<0.00050	mg/L	NC	20		
5738013	Dissolved Boron (B)	2018/09/19	104	80 - 120	100	80 - 120	<0.010	mg/L	0.083	20		
5738013	Dissolved Cadmium (Cd)	2018/09/19	98	80 - 120	98	80 - 120	<0.00010	mg/L	NC	20		
5738013	Dissolved Calcium (Ca)	2018/09/19	NC	80 - 120	66	80 - 120	<0.20	mg/L				
5738013	Dissolved Chromium (Cr)	2018/09/19	100	80 - 120	97	80 - 120	<0.0050	mg/L	NC	20		
5738013	Dissolved Cobalt (Co)	2018/09/19	66	80 - 120	97	80 - 120	<0.00050	mg/L	3.6	20		
5738013	Dissolved Copper (Cu)	2018/09/19	104	80 - 120	98	80 - 120	<0.0010	mg/L	NC	20		
5738013	Dissolved Iron (Fe)	2018/09/19	104	80 - 120	100	80 - 120	<0.10	mg/L				
5738013	Dissolved Lead (Pb)	2018/09/19	90	80 - 120	97	80 - 120	<0.00050	mg/L	NC	20		
5738013	Dissolved Magnesium (Mg)	2018/09/19	NC	80 - 120	66	80 - 120	<0.050	mg/L				
5738013	Dissolved Manganese (Mn)	2018/09/19	101	80 - 120	98	80 - 120	<0.0020	mg/t				
5738013	Dissolved Molybdenum (Mo)	2018/09/19	113	80 - 120	101	80 - 120	<0.00050	mg/L	1.9	20		
5738013	Dissolved Nickel (Ni)	2018/09/19	95	80 - 120	96	80 - 120	<0.0010	mg/L	7.9	20		
5738013	Dissolved Phosphorus (P)	2018/09/19	116	80 - 120	118	80 - 120	<0.10	mg/L				
5738013	Dissolved Potassium (K)	2018/09/19	108	80 - 120	66	80 - 120	<0.20	mg/L				a.
5738013	Dissolved Selenium (Se)	2018/09/19	66	80 - 120	100	80 - 120	<0.0020	mg/L	NC	20		

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 218 Tet: (905) 817-5700 Toll-Free: 800-563-6266 Fax (905) 817-5777 www.maxxam ca

Page 17 of 20

	Marcauveritas Group Company											
Maxxam Jo Report Date	Maxxam Job #: B8N6455 Report Date: 2018/09/19	/ND	QUALITY ASSURANCE REPORT(CONT'D)	RANCE RE	PORT(CON	T'D)	Star Clie	Stantec Consulting Ltd Client Project #: 16141	Stantec Consulting Ltd Client Project #: 161413684			
							Site Sam	Site Location: GU Sampler Initials: DS	GUELPH, ON s: DS	7		
			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	lank	RPD		QC Standard	dard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5738013	Dissolved Silicon (Si)	2018/09/19	107	80 - 120	101	80 - 120	<0.050	mg/L				8
5738013	Dissolved Sifver (Ag)	2018/09/19	96	80 - 120	97	80 - 120	<0.00010	mg/L	NC	20		
5738013	Dissolved Sodium (Na)	2018/09/19	NC	80 - 120	26	80 - 120	<0.10	mg/L	1.4	20		
5738013	Dissolved Strontium (Sr)	2018/09/19	NC	80 - 120	26	80 - 120	<0.0010	mg/L				
5738013	Dissolved Thallium (Tl)	2018/09/19	06	80 - 120	96	80 - 120	<0.000050	mg/L	NC	20		
5738013	Dissolved Titanium (Ti)	2018/09/19	110	80 - 120	101	80 - 120	<0.0050	mg/L				
5738013	Dissolved Uranium (U)	2018/09/19	96	80 - 120	100	80 - 120	<0.00010	mg/L	1.8	20		
5738013	Dissolved Vanadium (V)	2018/09/19	106	80 - 120	26	80 - 120	<0.00050	mg/L	NC	20		
5738013	Dissolved Zinc (Zn)	2018/09/19	90	80 - 120	96	80 - 120	<0.0050	mg/L	NC	20		
5738161	Dissolved Chloride (CI-)	2018/09/19	115	80 - 120	102	80 - 120	<1.0	mg/L	5.6	20		
5738172	Alkalinity (Total as CaCO3)	2018/09/19			96	85 - 115	<1.0	mg/L	1.2	20		
N/A = Not Applicable	Applicable											
Duplicate:	Duplicate: Paired analysis of a separate portion of the same sample. Used to	e sample. Used to	evaluate the	variance in ti	evaluate the variance in the measurement.	ent.						5
Matrix Spil	Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.	alyte of interest h	ias been adde	d. Used to e	valuate sampl	le matrix inté	srference.					
QC Standa	QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.	y an external agen	icy under strin	igent conditi	ions. Used as	an indepenc	lent check of n	nethod acc	uracy.			
Spiked Blaı	Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.	unt of the analyte.	, usually from	a second so	urce, has bee	n added. Use	ed to evaluate	method ac	curacy.			-
Method Bl.	Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.	in the analytical p.	rocedure. Use	ed to identify	/ laboratory co	ontamination	Ŀ.					
NC (Matrix recovery ci	NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)	calculated. The rule to the rule to the rule to the mative same	elative differe uple concentra	nce betweer ition)	n the concent.	ration in the	parent sample	and the s	pike amount v	vas too small	to permit a r	eliable
NC (Duplic	NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).	The concentration	in the sample	s and/or dup	licate was too	o low to pern	nit a reliable R	PD calculat	tion (absolute	difference <:	= 2x RDL).	
												2

)

Page 18 of 20

Maxam Analytics international Corporation o/a Maxvam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 218 Tet (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxvam.ca

Stantec Consulting Ltd Client Project #: 161413684 Site Location: GUELPH, ON Sampler Initials: DS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

austin Carriere

Cristina Carriere, Scientific Service Specialist

Sirimathie Aluthwala, Campobello Micro

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

1 III B. SWE Annual and a second second			CHAIN OF CLISTODY PECOPO	DV RECORD	1
			CIMIN OF COULD	LI NELOND A	Page
Invoice to Comatton	Report Information (H	mation (if differs from involce)	Project Information (where applicable	ere applicable]	Turnanound Time (1A1) Required
States toma	Conyuany Name		Charation & Stewber	2015-2018	Regular TAT (5-7 days) Must analytes
South Washagad Contra	Contact Name		P z Afga		ST STORE FROM IN MOTE AND A CONTRUCT FOR RUSH PROVIDE
	2		Proper 16412684	XLI XLI	Rush TAT (Suncharges will be applied)
			Ste location (510/010	NC	1 Day 2 Days 3-4 Days
Распе		644	Site 8	2	
inse (restublibely eades tester converse			Samped by Dru Smith	th	Date Required
MOE REGULATED DRIAN ME WATER OR VALER (MTENDED FOR HUMARY CONSUMPTION MUST	FOR MUNANA CONSUMER	NON IVERY BE SUBVILLED ON THE NAMEAM	BE SUBMITTED ON THE MANXAM DRIVANUE WATTR CHARN OF CULIDUP	HAR DE MAN	Rush Confirmation #:
	Other Regulations		Anityrs Requested		LABORATORY USE CHILY
Ahed/ #	Suntary Serect Bylaw		37		SEAL
	AGET SEWER BYLIN	້າກາວ	50		Y, P.W. COOLEN TEMPERATURES
	2100	/34	Jo	-	
FOR RSC [PLEASE CIRCLE Y N	PAN TAT REQUIRED!	6.7%) 11D	220		
Include Criteria on Certificate of Analysis: Y / N		2000 C	بد ایمان ایمان	87	
4. (< 30	UVERY TO MAKKAM) le rut		178118	
		0 2 1 2 1 1 4 - YEN	5 191	TON C	N A 1N BAR WAINS
SAMPLE ID RUN MARKE	TOUR SAMPLE IN NO.	1307 133 24073 20070 20073 20070 20070 20070 20070 20070 20070 20070 20070 20070 20070 20070 200	51 57 57	na kana	COM/06/45
11-1614124-201404-11-02-1018018-1-5M	12 4061	2 ×	· · · · ·		
m. Downer Dr. on Die (re/11	1210 61		×××		
hold on the internet he					
INDIANA CO- SM-11HOLIOP-HA	1 15:50 21				
- WG-1211126.84 - 30400-11-05-04 30140411 15:5 6W	1 15is Gi		×		
		•		REC'D	REC'D IN WATERLOO
	-				11 Car 10 16.10
					UP:01 01-3cb-11
BY See Print	TIME (HH MMA)	HECEIVE Dr Signat p/Pram	TOTAL PRIVATE PRIVATE AND	t MM	
Drew Smith 2015/05/19	16 43		Contraction of the	19. 40	
		(42 y) aver KI wend	Kurd 31.13/09/1	ry XI	VMK ENV-1263

Page 20 of 20

Your Project #: 161413684 Your C.O.C. #: 686036-01-01

Attention: Grant Whitehead

Stantec Consulting Ltd 300 Hagey Blvd Suite 100 Waterloo, ON CANADA . N2L 0A4

> Report Date: 2018/11/14 Report #: R5484375 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8T9171

Received: 2018/11/08, 14:50

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Alkalinity	4	N/A	2018/11/10	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	4	N/A	2018/11/12	CAM SOP-00102	APHA 4500-CO2 D
Carbonaceous BOD	1	2018/11/09	2018/11/14	CAM SOP-00427	SM 23 5210B m
Chloride by Automated Colourimetry	5	N/A	2018/11/12	CAM SOP-00463	EPA 325.2 m
Conductivity	4	N/A	2018/11/10	CAM SOP-00414	SM 23 2510 m
Total Cyanide	1	2018/11/12	2018/11/13	CAM SOP-00457	OMOE E3015 5 m
Dissolved Organic Carbon (DOC) (1)	4	N/A	2018/11/12	CAM SOP-00446	SM 23 5310 B m
Fluoride	1	2018/11/10	2018/11/13	CAM SOP-00449	SM 23 4500-F C m
Hardness (calculated as CaCO3)	4	N/A	2018/11/13	CAM SOP	SM 2340 B
				00102/00408/00447	
Mercury in Water by CVAA	1	2018/11/14	2018/11/14	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	5	N/A	2018/11/12	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	1	N/A	2018/11/12	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	4	N/A	2018/11/13	100	
Anion and Cation Sum	4	N/A	2018/11/13		
Fecal coliform, (STMPN/100mL)	1	N/A	2018/11/08	BBY4 SOP-000127	MFHPB-19
Total Ammonia-N	3	N/A	2018/11/12	CAM SOP-00441	EPA GS I-2522-90 m
Total Ammonia-N	1	N/A	2018/11/13	CAM SOP-00441	EPA GS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (2)	4	N/A	2018/11/13	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Animal and Vegetable Oil and Grease	1	N/A	2018/11/13	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2018/11/13	2018/11/13	CAM SOP-00326	EPA1664B m,SM5520A m
рН	4	N/A	2018/11/10	CAM SOP-00413	SM 4500H+ B m
рН	1	N/A	2018/11/12	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2018/11/13	CAM SOP-00444	OMOE E3179 m
Orthophosphate	4	N/A	2018/11/12	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	4	N/A	2018/11/13		
Sat. pH and Langelier Index (@ 4C)	4	N/A	2018/11/13		
Sulphate by Automated Colourimetry	5	N/A	2018/11/12	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	4	N/A	2018/11/13		
Total Kjeldahl Nitrogen in Water	1	2018/11/10	2018/11/12	CAM SOP-00938	OMOE E3516 m

Page 1 of 20

Maxxam Analytics international Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Your Project #: 161413684 Your C.O.C. #: 686036-01-01

Attention: Grant Whitehead

Stantec Consulting Ltd 300 Hagey Blvd Suite 100 Waterloo, ON CANADA N2L 0A4

> Report Date: 2018/11/14 Report #: R5484375 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8T9171

Received: 2018/11/08, 14:50

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Mineral/Synthetic O & G (TPH Heavy Oil) (3)	1	2018/11/13	2018/11/13	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	5	2018/11/09	2018/11/12	CAM SOP-00428	SM 23 2540D m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(3) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 2 of 20

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Your Project #: 161413684 Your C.O.C. #: 686036-01-01

Attention: Grant Whitehead

Stantec Consulting Ltd 300 Hagey Blvd Suite 100 Waterloo, ON CANADA N2L 0A4

> Report Date: 2018/11/14 Report #: R5484375 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8T9171 Received: 2018/11/08, 14:50

Encryption Key

Colby Coutu Project Manager Assistant 14 Nov 2018 17:01:42

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Stantec Consulting Ltd Client Project #: 161413684 Sampler Initials: DS

Maxxam ID		IGE068		
Sampling Date		2018/11/08 11:30		5
COC Number		686036-01-01		
	UNITS	WG-161413684- 20181108-DS01	RDL	QC Batch
Calculated Parameters				
Total Animal/Vegetable Oil and Grease	mg/L	3.3	0.50	5827390
Inorganics				
Total Carbonaceous BOD	mg/L	<2	2	5829310
Fluoride (F-)	mg/L	0.12	0.10	5831501
Total Kjeldahl Nitrogen (TKN)	mg/L	<0.10	0.10	5831642
pH	pН	7.69		5831504
Phenols-4AAP	mg/L	<0.0010	0.0010	5832393
Total Suspended Solids	mg/L	4800	17	5830227
Dissolved Sulphate (SO4)	mg/L	44	1.0	5831429
Total Cyanide (CN)	mg/L	<0.0050	0.0050	5832812
Dissolved Chloride (Cl-)	mg/L	38	1.0	5831425
Petroleum Hydrocarbons				
Total Oil & Grease	mg/L	3.3	0.50	5833748
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	5833755
Metals	· · · · ·			
Mercury (Hg)	mg/L	<0.0001	0.0001	5836000
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

THE CITY OF GUELPH SANITARY SEWER BYLAW (WATER)

Maixam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Stantec Consulting Ltd Client Project #: 161413684 Sampler Initials: DS

THE CITY OF GUELPH STORM SEWER BYLAW (WATER)

Maxxam ID		IGE068		
Sampling Date		2018/11/08		
		11:30		
COC Number		686036-01-01		
	UNITS	WG-161413684- 20181108-DS01	RDL	QC Batch
Metals				1
Total Aluminum (Al)	mg/L	7.4	0.0050	5831797
Total Antimony (Sb)	mg/L	<0.00050	0.00050	5831797
Total Arsenic (As)	mg/L	0.0038	0.0010	5831797
Total Bismuth (Bi)	mg/L	<0.0010	0.0010	5831797
Total Cadmium (Cd)	mg/L	0.00024	0.00010	5831797
Total Chromium (Cr)	mg/L	0.019	0.0050	5831797
Total Cobalt (Co)	mg/L	0.0040	0.00050	5831797
Total Copper (Cu)	mg/L	0.011	0.0010	5831797
Total Iron (Fe)	mg/L	10	0.10	5831797
Total Lead (Pb)	mg/L	0.030	0.00050	5831797
Total Manganese (Mn)	mg/L	0.40	0.0020	5831797
Total Molybdenum (Mo)	mg/L	0.0040	0.00050	5831797
Total Nickel (Ni)	mg/L	0.0089	0.0010	5831797
Total Phosphorus (P)	mg/L	0.41	0.10	5831797
Total Selenium (Se)	mg/L	<0.0020	0.0020	5831797
Total Silver (Ag)	mg/L	<0.00010	0.00010	5831797
Total Tin (Sn)	mg/L	0.0015	0.0010	5831797
Total Titanium (Ti)	mg/L	0.22	0.0050	5831797
Total Vanadium (V)	mg/L	0.016	0.00050	5831797
Total Zinc (Zn)	mg/L	0.098	0.0050	5831797
Microbiological				
Fecal coliform	5TMPN/100mL	<1.8	1.8	5828861
RDL = Reportable Detection QC Batch = Quality Control I				

Page 5 of 20

Stantec Consulting Ltd Client Project #: 161413684 Sampler Initials: DS

RCAP - COMPREHENSIVE (WATER)

Maxxam ID		IGE069	IGE070	IGE071		
Sampling Date		2018/11/08 12:40	2018/11/08 13:15	2018/11/08 13:20		
COC Number		686036-01-01	686036-01-01	686036-01-01		
	UNITS	WG-161413684- 20181108-DS02	WG-161413684- 20181108-DS03	WG-161413684- 20181108-DS04	RDL	QC Batcl
Calculated Parameters			-			
Anion Sum	me/L	8.98	7.31	6.51	N/A	5827281
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	230	310	240	1.0	582728
Calculated TDS	mg/L	460	350	330	1.0	5827284
Carb. Alkalinity (calc. as CaCO3)	mg/L	3.2	3.2	4.1	1.0	5827280
Cation Sum	me/L	9.29	7.10	5.93	N/A	582728
Hardness (CaCO3)	mg/L	380	330	190	1.0	5827179
Ion Balance (% Difference)	%	1.72	1.43	4.65	N/A	5827180
Langelier Index (@ 20C)	N/A	0.601	0.775	0.477		5827282
Langelier Index (@ 4C)	N/A	0.352	0.526	0.228		5827283
Saturation pH (@ 20C)	N/A	7.57	7.27	7.78		5827282
Saturation pH (@ 4C)	N/A	7.82	7.52	8.03		582728
Inorganics			•			
Total Ammonia-N	mg/L	0.23	<0.050	<0.050	0.050	5831662
Conductivity	umho/cm	840	630	590	1.0	583055
Dissolved Organic Carbon	mg/L	1.4	0.98	0.68	0.50	5830640
Orthophosphate (P)	mg/L	<0.010	0.012	0.027	0.010	583060
pН	рН	8.17	8.04	8.26		5830556
Dissolved Sulphate (SO4)	mg/L	20	20	54	1.0	583060
Alkalinity (Total as CaCO3)	mg/L	240	310	250	1.0	583053
Dissolved Chloride (Cl-)	mg/L	140	18	17	1.0	583059
Nitrite (N)	mg/L	<0.010	0.074	<0.010	0.010	583057
Nitrate (N)	mg/L	<0.10	1.01	<0.10	0.10	583057
Nitrate + Nitrite (N)	mg/L	<0.10	1.08	<0.10	0.10	583057
Metals			•	• •	,	
Dissolved Aluminum (Al)	mg/L	0.25	0.0071	0.0071	0.0050	582818
Dissolved Antimony (Sb)	mg/L	<0.00050	0.00051	<0.00050	0.00050	582818
Dissolved Arsenic (As)	mg/L	<0.0010	<0.0010	0.0044	0.0010	582818
Dissolved Barium (Ba)	mg/L	0.046	0.088	0.024	0.0020	582818
Dissolved Beryllium (Be)	mg/L	<0.00050	<0.00050	<0.00050	0.00050	582818
Dissolved Boron (B)	mg/L	0.071	0.047	0.036	0.010	582818
Dissolved Cadmium (Cd)	mg/L	<0.00010	<0.00010	<0.00010	0.00010	582818
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				· · ·		

N/A = Not Applicable

Stantec Consulting Ltd Client Project #: 161413684 Sampler Initials: DS

Maxxam ID		IGE069	IGE070	IGE071		
Sampling Date	See Sta	2018/11/08 12:40	2018/11/08 13:15	2018/11/08 13:20		
COC Number		686036-01-01	686036-01-01	686036-01-01	1	
	UNITS	WG-161413684- 20181108-DS02	WG-161413684- 20181108-DS03	WG-161413684- 20181108-DS04	RDL	QC Batch
Dissolved Calcium (Ca)	mg/L	33	47	18	0.20	5828185
Dissolved Chromium (Cr)	mg/L	<0.0050	<0.0050	<0.0050	0.0050	5828185
Dissolved Cobalt (Co)	mg/L	<0.00050	<0.00050	<0.00050	0.00050	5828185
Dissolved Copper (Cu)	mg/L	<0.0010	0.0015	<0.0010	0.0010	5828185
Dissolved Iron (Fe)	mg/L	0.33	<0.10	<0.10	0.10	5828185
Dissolved Lead (Pb)	mg/L	0.0020	<0.00050	<0.00050	0.00050	5828185
Dissolved Magnesium (Mg)	mg/L	73	51	35	0.050	5828185
Dissolved Manganese (Mn)	mg/L	0.030	0.012	<0.0020	0.0020	5828185
Dissolved Molybdenum (Mo)	mg/L	0.027	0.010	0.019	0.00050	5828185
Dissolved Nickel (Ni)	mg/L	0.0021	<0.0010	0.0011	0.0010	5828185
Dissolved Phosphorus (P)	mg/L	<0.10	<0.10	<0.10	0.10	5828185
Dissolved Potassium (K)	mg/L	5.1	7.5	3.0	0.20	5828185
Dissolved Selenium (Se)	mg/L	<0.0020	<0.0020	<0.0020	0.0020	5828185
Dissolved Silicon (Si)	mg/L	5.9	3.9	4.3	0.050	5828185
Dissolved Silver (Ag)	mg/L	<0.00010	<0.00010	<0.00010	0.00010	5828185
Dissolved Sodium (Na)	mg/L	33	7.7	47	0.10	5828185
Dissolved Strontium (Sr)	mg/L	0.21	0.15	0.27	0.0010	5828185
Dissolved Thallium (Tl)	mg/L	<0.000050	<0.000050	<0.000050	0.000050	5828185
Dissolved Titanium (Ti)	mg/L	0.012	<0.0050	<0.0050	0.0050	5828185
Dissolved Uranium (U)	mg/L	0.00050	0.0017	0.0010	0.00010	5828185
Dissolved Vanadium (V)	mg/L	0.00084	0.0012	0.0014	0.00050	5828185
Dissolved Zinc (Zn)	mg/L	0.0062	<0.0050	<0.0050	0.0050	5828185
RDL = Reportable Detection Limit QC Batch = Quality Control Batch						

Report Date: 2018/11/14

Stantec Consulting Ltd Client Project #: 161413684 Sampler Initials: DS

RCAP - COMPREHENSIVE (WATER)

Maxxam ID		IGE072		
Sampling Date		2018/11/08 13:45		
COC Number		686036-01-01	1	ĺ
	UNITS	WG-161413684- 20181108-DS05	RDL	QC Batch
Calculated Parameters		ii.		
Anion Sum	me/L	13.3	N/A	5827281
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	290	1.0	5827280
Calculated TDS	mg/L	700	1.0	5827284
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.4	1.0	5827280
Cation Sum	me/L	13.2	N/A	5827281
Hardness (CaCO3)	mg/L	470	1.0	5827179
lon Balance (% Difference)	%	0.280	N/A	5827180
Langelier Index (@ 20C)	N/A	0.753		5827282
Langelier Index (@ 4C)	N/A	0.506		5827283
Saturation pH (@ 20C)	N/A	7.18		5827282
Saturation pH (@ 4C)	N/A	7.43		5827283
Inorganics	·			
Total Ammonia-N	mg/L	0.13	0.050	5831661
Conductivity	umho/cm	1300	1.0	5830552
Dissolved Organic Carbon	mg/L	1.0	0.50	5830640
Orthophosphate (P)	mg/L	0.012	0.010	5830606
рН	рН	7.94		5830556
Dissolved Sulphate (SO4)	mg/L	84	1.0	5830605
Alkalinity (Total as CaCO3)	mg/L	300	1.0	5830538
Dissolved Chloride (Cl-)	mg/L	200	2.0	5830597
Nitrite (N)	mg/L	<0.010	0.010	5830573
Nitrate (N)	mg/L	<0.10	0.10	5830573
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	5830573
Metals	·		·	·
Dissolved Aluminum (Al)	mg/L	<0.0050	0.0050	5828185
Dissolved Antimony (Sb)	mg/L	<0.00050	0.00050	5828185
Dissolved Arsenic (As)	mg/L	0.0011	0.0010	5828185
Dissolved Barium (Ba)	mg/L	0.089	0.0020	5828185
Dissolved Beryllium (Be)	mg/L	<0.00050	0.00050	5828185
Dissolved Boron (B)	mg/L	0.069	0.010	5828185
Dissolved Cadmium (Cd)	mg/L	<0.00010	0.00010	5828185
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable			-	-

Stantec Consulting Ltd Client Project #: 161413684 Sampler Initials: DS

Maxxam ID		IGE072		
Sampling Date		2018/11/08 13:45		
COC Number		686036-01-01		
	UNITS	WG-161413684- 20181108-DS05	RDL	QC Batch
Dissolved Calcium (Ca)	mg/L	71	0.20	5828185
Dissolved Chromium (Cr)	mg/L	<0.0050	0.0050	5828185
Dissolved Cobalt (Co)	mg/L	<0.00050	0.00050	5828185
Dissolved Copper (Cu)	mg/L	0.0016	0.0010	5828185
Dissolved Iron (Fe)	mg/L	<0.10	0.10	5828185
Dissolved Lead (Pb)	mg/L	<0.00050	0.00050	5828185
Dissolved Magnesium (Mg)	mg/L	71	0.050	5828185
Dissolved Manganese (Mn)	mg/L	0.021	0.0020	5828185
Dissolved Molybdenum (Mo)	mg/L	0.012	0.00050	5828185
Dissolved Nickel (Ni)	mg/L	0.0015	0.0010	5828185
Dissolved Phosphorus (P)	mg/L	<0.10	0.10	5828185
Dissolved Potassium (K)	mg/L	5.6	0.20	5828185
Dissolved Selenium (Se)	mg/L	<0.0020	0.0020	5828185
Dissolved Silicon (Si)	mg/L	5.0	0.050	5828185
Dissolved Silver (Ag)	mg/L	<0.00010	0.00010	5828185
Dissolved Sodium (Na)	mg/L	84	0.10	5828185
Dissolved Strontium (Sr)	mg/L	0.26	0.0010	5828185
Dissolved Thallium (TI)	mg/L	<0.000050	0.000050	5828185
Dissolved Titanium (Ti)	mg/L	<0.0050	0.0050	5828185
Dissolved Uranium (U)	mg/L	0.0027	0.00010	5828185
Dissolved Vanadium (V)	mg/L	0.0012	0.00050	5828185
Dissolved Zinc (Zn)	mg/L	<0.0050	0.0050	5828185
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

RCAP - COMPREHENSIVE (WATER)

Stantec Consulting Ltd Client Project #: 161413684 Sampler Initials: DS

RESULTS OF ANALYSES OF WATER

Maxxam ID		IGE069		IGE070		IGE071		
Compling Data		2018/11/08		2018/11/08		2018/11/08		
Sampling Date		12:40		13:15		13:20		
COC Number		686036-01-01		686036-01-01		686036-01-01		
	UNITS	WG-161413684- 20181108-DS02	RDL	WG-161413684- 20181108-DS03	RDL	WG-161413684- 20181108-DS04	RDL	QC Batch
Inorganics								
Total Suspended Solids	mg/L	3000	20	630	10	2400	20	5830227
RDL = Reportable Detectio	n Limit							
QC Batch = Quality Control	Batch							

Maxxam ID		IGE072		
Sampling Date		2018/11/08		
Samping Date		13:45		
COC Number		686036-01-01		
	UNITS	WG-161413684- 20181108-DS05	RDL	QC Batch
Inorganics			• •	
Total Suspended Solids	mg/L	1400	10	5830227
RDL = Reportable Detectio	n Limit			
QC Batch = Quality Control	Batch			

Stantec Consulting Ltd Client Project #: 161413684 Sampler Initials: DS

Maxxam ID IGE068 2018/11/08 Sampling Date 11:30 **COC Number** 686036-01-01 WG-161413684-UNITS RDL QC Batch 20181108-DS01 Metals Dissolved Aluminum (Al) mg/L < 0.0050 0.0050 5828185 Dissolved Antimony (Sb) < 0.00050 0.00050 mg/L 5828185 Dissolved Arsenic (As) mg/L < 0.0010 0.0010 5828185 Dissolved Bismuth (Bi) < 0.0010 5828185 mg/L 0.0010 Dissolved Cadmium (Cd) mg/L < 0.00010 0.00010 5828185 Dissolved Chromium (Cr) mg/L < 0.0050 0.0050 5828185 Dissolved Cobalt (Co) mg/L < 0.00050 0.00050 5828185 Dissolved Copper (Cu) 0.0012 mg/L 0.0010 5828185 Dissolved Iron (Fe) mg/L < 0.10 0.10 5828185 Dissolved Lead (Pb) <0.00050 mg/L 0.00050 5828185 Dissolved Manganese (Mn) mg/L 0.019 0.0020 5828185 Dissolved Molybdenum (Mo) 0.0027 mg/L 0.00050 5828185 Dissolved Nickel (Ni) < 0.0010 0.0010 5828185 mg/L Dissolved Phosphorus (P) mg/L < 0.10 0.10 5828185 Dissolved Selenium (Se) < 0.0020 0.0020 mg/L 5828185 Dissolved Silver (Ag) < 0.00010 mg/L 0.00010 5828185 Dissolved Tin (Sn) mg/L < 0.0010 0.0010 5828185 Dissolved Titanium (Ti) < 0.0050 0.0050 5828185 mg/L Dissolved Vanadium (V) 0.0015 mg/L 0.00050 5828185 Dissolved Zinc (Zn) < 0.0050 mg/L 0.0050 5828185 RDL = Reportable Detection Limit QC Batch = Quality Control Batch

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Stantec Consulting Ltd Client Project #: 161413684 Sampler Initials: DS

TEST SUMMARY

Maxxam ID:	IGE068
Sample ID:	WG-161413684-20181108-DS01
Matrix:	Water

Collected:	2018/11/08
Shipped:	
Received:	2018/11/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonaceous BOD	DO	5829310	2018/11/09	2018/11/14	Althea Gonzalez
Chloride by Automated Colourimetry	KONE	5831425	N/A	2018/11/12	Deonarine Ramnarine
Total Cyanide	SKAL/CN	5832812	2018/11/12	2018/11/13	Xuanhong Qiu
Fluoride	ISE	5831501	2018/11/10	2018/11/13	Surinder Rai
Mercury in Water by CVAA	CV/AA	5836000	2018/11/14	2018/11/14	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	5828185	N/A	2018/11/12	Thao Nguyen
Total Metals Analysis by ICPMS	ICP/MS	5831797	N/A	2018/11/12	Arefa Dabhad
Fecal coliform, (STMPN/100mL)	INC	5828861	N/A	2018/11/08	Sirimathie Aluthwala
Animal and Vegetable Oil and Grease	BAL	5827390	N/A	2018/11/13	Automated Statchk
Total Oil and Grease	BAL	5833748	2018/11/13	2018/11/13	Francis Afonso
pH	AT	5831504	N/A	2018/11/12	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5832393	N/A	2018/11/13	Bramdeo Motiram
Sulphate by Automated Colourimetry	KONE	5831429	N/A	2018/11/12	Deonarine Ramnarine
Total Kjeldahl Nitrogen in Water	SKAL	5831642	2018/11/10	2018/11/12	Rajni Tyagi
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	5833755	2018/11/13	2018/11/13	Francis Afonso
Total Suspended Solids	BAL	5830227	2018/11/09	2018/11/12	Nilam Borole

 Maxxam ID:
 IGE069

 Sample ID:
 WG-161413684-20181108-DS02

 Matrix:
 Water

Collected: 2018/11/08 Shipped: Received: 2018/11/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	5830538	N/A	2018/11/10	Neil Dassanayake
Carbonate, Bicarbonate and Hydroxide	CALC	5827280	N/A	2018/11/12	Automated Statchk
Chloride by Automated Colourimetry	KONE	5830597	N/A	2018/11/12	Deonarine Ramnarine
Conductivity	AT	5830552	N/A	2018/11/10	Neil Dassanayake
Dissolved Organic Carbon (DOC)	TOCV/NDIR	5830640	N/A	2018/11/12	Nimarta Singh
Hardness (calculated as CaCO3)		5827179	N/A	2018/11/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	5828185	N/A	2018/11/12	Thao Nguyen
Ion Balance (% Difference)	CALC	5827180	N/A	2018/11/13	Automated Statchk
Anion and Cation Sum	CALC	5827281	N/A	2018/11/13	Automated Statchk
Total Ammonia-N	LACH/NH4	5831662	N/A	2018/11/12	Chandra Nandlal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5830573	N/A	2018/11/13	Chandra Nandlal
рН	AT	5830556	N/A	2018/11/10	Neil Dassanayake
Orthophosphate	KONE	5830606	N/A	2018/11/12	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	5827282	N/A	2018/11/13	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	5827283	N/A	2018/11/13	Automated Statchk
Sulphate by Automated Colourimetry	KONE	5830605	N/A	2018/11/12	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	5827284	N/A	2018/11/13	Automated Statchk
Total Suspended Solids	BAL	5830227	2018/11/09	2018/11/12	Nilam Borole

Stantec Consulting Ltd Client Project #: 161413684 Sampler Initials: DS

TEST SUMMARY

 Maxxam ID:
 IGE070

 Sample ID:
 WG-161413684-20181108-DS03

 Matrix:
 Water

Collected: 2018/11/08 Shipped: Received: 2018/11/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	5830538	N/A	2018/11/10	Neil Dassanayake
Carbonate, Bicarbonate and Hydroxide	CALC	5827280	N/A	2018/11/12	Automated Statchk
Chloride by Automated Colourimetry	KONE	5830597	N/A	2018/11/12	Deonarine Ramnarine
Conductivity	AT	5830552	N/A	2018/11/10	Neil Dassanayake
Dissolved Organic Carbon (DOC)	TOCV/NDIR	5830640	N/A	2018/11/12	Nimarta Singh
Hardness (calculated as CaCO3)		5827179	N/A	2018/11/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	5828185	N/A	2018/11/12	Thao Nguyen
Ion Balance (% Difference)	CALC	5827180	N/A	2018/11/13	Automated Statchk
Anion and Cation Sum	CALC	5827281	N/A	2018/11/13	Automated Statchk
Total Ammonia-N	LACH/NH4	5831662	N/A	2018/11/12	Chandra Nandlal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5830573	N/A	2018/11/13	Chandra Nandial
pН	AT	5830556	N/A	2018/11/10	Neil Dassanayake
Orthophosphate	KONE	5830606	N/A	2018/11/12	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	5827282	N/A	2018/11/13	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	5827283	N/A	2018/11/13	Automated Statchk
Sulphate by Automated Colourimetry	KONE	5830605	N/A	2018/11/12	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	5827284	N/A	2018/11/13	Automated Statchk
Total Suspended Solids	BAL	5830227	2018/11/09	2018/11/12	Nilam Borole

 Maxxam ID:
 IGE071

 Sample ID:
 WG-161413684-20181108-DS04

 Matrix:
 Water

Collected: 2018/11/08 Shipped: Received: 2018/11/08

.

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	5830538	N/A	2018/11/10	Neil Dassanayake
Carbonate, Bicarbonate and Hydroxide	CALC	5827280	N/A	2018/11/12	Automated Statchk
Chloride by Automated Colourimetry	KONE	5830597	N/A	2018/11/12	Deonarine Ramnarine
Conductivity	AT	5830552	N/A	2018/11/10	Neil Dassanayake
Dissolved Organic Carbon (DOC)	TOCV/NDIR	5830640	N/A	2018/11/12	Nimarta Singh
Hardness (calculated as CaCO3)		5827179	N/A	2018/11/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	5828185	N/A	2018/11/12	Thao Nguyen
Ion Balance (% Difference)	CALC	5827180	N/A	2018/11/13	Automated Statchk
Anion and Cation Sum	CALC	5827281	N/A	2018/11/13	Automated Statchk
Total Ammonia-N	LACH/NH4	5831662	N/A	2018/11/12	Chandra Nandlal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5830573	N/A	2018/11/13	Chandra Nandlal
рН	AT	5830556	N/A	2018/11/10	Neil Dassanayake
Orthophosphate	KONE	5830606	N/A	2018/11/12	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	5827282	N/A	2018/11/13	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	5827283	N/A	2018/11/13	Automated Statchk
Sulphate by Automated Colourimetry	KONE	5830605	N/A	2018/11/12	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	5827284	N/A	2018/11/13	Automated Statchk
Total Suspended Solids	BAL	5830227	2018/11/09	2018/11/12	Nilam Borole

Page 13 of 20

Report Date: 2018/11/14

Stantec Consulting Ltd Client Project #: 161413684 Sampler Initials: DS

TEST SUMMARY

Maxxam ID:	IGE072
Sample ID:	WG-161413684-20181108-DS05
Matrix:	Water

Collected:	2018/11/08
Shipped:	
Received:	2018/11/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	5830538	N/A	2018/11/10	Neil Dassanayake
Carbonate, Bicarbonate and Hydroxide	CALC	5827280	N/A	2018/11/12	Automated Statchk
Chloride by Automated Colourimetry	KONE	5830597	N/A	2018/11/12	Deonarine Ramnarine
Conductivity	AT	5830552	N/A	2018/11/10	Neil Dassanayake
Dissolved Organic Carbon (DOC)	, TOCV/NDIR	5830640	N/A	2018/11/12	Nimarta Singh
Hardness (calculated as CaCO3)		5827179	N/A	2018/11/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	5828185	N/A	2018/11/12	Thao Nguyen
lon Balance (% Difference)	CALC	5827180	N/A	2018/11/13	Automated Statchk
Anion and Cation Sum	CALC	5827281	N/A	2018/11/13	Automated Statchk
Total Ammonia-N	LACH/NH4	5831661	N/A	2018/11/13	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5830573	N/A	2018/11/13	Chandra Nandlal
рН	AT	5830556	N/A	2018/11/10	Neil Dassanayake
Orthophosphate	KONE	5830606	N/A	2018/11/12	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	5827282	N/A	2018/11/13	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	5827283	N/A	2018/11/13	Automated Statchk
Sulphate by Automated Colourimetry	KONE	5830605	N/A	2018/11/12	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	5827284	N/A	2018/11/13	Automated Statchk
Total Suspended Solids	BAL	5830227	2018/11/09	2018/11/12	Nilam Borole

Stantec Consulting Ltd Client Project #: 161413684 Sampler Initials: DS

GENERAL COMMENTS

Package 1 0.0°C

Results relate only to the items tested.

Page 15 of 20

Max and and a many

QUALITY ASSURANCE REPORT

Stantec Consulting Ltd Client Project #: 161413684 Sampler Initials: DS

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	Blank	RPD		QC Standard	Idard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5828185	Dissolved Aluminum (Al)	2018/11/12	97	80 - 120	98	80 - 120	<0.0050	mg/L				
5828185	Dissolved Antimony (Sb)	2018/11/12	110	80 - 120	101	80-120	<0.00050	mg/L	2.4	20		
5828185	Dissolved Arsenic (As)	2018/11/12	103	80 - 120	100	80 - 120	<0.0010	mg/L	NC	20		
5828185	Dissolved Barium (Ba)	2018/11/12	100	80 - 120	99	80 - 120	<0.0020	mg/L	1.3	20		
5828185	Dissolved Beryllium (Be)	2018/11/12	103	80 - 120	100	80 - 120	<0.00050	mg/L	NC	20		1
5828185	Dissolved Bismuth (Bi)	2018/11/12	92	80 - 120	92	80 - 120	<0.0010	mg/L				
5828185	Dissolved Boron (B)	2018/11/12	66	80 - 120	100	80 - 120	<0.010	mg/L	2.5	20		
5828185	Dissolved Cadmium (Cd)	2018/11/12	103	80 - 120	66	80 - 120	<0.00010	mg/L	NC	20		
5828185	Dissolved Calcium (Ca)	2018/11/12	NC	80 - 120	98	80 - 120	<0.20	mg/L				
5828185	Dissolved Chromium (Cr)	2018/11/12	100	80 - 120	98	80 - 120	<0.0050	mg/L	NC	20		
5828185	Dissolved Cobalt (Co)	2018/11/12	100	80 - 120	66	80-120	<0.00050	mg/L	NC	20		
5828185	Dissolved Copper (Cu)	2018/11/12	103	80 - 120	66	80 - 120	<0.0010	mg/L	NC	20		
5828185	Dissolved Iron (Fe)	2018/11/12	103	80 - 120	101	80 - 120	<0.10	mg/L				
5828185	Dissolved Lead (Pb)	2018/11/12	94	80 - 120	94	80 - 120	<0.00050	mg/L	NC	20		-
5828185	Dissolved Magnesium (Mg)	2018/11/12	NC	80 - 120	98	80 - 120	<0.050	mg/L				
5828185	Dissolved Manganese (Mn)	2018/11/12	101	80 - 120	98	80 - 120	<0.0020	mg/L				
5828185	Dissolved Molybdenum (Mo)	2018/11/12	106	80 - 120	101	80 - 120	<0.00050	mg/L	4.7	20		
5828185	Dissolved Nickel (Ni)	2018/11/12	101	80 - 120	100	80 - 120	<0.0010	mg/L	NC	20		
5828185	Dissolved Phosphorus (P)	2018/11/12	109	80 - 120	109	80 - 120	<0.10	mg/L				
5828185	Dissolved Potassium (K)	2018/11/12	102	80 - 120	66	80 - 120	<0.20	mg/L				
5828185	Dissolved Selenium (Se)	2018/11/12	103	80 - 120	105	80 - 120	<0.0020	mg/L	NC	20		
5828185	Dissolved Silicon (Si)	2018/11/12	96	80 - 120	97	80 - 120	<0.050	mg/L		7		
5828185	Dissolved Silver (Ag)	2018/11/12	98	80 - 120	66	80-120	<0.00010	mg/L	NC	20		p
5828185	Dissolved Sodium (Na)	2018/11/12	NC	80 - 120	97	80 - 120	<0.10	mg/L	0.78	20		
5828185	Dissolved Strontium (Sr)	2018/11/12	NC	80 - 120	66	80 - 120	<0.0010	mg/L				
5828185	Dissolved Thallium (Tl)	2018/11/12	93	80 - 120	93	80 - 120	<0.000050	mg/L	NC	20		
5828185	Dissolved Tin (Sn)	2018/11/12	103	80 - 120	66	80 - 120	<0.0010	mg/L				
5828185	Dissolved Titanium (Ti)	2018/11/12	98	80 - 120	101	80 - 120	<0.0050	mg/L				
5828185	Dissolved Uranium (U)	2018/11/12	105	80 - 120	102	80 - 120	<0.00010	mg/L	1.2	20		
5828185	Dissolved Vanadium (V)	2018/11/12	102	80 - 120	98	80 - 120	<0.00050	mg/L	9.2	20		
5828185	Dissolved Zinc (Zn)	2018/11/12	66	80 = 120	66	80 - 120	<0.0050	mg/L	NC	20		

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 218 Telt (905) 817-5700 Tolk Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca Page 16 of 20

A Bureau Veritas Group Company	Maxxam Job #: B8T9171 Report Date: 2018/11/14
Σ	Max Repo

QUALITY ASSURANCE REPORT(CONT'D)

Stantec Consulting Ltd Client Project #: 161413684 Sampler Initials: DS

		U.	Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	3 ank	RPD		QC Standard	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery QC Limits	QC Limits
5829310	Total Carbonaceous BOD	2018/11/14					<2	mg/L	9.6	30	96	85 - 115
5830227	Total Suspended Solids	2018/11/12					<10	mg/L	NC	25	96	85 - 115
5830538	Alkalinity (Total as CaCO3)	2018/11/09			94	85 - 115	<1.0	mg/L	1.2	20		
5830552	Conductivity	2018/11/09			100	85 - 115	<1.0	umho/c m	0.43	25		
5830556	рн	2018/11/09			101	98 - 103			1.5	N/A		
5830573	Nitrate (N)	2018/11/13	90	80 - 120	98	80 - 120	<0.10	mg/L	0.38	20		
5830573	Nitrite (N)	2018/11/13	103	80 - 120	103	80 - 120	<0.010	mg/L	NC	20	5	
5830597	Dissolved Chloride (CI-)	2018/11/12	115	80 - 120	104	80 - 120	<1.0	mg/L	1.3	20		Z.
5830605	Dissolved Sulphate (SO4)	2018/11/12	NC	75 - 125	105	80 - 120	<1.0	mg/L	0.99	20		
5830606	Orthophosphate (P)	2018/11/12	113	75 - 125	100	80 - 120	<0.010	mg/L	NC	25		
5830640	Dissolved Organic Carbon	2018/11/12	95	80 - 120	98	80 - 120	<0.50	mg/L	0.55	20		
5831425	Dissolved Chloride (CI-)	2018/11/12	110	80 - 120	103	80 - 120	<1.0	mg/L	0.67	20		
5831429	Dissolved Sulphate (SO4)	2018/11/12	NC	75 - 125	106	80 - 120	<1.0	mg/L	0.10	20		
5831501	Fluoride (F-)	2018/11/12	95	80 - 120	107	80 - 120	<0.10	mg/L	0	20		
5831504	рн	2018/11/12			102	98 - 103			2.1	N/A		
5831642	Total Kjeldahl Nitrogen (TKN)	2018/11/12	NC	80-120	102	80 - 120	<0.10	mg/L	0.78	20	66	N/A
5831661	Total Ammonia-N	2018/11/13	103	75 - 125	101	80 - 120	<0.050	mg/L	3.8	20		
5831662	Total Ammonia-N	2018/11/12	97	75 - 125	100	80 - 120	<0.050	mg/L	NC	20		
5831797	Total Aluminum (AI)	2018/11/12	101	80 - 120	101	80 - 120	<0.0050	mg/L	1.1	20		
5831797	Total Antimony (Sb)	2018/11/12	104	80 - 120	101	80 - 120	<0.00050	mg/L				
5831797	Total Arsenic (As)	2018/11/12	102	80 - 120	101	80 - 120	<0.0010	mg/L				
5831797	Total Bismuth (Bi)	2018/11/12	102	80 - 120	101	80 - 120	<0.0010	mg/L				
5831797	Total Cadmium (Cd)	2018/11/12	104	80 - 120	101	80 - 120	<0.00010	mg/L	NC	20		
5831797	Total Chromium (Cr)	2018/11/12	95	80 - 120	94	80 - 120	<0.0050	mg/L	NC	20		
5831797	Total Cobalt (Co)	2018/11/12	102	80 - 120	66	80 = 120	<0.00050	mg/L	NC	20		
5831797	Total Copper (Cu)	2018/11/12	103	80 - 120	102	80 - 120	<0.0010	mg/L	10	20		
5831797	Total Iron (Fe)	2018/11/12	66	80 - 120	66	80 - 120	<0.10	mg/L	0.34	20		
5831797	Total Lead (Pb)	2018/11/12	101	80 - 120	100	80 - 120	<0.00050	mg/i	NC	20		
5831797	Total Manganese (Mn)	2018/11/12	96	80 - 120	97	80 - 120	<0.0020	mg/L	2.3	20		_
5831797	Total Molybdenum (Mo)	2018/11/12	103	80 - 120	97	80 - 120	<0.00050	mg/L	1.3	20		

Maxiam Analytics International Corporation o/a Maxvam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 218 Tel: {905} 817-5700 Toll-Free: 800-563-6266 Fax: {905} 817-5777 www.maxvam ca

Page 17 of 20

Of Bath Farameter Date Kacovery Octimits National Stressory 5831797 Total Nickel (Ni) 2018/11/12 99 80 - 120 99 80 - 120 0.0010 5831797 Total Nickel (Ni) 2018/11/12 102 80 - 120 90 - 0.10 90 - 0.10 5831797 Total Phosphorus (P) 2018/11/12 109 80 - 120 90 - 0.10 90 - 0.10 5831797 Total Scienci (Sc) 2018/11/12 109 80 - 120 90 - 0.0001 90 - 0.0001 5831797 Total Tranium (Ti) 2018/11/12 109 80 - 120 90 - 0.0001 90 - 0.0001 5831797 Total Tranium (Ti) 2018/11/12 109 80 - 120 90 - 0.0001 90 - 0.0001 5831797 Total Tranium (Ti) 2018/11/12 101 80 - 120 90 - 0.0001 90 - 0.0001 5831797 Total Tranium (Ti) 2018/11/12 101 80 - 120 100 80 - 120 90 - 0.0001 5831393 Phenols-4APP 2018/11/12 1010 80 - 120 <th></th> <th>Value (%) QC Limits</th> <th></th>		Value (%) QC Limits	
QC Batch Parameter Date % Recovery QC Limits % QC Dimits % QC Dimits % QC Dimits % Recovery QC Limits % QC Dimits % P Q QC Dimits % QC Dimits % QC Dimits % QC Dimits % Q QD Di QD Di QD Di QD Di QD Di			
5831797 Total Nickel (Ni) 2018/11/12 99 80 - 120 80 - 120 60.0010 5831797 Total Phosphorus (P) 2018/11/12 102 80 - 120 80 - 120 60.010 5831797 Total Selenium (Se) 2018/11/12 109 80 - 120 80 - 120 60.0020 5831797 Total Selenium (Se) 2018/11/12 109 80 - 120 90 80 - 120 60.0010 5831797 Total Selenium (Ti) 2018/11/12 109 80 - 120 100 80 - 120 60.0010 5831797 Total Titanium (Ti) 2018/11/12 100 80 - 120 101 80 - 120 60.0010 5831797 Total Titanium (V) 2018/11/12 101 80 - 120 101 80 - 120 60.0050 5831797 Total Cyanide (CV) 2018/11/12 101 80 - 120 101 80 - 120 60.0050 5831797 Total Cyanide (CV) 2018/11/12 101 80 - 120 100 80 - 120 60.0050 5831797 Total Cyanide (C			nits % Recovery QC Limits
5831797 Total Phosphorus (P) 2018/11/12 102 80 - 120 80 - 120 60.102 5831797 Total Sclenium (Sc) 2018/11/12 109 80 - 120 80 - 120 <0.00010			~~
5831797 Total Selenium (Se) 2018/11/12 109 80 - 120 80 - 120 <0.0020 5831797 Total Silver (Ag) Total Silver (Ag) 2018/11/12 100 80 - 120 80 - 120 <0.0010			
S831797 Total Silver (Ag) 2018/11/12 100 80 - 120 80 - 120 <0.00010 S831797 Total Tin (Sn) Z018/11/12 104 80 - 120 101 80 - 120 <0.0010			
5831797 Total Tin (5n) 2018/11/12 104 80 - 120 80 - 120 <0.0050 5831797 Total Titanium (TI) 2018/11/12 99 80 - 120 101 80 - 120 <0.0050		NC 20	
S831797 Total Trtanium (TI) 2018/11/12 99 80 - 120 101 80 - 120 <0.0050 S831797 Total Vanadium (V) 2018/11/12 97 80 - 120 96 80 - 120 <0.0050		NC 20	
5831797 Total Vanadium (V) 2018/11/12 97 80 - 120 60.0050 60.0050 5831797 Total Zinc (Zn) 2018/11/12 100 80 - 120 101 80 - 120 60.0050 5831797 Total Zinc (Zn) 2018/11/13 101 80 - 120 80 - 120 <0.0050		NC 20	
5831797 Total Zinc (Zn) 2018/11/12 100 80 - 120 80 - 120 <0.0050 5832393 Phenols-4AAP 2018/11/13 101 80 - 120 80 - 120 <0.0010	00050 mg/L	13 20	
5832333 Phenols-4AAP 2018/11/13 101 80 - 120 80 - 120 80 - 120 <0.0010 5832812 Total Cyanide (CN) 2018/11/13 103 80 - 120 80 - 120 80 - 120 <0.0050	.0050 mg/L	3.2 20	
5832812 Total Cyanide (CN) 2018/11/13 103 80 - 120 80 - 120 <0.0050 5833748 Total Oil & Grease 2018/11/13 103 80 - 120 85 - 115 <0.050	.0010 mg/L	NC 20	
5833748Total Oil & Grease2018/11/132018/11/139985 - 115<0.505833755Total Oil & Grease Mineral/Synthetic2018/11/139685 - 115<0.50	.0050 mg/L	NC 20	
5833755 Total Oil & Grease Mineral/Synthetic 2018/11/13 96 85 - 115 <0.50	0,50 mg/L	3.9 25	
5836000 Mercury (Hg) 2018/11/14 99 75 - 125 80 - 120 <0.0001	0.50 mg/L	2.7 25	
N/A = Not Applicable Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement. Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.	.0001 mg/L	NC 20	
Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement. Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.			
Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.			
	nce.		
QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.	heck of method accu	uracy.	
Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.	evaluate method acc	curacy.	
Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.			
NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)	nt sample and the sp	vike amount was too	small to permit a reliable
NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).	eliable RPD calculati	ion (absolute differe	nce <= 2x RDL).

QUALITY ASSURANCE REPORT(CONT'D)

Max am A Burreau Vertias Group Company

Maxxam Job #: B8T9171

Stantec Consulting Ltd

Page 18 of 20

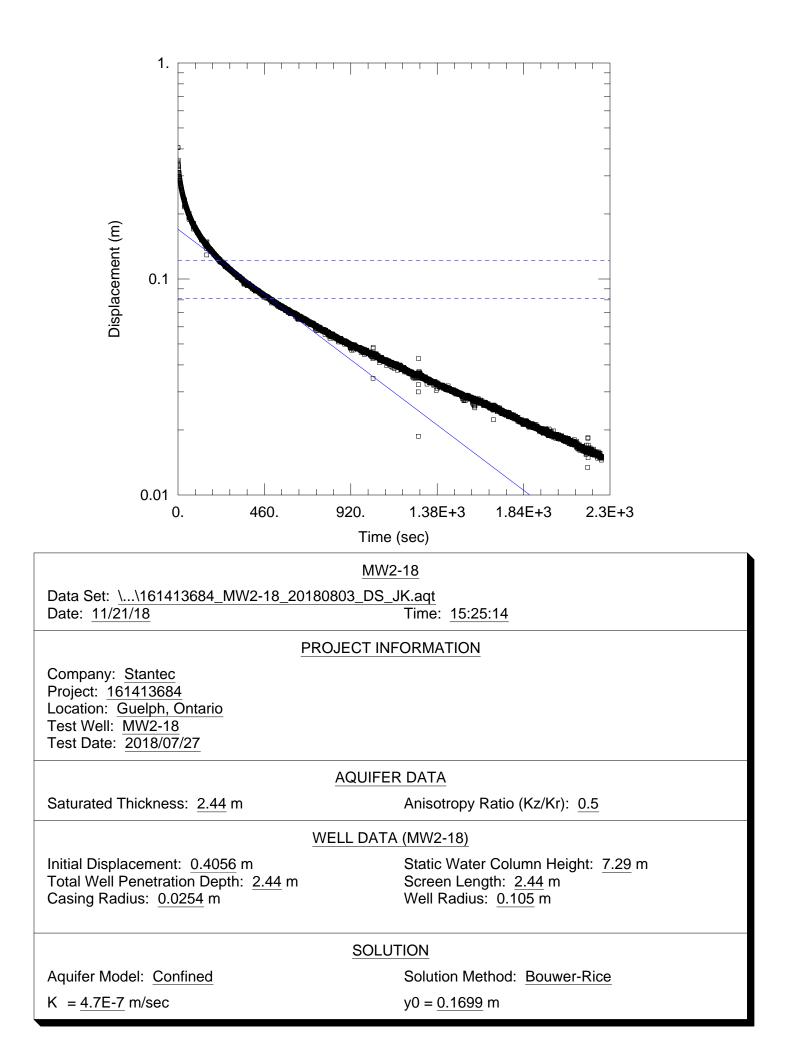
Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 218 Tel: (905) 817-5700 Tolli-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

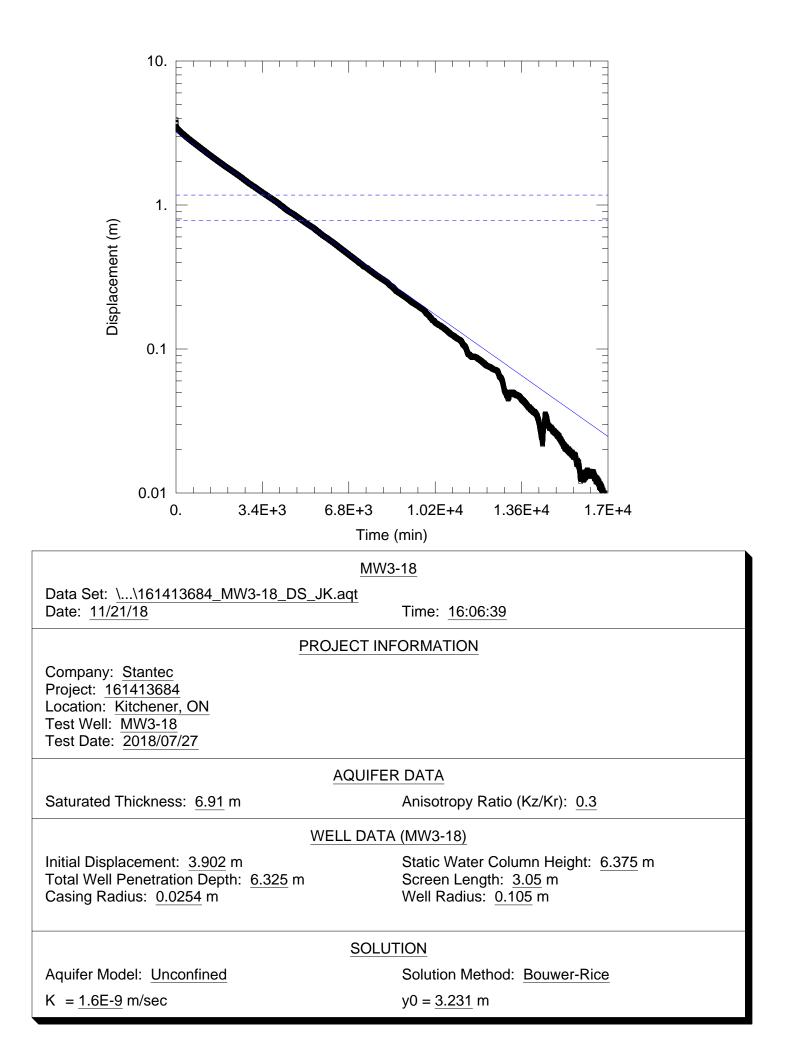
Stantec Consulting Ltd Client Project #: 161413684 Sampler Initials: DS

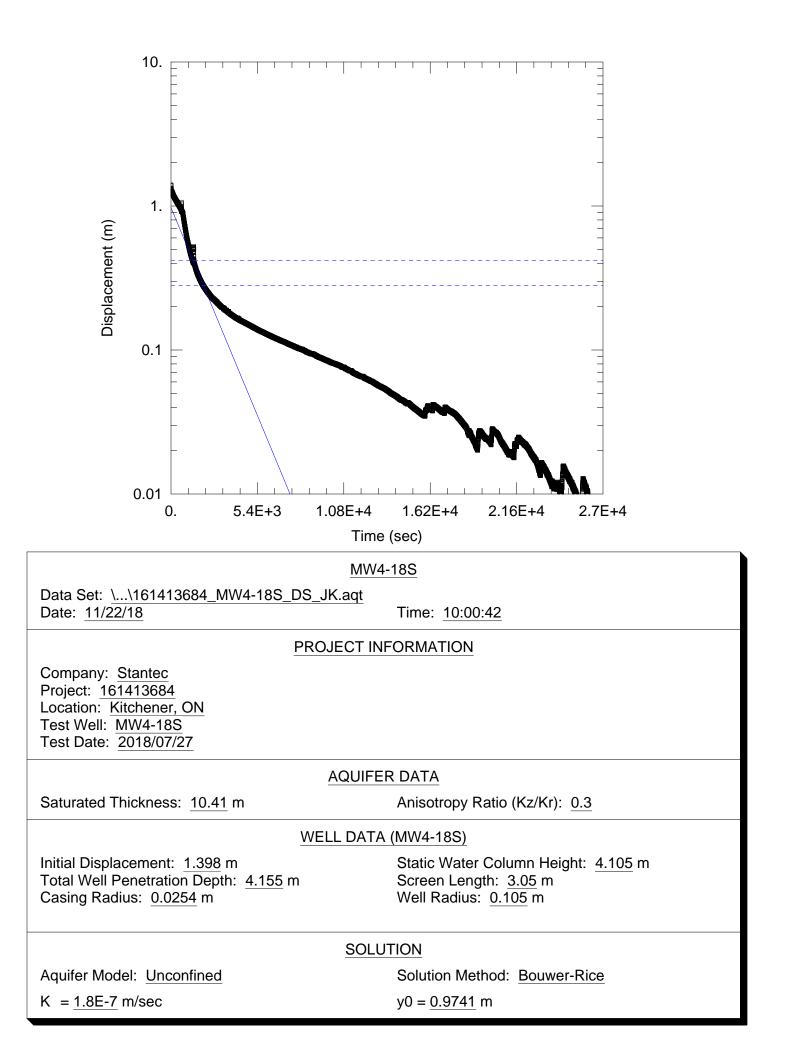
VALIDATION SIGNATURE PAGE

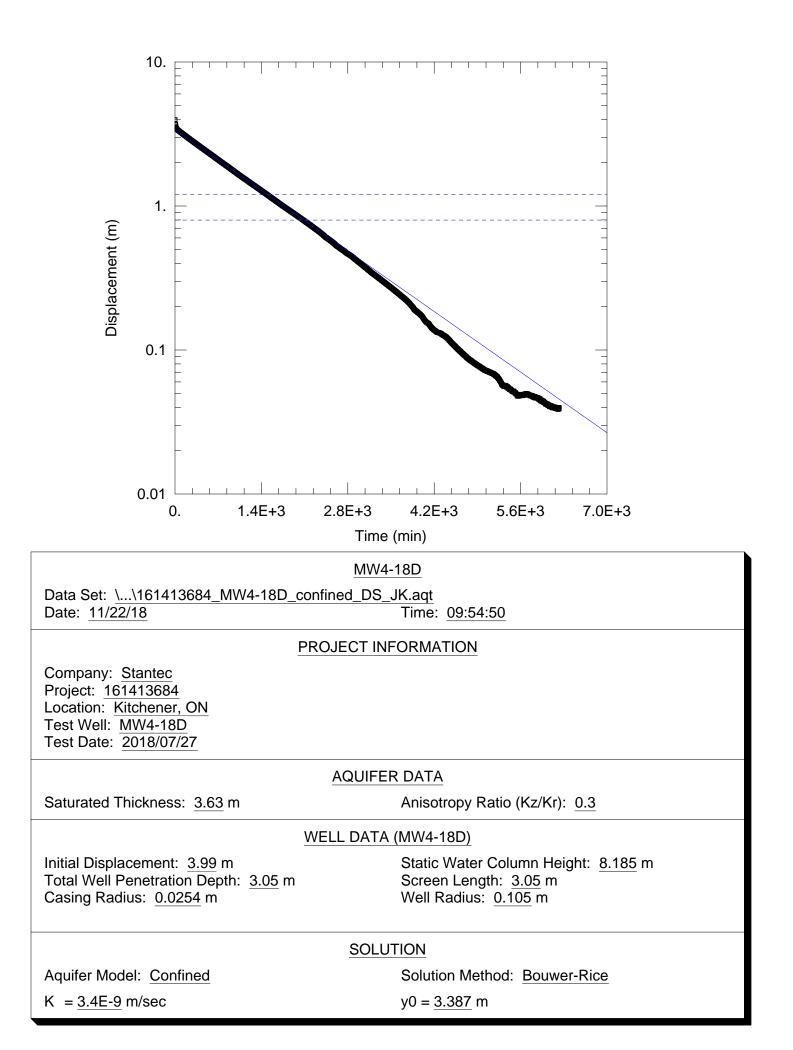
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

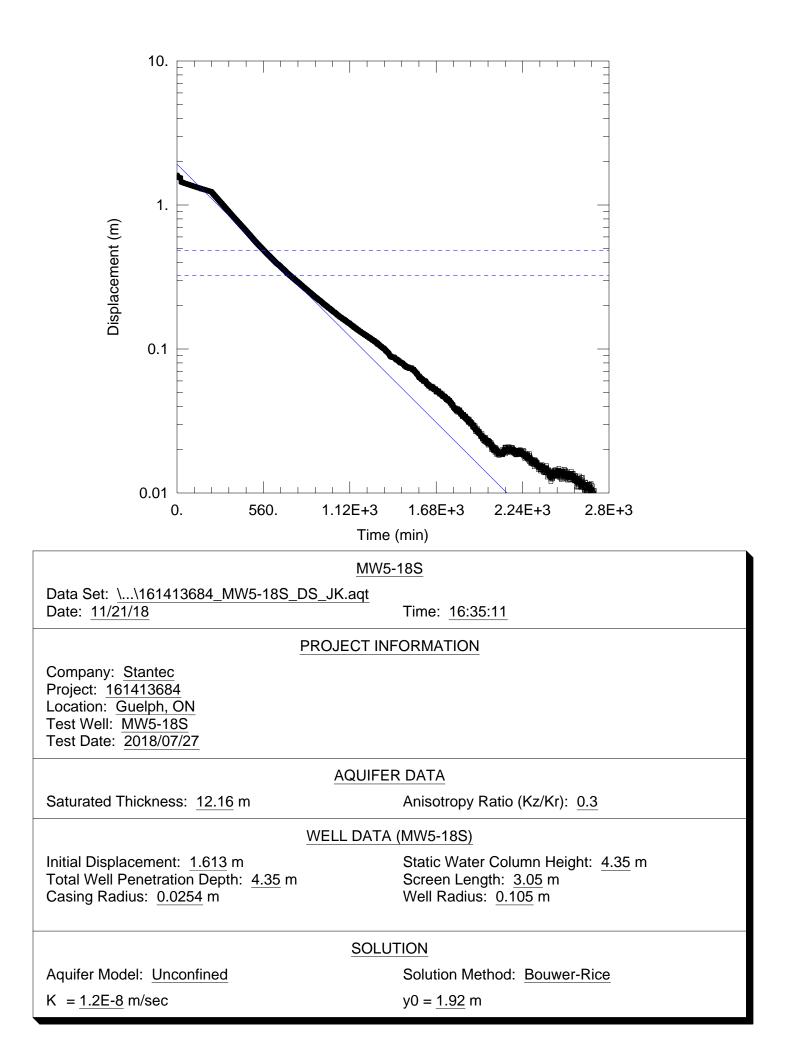
Anastassia Hamanov, Scientific Specialist

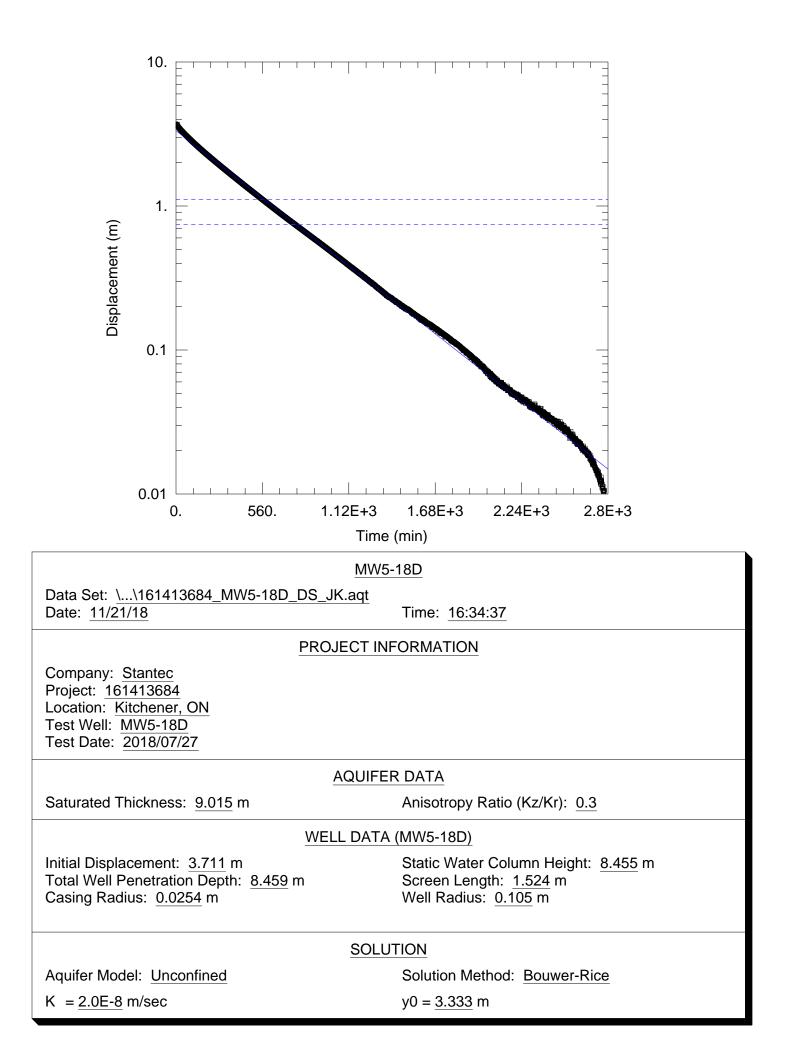

Sirimathie Aluthwala, Campobello Micro

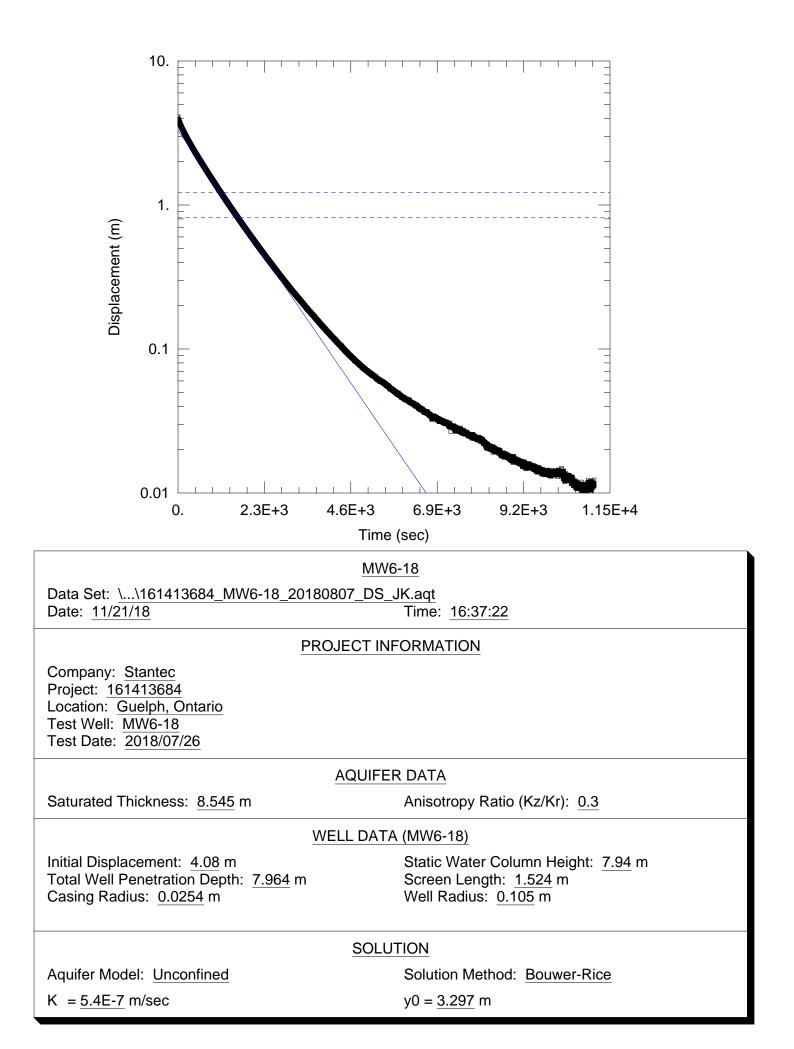

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

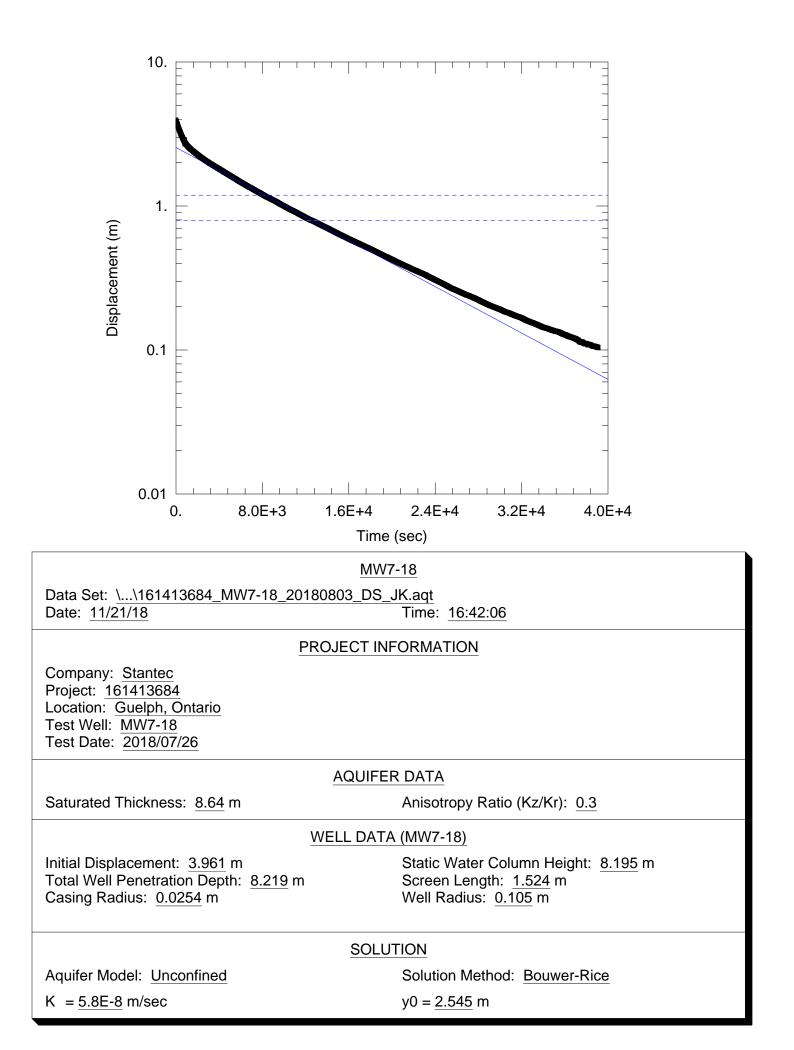

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca


Page 20 of 20


APPENDIX G: HYDRAULIC CONDUCTIVITY ANALYTICAL SOLUTIONS







APPENDIX H: DEWATERING CALCULATIONS

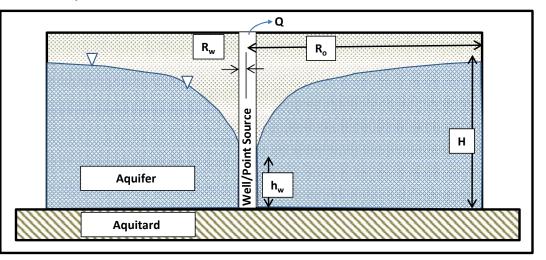
Table H1 - Groundwater Dewatering Calculations

Dupuit Forcheimer Equation for Radial Flow to a Well or Point Source Excavation in an Unconfined Aquifer:

$$Q = \frac{\pi K (H^2 - {h_w}^2)}{\ln \frac{R_o}{r_w}}$$

Where:

Q = pumping rate (m^3/s)

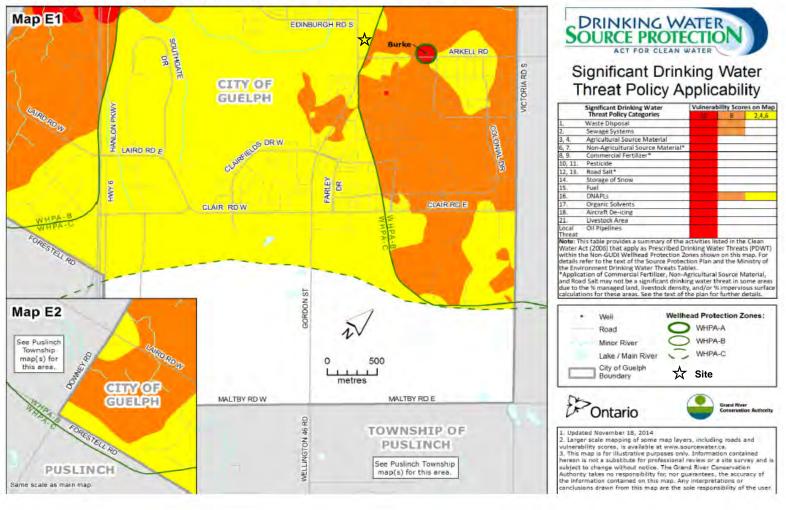

K = hydraulic conductivity (m/s)

- H = hydraulic head of the original water table (m)
- h_w = hydraulic head at maximum dewatering (m)
- R_o = radius of influence from centre of the excavation caused by pumping (m)
- r_w = equivalent radius of dewatering area / theoretical radius of pumping well (m)

The equivalent radius of influence $(R_{\rm o})$ is approximated using the Sichart and Kryieleis method:

$$R_o = r_w + 3000(H - h_w)\sqrt{K}$$

Conceptual Drawdown


The term r_w is calculated as follows:

$$r_w = \sqrt{rac{area}{\pi}}$$

				Where:	area = area of excavation (m^2)	
Calculations:						
К =	3.7E-08 m/s	Q= 0.	.00043649 m ³ /s		Safety Factor Adjusted	/olume
H =	20.3 m		37,713 L/day	Saftey Factor = 3.0	113,138 L/day	
h _w =	14.7 m					
R _o =	63.6 m	Dewatering radi	ius of influence beyon	nd edge of dewatering area =	3.2	m
r _w =	60.4 m					
	Base of Aquifer	<mark>320</mark> m AN	٧SL	approximate elevation at	which bedrock is encountered b	peneath the Site
	Static Water Level	340.3 m AN	MSL	highest groundwater elev	ation measured in onsite monit	oring wells
Elevation	requiring dewatering	334.7 m AN	VISL 5.6	meters of groundwater he	eight to be lowered	
				(base elevation of Parking	g Level 2)	

Equations obtained from Powers, J.P., A.B. Corwin, P.C. Schmall, and W.E. Kaeck, 2007. Construction Dewatering and Groundwater Control, New Methods and Applications. John Wiley & Sons, Inc., 3rd Edition.

APPENDIX I: SOURCE PROTECTION PLAN - THREAT POLICY APPLICABILITY MAPPING

8.12 Schedule F: City of Guelph: Guelph Waterworks Well Supply, Map E

November 26, 2015

City of Guelph - Section 8-27

Source: Lake Erie Region Source Protection Committee. 2015b. Grand River Source Protection Area, Approved Source Protection Plan – Volume II. November 26, 2015.

APPENDIX J: CORRESPONDENCE WITH CITY OF GUELPH

17 October 2018

Sent via email

Melissa Straus, MSc. Terrestrial Ecologist Stantec 1-70 Southgate Drive Guelph ON N1G 4P5

Dear Melissa,

RE: 1242, 1250 and 1260 Gordon Street and 9 Valley Road EIS TOR

City of Guelph Environmental Planning and Park Planning staff reviewed the proposed Environmental Impact Study (EIS) Terms of Reference (TOR) prepared by Stantec, dated July 19, 2018. Park Planning staff provided comments to Environmental Planning Staff on September 7, 2018. The Grand River Conservation Authority (GRCA) also provided comments on the EIS TOR on October 17, 2018 via email. All comments received to date are integrated below and appended to this letter.

On September 12, 2018 the EIS TOR was brought forward to the Environmental Advisory Committee (EAC) and the TOR was accepted with conditions.

Subwatershed Context:

- The EIS TOR should indicate that the lands fall partially within the Hanlon Creek Subwatershed and partially within the Torrance Creek Subwatershed. As part of the background review, the Torrance Creek Subwatershed Study and Hanlon Creek Subwatershed Study should be referred to. These subwatershed studies include targets and recommendations that should also be considered in the EIS.
- 2. The hydrology of the adjacent Provincially Significant Wetland (PSW) should be characterized and an associated water balance for the natural feature should be prepared as part of a Hydrogeological Report to support the EIS, in addition to the water budget that forms part of the Stormwater Management Report. This should include consideration for any groundwater impacts from underground parking, where proposed. Incorporation of Low Impact Development (LID) as part of the stormwater management (SWM) approach is also encouraged to assist with achieving a water balance for the site, and maintaining infiltration and recharge functions.

Hydrological/Hydrogeological Study to support EIS

3. It is not clear where or what type of instrumentation will be used to characterize existing conditions and assess the wetland water balance. In terms of data collection, staff would like to see continuous data loggers installed in piezometers. Also, ensure wetland catchments are delineated and depicted to set the context and that the analysis is provided on a **City Hall** 1 Carden St Guelph, ON Canada N1H 3A1

T 519-822-1260 TTY 519-826-9771 monthly as well as annual basis. Please interpret the data in terms of the pre-to-post wetland water balance.

- 4. The Hydrogeological Study should identify groundwater levels to inform the required separation distance for the development from the groundwater table.
- 5. Consideration should also be given to the protection of groundwater functions, including recharge. Also review and consider any other recommendations or requirements from the Torrance Creek Subwatershed Study within the EIS.
- 6. Results from the Hydrological Study should be integrated into the EIS to assess the potential for hydrologic impacts to the adjacent wetland.

Preliminary Screening Assessment for Significant Wildlife Habitat:

- 7. April 2017 guidance from the Ministry of Natural Resources and Forestry (MNRF) Guelph District on survey protocols for identifying suitable maternity roost trees indicate that surveys should be completed during leaf-on condition for Tri-colored Bat (*Perimyotis subflavus*) which roost in dead/dying leaves along a dead branch, and during leaf-off condition for Little Brown Myotis/Northern Myotis (*Myotis lucifugus/M. septentrionalis*) which roost in tree hollows and cracks. Field surveys are proposed in May to assess Bat Roost Habitat, and should also be proposed during leaf-off condition. Note that surveys in May should be completed in late May to ensure that leaves have in fact developed.
- 8. Note that where surveys for SWH are not proposed, staff expect a conservative approach to be taken in the EIS which acknowledges candidate SWH and identifies constraints based on the precautionary principle.
- 9. The EIS TOR indicates that candidate SWH is present for Reptile Hibernaculum. Clarification is needed as to what field surveys for wildlife habitat assessment entail. It is unclear whether or not snake exit surveys and/or snake surveys are proposed.
- 10. Candidate SWH is also identified for Woodland Raptor Nesting Habitat. Clarification is needed as to whether or woodland raptor nesting surveys are proposed as part of surveys for wildlife habitat.
- 11. Note that deer movement occurs along the edge of the PSW (as observed through other EISs) as well as across Gordon Street (as indicated in the Natural Heritage Strategy). Table 1 should be updated to reflect this information.

EIS Field Surveys:

- 12. Location of field surveys, such as breeding bird point count locations and amphibian monitoring stations should be provided on a study area map.
- 13. MNRF has identified the Torrance Creek PSW as a deer winter congregation area. The habitat should be characterized and impacts assessed through the EIS. In addition, staff request that movement of deer be studied on the subject lands using wildlife cameras to assess movement in the east-west and north-south direction.
- 14. Clarification on the timing (e.g. spring emergence, first/second breeding bird window), conditions and search effort proposed for wildlife surveys, species of special concern and rare species searches is necessary.
- 15. Vegetation community mapping should also indicate woodland staking with City staff as a requirement.

- 16. Spring botanical inventories should ideally be completed in early May. Waiting until June will miss early spring ephemerals, which will have senesced by June.
- 17. Vegetation community descriptions should include description of soils, per the Ecological Land Classification (ELC) protocol.
- 18. Table 1 indicates that incidental observations of terrestrial crayfish will be recorded. Clarify where searches for terrestrial crayfish will be performed (i.e. target habitats).
- 19. Regarding Species of Conservation Concern/Locally Rare Species, it should be noted that City records show that American Bullfrog (*Lithobates catesbeianus*) and Meadow Horsetail (*Equisetum pretense*) have been recently documented in the Torrance Creek Subwatershed.
- 20. Section 4.2.1.2 Vascular Plants should be revised to indicate that a threeseason botanical inventory will be completed.
- 21. Note that formal wetland boundary and woodland boundary delineation with agencies is required.
- 22. With respect to area sensitive breeding bird habitat, based on results from multiple EISs completed in this area of the City, it has been confirmed that the Torrance Creek PSW is SWH for area-sensitive breeding bird habitat. The proposed studies should assess the use of habitat edges and areas in relation to the site in order to assess potential impacts.

Tree Inventory and Preservation Plan:

- 23. The subject lands are regulated under the City's Private Tree By-law and any tree removals will require authorization from the City. The EIS should inform the development application and should look for opportunities to retain trees and integrate them into the development proposal, where feasible. A Tree Inventory and Preservation Plan (TIPP), undertaken by a qualified arborist, is required and should be integrated into the EIS. The TIPP should include the following:
 - Tree inventory information for all trees 10cm Diameter at Breast Height (DBH) or greater proposed to be removed/retained including: Tree # corresponding to plan/drawing, species name, DBH, crown diameter, condition (vigour), remarks, recommended action and rationale.
 - Identify shared, public and private trees with crowns that are within 6m of property lines.
 - Identify opportunities for protection, enhancement and restoration of trees within the Urban Forest.
 - Tree Protection Fencing locations and/or other tree protection/mitigation measures.
- 24. The TIPP should also note that where preservation is not possible, as agreed to by the City, compensation is required. Note that the City seeks compensation at a 3:1 replacement ratio. Where replacement plantings are not achievable cash-in-lieu may be accepted at a rate of \$500 for each damaged or destroyed tree.

EIS Data Analysis

25. The EIS TOR should indicate that where candidate or confirmed SWH exists, staff would like to see it mapped in the EIS.

- 26. The City of Guelph Local Species List should be consulted when doing the impact analysis and the species lists should include a column to indicate any locally significant species.
- 27. Deer movement patterns that occur on the subject lands should be mapped in the EIS, and all data collected from wildlife cameras and field studies should be provided.

Impact Analysis:

- 28. A buffer analysis should be included within the impacts assessment/avoidance discussion. While the City's OP does include policies for minimum buffers, the establishment of larger buffers warrants consideration in the EIS and is also reflected in the City's OP policies.
- 29. The proposed development concept needs to consider the trail connection across the site. The EIS should explore alternatives for a trail alignment and assess impacts associated with each alignment. Staff should be consulted for further direction on this item.
- 30. The setbacks and buffers assigned to the development should factor in the community trail that will be built, even though the trail will ultimately be completed by the City.
- 31. Opportunities for protection, enhancement and restoration of trees within the Urban Forest should also be identified.
- 32. The impact analysis should mention potential impacts and/or mitigation measures to address salt application.
- 33. It is acknowledged that the EIS will include a more defined concept of the proposed development plan in order to assess potential impacts resulting from grading, roads, SWM, etc.

Recommended Mitigation Measures:

- 34. The EIS should also recommend mitigation measures including environmental education and outreach opportunities, demarcation and any recommendations for monitoring plans.
- 35. The monitoring plan should include post-construction monitoring of SWM design, LID measures and mitigation.
- 36. An Environmental Implementation Report (EIR) will be required for this development. Environmental Planning staff have found it helpful to document considerations for the EIR in the EIS.

Park Planning Comments (see attached Memo):

- 37. Provide a revised development concept plan indicating all the proposed elements including public park, east-west and north-south public trail, Active Transportation Network (ATN) and open space in consultation with City staff.
- 38. Park planning staff would like to walk the site along with the environmental consultant and environmental planning staff to identify and approve a preliminary trail alignment. The approved trail alignment will be flagged on site. Identify the final trail alignment west of Torrance Creek PSW, through EIS and flag the trail route on site for City's review.
- 39. Trail design including surfacing, clear width and height, grading and drainage, trail signage, etc. should be provided in consultation with Park Planning staff. The design and development of the trail system should be completed in accordance with the city's Facility Accessibility Design

Manual, the city's current trail design and development practice and standards, and ATN standards.

- 40. Assess the environmental impact of the proposed trail development in the EIS.
- 41. Recommend measures to mitigate the environmental impact due to the proposed trail development in the EIS.
- 42. Recommend management of the woodland along the trail route including removal of invasive species and hazard trees in the EIS.
- 43. Recommend preparation of an EIR, Trail and Landscape Drawings through EIS to detail design an appropriate trail system and associated mitigation measures in accordance with the city's design and development standards.
- 44. Provide preliminary grading and drainage plans to demonstrate that the design of the park block, trail connection and open space meets city standards.
- 45. The owner will be responsible for implementation of city approved landscape plans in accordance with the EIR including, but not limited to restoration, compensation and enhancement planting within the open space.
- 46. Describe the recommended approach to demarcate existing and proposed public park and open spaces, if any, within and adjacent to the subject property.
- 47. Recommend provision of public education through educational/interpretive signage at the entry points to the trail and open space system. Public education should address the environmental sensitivity of natural heritage features and procedures residents can follow to protect and/or enhance these areas.
- 48. City will review and approve the design and locations of interpretive and educational signage, to be included on landscape plans.

Environmental Advisory Committee:

On September 12, 2018 the EIS TOR was brought forward to EAC and resulted in the following draft motion. Note that motions remain draft until such time that EAC formally adopts the minutes.

Staff recommends that the Environmental Advisory Committee accept the Terms of Reference for an Environmental Impact Study prepared by Stantec (July 19, 2018) with the following condition:

THAT a revised EIS TOR is provided which addresses staff comments and at a minimum includes:

- A study area map showing survey locations;
- A Tree Inventory and Preservation Plan;
- Clarification on surveys proposed for assessing significant wildlife habitat;
- Deer movement surveys using wildlife cameras;
- Commitment to utilize continuous data loggers to collect data to support a wetland water balance and a monthly analysis;
- Recommended mitigation measures for salt management; and
- Considerations for a future Environmental Implementation Report.
- A hydrogeological report that includes the following:
 - Infiltration testing using a Guelph Permeameter (or equivalent method) to support SWM planning;

- Hydrographs that include high water table data including the spring freshet and other storm and melt events. Groundwater data should be collected for a minimum of 1 year, with comparison to local precipitation data;
- It is also recommended that groundwater data be collected from the wetland area (pending access).

Do not hesitate to contact me further should you have any questions.

Regards,

lead liften

Leah Lefler, MES Environmental Planner

Planning, Urban Design and Building Services Infrastructure, Development and Enterprise City of Guelph: 1 Carden Street, Guelph

T 519-822-1260 x2362 F 519-822-4632 E leah.lefler@guelph.ca

cc Chris DeVriendt – Manager, Development Planning Melissa Aldundate – Manager, Planning Policy and Urban Design Mary Angelo – Supervisor, Development Engineering Jyoti Pathak – Park Planner

INTERNAL MEMO

DATESeptember 7, 2018TOLeah LeflerFROMJyoti PathakDIVISIONParks and RecreationDEPARTMENTPublic Services

SUBJECT 1242, 1250 and 1260 Gordon Street and 9 Valley Road – Proposed Terms of Reference for Environmental Impact Study –(File # TBD)

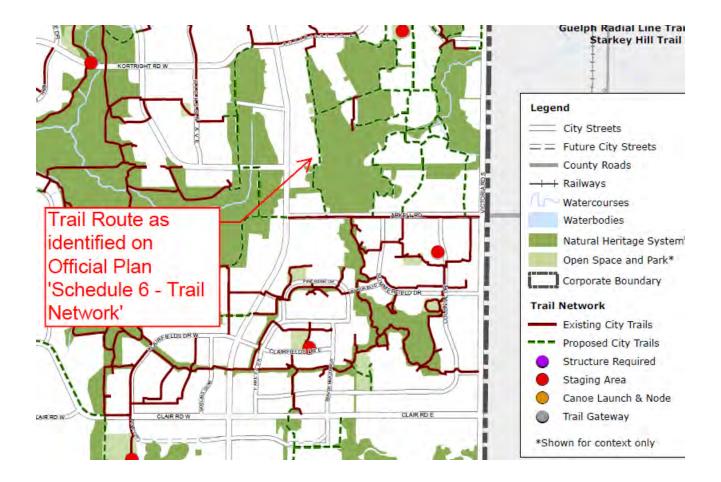
Parks Planning and Development has reviewed the draft Terms of Reference (TOR) prepared by Stantec dated July 19, 2018 for an Environmental Impact Study (EIS) to be compiled in support of a draft plan of subdivision and Zoning By-Law and Official Plan Amendments for the proposed high density residential subdivision development on the subject property.

Location: The subject property is located on the east side of Gordon Street immediately south of Valley Road.

Development Proposal: The future development proposal will include a public street, public park, public trail/ ATN route, natural open space, residential apartments and townhouses. A pre-consultation meeting between the applicant and City staff was scheduled on Wednesday June 13, 2018 and a concept plan has been developed by the applicant. The site area is 3.67 hectares inclusive of natural heritage features and a developable area.

Background:

Parkland Dedication:


In accordance with the City's Official Plan Policy 7.3.5.1 (ii) parkland dedication is required for the proposed residential subdivision development. Park block frontage, size and configuration of the park will be determined in accordance with the neighbourhood park design criteria outlined in City's official Plan and Zoning By-Law. Park block would be located within developable area of the site and outside of the existing natural heritage system.

Guelph Trail Network:

Official Plan 'Schedule 6 - Trail Network' identifies a proposed north-south multi-use trail route from Brady Lane (south of Kortright Road East) to Arkell Road along the west side of Torrance Creek PSW Complex. The proposed multi-use trail would be used for walking, cycling, personal mobility devices etc.

Multi-Use Trail System/ Active Transportation Route (AT Route) (north-south) from Arkell Road to Brady Lane west of the Torrance Creek provincially significant wetlands (PSW):

The trail system from Arkell Road to Brady Lane aligns with the active transportation route and serves both recreational and transportation purposes. This route is being detailed designed in segments through review of the past and current development applications. The trail route immediately north of the subject property was identified through site plan approval process of the existing Valley Road extension condominium and the trail property immediately south of the subject property has been secured through development approval process on 1280 and 1284 Gordon Street. Multi-Use Trail/AT Route (east-west) from Gordon Street to the proposed Trail west of Torrance Creek PSW: Provide a direct, accessible, multi-use active transportation route from the Gordon Street to the proposed Multi Use Trail system.

Active Transportation Route in yellow highlight

Parks Planning and Development offer the following comments:

1. Development concept plan:

• Provide a revised development concept plan indicating all the proposed elements including public park, east-west and north-south public trail/ ATN route from Gordon Street to the and open space in consultation with City staff.

2. Trail route alignment:

 Park planning staff would like to walk the site along with the environmental consultant and environmental planning staff to identify and approve preliminary trail alignment. The approved trail alignment will be flagged on site. Identify the final trail alignment west of Torrance Creek PSW, through EIS and flag the trail route on site for City's review.

3. Trail design and development standards:

 Trail design including surfacing, clear width and height, grading and drainage, trail signage etc. would be finalized in consultation with Park Planning staff. The design and development of the trail system would be completed in accordance with City's Facility Accessibility Design Manual, City's current trail design and development practice and standards and Active Transpiration standards.

4. Environmental impacts and mitigation:

- Assess the environmental impact of the proposed trail development through EIS.
- Recommend measures to mitigate the environmental impact due to the proposed trail development through the EIS.
- Recommend management of the woodlot along the trail route including removal of invasive species and hazard trees through the EIS.
- Recommend preparation of an Environmental Implementation Report (EIR), Trail and Landscape Drawings through EIS to detail design an appropriate trail system and associated mitigation measures in accordance with the City's design and development standards.

5. Grading and drainage:

• Provide preliminary grading and drainage plans to demonstrate that the design of the park block, trail connection and open space meets City's standards.

6. Open space restoration and enhancement:

• The owner will be responsible for implementation of City approved landscape plans in accordance with the EIR including, but not limited to, restoration, compensation and enhancement planting within the open space.

7. Demarcation of public open space:

• Describe the recommended approach to demarcate existing and proposed public park and open spaces, if any, within and adjacent to the subject property.

8. Public education:

- Recommend provision of public education through educational/interpretive signage at the entry points to the trail and open space system. Public education should address the environmental sensitivity of natural Heritage features and procedures residents can follow to protect and/or enhance these areas.
- City will review and approve the design and locations of interpretive and educational signage, to be included on landscape plans.

Summary:

Revise the Terms of Reference for scoped EIS, to address Parks comments above, for our further review.

Please contact me if you have any questions.

Sincerely,

Jyoti Pathak, Parks Planner

Parks and Recreation **Public Services** Location: City Hall T 519-822-1260 x 2431 E Jyoti.pathak@guelph.ca

Leah Lefler

From:	Fred Natolochny <fnatolochny@grandriver.ca></fnatolochny@grandriver.ca>
Sent:	Wednesday, October 17, 2018 10:11 AM
То:	Leah Lefler
Subject:	FW: 1242, 1250, 1260 Gordon St. 9 Valley Rd. Guelph

From our ecologist. Can you also send me the original message again – I appear to have mis-filed it. Sorry

From: Robert Messier
Sent: October 16, 2018 9:06 AM
To: Fred Natolochny
Subject: 1242, 1250, 1260 Gordon St. 9 Valley Rd. Guelph

I have reviewed the ToR EIS for the redevelopment of 1242, 1250, 1260 Gordon St. and 9 Valley Rd. in Guelph. As part of the background review they should also look at the Torrence Creek Subwatershed study and the Hanlon Creek subwatershed study. For the monitoring plan they should include a post construction monitoring of SWM design and mitigation. The setbacks and buffers assigned to the development should factor in the community trail that will be built even though the trail will ultimately be completed by the City. If you have any questions please let me know

Robert Messier Ecologist Grand River Conservation Authority 400 Clyde Road Cambridge, Ontario N1R 5W6 (519) 621-2763 x2310 www.grandriver.ca

INTERNAL MEMO

DATEOctober 2, 2020File No. 16.152.369TOLindsay SulatyckiFROM
DIVISION
DEPARTMENTMohsin Talpur
Engineering Services
Infrastructure, Development and Enterprise ServicesSUBJECT1242-1260 Gordon Street and 9 Valley Road – Draft Plan of
Subdivision, Official Plan Amendment and Zoning By-law

We have reviewed the following plans and reports that were submitted in support of the 1242-1260 Gordon Street and 9 Valley Road Draft Plan of Subdivision, Official Plan Amendment and Zoning By-law Amendment:

- a) Report, Re, Functional Servicing Report for Gordon Street, Guelph ON; dated April 13, 2020; prepared by Stantec;
- b) b) Report, Re, Geotechnical Investigation, Two 12-story Apartment Buildings 1242, 1250, 1260 Gordon Street, Guelph Ontario; dated April 25, 2018; prepared by CMT Engineering Inc.;
- c) Report, Re, Hydrogeological Assessment, 1242, 1250, 1260 Gordon Street, City of Guelph ON; dated May 4, 2020; prepared by Stantec;
- d) Report, Re, Noise Impact Study, 1250 Gordon Street, Guelph ON; dated February 20, 2020; prepared by J.E. Coulter Associates Limited;
- e) Engineering Plans; dated April 15, 2020; prepared by Stantec;
- f) Report, Re, 1242, 1250, 1260 Gordon Street and 9 Valley Road, Traffic Impact Study; dated May 21, 2020; prepared by Stantec.; and
- g) Report, Re, 1242, 1250, 1260 Gordon Street and 9 Valley Road, Guelph, ON-Environmental Impact Sturdy; dated May 22, 2020; prepared by Stantec.

And offer the following comments:

Functional Servicing Report

- 1. The disclaimer statement does not include City of Guelph to rely on the report. Please include City in the disclaimer statement or remove it.
- 2. Please provide a copy of Phase One ESA and/or Phase Two ESA reports for our review prior to zone change.
- 3. Sufficient and adequate capacity is available of the City's existing water supply and distribution system to accommodate the proposed development

and there are no water capacity constraints expected for most demand scenarios. However, there is potential for marginal water supply pressures in proposed development under certain conditions such as peak hour demand scenario at locations with elevation greater than 346 m height above mean sea level (AMSL) and average day demand scenario at locations with elevation greater than 339 m height AMSL in the existing water system.

- 4. In Section 3, email correspondence from City regarding sanitary servicing capacity was discussed, but there are no email attachments found in the report as mentioned. Please include the correspondence is the FSR.
- 5. No capacity is available in the City's Gordon St. existing downstream sanitary sewer to accommodate discharge of sanitary flows from the proposed development. However, City is in process of studying the upgradation of the sanitary service capacity within Gordon Street. Therefore, a 'H' (holding) symbol will be placed on the property until such time a new sewer is installed.
- 6. The gradient of Street A, an extension of Landsdown Drive and Edinburgh appears to be over 6% that is not desirable in the approach of an intersection. Please refer TAC section 9.7.3 and lower the gradient.
- 7. The typical cross-section and label for centreline radius (minimum 18m) are missing. Please provide the details for review.
- 8. The pavement width should be 8.4 m as per Development Engineering manual. Provide sidewalks on both sides of proposed Street A.
- 9. Provide traffic geometrics plan showing large moving trucks to/from the site.
- 10. The proposed Street A ROW appears to be excluded from the predevelopment and post-development stormwater management plan. The drainage area (i.e. 0.29 ha) of the Street A is discharging stormwater to Gordon Street uncontrolled without any quality control measures. Please include the area of Street A and demonstrate the quality and quantity control requirements are met and provide details for review.
- 11.Based on the topographic plan, there are external areas draining to the proposed development site from adjacent lots on Valley Road and the backyards of Gordon Street lots. Please delineate the external drainage areas discharging to the proposed development and update the drainage plans by accounting for external drainage under pre- and post-development stormwater management plan.
- 12.In section 5, the stormwater management strategy is discussed. The first document referred is Hanlon Creek Watershed Plan (HCWSP) that states all

stormwater generated from the area including 100-year storm must either infiltrate into the ground or evaporate (i.e. zero runoff). Another document referred is Torrance Creek Subwatershed Study (TCSS) that states that for the zone 2, detain the post-development flow to pre-development rates for the 2-year to 100-year storm events and to infiltrate minimum 150 mm/year. The Report indicates that the TCSS criteria is decided to be applicable for the site. However, it appears that, except for the woodlot area (draining uncontrolled east to the TCSS), the proposed stormwater is diverted to the Gordon street (Hanlon Creek Subwatershed area), which is contradicting the selection criteria. Please demonstrate the equitable share of surface water contribution to TCSS is maintained under post development conditions.

- 13.Based on information provided in figure 1, the existing stormwater is divided between two Subwatershed areas, major portion of the area (1.73 ha) discharges to TCSS and remaining area (1.13 ha) discharge to Gordon Street (HCWSP). The groundwater flow follows a similar divide to the surface water flow, with a portion flowing east as part of the Torrance Creek Subwatershed another portion flowing west as part of the Hanlon Creek Subwatershed. However, under proposed conditions, the infiltration gallery is proposed at TCSS portion and we have concerns that that may reduce recharge targets for Hanlon Creek Subwatershed area. Please demonstrate equitable share of recharge is maintained for each Subwatershed under post development adopting distributed infiltration approach.
- 14.It is mentioned that the development will also increase the impervious area and will produce increase in stormwater flows to the downstream Gordon Street storm sewer. The Gordon storm sewer (525 mm diameter storm sewer) is discharging to the existing downstream SWM facility (at 1291 Gordon Street), which is already at capacity. The additional flow from the development including uncontrolled flow from Street A could cause surcharging in the existing storm sewers and negative impacts downstream such as, erosion etc. Therefore, it is suggested to explore the option of discharging additional stormwater to the TCSS area.
- 15. Rooftop controls (i.e. 16 cm of ponding) are proposed for both buildings for the attenuation of stormwater discharging to the infiltration trench through downspout system with 75mm diameter orifice. The overflow arrangements of infiltration trench are directing water to the underground storage tank for out-letting to Gordon Street. The rooftop water is considered as clean; therefore, it is recommended to direct the overflow towards Provincially Significant Wetland (PSW) part of Torrance Creek Subwatershed.
- 16.It appears that an underground storage tank (located in the underground parking structure) is proposed to attenuate runoff generated form parking area and laneway; in addition, the underground storage is proposed for

attenuation of active storage required for rooftop runoff at 100-year event. The underground storage tank is not a desirable option for the City. Please explore surface water storage for the water quantity control.

- 17. The proposed infiltration gallery invert is set at 339.00 m and the invert of perforated pipe at inlet appears to be at 339.96 m. Based on the nearest monitoring well (MW5-18 (S)) data provided in the hydrological assessment report shows that the seasonal high groundwater level is approximately 340.7 m. Thus, all rooftop runoff could bypass the gallery and discharge to proposed underground storage via proposed overflow arrangements. Please revise the infiltration gallery design and ensure bottom of infiltration gallery is set minimum 1m higher than the seasonal high groundwater elevation and size appropriately to meet recharge targets.
- 18.It appears that the propose cover for the infiltration gallery is less than 0.5 m that does not meet frost protection requirement of minimum 1.2 m. Please ensure the minimum 1.2 m cover for the frost protection. Please refer Section 5.7.8 of DEM for further details
- 19. There is no discussion of on-site permeameter testing conducted at the location of proposed infiltration gallery. Please conduct in-situ permeameter testing using Guelph Permeameter or double ring infiltration testing method as per our Development Engineering Manual and CVC LID manual– Appendix C and size the infiltration gallery accordingly.
- 20.For water quality control an Oil-grit Separator (i.e. Stormceptor EF 4) is proposed and claimed 90% TSS removal. Based on Environmental Testing Verification (ETV) Canada, Oil-grit separators are 60% efficient when used as stand alone. Therefore, please justify enhanced quality control through the proposed OGS unit.
- 21. The IDF values used for hydrologic modeling are based on our Development Engineering Manual (DEM); however, the runoff coefficient (C) values do not match DEM. Please be consistent in using hydrologic parameters for the analysis based on DEM.

Hydrogeological Report

22. It seems that the proposed foundation of the underground parking area will be constructed with a water proof base and, as such, no permanent drainage system/dewatering is expected for these structures. However, a large footprint of infiltration is proposed in the close proximity of proposed building. Assuming it functions as designed, the concentrated flow from infiltration gallery and presence of dense glacial till encountered in the lower zone may have the potential to create perched water condition. There are chances of groundwater mounding impacts on the building's underground

parking lot and adjacent properties. Please conduct a groundwater mounding analysis including influence zone and submit for review.

- 23.Approach to analysis of slug testing results. Most of Stantec's graphs display a double straight-line effect that may be exaggerating the geometric mean conductivity values in the formation itself. They have matched most of the curves to the early drawdown, which typically is assumed to be the response of the gravel pack and not the formation itself.
- 24. The in-situ hydraulic response testing conducted at each monitoring well to estimate horizontal hydraulic conductivity of the deposit. All MW screens are located within sandy silt till layer that are deeper than the bottom of proposed infiltration gallery. Thus, the hydraulic conductivity estimated using slug tests would not be representative (k) values for designing infiltration galleries. The field saturated hydraulic conductivity should be determine using Constant heads Guelph Permeameter method or Constant head double-ring infiltrometer method. As stated in City's Development Engineering Manual (DEM), a minimum of one on-site infiltration gallery; in addition, one on-site infiltration test shall be conducted at the proposed bottom elevation of infiltration gallery; in addition, one on-site infiltration test shall be conducted at every other soil horizon encountered with 1.5 meters below the proposed bottom elevation. Please arrange onsite testing at the proposed locations and design infiltration gallery as per details provided in Section 5.7.7 & 5.7.8 of DEM.

Water Balance Analysis

- 25.Evapotranspiration estimations for pre-development conditions is based on annual precipitation (i.e. 916 mm) from Waterloo Wellington A. However, under post-development water balance evapotranspiration estimations are based on annual precipitation (i.e. 921 mm) seems from another climate station. Despite climatic data taken from two different stations, the adjusting factor for latitude remains unchanged. Please justify.
- 26. The climate data of 1981 to 2010 (22 years) selected from Waterloo Wellington Station A for water balance calculations. However, the climate data is available for more than 36 years period. Please provide the rationale for using only 22 years data.
- 27.It appears that the topographic factor (0.1) used for the sub-area A to Subarea C considering the areas as hilly. However, these sub-areas can be categorized as rolling lands with factor 0.2. Please update the factors in water balance calculations.

Source Water Protection:

28. The property is located in a WHPA B and C with a vulnerability score of 4-8. As such, all construction related activities are subject to the City of Guelph's

SOP for construction projects within 500 m of a municipal well (attached). The property is not located in an Issue Contributing Area.

- 29. In accordance with Grand River Source Protection Policy CG-CW-29, please provide 5 digital copies of a Salt Management Plan.
- 30.Ensure that any private water supply or monitoring wells that are no longer in use are abandoned in accordance with O. Reg. 903.
- 31.In accordance with Grand River Source Protection Policy CG-CW-37, the applicant will need to indicate what DNAPL (if any) or other potentially significant drinking water threats will be stored and/or handled on the property. A Risk Management Plan may need to be developed.

Noise Impact Study

- 32. The title of the report is Noise Impact Study. The report appears to be a combination of both feasibility study and detailed study features as per the Guelph Noise Control Guidelines (GNCG) study requirements. Please clarify and change the tile appropriately to avoid any confusion.
- 33.The Noise Impact Study (NIS) submitted in support of "Zone change and Draft Plan amendment for the property 1242 – 1260 Gordon Street. However, the address mentioned as 1250 Gordon Street that is not consistent with the submission. Please correct the address.
- 34. In Section 2 of the NIS report, it is mentioned that the west facades of the Buildings A and B are setback approximately 24 m and 77m, respectively from the centerline of Gordon Street. However, other drawings included in the submission show that parts of the building facade with amenity areas are approximately 12.4m from the centreline of Gordon Street, and approximately 8.3m from the centreline of Street A (an extension of Edinburgh Road South). Please clarify, updating the report as necessary.
- 35.Table 1 includes "Outside bedroom window" and "Outside living room window" as part of the listed "Sound Level Limits...". The other values in this table correspond to MECP NPC-300 stated criteria sound level limits, whereas these two categories correspond to values used to determine ventilation and building component requirements; distinction between these should be made (we suggest separating them into two separate tables, for clarity).
- 36. The statement in the footnote of Table 1 is incorrect and should be removed or reworded. Excess above the stated criteria for OLAs may be permitted, with engineering judgment and justification, at the discretion of the Municipality, and are not automatically allowed.

- 37.In Section 3.2, not sure why the word "excesses" is used; the unit ventilation requirements are stated, and no "excess" to these are permitted. In addition, there are no discussions about building component design requirements.
- 38. In Section 3.3, technically, the stationary noise criteria is based on the worst-case scenario for the affected site; while is this often at the point of time of lowest ambient roadway traffic, that isn't always the case, and is not the way NPC-300 defines it. Please correct.
- 39. In Section 3.3, it is mentioned that the proposed development is located in a Class 1 Urban Area. However, this is Class 2 Area. Please update the report and analysis accordingly.
- 40. Table 2, there are several datasets included in the appendix. How was AADT values mentioned determined? If additional calculations were done, please include them in the report. In addition, future heavy truck percentage on Edinburgh Road is assumed as zero. Even if existing heavy truck % is zero, why is projected heavy truck % zero? It would only be valid if the road has a heavy truck prohibition (if it does, verify it is planned to remain in place to the horizon year). Please also update the roadway descriptions to include the class of road (arterial, collector, etc.) and whether or not it is a divided roadway
- 41. The note for the Table 2 mentioned that the traffic growth on all roads has been assumed to be 1.5% per annum. There is no rationale provided for the assumption of only 1.5% per year. The standard is 2.5% traffic growth rate. Please justify or correct it accordingly.
- 42. The first paragraph in Section 5 refers to Appendix A, Figure 2 for calculation locations. However, Appendix A Figure 2 does not appear to specify or otherwise indicate the calculation locations. Please update the figure accordingly.
- 43. The building identifications mentioned in Table 3 is not consistent with other submitted plans/reports. Please standardize building identifications.
- 44. The outdoor amenity is mentioned in the Table 3, without referring to amenity location. The concept plan submitted with the complete application (revision 3 dated 2020.05.21) shows two separate outdoor common amenity areas, plus a proposed park, and an "Amenity Roof". Please verify that all appropriate OLAs are being analyzed. In addition, the outdoor amenity daytime sound level at exterior façade mentioned as << 55 dB L_{eq}. Please clarify if this value is calculated/predicted or assumed: only calculated/predicted values should be indicated in the table.

- 45. The Table 3 note 2 does not match the definition of an OLA as per the Guelph Noise Control Guidelines. Please correct it. In addition, the second sentence of note 2 should be separated as note 3. Again, actual calculated/predicted values should always be reported in the table, even if upon analysis they are determined to be "insignificant". That said, it may be relevant to not include noise from Edinburgh Road South for some of the calculated receiver locations: this should be outlined in the report complete with justification.
- 46. In Section 6, air conditioning and warning clauses are listed as noise control measures. These are not noise control measures and should not be listed as such. In addition, it appears that the building component calculations are missing in the report. Please include in the report and reference in the section.
- 47. There are patio/balconies identified on the submitted plans that are more than 4m deep. However, there are also ground-based OLAs and indoor amenity spaces that have not been identified or analyzed. Please clarify, updating the report as necessary.
- 48. When including stationary noise calculations in a noise report, many more details are required. Please see the Guelph Noise Control Guidelines for information on what level of detail is required.
- 49. The point of reception for stationary off-site noise sources are identified in Section 7, but it is not clear how were these locations selected? Are there other locations (including other floors) that would experience a larger impact from these sources? Please provide details.
- 50.Section 7 does not include analysis of proposed outdoor points of reception. Please include these in the analysis.
- 51.In Section 8, the surrounding buildings (1280 Gordon Street & 1284 Gordon Street) are identified as 5 story buildings but that is not consistent with earlier in the report where they are identified as 6 story apartment buildings. Please clarify.
- 52.Please include, in an appendix of this report, the HVAC design drawings for each building. Verify that there are no planned sources of noise at any location on/at/around these proposed buildings other than the roof-top (above the 12th storey): other elements that may be missing from this analysis include (but not limited to) blowers/exhaust from the underground parking, emergency generators, HVAC equipment on lower roof levels, etc. If the HVAC has not yet been designed, this needs to be documented in this report, along with sources for equipment/noise levels used in the analysis, assumptions on location, assumptions on other equipment, etc.

- 53. The analysis of the impact of proposed development on the surrounding areas appears to be based on a "best-case scenario" for HAVC design for buildings of this type, and provides little assistance to identify possible noise impacts to external sensitive receivers. Please provide justification within the report concerning the type, number, placement and selection of HVAC equipment for these proposed buildings.
- 54.Please clarify what methodology was used for the evaluation in Section 10. Additional details are required, as are the calculations completed (can be included in an appendix). Based on most methods, review of actual architectural drawings would be required: was this done? If this is a Feasibility Noise Study, the level of detail expected is much lower, but detailed evaluation would be required as part of the subsequent Detailed Noise Study (typically at Site Plan or similar stage of the land development). It should be noted in this section that a review of the building components is a requirement under NPC-300 due to the sound levels predicted.
- 55. The summary of on-site noise impacts on adjacent noise sensitive land uses is missing. Please include it.
- 56. In Section 12 recommendation 2 identifies reference to recommended warning clauses. Please note that, if this is a Detailed Noise Study, the warning clauses need to be specified in detail within the report, as per the GNCG Appendix A, and not simply referenced by clause "letter". If this is a Feasibility Noise Study, warning clauses need not be recommended (see the GNCG for details of report requirements).
- 57. In Section 12, it is mentioned in recommendation 4 that the analysis will be conducted prior to building permit. This analysis will be required prior to Site Plan Approval, as per the Guelph Noise Control Guidelines.
- 58.The Figure 1 does not include standard required map orientation items. Please include standard-required map orientation items, such as a north arrow, etc. This figure should also outline the extents of the site under investigation.
- 59.Please include the locations of the on-site points of reception used in the evaluation of transportation noise in Figure 2.
- 60.Please include standard required map orientation items, such as a north arrow in Figure 3 & Figure 4.
- 61.Please clarify that the building description is based on magnetic north or project/site north in the STAMPSON output, and/or coordinate and standardize the location descriptions to cardinal points based on included drawings.

- 62. The location of the points of reception mentioned in the model are unknown, beyond the general description (as they are not shown on an included drawing/figure). Once they are known, we will review the STAMSON predictions in more detail. Until that time, please see some general comments below.
- 63.It appears that absorptive ground surface is used in the model. Based on the included drawings, the intervening ground surface to all receptors on site would not be considered absorptive. Therefore, reflective ground should be used for all predictions.
- 64. The receiver height mentioned in STAMPSON is 36.00 m. However, based on the submitted elevation drawings, this value does not appear correct. Please clarify how the receiver height was determined?
- 65.It appears that a barrier is included in some predictions. Why was a barrier introduced? If a barrier exists, complete the three elevation values. Note that barriers should not be included in the analysis for receivers in the bright zone of the barrier.

Water Servicing, including Metering

- 66. The plans are missing a property line valve. For new servicing we are looking for a tapping valve (or valve on the 'T') and a property line valve in all cases.
- 67.All water, including that to supply fire suppression and hydrants, must be bulk metered.
- 68. The water meter shall be located within a meter chamber at property line. The chamber position would be at the PL of building 1 or be bulk metered inside Building 1 for the entire property

Traffic Impact Study

- 69."Section 7.1 Zoning By-law Requirements" noted that a review was completed to determine the reduced drive aisle width of 6.7m meters. Please provide the details of the review.
- 70. The proponent will be responsible for design and construction of Street A, and reconstruction of the intersection at Gordon Street and Edinburgh Road including any modifications to geometry and traffic signalization.

TDM

71.Per section 8.2 of the TIS, please strengthen active transportation connections between Buildings #1, #2 and Gordon Street, on the south side of the site. A 3.0 m wide shared pathway for pedestrians and cyclists eliminates the need for these users to travel out of their way via the proposed municipal ROW, when travelling southbound on Gordon Street.

- 72.Per section 8.1 of the TIS, staff recommend provision of high quality, secure, indoor bicycle storage. This means at least half of the bike racks provided should be horizontal and lift-assist, rather than all racks being vertical wall mounted. Providing high quality amenities ensures a range of users can access these spaces, and promotes active transportation as an appealing alternative to single-occupancy vehicle use.
- 73.Several ground mounted racks for oversized bicycles such as cargo bikes, recumbent hand cycles and bicycles with trailers attached should be provided.
- 74.Section 2.0, on page 2.1 indicates there will be 442 bicycle parking spaces underground, while table 13 indicates 415 spaces. Please clarify.
- 75.Note, per the Site Plan procedures and guidelines the long term bike parking should be provided at a rate of one space per unit, while the 2 spaces per 20 units are for visitor bike parking. These visitor bike parking spaces should be situated above ground, directly next to the main building entrances.
- 76.Please consider unbundled parking provisions so residents can opt-out of parking spaces they may not need.
- 77.Staff recommend the implementation of EV-charging stations for residents in the underground parking.

Please do not hesitate to contact me if you have any questions regarding my comments. Thanks,

Mohsin Ali Talpur, M.Eng., P.Eng. Development - Environmental Engineer

Internal Memo

Date	December 8, 2020
То	Lindsay Sulatycki, Senior Development Planner
From	Leah Lefler, Environmental Planner
Service Area	Infrastructure, Development and Enterprise Services
Department	Planning and Building Services
Subject	1242-1260 Gordon Street and 9 Valley Road
	Draft Plan of Subdivision, Official Plan Amendment and Zoning By-law Amendment
	Environmental Planning Comments on First Submission

Environmental Planning reviewed the following documents that pertain to the proposed Draft Plan of Subdivision, Official Plan Amendment and Zoning By-law Amendment at 1242-1260 Gordon Street and 9 Valley Road:

Environmental Impact Study, Stantec, May 2020 Functional Servicing Report, Stantec, April 2020 Geotechnical Report, CMT Engineering Inc., April 2018 Hydrogeological Assessment, Stantec, May 2020 Landscape Concept, Stantec, March 2020 Planning Justification Report – May 2020 Tree Inventory and Preservation Plan – March 2020

Based on the review of the materials listed above, Environmental Planning staff offer the following comments at this time:

Environmental Impact Study

- In the Introduction, please note that the planning approval sought by the applicant is a Draft Plan of Subdivision, Official Plan Amendment and Zoning Bylaw Amendment. Following approval, the development will proceed to detailed design and subdivision registration. Text in the third paragraph should be updated accordingly.
- 2. Under 1.1 Agency Consultation, reference is made to a Hydrology Report. Please revise this to Hydrogeological Assessment.
- 3. Under 2.2.1 Official Plan, it is stated that "Natural Areas where development may be permitted provided an EIS can demonstrate that there will be no negative impacts to the natural heritage features or their ecological function". This statement is incorrect. General Permitted uses and feature specific policies apply to Significant Natural Areas and Natural Areas alike. Permitted uses may be more permissive in Natural Areas in comparison to Significant Natural Areas,

but not necessarily. If a feature does not meet criteria for protection, development may be permitted. Conversely, if a feature meets criteria for protection, the general permitted use policies and feature-specific policies apply. Please clarify this.

- 4. The last sentence on page 2.2 states that "The Natural Heritage System also incorporates hazard lands including steep slopes, erosion hazard lands and unstable soils that are under the jurisdiction of the GRCA". This statement is incorrect. Criteria for designating Significant Valleylands (a Significant Natural Area included in the NHS) includes undeveloped portions of the regulatory floodplain. Hazard lands are not outright included in the NHS. Please correct this.
- 5. Under 2.2.3 Tree By-law, it is stated that the "Tree By-law was created to prevent damage or destruction to trees". This statement is incorrect. The Tree By-law 'regulates' the destruction or injuring of trees and enables the City of Guelph to require a tree permit prior to the injury/destruction of a regulated tree, and compensation. The Tree By-law helps protect and enhance the tree canopy cover in the City. Please revise accordingly.
- 6. Under 3.2 Field Investigations on page 3.8, please include bat acoustic surveys as well as bat exit surveys in the list of targeted field surveys.
- 7. Under 3.2.8.2 Bat Exit Surveys on page 3.14, please include the type of device used for acoustic monitoring. For example, was a hand-held unit used, a song meter or both?
- 8. Under 3.2.9.1 Diurnal Surveys on page 3.15, it is stated that "fieldwork was conducted at, or within, half an hour of sunrise". This statement does not match dates and times listed in Table 3.7. Best results are achieved within half an hour of sunrise, especially in noisy urban environments, and especially in forested ecosystems. The first breeding bird survey was completed on June 12, 2018, which is very late for a first visit. Based on timing of field surveys, data should be interpreted accordingly (i.e. lack of record does not indicate absence). Please update the text, as appropriate.
- 9. Under 3.2.9.2 Crepuscular Surveys on page 3.16, mention of moon phase is not made. Were conditions appropriate for surveying crepuscular birds during site visits completed for bats? Refer to MNRF's 'Eastern Whip-poor-will and Common Nighthawk Survey Protocol' for guidance.
- 10. Under 4.4.6 Amphibian Survey and Habitat Assessment on page 4.6, it is stated that suitable habitat for amphibian breeding was not present. This seems odd, given that the Torrance Creek PSW is located within the Study Area, which is known to provide woodland amphibian breeding habitat. Snow melt and a high groundwater table result in seasonal ponding within this wetland complex. Please clarify.
- 11. Under 4.4.14 Incidental Wildlife Observations, the DeKay's Brownsnake observation from May 16, 2019 should be added to the list of incidental wildlife. This species was observed, along with several Eastern Gartersnake and a Redbellied Snake during the feature staking exercise, with City staff. Further, please assess the significance of the snake records recorded with respect to

significant wildlife habitat and the potential for snake hibernacula to occur in the vicinity of the subject property.

- 12. Section 5.0 Significant Natural Heritage Features should be based on the natural heritage and water resources policies of the City of Guelph Official Plan (March 2018 Consolidation), in addition to the policies of the Provincial Policy Statement. Please update this section to address Official Plan policy.
- 13.Section 5.2 Significant Woodlands includes the following statement: "notwithstanding the criteria denoted in the OP excluding plantations". This statement is incorrect. *Plantations* is a defined term in the Official Plan. Cultural Plantation, per ELC, is not the same thing as *plantation* in the Official Plan. A cultural plantation unit must meet the Official Plan's definition of *plantation* to be excluded from the assessment of significant woodland. Please clarify this.
- 14.Section 5.2.1 Other Woodlands refers to a deciduous woodland and claims that it was excluded from Significant Woodland due to composition, origin and size. Please provide the analysis to support this. Do the Cultural Woodlands criteria of the Official Plan to this deciduous woodland? This assessment should also be included in a revised EIS.
- 15. What does the bolded text indicate in Table 5.1? For clarity, please uses bolded text consistently within each Table, and among Tables 5.1 through 5.4. Also, please update Tables 5.1 through 5.4 to accurately assess field data collected against MNRF's Ecoregion 6E Criteria to determine whether or not Candidate or Confirmed SWH is present within the Study Area and/or Subject Property.
- 16.Section 5.3.5 Locally Significant Species should be updated to include the names of the two locally significant plant species. Also, the list of locally significant bird species should be updated to include Northern Flicker. A total of six locally significant bird species were documented, based on field records.
- 17.Section 5.4.1 Butternut should be updated to indicate that an 'authorization' under the *Endangered Species Act* is sought. The EIS should be updated with information from the MECP and Natural Resource Solutions Inc. to reflect the current status of Butternut, ESA requirements and compensation plantings. Correspondence and supporting documentation should be included as an Appendix.
- 18.Section 5.4.3 Bat SAR, please provide a map showing the extent of bat species at risk habitat (roosting habitat, foraging habitat). Please also provide correspondence with MECP confirming support of the proposed approach.
- 19. Section 5.5 Significant Natural Heritage Features Summary, on page 5.8, please update the bullet list to include bat species at risk, and to note that honey locust is a planted specimen. Also, the statement "unable to confirm presence/absence" is incorrect. The field surveys were designed to enable an assessment of SWH. For example, breeding bird survey results in fact confirm the woodland as Woodland Area Sensitive Breeding Bird Habitat. Based on results of field surveys, it may or may not be possible to confirm SWH. Unconfirmed SWH would remain Candidate SWH in areas meeting the criteria of the schedules for 6E. Please clarify this in the text.
- 20.Section 5.5 Significant Natural Heritage Features Summary, on page 5.9, includes other woodlands (WODM4-4). Based on the ELC figure, the WODM4-4

vegetation community appears to be contiguous with an FOCM5 vegetation community. As per comment 14 above, please assess this woodland against the Official Plan's criteria for Cultural Woodland and update the text on page 5.9 accordingly.

- 21.Section 6.1 Stormwater Management should reference stormwater targets prescribed in the Torrance Creek Subwatershed Study for infiltration rates. A portion of the site is located in Catchment 102, where the following targets apply:
 - infiltrate to enhance baseflow in Torrance Creek: 150mm/yr to 200mm/year or match pre- to post-
 - pre- to post- peak flow control for all design events (2 to 100-year events)
 - 24-hour extended detention for 25mm rainfall event
 - minimum 80% TSS removal

Similarly, the Stormwater targets prescribed in the Hanlon Creek Subwatershed Study should be referenced in this section, as a portion of the site is located within the Hanlon Creek Subwatershed. The proposed stormwater outlet drains to Tributary D, where the following targets apply:

- match pre- to post- peak flows for all storm events
- implement infiltration best practice to the great extent feasible
- 22. The Functional Servicing Report (FSR) and Engineering Plans indicate that parking lot water as well as rooftop water will be directed to the infiltration trench. Further, stormwater management does not appear to be provided for a portion of the site, including drainage from the extension of Edinburgh Road. Lastly, sufficient capacity to accommodate flows from the proposed development is not available in the receiving stormwater management pond. Section 6.1 should be updated to provide an accurate and detailed description of the proposed stormwater management system so that all potential impacts can be identified in Section 7.0.
- 23. The first paragraph on page 6.2 states that "the total flow to Gordon Street (inclusive of rooftop-controlled flow) meets the predevelopment target rates". Please provide supporting documentation or provide reference to specific values and/or sections of the FSR.
- 24.On page 6.2, a description of the infiltration trench is provided. Based on this description, it is unclear how groundwater levels factored into the design of the facility. For example, has 1m separation distance from the high-water level mark been factored in?
- 25.Section 6.1.2 Trail, references the Guelph Trail Master Plan and a proposed connection through the subject property. A recommendation is provided that the trail be completed as part of a broader trail design approach, to be completed by the City at a future date. This recommendation conflicts with the requirements set out in the Terms of Reference, which included an assessment of the trail route, recommendation for trail alignment consistent with Official Plan policy (i.e., consistent with permitted uses within the natural heritage system, demonstration of no negative impact, etc.) and identification of best management practices to provide the basis for basic trail design, which is to be

completed as part of the Environmental Implementation Report (refer to pages 18 and 20 of the approved TOR). The Active Transportation Network Study maps the portion of trail through the subject property as a desired Active Transportation route (i.e. for cycling). The feasibility of accommodating an Active Transportation route through the subject project is to be assessed based on Official Plan policy in the EIS. Lastly, a trail connection from the Park Block to the trail network is desired and should be assessed and evaluated through the EIS to inform the design.

- 26.Section 7.0 Potential Impacts of Development and Mitigation Recommendations, reference is made to "net environmental impact assessment". This is not appropriate as the policy test is "no negative impact". Please revise this statement and confirm that the analysis provided is based on the "no negative impact" test.
- 27.Section 7.1 Impacts on Significant Natural Features, given that two 12 storey buildings are proposed, the EIS should evaluate the potential for bird strike impacts, and inform the design, as appropriate. Lighting impacts may also result from the proposal; the EIS should make recommendations for lighting adjacent to the natural heritage system based on best management practices. Lastly, grading impacts should be assessed in the EIS. An analysis of the grading plan should be provided in the context of permitted uses within the natural heritage system. Please update section 7.1 accordingly.
- 28. In Section 7.1.1 Significant Wetlands, it is stated that "incidental runoff impacts associated with sediments, dust, as well as nutrient loads will be reduced by the natural polishing function of the vegetative zone between the feature ad development". It is unclear what this statement means. The Stormwater system is designed to infiltrate the 25mm storm event via an infiltration trench. Surplus runoff will fill a storage tank and then outlet to the storm sewer on Gordon Street, which outlets to a stormwater pond, which discharges to the Hanlon Creek PSW. Further, the last sentence of the first paragraph in this section states that "all surface runoff from the proposed development is directed to the existing storm sewer on Gordon Street". This statement is not consistent with section 6.1 of the EIS or the FSR. Please clarify.
- 29. Also in Section 7.1.1 Significant Wetlands, please demonstrate that infiltration rates and volumes have been matched, pre- to post- in the Torrance Creek and Hanlon Creek Subwatersheds. This section notes that infiltration will "match and likely notably exceed pre-development infiltration volumes" in the catchment that directs flows to Torrance Creek. Torrance PSW has both a recharge and discharge function, depending on the time of year. During periods of an elevated water table and an upward hydraulic gradient, are impacts associated with the infiltration trench anticipated? For example, if infiltration cannot occur due to a high-water table, surplus will fill the storage tank and discharge to Hanlon PSW, likely resulting in a negative impact to both PSWs. Please include an in-depth analysis of stormwater impacts on the natural heritage system's features and functions.
- 30.On page 7.2, discussion is provided on the predicted impacts associated with reduced infiltration to the Hanlon Creek Subwatershed, with a conclusion of no negative impact drawn. Please provide the supporting analysis to support this

claim. For example, what is the difference in pre- to post- infiltration volumes and rates? If infiltration is reduced, is the potential for baseflow impacts in Hanlon Creek? If infiltration is reduced, will more runoff be directed to Hanlon PSW? In addition, the FSR indicates that this runoff would be directed to the storm sewer on Gordon. The EIS fails to address Stormwater impacts associated with unattenuated/untreated runoff from the catchment containing the extension of Valley Road/Edinburgh.

- 31. The Torrance Creek PSW has a recharge and discharge function. What impact does the proposed stormwater management system have on the recharge/discharge function of the wetland? Please update the EIS to include a comparison of pre- to post- monthly differences in vertical hydraulic gradients, infiltration, runoff, etc. Note that this is required to demonstrate no negative impact the PSW.
- 32.Section 7.1.5 Significant Habitat of Endangered and Threatened Species, please provide documentation of correspondence with MECP confirming the proposed mitigation measures for bat species at risk are acceptable. Please also update the Butternut paragraph to include details from NRSI, as requested above.
- 33.Section 7.1.6 Locally Significant Species, please clarify where the Yellow-billed Cuckoo was heard. The text appears to indicate that the Yellow-billed Cuckoo was heard singing from the development area of the site. Please provide an assessment based on the Official Plan's policy on Habitat for Significant Species to establish whether or not this Natura Area designation applies.
- 34.In section 7.3.1.3 Wildlife Friendly Building Design, please note that the EIR should include more detailed guidance on bird-friendly building design to inform detailed design.
- 35. Environmental planning staff are supportive of the timing recommendations made for the removal of debris and woodchip piles to protect snakes. Consider including a recommendation to incorporate snake hibernacula and/or gestation site habitat structures in the buffer portion of the natural heritage system. The Environmental Implementation Report would then provide further information on location, design, etc. to assist with detailed design and implementation.
- 36. In section 7.3.4 on page 7.8, please update the paragraph on Butternut to reflect the outcome of the Butternut Health Assessment and authorization. NRSI should be contacted for this information.
- 37. The details included in the post-construction monitoring program are acceptable for the EIS; however, please note that a requirement of the forthcoming EIR will be to provide a detailed post-construction monitoring plan. Similarly, additional detail on vegetation plantings will also need to be provided in the EIR. Please update the EIS to include a summary section on EIR requirements and a proposed outline for the future report. Please note that this was included within the approved Terms of Reference.
- 38. The following major topics were omitted from the EIS and should be assessed in detail in a revised EIS as part of the next submission:
 - assessment of bat species at risk habitat and supporting documentation from MECP;
 - Butternut assessment details and supporting documentation from MECP;

- assessment of Habitat for Significant Species;
- assessment of Cultural Woodland;
- assessment of the need for Established Buffers;
- assessment of grading impacts;
- assessment of wetland water balance, based on assessment of monthly differences, pre- to post-development, for lands draining to the Torrance PSW and Hanlon PSW, to determine whether or not ecological and/or hydrologic impacts resulting from the proposed development are anticipated; and
- recommended scope for EIR.
- 39. Section 9.0 Policy Compliance should focus on the consistency of the proposal with the "no negative impact test". As written, the focus appears to be on establishing feature-based constraints to development. This is not consistent with the PPS, and the natural heritage system's approach to protecting, enhancing and restoring natural heritage in Ontario.
- 40. Section 10.1 Report Summary, please update the bullet on SWH to indicate Candidate vs Confirmed. Further, the bullet on the proposed stormwater management plan indicates that parking lot runoff will be infiltrated. This detail was not included in the description of the stormwater management system presented earlier in the EIS. Please ensure that all statements are consistent and coordinated with the engineering plans prepared for the proposed development. Please note that infiltration of parking lot water is not supported by the City. Lastly, the report summary should include changes to wetland hydrology and ecology, and removal of accessory habitat to list of potential impacts associated with the proposed development.
- 41.Please update section 10.2 Recommendations to include the erection of Tree Protection Fencing prior to the commencement of site alteration/construction.
- 42.Please update mapping provided in Appendix A to include the following:
 - established wetland buffer;
 - Ecological Land Classification vegetation community information for polygon adjacent to FOD5-6;
 - extent and type of Significant Wildlife Habitat features;
 - limit of the Natural Heritage System; and
 - Cultural Woodland and/or Habitat for Significant Species, as appropriate, based on the criteria-based assessment requested above.

Hydrogeological Assessment

- 43. In section 4.2.4.1, pre-treatment for TSS is suggested to eliminate a number of sediment-bound metals in the discharge effluent. City staff agree that the proposed pre-treatment approach would likely reduce these concentrations; however, please note that samples would still be required to be collected to confirm this assumption, prior to the discharge being authorized to City sewers.
- 44.Please update section 4.2.4.1 to clarify whether or not VOCs were sampled to confirm presence/absence. The City's Sewer Use By-law prohibits discharge of VOC-impacted. Please note that VOC sampling may be required under a future discharge agreement with the City's Wastewater Division.

- 45. The post-development water balance provided in section 5.3 does not appear to account for the lands fronting on Valley Road (0.27ha catchment shown on Figure 15). Please explain why this area was excluded from water balance calculations, or update the water balance to include this catchment. Further, the size of the catchment draining to Torrance provided in the water balance assessment is 1.73ha, which does not match the catchment area of 1.44 ha in the hydrologic model. Please update the calculations ensuring that consistent catchment areas are applied.
- 46. The EIS should refer to Section 6.0 Groundwater Dewatering Assessment and include recommendations for monitoring and best practice. This could be included as an item for the future EIR.
- 47.Section 6.1 It appears that a safety factor was not considered in the calculations of dewatering volume estimation, nor was any basal seepage considered. Although the site typically has observed downward gradients, the hydrological assessment indicates that upward gradients are present. Please add a factor of safety to the calculations and account for basal seepage, or provide text to explain why these elements were not considered in the calculations.
- 48.An infiltration (rock) trench is proposed to address the infiltration deficit. The infiltration (rock) trench is located within the Torrance Creek Subwatershed. Please include an analysis of the post-development water balance per watershed. For example, with LID measures in place, the water balance should demonstrate that the infiltration rate/volume should roughly match pre- to post-rates/volumes within each Subwatershed (i.e. Torrance and Hanlon). A stormwater management design and supporting analysis demonstrate no negative impact to the receiving natural heritage system is required. This is typically achieved by demonstrating that the proposed development and stormwater management system matches pre- to post-monthly infiltration rates/volumes and monthly runoff rates/volumes. Hydrographs depicting monthly differences in runoff volumes and infiltration volumes are helpful in demonstrating consistency with the natural heritage system "no negative impact" policy test.
- 49. In Section 7.2 construction proximity to the nearby municipal well is accounted for; however, there is no discussion provided as to private residential wells in the area. During the filing of an application for PTTW or registration under the EASR, it is recommended that the proponent assess potential impacts to private residential wells.

Tree Preservation Plan

- 50.Please update the Tree Preservation Plan to include recommendations for the EIR and detailed design.
- 51.Environmental planning is generally supportive of using a polygon approach in certain situations; however, based on data provided in Appendix 1 Tree Inventory Data, it is unclear how the stem count column relates to the Polygon. For example, 1 stem is reported from each of Polygons A, B, C, E and F. Given the brief description provided on page 4 of the plan: "If trees were present in monoculture hedgerow features, a polygon method was used". Based on this description, >1 stem per polygon would be expected. Please clarify.

52.Please update Map 2 of the Tree Inventory and Preservation Plan to show Tree Protection Fencing around the perimeter of the natural heritage system.

Functional Servicing Report

- 53.Please update section 5.1.2 Torrance Creek Subwatershed Study to accurately reflect recommended infiltration rates, which in the case of the proposed development is between 150mm/yr to 200 mm/yr.
- 54. The FSR indicates that the area outletting to Gordon Street (Hanlon Creek Subwatershed) will increase, post-development. The infiltration trench is proposed in the Torrance Creek Subwatershed, which means the majority of stormwater originating from the Hanlon Creek catching will be generated as runoff. Please clarify that the receiving stormwater pond has capacity to control the runoff volumes generated by the proposed development. Please note that surcharge of this facility is directed to the Hanlon PSW. Runoff volumes should match pre- to post- per the Hanlon Creek Subwatershed recommendations.
- 55. The description of Catchment 202 provided at the bottom of 5.6 indicates that roof-top water will be directed the storm sewer on Gordon Street, with the 25mm event being directed to the infiltration trench. Please clarify that up to and including the 25mm is intended to be directed to the infiltration trench. Events in excess of 25mm or when back to back events occur prior to drawdown would be directed to the storage tank, eventually draining to the storm sewer when capacity is reached. Environmental planning strongly encourages infiltration of 'clean' water to maintain infiltration and baseflow in Hanlon Creek to the greatest extent feasible. Please consider this comment when updating the FSR.
- 56. The EIS should include an analysis of the findings presented on page 5.8 which relate to pre- to post- differences in runoff and infiltration being directed to the Torrance and Hanlon Subwatersheds under the post-development scenario. Based on the analysis provided in the FSR, the EIS should provide an assessment as to whether or not impacts to the ecology or hydrology of the wetlands are anticipated.
- 57. How would the infiltration trench function in the event of back-to-back storms? Please clarify whether or not a safety factor was incorporated into the sizing and design of the infiltration trench.
- 58. In section 5.6 On-site Infiltration, on page 5.9, it is stated that "The infiltration gallery should only be intercepted by groundwater in spring-time". How was this detail factored into the water balance? The EIS should provide an analysis of potential impacts arising from the proposed stormwater design. For example, if groundwater intercepts the infiltration trench during the spring, infiltration will not occur which would result in more runoff being directed to Hanlon Subwatershed. This is unacceptable and should be addressed in the next submission.
- 59.Please note that in situ permeameter testing is required to demonstrate that the proposed infiltration trench will function as anticipated. Please provide this information in the next submission.

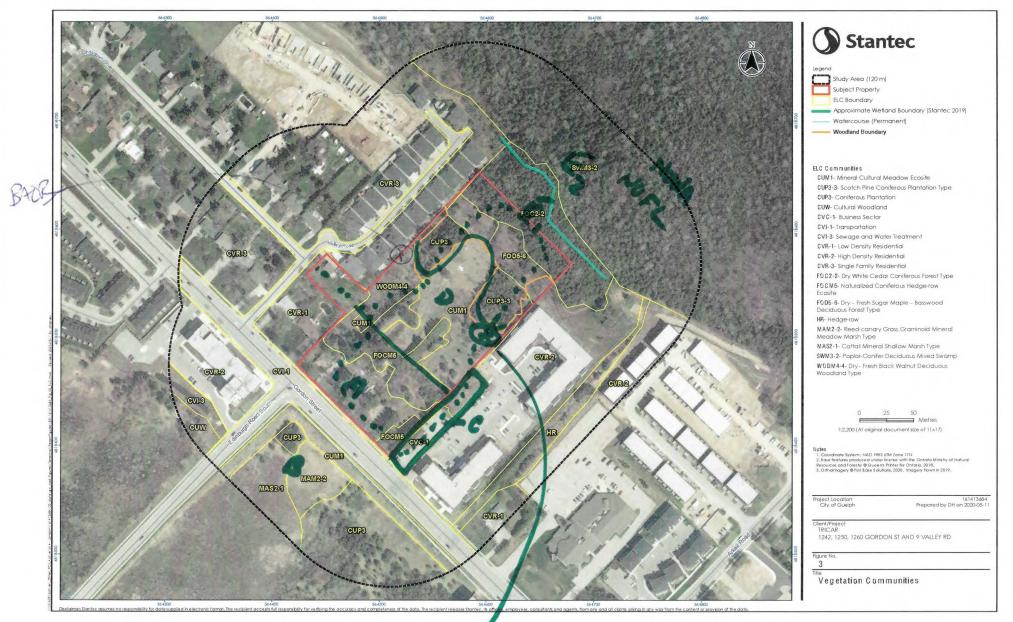
- 60.Drawing SSP-2 Storm Drainage Area Plan It is unclear how the Area IDs relate to the Catchments described in the FSR and Hydrological Investigation report's water balance calculations. Please ensure that this is clarified and coordinated among studies and drawings in the next submission.
- 61. Drawing GP-1 Grading Plan indicates that extensive grading is required adjacent to the natural heritage system. Please provide additional detail on grading requirements (e.g. spot elevations) to enable a proper assessment of consistency with Official Plan policy. Please note that a cross-section can be helpful in demonstrating how the required grading relates to the protection of the natural heritage system. At a minimum, please update GP-1 to show differences in grade adjacent to the natural heritage system, and slope, particularly at the southeast end of the site.
- 62.It is unclear how the proposed erosion and sediment control plan has been coordinated with the proposed grading plan. For example, tree protection fencing and silt fencing is proposed in an area identified for extensive grading on GP-1. Please clarify.

Landscape Concept

63. The Landscape Concept proposes the planting of coniferous and deciduous trees on top of the infiltration facility. Guelph's Engineering Development Manual specifies a minimum 1m offset of plant material from infiltration galleries. Please relocate the proposed trees outside of the infiltration gallery area.

Summary

A revised EIS is required to address the comments provided above. Revisions to the supporting studies, including the Tree Preservation Plan, Hydrological Assessment, Functional Servicing Report and Landscape Plan are required. Environmental planning encourages the applicant to meet with City staff to discuss the comments provided, prior to providing a second submission. Substantial work remains outstanding to adequately demonstrate no negative impact to the natural heritage system's ecological and hydrologic features and functions.


Please note that comments provided by Scott Cousins, City of Guelph Hydrologist, are incorporated into the comments provided under the Hydrogeological Assessment heading above.

Leah Lefler, Environmental Planner Planning and Building Services, Infrastructure, Development and Enterprise Location: City Hall 519-822-1260 extension 2362 leah.lefler@guelph.ca

Copy: Mohsin Talpur, Jyoti Pathak, Scott Cousins

1242, 1250, 1260, 1270 GORDON STREET AND 9 VALLEY ROAD, GUELPH, ON – ENVIRONMENTAL IMPACT STUDY ADDENDUM VERSION 2

APPENDIX F FIELD NOTES

EARS- any planted area

COMMUNITY	SURVEYOR(S):	MAUS	DATE: UDP	2121	PHOTO No.:	ABUNDAN			AYER		1.1.1.1			LAY		NT
DESCRIPTION & CLASSIFICATION	START:	END	ZONE & UTM:	1		SPECIES	CODE	2	3	4	COLL.	SPECIES CODE	1	2	3	4
	Contraction of the second second	SIX		ika ana ang ang ang ang ang ang ang ang an		Portu	2		R			VICCIA SO CRAC				>
POLYGON DES		TOPOCRADUIC	1			PICGL	AU		P			Flechne Sp.				1
SYSTEM	SUBSTRATE	TOPOGRAPHIC	HISTORY	PLANT FORM	COMMUNITY	FRAM	non		12			goldenrights!				7
TERRESTRIAL	ORGANIC	LACUSTRINE		D PLANKTON	LAKE	PEPGRI		2R	0			ACTUAN			i	7
	MINERAL SOIL	BOTTOMLAND	CULTURAL	SUBMERGED		JUGANO	710	_				Asnasns			1	
	D PARENT MIN.	TERRACE	1	GRAMINOID	STREAM	1gues		12				BROINER			1	7
L'AQUANC		TABLELAND		LICHEN	MARSH SWAMP	FINSY	0 /	2	-							
	ACIDIC BEDRK.	CLIFF		D BRYOPHYTE	FEN BOG	Nonci	1- 400 0 1	,	R			VITRIPA				0
SITE	BASIC BEDRK.	TALUS		CONIFEROUS	BARREN	ACET	KOUS	-				Prugno			0)
OPEN WATER	CARB. BEDRK.	CREVICE / CAVE			DIMEADOW	PHACA	TIL			+ +			1	-		
SHALLOW		C ROCKLAND	D SHRUB		D THICKET	VIBURU			-	+		yellow he we w	ee'			2
WATER		SAND DUNE	D TREED		SAVANNAH	VIDURU	~		-			Exercise duisy			r	-
D BEDROCK		BLUFF			D FOREST	CT THE R LOCAL DATA		-	+			Vigilieger		-+		-
STAND DESCRI		onlyon	Nº	pital	4 Aland A	eu)	-		-	+				-+		-+
		CDEC!	ES IN ORDER OF	DECREASING DOM				-								-
LAYER	HT CVF	(>>MUCH GRE	ATER THAN; >GR	EATER THAN; = A	BOUT EQUAL TO)	ister		1								+
1 CANOPY	21			1652 >>							_			-		-
2 SUB-CANOF		- UNANG	R	-										-		+
3 UNDERSTOR		PORTR				1										-
4 GRD. LAYE	the second s	granse	> Forbs	(agishs	ST BRUNER) 70	goldenro.									-	1
HT CODES: CVR CODES:		<ht≤25m <b="">3=2<ht≤10 %<cvr≤10% <b="">2=10<c< td=""><td></td><td></td><td>≤0.5m 7=HT<0.2m</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c<></cvr≤10%></ht≤10 </ht≤25m>			≤0.5m 7= HT<0.2m											
			VIN32376 3-23 <cvr< td=""><td>200% 4-CVR>00%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></cvr<>	200% 4-CVR>00%										1		
STAND COMPOSIT	ION:				BA:				-		-					
SIZE CLASS ANAL	YSIS:	() <10	R 10-24	25 - 50	>50				-							_
STANDING SNAGS		<10							-					_		_
DEADFALL/LOGS:		<10	10 - 24	25-50	~ >50				-							-
ABUNDANCE CODES		N=NONE R=RAF		25 – 50 NAL A =ABUNDA	>50				-				-	_	_	-
COMM. AGE:	PIONEER	YOUNG		m (-					_		-
	/	FOONG	MID-AGE	MATURE	OLD GROWTH			-	-							-
SOIL ANALYSIS		E						-	-					_		-
TEXTURE:		DEPTH TO MOTTL		g=	G=			-								+
MOISTURE:		DEPTH OF ORGAN			(cm)				-		-					-
HOMOGENEOUS /		DEPTH TO BEDRO	DCK:		(cm)											+
COMMUNITY CL		i - the second						1			+					-
COMMUNITY CLAS				CODE:									-	-		+
COMMUNITY SERI	ES:			CODE:												+
ECOSITE: /EGETATION TYPI				CODE:										-		+
				CODE: CUM	120405											+
INCL	USION			CODE:												+
CON	PLEX			CODE:	tore (inter-	Page _ of _						Quality Captrals This !	arma la	narat		1
lotes: (e.g. distu	bance, surface v	water depths, etc.				L	10. 100	On 16				Quality Control: This to	orm is c	omple	ere Ll &	legi
	- 10	plcment	1 1	t in	t	Print Name:	IN SAG	103				Signature:		~		
Course									Author				d Notes			

	Stantec Consultin 1 – 70 Southgate Guelph, ON Canada N1G 4P Tel: (519) 836-605 Fax: (519) 836-249	Drive 5 0		dlife Hab essment F	
Project Number: Assessment Type:	- W L []]	ess/D-Entire; wal	Polygon No.: k through feature/ _ -	C. Partial access	(indicate on map)
Weather Conditions:	TEMP (°C):	WIND:	CLOUD:	PPT:	PPT (last 24 hrs):

NOTES & SPECIES OBSERVATIONS (list species and type of observation, indicate on map):

> stunk. > coitontea /

CA=carcass; DP=distinct ve parts; FE=feeding evidence; FY:=eggs/nest: HO:=house/den: OB=observed; SC=scat; SI=other sign; TK=track, VO=vocalization

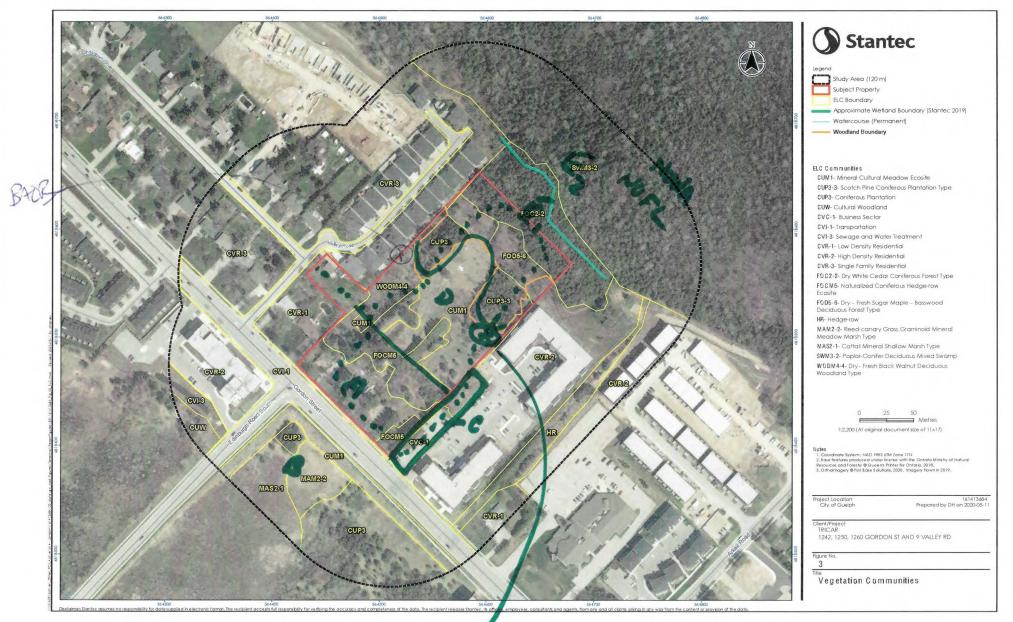
Wildlife Habitat Type & Description	Site Assessment	Photo	1.000		UTM Coord	inates
ALL SITES		ID	ID	Zone	Easting	Northing
ALL SITES		/	r	r-		
Bat Hibernacula: Caves, abandoned mines,	Size of opening(s) Bedrock Type					
underground foundations, karst features	Depth of feature (if possible)					
Snake Hibernacula: Burrows, rock crevices,	Number of access points -71 raic pile hat a	relow Frost- onto	Polac	Vino	1	+
fissures that extend below the frost line (i.e. at		1.1.1	~)			
east 1 m)	Substrate	blol.				
Bank / Cliff Colonial Bird Nesting Habitat:						+
Exposed soil banks, undisturbed, naturally				1		
eroding, steep slopes, cliff faces with evidence				1		
of nests or burrows	Number of burrows					1
Stick Nests: Stick nests found in any forest/				1		1
woodland/swamp; includes heron colonies	Tree species			1		1
and bald eagle/ osprey/other raptor nests	Nest size			-		5
NOODLANDS		ATS.				
/ernal Pools: Permanent or semi-permanent	/ B	A		1		
pool or pond. Evidence of holding water in	Number of features		nne	pred		1
nost years through late spring (i.e. late May) or nto summer	Feature size (diameter)	trans 10 1	1	1 1		t
	Water depth 721	trees 710cm	TOV	hall		
eeps and Springs: Locations where groundwater comes to the surface in forests	Sub/emergent veg present					
see document for indicator species)	Shrubs/logs at edge present —	ACENEGO NOLD a h	26 1	Fromb	ranch	
VETLANDS	Water permanency	AKENGGU neup a b	Ver	-		
VEILANDS		The ne	ash	rest		_
urtle Wintering Areas: Permanent water	Feature size (diameter)	. ,	1 -	The last	1.	- ahi
oodies, large wetlands, bogs, or fens with soft	Water depth ~ Bu	ldip - hars ve	INTS	+ Irga	t not	in paul
ubstrates and deep enough not to freeze solid	SUbstrate of water body	ioule allo	16	+ .0		
		I une u 1101	VPA	1210.		
sand or gravel) areas adjacent (<100 m) to	Type of substrate Distance to wetland			,		
errestrial Crayfish Habitat: Edges of shallow	Size of feature					
narshes and meadows (no minimum size) with					1	
crayfish chimneys	Number of chimpeur					
a cylisti Chini leys	Number of chimneys					

(Field Notes Author)

(Field Notes QA/QC personnel

Drojact N.	mbar 1/014 11	71011		10C2	Survey
Project Nu	Date: June 10,	2007	Project I		Cabdon 2 mus
Weather Conc	01	EI	1	sonnel: <u>US78</u>	\sim
	TEMP (°C)	ISKM WIND	CLOUD		
Non-House Water And Constant and		and an	CLOUD	PPI (C	current) PPT (last 24 hrs)
Featu	(indicate on mo		nd times (24 hr)	1:00	22:3¢
Tree					End
	No .: NE Corner		rdinates: Zone Eastin		of house Northing
	# used: 🔶 Smi	1 - M			Homing
ats Observed E lo. of Bats	xiting Hibernacula Time	Frequency	Probable	Deservition	
bserved	Recorded	Range(s)	Probable Species	Recording File No.	Notes

lyovers lo. of Bats	T ime -			1	
bserved	Time Recorded	Frequency Range(s)	Probable Species	Recording File No.	Notes
?	21:45	?	2	?	heard in ozenia
*****	-			2-1	heard in openio
*****					be. Dida 4 ree
					Sounded hat - 4Kg
?	22:05	?	?	2	Same as above
					insert? bots?
					1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ANI (1997)			· · · · · ·		
		-			
alact		Contra			
o North	isido Contre:	SM14-0			
ht .					


	(lieid notes QA/QC personnel)
sm w:\resource\internal info and teams\terrestrial resources\field forms\mammals\bats\frm_002_bat-hibernacula exit-	SURVEY - extended docx EORM 002 / REV/ 2021-06

e (internal into and rearns (refrestrial resources tried forms (mammals) bats (frm_002_bat-hibernacula_exit-survey - extended.docx FORM 002 / REV: 2021-06-10

() Stanted	1 - 70 Southgate Dr	Ltd. ive, Guelph ON N1G 4P	5	Bat Hiberı Exit Suı	
Project Numbe	r:161413684		Project No	ame: Montes Pl	ace-Exitsney-12.50
Date	=: June 10/21		Field Persor	nnel: N. Burnett	601
Weather Condition	15: 2/°C	15 Mm/6rE	01'	None	
	TEMP (°C)	WIND	CLOUD	PPT (curr	rent) PPT (last 24 hrs)
	casheast mdf	font of	annan an falanan mu'ar kana amin'ny kaodim-paositra dia kaodim-paositra dia kaodim-paositra dia kaodim-paositra		
Feature IE	building.	Start/E	nd times (24 hr) 21:1	00	99:30
	(Indicate on ma	p) House UTM Coo	don St. Start		End
Tree No.	Nortes Place.	-HOUSE UTM COC	Zone Eașting		
Equipment ID # us	ed: SM4-5-	üNother (m)	Zone Easting	~11	Northing
Bats Observed Exitin	g Hibernacula	, J. (1-2 outionip	uch.	
No. of Bats	Time	Frequency	Probable	Recording	Notes
Observed	Recorded	Range(s)	Species	File No.	
G					
		~	and the second sec		
Flyovers					
No. of Bats Observed	Time Recorded	Frequency Range(s)	Probable Species	Recording File No.	Notes
unit possibly					
grayman	a. (15-9:59)				
act may along	1.3.8.				
1071091011011010101010101010101010101010					
				and the second se	

This form is complete \Box & legible \Box

(field notes QA/QC personnel) docx FORM 002 / REV: 2021-06-10

EARS- any planted area

	umber: 1614:36	84	Project Name	1250 600	d-
	umber: 1614;36 Date: June 21	21	Field Personnel		
Weather Cor		0	0	0	ϕ
12: 6:5	42 TEMP (°C)	WIND	CLOUD	PPT (current)	PPT (last 24 l
Habitat No.		C Code(s) or Habitat De	escriptions	TIME Start	(HH:mm) End
14	Follow 1	indune ,	are	580	800
6	Boal			530	800
C	"New Piope	erty (ha	ty's Place	550	Poz
D	meridin			545	730)
E	Wicalot			555	630
F	CUP			535	630
	Transus pu	cts completed trendiked outsi	by 630 Am te-until 3		
Breeding Evider	ce (BE) Codes (Breeding Bird A]	p?lana=en)	
OBSERVED X Species obse	rved in its breeding season (no rved in its breeding season in s (s) present, or breeding calls he		 B Brood Patch on a N Nest-building or e woodpecker CONFIRMED 	nest site our or anxiety calls of an adult dult female or cloacal protub xcavation of nest hole, excep xcavation of nest hole by a sp	t by a wren or a

⁽field notes author) (field notes QA/QC personnel) as \\cd1220-f02\work_group\01609\resource\internal info and teams\terrestrial resources\field forms\birds\breeding bird\frm_031_breeding-bird-survey_small-sites.docx FORM 031 / REV: 2015-05-28

Record location of all significant species on site map

Species	Habitats	BE*	Species	Habitats	BE*	Species	Habitats	BE*
Can. Goose	A	FLY	Red-bellied Wo.		1	Gold-wing. Wa** † Ώ		
Wood Du. Ώ			Yell-bellied Sap. $\ddagger'\Omega$	-		Nashville Wa.		
Am. Black Duck Ώ			Downy Wo.			Yellow Wa.		
Mallard 'Ω			Hairy Wo.			Chestnut-s. Wa.		
R. N. Pheasant		1	No. Flicker †	22	2	Magnolia Wa. ‡		
Ruffed Grouse ‡			Pileated Wo. ‡Ώ	02	2	Bl-thr Blue Wa. ‡Ώ		
W. Turkey			Ea. Wood-Pewee **†		-	Yel-rumped Wa. ‡		
Co. Loon ‡Ώ			Alder Fly.			Bl-thr Gr. Wa. ‡'Ω		
Pied-b. Grebe 'Ω			Willow Fly. † 'Ω			Blackburnian Wa. ±'Ω		1
D. C. Cormorant ‡		1	Least Fly.		1	Pine Wa. ‡		1
Am. Bittern Ώ			Ea. Phoebe		1	Cerulean Wa** †‡ Ώ		-
Least Bittern** ‡		1	Gr. Crested Fly.		1	Bl-and-wh Wa. ‡	-	-
Gr. B. Heron 'Ω			Ea. Kingbird †	D - Fork	24	Am. Redstart ±		
Gr. Egret Ώ			Yellow-thr. Vireo ‡	18x H	4.2	Ovenbird ± 'Ω	1	1
Green Heron Ώ		1	Blue-headed Vireo ‡ Ω			No. Waterthrush ‡		+
T. Vulture		1	Warbling Vireo		1	Mourning Wa. ‡		-
Osprey 'Ω		1	Red-eyed Vireo	E.A.D	5	Co. Yellowthroat	1	-
N. Harrier †‡ Ώ		1	Blue Jay	-Jun h	3	Hooded Watz**		
Sharp-sh. Hawk ‡'Ω			Am. Crow	R =	FLY			
Coopers Hawk $\pm \Omega$		1	Co. Raven	DIL	1-1	Scarlet Tanager $\ddagger \Omega$	-	-
Red-shou. Hawk †‡ Ώ	-	1	Horned Lark		-			-
Red-tailed Hawk		1	Purple Mart.		-	Eastern Towhee † 'Ω	ENE	0
Am. Kestrel †		1	Tree Swallow		1	Chipping Sp.	ETAF	P
Virginia Rail 'Ω			No. R. W. Swal. 'Ω			Clay-colored Sp. 2	-	
Sora Ώ						Field Sp. † 2		-
Killdeer			Bank Swallow +** Ω		-	Vesper Sp. †Ώ		
THE PERSON			Cliff Swallow 2			Savannah Sp. † Ώ		-
Spot. Sandpiper			Barn Swallow**	4	-	Grasshopper Sp. †** Ώ	~	-
Upla. Sandpiper ‡ Ώ			Bl-capped Chickadee	A	5	Song Sp.	C	S
Wilson's Snipe		-	Tuffed Titmouse		-	Swamp Sp.		
Am. Woodcock			Red-br. Nuthatch Ώ	C	1	Wh-throated Sp. ‡		-
Ring-b. Gull		-	Wh-br. Nuthatch	82	5	No. Cardinal	C	S
Herring Gull			Br. Creeper ‡		1	Rose-br. Grosbeak †	_	
Caspian Tern			Carolina Wren.		1	Indigo Bunt.		_
Black Tern** ‡'Ω		-	House Wren	A,P	5	Bobolink +**	i i	1.00
Common Tern		least second	Winter Wren ‡ Ώ			Red-winged BI.	B2,	Ha
Rock Dove		1	Sedge Wren 'Ω			Ea. Meadowlark †**	1	1.2.5
Mourn. Dove	A	2	Marsh Wren 'Ω			Co. Grackle		-
Yellow-b Cuckoo		-	Golded-cr. Kinglet ‡			Br-headed Cow.	A	5
Black-b Cuckoo † Ώ		-	B. G. Gnatcatcher ‡			Orchard Oriole		
Ea. Screech Owl		1	Ea. Bluebird			Baltimore Oriole †	D	5
Gr. Horned Owl			Veery 'Ω		1.111	Purple Finch		
Barred Owl ‡ Ώ		1.11	Hermit Thrush ‡		1	House Finch		1
Long-eared Owl		1	Wood Thrush +**		1.2	Pine Siskin		
No. Saw-whet Owl			Am. Robin	A	A	Am. Goldfinch	A	S
Co. Nighthawk**			Gray Catbird	1	1	House Sparrow		3
Whip-poor-will** †‡		1	No. Mockingbird			Other Species		-
Chimney Swift** †			Br. Thrasher † 'Ω			NOWA	E2	5
Yellow-b Cuckoo			European Starling	Δ	FV	Chigtant		2
Black-b Cuckoo † 'Ω			Cedar Waxwing	0	FY	a nid territ		1
Ea. Screech Owl	-		Blue-wing. Wa. †	1	11			

Record highest Breeding Evidence (BE) observed over all habitat. Use codes as in Breeding Bird Atlas of Ontario (see opposite side of this page).
 Endangered, Threatened or Special Concern
 Partners In Flight
 Area Sensitive Species
 Significant Wildlife Habitat Indicator

Quality Control: Print Name & Initial:

This form is complete □ & legible □

(field notes QA/QC personnel) FORM 031 / REV: 2015-05-28

🚺 Stant	Stantec Consulting 1 - 70 Southgate Dri	Ltd. ve, Guelph ON N10	G 4P5	Bat Hibernacula Exit Survey					
Proiect Num	nber: 101413	684		Project Na	me: 1250	Goda	n.		
	Date: June 28	121	F	ield Person	nel: MS	raus			
Weather Condi	0.00.00	11 Kou/4	WNW	20	2	2	\bigcirc		
	TÉMP (°C)	WIN	D	CLOUD	PPT (c	urrent)	PPT (last 24 hrs)		
Featur	re ID:	Sto	urt/End times (24	hr) 21;	05	22	2:35		
	(indicate on map	p) -		Start		End			
Tree	No.: House	UTM	Coordinates:	Mont	y's Plan	Ce_			
Equipment ID #	# used: ET - K		201	te Easing	V	Northing			
	Xilling Hibernacula				1				
No. of Bats Observed	Time Recorded	Frequency Range(s)	Proba Spec		Recording File No.		Notes		
1	21:30-2145	CERSION	MARD/EN	PE		fogure	where house		
1)	2145		EPFC	1			o around -vi		
2	-22->124Na	mons reco.	detes, - no	o visa	el - Clea	sig ? No	sto horse		
	22:34	1 0 002	LACI	EPRU	LAND		signadue		
Flyovers	L	5 LATINOS				Saw in	to get f		
No. of Bats Observed	Time Recorded	Frequency Range(s)	Probo		Recording File No.		Notes		
		F.							
Featu	ure ID:	Sto	art/End times (24	4 hr)					
	(indicate on mo	(qr		Start		End			
Tree	e No.:	UTM	Coordinates:						
Equipment ID	# used:		Zo	ne Easting		Northing			
	Exiting Hibernacula								
No. of Bats	Time	Frequency	Probo Spec		Recording File No.		Notes		
Observed	Recorded	Range(s)	зрес		The NO.				
				in announce of the					

-				-	0
FI	v	0	v	e	rs

Tiy Overs							
No. of Bats Observed	Time Recorded	Frequency Range(s)	Probable Species	Recording File No.	Notes		

PAGE OF

Quality Control:

This form is complete \Box & legible \Box

(field notes QA/QC personnel) FORM 002 / REV: 2017-05-09

Stantec 1 - 70 Southgate Drive, Guelph ON NIG 4P5			4P5	Exit Survey			
Project Nun	nber: 1414136	84	Project No	Project Name: 1250 Garden St			
C	Date: JUNE 28	, 2021	Field Perso	nnel: KIM	Zupfer		
Weather Conditions: 27			201.	-	-		
	TEMP (°C)	WIN	CLOUD	PPT (currer	nt) PPT (last 24 hrs		
Tree	re ID: <u>Montés</u> P (indicate on may No.:	0)	t/End times (24 hr) Start Coordinates: Zone Easting		10:36pm End		
	# used: モエー L xiting Hibernacula						
No. of Bats Observed	Time Recorded	Frequency Range(s)	Probable Species	Recording File No.	Notes		
NONE	OBSERVED						
Flyovers NON	E OBSERVED -	- RECORDI	ED ON ECHO	METER			
No. of Bats Observed	Time Recorded	Frequency Range(s)	Probable	Recording	Notes		
NII1	9:52 - 10:30	Kunge(s)	Species	File No.			
	10:06		UUI				
1	IV V		EPFU				
Featur	e ID: (indicate on mag		t/End times (24 hr)				
2004			Start		End		
Tree	No.:	UTM C	Zone Easting				
Equipment ID #	# used:		Zone Easting		Northing		
	xiting Hibernacula						
No. of Bats Observed	Time Recorded	Frequency Range(s)	Probable Species	Recording File No.	Notes		
			opecies	The NO.			
Flyovers							
No. of Bats	Time	Frequency	Probable	Recording	Notes		
	Recorded	Range(s)	Species	File No.	NOIGS		
Observed							
Observed							
Observed							

OF_ PAGE_ Ø Print Name & Initial:

Quality Control: Th Print Name & Initial:

This form is complete \square & legible \square

(field hates author) rt g:\01609\resource\internal info and teams\terrestrial resources\field forms\mammals\bats\frm_002_bat-hibernacula_exit-survey.docx

(field notes QA/QC personnel) FORM 002 / REV: 2017-05-09 1242, 1250, 1260, 1270 GORDON STREET AND 9 VALLEY ROAD, GUELPH, ON – ENVIRONMENTAL IMPACT STUDY ADDENDUM VERSION 2

APPENDIX G BUTTERNUT DOCUMENTATION

September 16, 2020

2347B

Leah Lefler City of Guelph Planning and Building Services Infrastructure, Design and Enterprise 1 Carden St., Guelph N1H 3A1

Dear: Leah Lefler

RE: 1242, 1250, 1260 Gordon Street, Guelph Butternut Tree Removal Permit

Natural Resource Solutions Inc. (NRSI) was retained by The Tricar Group to prepare a tree permit application for the proposed removal of one Butternut (*Juglans cinerea*) and one Butternut Hybrid, and the proposed harm of one additional Butternut on the subject properties. The location of the butternuts is shown on Map 1. These removal and harm activities will occur in the fall of 2020, outside of the Migratory Bird and Active Bat windows (after September).

NRSI submitted a Butternut Health Assessment Report to the Ministry of Environment, Conservation and Parks (MECP) for these trees on July 12, 2020, and as such, the 30-day review window has passed. It is understood that the City of Guelph requires the landowner obtain a tree permit to remove/harm these butternuts and that a compensation plan must be prepared. Compensation planting and tending activities will follow the requirements of Section 23.7 of Ontario Regulation 242/08 of the Endangered Species Act (ESA 2007). A Notice of Activity has been submitted to MECP.

The following letter provides the details of the proposed compensation measures, including a planting plan that will be carried out on-site.

Tree Compensation

As per field surveys carried out by NRSI, 2 Butternuts and 1 Butternut Hybrid were identified on the subject property, as shown on Map 1. Compensation measures fall into the following categories:

- JUG-001: Category 1 Hybrid Butternut identified by NRSI, proposed for removal does not require compensation plantings (as per ESA, and as per City of Guelph Private Tree By-law due to poor condition/potential hazard);
- JUG-002: Category 2 Butternut identified by NRSI, proposed for removal requiring 20 Butternut seedling compensation plantings; and
- JUG-003: Category 2 Butternut identified by NRSI, proposed to be harmed requiring 10 Butternut seedling compensation plantings.

As such, 30 Butternut seedling plantings are required. The ESA (2007) requires that an equal number of companion plantings also occur near the proposed Butternut seedling plantings to avoid a monoculture.

NRSI is proposing to plant an additional 10 butternut seedlings and 10 companion trees to account for some die-off, for a total of 40 butternut seedlings and 40 companion trees. The location of the proposed butternut seedlings and companion plantings is shown on Map 1. The planting area is located within more open areas within the significant woodland boundary and within the significant woodland buffer.

The Butternut replacement seedlings will be planted in accordance with the following conditions, as stated in Section 23.7 of the ESA:

- at least 3m from other planted Butternut seedlings,
- at least 2m from other trees or shrubs that are likely to be the same height or shorter than the Butternut tree at full growth,
- at least 4m from other trees or shrubs that are likely to be taller than the Butternut tree at full growth,
- at least 5m from the canopy dripline of trees that are greater than 4m in height at the time of planting, and
- at least 100m from a highway consisting of two (2) or more lanes in either direction.

The butternut seedling planting area will accommodate plantings spaced at 3m on-centre. The planting area shown on Map 1 is conceptual and the seedlings will be field-fit within the gaps of the woodland. An additional 15% planting area has been proposed to account for existing vegetation and stoniness of soils.

The companion tree plantings will be located within the gaps of the woodland and up to 5m from the woodland dripline within the buffer. These plantings will be intermixed with the tree violation plantings. Trees will be planted at 2.5m spacing on-centre. An additional 15% planting area has been proposed to account for existing vegetation and stoniness of the soils.

Exact locations of plantings will be determined based predominantly on soil moisture and shade tolerances for the respective species.

Plantings are proposed to be installed in Fall 2020 by NRSI. Herbivory will be a concern on this property, and, as such, smaller planting stock is recommended to allow for the use of 1.2m Tubex Combitube tree tubes.

The proposed species and sizes are listed in Table 1. Exact sizing is subject to change based on availability at the time of planting.

Table 1. Proposed Tree Plantings

Common Name	Scientific Name	Quantity	Size
Butternut	Juglans cinerea	40	40-75cm 2 gallon coco fibre
Black Cherry	Prunus serotina	10	40-75cm 1 gallon
Sugar Maple	Acer saccharum	20	40-60 2x5" plug
Red Oak	Quercus rubra	10	40-75cm 1 gallon

All plant material on-site is to:

- Conform to the latest edition of the Canadian Nursery Trades Association Specifications and Standards, 8th Edition, 2008.
- Be installed during the appropriate planting season (no later than May 20th or in early October) under ideal conditions to ensure their survival and decrease plant stress.
- Be installed by hand in order to minimize damage to the root zone of existing trees within the planting area.
- Be mulched using coconut mulch/weed mats.
- Be fitted with 1.2m Tubex Combitube tree tubes.

Maintenance and Monitoring

NRSI will tend to (i.e. maintain) each Butternut replacement seedling in accordance with the following conditions, as stated in Section 23.7 of the ESA:

- Tending activities will take place once per week from May 15 to September 20 (i.e. 19 visits) during the first growing season after the Butternut replacement seedlings are planted.
- Tending activities during the first growing season after the Butternut replacement seedlings are planted will include:
 - o Maintenance of tree guards/tubes to protect the lower stems from rodents,
 - Vegetation control 60 cm around the base of the trees until the trees are above the herbaceous vegetation, and
 - Watering during drought or low rainfall periods.
- Tending activities will take place during the second growing season after the Butternut replacement seedlings are planted as required, to ensure that:
 - Vegetation is controlled 60 cm around the base of the trees until the trees are above the herbaceous vegetation, and
 - The trees are watered during drought or low rainfall periods. NRSI has assumed 5 site visits between May-September is sufficient to ensure the continued health of seedlings.

Typical monitoring of the companion plantings is recommended for a period of 2 years to ensure the survival of planted stock and the successful establishment of the plantings. It will occur at the one- and two-year mark following the inspection of plantings from the City of Guelph. Monitoring will be conducted by a qualified Certified Arborist from NRSI. It will consist of a visual inspection of the plantings at the end of the year following the installation of stock and any follow-up management will be determined. The City of Guelph requires the survival of at least 30 companion trees at the end of the two-year warranty period. A minimum survival of 30 butternut seedlings must also be met to satisfy the conditions of the ESA. Removal of guards will be done prior to the end of the two-year monitoring period, unless otherwise directed by City staff. A brief memo will be prepared and circulated to the City after the 1-year and 2-year monitoring inspections that summarizes the results of monitoring efforts and provides recommendations for re-plantings, if necessary. If re-plantings are required in Spring 2022, NRSI will meet onsite with City staff to confirm initial acceptance of the plants, as per the Tree Compensation Plan.

<u>Cost</u>

The cost required as a security deposit is \$22,549.43. This includes a 5% contingency and HST (13%) as requested by the City of Guelph. A breakdown of costs is found in Table 2 and outlines the costs associated with the required 30 butternut seedling and 30 companion tree plantings.

Item	Unit Price	Quantity	Total Cost
Tree Installation & Tree Protection			
Juglans cinerea 50-75cm 2 gallon coco fibre pot	\$50.00	30	\$1500.00
Prunus serotina 40-75cm 1 gallon pot	\$25.00	10	\$250.00
Acer saccharum 40-60cm 2x5" plug	\$10.00	10	\$100.00
Quercus rubra 40-75cm 1 gallon pot	\$25.00	10	\$250.00
Coco fibre weed mats	\$3.00	60	\$180.00
Tree tubes	\$5.00	60	\$300.00
Wooden stakes	\$5.00	75	\$375.00
Landscape staples	\$50.00	1	\$50.00
Labour	-	-	\$3700.00
Maintenance & Monitoring for 2 years			
Vehicle	\$50.00	24	\$1200.00
Labour (including reporting)	-	-	\$11100.00
5% Contingency			\$638.05
SUBTOTAL			\$19955.25
HST (13%)			\$2594.18
TOTAL			\$22549.43

Table 2. Cost Breakdown for Butternut Tree Compensation Plantings

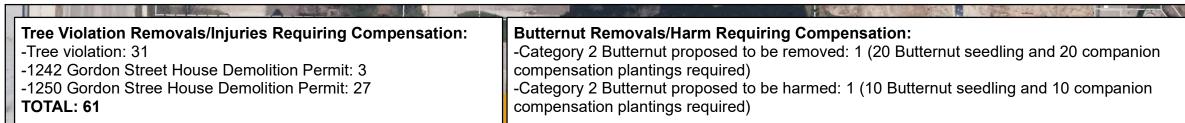
I trust that the above information is sufficient for addressing the compensation requirements for the proposed removal and harm of butternuts at 1242, 1250, and 1260 Gordon Street. Should you have any questions about this, please do not hesitate to contact the undersigned.

Sincerely,

Natural Resource Solutions Inc.

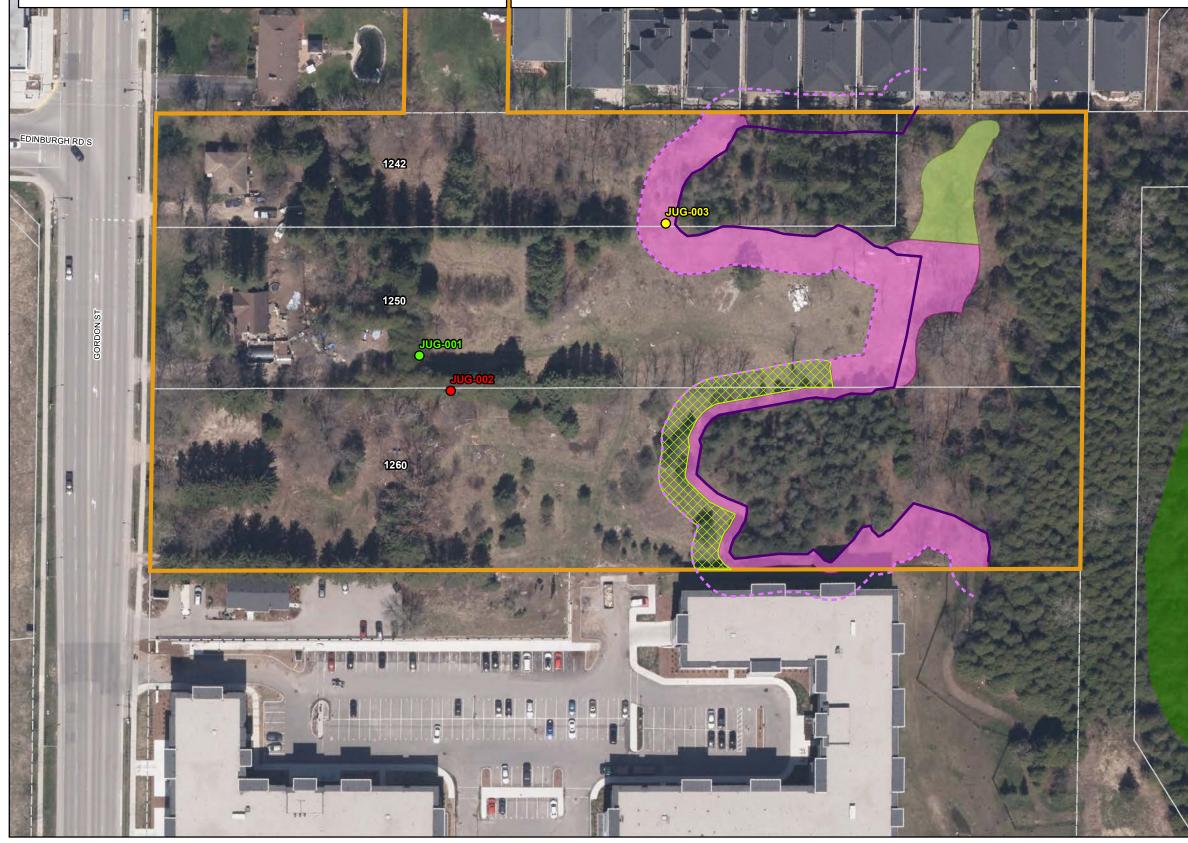
porter

David Stephenson Senior Biologist, Certified Arborist

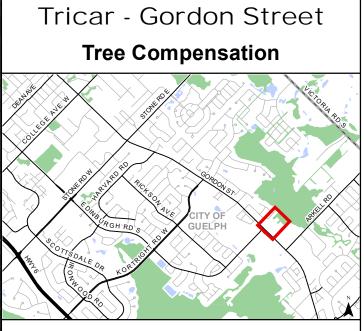

Lama Hockey

Laura Hockley GIS Specialist/Environmental Analyst

Lett Bull


Ken Burrell Terrestrial Biologist

MAPS



Number of tree violation plantings required, at 5:1 replacement ratio: 305

Number of Butternut seedling compensation plantings proposed: 40 Number of companion compensation plantings proposed: 40

Map 1

Legend

- Subject Property
- Parcel Boundary
- Category 1 Butternut Hybrid Proposed to be Removed
- Category 2 Butternut Tree Proposed to be Removed
- O Category 2 Butternut Tree Proposed to be Harmed
- Proposed Tree Violation Compensation and Butternut Companion Planting Area (0.248ha)*
- Proposed Butternut Planting Area (0.041ha)†
- Additional Planting Area, as Required
- -- Significant Woodland 10m Setback
- Significant Woodland Boundary City of Guelph (October 2014 and July 2017)
- Provincially Significant Wetland (PSW)

*Tree violation and butternut companion planting area size calculated based on 2.5m spacing on-centre at 1,600/ha, with an additional 15% planting area to account for existing vegetation and stoniness of soils.

†Butternut planting area size calculated based on 3.0m spacing on-centre at 1111trees/ha. Butternuts will be planted at least 5.0m from existing tall trees and 4.0m from other planted trees, with an additional 15% planting area to account for existing vegetation and stoniness of soils.

Aquatic, Terrestrial and Wetland Biologists										
and must r of NRSI. D	Map Produced by Natural Resource Solutions Inc. This map is proprietary and confidential and must not be duplicated or distributed by any means without express written permission of NRSI. Data provided by MNRF© Copyright: Queen's Printer Ontario. Imagery: First Base Solutions Inc. (2019).									
C	Project: 2347 Date: September 1, 202	20	NAD83 - UTM Zone 17 Size: 11x17" 1:1,000							
0	20	40	60 Metres	1						

Memo

To:	Chris Leigh, Tricar Developments Inc.
From:	Patrick Deacon, NRSI
Date:	July 12, 2020
Re:	Gordon Street, Guelph
	Butternut Health Assessment

Please find enclosed a Butternut Health Assessment Report for the 3 Butternut (*Juglans cinerea*) located at 1242, 1250 and 1260 Gordon Street in Guelph, Ontario.

The information for Tree 372 has been included in this report (based off a previous BHA by Stantec). This was done for clarity and to put all 3 Butternut trees into a single report.

A field hybridity test found Tree 390, to exhibit signs of hybridity, scoring a total of 4 (potentially 5) points in the field hybridity test as per *Identification of Butternuts and Butternut Hybrids* (Farlee et al., undated). Photographs of the traits that were scored are available upon request.

Based on the assessments completed to date, the site contains 2 trees considered Category 2 and subject to permitting and regulation under the Endangered Species Act (ESA), 2007, and 1 tree considered Category 1 (which was determined to be a hybrid and is not protected under the ESA).

Should you have any questions or comments regarding this proposal, please do not hesitate to contact the undersigned.

Sincerely, Natural Resource Solutions Inc.

Patrick Deacon Terrestrial and Wetland Biologist, Certified Butternut Health Assessor

Ministry of Natural Resources and Forestry Ministère des Richesses naturelles et des Forêts

Species At Risk P.O. Box 7000, 300 Water Street Peterborough ON K9J 8M5 Espèces en péril C.P. 7000, 300, rue Water Peterborough ON K9J 8M5

The enclosed Butternut Health Assessor's Report documents the results of the Butternut health assessment that was conducted by the designated Butternut Health Assessor (BHA) identified in the top section of the report. If there are other Butternut trees (of any size or age) at the site that may be affected by the activity and they are not identified in the enclosed BHA Report, they too must be assessed by a designated BHA.

Butternut is listed as an endangered species on the Species at Risk in Ontario List, and as such, it is protected under the *Endangered Species Act, 2007* (ESA) from being killed, harmed, or removed. If you are planning to undertake an activity that may affect Butternut, you may be eligible to follow the requirements set out in section 23.7 of Ontario Regulation 242/08 under the ESA, or you may need to seek an authorization under the ESA (e.g., a permit).

Please visit e-laws at the link provided below for the legal requirements of eligible activities under section 23.7 of Ontario Regulation 242/08 and conditions that must be fulfilled. Information about Butternut is also available at: <u>http://www.ontario.ca/environment-and-energy/butternut-trees-your-property</u>.

If you are eligible to kill, harm or take Butternut under section 23.7 of the regulation, your first step is to submit the BHA Report and the original data forms enclosed in this package to the local Ministry of Natural Resources and Forestry (MNRF) District Manager. Note that MNRF cannot accept photocopies or scanned electronic copies of the data forms.

Note regarding changes:

If the enclosed BHA Report does not identify which Butternut tree(s) are proposed to be killed, harmed, or taken in Table 1 (i.e., if "unknown" is indicated in the second last column of Table 1), or, if the information in the last two columns of Table 1 has changed since the date this BHA Report was produced, <u>do not make any edits to the BHA Report</u>. Instead, please attach a cover letter that identifies which Butternut tree(s) are proposed to be killed, harmed, or taken (by referencing the tree identification numbers) when you submit the enclosed BHA Report to the local MNRF District Manager.

The BHA Report must be submitted at least 30 days prior to registering an eligible activity to kill, harm, or remove a Butternut tree. During this 30 day period, no Butternut trees (of any category) may be killed, harmed, or removed, and MNRF may contact you for an opportunity to examine the trees. If MNRF chooses to examine the trees, a representative of MNRF will contact you using the information you supplied when you submitted the BHA Report.

If you are eligible to follow the rules in regulation under section 23.7, you may register your activity using the "Notice of Butternut Impact" form on the <u>MNRF Registry</u> **after the 30 day period has elapsed**.

If you are <u>not</u> eligible to follow the rules in regulation under section 23.7, please contact the local MNRF district office to determine whether you will need to seek an authorization (e.g., a permit). A link to the directory of MNRF offices is provided below.

Note that municipal by-laws and legislation other than the ESA may also be applicable to the removal or harming of trees.

Please retain this information and a copy of the BHA Report (including copies of all data forms) for your records, along with any other documentation you may receive from MNRF should an examination of the trees occur. If you have any questions, please contact your local MNRF district office.

Links:

Endangered Species Act, 2007: http://www.e-laws.gov.on.ca/html/statutes/english/elaws_statutes_07e06_e.htm

Ontario Regulation 242/08 (refer to section 23.7): http://www.e-laws.gov.on.ca/html/regs/english/elaws_regs_080242_e.htm

MNRF Office Locations:

https://www.ontario.ca/government/ministry-natural-resources-and-forestry-regional-and-districtoffices

Butternut Health Assessor's Report Number: 523-026

Patrick Deacon #0523 Natural Resource Solutions Inc. 415 Phillip Street, Unit C Waterloo, Ontario N2L 3X2 (519) 725-2227 x407 pdeacon@nrsi.on.ca

Tricar Developments Inc. 3800 Colonel Talbot Road, London, Ontario N6P 1H5 (519) 652-8900 (ext 107) cleigh@tricar.com

Site location: 1242, 1250 and 1260 Gordon St., Guelph, ON

Date(s) of Butternut health assessment: June 9, 2020 Date BHA Report prepared: July 12, 2020

Map datum used: X NAD83 WGS84

Total number of trees assessed in this BHA Report: 3

The assessed trees were numbered on site using (white flagging tape). The numbers at the site correspond to the tree numbers referenced in this report.

This BHA Report includes the following tables:

- Table 1: Butternut Trees Assessed
- Table 2: Trees Determined by BHA to be Butternut Hybrids
- Table 3: Summary of Assessment Results

Tree #	UTM coordinates	Category ¹ (1, 2, or 3 ²)	dbh³ (cm)	Cultivated? (Y/N)	Proposed to be: (enter one: unkmown ⁴ , killed, harmed or taken)	If tree is proposed to be killed, harmed, or taken, indicate reason tree is proposed to be killed, harmed or taken:
372	17T 564536 4818551	2	18	Ν	Killed	Tree proposed to be

¹ The extent to which the tree is affected by Butternut Canker is presented in the Excel document titled, "BHA Tree Analysis" that accompanies this BHA Report.

² Category 3 trees are not eligible to be killed, harmed or taken under section 23.7 of Ontario Regulation 242/08.

³ dbh: diameter at breast height, rounded to nearest cm (if tree is shorter than breast height, enter zero)

⁴ In this column, "unknown" indicates that at the time of assessment, there are no proposals to kill, harm or take this tree that are known to the BHA.

Tree #	UTM coordinates	Category ¹ (1, 2, or 3 ²)	dbh³ (cm)	Cultivated? (Y/N)	Proposed to be: (enter one: unknown ⁴ , killed, harmed or taken)	If tree is proposed to be killed, harmed, or taken, indicate reason tree is proposed to be killed, harmed or taken:
						removed
390	17T 564517 4818480	1	15	Ν	Killed	Tree proposed to be removed
262	17T 564529 4818480	2	29	Z	Killed	Tree proposed to be removed

Table 2: Trees Determined by BHA to be Butternut Hybrids

Tree #	UTM coordinates	Method used (genetic testing or field identification):
390	17T 564517 4818480	Field identification

Table 3: Summary of Assessment Results

Result:	Total #:	Important information for persons planning activities that may affect Butternut:
Category 1	0	 A Category 1 tree is one that is affected by butternut canker to such an advanced degree that retaining the tree would not support the protection or recovery of butternut in the area in which the tree is located; and is considered "non-retainable".
		 During the 30 day period that follows your submission of this BHA Report to the MNRF District Manager, no Butternut trees (of Category 1, 2, or 3) may be killed, harmed, or taken, and MNRF may contact you for an opportunity to examine the trees.
		• Category 1 trees may be killed, harmed or taken <u>after</u> the 30 day period that follows submission of this BHA Report to the MNRF District Manager, unless the results of an MNRF examination indicate that the assessment has not been conducted in accordance with the document entitled "Butternut Assessment Guidelines: Assessment of Butternut Tree Health for the Purposes of the <i>Endangered Species Act, 2007</i> ".
Category 2	2	• A Category 2 tree is one that is not affected by Butternut Canker, or is affected by Butternut Canker but the degree to which it is affected is not too advanced and retaining the tree could support the protection or recovery of butternut in the area in which the tree is located, and is considered "retainable".
		 During the 30 day period that follows your submission of this BHA Report to the MNRF District Manager, no Butternut trees (of Category 1, 2, or 3) may be killed, harmed, or taken,

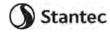
Result:	Total #:	Important information for persons planning activities that may affect Butternut:
		and MNRF may contact you for an opportunity to examine the trees.
		 Activities that may kill, harm or take up to a <u>maximum of ten (10)</u> Category 2 trees may be eligible to follow the rules in section 23.7 of Ontario Regulation 242/08, in accordance with the conditions and requirements set out in the regulation.
		 Refer to e-Laws for the legal requirements of eligible activities under section 23.7 of Ontario Regulation 242/08 and conditions that must be fulfilled: <u>http://www.e-</u> <u>laws.gov.on.ca/html/regs/english/elaws_regs_080242_e.htm</u>
		• Activities that may kill, harm or take more than ten (10) Category 2 trees are not eligible to follow the rules in section 23.7 of Ontario Regulation 242/08. Contact the local MNRF district office for information on how to seek an ESA authorization (e.g., a permit) or consider an alternative that would be eligible for the regulation.
Category 3	0	 A Category 3 tree is one that may be useful in determining sources of resistance to Butternut Canker, and is considered "archivable".
		 Category 3 trees are not eligible to be killed, harmed or taken under section 23.7 of Ontario Regulation 242/08.
		 Contact the local MNRF district office for information on how to seek an ESA authorization, or consider an alternative that will avoid killing, harming or taking any Category 3 trees.
Cultivated	0	• An activity that involves killing, harming, or taking a cultivated Butternut tree that was not required to be planted to fulfill a condition of an ESA permit or a condition of a regulation, may be eligible for the exemption provided by subsection 23.7 (11) of O. Reg. 242/08.
		• Prior to undertaking the activity, the owner or occupier of the land on which the Butternut is located (or person acting on their behalf) will need to determine whether the exemption for cultivated trees is applicable by determining whether or not the tree was cultivated as a result of the requirements for an exemption under O. Reg. 242/08 or a condition of a permit issued under the ESA. This information can be accessed by contacting the local MNRF district office.
		• The owner or occupier of the land on which the Butternut is located (or person acting on their behalf) is encouraged to append the details regarding whether the tree was planted to satisfy a requirement (e.g., the permit number or registration number) to this BHA Report for their records.
Hybrid	1	 Hybrid Butternut trees are not protected under the ESA, but their removal may be subject to municipal by-laws and other legislation.

Butternut Health Assessor's Comments:

The details for Tree 372 were taken from a previous BHA (Stantec). This was done for clarity to put all 3 trees on a single BHA and consolidate information as opposed to submitting various piecemeal reports for a single development site. Tree 372 was not re-assessed and is presumed to remain a Category 2 tree as per the previous assessment.

This concludes the summary of the BHA Report. A complete BHA Report must also include:

- 1. All original (hard copy) data forms (i.e., all completed sets of Form 1 and Form 2), and
- 2. Electronic and printed copies of the Excel data analysis spreadsheet.


					Thi					•	(versio									
BHA Repo	rt #	26	6	Ass Dat	essr	ment			9 be completed by a designated Butternut Health Assessor (BHA). 9-Jun-20 In BHA Report								t Tre	es	3	
BHA I	D#	52	3	вн	A Na	me		Patrick Deacon												
Land	owner	· / Clie	ent N	ame	<u> </u>							Trica	ar Deve	lopme	nts Inc					
		ocatio								1242, 1	250 and			•						
	<u> </u>		ut fie	eld d	ata					-	omatic c						Cat	tego	ries	
			ſ		canke	rs			î		t a t a t						1: n	on-re	taina	
									o	Circ.	total bole	total RF canker	hala	RF	total	3. archivable				
			soot (wil	iy (S) I be		n (O) ll be		oot e (RF)	e? (۲	(cm) =	canker width	width	bole canker	canker	bole & root					FINAL
++	% u	(cm)	•	gned	`	ned 5		kers	cankered tree?	Pi x dbh	(sooty x	(sooty x 2.5 +	% of circ.	% of circ.	canker % of		1.0%	LC%	call	TREE
Tree #	Live Crown %	Tree dbh (cm)		n per ker)		per iker)			kered	ubn	2.5 + open x 5)	2.5 + open x 5)	CITC.	circ.	2xCirc	LC% >/=	>70	>70		CALL
⊢ –	Live	Tree	can	Kerj	can	ikerj			can		open x 5)					50 &	& BRC	& BC	ary t	a Cat 2, dbh>20c
			s	s	0	0	DE	RF	m from	Cine	вс	DC				BC% = 0	%	%	Preliminary tree	m
			< 2	>2	<2	>2	RF S	КГ		Circ (cm)	(cm)	RC (cm)	BC%	RC%	BRC%		<20	<20	Pre	<40m from a
			m	m	m	m			<40	()	()	~ /								Cat 1
372	75	18	0	0	0	0	0			56.52	0.0	0.0	0.0	0.0	0.0	2	2	2	2	2
390	5	15	13		0	0	7		n	47.1	52.5	17.5	111.5	37.2	74.3		1	1	1	1
262	90	29	3	1	0	0	4	0	n	91.06	10.0	10.0	11.0	11.0	11.0		2	2	2	2
4										0	0.0	0.0	#####	#####	#####	####		###	##	#DIV/0!
5 6										0	0.0	0.0	#####	##### #####	##### ######	#### #####	### ###	### ###	## ##	#DIV/0! #DIV/0!
0 7										0	0.0	0.0		###### ######	###### ######	#### #####		### ###	## ##	#DIV/0!
8										0	0.0	0.0		######	######	#####		###	##	#DIV/0!
9										0	0.0	0.0	#####	#####	#####	#####		###	##	#DIV/0!
10										0	0.0	0.0	#####	#####	#####	####	###	###	##	#DIV/0!
11										0	0.0	0.0	#####	#####	#####	####	###	###	##	#DIV/0!
12										0	0.0	0.0	#####	#####	#####	####	###	###	##	#DIV/0!
13										0	0.0			#####	#####				##	#DIV/0!
14										0	0.0		#####	#####	#####	####		###	##	#DIV/0!
15										0	0.0		#####	#####	#####	####		###	##	#DIV/0!
16 17										0	0.0 0.0		##### ######	##### #####	##### #####	#### #####		### ###	## ##	#DIV/0! #DIV/0!
17										0	0.0		#######	######	######	##### #####		### ####	## ##	#DIV/0!
10										0	0.0		######	######	######	#####		###	##	#DIV/0!
20										0	0.0		#####	#####	#####	####		###	##	#DIV/0!
21										0	0.0	0.0	#####	#####	#####	####		###	##	#DIV/0!
22										0	0.0	0.0	#####	#####	#####	####	###	###	##	#DIV/0!
23										0	0.0	0.0	#####	#####	#####	####	###	###	##	#DIV/0!
24										0	0.0		#####	#####	#####	####	###	###	##	#DIV/0!
25										0	0.0		#####	#####	#####	####		###	##	#DIV/0!
26										0	0.0		#####	#####	#####	##### #####		###	##	#DIV/0!
27 28										0	0.0		##### ######	##### ######	#####			### ###	## ##	#DIV/0!
28 29										0	0.0 0.0		##### ######	##### #####	##### #####	#### #####		### ###	## ##	#DIV/0! #DIV/0!
30										0	0.0		######	######	######	#####		###	## ##	#DIV/0!
31	<u> </u>									0			#####	#####	#####			###	##	#DIV/0!

Ocm	Jam Button	mut Data (Collection	Form 1 2	2010 Edition	150	m
Surveyor ID or BHA # 0523	Dutter	1	E BLOCK LET	11 N WY	Date (dd	/mm/yyyy) 06-2	2020
Shaded fields are man	datory for Bu	tternut Heal	th Assessn	nents			
Surveyor First PATR	ICK		LastDE	ACON			
Contact Email pdea	coner	rsi	.on.	Ca			
Telephone (5 (9) 7	2522	27 1	elephone Oth	er (x	2 3 1 2
Property First			Last				
Owner (check if same or Company	RICA	RDE	VELO	PHEN	1 2 7		
as surveyor) Email	ighe	fric	ar.c	OM			
Telephone (SIP	652-8	57001	elephone Oth	er ()		x	
Property Owner's Mailing address Address 3 8 0 0						Postal Code	HGON
City LOND	COL	IALE	BOT	ROAD		NOFI	
Tree Location (if different from ma							
Address/(911#) 2 4 2	1250	0,121	60 G	ORDO	NSTR	EET	
Township						Lot	Con
Directions City GUE	LPH						
15							
	are Location Infe ts OK? (prior a			Contraction of the second s	Contract Contraction Contraction		
> (Greater than) Bu < (Less than)	tternut Trees	Tally by Dia	ameter Clas	s		perty Descrip	
	Not tally in bla < 3 cm	ank space; wri 3-15 cm	te total# in 16-30cm	box for each) >30 cm	Rolling Uplar		ottomland ariable
Vigorous: >50% Live Crown Minor or no cankers	00	00	02	00	Tableland Vegetatio	UI 🗖 Ui	nknown //ies
Poor Vigor: <50% Live Crown or >50% Live Crown + heavily	00	OI	00	00	Open Shrubland		Fencerow Roadside
cankered stem					DeciduousF		Quary UrbanYard
Dead	00	00	00	00	ConiferFore		UrbanPark
Historically, do some tr	ees produce	e seeds? 🛛	ZY DN	🗖 Unkown	Other	111	
Estimated area containing butternut for properties > 1 acre (0.4 hectares)	0 2 0 Ac	res 🗹 Hect	tares				
		ALLE RH	A inclu	hada.	Soil Drainage		Soil Depth > 1metre
Tree 372 part here to have	1134	vers of	Same	file	Moderately [☐ 30 - 99cm
					🗖 Unknown		□ < 30cm □ Variable
					Soil Texture	Sand Sand	Unknown
					Clay Loam	🗋 Variable 🗋 Unknowi	n
Please enter matching numer	rical page link cc	de on forms 1	and 2		urn forms to:		49731
Page Link 56451		Information fo		Suite 233.	ne Conservation Ass 266 Charlotte St. ough, ON, K9J 2V4 .net		

Butternut Data Collection FORM 2 (2010 Edition) (PLEASE USE BLOCK LETTERS) Shaded fields are mandatory for Butternut Health Assessments	Fill when Form 1 indicates canker is well established, The information opn Form 2 must be filled out for all trees when doing a
Site Code(A,B,Z, AA) Surveyor ID or BHA # 0523	Butternut Health Assessment
Surveyor Last Name DEACON	09-06-2020
Tree ID Numbering: 1,2,3,Starting from 1 for each site Tree # Zone Easting Northing 2 9 0 1 7 7 6 11 5 1 7 11 0 1 7 11 0 Assess below	Netres from badly cankered tree
31011156451114016460 02#Epic-Live	#Open #Sooty Competing Species
Class 000 Crown % 08 Below crown Seed 04 #Epic-Dead	Root 0 0 0 7
Branch Dieback #Stems Origin Natural Female Flowers Stark Type	=<2m0013
Defoliation Discolouration DISDBH(cm) Planted V Seed Set Wounds	>2m0008
Field hybridity test indicates tree is a hybrid	(scores 4 pts as per Farlee etal.)
Tree # Zone Easting Northing Assess below	/ live crown
262175645294818480 1 Crown 090 Live 09 Main Stem Length(m) Assess below	#Open #Sooty Competing Species
Class C Crown % C Below crown Seed	Root 0 0 0 4
Twig Dieback #Stems Branch Dieback #Stems Branch Dieback Callused Branch Dieback Callused	=<2m0003
Defoliation Discolouration	>2m0001
Tree # Zone Easting Northing	I Maken from both contract trac
372175645364818551 Assess below	v live crown Metres from badly cankered tree □ < 40 □ > 40 ☑ None Found
Crown Class 075 Live Crown % C 4 Main Stem Length(m) Seed 00 #Epic-Dead	#Open #Sooty Competing Species
Twig Dieback	=<2m 0 0 0 0
Defoliation	>2m00000
Previous BHA by Stanter, data presented here	·
Tree # Zone Easting Northing Assess below	v live crown Metres from badly cankered tree
Crown	#Open #Sooty Competing Species
Class Crown % Below crown Seed #Epic-Lead	Root
Branch Dieback #Stems Origin Male Flowers Bark Type	=<2m
Defoliation Discolouration DBH(cm) DBH(cm) DISCOlouration Unknown None Wounds	>2m
Tree # Zone Easting Northing	
Assess below	v live crown
Crown Live Main Stem Length(m) Class Crown % Below crown Seed #Epic-Dead	#Open #Sooly Competing Species
Twig Dieback	=<2m
Branch Dieback Real Relation R	>2m
Discolouration DBH(em) DPlanted Seed Set Wounds	
Forest	Gene Conservation Association
privacy policies and quidelines)	233, 266 Charlotte St. orough, ON, K9J 2V4 gca.net

1242, 1250, 1260, 1270 GORDON STREET AND 9 VALLEY ROAD, GUELPH, ON – ENVIRONMENTAL IMPACT STUDY ADDENDUM VERSION 2

APPENDIX H FUNCTIONAL SERVICING REPORT

Functional Servicing Report for 1242, 1250, 1260 & 1270 Gordon Street and 9 Valley Road – Guelph ON

June 8, 2022

Prepared for:

Tricar Developments Inc.

Prepared by:

Stantec Consulting Ltd. 600-171 Queens Avenue London ON N6A 5J7 FUNCTIONAL SERVICING REPORT FOR 1242, 1250, 1260 & 1270 GORDON STREET AND 9 VALLEY **ROAD – GUELPH ON**

This document entitled Functional Servicing Report for 1242, 1250, 1260 & 1270 Gordon Street and 9 Valley Road – Guelph ON was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Tricar Development Inc. (the "Client") for submission to the City of Guelph for Zoning Bylaw Amendment Approval. Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Chris Hendriksen, P.Eng.

Table of Contents

1.0	INTRODUCTION AND BACKGROUND	1.1
1.1	OVERVIEW	1.1
1.2	BACKGROUND INFORMATION	1.1
1.3	EXISTING INFRASTRUCTURE	1.2
2.0	OVERALL GRADING AND DRAINAGE	2.2
2.1	DESIGN CONSTRAINTS AND PROCEDURES	2.2
2.2	PROPOSED ROAD PROFILES AND OVERALL SITE GRADING	2.3
3.0	SANITARY SERVICING	3.3
4.0	WATER DISTRIBUTION	4.3
5.0	STORMWATER MANAGEMENT (SWM) STRATEGY	5.4
5.1	STORMWATER MANAGEMENT CRITERIA	
	5.1.1 Hanlon Creek Watershed Plan (HCWP)	
	5.1.2 Torrance Creek Subwatershed Study (TCSS)	5.4
	5.1.3 City of Guelph Development Engineering Manual	
	5.1.4 Criteria for the Site	
5.2	SOILS INFORMATION	
5.3	HYDROLOGIC MODELING	5.6
5.4	EXISTING CONDITIONS	5.6
5.5	PROPOSED CONDITIONS	5.7
5.6	STORMWATER MANAGEMENT	5.8
	5.6.1 Water Quantity Controls	5.8
	5.6.2 Infiltration Augmentation	5.8
	5.6.3 StormTech® Subsurface SWM Facility	
	5.6.4 Hydrologic Modeling Results	
	5.6.5 Water Quality Controls	
5.7	SALT MANAGEMENT	5.10
6.0	CONCLUSIONS AND RECOMMENDATIONS	6.10

APPENDIX A – PRELIMINARY CIVIL DRAWING PACKAGE

APPENDIX B – DESIGN SHEETS

APPENDIX C – EMAIL CORRESPONDENCE

APPENDIX D – SWM FIGURES, MODELS & SUPPORTING DATA

1.0 INTRODUCTION AND BACKGROUND

1.1 OVERVIEW

This Functional Servicing Report has been prepared in support of the Zoning and Official Plan amendment and the Site Plan Application for the proposed development located at 1242, 1250, 1260 & 1270 Gordon Street and 9 Valley Road (Site) in the City of Guelph (City). The subject property is approximately 3.323 ha in size and is bounded to the northwest by existing residential subdivision, to the northeast by protected woodlot, to the southwest by Gordon Street, and to the southeast existing highdensity development.

The conceptual site plan for the proposed development that forms the basis of this servicing assessment includes two 10 story apartment buildings consisting of 325 units. The bulk of site parking will be achieved through underground and at/above grade enclosed parking.

This report outlines how the proposed development can be supplied with adequate services, including sanitary, domestic water, storm drainage and includes the preliminary design of the infiltration and water quality facilities proposed to provide the required water quality and quantity controls and the preliminary erosion and sediment control strategy to be implemented during construction.

1.2 BACKGROUND INFORMATION

A variety of sources have been referenced during the preparation of this report, and the following should be read in conjunction with this Report:

- Geotechnical Engineering Report, Two 12-Storey Apartment Buildings 1242, 1250, 1260 Gordon Street, Guelph, Ontario (CMT Engineering Inc, April 2018)
- Low Impact Development Stormwater Management Planning and Design Guide (Credit Valley Conservation Authority and Toronto and Region Conservation Authority, 2010)
- Erosion & Sediment Control Guideline for Urban Construction, (Greater Golden Horseshoe Area Conservation Authorities, December 2006)
- Stormwater Management Planning and Design Manual (SWMPD Manual), (Ontario Ministry of the Environment, March 2003)
- Development Engineering Manual, City of Guelph (City of Guelph Engineering and Transportation Services, January 2019)
- Groundwater Flow, Figure 14 of 1242, 1250, 1260 Gordon Street and 9 Valley Road Hydrogeological Assessment (Stantec Consulting Ltd., March 2020)

- Hanlon Creek Watershed Plan (Marshal Macklin Monaghan Ltd., LGL Ltd., October 1993)
- Torrance Creek Subwatershed Study- Management Strategy (Totten Sims Hubicki Associates, et al, September 1998)

1.3 EXISTING INFRASTRUCTURE

A summary of the municipal infrastructure that currently exists near the Site is as follows:

- A 200mm sanitary sewer located on Gordon Street.
- A 400mm watermain on Gordon.
- A 575mm storm sewer on Gordon Street.

Fully constructed municipal roads include Gordon Street to the west and Valley Road to the north.

2.0 OVERALL GRADING AND DRAINAGE

2.1 DESIGN CONSTRAINTS AND PROCEDURES

Using existing topographic information provided by BSR&D limited (dated November 2014), the proposed Site grading will be designed to generally meet the following criteria:

- Match existing grades at all site boundaries.
- Match existing grades at existing tree driplines wherever possible to facilitate tree retention.
- Extension of Edinburgh Road and Valley Road to municipal standards and match into existing road grades of Gordon Street and Valley Road.
- Account for future urbanization of adjacent lands.
- Have consideration for future pedestrian connections north of the site towards Valley Road.
- Provide adequate cover over underground services.
- Ensure all building openings are protected from flooding.
- Comply with Municipal standards for minimum and maximum grades.
- Provide major overland flow routes for flows exceeding the storm sewer capacity.
- Maintain drainage from Gordon Street right-of-way and neighboring properties to the north and south.

2.2 PROPOSED ROAD PROFILES AND OVERALL SITE GRADING

Road profiles within the subject site were established based on the proposed street pattern to satisfy the constraints outlined in the previous Section 2.1. The road profiles have been designed to accommodate the constraints set out by the site layout and underground parking limits with grades ranging from 0.5% to 8.0% with 3:1 and 4:1 transition slopes or retaining walls utilized to accommodate the various grade changes within the site and at various perimeter locations. The proposed centerline road elevations for the extension Landsdown Drive and Edinburgh Road and lot grades are illustrated on the Grading plan as well as the plan and profile provided for these extensions (Drawing No. 5 of 8 and 4 of 8 respectively) included in Appendix A. Existing grades and cross sections of Gordon Street and Valley Road have been considered fixed constraints in the development of the preliminary grading. The extension of Landsdown Drive and Edinburgh Road will be 8.4m back of curb to back of curb as per City of Guelph's Linear Infrastructure Standard drawing SD-48a. Internal roads, consisting of 6.7m wide asphalt as the building has structured parking not subject to the standard 7.0m minimum width drive aisle.

3.0 SANITARY SERVICING

The City of Guelph is currently completing the Gordon Street Improvements EA and an overall Master Wastewater Servicing Plan that is considering an upgrade to the sanitary service capacity within Gordon Street fronting the site. Through correspondence with the City in 2019 through 2022, the proposed development will be incorporated in the design of the sanitary sewer upgrades. Confirmation of this has been received from Ike Umar via email on March 15, 2022 (see email correspondence attached in Appendix C). Staff have recommended that an H be applied to the property until such time as the sewer has been installed and the outlet is available however timing of the two projects may alleviate this requirement.

A 200mm extension of the municipal sanitary sewer east on the Edinburgh Road extension proposed as part of this redevelopment to provide service to the site. Sewers will be designed in accordance with the requirements of the Ontario Building Code and the City of Guelph. An illustration of the sanitary sewer layout can be found in the Sanitary Area Plan (Sheet No. 3 of 8) included in Appendix A.

4.0 WATER DISTRIBUTION

The existing water distribution system near the Site includes a 400mm watermain on Gordon Street. The primary source for the proposed development will be the Gordon Street watermain. It is anticipated that the following work to the existing municipal infrastructure will be made:

- Tapping sleeve and valve connection to the 400mm Gordon Street watermain (200mm connection).
- Extension of the municipal watermain along the Edinburgh Road extension to provide service to the Site.

FUNCTIONAL SERVICING REPORT FOR 1242, 1250, 1260 & 1270 GORDON STREET AND 9 VALLEY ROAD – GUELPH ON

Please refer to the Preliminary Servicing plan (Drawing No. 1 of 8) for an illustration of the watermain layout.

Based on building information currently available, a conservative fire flow requirement for the site is 150 L/s, based on typical OBC calculations as provided in Appendix B.

A 200 mm diameter watermain is proposed for the development with 200mm connections provided to each building. They are positioned as illustrated on the Preliminary Servicing plan (Drawing No. 1 of 8).

Fire protection will be provided via onsite hydrants, adequately spaced to ensure proper coverage to all buildings, in conjunction with standpipe connections for building sprinkler systems. The City of Guelph will confirm the pipe sizing proposed provides adequate pressure to meet MOE design criteria. No backflow prevention or pressure reducing valves (PRV) have been proposed for this development.

The City has advised that sufficient and adequate capacity is available in the City's existing water supply and distribution system to accommodate the proposed development and there are no water capacity constraints expected for most demand scenarios. However, there is potential for marginal water supply pressures in proposed development under certain conditions such as peak hour demand scenario at locations with elevation greater than 346 m height above mean sea level (AMSL) and average day demand scenario at locations with elevation greater than 339 m height AMSL in the existing water system.

5.0 STORMWATER MANAGEMENT (SWM) STRATEGY

5.1 STORMWATER MANAGEMENT CRITERIA

This site is covered by criteria from different documents. The documents and site criteria are discussed below.

5.1.1 Hanlon Creek Watershed Plan (HCWP)

The HCWP states that for upper Hanlon Creek development no urban drainage will be permitted to the headwaters of Tributary E or F, except for lands that already have drainage outlets. All stormwater generated from the area must either infiltrate into the ground or evaporate (100-year infiltration and zero runoff). There is no discussion in the report on requirements for redeveloping lands within the existing development areas where this project is located.

5.1.2 Torrance Creek Subwatershed Study (TCSS)

The TCSS states that for Zone 2, where this site is located, the requirement is to detain the postdevelopment flow to pre-development ratees for the 2- to 100-year events and to infiltrate 150 mm/yr.

5.1.3 City of Guelph Development Engineering Manual

The specific SWM Criteria for the Site from the City of Guelph Development Engineering Manual (January 2019) is outlined below.

Water Quantity Control

• Based on City Guidelines, on-site stormwater control should be sized to attenuate postdevelopment peaks flows to the pre-development (existing) peak flows. This 'post-to-pre' control should be provided for the 2-year through to the 100-year storm events.

Water Quality Control

 Based on City guidelines, the feasibility of on-site infiltration should be investigated. All developments are required to provide a minimum of Enhanced water quality level protection (i.e., 80% TSS removal). It is recommended for small development sites (approximately 2 ha) a treatment train approach be followed.

5.1.4 Criteria for the Site

The HCWP appears to be more applicable to development in the upper Hanlon Creek areas, with drainage to Tributaries E and F. The project site is located in the 'existing development' area within the study and is not specifically addressed within the plan and drains to Tributary D.

Additionally, the GRCA mapping for the site shows a recharge of 122-199 mm/year and runoff of 118-207 mm/year while sites within the Upper Hanlon Creek area have a recharge of 315-371 mm/year and a runoff of 0 mm/year, showing that the flow regime for the two areas is obviously different.

Based on the above information, it was decided that applying the TCSS criteria to the site was a reasonable approach based on the information available. The SWM criteria for the site are as follows:

- Attenuate post-development peak flows to pre-development rates for the 2-year though 100-year storm events
- Maintain infiltration balance
- Minimum of Enhanced Water Quality Protection.

5.2 SOILS INFORMATION

Site soil properties were confirmed using the Geotechnical Investigation Report (XCG Consulting Ltd., April 2018), which outlined soil conditions for the site as per tested boreholes. It was confirmed that site soils can be expected to be sand – silt with traces of clay, with overall good drainage properties. For this analysis, site soils were classified as BC, which was deemed to be a conservative estimate.

FUNCTIONAL SERVICING REPORT FOR 1242, 1250, 1260 & 1270 GORDON STREET AND 9 VALLEY ROAD – GUELPH ON

Infiltration rates for the site were determined to be approximately 23 mm/hr for the south portion of the site and 32 mm/hr for the east portion of the site. These design rates were calculated by Stantec Consulting Ltd. (Stantec) based on test pit and infiltration testing completed in June 2021.

A hydrogeologic assessment of the Site was completed by Stantec, and is documented in the Hydrogeological Report, 1242, 1250, 1260 Gordon Street, and 9 Valley Road, City of Guelph (Stantec, 2020 and as amended). In the Site monitoring well MW5 – 18S a high water table elevation of 340.3 m was recorded. The groundwater flow follows a similar divide as surface water, with a portion flowing east as part of the Torrance Creek Watershed, and another portion flowing west as part of the Hanlon Creek Watershed.

5.3 HYDROLOGIC MODELING

A hydrologic model was prepared to simulate drainage conditions for the subject development. MIDUSS was used to predict flows for the existing and proposed development conditions and to design the SWM system to ensure the previously mentioned criteria were achieved.

To address the criteria, existing and post-development conditions were modeled for the 2 year, 5 year and 100 year 3-hour Chicago design storms, derived using the City of Guelph parameters as provided in Table 1.

Storm Event	а	b	С	Duration (hrs.)	Depth (mm)
2-year	743	6	0.798		34
5-year	1593	11	0.879	3	47
100-year	4688	17	0.925		87

Table 1: City of Guelph - Chicago Storm Parameters

5.4 EXISTING CONDITIONS

The proposed development encompasses 3.323 ha and 5 residential properties however this infill project is unique with a portion of the site being dedicated as municipal right-of-way with different controls and so for the purposes of the proposed site SWM design, the existing site is defined by lands outside the municipal right-of-way being 3.05 ha including 4 residential properties with gravel/asphalt driveways. A large portion of the site is a woodlot area, associated with the Torrance Creek Swamp (Provincially Significant Wetland), and generally has steep slopes (approximately 5 %). A portion of the properties drain to an existing storm sewer on Gordon Street. The drainage catchments are shown on Figure 1, attached, and are summarized below.

- Catchment 101 A 1.33 ha area that includes residential homes, with storm water out-letting to Gordon Street to the west.
- **Catchment 102** A 1.72 ha undeveloped area, which discharges as shallow overland flow to the woodlot to the east, part of the Torrance Creek Swamp

5.5 PROPOSED CONDITIONS

The proposed site plan includes two 10-storey apartment buildings, with two levels of underground parking. The proposed drainage catchments are summarized in detail below and shown in Figure 2, attached. Generally, the proposed conditions will increase the area out-letting to Gordon Street to the west and will reduce the area out-letting to the Torrance watershed to the east. The development will also increase the impervious area and will produce an increase in stormwater flows to the downstream Gordon Street storm sewer.

- Catchment 201 A 0.09 ha building/landscaped area that will drain uncontrolled to Gordon Street to the west.
- Catchment 202 A 0.24 ha roof top area. Runoff from this area will be attenuated by a roof-top control system (Zurn Z105 Control-Flo Roof Drain, or approved equivalent), controlling 100-year storm event runoff to a rate of 42L/s/ha (industry standard). The first 25 mm of runoff will be directed to an infiltration chamber (StormTech® SC-310) while overflows will be directed to a subsurface stormwater detention facility (StormTech® M-3500) and ultimately the Gordon Street storm sewer.
- Catchment 203 A 0.24 ha rooftop area. Runoff from this area will be attenuated by a roof-top control system (Zurn Z105 Control-Flo Roof Drain, or approved equivalent), controlling 100-year storm event runoff to a rate of 42L/s/ha (industry standard). Rooftop runoff will discharge to a clearstone infiltration gallery designed to infiltrate the runoff from a 25 mm event, with overflows discharging overland the Torrance Creek Swamp.
- **Catchment 204** A 0.51 ha area, including the parking area, lane-way and small portions of landscape. Runoff will be collected by catchbasins and conveyed via a storm sewer system to a StormTech® infiltration chamber. Prior to discharging to the chamber, flows will be treated with an oil/grit-separator and StormTech® Isolator Row Plus, to minimize the potential for clogging. Flows exceeding that capacity of the infiltration chamber will discharge to an underground StormTech® stormwater detention facility (StormTech® M-3500) and ultimately the Gordon Street storm sewer.
- **Catchment 205** A 0.23 ha designated park area draining uncontrolled east to the Torrance Watershed.
- **Catchment 206** A 1.41 ha undeveloped woodlot area draining uncontrolled east to the Torrance Watershed.
- **Catchment 207** A 0.15 ha landscaped area that will outlet to the StormTech® subsurface stormwater detention facility.
- **Catchment 208** A 0.06 ha amenity area, which will flow uncontrolled to the Gordon Street storm sewer.
- Catchment 209 A 0.12 ha parking area, with minor flows (up to the 5-year storm event) collected via parking lot structure roof drains and conveyed south to the StormTech® infiltration chamber (StormTech® SC-310) while overflows will be directed to a subsurface stormwater detention facility (StormTech® M-3500) and ultimately the Gordon Street storm sewer. Major flows (larger than the 5-year storm event) will outlet via overland flow to Street A and ultimately the Gordon Street storm sewer.

FUNCTIONAL SERVICING REPORT FOR 1242, 1250, 1260 & 1270 GORDON STREET AND 9 VALLEY ROAD – GUELPH ON

• **Catchment 210** – 0.11 ha of Street A right-of-way. Street A is a proposed municipal right-of-way not part of the proposed development. Based on discussions with the City of Guelph water quantity controls are not required for this portion of the site, and therefore has only been included in figures for completeness.

5.6 STORMWATER MANAGEMENT

5.6.1 Water Quantity Controls

Water Quantity controls for the subject site will be provided through the use of rooftop flow controls, infiltration chambers/galleries and a subsurface stormwater management facility.

5.6.2 Infiltration Augmentation

Two infiltration facilities have been provided augment infiltration of site runoff.

The east infiltration gallery is a 7.5 m (W) x 10 m (L) x 1 m (D) clearstone infiltration gallery designed to infiltrate the runoff from Building 2 (easternmost building, Catchment 203) under the 25 mm storm event. Overflows from the gallery will discharge overland to the Torrance Creek Swamp east of the site. An infiltration rate of 32 mm/hr was assumed based on the Hydrogeological Report (Stantec, 2020 and as amended)

The south infiltration gallery has been designed to infiltrate the runoff from Catchment 202, 204 and 209 under the 25 mm storm event. The volume of the proposed chamber is 116 m³ and is comprised of StormTech® SC-310 units (drawings attached). Overflows will discharge to a subsurface stormwater detention facility, prior to discharging to the Gordon Street Storm Sewer. An overflow weir with an elevation equal to the obvert of the infiltration chamber has been provided in MH6 direct flows to the gallery prior to overflow discharge to the downstream system. An infiltration rate of 23 mm/hr was assumed based on the Hydrogeological Report (Stantec, 2020 and as amended)

5.6.3 StormTech® Subsurface SWM Facility

A StormTech® M-3500 subsurface SWM facility has been proposed in the southwest portion of the property to provide water quantity controls for runoff draining to Gordon Street. The proposed facility is 553 m³ with outflows controlled through the use of a 75 mm diameter orifice provided in CBMH1.

5.6.4 Hydrologic Modeling Results

	Existing Flow Ra	ates to Outlet (m³/s)
Storm Event	Gordon Street (101)	Torrance Creek Watershed (102)
2-yr	0.03	0.02
5-yr	0.04	0.04

Table 2 summarizes the pre- and post-development modeling results for the site.

FUNCTIONAL SERVICING REPORT FOR 1242, 1250, 1260 & 1270 GORDON STREET AND 9 VALLEY ROAD – GUELPH ON

100-yr	0.19	0.25
	Proposed Flow R	ates to Outlet (m³/s)
Storm Event	Gordon Street (201, 202, 204, 207, 208, 209)	Torrance Creek Watershed (203,205, 206)
2-yr	0.03	0.02
5-yr	0.04	0.05
100-yr	0.13	0.28

Torrance Creek Watershed

As shown in Table 2, post-development flows to the Torrance Creek watershed are proposed to have a minor increase over the pre-development flow rates during the modeled storm events. Based on the hydrologic modeling the increase in flows is primarily a result of uncontrolled runoff from Catchments 205 (Future Park Block) and 206 (landscaped area on the east portion of the site) and the result of shorter flow paths than under pre-development conditions. It is noted that the Torrance Creek Swamp adjacent to the site is significantly larger than the subject site with an even larger contributing watershed. It is not expected that this minor increase in flows (30 L/s in the 100-year storm event) will have significant impact on the downstream Torrance Creek Swamp or downstream infrastructure (which will be buffered by the Torrance Creek Swamp).

Gordon Street

As shown in Table 2, the proposed SWM controls satisfy water quantity targets to Gordon Street.

5.6.5 Water Quality Controls

Torrance Creek

Catchments contributing to the Torrance Creek watershed consist of rooftop runoff (Catchment 203), Park Block (Catchment 205) and Landscaped Area (Catchment 206). Runoff from these areas can be considered clean, and no additional water quantity controls are required.

Gordon Street / Infiltration Chamber

Water quality controls for the parking lot and driveway areas conveyed to the infiltration chamber and subsurface stormwater detention facility will be provided through a treatment train approach. An OGS (ADS FD-4HC or approved equivalent) has been sized to provide an enhanced level of water quality control upstream of the infiltration chamber. In addition, a StormTech Isolator Row Plus ® has been provided at the inlet of the chamber to filter out suspended solids prior to distribution throughout the facility, and alone exceeds the requirement TSS removal to provide an enhanced level of water quality control. Uncontrolled areas fronting Gordon Street are landscaped areas and can be considered clean.

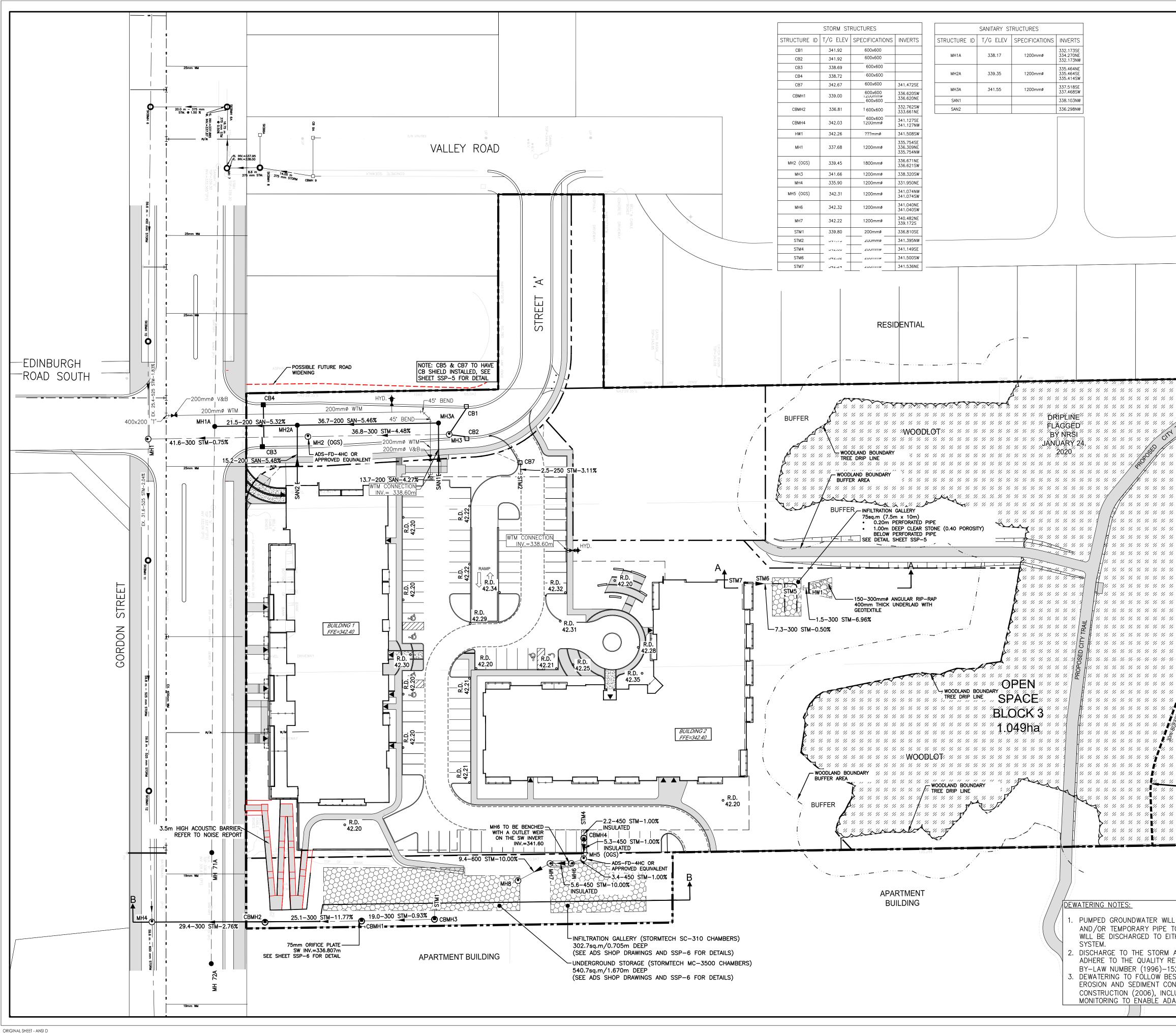
Water quality calculations have been attached for reference.

Street A

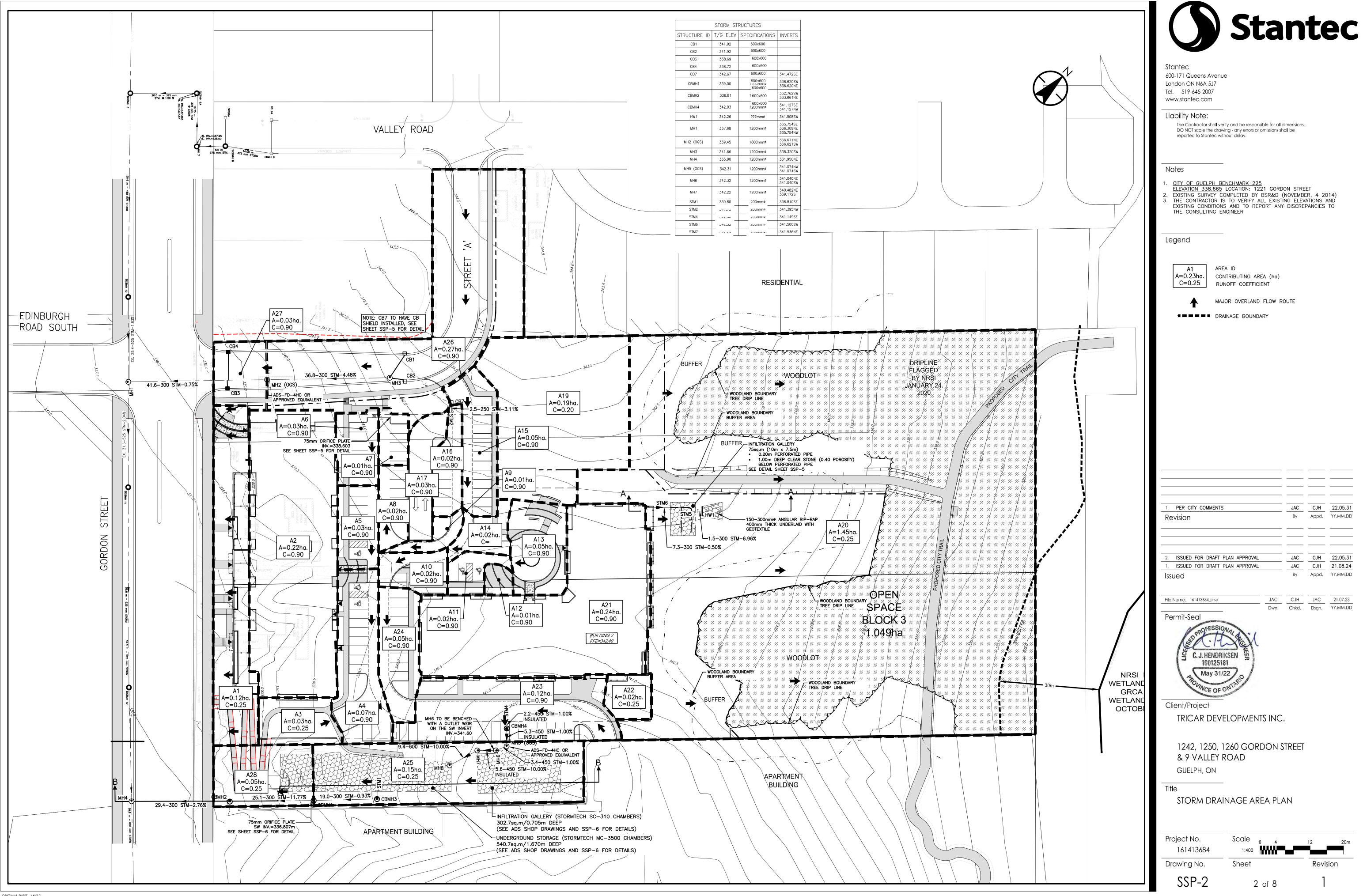
An OGS (ADS FD-4HC or approved equivalent) has been provided for Street A, prior to discharging to the Gordon Street storm sewer. The OGS has been sized to provide an enhanced level of water quality treatment for the Street A right-of-way. Calculations have been attached for reference.

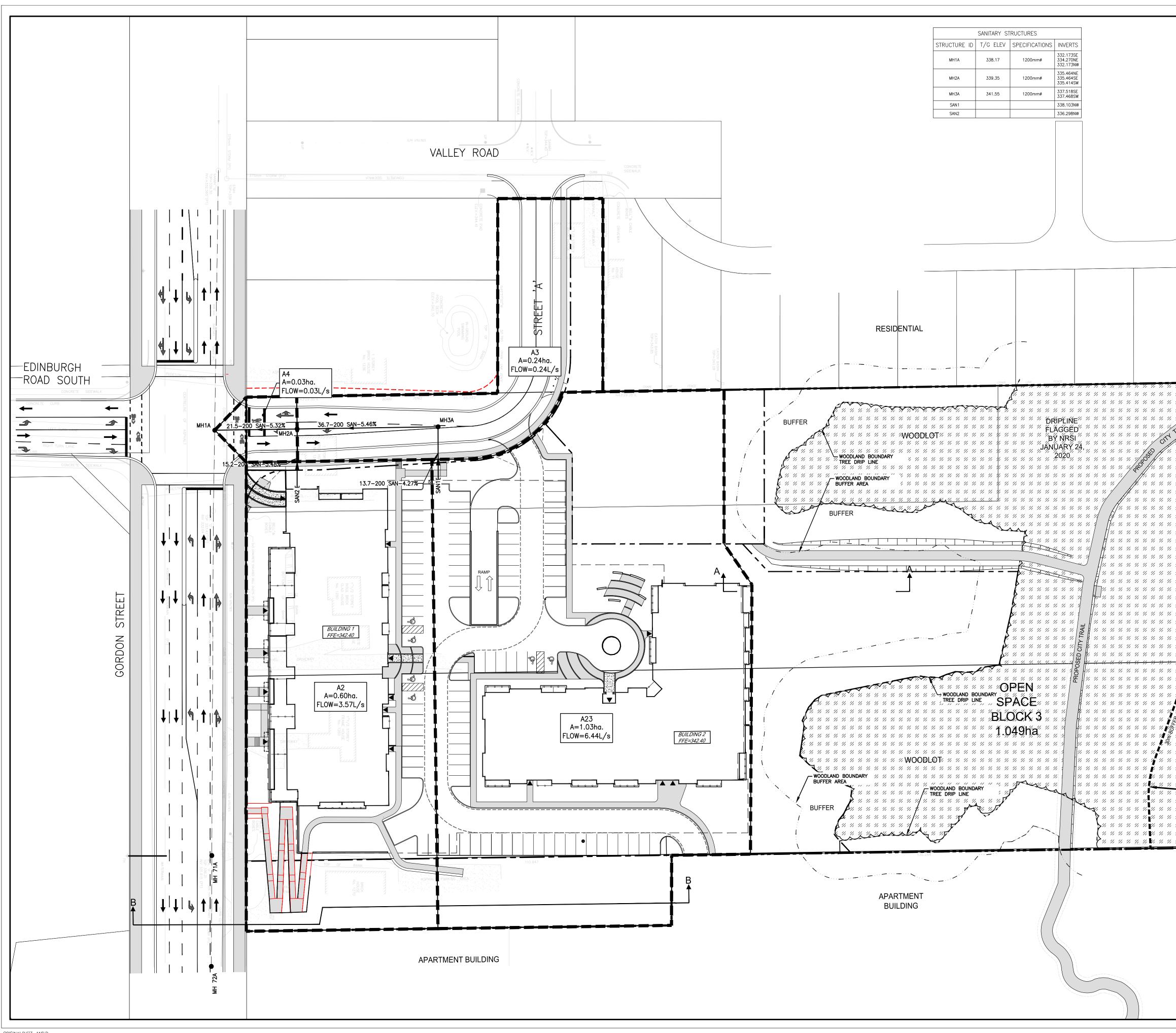
5.7 SALT MANAGEMENT

In order to meet water balance criteria, the infiltration of treated parking lot runoff was necessary. In order to mitigate the discharge of chloride laden water into the groundwater system, it is recommended that salt application for winter maintenance is prohibited and that site owners employ non-chloride salt alternatives.

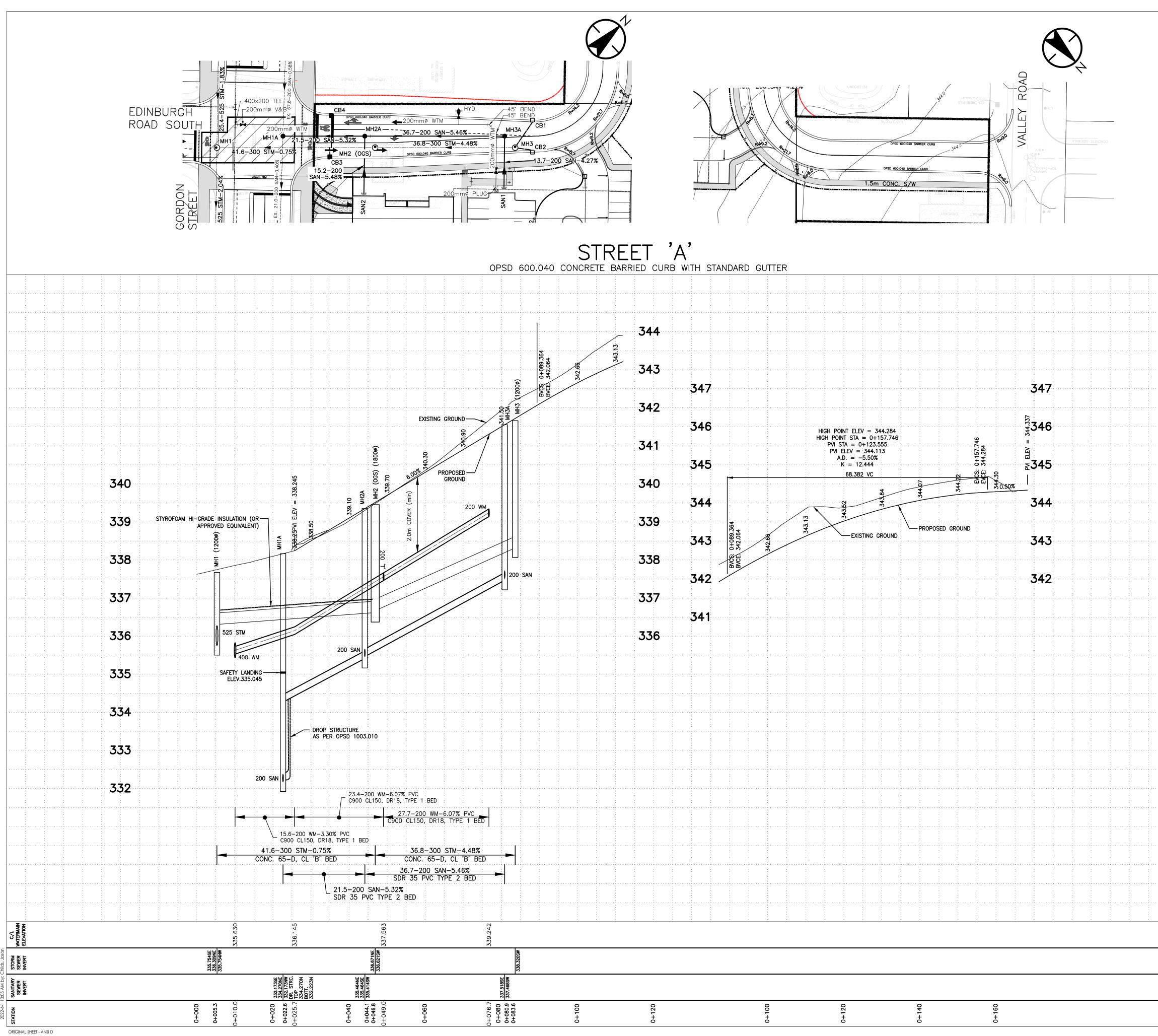

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the preceding report, the following conclusions can be drawn:


- Sanitary service is provided by the proposed upgrade to the municipal system located on Gordon Street just west of the site access.
- Water service is provided from the existing 400mm watermain on Gordon Street fronting this site.
- Enhanced (Level 1) water quality control will be provided for the parking lot and driveway runoff through the use of an OGS and Stormtech Isolator Row Plus® treatment train
- The proposed rooftop storage, infiltration chamber and subsurface stormwater detention facility provide water quantity controls prior to discharge to Gordon Street.


FUNCTIONAL SERVICING REPORT FOR 1242, 1250, 1260 & 1270 GORDON STREET AND 9 VALLEY ROAD – GUELPH ON

APPENDIX A – PRELIMINARY CIVIL DRAWING PACKAGE



	Stantec 600-171 Queens Avenue London ON N6A 5J7 Tel. 519-645-2007 www.stantec.com Liability Note: The Contractor shall verify and be responsible for all DO NOT scale the drawing - any errors or omissions s reported to Stantec without delay. Notes 1. <u>CITY OF GUELPH BENCHMARK 225 ELEVATION 338.665</u> LOCATION: 1221 GORE 2. EXISTING SURVEY COMPLETED BY BSR&D 3. THE CONTRACTOR IS TO VERIFY ALL EXIST EXISTING CONDITIONS AND TO REPORT AN THE CONSULTING ENGINEER	dimensions. hall be DON STREET (NOVEMBER, 4 2014) TING ELEVATIONS AND
	EX. SANITARY PROPOSED S PROPOSED S PROPOSED S PROPOSED S PROPOSED S CBMH1 PROPOSED C CB or CICB PROPOSED C EX. MH EX. MANHOLI EX. CB EX. CATCHBA PROPOSED V EX. WATERMA PROPOSED S	STORM SEWER SANITARY SEWER SANITARY MANHOLE STORM MANHOLE STORM MANHOLE CATCHBASIN MANHOLE CATCHBASIN E SIN VATERMAIN ANN 3-WAY FIRE HYDRANT CONNECTION DRANT VATER VALVE VALVE
	1. PER CITY COMMENTS Revision	JAC CJH 22.05.31 By Appd. YY.MM.DD
	2. ISSUED FOR DRAFT PLAN APPROVAL 1. ISSUED FOR DRAFT PLAN APPROVAL Issued Issued File Name: 161413684_c-db JAC Dwn. Permit-Seal Issued	JAC CJH 22.05.31 JAC CJH 21.08.24 By Appd. YY.MM.DD CJH JAC 21.07.23 Chkd. Dsgn. YY.MM.DD
Image: Second system Image: Second system <td< th=""><td>Client/Project TRICAR DEVELOPMENTS INC</td><td>х </td></td<>	Client/Project TRICAR DEVELOPMENTS INC	х
	1242, 1250, 1260 GORDON & 9 VALLEY ROAD GUELPH, ON Title	STREET
L BE DIRECTED OFFSITE VIA SWALE TO GORDON STREET, WHERE THE WATER THER THE STORM OR SANITARY SEWER AND/OR SANITARY SEWER SYSTEM MUST	SERVICING PLAN	
REQUIREMENTS AS PER CITY OF GUELPH 5202. EST MANAGEMENT PRACTICES PER ONTROL GUIDELINES FOR URBAN LUDING INSPECTIONS AND PERFORMANCE OAPTIVE MANAGEMENT.	Project No. Scale 5 161413684 1:500 1:500 Drawing No. Sheet 1 SSP-1 1 of 8	15 25m Revision

	Stantec 800-171 Queens Avenue London ON N6A 5J7 Ter. 519-645-2007 www.stantec.com Liability Note: Motes 1. <u>CITY OF CUELPH BENCHMARK 225</u> <u>ELEVATION 338.665</u> LOCATION: 1221 GORD 2. EXISTING SURVEY COMPLETED BY BSR&D (3. THE CONTRACTOR IS TO VERIFY ALL EXISTING CONDUCTIONE SURVEY COMPLETED BY BSR&D (3. THE CONSULTING ENGINEER Legend AT A=0.92ha. FLOW=6.44L/s AREA ID CONTRIBUTING AREA (ha). FLOW=6.44L/s	dimensions. Iall be ON STRE (NOVEMBI NG ELEV ´ DISCRE	ER, 4 20 /ATIONS / PANCIES	014) AND TO
30m NRSI WETLANI GRCA WETLANI OCTOB	Image: Instant Structure Image: Instant Structure Image: Instant Structure Image: Image	STREET	CJH Appd. CJH CJH Appd. Dsgn.	22.05.31 YY.MM.DD

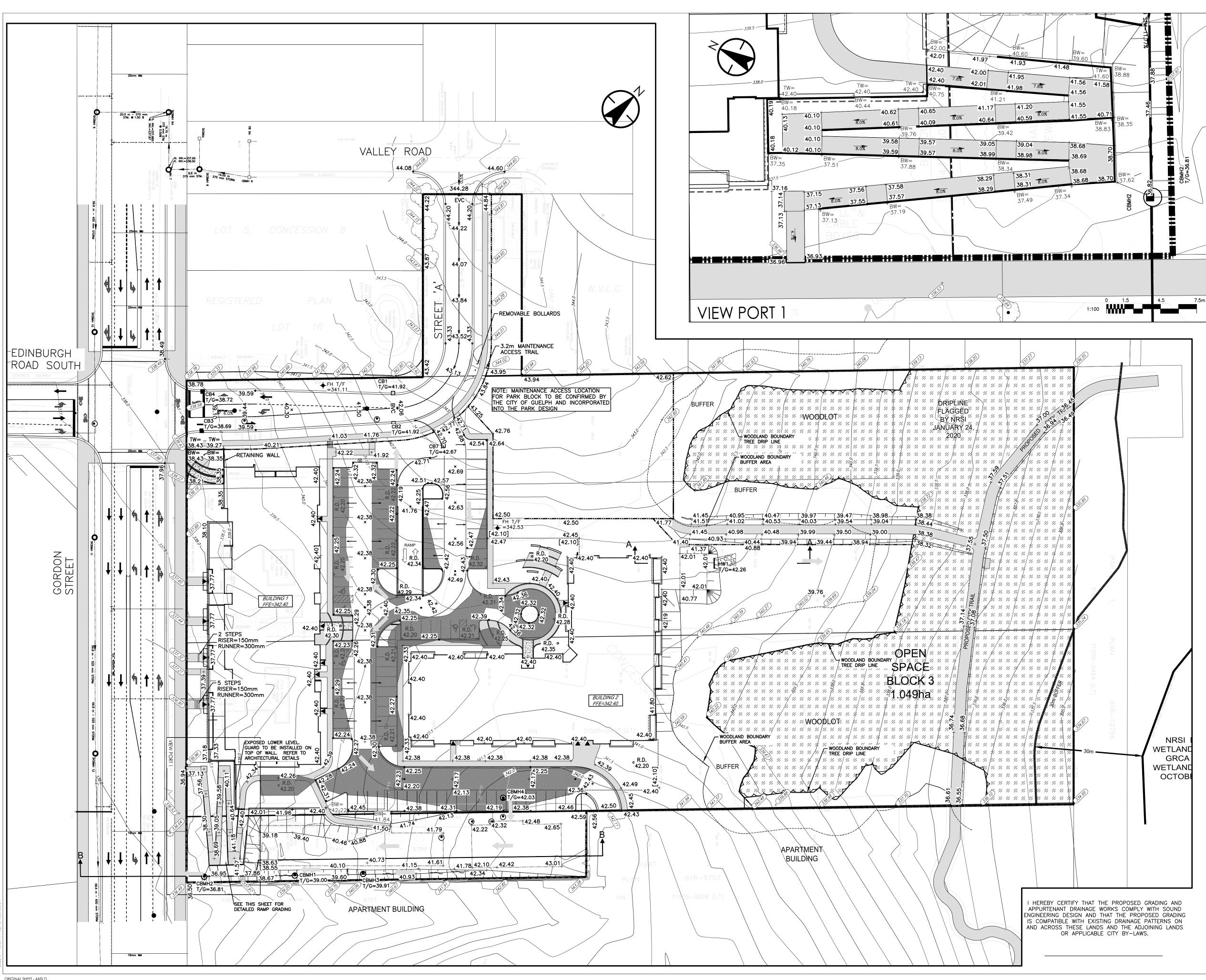
Stantec 600-171 Queens Avenue London ON N6A 5J7 Tel. 519-645-2007 www.stantec.com

Liability Note:

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

Notes

- <u>CITY OF GUELPH BENCHMARK 225</u> <u>ELEVATION 338.665</u> LOCATION: 1221 GORDON STREET
 EXISTING SURVEY COMPLETED BY BSR&D (NOVEMBER, 4 2014)
 THE CONTRACTOR IS TO VERIFY ALL EXISTING ELEVATIONS AND EXISTING CONDITIONS AND TO REPORT ANY DISCREPANCIES TO THE CONSULTING ENGINEER


	SITE LIMI	т			
	EX. STOF	RM SEWE	R		
	PROPOSE			WER	
_	EX. SANI	TARY SE	WER		
——	PROPOSE	D SANIT	ARY S	SEWER	
● S2	PROPOSE				F
	PROPOSE				-
СВМН1	PROPOSE				OLE
CB or CICB	PROPOSE				022
— ЕХ. МН	EX. MANI				
□ EX. CB	EX. CATC				
	PROPOSE		RMAIN	J	
	EX. WATE			-	
	PROPOSE		Y FIF	RE HYDR	ANT
-₽- Ŷ	C/W STC		NECT	ION	
- >\	EX. FIRE	HYDRAN	IT		
→	PROPOSE	ED WATE	R VAL	_VE	
	EX. WATE	ER VALVE	Ξ		
	RESTORAT PER 509.		TS W	ITH LAP	JOINT
1. PER CITY COMMENTS			JAC	CJH	22.05.3
Revision			Ву	Appd.	YY.MM.DI
2. ISSUED FOR DRAFT PLAN APP 1. ISSUED FOR DRAFT PLAN APP			JAC JAC	CJH CJH	22.05.3
Issued			Ву	Appd.	YY.MM.DI
File Name: 161413684_c-st	J.	AC (CJH	JAC	21.07.23
	D	wn. C	hkd.	Dsgn.	YY.MM.DI
Permit-Seal					
PROFESSIONAL	11				
1 A. My	M				
C. J. HENDRIKSEN	EER				
100125181	H A				
NCE OF ONT					
Client/Project					
TRICAR DEVELOP/		NC			
	_				
1242, 1250, 1260 (n Str	EET		
& 9 VALLEY ROAD)				
GUELPH, ON					
GUELPH, ON					
GUELPH, ON Title					
GUELPH, ON Title STREET 'A'					
GUELPH, ON Title					
GUELPH, ON Title STREET 'A'	_				

Sheet

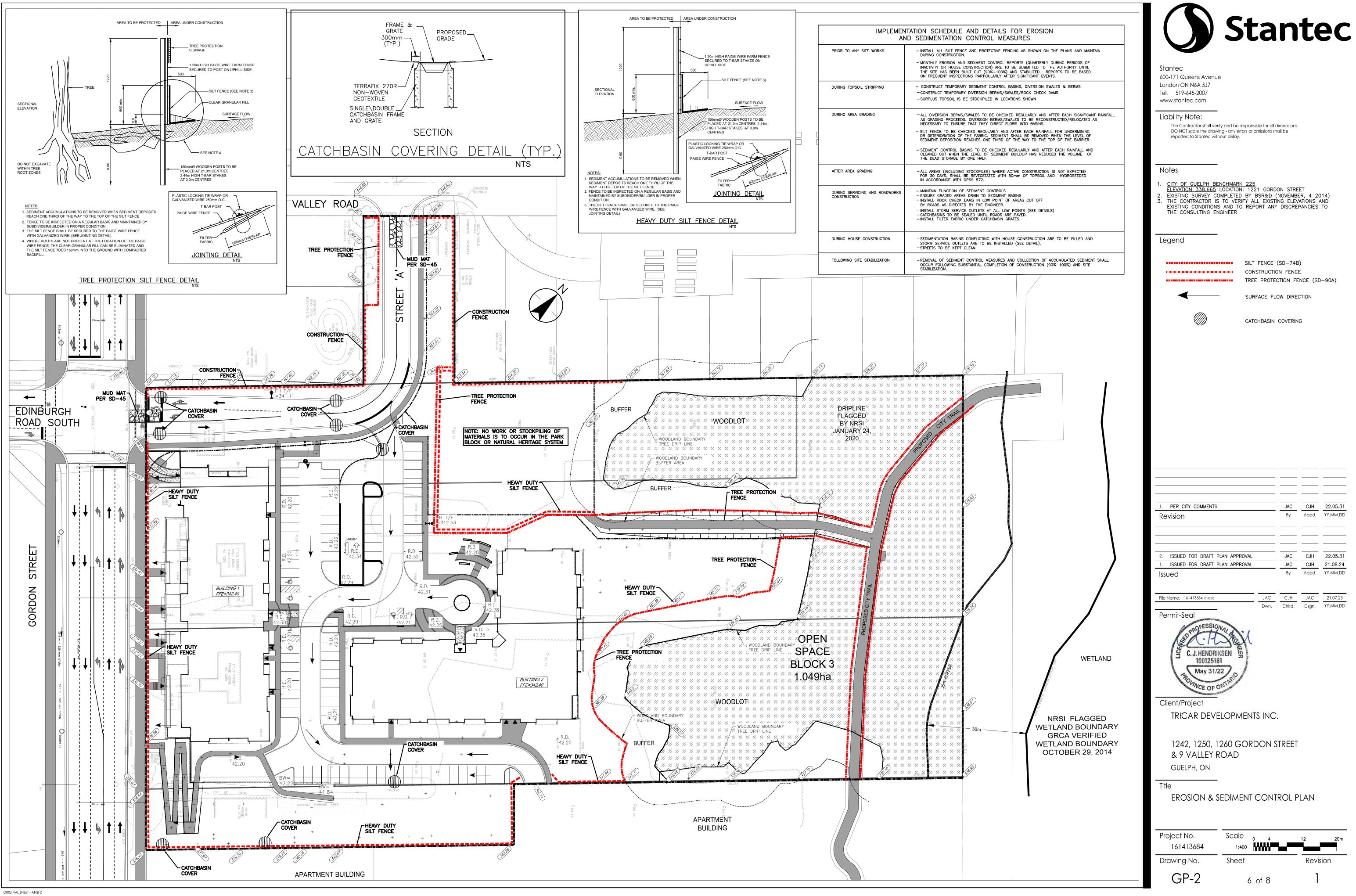
4 of 8

Revision

	- - - -			-				Legend
 					· · · · · · · · · · · · · · · · · · ·			ndef samse frankt som f
 •	• • • • • • • • • • • • • • • • • • • •	• 	· · · ·	· · · · · · · · · · · ·			• • • • •	
 	• • • • •	- 	• • • • •	- - - - - -	· · · · · · · · · · · · · · · · · · ·	• • • •		
	• • • •							
				· · · · · · · · · · · · ·	• • • •	· · · · · · · · · · · ·	• • • • • • • • • • •	
 • • • • •	• • • • •		• • • • •	- - - 	-	- - 		
					· · · · · · · · · · · ·			
•	• • •	• • •	• • • •		· · · · · · · · · · · · · · · · · · ·		•	E
 •	· · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·				
 •	•	• • • • •		- - - - -	· · · · · · · · · · · · · · · · · · ·		•	→
				- - - - -	-		•	- >
 - - - - -							- 	
 - - - - - -	- - - - - -	- - - 						
 - - - - 	- - - - - -	- - - 		-				
	- - - -							
•	•	• • • •	• • • •	-			•	1. PER CITY COM
 								Revision
 - 	- 			- 	· · · · · · · · · · · · · · · · · · ·			
 							• • • • •	2. ISSUED FOR D
 - - - - -	- - - - -	- - 		- - - - -	-		•	1. ISSUED FOR D
 • • • • • • • • • • • • • •				- - 	· · · · · · · · · ·		• • • •	Issued
 • • • • •	• • • •	• • • • •	• • • •	· · · ·	· · · · · · · · · · · ·			Permit-Seal
•	•	•	•					renni-sedi
 · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		-			Sto PROF
 • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •					C.J.H
 • - • • • • • • • • • • • •								
 					-			Rovinci
 					-		• • • • •	Client/Project
 				- - - - -	· · · · · · · · · · · · · · · · · · ·			TRICAR [
				- - - - -	· · · · · · · · · · · · · · · · · · ·			
 	- - - - 				-			1242, 12
•	•	•	•	- - - -	- · · · · · · · · · · · · · · · · · · ·		•	& 9 VALL
								GUELPH, C
 · - · · · · · · · · · ·	- 	· - · · · · · · · · · ·	· - · · · · · · · · · · · · · · · · · ·				•	Title
	-							STREET 'A
								PLAN & I
								Project No.
								161413684
								Drawing No.
								SSP-4

Stantec 600-171 Queens Avenue London ON N6A 5J7 Tel. 519-645-2007 www.stantec.com

Liability Note: The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.


Notes

- CITY OF GUELPH BENCHMARK 225 ELEVATION 338.665 LOCATION: 1221 GORDON STREET EXISTING SURVEY COMPLETED BY BSR&D (NOVEMBER, 4 2014) THE CONTRACTOR IS TO VERIFY ALL EXISTING ELEVATIONS AND EXISTING CONDITIONS AND TO REPORT ANY DISCREPANCIES TO THE CONSULTING ENGINEER

Legend	PROPOSED SWALE
$oldsymbol{eta}$	PROPOSED STORM MANHOLE
Õ	PROPOSED STORM CATCH BASIN MANHOLE
•	PROPOSED SANITARY MANHOLE
Θ	EX. STORM MANHOLE
Θ	EX. SANITARY MANHOLE
	PROPOSED CATCH BASIN
	EX. CATCH BASIN
● 75.95	PROPOSED GRADES
● 75.95 (SP)	PROPOSED OVERLAND FLOW SPILL POINT
(75.95)	EXISTING GRADES
	MAJOR OVERLAND FLOW ROUTE
	SITE BOUNDARY
• 71.77 • (SW)	PROPOSED SWALE GRADE
	EXISTING CONTOURS
—	FLOW DIRECTION
.	HYDRANTS
I	

Revision By Appd. YY.M 2. ISSUED FOR DRAFT PLAN APPROVAL JAC CJH 22.0 1. ISSUED FOR DRAFT PLAN APPROVAL JAC CJH 22.0 Issued By Appd. YY.M File Name: 161413664_c-tb JAC CJH 21.0 Dwn. Chid. Dsgn. YY.M Permit-Seal JAC CJH JAC 21.0 C. J. HENDRIKSEN Dwn. Chid. Dsgn. YY.M Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON STREET & 9 VALLEY ROAD GUELPH, ON Title GRADING PLAN Scale					
Revision By Appd. YY.M 2. ISSUED FOR DRAFT PLAN APPROVAL JAC CJH 22.0 1. ISSUED FOR DRAFT PLAN APPROVAL JAC CJH 21.0 Issued By Appd. YY.M File Name: 161413684_c-db JAC CJH 21.0 Permit-Seal JAC CJH JAC 21.0 Client/Project Dwn. Chid. Dsgn. YY.M Permit-Seal JAC C.J. HENDRIKSEN TODI25181 TODI25181 TODI25181 May 31/22 May 31/22 May 31/22 TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON STREET 8 9 VALLEY ROAD GUELPH, ON Title GRADING PLAN Scale 5 15 2 Project No. 161413684 1:500 5 15 2 2 Drawing No. Sheet Revision 10 10 10 10					
Revision By Appd. YY.M 2. ISSUED FOR DRAFT PLAN APPROVAL JAC CJH 22.0 1. ISSUED FOR DRAFT PLAN APPROVAL JAC CJH 21.0 Issued By Appd. YY.M File Name: 161413684_cdb JAC CJH 21.0 Permit-Seal JAC CJH JAC 21.0 C. J. HENDRIKSEN Down. Chid. Degn. YY.M Permit-Seal G. J. HENDRIKSEN TODI25181 May 31/22 YY.M Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON STREET 8 Y VALLEY ROAD GUELPH, ON Title GRADING PLAN Issue Issue Issue Issue Project No. Scale Scale Scale Issue Issue Issue Issue Issue Project No. Scale Sheet Revision Issue	1. PER CITY COMMENTS		JAC		22.05.31
1. ISSUED FOR DRAFT PLAN APPROVAL JAC CJH 21.01 Issued By Appd. YY.Mi File Name: 161413684_c-fb JAC CJH JAC 21.01 Permit-Seal JAC CJH JAC 21.01 VY.Mi Divin. Chicd. Digin. YY.Mi Permit-Seal JAC C.J. HENDRIKSEN TODI25181 May 31/22 May 31/22 May 31/22 Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON STREET & 9 VALLEY ROAD GUELPH, ON Title GRADING PLAN	Revision		Ву		YY.MM.DD
1. ISSUED FOR DRAFT PLAN APPROVAL JAC CJH 21.01 Issued By Appd. YY.Mi File Name: 16/14/13684_c-fb JAC CJH JAC 21.01 Permit-Seal JAC CJH JAC 21.01 Permit-Seal JAC CJH JAC 21.01 Permit-Seal JAC CJH JAC 21.01 Client/Project C.J. HENDRIKSEN Down. Chkd. Dsgn. YY.Mi Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON STREET & 9 VALLEY ROAD GUELPH, ON Title GRADING PLAN 15 15 Project No. Scale 0 5 15 161413684 1:500 Mevision Revision					
1. ISSUED FOR DRAFT PLAN APPROVAL JAC CJH 21.01 Issued By Appd. YY.Mi File Name: 16/14/13684_c-fb JAC CJH JAC 21.01 Permit-Seal JAC CJH JAC 21.01 Permit-Seal JAC CJH JAC 21.01 Permit-Seal JAC CJH JAC 21.01 CJ HENDRIKSEN Down. Chkd. Dsgn. YY.Mi Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON STREET 8 9 VALLEY ROAD GUELPH, ON Title GRADING PLAN 15 15 Project No. Scale 0 5 15 161413684 1:500 May 5 15 15					
Issued By Appd. YY.M File Name: 161413684_c-lb JAC CJH JAC 21.0' Dwn. Chkd. Dsgn. YY.M Permit-Seal Dwn. Chkd. Dsgn. YY.M Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON STREET 8 9 VALLEY ROAD GUELPH, ON Title GRADING PLAN 15 15 Project No. Scale 5 15 15 161413684 1:500 Scale 15 15	2. ISSUED FOR DRAFT	PLAN APPROVAL	JAC	CJH	22.05.31
File Name: 161413684_c-fb JAC CJH JAC 21.0' Permit-Seal Dwn. Chkd. Dsgn. YY.M Permit-Seal May 31/22 Dwn. Chkd. Dsgn. YY.M Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON STREET & 9 VALLEY ROAD GUELPH, ON Title GRADING PLAN	1. ISSUED FOR DRAFT	PLAN APPROVAL	JAC	CJH	21.08.24
Dwn. Chkd. Dsgn. YY.MM Permit-Seal Image: Store of the second seco	Issued		Ву	Appd.	YY.MM.DD
Permit-Seal	File Name: 161413684_c-fb	JAC	CJH	JAC	21.07.23
Client/Project TRICAR DEVELOPMENTS INC. 1242, 1250, 1260 GORDON STREET & 9 VALLEY ROAD GUELPH, ON Title GRADING PLAN Project No. 161413684 Drawing No. Sheet Revision		Dwn.	Chkd.	Dsgn.	YY.MM.DD
Title GRADING PLAN Project No. 161413684 Drawing No. Sheet Revision	Client/Project TRICAR DEV 1242, 1250, & 9 VALLEY	ELOPMENTS INC			
GRADING PLAN Project No. 161413684 Drawing No. Sheet Revision		-			
161413684 1:500 1:500 1:500 Drawing No. Sheet Revision		LAN			
161413684 1:500 15 Drawing No. Sheet Revision					
	-	0 5		15	25m
GP-1 5 of 8 1	Drawing No.	Sheet		Revi	sion
GF-1 5 of 8 1		F = 0		1	
	GL-I	5 of 8		I	

NOTES AND SPECIFICATIONS:

A. GENERAL:

- 1. BUILDINGS ARE NOT TO BE SITED WITH THIS DRAWING. THIS DRAWING TO BE READ IN CONJUNCTION WITH THE SITE SERVICING PLANS (SSP SERIES)
- & THE GRADING PLAN (GP SERIES) PREPARED BY STANTEC CONSULTING. HESE PLANS FOR CONSTRUCTION ONLY WHEN APPROVED BY THE CITY OF GUELPH AND
- SEALED BY THE ENGINEER. 3. THE CONTRACTOR MUST CHECK AND VERIFY DIMENSIONS; OBTAIN ALL UTILITY LOCATES AND OBTAIN ALL REQUIRED PERMITS/LICENSES AND VERIFY ELEVATIONS OF EXISTING
- SERVICES BEFORE PROCEEDING WITH ANY WORK. 4. ALL WORK WITHIN THE RIGHTS-OF-WAY OR CITY EASEMENTS ARE TO BE INSTALLED BY
- CITY OF GUELPH AT THE OWNER'S EXPENSE UNLESS OTHERWISE NOTED. ANY PROPOSED CHANGES SHALL BE APPROVED BY THE ENGINEER AND CITY OF GUELPH. ALL UNDERGROUND SERVICING TO BE INSPECTED BY STANTEC CONSULTING LTD. AND
- ALL ONDERGROUND SERVICING TO BE INSPECTED BY STATEC COORDINATE WITH STANTEC CERTIFIED FOR THE CITY OF GUELPH. CONTRACTOR SHALL COORDINATE WITH STANTEC AND SHALL CONTACT SAME AT LEAST 48 HOURS PRIOR TO INSTALLATION OF SERVICES.
 CONTRACTOR SHALL COORDINATE WITH STANTEC AND SHALL CONTACT SAME AT LEAST 48 HOURS PRIOR TO INSTALLATION OF SERVICES.
 ALL CONSTRUCTION WORK SHALL BE CARRIED OUT IN ACCORDANCE WITH THE COORDINATE WITH STANTEC AND CONTRACT AND CONTRACT SAME AT LEAST 48
- REQUIREMENTS OF THE OCCUPATIONAL HEALTH AND SAFETY ACT AND REGULATIONS FOR
- CONSTRUCTION PROJECTS (LATEST EDITION). THE PROPERTY OWNER IS RESPONSIBLE FOR RESTORATION OF ALL DAMAGED AND/OR DISTURBED PROPERTY WITHIN THE MUNICIPAL RIGHT-OF-WAY TO CITY OF GUELPH
- STANDARDS. 10. IF, FOR UNFORESEEN REASONS, THE OWNER AND/OR HIS/HER REPRESENTATIVE MUST ENCROACH ONTO PRIVATE LANDS TO UNDERTAKE ANY WORKS, HE/SHE MUST OBTAIN WRITTEN PERMISSION FROM THE ADJACENT PROPERTY OWNERS PRIOR TO ENTERING UPON THE PRIVATE PROPERTY TO PERFORM ANY WORKS. COPIES OF THESE LETTERS OF CONSENT MUST BE SUBMITTED TO THE DEVELOPMENT & TECHNICAL SERVICES – ENGINEERING DEVELOPMENT DIVISION, PRIOR TO ANY WORK BEING PERFORMED. FAILURE TO COMPLY WITH THE ABOVE IS AT THE PROPERTY OWNERS OWN RISK.

B. UNDERGROUND SERVICES:

- CONTRACTOR SHALL VERIFY ELEVATION AND LOCATION OF EXISTING SANITARY AND STORM SEWERS AND WATERMAINS PRIOR TO COMMENCING SITE WORK AND SHALL NOTIFY THE ENGINEER OF ANY CONFLICTS BETWEEN EXISTING AND PROPOSED SERVICES.
- THE CONTRACTOR TO MAKE CONNECTIONS TO SERVICES AT STUB LOCATION FOR SANITARY, STORM SEWERS, WATERMAIN AND TO RESTORE ALL OFF-SITE AFFECTED PROPERTY TO
- 3. ON-SITE SERVICING SHALL NOT BE UNDERTAKEN PRIOR TO COMPLETION OF
- SERVICE CONNECTIONS WITHIN THE ROAD R.O.W.'S. 4. ALL UNDERGROUND SERVICES TO BE IN COMPLIANCE WITH THE LATEST REVISED BUILDING CODE, CITY OF GUELPH ENGINEERING STANDARDS, ONTARIO PROVINCIAL STANDARDS (OPSS, OPSD) AND WITH THE LATEST REGULATIONS OF THE ONTARIO PLUMBING CODE AND SUPPLEMENT SPECIFICATION FOR MUNICIPAL SERVICES (DGSSMS) AND INSPECTED BY
- CITY STAFF/CONSULTANT PRIOR TO BACKFILLING. 5. UNDERGROUND SERVICES TO TERMINATE 1.5m FROM BUILDING LINE, PLUGGED OR
- ONDERVICES TO TERMINATE TO THOM BUILDING LINE, PLUGGED OR CAPPED C/W MARKER EXTENDING FROM INVERT TO 1.0M ABOVE FINISHED GRADE.
 ALL BEDDING TO BE AS NOTED BELOW. TRENCH BACKFILL TO BE APPROVED NATIVE MATERIAL COMPACTED IN 200mm MAX. LIFTS TO 95% STANDARD PROCTOR DENSITY.
 ALL SERVICES SHALL BE TESTED AS SPECIFIED IN THE APPLICABLE OPSS (OPSS
- ALL SERVICES SHALL BE TESTED AS SPECIFIED IN THE AT LICADLE OF 35 (0135) 410 & 441).
 ALL SERVICES, UTILITIES AND CATCHBASIN LEADS ARE TO BE SUPPORTED AS PER OPSD 1007.01 DURING TRENCHING ACTIVITIES. THE CONTRACTOR IS RESPONSIBLE FOR LOCATING AND PROTECTING ALL EXISTING UTILITIES PRIOR TO AND DURING CONSTRUCTION. LOCATION OF EXISTING UTILITIES TO BE VERIFIED IN THE FIELD.
 ANY UTILITY RELOCATION DUE TO THIS DEVELOPMENT TO BE UNDERTAKEN AT THE EVENCE OF THE OWNED (DEED)
- EXPENSE OF THE OWNER/DEVELOPER.
- C. SEWERS/APPURTENANCES:
- 4. STORM SEWERS:
 LESS THAN 200mmø PVC DR–28 200mmø TO 375mmø – PVC DR-35
- PVC RIBBED PIPE (ULTRA-RIB OR EQUIVALENT) - CI - 3 CONCRETE • 450mmø TO 600mmø – PVC RIBBED PIPE (ULTRA-RIB OR EQUIVALENT)
- 65D CONCRETE 450mmø TO 600mmø – 65D CONCRETE
- 5. SANITARY SEWERS:
- LESS THAN 200mmø PVC DR-28 200mmø OR LARGER PVC DR-35 2.5m MINIMUM COVER FOR SANITARY SEWERS.
- 3. SEWER BEDDING: CITY OF GUELPH SD-29 150mm (MIN) GRAN 'A' TO 98% S.P.D.
 4. STORM MANHOLES:
- OPSD 701.010 (1200mmø) OPSD 701.011 (1500mmø) • 0PSD 701.012 (1800mmø) OPSD 701.013 (2400mmø) OPSD 701.014 (3000mmø
- 6. SANITARY MAINTENANCE HOLE:
 OPSD 701.010 (1200mmø) 7. MAINTENANCE HOLE BENCHING
- CITY OF GUELPH SD-44 • CBMH'S WITH AN OUTLET PIPE GREATER THAN 450mmø SHOULD BE BENCHED. 450mmø OR LESS SHALL BE PROVIDED WITH A 600mm SUMP. 8. CATCHBASINS/CATCHBASIN LEADS:
- OPSD 705.01 (SINGLE) OPSD 705.02 (DOUBLÉ)
- OPSD 705.03 (DITCH INLET 3:1 SLOPE)
 MINIMUM LEAD DIAMETER. 200mmø FOR SINGLE, 300mmø FOR DOUBLE CATCHBASINS.
- 9. FRAMES AND GRATES/COVERS:

- D. WATER SERVICES/APPURTENANCES:
- 1. WATERMAIN
- WALEKMAIN 100mmø TO 300mmø AWWA C–900 PVC SDR–18 350mmø TO 600mmø AWWA C905 PVC SDR–25 2.0m MINIMUM COVER FITTINGS TO AWWA C–907
- WHERE CONFLICT ARISES AT WATERMAIN/SERVICE CROSSING OTHER UNDERGROUND SERVICES, WATERMAIN/SERVICES SHALL BE LOWERED TO MAINTAIN 0.50m VERTICAL
- SEPARATION.
- 2. PIPE BEDDING: CITY OF GUELPH SD-29
- 150mm (MIN) GRANULAR 'A' 98% S.P.D. 5. THRUST BLOCKING:

ORIGINAL SHEET - ANSI D

- CITY OF GUELPH SD-27
 TRACER WIRE:
 CITY OF GUELPH SD-54A
 SUPPRANTS. 5. HYDRANTS:
- CITY OF GUELPH SD-25A (OPEN RIGHT)

- 6. VALVES:
 ALL VALVES TO OPEN COUNTER-CLOCKWISE AND COMPLY WITH A.W.W.A. SPEC.
 CITY OF GUELPH SD-24 WATER SERVICES
- 25mmø TYPE K COPPER PIPING WET TAPPED TO PVC WATERMAIN WITH APPROVED SADDLE CITY OF GUELPH SD-54B 8. WATER METERS:
- BUILDING UNITS TO HAVE INDIVIDUAL WATER METERS TO THE SATISFACTION OF CITY OF GUELPH WATERWORKS DEPARTMENT
 MAINTAIN SPATIAL SEPARATION FOR SITE SERVICES PER BUILDING CODE PART 7.3.5.6
- 1. ALL NEW WATER PIPING INSTALLATIONS AS PER AWAR C651-05 1. CATHODIC PROTECTION IN ACCORDANCE WITH CITY OF GUELPH STANDARDS. 12. A WATERMAIN COMMISSIONING PLAN IN ACCORDANCE WITH DGSSMS WILL BE REQUIRED.

E. GRADING:

- 1. COMPLETE ALL EXCAVATION, GRADING, TRIMMING AND COMPACTION AS REQUIRED TO FACILITATE THE WORK, ALL SUBGRADE AREAS SHALL BE PROOF ROLLED TO 98% S.D.P.
- PRIOR TO GRANULAR SUBBASE PLACEMENT. DISPOSE OF ALL SURPLUS AND UNSUITABLE MATERIAL OFFSITE. SAWCUT ASPHALT IN NEAT LINES AT ALL MATCH LINES. MATCH EXISTING GRADES AT ADJACENT PROPERTY LINES. 5. TRANSITION SLOPES TO BE MAXIMUM 3:1 (HORIZONTAL TO VERTICAL) UNLESS OTHERWISE

NOTED

- . SURFACE WORKS: 1. CURBS:
- OPSD 600.040 (CONCRETE BARRIER CURB WITH STANDARD GUTTER) OPSD 600.070 (CONCRETE BARRIER CURB WITH STANDARD GUTTER, TWO STAGE CONSTRUCTION)
- OPSD 600.080 (CONCRETE BARRIER CURB WITH NARROW GUTTER)
- OPSD 600.110 (CONCRETE BARRIER CURB)
 ASPHALT PAVEMENT: (PARKING AREA) 40mm HL 3 (SURFACE ASPHALT) 97% MARSHALL
- 50mm HL4 (BASE ASPHALT) 97% S.P.D. 150mm GRANULAR 'A' BASE 100% S.P.D.
- 300mm GRANULAR 'B' SUB-BASE 100% S.P.D. 3. ASPHALT PAVEMENT: (ABOVE PARKING GARAGE) CONCRETE DECK ROOFING MEMBRANE
- PROTECTION BOARD 40MM HL 3 (SURFACE ASPHALT)
- 97% MARSHALL 50MM HL4 (BASE ASPHALT) 97% S.P.D. 4. PAVEMENT: (HEAVY DUTY/FIRE ROUTE)
- 50mm HL-3 SURFACE ASPHALT 97% MARSHALL – (WHERE IN PLACE) 60mm HL-4 BASE ASPHALT 97% MARSHALL
- 150mm GRANULAR 'A' 100% S.P.D. 400mm GRANULAR 'B' 100% S.P.D. SAW CUT CLEAN EDGES AT ALL MATCH LINES AND APPLY TACK COAT.
- 5. CONCRETE SIDEWALKS:
- CITY OF GUELPH SD-2, 1.5m WIDE (CONCRETE SIDEWALK) CITY OF GUELPH SD-4 (SIDEWALK RAMPS)
 SITE AREAS DISTURBED BY CONSTRUCTION AND NOT INDICATED FOR REMOVAL TO BE RESTORED TO ORIGINAL CONDITIONS.
- G. EROSION CONTROL:

- ALL SILT FENCING TO BE INSTALLED PRIOR TO COMMENCEMENT OF ANY AREA GRADING, EXCAVATION OR DEMOLITION.
 EROSION CONTROL FENCE TO BE PLACED AROUND THE BASE OF ALL STOCKPILES. ALL STOCKPILES TO BE KEPT A MINIMUM OF 2.5m FROM ALL PROPERTY LINES.
 P-250 FILTER FABRIC UNDERLYING CONSTRUCTION VEHICLE ENTRANCE TO CONSIST OF CLEANED OR REPLACED 200mm THICK, 50mmø STONE. STONE TO BE TAKEN UP AND WITH ACQUINT ATALANCE CONSTRUCTION (SEE DETAIL)
- WHEN ACCUMULATIONS COVER 50% OF TOP OF STONE (SEE DETAIL). 4. EROSION PROTECTION TO BE PROVIDED AROUND ALL STORM AND SANITARY MANHOLES
- EROSION PROTECTION TO BE PROVIDED AROUND ALL STORM AND SANTIART MAINFOLES AND/OR CATCHBASINS.
 ADDITIONAL EROSION CONTROL MEASURES MAY BE REQUIRED AS SITE DEVELOPMENT PROGRESSES, CONTRACTOR TO PROVIDE ALL ADDITIONAL EROSION CONTROL STRUCTURES.
 EROSION CONTROL STRUCTURES TO BE MONITORED REGULARLY BY STANTEC CONSULTING LTD. AND ANY DAMAGE REPAIRED IMMEDIATELY. SEDIMENTS TO BE REMOVED WHEN
- ACCUMULATIONS REACH A MAXIMUM OF ONE THIRD (1/2) THE HEIGHT OF THE SILT
- ALL EROSION CONTROL STRUCTURES TO REMAIN IN PLACE UNTIL ALL DISTURBED GROUND SURFACES HAVE BEEN RE-STABILIZED EITHER BY PAVING OR RESTORATION OF VEGETATIVE GROUND COVER.
- 8. NO ALTERNATE METHODS OF EROSION PROTECTION SHALL BE PERMITTED UNLESS APPROVED BY STANTEC CONSULTING LTD. AND THE CITY OF GUELPH'S WORKS
- EPARTMENT 9. THE CONTRACTOR IS RESPONSIBLE FOR REMOVING SEDIMENTS FROM THE MUNICIPAL ROAD AND SIDEWALKS AT THE END OF EACH WORK DAY. 10. MUD MATS TO BE PROVIDED ON SITE AT ALL LOCATIONS WHERE CONSTRUCTION VEHICLES
- EXIT THE SITE. MUD MATS SHALL BE A MINIMUM OF 3.0m WIDE, 15.0m LONG (LENGTH MAY VARY DEPENDING ON SITE LAYOUT) AND 0.3m DEEP AND SHALL CONSIST OF 20mm CLEAR STONE MATERIAL OR APPROVED EQUIVALENT. CONTRACTOR TO ENSURE ALL
- VEHICLES LEAVE THE SITE VIA THE MUD MAT AND THAT THE MAT IS MAINTAINED IN A MANNER TO MAXIMIZE ITS EFFECTIVENESS AT ALL TIMES. 11. STANTEC CONSULTING LTD. TO MONITOR THE SITE DEVELOPMENT TO ENSURE ALL EROSION CONTROLS ARE INSTALLED AND MAINTAINED TO CITY REQUIREMENTS. CONTRACTOR TO COMPLY WITH THE ENGINEER'S INSTRUCTIONS TO INSTALL, MODIFY, OR MAINTAIN EROSION CONTROL WORKS.

H. RETAINING WALLS:

- 9. FRAMES AND GRATES/COVERS:
 OPSD 400.10 (CB'S & CBMH'S)
 OPSD 410.01 TYPE 'A' (SANITARY AND STORM MH'S)
 CITY OF GUELPH SD-15 (RLCB'S)
 CITY OF GUELPH SD-9 (SAFETY GRATE FOR MH'S)
 ALL FRAMES ON STRUCTURES TO BE SET USING PRECAST CONCRETE ADJUSTMENT UNITS
 1. RETAINING WALL TO BE CONSTRUCTED AS DESIGNED BY OTHERS. APPROPRIATE CONSTRUCTION DETAILS SHALL BE PROVIDED FOR RETAINING WALLS HIGHER THAN 0.80m.
 D. WATER SERVICES (APPLIETENANCES)

 - I. <u>DEWATERING NOTES:</u>
 - 1. PUMPED GROUNDWATER WILL BE DIRECTED OFFSITE VIA SWALE AND/OR TEMPORARY PIPE OP OPPY DRIVE EAST, WHERE THE WATER WILL BE DISCHARGED TO EITHER THE STORM OR SANITARY SEWER SYSTEM.
 - 2. DISCHARGE TO THE STORM AND/OR SANITARY SEWER SYSTEM MUST ADHERE TO THE QUALITY REQUIREMENTS AS PER CITY OF GUELPH BY-LAW NUMBER (1996)-15202.

J. MISCELLANEOUS:

344

343

342

341

340

339

338^L

- WHERE COVER OVER SEWERS IS LESS THAN 1.2m IN PAVED AREAS, OR LESS THAN 0.90m IN GRASSED AREAS INSTALL INSULATION AS PER DETAIL. INSULATION TO BE 60mm THICK × 1800mm WIDE UNLESS OTHERWISE NOTED. INSTALL LONGITUDINALLY OVER OCHTERIN INC. DISC NUTL OVER INDIVIDUAL INVERSION.
- CENTERLINE OF PIPE WITH OVERLAPPING JOINTS. 2. IT IS THE SITE OWNERS' RESPONSIBILITY TO ENSURE THAT ALL SEDIMENT CONTROLS ARE IMPLEMENTED AND MAINTAINED IN ACCORDANCE WITH THE ABOVE CRITERIA.

300mm AMMENDED SOIL -

INV.=341.536m

PROPOSED GROUND -

INSULATION OR APPROVED EQUIVALENT

300 STM SEWER

300x200 REDUCER -

EXISTING GROUND ----

HIGH GROUND WATER -----339.510m

NILEX 4545 FILTER FABRIC, OR

APPROVED EQUIVALENT, LINES -

TOP, BOTTOM AND SIDES OF

DRY WELL (OVERLAP 300MM

AT SEAMS)

√.=341.5*°*

INV.=340.510/

STYROFOAM HI-BRAND -

- 1 PRIOR TO INSTALLATION
- · LAYDOWN OR STOCKPILE LOCATIONS; • EQUIPMENT STORAGE;
- TRAFFIC FLOW OR SITE ACCESS.
- - 2 INSTALLATION

 - PROTECTED IN THE EVENT OF RAIN. AT THE MINIMUM OVERLAP

NOT TO BE USED.

3 MAINTENANCI

1 INSTALLATION

2 MAINTENANCE

UNDERGROUND STORAGE AND INFILTRATION TRENCHES

• EFFORTS SHOULD BE MADE TO AVOID COMPACTION BY NOT USING THE FACILITY LOCATION AS:

• MATERIAL TO BE USED IN THE CONSTRUCTION OF THE FACILITY SHOULD NOT BE BROUGHT ON SITE PRIOR TO IT BEING NEEDED. IF THIS MATERIAL IS ON SITE PRIOR TO FINAL PLACEMENT, IT SHALL BE STOCKPILED SEPARATELY FROM ANY OTHER CONSTRUCTION MATERIALS AND ADEQUATELY PROTECTED (AS DIRECTED BY THE LID INSPECTOR).

• TRENCH FLOOR TO BE SCARIFIED TO A DEPTH OF 0.15M UNLESS THE LID INSPECTOR DIRECTS GREATER DEPTHS OF SCARIFICATION. • ONCE THE AREA IS SCARIFIED, AT LEAST 2 LOCATIONS IN EACH FACILITY ARE TO BE TESTED FOR IN-SITU INFILTRATION RATE. ADDITIONAL SCARIFICATION MAY BE REQUIRED FOLLOWING THESE TESTS, AFTER WHICH THE TESTS SHOULD BE COMPLETED AGAIN IN OTHER LOCATIONS. • SHOULD THE TRENCH WORK BE COMPLETED IN ADVANCE ON THE INSTALLATION OF THE GEOTEXTILE AND STONE, THE TRENCH SHOULD BE

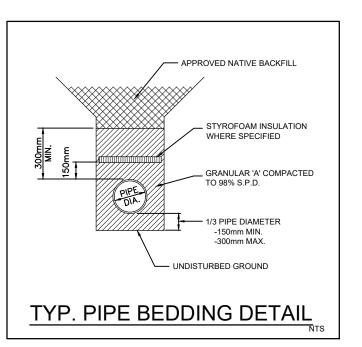
• THE OVERLAP ON THE GEOTEXTILE SHALL BE A MINIMUM OF 0.3M. THE GEOTEXTILE SHALL BE WRAPPED OVERTOP OF THE STORE STORAGE

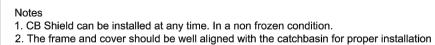
• ALL STONE INSTALLED IS TO BE TRIPLE WASHED TO PREVENT DUST FROM CLOGGING THE FABRIC AND SOIL PORES, STONE IS TO BE INSTALLED IN LIFTS OF 0.3M MAXIMUM. THESE LIFTS SHOULD BE LIGHTLY WORKED TO SETTLE THE STONE BUT MECHANICAL COMPACTION IS • ALL UNDERDRAIN PIPES ARE TO BE WRAPPED IN A SEDIMENT SOCK.

• IF THE FACILITY IS COMPLETED PRIOR TO SITE STABILIZATION, RUNOFF SHOULD BE DIRECTED AWAY FROM THE FACILITY TO PREVENT HEAVY SEDIMENTATION. EROSION CONTROLS SHOULD BE INSTALLED AS PER THE DIRECTION OF THE LID INSPECTOR.

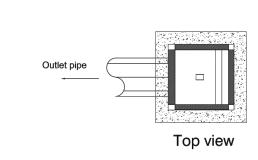
• REMOVE ANY DEBRIS, GARBAGE, LEAVES, STICKS, OR OTHER ITEMS FROM THE FACILITY INLETS. THIS SHOULD BE DONE BIANNUALLY WITH SPECIAL ATTENTION IN FALL TO REMOVE FALLEN LEAVES;

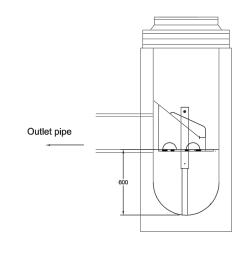
• REMOVE ACCUMULATED SEDIMENT FROM THE BOTTOM OF THE FACILITY AS NEEDED BY FLUSHING; • MONITOR PERFORMANCE; OBSERVE WATER DEPTHS IN THE FACILITY DURING RAIN EVENTS BIANNUALLY.

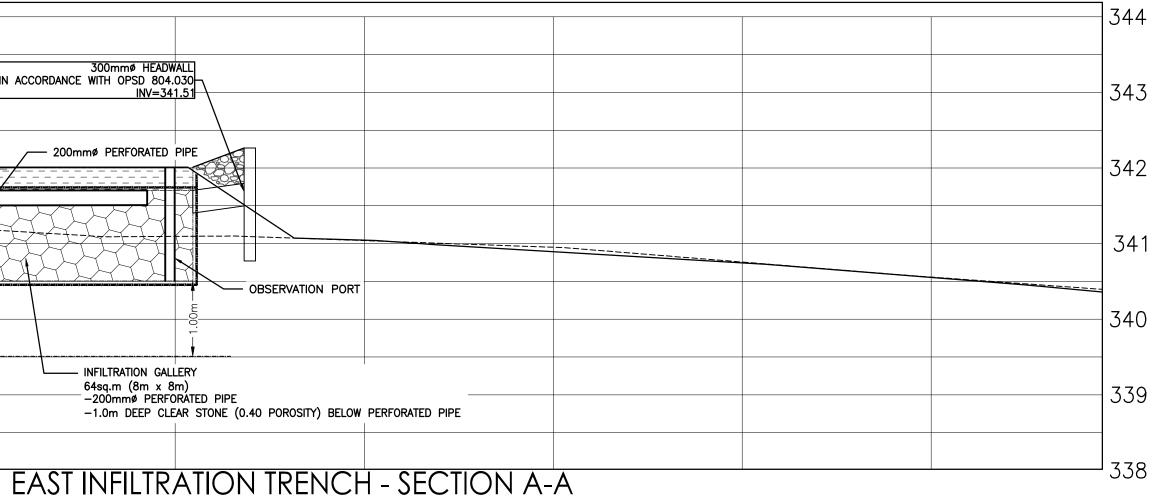

OIL GRIT SEPARATOR


• ONCE INSTALLED, THE INLET TO THE OGS SHOULD BE SURROUNDED BY A FILTER SOCK RING TO REMOVE THE HEAVIEST SEDIMENT LOADS. THE OGS SHOULD BE INSPECTED BIWEEKLY DURING CONSTRUCTION AND CLEANED BY VACUUM TRUCK WHEN THE SUMP IS 50% FULL OF

• WHEN CONSTRUCTION IS COMPLETE, THE OGS SHOULD BE CLEANED OF ANY SEDIMENT.


INSPECTION SHOULD BE DONE BIANNUALLY;


• REMOVE ACCUMULATED SEDIMENT FROM THE BOTTOM OF THE FACILITY WHEN 50% FULL BY VACUUM TRUCK; • REMOVAL OF ANY OILS OR FLOATABLES AS NEEDED, WITH SPECIAL ATTENTION PAID IN THE EVENT OF A DELETERIOUS SPILL.

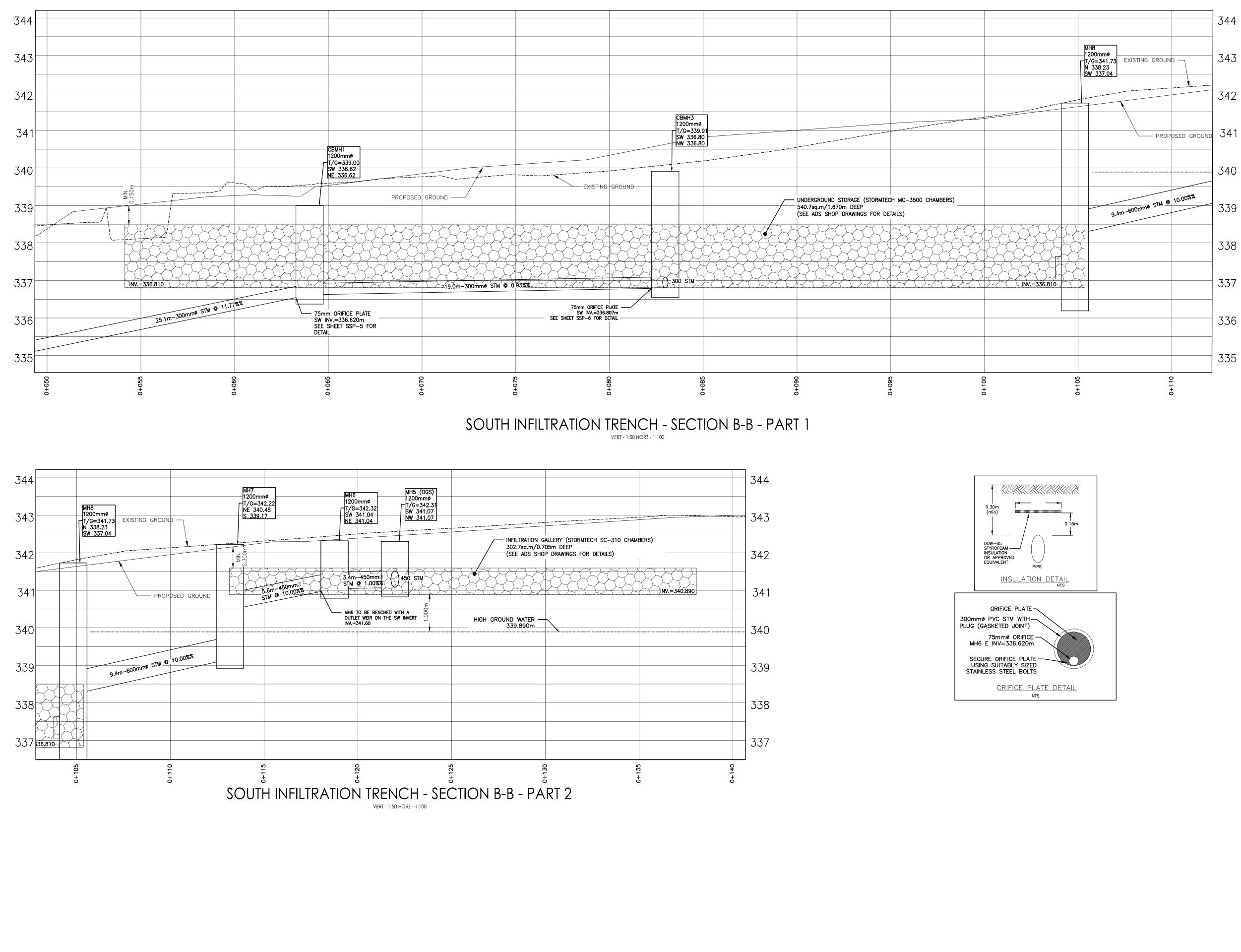

3. The catchbasin sump must be clean before installation 4. The grate should be at the same level as the standing water in the sump.

CB Shield (600mm Sump)

VERT - 1:50 HORZ - 1:100

Stantec 600-171 Queens Avenue London ON N6A 5J7 Tel. 519-645-2007 www.stantec.com

Liability Note: The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.


Notes

- CITY OF GUELPH BENCHMARK 225 ELEVATION 338.665 LOCATION: 1221 GORDON STREET
- EXISTING SURVEY COMPLETED BY BSR&D (NOVEMBER, 4 2014) THE CONTRACTOR IS TO VERIFY ALL EXISTING ELEVATIONS AND EXISTING CONDITIONS AND TO REPORT ANY DISCREPANCIES TO THE CONSULTING ENGINEER

Legend

1. PER CITY COMMENTS		JAC	CJH	22.05.3
Revision		Ву	Appd.	YY.MM.DI
2. ISSUED FOR DRAFT	PLAN APPROVAL	JAC	CJH	22.05.3
1. ISSUED FOR DRAFT	PLAN APPROVAL			21.08.24
Issued		Ву	Appd.	YY.MM.DI
File Name: 161413684_c-dt	JAC	CJH	JAC	21.07.23
Permit-Seal	Dwr	n. Chkd.	Dsgn.	YY.MM.D
Client/Project	OWTAR	C		
Client/Project TRICAR DEV	ELOPMENTS IN			
Client/Project TRICAR DEV 1242, 1250, & 9 VALLEY	ELOPMENTS IN			
Client/Project TRICAR DEV 1242, 1250, & 9 VALLEY I GUELPH, ON	ELOPMENTS IN 260 GORDON ROAD			
Client/Project TRICAR DEV 1242, 1250, & 9 VALLEY I GUELPH, ON Title NOTES & DE	ELOPMENTS IN 260 GORDON ROAD	I STREET		
Client/Project TRICAR DEV 1242, 1250, & 9 VALLEY GUELPH, ON Title	ELOPMENTS IN 260 GORDON ROAD	I STREET	3	5m
Client/Project TRICAR DEV 1242, 1250, & 9 VALLEY GUELPH, ON Title NOTES & DE Project No.	ELOPMENTS IN 260 GORDON ROAD	I STREET		

_____ _____

ORIGINAL SHEET - ANSI D

Stantec 600-171 Queens Avenue London ON N6A 5J7 Tel. 519-645-2007 www.stantec.com

Liability Note: The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

Notes

- CITY OF GUELPH BENCHMARK 225 ELEVATION 338.665 LOCATION: 1221 GORDON STREET EXISTING SURVEY COMPLETED BY BSR&D (NOVEMBER, 4 2014) THE CONTRACTOR IS TO VERIFY ALL EXISTING ELEVATIONS AND EXISTING CONDITIONS AND TO REPORT ANY DISCREPANCIES TO THE CONSULTING ENGINEER

Legend

1. PER CITY COMMENTS	5		JAC	CJH	22.05.3
Revision			Ву	Appd.	YY.MM.DI
2. ISSUED FOR DRAFT	PLAN APPROVAL		JAC	CJH	22.05.3
1. ISSUED FOR DRAFT	PLAN APPROVAL		JAC	CJH	21.08.24
Issued			Ву	Appd.	YY.MM.D[
File Name: 161413684_c-dt		JAC	CJH	JAC	21.07.23
Permit-Seal		Dwn.	Chkd.	Dsgn.	YY.MM.DI
- May 31/	22 0				
Client/Project TRICAR DEVI 1242, 1250, 1 & 9 VALLEY H GUELPH, ON	ELOPMEN				
Client/Project TRICAR DEVI 1242, 1250, 1 & 9 VALLEY F	ELOPMEN 1260 GOR ROAD				
Client/Project TRICAR DEVI 1242, 1250, 1 & 9 VALLEY F GUELPH, ON Title	ELOPMEN 1260 GOR ROAD TAILS			3	5m
Client/Project TRICAR DEVI 1242, 1250, 1 & 9 VALLEY F GUELPH, ON Title NOTES & DE Project No.	ELOPMEN ELOPMEN 1260 GOR ROAD TAILS	DON S		3 Revi	

____ ____

FUNCTIONAL SERVICING REPORT FOR 1242, 1250, 1260 & 1270 GORDON STREET AND 9 VALLEY ROAD – GUELPH ON

APPENDIX B – DESIGN SHEETS

Stantec	DATE: May 19, 2022 DESIGNED BY: JC CHECKED BY: CH				STORM SEWER DESIGN SHEET FILE NUMBER: 30T-							DESIGN PA DESIGN ST I = a / ((tc a= b= c= PIPE SELEC	ORM + b) ^c) 0.00 0.00 0.0000 CTION	1 IN MANNING'S MINIMUM C TIME OF EN	n = COVER: FRY		m min					
Street	U/S	D/S	Area ID	Area Design (ha)	Coeff. Design	AxR	Accum. A x R	U/S T _c (min)	Rainfall Intensity (mm/hr)	Total Flow (m ³ /s)	Length Design (m)	Design Size (mm)	Slope Design (%)	Full Capacity (m³/s)	Full Velocity (m/s)	Actual Velocity (m/s)	Time of Flow (min)	5-Year Q _A /Q _C (%)	Fall in Sewer (m)	Upper Inv. (m)	Lower Inv. (m)	Drop (m)
Street A Street A	MH3 MH2	MH2 MH1	A26 A27	0.27 0.03	0.90	0.24	0.24	10.00 10.23	109.68 108.62	0.074	36.80 41.60	300 300	4.48 0.75	0.205	2.90 1.18	2.63 1.37	0.23 0.50	36.2% 97.3%	1.65 0.31	338.320 336.621	336.67 336.31	0.05

1250 Gordon Street 161413684

Jun 8, 2022

FIRE FLOW CALCULATIONS AS PER OBC REQUIREMENTS

ONTARIO BUILDING CODE CLAUSE A-3.2.5.7.

$Q = K x V x S_{Tot}$

As per Table 2, Section A-3.2.5.7, OBC

	Required Minimum Water Supply Flow
OBC Part 3 Buildings under Building Code	Rate (L/min)
One-storey building with area ≤ 600 m2	1800
All other buildings	2700 (if Q ≤ 108,000 L)
	3600 (if Q >108,000 L and≤ 135,000 L)
	4500 (if Q >135,000 L and ≤ 162,000 L)
	5400 (if Q >162,000 L and ≤ 190,000 L)
	6300 (if Q >190,000 L and≤ 270,000 L)
	9000 (if Q >270,000 L)

Major Occupancy Classification

Group C Residential Occupancies

Water Supply Coefficient - KAs per Table 1, Section A-3.2.5.7, OBCK= 10

Total Building Volume

Plda	Area	Flr Height	Volume
Bldg	(m ²)	(m)	(m ³)
2	23900	3.2	76480
			0
			0
Total			76480

*Assuming single 10 storey Building #2 apartment is critical

Exposures

	Separation	
	(m)	Coeff
North	50	0.00
South	50	0.00
East	50	0.00
West	24	0.00
S _{tot}		1.00

**above separation distances conservative estimates.

Minimum Water Supply

$Q = K x V x S_{Tot}$	Q = 10 x	76480 x 1.00	=	764,800	L
sinc	e Q > 270,000) L	-		-
Required Fire Flow (from Table 2	above)		=	9000	L/min
			=	150	L/s

FUNCTIONAL SERVICING REPORT FOR 1242, 1250, 1260 & 1270 GORDON STREET AND 9 VALLEY ROAD – GUELPH ON

APPENDIX C – EMAIL CORRESPONDENCE

Good Morning Chris, We will be retaining consultant in Q2. We will be reviewing the 1242-1270 Gordon Street development during the design of Gordon St.

Thanks.

Ike Umar, C.E.T. | Project Manager Engineering and Transportation Services | Infrastructure, Development and Enterprise City of Guelph

T 519-822-1260 X2242 E ike.umar@guelph.ca

From: Hendriksen, Chris (Vancouver) <Chris.Hendriksen@stantec.com>
Sent: Friday, March 11, 2022 9:51 AM
To: Ike Umar <Ike.Umar@guelph.ca>
Subject: RE: Gordon Street Sanitary Sewer upgrades

Good morning lke. I wanted to follow up on the design progression of this work and to confirm that the design contributions from the proposed development at 1242-1270 Gordon Street and 9 Valley Road are being incorporated. Can you please provide an update?

Thanks

Chris

From: Ike Umar <<u>Ike.Umar@guelph.ca</u>>
Sent: Tuesday, August 10, 2021 8:01 AM
To: Rice, Derrick <<u>Derrick.Rice@stantec.com</u>>
Cc: Hendriksen, Chris (Vancouver) <<u>Chris.Hendriksen@stantec.com</u>>
Subject: RE: Gordon Street Sanitary Sewer upgrades

Good Morning Derrick, As per email below from Reg I do not have anything to add. We would know better once we have a schedule of construction in 2023.

Thanks Ike Umar, C.E.T. |Project Manager Engineering and Transportation Services | Infrastructure, Development and Enterprise City of Guelph

T 519-822-1260 X2242 E <u>ike.umar@guelph.ca</u>

From: Rice, Derrick <<u>Derrick.Rice@stantec.com</u>>

Sent: Thursday, August 5, 2021 4:47 PM
To: Ike Umar <<u>Ike.Umar@guelph.ca</u>>
Cc: Hendriksen, Chris (Vancouver) <<u>Chris.Hendriksen@stantec.com</u>>
Subject: RE: Gordon Street Sanitary Sewer upgrades

Good afternoon lke,

I am reaching out regarding the Gordon Street Sanitary Sewer works as per the correspondence below. We would like to confirm that the proposed sanitary sewer fronting the 1250 Gordon Street proposed development will be available as part of the construction work noted below which notes availability late 2023 to early 2024? Do you have any insight on anticipated Construction staging to better understand when the sewer servicing the 1250 site will be available? Any information on this would be greatly appreciated.

Thanks,

Derrick Rice P. Eng Project Engineer, Community Development

Direct: 519-675-6644 Cell: 519-630-3627 Derrick.Rice@stantec.com

Stantec 600-171 Queens Avenue London ON N6A 5J7

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Reg Russwurm <<u>Reg.Russwurm@guelph.ca</u>>
Sent: Wednesday, July 21, 2021 5:01 PM
To: Rice, Derrick <<u>Derrick.Rice@stantec.com</u>>
Cc: Hendriksen, Chris (Vancouver) <<u>Chris.Hendriksen@stantec.com</u>>; Ike Umar
<<u>Ike.Umar@guelph.ca</u>>; Mary Angelo <<u>Mary.Angelo@guelph.ca</u>>; Colleen Gammie
<<u>Colleen.Gammie@guelph.ca</u>>

Subject: RE: Gordon Street Sanitary Sewer upgrades

Derrick,

The Gordon St EA has been completed so we're moving ahead with implementation. The City is currently preparing a RFP to retain an engineering firm to undertake final design starting later this year and construction in 2023. The sewers will be available earliest as late 2023 or more likely in 2024. We'll know better once the final design is completed and staging of works is better understood.

Ike Umar (cc'd) is the City's PM for the works.

• Reg

Sent: July 21, 2021 8:31 AM

To: Reg Russwurm <<u>Reg.Russwurm@guelph.ca</u>>

Cc: Hendriksen, Chris (Vancouver) <<u>Chris.Hendriksen@stantec.com</u>>; Arun Hindupur

<arun.hindupur@guelph.ca>

Subject: RE: Gordon Street Sanitary Sewer upgrades

[EXTERNAL EMAIL] Do not click links or attachments unless you recognize the sender and know the content is safe.

Good morning Reg,

I reached out to you last year regarding the Gordon Street sanitary sewer upgrades and our client was hoping we could get an update on the work. I see from the links you provided me that design is scheduled for 2021 and construction 2023, could you give any further insight on progress for the project and if there is an anticipated date of when the new sewers will be in service?

Thanks,

Derrick Rice P. Eng Project Engineer, Community Development

Direct: 519-675-6644 Cell: 519-630-3627 Derrick.Rice@stantec.com

Stantec 600-171 Queens Avenue London ON N6A 5J7

?

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Reg Russwurm <<u>Reg.Russwurm@guelph.ca</u>>
Sent: Wednesday, March 4, 2020 3:54 PM
To: Rice, Derrick <<u>Derrick.Rice@stantec.com</u>>
Cc: Hendriksen, Chris <<u>Chris.Hendriksen@stantec.com</u>>; Arun Hindupur
<arun.hindupur@guelph.ca>

Subject: RE: Gordon Street Sanitary Sewer upgrades

Derrick,

I can't commit to keep you current on the status of works. Please monitor the City's webpages concerning the EA's and get added to the circulation list.

https://guelph.ca/city-hall/planning-and-development/community-plansstudies/environment-planning/environmental-assessments/gordon-street-improvements/

https://guelph.ca/plans-and-strategies/water-and-wastewater-servicing-master-plan/

• Reg

From: Rice, Derrick <<u>Derrick.Rice@stantec.com</u>>
Sent: March 4, 2020 3:22 PM
To: Reg Russwurm <<u>Reg.Russwurm@guelph.ca</u>>
Cc: Hendriksen, Chris <<u>Chris.Hendriksen@stantec.com</u>>; Arun Hindupur
<<u>Arun.Hindupur@guelph.ca</u>>
Subject: RE: Gordon Street Sanitary Sewer upgrades

Thanks for the quick response Reg,

If you could keep us in the loop as things progress it would be greatly appreciated.

Thanks,

Derrick Rice EIT Engineering Intern, Community Development

Direct: 519-675-6644 Cell: 519-630-3627 Derrick.Rice@stantec.com

Stantec 600-171 Queens Avenue London ON N6A 5J7

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Reg Russwurm <<u>Reg.Russwurm@guelph.ca</u>>
Sent: Wednesday, March 4, 2020 2:50 PM
To: Rice, Derrick <<u>Derrick.Rice@stantec.com</u>>
Cc: Hendriksen, Chris <<u>Chris.Hendriksen@stantec.com</u>>; Arun Hindupur
<<u>arun.hindupur@guelph.ca</u>>
Subject: RE: Gordon Street Sanitary Sewer upgrades

Derrick,

The sizing of the sanitary system along Gordon Street is being considered within the overall Master Wastewater Servicing Plan currently underway. Sizing takes into account future growth including this development.

Funding is allocated in the capital budget for design to commence later this year, but I would not want to say construction will be completed in 2021. There is a large scope of work to complete plus two EA's to wrap up. We'll know much better when the new sewer will be in service once the road related EA and the Wastewater Servicing Master Plan EA are complete.

Reg Russwurm, MBA, P.Eng, **Manager, Design and Construction** Engineering and Transportation Services, **Infrastructure, Development and Enterprise City of Guelph** 519-822-1260 extension 2765 reg.russwurm@guelph.ca

guelph.ca facebook.com/cityofguelph @cityofguelph

• Reg

From: Rice, Derrick <<u>Derrick.Rice@stantec.com</u>>
Sent: March 4, 2020 11:44 AM
To: Reg Russwurm <<u>Reg.Russwurm@guelph.ca</u>>
Cc: Hendriksen, Chris <<u>Chris.Hendriksen@stantec.com</u>>
Subject: RE: Gordon Street Sanitary Sewer upgrades

Hi Reg,

We had previously corresponded with Daryush Esmaili about the Gordon Street Sanitary Sewer upgrades to ensure that our development at 1250 Gordon Street (encompasses 9 Valley, 1242, 1250 and 1260 Gordon) would be considered in the sanitary sewer upgrade planned on Gordon Street. He had confirmed our development would be accommodated in the sizing of the planned upgrade back in June of 2019. I just wanted to contact you to find out if there are any updates on this project that you can provide?

If you have any questions please feel free to contact me.

Thanks,

Derrick Rice EIT Engineering Intern, Community Development

Direct: 519-675-6644 Cell: 519-630-3627 Derrick.Rice@stantec.com

Stantec 600-171 Queens Avenue London ON N6A 5J7

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Engineering General Delivery <<u>Engineering@guelph.ca</u>>
Sent: Wednesday, March 4, 2020 11:33 AM
To: Rice, Derrick <<u>Derrick.Rice@stantec.com</u>>
Cc: Reg Russwurm <<u>Reg.Russwurm@guelph.ca</u>>
Subject: RE: Gordon Street Sanitary Sewer upgrades

Good morning Mr. Rice,

Unfortunately Daryush Esmaili is no longer with the City of Guelph. Reg Russwurm is now the Manager of Design and Construction with Engineering and Transportation Services.

I have cc'ed him on this email in the hopes he can help provide the information you require.

Thank you,

Steve Wark, Clerical Assistant II Engineering and Transportation Services, Infrastructure, Development and Enterprise City of Guelph 519-822-1260 extension 2338 steve.wark@guelph.ca

From: Rice, Derrick <<u>Derrick.Rice@stantec.com</u>>
Sent: March 4, 2020 10:07 AM
To: Engineering General Delivery <<u>Engineering@guelph.ca</u>>
Subject: Gordon Street Sanitary Sewer upgrades

Hi,

I am trying to contact Daryush Esmaili regarding the Gordon Street Sanitary Sewer upgrades but seem to be getting a bounce back email from guelph.ca, could you please forward my contact information along to Daryush or let me know what I need to do to fix the issue?

Thanks,

Derrick Rice EIT Engineering Intern, Community Development

Direct: 519-675-6644 Cell: 519-630-3627 Derrick.Rice@stantec.com

Stantec 600-171 Queens Avenue London ON N6A 5J7

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

This e-mail message (including attachments, if any) is intended for the use

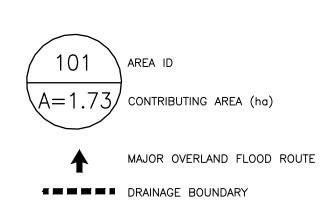
of the individual to whom it is addressed and may contain information that is privileged and confidential. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender and erase this e-mail message immediately.

FUNCTIONAL SERVICING REPORT FOR 1242, 1250, 1260 & 1270 GORDON STREET AND 9 VALLEY ROAD – GUELPH ON

APPENDIX D – SWM FIGURES, MODELS & SUPPORTING DATA

ORIGINAL SHEET - ANSI D

Stantec 600-171 Queens Avenue


London ON N6A 5J7 Tel. 519-645-2007 www.stantec.com

Liability Note:

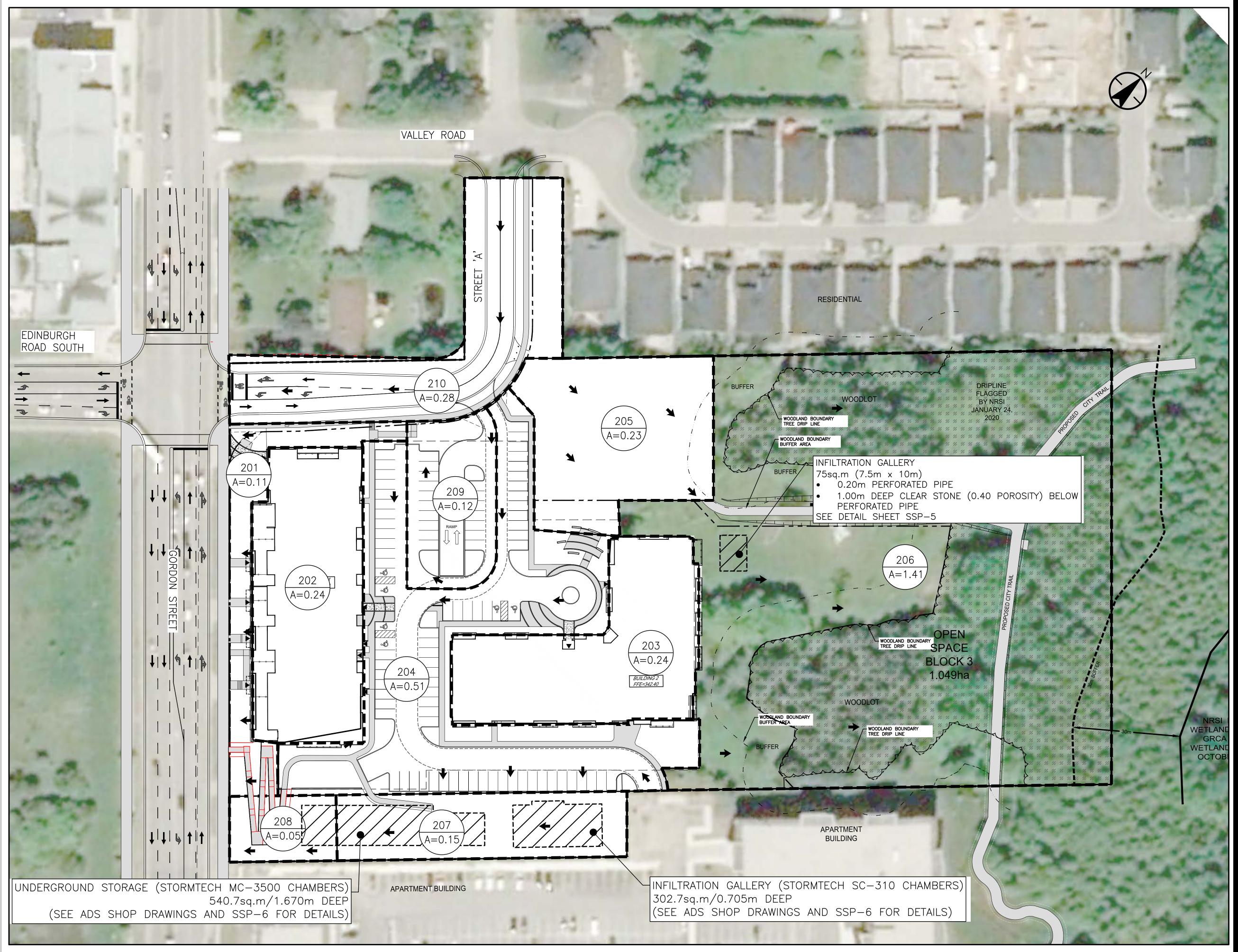
The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

Notes

- <u>CITY OF GUELPH BENCHMARK 225</u> <u>ELEVATION 338.665</u> LOCATION: 1221 GORDON STREET
 EXISTING SURVEY COMPLETED BY BSR&D (NOVEMBER, 4 2014)
 THE CONTRACTOR IS TO VERIFY ALL EXISTING ELEVATIONS AND EXISTING CONDITIONS AND TO REPORT ANY DISCREPANCIES TO THE CONSULTING ENGINEER
 SITE PLAN PREPARED BY STANTEC, DATED JANUARY, 2020.

1. SITE PLAN REVISIONS		JAC	CJH	21.05.14
Revision		Ву	Appd.	YY.MM.DD
2. FOR SITE PLAN APPROVAL		JAC	CJH	21.05.14
1. FOR SITE PLAN APPROVAL		JAC	CJH	20.03.24
Issued		Ву	Appd.	YY.MM.DD
File Name: 161413684_c-sd_ex	JAC	CJH	JAC	19.05.31
	Dwn.	Chkd.	Dsgn.	YY.MM.DD
Permit-Seal				

Client/Project TRICAR DEVELOPMENTS INC.


1250 GORDON STREET

GUELPH, ON

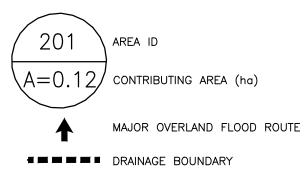
Title

EXISTING STORM DRAINAGE CONDITIONS

Project No. 161413684	Scale 0 4 1:400	12 20m
Drawing No.	Sheet	Revision
1	1 of 2	1

ORIGINAL SHEET - ANSI D

Stantec 600-171 Queens Avenue London ON N6A 5J7 Tel. 519-645-2007 www.stantec.com


Liability Note:

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

Notes

- <u>CITY OF GUELPH BENCHMARK 225</u> <u>ELEVATION 338.665</u> LOCATION: 1221 GORDON STREET
 EXISTING SURVEY COMPLETED BY BSR&D (NOVEMBER, 4 2014)
 THE CONTRACTOR IS TO VERIFY ALL EXISTING ELEVATIONS AND EXISTING CONDITIONS AND TO REPORT ANY DISCREPANCIES TO THE CONSULTING ENGINEER
 SITE PLAN PREPARED BY STANTEC, DATED JANUARY, 2020.

Legend

2. SWM DESIGN REVISIONS		JAC	DW	22.05.31
2. SITE PLAN REVISIONS		JAC	CJH	21.07.30
1. SITE PLAN REVISIONS		JAC	CJH	21.05.14
Revision		Ву	Appd.	YY.MM.DD
File Name: 161413684_c-sd_prop	JAC		JAC	19.05.31
	Dwn.	Chkd.	Dsgn.	YY.MM.DD
Permit-Seal			-	

Client/Project TRICAR DEVELOPMENTS INC.

1250 GORDON STREET

GUELPH, ON

Title

PROPOSED STORM DRAINAGE CONDITIONS

Project No.	Scale _{0 4}	12 20m
161413684	1:400	
Drawing No.	Sheet	Revision
2	2 of 2	2

HYDROLOGIC MODELING INPUTS

Subject:	MIDUSS Parameters
Proiect:	1242-1260 Gordon and 9 Valley
Project No.:	161413684
Client:	Tricar
Date:	June 6, 2022

Table 1: CN Values									
Land Use				Hy	drologic Soil Typ	ре			
		A	AB	В	BC	С	CD	D	
Meadow	"Good"	30	44	58	65	71	75	78	USDA
Woodlot	"Fair"	36	48	60	67	73	76	79	USDA
Lawns	"Good"	39	50	61	68	74	77	80	USDA
Pasture/Range		49	55	60	70	79	82	84	USDA
Crop		64	70	74	79	81	84	85	USDA
Gravel		76	81	85	87	89	90	91	USDA
Bare Soil (Fallow)		77	82	86	89	91	93	94	USDA
Impervious		98	98	98	98	98	98	98	USDA

USDA - United States Department of Agriculture (2004), National Engineering Handbook, Part 630 Hydrology,

Table 2: Pre-Development Parameters

Area Description	Catchment Number	Area	Flow Path Length	CN	Slope	Impervious Coverage
		(ha)	(m)		(%)	(%)
To Gordon Street	101	1.33	70.00	67	2.50	10
To Torrance Watershed	102	1.72	150.00	67	5.00	1
TOTAL AREA		3.05				

Table 3: Post-Development Parameters

Area Description	Catchment Number	Area	Flow Path Length	CN	Slope	Imperviousnes s
		(ha)	(m)		(%)	(%)
Uncontrolled to Gordon	201	0.11	6	68	2.0	70
West Building (Building 1)	202	0.24	15	68	0.5	99
East Buidling (Building 2)	203	0.24	15	68	0.5	99
Parking	204	0.51	10	68	2.0	90
Future Park	205	0.23	50	68	2.0	10
Uncontrolled to Torrance	206	1.41	120	68	5.0	0
Landscaped Area to Storage	207	0.15	75	68	3.0	50
Uncontrolled Landscape Area	208	0.05	35	68	25.0	70
Parking (Minor to Storage)	209	0.12	10	68	2.0	99
Street A (outside site limits)	210	0.28	-	-		
TOTAL AREA		3.34				

 Notes:
 3.34

 Slope measure from topographic contours and pre-development drainage plan Imperviousness estimated from development plan (existing buildings imperviouness estimated to be 99%) Street A is not included within the hydrologic model as it is outside the site boundaries

Project:	1242-1260 Gordon and 9 Valley
Project Number:	161413684
Project Location:	Guelph
Designer:	DW
Date:	6/6/2022
Pond Name:	Subsurface Storage

Stormwater Management Facility Design Calculations

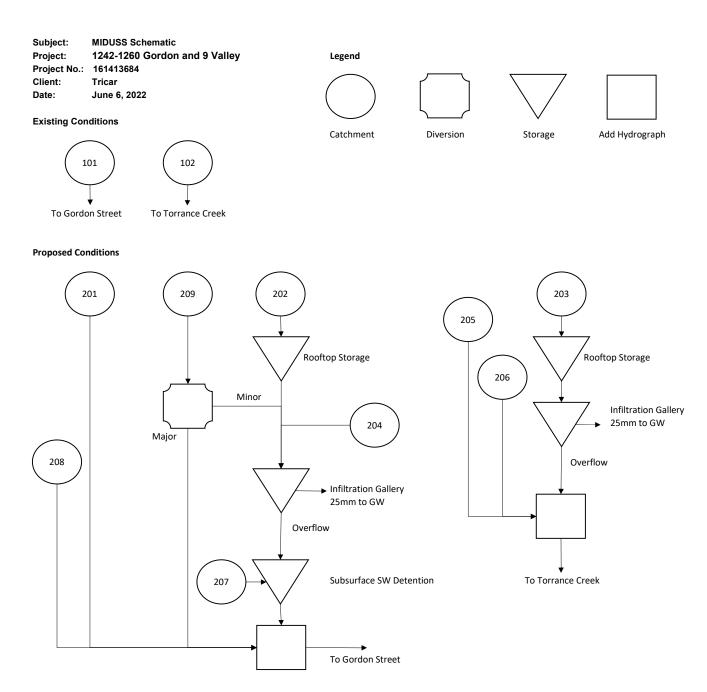
	Stornwa	er wana	gement	Facility D	esign Calcula	alions				
	R	ating Curve		Estimated	Volume Es	stimation			Outlet Structure Controls	
			Storage	Detention		Active Storage				
	Elevation	Discharge		Time	Elevation	Depth	Elevation	Orifice #1	Parameters	S
	(m)	(m³/s)	(m ³)	(hrs)	(m)	(m)	(m)	(m³/s)		
Drifice Invert	336.62				336.62		336.6		Orifice #1 Elev (m)	Orifice Coeff.
Stone Invert	336.81	0.0047	5.40		336.81	0.19	336.8	0.005	336.62	0.620
	336.84	0.0051	5.49	0.3	336.84	0.2	336.8	0.005	Orifice #1-Midpoint (mm)	Perimeter (m)
	336.86	0.0055	10.98	0.6	336.86	0.2	336.9	0.005	336.66	0.236
	336.89	0.0058	16.47	0.9	336.89	0.3	336.9	0.006	Orifice Diameter (mm)	Area (m²)
	336.91	0.0061	21.96	1.1	336.91	0.3	336.9	0.006	75	0.004
	336.94	0.0064	27.45	1.4	336.94	0.32	336.9	0.006	Weir Coeff. (Semi-Circular)	Orientation
	336.96	0.0067	32.94	1.6	336.96	0.34	337.0	0.007	1.62	Vertical
	336.99	0.0070	38.44	1.8	336.99	0.37	337.0	0.007		
	337.01	0.0072	43.93	2.0	337.01	0.39	337.0	0.007		
Base of Chamber	337.04	0.0075	49.42	2.2	337.04	0.42	337.0	0.007		
	337.06	0.0077	61.00	2.7	337.06	0.44	337.1	0.008		
	337.09	0.0080	72.54	3.1	337.09	0.47	337.1	0.008		
	337.11	0.0082	84.03	3.5	337.11	0.49	337.1	0.008		
	337.14	0.0084	95.49	3.9	337.14	0.52	337.1	0.008		
	337.17	0.0086	106.91	4.2	337.17	0.55	337.2	0.009		
	337.19	0.0089	118.29	4.6	337.19	0.57	337.2	0.009		
	337.22	0.0091	129.63	4.9	337.22	0.60	337.2	0.009		
	337.24	0.0093	140.93	5.3	337.24	0.62	337.2	0.009		
	337.27	0.0095	152.18	5.6	337.27	0.65	337.3	0.009		
	337.29	0.0097	163.37	5.9	337.29	0.67	337.3	0.010		
	337.32	0.0099	174.52	6.3	337.32	0.70	337.3	0.010		
	337.34	0.0100	185.62	6.6	337.34	0.72	337.3	0.010		
	337.37	0.0102	196.66	6.9	337.37	0.75	337.4	0.010		
	337.39	0.0104	207.64	7.2	337.39	0.77	337.4	0.010		
	337.42	0.0106	218.55	7.5	337.42	0.80	337.4	0.011		
	337.45	0.0108	229.40	7.7	337.45	0.83	337.4	0.011		
	337.47	0.0109	240.19	8.0	337.47	0.85	337.5	0.011		
	337.50	0.0111	250.89	8.3	337.50	0.88	337.5	0.011		
	337.52	0.0113	261.53	8.5	337.52	0.90	337.5	0.011]	
	337.55	0.0114	272.08	8.8	337.55	0.93	337.5	0.011		
	337.57	0.0116	282.55	9.1	337.57	0.95	337.6	0.012		
	337.60	0.0118	292.93	9.3	337.60	0.98	337.6	0.012		
	337.62	0.0119	303.21	9.5	337.62	1.00	337.6	0.012		
	337.65	0.0121	313.40	9.8	337.65	1.03	337.6	0.012		
	337.67	0.0122	323.48	10.0	337.67	1.05	337.7	0.012		
	337.70	0.0124	333.46	10.2	337.70	1.08	337.7	0.012		
	337.72	0.0125	343.31	10.5	337.72	1.10	337.7	0.012		
	337.75	0.0120	353.05	10.0	337.75	1.13	337.7	0.013		
	337.78	0.0128	362.66	10.7	337.78	1.16	337.8	0.013		
	337.80	0.0120	372.14	11.1	337.80	1.18	337.8	0.013		
	337.83	0.0130	381.46	11.3	337.83	1.21	337.8	0.013		
		0.0131	390.64	11.5	337.85		337.9	0.013		
	337.85					1.23				
	337.88	0.0134	399.65	11.7	337.88	1.26	337.9	0.013		
	337.90	0.0135	408.48	11.8	337.90	1.28	337.9	0.014		
	337.93	0.0137	417.12	12.0	337.93	1.31	337.9	0.014		
	337.95	0.0138	425.55	12.2	337.95	1.33	338.0	0.014		
	337.98	0.0139	433.75	12.4	337.98	1.36	338.0	0.014		
	338.00	0.0141	441.69	12.5	338.00	1.38	338.0	0.014		
	338.03	0.0142	449.32	12.7	338.03	1.41	338.0	0.014		
	338.05	0.0143	456.58	12.8	338.05	1.43	338.1	0.014		
	338.08	0.0145	463.26	12.9	338.08	1.46	338.1	0.014		
	338.11	0.0146	469.45	13.0	338.11	1.49	338.1	0.015		
	338.13	0.0147	475.45	13.2	338.13	1.51	338.1	0.015		
	338.16	0.0149	481.27	13.3	338.16	1.54	338.2	0.015		
Fop of Chamber	338.18	0.0150	486.86	13.4	338.18	1.56	338.2	0.015		
	338.21	0.0151	492.35	13.5	338.21	1.59	338.2	0.015		
	338.23	0.0152	497.84	13.6	338.23	1.61	338.2	0.015		
	338.26	0.0153	503.33	13.7	338.26	1.64	338.3	0.015		
	338.28	0.0155	508.82	13.8	338.28	1.66	338.3	0.015		
	338.31	0.0156	514.31	13.9	338.31	1.69	338.3	0.016		
	338.33	0.0157	519.81	14.0	338.33	1.71	338.3	0.016		
	338.36	0.0158	525.30	14.1	338.36	1.74	338.4	0.016		
	338.38	0.0159	530.79	14.2	338.38	1.76	338.4	0.016		
	338.41	0.0161	536.28	14.3	338.41	1.79	338.4	0.016		
	338.44	0.0162	541.77	14.4	338.44	1.82	338.4	0.016		
	338.46	0.0163	547.26	14.4	338.46	1.84	338.5	0.016		
		0.0164	552.75	14.5	338.49	1.87	338.5	0.016	1	
Top of Stone	338.49	0.0204	552.75	14.5	339.49	2.38	339.5	0.020		
Top of Stone	338.49 339.00	0.0204	002.10		000.10			0.020		
op of Stone	338.49 339.00	0.0204		<u>ا ا</u>						
Гор of Stone	339.00					-				
op of Stone	339.00	wn Time Ca	alculations	Graater the			w Calculations:		tion	
Fop of Stone	339.00		alculations		0.1 m above Orific		w Calculations:	Orifice flow equat		
Fop of Stone	339.00		alculations		0.1 m above Orific ₂ +Q ₁)/2]/3600		w Calculations:	Orifice flow equal $Q = C_*A_*(2_*g_*H)^{0.1}$		
Fop of Stone	339.00		lculations	T=[v ₂ -v ₁]/[(Q ₂ where	₂ +Q ₁)/2]/3600		w Calculations:	Orifice flow equal $Q = C_*A_*(2_*g_*H)^{0.5}$ where	5	
Fop of Stone	339.00		alculations	T=[v ₂ -v ₁]/[(Q ₂ where			w Calculations:	Orifice flow equal $Q = C_*A_*(2_*g_*H)^{0.1}$	5	
Γοp of Stone	339.00		alculations	T=[v ₂ -v ₁]/[(Q ₂ where T=drawdown	₂ +Q ₁)/2]/3600 time in hours		w Calculations:	Orifice flow equation $Q = C \cdot A \cdot (2 \cdot g \cdot H)^{0.4}$ where C = orifice coefficients	5 fficient	
Γοp of Stone	339.00		alculations	$T=[v_2-v_1]/[(Q_2 where T=drawdown v_2=starting products)]$	₂ +Q ₁)/2]/3600 n time in hours ond volume		w Calculations:	Orifice flow equation $Q = C \cdot A \cdot (2 \cdot g \cdot H)^{0.1}$ where C = orifice coertiant $A = area of orifice$	5 fficient fice	
Top of Stone	339.00		alculations	$T=[v_2-v_1]/[(Q_2 where T=drawdown v_2=starting provide v_2=ending p$	₂ +Q ₁)/2]/3600 i time in hours ond volume ond volume		w Calculations:	Orifice flow equation $Q = C \cdot A \cdot (2 \cdot g \cdot H)^{0.1}$ where C = orifice coerticates $A = area of orifinates g = acceleration$	5 fficient fice n due to gravity	
Γοp of Stone	339.00		alculations	$T=[v_2-v_1]/[(Q_2 where T=drawdown v_2=starting products)]$	₂ +Q ₁)/2]/3600 i time in hours ond volume ond volume		w Calculations:	Orifice flow equation $Q = C \cdot A \cdot (2 \cdot g \cdot H)^{0.1}$ where C = orifice coerticates $A = area of orifinates g = acceleration$	5 fficient fice	
Γορ of Stone	339.00		alculations	$T=[v_2-v_1]/[(Q_2 where T=drawdown v_2=starting provide v_2=ending p$	₂ +Q ₁)/2]/3600 n time in hours ond volume ond volume low		w Calculations:	Orifice flow equation $Q = C \cdot A \cdot (2 \cdot g \cdot H)^{0.1}$ where C = orifice coer A = area of orifing g = acceleration H = head above	5 fficient fice n due to gravity	the orifice diameter
Γοp of Stone	339.00		lculations	$T=[v_2-v_1]/[(Q_2 where T=drawdown v_2=starting provestor v_2=ending provestor Q_2=starting for the starting for the starti$	₂ +Q ₁)/2]/3600 n time in hours ond volume ond volume low		w Calculations:	Orifice flow equation $Q = C \cdot A \cdot (2 \cdot g \cdot H)^{0.1}$ where C = orifice coer A = area of orifing g = acceleration H = head above	5 ficient fice n due to gravity e centre line of orifice	the orifice diameter
Γοp of Stone	339.00		alculations	$T=[v_2-v_1]/[(Q_2 where T=drawdown v_2=starting pr v_2=ending pr Q_2=starting fr Q_1=ending for Q_1=ending fo$	₂ +Q ₁)/2]/3600 n time in hours ond volume ond volume low	ce 1 Invert	w Calculations:	Orifice flow equation $Q = C \cdot A \cdot (2 \cdot g \cdot H)^{0.1}$ where C = orifice coer A = area of orifing g = acceleration H = head abovy Note: used when Sharp crested set	5 fficient rice n due to gravity e centre line of orifice en water elevation is above 3/4 of mi-circular weir equation	the orifice diameter
Γοp of Stone	339.00		alculations	$T=[v_2-v_1]/[(Q_2 where T=drawdown v_2=starting product Q_2=starting for Q_1=ending for Q_1=ending for Q_1=ending for Q_2=tarting for Q_1=tarting for Q_2=tarting for Q_2=ta$	₂ +Q ₁)/2]/3600 n time in hours ond volume ond volume flow ow 0.1 m above Orifice	ce 1 Invert	w Calculations:	Orifice flow equation $Q = C \cdot A \cdot (2 \cdot g \cdot H)^{0.1}$ where C = orifice coer A = area of orifing g = acceleration H = head abovy Note: used when Sharp crested set	5 fficient rice n due to gravity e centre line of orifice en water elevation is above 3/4 of mi-circular weir equation	the orifice diameter
Fop of Stone	339.00		alculations	$T=[v_2-v_1]/[(Q_2)]$ where T=drawdown v_2=starting pr v_2=ending pr Q_2=starting fill Q_1=ending fill From 0.0 to 0 T=[v_2-v_1]/[(Q_2)]	₂ +Q ₁)/2]/3600 n time in hours ond volume ond volume flow ow 0.1 m above Orifice	ce 1 Invert	w Calculations:	Orifice flow equation $Q = C \cdot A \cdot (2 \cdot g \cdot H)^{0.1}$ where $C = orifice coer A = area of orifing g = acceleration H = head abovy Note: used when Sharp crested set Q = C^* D^{2.5} \cdot (H/D)^{1.1}$	5 fficient rice n due to gravity e centre line of orifice en water elevation is above 3/4 of mi-circular weir equation	the orifice diameter
Top of Stone	339.00		alculations	$T=[v_2-v_1]/[(Q_2)]$ where T=drawdown v_2=starting pr v_2=ending pr Q_2=starting fr Q_1=ending fle From 0.0 to 0 T=[v_2-v_1]/[(Q_2)] where	2+Q ₁)/2]/3600 1 time in hours ond volume 10w 10w 0.1 m above Orifice 2)]/3600	ce 1 Invert	w Calculations:	Orifice flow equations $Q = C \cdot A \cdot (2 \cdot g \cdot H)^{0.1}$ where $C = orifice coer A = area of orifing g = acceleration H = head abovy Note: used when Sharp crested set Q = C^* D^{2.5} \cdot (H/D)^{1.1}where$	5 fficient fice n due to gravity e centre line of orifice en water elevation is above 3/4 of mi-circular weir equation 88	the orifice diameter
Fop of Stone	339.00		alculations	$T=[v_2-v_1]/[(Q_2)]$ where T=drawdown v_2=starting pr v_2=ending pr Q_2=starting fr Q_1=ending fle From 0.0 to 0 T=[v_2-v_1]/[(Q_2)] where T=drawdown	2+Q ₁)/2]/3600 1 time in hours ond volume 10w 0.1 m above Orifice 2)]/3600 1 time in hours	ce 1 Invert	w Calculations:	Orifice flow equation $Q = C \cdot A \cdot (2 \cdot g \cdot H)^{0.1}$ where $C = orifice coer A = area of orifing g = acceleration H = head abovy Note: used when Q = C \cdot D^{2.5} \cdot (H/D)^{1.1}whereC = sharp cressed$	5 fficient fice n due to gravity e centre line of orifice en water elevation is above 3/4 of mi-circular weir equation 88 ted semi-circular weir coefficient	the orifice diameter
op of Stone	339.00		alculations	$T=[v_2-v_1]/[(Q_2)]$ where T=drawdown v_2=starting pr v_2=ending pc Q_2=starting for Q_1=ending for T=[v_2-v_1]/[(Q_2)] where T=drawdown v_2=starting pr	2+Q1)/2]/3600 time in hours ond volume tow tow 0.1 m above Orifica 2)]/3600 time in hours ond volume	ce 1 Invert	w Calculations:	Orifice flow equations $Q = C \cdot A \cdot (2 \cdot g \cdot H)^{0.1}$ where $C = orifice coer A = area of orifing g = acceleration H = head abovy Note: used when Sharp crested set Q = C^* D^{2.5} \cdot (H/D)^{1.1}where$	5 fficient fice n due to gravity e centre line of orifice en water elevation is above 3/4 of mi-circular weir equation 88 ted semi-circular weir coefficient	the orifice diameter
Top of Stone	339.00		alculations	$T=[v_2-v_1]/[(Q_2)]$ where T=drawdown v_2=starting pr v_2=ending pr Q_2=starting fr Q_1=ending fle From 0.0 to 0 T=[v_2-v_1]/[(Q_2)] where T=drawdown	2+Q1)/2]/3600 time in hours ond volume tow tow 0.1 m above Orifica 2)]/3600 time in hours ond volume	ce 1 Invert	w Calculations:	Orifice flow equation $Q = C \cdot A \cdot (2 \cdot g \cdot H)^{0.1}$ where $C = orifice coer A = area of orifing g = acceleration H = head abovy Note: used when Q = C \cdot D^{2.5} \cdot (H/D)^{1.1}whereC = sharp cressed$	5 fficient fice n due to gravity e centre line of orifice en water elevation is above 3/4 of mi-circular weir equation 88 ted semi-circular weir coefficient f orifice	the orifice diameter

Top of Stone

Subject:Rooftop Storage CalculationsProject:1242-1260 Gordon and 9 ValleyProject No. 161413684Client:Tricar

Date: June 6, 2022

Rating Curve for 1 ha


Q (m3/s)	Storage (ha-m)	Depth (m)
0.0226	0.023	0.023
0.0275	0.031	0.031
0.034	0.045	0.045
0.042	0.061	0.061
0.208	0.0625	0.0625

Catchment 202/203

Site Ara

0.24		
Q (m3/s)	Storage (ha-m)	Depth (m)
0.0054	0.0055	0.023
0.0066	0.0074	0.031
0.0082	0.0108	0.045
0.0101	0.0146	
0.0499	0.0150	0.063

.

MIDUSS FILES

Stantec | 1250 Gordon

```
Output File (4.7) GOREX.out
                                   opened 2022-06-06 21:07
      Units used are defined by G =
                                     9.810
         300
              600
                      5.000
                                  are MAXDT MAXHYD & DTMIN values
      Licensee: Paragon Engineering Limited
35
      COMMENT
     5
           line(s) of comment
      **********
      1242-1260 Gordon Street and 9 Valley - 1614-13684
      Stormwater Management Modelling
      May 2022 - D. Williams
      START
14
           1=Zero; 2=Define
     1
35
      COMMENT
     7
           line(s) of comment
      *******
      25-mm STORM
      ******
2
      STORM
               1=Chicago;2=Huff;3=User;4=Cdn1hr;5=Historic
          1
    509.000
               Coefficient a
      6.000
               Constant b
                             (min)
       .799
               Exponent c
       .400
               Fraction to peak r
    240.000
               Duration ó 1500 min
              25.028 mm
                           Total depth
3
      IMPERVIOUS
               Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
               Manning "n"
       .013
     98.000
               SCS Curve No or C
       .100
               Ia/S Coefficient
               Initial Abstraction
      2.000
      START
14
     1
           1=Zero; 2=Define
35
      COMMENT
           line(s) of comment
     3
      *****************************
      Catchment 101 - Existing to Gordon
      CATCHMENT
4
    101.000
               ID No.ó 99999
      1.330
               Area in hectares
               Length (PERV) metres
    110.000
      2.500
               Gradient (%)
     10.000
               Per cent Impervious
     70.000
               Length (IMPERV)
```

```
.000
                %Imp. with Zero Dpth
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
        .250
                Manning "n"
                SCS Curve No or C
     67.000
                Ia/S Coefficient
        .100
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
           1
                        .000
                                   .000
                                              .000 c.m/s
              .018
                        .736
              .110
                                   .173
                                            C perv/imperv/total
15
      ADD RUNOFF
             .018
                        .018
                                   .000
                                              .000 c.m/s
14
      START
           1=Zero; 2=Define
     1
35
      COMMENT
      3
           line(s) of comment
       Catchment 102 - Existing to Torrence
       *****************************
      CATCHMENT
4
    102.000
                ID No.ó 99999
      1.720
                Area in hectares
     150.000
                Length (PERV) metres
                Gradient (%)
      5.000
                Per cent Impervious
      1.000
                Length (IMPERV)
      1.000
                %Imp. with Zero Dpth
        .000
          1
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
                Manning "n"
        .250
      67.000
                SCS Curve No or C
                Ia/S Coefficient
        .100
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
              .005
                        .000
                                   .000
                                              .000 c.m/s
              .110
                        .650
                                   .116
                                            C perv/imperv/total
15
      ADD RUNOFF
                                              .000 c.m/s
              .005
                        .005
                                   .000
      START
14
     1
           1=Zero; 2=Define
35
      COMMENT
           line(s) of comment
     7
       ******
      2-Year STORM
       ********
      STORM
2
                1=Chicago;2=Huff;3=User;4=Cdn1hr;5=Historic
          1
     743.000
                Coefficient a
```

```
6.000
                Constant b
                               (min)
        .798
                Exponent c
        .400
                Fraction to peak r
    180.000
                Duration ó 1500 min
                34.438 mm
                             Total depth
3
      IMPERVIOUS
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
                Manning "n"
        .013
                SCS Curve No or C
     98.000
                Ia/S Coefficient
        .100
      2.000
                Initial Abstraction
14
      START
           1=Zero; 2=Define
     1
35
      COMMENT
      3
            line(s) of comment
       *****************************
      Catchment 101 - Existing to Gordon
       *****************************
4
      CATCHMENT
     101.000
                ID No.ó 99999
      1.330
                Area in hectares
                Length (PERV) metres
     110.000
                Gradient (%)
      2.500
                Per cent Impervious
     10.000
                Length (IMPERV)
     70.000
        .000
                %Imp. with Zero Dpth
          1
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
                Manning "n"
        .250
      67.000
                SCS Curve No or C
        .100
                Ia/S Coefficient
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
              .027
                         .000
                                   .000
                                              .000 c.m/s
              .163
                         .799
                                   .226
                                            C perv/imperv/total
15
      ADD RUNOFF
                                              .000 c.m/s
              .027
                         .027
                                   .000
14
      START
     1
            1=Zero; 2=Define
35
      COMMENT
      3
           line(s) of comment
       Catchment 102 - Existing to Torrence
       CATCHMENT
4
     102.000
                ID No.ó 99999
      1.720
                Area in hectares
                Length (PERV) metres
     150.000
      5.000
                Gradient (%)
      1.000
                Per cent Impervious
      1.000
                Length (IMPERV)
```

```
.000
                %Imp. with Zero Dpth
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
        .250
                Manning "n"
                SCS Curve No or C
     67.000
                Ia/S Coefficient
        .100
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
           1
                        .000
                                   .000
                                              .000 c.m/s
              .015
                        .698
              .163
                                   .168
                                            C perv/imperv/total
15
      ADD RUNOFF
                        .015
                                   .000
                                              .000 c.m/s
              .015
14
      START
           1=Zero; 2=Define
     1
35
      COMMENT
      7
            line(s) of comment
       *******
      5-Year STORM
       ******
2
      STORM
                1=Chicago;2=Huff;3=User;4=Cdn1hr;5=Historic
          1
                Coefficient a
    1593.000
     11.000
                Constant b
                               (min)
        .879
                Exponent c
        .400
                Fraction to peak r
     180.000
                Duration ó 1500 min
               47.240 mm
                             Total depth
3
      IMPERVIOUS
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
                Manning "n"
        .013
     98.000
                SCS Curve No or C
        .100
                Ia/S Coefficient
                Initial Abstraction
      2.000
      START
14
      1
            1=Zero; 2=Define
35
      COMMENT
      3
           line(s) of comment
       *****************************
      Catchment 101 - Existing to Gordon
       CATCHMENT
4
     101.000
                ID No.ó 99999
      1.330
                Area in hectares
     110.000
                Length (PERV) metres
      2.500
                Gradient (%)
     10.000
                Per cent Impervious
     70.000
                Length (IMPERV)
```

```
.000
                %Imp. with Zero Dpth
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
        .250
                Manning "n"
                SCS Curve No or C
     67.000
                Ia/S Coefficient
        .100
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
                        .000
                                   .000
                                              .000 c.m/s
              .040
                        .841
              .226
                                   .287
                                            C perv/imperv/total
15
      ADD RUNOFF
             .040
                        .040
                                   .000
                                              .000 c.m/s
14
      START
           1=Zero; 2=Define
     1
35
      COMMENT
      3
           line(s) of comment
       Catchment 102 - Existing to Torrence
       *****************************
4
      CATCHMENT
    102.000
                ID No.ó 99999
      1.720
                Area in hectares
     150.000
                Length (PERV) metres
                Gradient (%)
      5.000
                Per cent Impervious
      1.000
                Length (IMPERV)
      1.000
                %Imp. with Zero Dpth
        .000
          1
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
                Manning "n"
        .250
      67.000
                SCS Curve No or C
                Ia/S Coefficient
        .100
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
              .038
                        .000
                                   .000
                                              .000 c.m/s
              .226
                        .739
                                   .231
                                            C perv/imperv/total
15
      ADD RUNOFF
                                              .000 c.m/s
              .038
                        .038
                                   .000
      START
14
     1
           1=Zero; 2=Define
35
      COMMENT
           line(s) of comment
     7
       ******
      100-Year STORM
       ********
2
      STORM
                1=Chicago;2=Huff;3=User;4=Cdn1hr;5=Historic
          1
   4688.000
                Coefficient a
```

```
17.000
                Constant b
                               (min)
        .925
                Exponent c
        .400
                Fraction to peak r
     180.000
                Duration ó 1500 min
                             Total depth
              106.103 mm
3
      IMPERVIOUS
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
                Manning "n"
        .013
                SCS Curve No or C
     98.000
                Ia/S Coefficient
        .100
      2.000
                Initial Abstraction
14
      START
           1=Zero; 2=Define
     1
35
      COMMENT
      3
            line(s) of comment
       *****************************
      Catchment 101 - Existing to Gordon
       *****************************
4
      CATCHMENT
     101.000
                ID No.ó 99999
      1.330
                Area in hectares
                Length (PERV) metres
     110.000
                Gradient (%)
      2.500
                Per cent Impervious
     10.000
                Length (IMPERV)
     70.000
        .000
                %Imp. with Zero Dpth
          1
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
                Manning "n"
        .250
      67.000
                SCS Curve No or C
        .100
                Ia/S Coefficient
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
              .191
                         .000
                                   .000
                                              .000 c.m/s
                        .920
              .426
                                   .475
                                            C perv/imperv/total
15
      ADD RUNOFF
                                              .000 c.m/s
              .191
                         .191
                                   .000
14
      START
     1
            1=Zero; 2=Define
35
      COMMENT
      3
           line(s) of comment
       Catchment 102 - Existing to Torrence
       CATCHMENT
4
     102.000
                ID No.ó 99999
      1.720
                Area in hectares
                Length (PERV) metres
     150.000
      5.000
                Gradient (%)
      1.000
                Per cent Impervious
      1.000
                Length (IMPERV)
```

	.000	%Imp	. with Zero	Dpth		
	1	Opti	on 1=SCS CN/	/C; 2=Horto	on; 3=Green-Ampt; 4=Re	epeat
	.250	Mann	ing "n"			
	67.000	SCS	Curve No or	С		
	.100	Ia/S	Coefficient	t		
	5.000	Init	ial Abstract	tion		
	1	Opti	on 1=Triang]	lr; 2=Recta	inglr; 3=SWM HYD; 4=Li	in. Reserv
		.251	.000	.000	.000 c.m/s	
		.425	.808	.429	C perv/imperv/tota]	L
15	ADD RUN	IOFF				
		.251	.251	.000	.000 c.m/s	
20	MANUAL					

```
Output File (4.7) GOR.out
                                   opened 2022-06-06 21:05
      Units used are defined by G =
                                     9.810
         300
              600
                      5.000
                                  are MAXDT MAXHYD & DTMIN values
      Licensee: Paragon Engineering Limited
35
      COMMENT
     5
           line(s) of comment
      **********
      1242-1260 Gordon Street and 9 Valley - 1614-13684
      Stormwater Management Modelling
      May 2022 - D. Williams
      START
14
           1=Zero; 2=Define
     1
35
      COMMENT
     7
           line(s) of comment
      *******
      25-mm STORM
      ******
2
      STORM
               1=Chicago;2=Huff;3=User;4=Cdn1hr;5=Historic
          1
    509.000
               Coefficient a
      6.000
               Constant b
                              (min)
       .799
               Exponent c
       .400
               Fraction to peak r
    240.000
               Duration ó 1500 min
               25.028 mm
                           Total depth
3
      IMPERVIOUS
               Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
               Manning "n"
       .013
     98.000
               SCS Curve No or C
       .100
               Ia/S Coefficient
               Initial Abstraction
      2.000
      START
14
     1
           1=Zero; 2=Define
35
      COMMENT
           line(s) of comment
     3
      *****************************
      Catchment 202 - RFTOP
      ******
4
      CATCHMENT
    202.000
               ID No.ó 99999
       .240
               Area in hectares
               Length (PERV) metres
      1.000
       .500
               Gradient (%)
     99.000
               Per cent Impervious
     15.000
               Length (IMPERV)
```

.000 %Imp. with Zero Dpth Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat 1 .250 Manning "n" SCS Curve No or C 68.000 Ia/S Coefficient .100 5.000 Initial Abstraction Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv 1 .000 .000 .000 c.m/s .031 .740 .114 .733 C perv/imperv/total 15 ADD RUNOFF .031 .031 .000 .000 c.m/s 35 COMMENT line(s) of comment 3 ******* West Building - Rooftop Control ********* 10 POND 6 Depth - Discharge - Volume sets .000 .000 .0 .023 .00540 55.2 .031 .00660 74.4 .045 .00820 108.0 .061 .0101 146.4 .063 .0499 150.0 Peak Outflow .003 c.m/s = Maximum Depth = .012 metres Maximum Storage = 28. c.m .031 .031 .003 .000 c.m/s 16 NEXT LINK .003 .003 .000 c.m/s .031 COMBINE 17 500 Junction Node No. .031 .003 .003 .003 c.m/s 14 START 1=Zero; 2=Define 1 35 COMMENT 3 line(s) of comment ******** Catchment 209 - Min to Storage - Maj Uncontrolled ****************************** 4 CATCHMENT 209.000 ID No.ó 99999 .120 Area in hectares Length (PERV) metres 5.000 Gradient (%) 2.000 Per cent Impervious 99.000 10.000 Length (IMPERV) .000 %Imp. with Zero Dpth Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat 1 Manning "n" .250

```
68.000
                 SCS Curve No or C
                 Ia/S Coefficient
        .100
       5.000
                 Initial Abstraction
                 Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
           1
                         .000
                                    .003
                                                .003 c.m/s
              .018
              .115
                         .736
                                     .729
                                             C perv/imperv/total
15
       ADD RUNOFF
                                                .003 c.m/s
              .018
                         .018
                                     .003
       DIVERT
12
                 U/S Node No.ó 99999
           1
                 Threshold Discharge
        .038
        .038
                 Max. Outflow reqd.
            Omax & Vol.Diverted =
                                       .000 c.m/s
                                                            .0 c.m
            No flow diverted
              .018
                         .018
                                    .018
                                                .003 c.m/s
16
       NEXT LINK
              .018
                         .018
                                    .018
                                                .003 c.m/s
35
       COMMENT
      3
            line(s) of comment
       *********
       Catchment 204
       ********
 4
       CATCHMENT
                 ID No.ó 99999
     204.000
        .510
                 Area in hectares
       4.000
                 Length (PERV) metres
       2.000
                 Gradient (%)
                 Per cent Impervious
      90.000
      10.000
                 Length (IMPERV)
        .000
                 %Imp. with Zero Dpth
                 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
           1
        .250
                 Manning "n"
      68.000
                 SCS Curve No or C
        .100
                 Ia/S Coefficient
       5.000
                 Initial Abstraction
                 Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
           1
                         .018
                                                .003 c.m/s
              .068
                                    .018
                         .736
                                     .674
                                             C perv/imperv/total
              .115
15
       ADD RUNOFF
              .068
                         .085
                                    .018
                                                .003 c.m/s
 9
       ROUTE
        .000
                 Conduit Length
                 No Conduit defined
        .000
                 Zero lag
        .000
                 Beta weighting factor
        .000
                 Routing timestep
        .000
                 No. of sub-reaches
           Ø
              .068
                         .085
                                                .003 c.m/s
                                     .085
17
       COMBINE
    500
            Junction Node No.
```

.068 .085 .085 .086 c.m/s 18 CONFLUENCE 500 Junction Node No. .068 .086 .085 .000 c.m/s 35 COMMENT line(s) of comment 3 Infiltration Chamber 10 POND 4 Depth - Discharge - Volume sets .000 .000 .0 .178 .00180 .1 .00190 .711 116.2 .712 .400 117.0 Peak Outflow .002 c.m/s = Maximum Depth = .685 metres Maximum Storage = 111. c.m .068 .086 .002 .000 c.m/s 16 NEXT LINK .068 .002 .002 .000 c.m/s 35 COMMENT 3 line(s) of comment ********** Catchment 207 ************************* 4 CATCHMENT ID No.ó 99999 207.000 .150 Area in hectares 75.000 Length (PERV) metres Gradient (%) 3.000 50.000 Per cent Impervious 35.000 Length (IMPERV) .000 %Imp. with Zero Dpth Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat 1 Manning "n" .250 68.000 SCS Curve No or C Ia/S Coefficient .100 5.000 Initial Abstraction Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv 1 .010 .002 .002 .000 c.m/s .115 .740 .427 C perv/imperv/total 15 ADD RUNOFF .000 c.m/s .010 .012 .002 35 COMMENT 3 line(s) of comment Storage 10 POND

9 Depth - Discharge - Volume sets .000 .000 .0 .190 .00470 .1 .00750 .420 49.4 .880 .0111 250.9 1.380 .0141 441.7 1.560 .0150 486.9 1.870 .0164 552.8 2.380 .0204 553.0 2.390 .200 553.1 Peak Outflow .005 c.m/s = Maximum Depth .209 metres = Maximum Storage = 4. c.m .010 .012 .005 .000 c.m/s 17 COMBINE 500 Junction Node No. .010 .012 .005 .005 c.m/s 22 FILE HYDROGRAPH 1 1=READ: 2=WRITE 1 is Filename D 3 1=Overland: 2=Inflow: 3=Outflow: 4=Temp'ary .010 .012 .000 .005 c.m/s 17 COMBINE 500 Junction Node No. .005 c.m/s .010 .012 .000 START 14 1 1=Zero; 2=Define 35 COMMENT 3 line(s) of comment Uncontrolled Flow to Gordon Street 4 CATCHMENT 201.000 ID No.ó 99999 .110 Area in hectares 6.000 Length (PERV) metres 2.000 Gradient (%) Per cent Impervious 70.000 6.000 Length (IMPERV) .000 %Imp. with Zero Dpth 1 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat Manning "n" .250 68.000 SCS Curve No or C Ia/S Coefficient .100 5.000 Initial Abstraction Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv 1 .000 .012 .000 .005 c.m/s .115 .722 .540 C perv/imperv/total 15 ADD RUNOFF .012 .012 .000 .005 c.m/s

```
35
      COMMENT
          line(s) of comment
     3
      Uncontrolled Flow to Gordon Street
      ******
4
      CATCHMENT
              ID No.ó 99999
    208.000
               Area in hectares
       .050
               Length (PERV) metres
     35.000
     25.000
               Gradient (%)
               Per cent Impervious
     70.000
               Length (IMPERV)
      6.000
       .000
              %Imp. with Zero Dpth
               Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
         1
              Manning "n"
       .250
     68.000
              SCS Curve No or C
               Ia/S Coefficient
       .100
      5.000
               Initial Abstraction
               Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
         1
            .005
                      .012
                                .000
                                         .005 c.m/s
                      .675
            .115
                               .507
                                       C perv/imperv/total
15
      ADD RUNOFF
            .005
                      .017
                                .000
                                         .005 c.m/s
9
      ROUTE
               Conduit Length
       .000
              No Conduit defined
       .000
       .000
               Zero lag
               Beta weighting factor
       .000
       .000
               Routing timestep
              No. of sub-reaches
         0
                      .017
                               .017
                                         .005 c.m/s
            .005
35
      COMMENT
          line(s) of comment
     3
      TOTAL FLOW TO GORDON
      17
      COMBINE
   500
          Junction Node No.
            .005
                      .017
                               .017
                                         .022 c.m/s
18
      CONFLUENCE
   500
          Junction Node No.
                               .017
            .005
                      .022
                                         .000 c.m/s
14
      START
     1
          1=Zero; 2=Define
35
      COMMENT
     3
          line(s) of comment
      Catchment 203 - RFTOP
      ******
4
      CATCHMENT
```

```
ID No.ó 99999
    203.000
       .240
                Area in hectares
      1.000
                Length (PERV) metres
                Gradient (%)
       .500
     99.000
                Per cent Impervious
     15.000
                Length (IMPERV)
                %Imp. with Zero Dpth
       .000
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
                Manning "n"
       .250
     68.000
                SCS Curve No or C
                Ia/S Coefficient
       .100
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
             .031
                        .000
                                  .017
                                            .000 c.m/s
                        .740
                                  .733
                                          C perv/imperv/total
             .114
15
      ADD RUNOFF
             .031
                        .031
                                  .017
                                             .000 c.m/s
35
      COMMENT
     3
           line(s) of comment
      ********
      East Building - Rooftop Control
      10
      POND
     6 Depth - Discharge - Volume sets
         .000
                     .000
                                  .0
         .023
                   .00540
                                55.2
         .031
                   .00660
                                74.4
         .045
                   .00820
                               108.0
         .061
                    .0101
                               146.4
         .063
                    .0499
                               150.0
      Peak Outflow
                     =
                            .003 c.m/s
                            .012 metres
      Maximum Depth
                     =
      Maximum Storage =
                             28. c.m
             .031
                        .031
                                  .003
                                             .000 c.m/s
16
      NEXT LINK
                                             .000 c.m/s
             .031
                        .003
                                  .003
35
      COMMENT
     3
           line(s) of comment
      EAST LID
      **********
10
      POND
     3 Depth - Discharge - Volume sets
                     .000
         .000
                                  .0
                  .000700
                                30.0
        1.000
                    .0500
                                31.0
        1.001
      Peak Outflow
                     =
                            .001 c.m/s
      Maximum Depth
                     =
                            .929 metres
      Maximum Storage =
                             28. c.m
             .031
                        .003
                                  .001
                                             .000 c.m/s
```

```
16
      NEXT LINK
                        .001
                                   .001
                                              .000 c.m/s
              .031
35
      COMMENT
           line(s) of comment
      3
       ***********
      Catchment 206 - Uncontrolled To Torrence
       ******
4
      CATCHMENT
                ID No.ó 99999
    206.000
      1.410
                Area in hectares
     120.000
                Length (PERV) metres
                Gradient (%)
      5.000
      1.000
                Per cent Impervious
      5.000
                Length (IMPERV)
        .000
                %Imp. with Zero Dpth
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
                Manning "n"
        .250
     68.000
                SCS Curve No or C
                Ia/S Coefficient
       .100
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
              .005
                        .001
                                   .001
                                              .000 c.m/s
                        .700
                                            C perv/imperv/total
              .115
                                   .121
15
      ADD RUNOFF
              .005
                        .005
                                   .001
                                              .000 c.m/s
      COMMENT
35
     3
           line(s) of comment
       ********
      Catchment 205 - Park Block - Uncontrolled to Torrence
       ********
4
      CATCHMENT
                ID No.ó 99999
     205.000
                Area in hectares
       .230
     50.000
                Length (PERV) metres
      2.000
                Gradient (%)
                Per cent Impervious
      10.000
                Length (IMPERV)
      5.000
                %Imp. with Zero Dpth
        .000
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
        .250
                Manning "n"
      68.000
                SCS Curve No or C
                Ia/S Coefficient
       .100
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
                        .005
                                   .001
                                              .000 c.m/s
              .004
                        .716
                                            C perv/imperv/total
              .115
                                   .175
15
      ADD RUNOFF
              .004
                        .006
                                   .001
                                              .000 c.m/s
14
      START
           1=Zero; 2=Define
      1
```

```
35
      COMMENT
           line(s) of comment
     7
      ********
      2 Year STORM
      ******
2
      STORM
                1=Chicago;2=Huff;3=User;4=Cdn1hr;5=Historic
          1
    743.000
                Coefficient a
      6.000
                Constant b
                               (min)
       .798
                Exponent c
       .400
                Fraction to peak r
     180.000
                Duration ó 1500 min
               34.438 mm
                             Total depth
3
      IMPERVIOUS
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
        .013
                Manning "n"
     98.000
                SCS Curve No or C
       .100
                Ia/S Coefficient
      2.000
                Initial Abstraction
14
      START
           1=Zero; 2=Define
     1
35
      COMMENT
     3
           line(s) of comment
      *********
      Catchment 202 - RFTOP
      ********
4
      CATCHMENT
                ID No.ó 99999
     202.000
       .240
                Area in hectares
      1.000
                Length (PERV) metres
                Gradient (%)
       .500
                Per cent Impervious
     99.000
     15.000
                Length (IMPERV)
                %Imp. with Zero Dpth
        .000
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
                Manning "n"
        .250
     68.000
                SCS Curve No or C
       .100
                Ia/S Coefficient
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
                        .000
                                   .000
                                              .000 c.m/s
             .051
                        .801
                                   .794
                                           C perv/imperv/total
             .168
15
      ADD RUNOFF
             .051
                        .051
                                   .001
                                              .000 c.m/s
35
      COMMENT
     3
           line(s) of comment
```

```
**********
      West Building - Rooftop Control
      ******
10
      POND
     6 Depth - Discharge - Volume sets
          .000
                     .000
                                   .0
          .023
                   .00540
                                 55.2
          .031
                   .00660
                                 74.4
          .045
                   .00820
                                108.0
         .061
                    .0101
                                146.4
          .063
                    .0499
                                150.0
      Peak Outflow
                      =
                             .004 c.m/s
      Maximum Depth
                             .019 metres
                      =
      Maximum Storage =
                              45. c.m
             .051
                        .051
                                   .004
                                              .000 c.m/s
16
      NEXT LINK
             .051
                        .004
                                   .004
                                              .000 c.m/s
17
      COMBINE
    500
           Junction Node No.
             .051
                        .004
                                   .004
                                              .004 c.m/s
14
      START
     1
           1=Zero; 2=Define
      COMMENT
35
     3
           line(s) of comment
      *********
      Catchment 209 - Min to Storage - Maj Uncontrolled
      ******
4
      CATCHMENT
     209.000
                ID No.ó 99999
       .120
                Area in hectares
      5.000
                Length (PERV) metres
      2.000
                Gradient (%)
     99.000
                Per cent Impervious
     10.000
                Length (IMPERV)
       .000
                %Imp. with Zero Dpth
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
                Manning "n"
       .250
     68.000
                SCS Curve No or C
       .100
                Ia/S Coefficient
      5.000
                Initial Abstraction
          1
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
                        .000
                                   .004
                                              .004 c.m/s
             .028
                        .787
             .168
                                   .781
                                           C perv/imperv/total
15
      ADD RUNOFF
             .028
                        .028
                                   .004
                                              .004 c.m/s
12
      DIVERT
                U/S Node No.ó 99999
          1
       .038
                Threshold Discharge
       .038
                Max. Outflow read.
           Qmax & Vol.Diverted =
                                      .000 c.m/s
                                                         .0 c.m
```

No flow diverted .028 .028 .028 .004 c.m/s 16 NEXT LINK .028 .028 .028 .004 c.m/s 35 COMMENT line(s) of comment 3 ******* Catchment 204 ***************************** 4 CATCHMENT ID No.ó 99999 204.000 .510 Area in hectares 4.000 Length (PERV) metres Gradient (%) 2.000 Per cent Impervious 90.000 10.000 Length (IMPERV) %Imp. with Zero Dpth .000 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat 1 Manning "n" .250 68.000 SCS Curve No or C .100 Ia/S Coefficient 5.000 Initial Abstraction Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv 1 .108 .028 .028 .004 c.m/s .168 .787 .725 C perv/imperv/total 15 ADD RUNOFF .108 .136 .028 .004 c.m/s 9 ROUTE .000 Conduit Length No Conduit defined .000 .000 Zero lag .000 Beta weighting factor Routing timestep .000 0 No. of sub-reaches .108 .136 .136 .004 c.m/s 17 COMBINE Junction Node No. 500 .108 .136 .136 .137 c.m/s 18 CONFLUENCE 500 Junction Node No. .108 .136 .137 .000 c.m/s 35 COMMENT 3 line(s) of comment ******** Infiltration Chamber ******* 10 POND 4 Depth - Discharge - Volume sets .000 .000 .0 .178 .00180 .1

.711 .00190 116.2 .712 .400 117.0 Peak Outflow .022 c.m/s = Maximum Depth .711 metres = Maximum Storage = 116. c.m .108 .137 .022 .000 c.m/s 16 NEXT LINK .022 .000 c.m/s .108 .022 COMMENT 35 3 line(s) of comment ***************************** Catchment 207 ****** 4 CATCHMENT ID No.ó 99999 207.000 .150 Area in hectares Length (PERV) metres 75.000 3.000 Gradient (%) Per cent Impervious 50.000 35.000 Length (IMPERV) %Imp. with Zero Dpth .000 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat 1 Manning "n" .250 68.000 SCS Curve No or C Ia/S Coefficient .100 5.000 Initial Abstraction 1 Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv .016 .022 .022 .000 c.m/s .169 .801 .485 C perv/imperv/total 15 ADD RUNOFF .025 .022 .000 c.m/s .016 35 COMMENT line(s) of comment 3 Storage ****** 10 POND 9 Depth - Discharge - Volume sets .000 .000 .0 .190 .00470 .1 .420 .00750 49.4 250.9 .880 .0111 1.380 .0141 441.7 .0150 1.560 486.9 1.870 .0164 552.8 .0204 2.380 553.0 2.390 .200 553.1 Peak Outflow = .007 c.m/s Maximum Depth .396 metres = Maximum Storage = 44. c.m

.016 .025 .007 .000 c.m/s 17 COMBINE 500 Junction Node No. .016 .025 .007 .007 c.m/s 22 FILE HYDROGRAPH 1 1=READ: 2=WRITE is Filename 1 D 1=Overland: 2=Inflow: 3=Outflow: 4=Temp'ary 3 .000 .016 .025 .007 c.m/s 17 COMBINE 500 Junction Node No. .016 .025 .000 .007 c.m/s 14 START 1 1=Zero; 2=Define 35 COMMENT line(s) of comment 3 Uncontrolled Flow to Gordon Street *********** 4 CATCHMENT 201.000 ID No.ó 99999 .110 Area in hectares Length (PERV) metres 6.000 2.000 Gradient (%) Per cent Impervious 70.000 6.000 Length (IMPERV) .000 %Imp. with Zero Dpth 1 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat .250 Manning "n" SCS Curve No or C 68.000 .100 Ia/S Coefficient 5.000 Initial Abstraction Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv 1 .000 .019 .000 .007 c.m/s .168 .770 .590 C perv/imperv/total 15 ADD RUNOFF .019 .019 .000 .007 c.m/s 35 COMMENT line(s) of comment 3 Uncontrolled Flow to Gordon Street ******** 4 CATCHMENT 208.000 ID No.ó 99999 Area in hectares .050 Length (PERV) metres 35.000 25.000 Gradient (%) Per cent Impervious 70.000 6.000 Length (IMPERV) .000 %Imp. with Zero Dpth

Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat 1 Manning "n" .250 68.000 SCS Curve No or C .100 Ia/S Coefficient 5.000 Initial Abstraction Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv 1 .019 .008 .000 .007 c.m/s .715 .551 C perv/imperv/total .168 15 ADD RUNOFF .027 .008 .000 .007 c.m/s 9 ROUTE Conduit Length .000 .000 No Conduit defined .000 Zero lag Beta weighting factor .000 Routing timestep .000 No. of sub-reaches 0 .008 .027 .027 .007 c.m/s 35 COMMENT line(s) of comment 3 ****** TOTAL FLOW TO GORDON 17 COMBINE 500 Junction Node No. .008 .027 .027 .032 c.m/s 18 CONFLUENCE 500 Junction Node No. .008 .032 .027 .000 c.m/s 14 START 1=Zero; 2=Define 1 35 COMMENT 3 line(s) of comment Catchment 203 - RFTOP ****** 4 CATCHMENT ID No.ó 99999 203.000 .240 Area in hectares 1.000 Length (PERV) metres .500 Gradient (%) 99.000 Per cent Impervious 15.000 Length (IMPERV) %Imp. with Zero Dpth .000 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat 1 Manning "n" .250 68.000 SCS Curve No or C .100 Ia/S Coefficient 5.000 Initial Abstraction 1 Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv

.051 .000 .027 .000 c.m/s .168 .794 C perv/imperv/total .801 15 ADD RUNOFF .051 .051 .027 .000 c.m/s 35 COMMENT line(s) of comment 3 ********* East Building - Rooftop Control ********* 10 POND 6 Depth - Discharge - Volume sets .000 .000 .0 .023 .00540 55.2 .031 74.4 .00660 .045 .00820 108.0 .061 .0101 146.4 .0499 .063 150.0 Peak Outflow .004 c.m/s = .019 metres Maximum Depth = Maximum Storage = 45. c.m .051 .051 .004 .000 c.m/s 16 NEXT LINK .051 .004 .004 .000 c.m/s 35 COMMENT 3 line(s) of comment ******** EAST LID ******* 10 POND 3 Depth - Discharge - Volume sets .000 .000 .0 1.000 .000700 30.0 1.001 .0500 31.0 Peak Outflow .003 c.m/s = Maximum Depth 1.000 metres = Maximum Storage = 30. c.m .051 .004 .003 .000 c.m/s 16 NEXT LINK .003 .003 .000 c.m/s .051 35 COMMENT 3 line(s) of comment ********** Catchment 206 - Uncontrolled To Torrence ****** 4 CATCHMENT ID No.ó 99999 206.000 1.410 Area in hectares 120.000 Length (PERV) metres 5.000 Gradient (%) Per cent Impervious 1.000

```
5.000
                Length (IMPERV)
        .000
                %Imp. with Zero Dpth
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
                Manning "n"
        .250
      68.000
                SCS Curve No or C
       .100
                Ia/S Coefficient
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
              .014
                        .003
                                   .003
                                              .000 c.m/s
                        .738
                                   .175
                                           C perv/imperv/total
              .169
15
      ADD RUNOFF
              .014
                        .015
                                   .003
                                              .000 c.m/s
35
      COMMENT
      3
           line(s) of comment
       Catchment 205 - Park Block - Uncontrolled to Torrence
       *************************
4
      CATCHMENT
                ID No.ó 99999
     205.000
       .230
                Area in hectares
     50.000
                Length (PERV) metres
      2.000
                Gradient (%)
                Per cent Impervious
     10.000
                Length (IMPERV)
      5.000
        .000
                %Imp. with Zero Dpth
          1
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
        .250
                Manning "n"
      68.000
                SCS Curve No or C
       .100
                Ia/S Coefficient
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
                        .015
                                   .003
              .006
                                              .000 c.m/s
              .169
                        .763
                                   .228
                                           C perv/imperv/total
15
      ADD RUNOFF
                        .017
                                   .003
                                              .000 c.m/s
              .006
14
      START
     1
           1=Zero; 2=Define
      COMMENT
35
           line(s) of comment
     7
       *******
      5 Year STORM
       *****
2
      STORM
          1
                1=Chicago;2=Huff;3=User;4=Cdn1hr;5=Historic
   1593.000
                Coefficient a
      11.000
                Constant b
                               (min)
```

```
.879
                Exponent c
        .400
                Fraction to peak r
     240.000
                Duration ó 1500 min
               49.540 mm
                             Total depth
3
      IMPERVIOUS
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
                Manning "n"
        .013
     98.000
                SCS Curve No or C
                Ia/S Coefficient
        .100
      2.000
                Initial Abstraction
14
      START
     1
           1=Zero; 2=Define
35
      COMMENT
      3
           line(s) of comment
       ************************
      Catchment 202 - RFTOP
       *************************
4
      CATCHMENT
                ID No.ó 99999
     202.000
        .240
                Area in hectares
      1.000
                Length (PERV) metres
        .500
                Gradient (%)
                Per cent Impervious
     99.000
                Length (IMPERV)
     15.000
        .000
                %Imp. with Zero Dpth
          1
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
        .250
                Manning "n"
      68.000
                SCS Curve No or C
        .100
                Ia/S Coefficient
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
           1
                         .000
                                              .000 c.m/s
              .072
                                   .003
              .239
                         .854
                                    .847
                                            C perv/imperv/total
15
      ADD RUNOFF
                         .072
                                   .003
                                              .000 c.m/s
              .072
35
      COMMENT
      3
           line(s) of comment
       West Building - Rooftop Control
      **********
10
      POND
      6 Depth - Discharge - Volume sets
                                    .0
          .000
                      .000
          .023
                    .00540
                                 55.2
          .031
                    .00660
                                 74.4
          .045
                    .00820
                                108.0
          .061
                     .0101
                                146.4
                     .0499
          .063
                                150.0
      Peak Outflow
                             .006 c.m/s
                      =
      Maximum Depth
                      =
                              .029 metres
```

Maximum Storage = 69. c.m .072 .000 c.m/s .072 .006 16 NEXT LINK .072 .006 .006 .000 c.m/s 17 COMBINE 500 Junction Node No. .006 .006 c.m/s .072 .006 START 14 1=Zero; 2=Define 1 35 COMMENT line(s) of comment 3 ******* Catchment 209 - Min to Storage - Maj Uncontrolled ***** 4 CATCHMENT ID No.ó 99999 209.000 Area in hectares .120 5.000 Length (PERV) metres Gradient (%) 2.000 99.000 Per cent Impervious 10.000 Length (IMPERV) %Imp. with Zero Dpth .000 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat 1 .250 Manning "n" 68.000 SCS Curve No or C Ia/S Coefficient .100 5.000 Initial Abstraction 1 Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv .038 .000 .006 .006 c.m/s .833 .828 C perv/imperv/total .242 15 ADD RUNOFF .038 .006 .038 .006 c.m/s 12 DIVERT U/S Node No.ó 99999 1 .038 Threshold Discharge Max. Outflow reqd. .038 Qmax & Vol.Diverted = .000 c.m/s .0 c.m Majors From 209 .038 .038 .038 .006 c.m/s 16 NEXT LINK .038 .038 .038 .006 c.m/s 35 COMMENT 3 line(s) of comment ******** Catchment 204 ******* 4 CATCHMENT ID No.ó 99999 204.000 .510 Area in hectares 4.000 Length (PERV) metres

2.000 Gradient (%) Per cent Impervious 90.000 10.000 Length (IMPERV) %Imp. with Zero Dpth .000 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat 1 .250 Manning "n" 68.000 SCS Curve No or C .100 Ia/S Coefficient Initial Abstraction 5.000 Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv 1 .149 .038 .038 .006 c.m/s .774 .833 C perv/imperv/total .242 15 ADD RUNOFF .149 .187 .038 .006 c.m/s 9 ROUTE .000 Conduit Length No Conduit defined .000 .000 Zero lag Beta weighting factor .000 .000 Routing timestep No. of sub-reaches 0 .149 .187 .187 .006 c.m/s COMBINE 17 500 Junction Node No. .149 .187 .187 .190 c.m/s CONFLUENCE 18 500 Junction Node No. .149 .190 .187 .000 c.m/s 35 COMMENT 3 line(s) of comment *********** Infiltration Chamber ***** 10 POND 4 Depth - Discharge - Volume sets .000 .000 .0 .178 .00180 .1 116.2 .711 .00190 .712 .400 117.0 Peak Outflow .121 c.m/s = .711 metres Maximum Depth = Maximum Storage = 116. c.m .149 .190 .121 .000 c.m/s 16 NEXT LINK .121 .149 .121 .000 c.m/s 35 COMMENT 3 line(s) of comment ***************************** Catchment 207 ******

```
4
      CATCHMENT
                ID No.ó 99999
     207.000
        .150
                Area in hectares
                Length (PERV) metres
     75.000
      3.000
                Gradient (%)
     50.000
                Per cent Impervious
      35.000
                Length (IMPERV)
                %Imp. with Zero Dpth
        .000
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
        .250
                Manning "n"
                SCS Curve No or C
     68.000
        .100
                Ia/S Coefficient
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
              .023
                         .121
                                    .121
                                               .000 c.m/s
                        .854
                                   .549
                                            C perv/imperv/total
              .244
15
      ADD RUNOFF
                         .140
                                   .121
                                               .000 c.m/s
              .023
35
      COMMENT
            line(s) of comment
     3
      *********
      Storage
       10
      POND
     9 Depth - Discharge - Volume sets
          .000
                      .000
                                   .0
          .190
                    .00470
                                   .1
                    .00750
                                 49.4
          .420
          .880
                     .0111
                                250.9
                     .0141
                                441.7
         1.380
         1.560
                     .0150
                                486.9
                     .0164
        1.870
                                552.8
        2.380
                     .0204
                                553.0
                     .200
         2.390
                                553.1
      Peak Outflow
                      =
                              .009 c.m/s
      Maximum Depth
                      =
                              .651 metres
      Maximum Storage =
                             150. c.m
              .023
                         .140
                                    .009
                                               .000 c.m/s
17
      COMBINE
    500
           Junction Node No.
                        .140
              .023
                                    .009
                                               .009 c.m/s
22
      FILE HYDROGRAPH
            1=READ: 2=WRITE
      1
                                is Filename
      1
           D
           1=Overland: 2=Inflow: 3=Outflow: 4=Temp'ary
      3
              .023
                         .140
                                    .000
                                               .009 c.m/s
17
      COMBINE
            Junction Node No.
    500
              .023
                     .140
                                   .000
                                              .009 c.m/s
14
      START
```

```
1=Zero; 2=Define
     1
35
      COMMENT
           line(s) of comment
     3
      Uncontrolled Flow to Gordon Street
      ******
      CATCHMENT
4
    201.000
                ID No.ó 99999
       .110
                Area in hectares
                Length (PERV) metres
      6.000
      2.000
                Gradient (%)
                Per cent Impervious
     70.000
      6.000
                Length (IMPERV)
       .000
                %Imp. with Zero Dpth
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
               Manning "n"
       .250
                SCS Curve No or C
     68.000
                Ia/S Coefficient
       .100
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
             .025
                       .000
                                  .000
                                            .009 c.m/s
             .243
                       .810
                                  .639
                                          C perv/imperv/total
15
      ADD RUNOFF
                       .025
                                  .000
                                            .009 c.m/s
             .025
35
      COMMENT
           line(s) of comment
     3
      Uncontrolled Flow to Gordon Street
      4
      CATCHMENT
                ID No.ó 99999
    208.000
       .050
                Area in hectares
     35.000
                Length (PERV) metres
     25.000
                Gradient (%)
     70.000
                Per cent Impervious
      6.000
                Length (IMPERV)
                %Imp. with Zero Dpth
       .000
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
       .250
               Manning "n"
     68.000
                SCS Curve No or C
       .100
                Ia/S Coefficient
      5.000
                Initial Abstraction
          1
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
                       .025
                                  .000
                                            .009 c.m/s
             .011
                       .756
             .243
                                          C perv/imperv/total
                                  .602
15
      ADD RUNOFF
                                  .000
             .011
                       .036
                                            .009 c.m/s
9
      ROUTE
       .000
                Conduit Length
       .000
                No Conduit defined
```

.000 Zero lag Beta weighting factor .000 .000 Routing timestep No. of sub-reaches 0 .011 .036 .036 .009 c.m/s 35 COMMENT line(s) of comment 3 TOTAL FLOW TO GORDON 17 COMBINE 500 Junction Node No. .011 .036 .036 .041 c.m/s 18 CONFLUENCE 500 Junction Node No. .011 .041 .036 .000 c.m/s 14 START 1=Zero; 2=Define 1 35 COMMENT line(s) of comment 3 ********************************** Catchment 203 - RFTOP ***************************** 4 CATCHMENT 203.000 ID No.ó 99999 .240 Area in hectares 1.000 Length (PERV) metres Gradient (%) .500 Per cent Impervious 99.000 Length (IMPERV) 15.000 %Imp. with Zero Dpth .000 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat 1 Manning "n" .250 68,000 SCS Curve No or C .100 Ia/S Coefficient 5.000 Initial Abstraction Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv 1 .000 .036 .000 c.m/s .072 .239 .854 .847 C perv/imperv/total 15 ADD RUNOFF .072 .072 .036 .000 c.m/s 35 COMMENT 3 line(s) of comment East Building - Rooftop Control 10 POND 6 Depth - Discharge - Volume sets .000 .000 .0 55.2 .023 .00540

.031 .00660 74.4 .045 .00820 108.0 .061 .0101 146.4 .0499 .063 150.0 Peak Outflow .006 c.m/s = Maximum Depth = .029 metres Maximum Storage = 69. c.m .072 .072 .000 c.m/s .006 16 NEXT LINK .006 .006 .000 c.m/s .072 35 COMMENT 3 line(s) of comment ******** EAST LID ********** POND 10 3 Depth - Discharge - Volume sets .000 .000 .0 1.000 .000700 30.0 1.001 .0500 31.0 Peak Outflow = .006 c.m/s Maximum Depth = 1.000 metres Maximum Storage = 30. c.m .072 .006 .006 .000 c.m/s 16 NEXT LINK .072 .006 .006 .000 c.m/s 35 COMMENT 3 line(s) of comment ********** Catchment 206 - Uncontrolled To Torrence ******** 4 CATCHMENT ID No.ó 99999 206.000 1.410 Area in hectares 120.000 Length (PERV) metres Gradient (%) 5.000 Per cent Impervious 1.000 Length (IMPERV) 5.000 .000 %Imp. with Zero Dpth Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat 1 .250 Manning "n" 68.000 SCS Curve No or C Ia/S Coefficient .100 5.000 Initial Abstraction Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv 1 .000 c.m/s .038 .006 .006 .244 .776 .249 C perv/imperv/total 15 ADD RUNOFF .039 .006 .000 c.m/s .038 35 COMMENT

```
3
            line(s) of comment
       ************************************
      Catchment 205 - Park Block - Uncontrolled to Torrence
       ******
      CATCHMENT
4
     205.000
                ID No.ó 99999
        .230
                Area in hectares
     50.000
                Length (PERV) metres
                Gradient (%)
      2.000
                Per cent Impervious
      10.000
      5.000
                Length (IMPERV)
        .000
                %Imp. with Zero Dpth
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
                Manning "n"
        .250
      68.000
                SCS Curve No or C
                Ia/S Coefficient
        .100
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
              .008
                         .039
                                   .006
                                               .000 c.m/s
              .244
                         .800
                                    .300
                                            C perv/imperv/total
15
      ADD RUNOFF
              .008
                         .046
                                    .006
                                               .000 c.m/s
      START
14
           1=Zero; 2=Define
     1
35
      COMMENT
           line(s) of comment
      7
       ******
        100 Year STORM
       *******
2
      STORM
                1=Chicago;2=Huff;3=User;4=Cdn1hr;5=Historic
          1
   4688.000
                Coefficient a
      17.000
                Constant b
                               (min)
        .925
                Exponent c
        .400
                Fraction to peak r
    180.000
                Duration ó 1500 min
              106.103 mm
                             Total depth
      IMPERVIOUS
3
          1
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
                Manning "n"
        .013
                SCS Curve No or C
     98.000
                Ia/S Coefficient
        .100
      2.000
                Initial Abstraction
14
      START
           1=Zero; 2=Define
     1
35
      COMMENT
```

```
line(s) of comment
     3
      *******
      Catchment 202 - RFTOP
      ******
      CATCHMENT
4
    202.000
                ID No.ó 99999
       .240
                Area in hectares
      1.000
                Length (PERV) metres
                Gradient (%)
       .500
     99.000
                Per cent Impervious
     15.000
                Length (IMPERV)
       .000
                %Imp. with Zero Dpth
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
                Manning "n"
       .250
     68.000
                SCS Curve No or C
                Ia/S Coefficient
       .100
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
             .155
                        .000
                                  .006
                                             .000 c.m/s
             .429
                        .920
                                  .915
                                           C perv/imperv/total
15
      ADD RUNOFF
             .155
                        .155
                                  .006
                                             .000 c.m/s
35
      COMMENT
           line(s) of comment
     3
      West Building - Rooftop Control
      **********
10
      POND
     6 Depth - Discharge - Volume sets
         .000
                     .000
                                  .0
                                55.2
         .023
                   .00540
         .031
                                74.4
                   .00660
         .045
                               108.0
                   .00820
         .061
                    .0101
                               146.4
         .063
                    .0499
                               150.0
      Peak Outflow
                      =
                             .049 c.m/s
      Maximum Depth
                     =
                            .062 metres
      Maximum Storage =
                            150. c.m
             .155
                       .155
                                             .000 c.m/s
                                  .049
16
      NEXT LINK
             .155
                        .049
                                  .049
                                             .000 c.m/s
17
      COMBINE
   500
           Junction Node No.
             .155
                        .049
                                  .049
                                             .049 c.m/s
14
      START
           1=Zero; 2=Define
     1
35
      COMMENT
     3
           line(s) of comment
      *********
      Catchment 209 - Min to Storage - Maj Uncontrolled
```

************************* 4 CATCHMENT 209.000 ID No.ó 99999 .120 Area in hectares Length (PERV) metres 5.000 2.000 Gradient (%) Per cent Impervious 99.000 Length (IMPERV) 10.000 %Imp. with Zero Dpth .000 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat 1 .250 Manning "n" SCS Curve No or C 68.000 .100 Ia/S Coefficient 5.000 Initial Abstraction Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv 1 .000 .049 .049 c.m/s .077 .429 .876 C perv/imperv/total .872 15 ADD RUNOFF .077 .077 .049 .049 c.m/s 12 DIVERT U/S Node No.ó 99999 1 .038 Threshold Discharge Max. Outflow read. .038 Qmax & Vol.Diverted = .039 c.m/s 14.9 c.m Majors From 209 .077 .077 .038 .049 c.m/s 16 NEXT LINK .077 .038 .038 .049 c.m/s 35 COMMENT 3 line(s) of comment ********* Catchment 204 ***************************** 4 CATCHMENT 204.000 ID No.ó 99999 .510 Area in hectares Length (PERV) metres 4.000 Gradient (%) 2.000 90.000 Per cent Impervious 10.000 Length (IMPERV) .000 %Imp. with Zero Dpth Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat 1 Manning "n" .250 SCS Curve No or C 68.000 .100 Ia/S Coefficient 5.000 Initial Abstraction Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv 1 .307 .038 .038 .049 c.m/s .427 .876 .831 C perv/imperv/total 15 ADD RUNOFF

	.3	307	.345	.038	.049	c.m/s
9	ROUTE					
	.000	Conduit	Length			
	.000		uit define	ed		
		Zero la	-			
	.000		ighting fa	actor		
		-	timestep			
	0		sub-reache			,
4 7		307	.345	.345	.049	c.m/s
17	COMBINE	tion Nod				
		tion Node		245	252	
18	CONFLUENC	307 Se	.345	.345	.352	c.m/s
10		tion Node	a No			
			.352	.345	999	c.m/s
35	COMMENT			• 5-5	.000	C • III/ 5
		e(s) of co	omment			
		• •	*******	*****		
	Infiltrat	ion Cham	ber			
	*******	*******	*******	*****		
10	POND					
	4 Depth -			e sets		
	.000	.00	90	.0		
		.001		.1		
		.0019		116.2		
		.40		117.0		
			.351			
			.712			
	Maximum 2	storage =	.352	> C.M 2E1	000	c.m/s
16	NEXT LINK		. 552		.000	C.III/ S
10			.351	351	999	c.m/s
35	COMMENT				.000	C • III/ 5
		e(s) of co	omment			
		• •	*******	**		
	Catchment	207				
	*******	*******	*******	**		
4	CATCHMENT	Γ				
	207.000	ID No.ó	99999			
	.150		hectares			
	75.000	-	(PERV) met	res		
	3.000	Gradien	• •			
	50.000		t Impervio	bus		
	35.000		(IMPERV))t.h		
	.000 1	•	ith Zero [1-SCS_CN/(•	2-600	en-Ampt; 4=Repeat
	.250	Manning		, z=norton;	2-01.66	ampt, 4=Repeat
	68.000	0	ve No or (-		
	.100		efficient	-		
	5.000		Abstracti	ion		
	2.300	0101				

Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv 1 .000 c.m/s .051 .351 .351 .436 .919 .678 C perv/imperv/total 15 ADD RUNOFF .051 .402 .351 .000 c.m/s 35 COMMENT line(s) of comment 3 ********** Storage 10 POND 9 Depth - Discharge - Volume sets .000 .000 .0 .1 .190 .00470 .00750 49.4 .420 .880 .0111 250.9 1.380 .0141 441.7 1.560 .0150 486.9 1.870 .0164 552.8 2.380 .0204 553.0 .200 2.390 553.1 Peak Outflow = .016 c.m/s Maximum Depth = 1.677 metres Maximum Storage = 512. c.m .051 .000 c.m/s .402 .016 COMBINE 17 500 Junction Node No. .051 .402 .016 .016 c.m/s 22 FILE HYDROGRAPH 1=READ: 2=WRITE 1 1 is Filename D 3 1=Overland: 2=Inflow: 3=Outflow: 4=Temp'ary .051 .402 .039 .016 c.m/s 17 COMBINE 500 Junction Node No. .051 .402 .039 .047 c.m/s START 14 1 1=Zero; 2=Define 35 COMMENT 3 line(s) of comment ********** Uncontrolled Flow to Gordon Street ************* CATCHMENT 4 201.000 ID No.ó 99999 .110 Area in hectares 6.000 Length (PERV) metres Gradient (%) 2.000 70.000 Per cent Impervious 6.000 Length (IMPERV)

```
.000
               %Imp. with Zero Dpth
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
       .250
                Manning "n"
     68.000
                SCS Curve No or C
                Ia/S Coefficient
       .100
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
                       .000
                                  .039
                                            .047 c.m/s
             .055
                       .841
             .432
                                  .718
                                          C perv/imperv/total
      ADD RUNOFF
15
             .055
                       .055
                                  .039
                                            .047 c.m/s
35
      COMMENT
           line(s) of comment
     3
      Uncontrolled Flow to Gordon Street
      4
      CATCHMENT
    208.000
               ID No.ó 99999
       .050
                Area in hectares
     35.000
                Length (PERV) metres
     25.000
                Gradient (%)
                Per cent Impervious
     70.000
      6.000
                Length (IMPERV)
       .000
                %Imp. with Zero Dpth
                Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
          1
               Manning "n"
       .250
     68.000
                SCS Curve No or C
       .100
                Ia/S Coefficient
      5.000
                Initial Abstraction
                Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
             .024
                       .055
                                 .039
                                            .047 c.m/s
             .433
                       .803
                                  .692
                                          C perv/imperv/total
15
      ADD RUNOFF
             .024
                                 .039
                       .080
                                            .047 c.m/s
9
      ROUTE
                Conduit Length
       .000
                No Conduit defined
       .000
       .000
                Zero lag
       .000
                Beta weighting factor
       .000
                Routing timestep
          0
                No. of sub-reaches
             .024
                       .080
                                  .080
                                            .047 c.m/s
35
      COMMENT
           line(s) of comment
     3
      TOTAL FLOW TO GORDON
      *****
17
      COMBINE
   500
           Junction Node No.
             .024
                       .080
                                  .080
                                            .127 c.m/s
```

18 CONFLUENCE Junction Node No. 500 .024 .080 .000 c.m/s .127 START 14 1=Zero; 2=Define 1 35 COMMENT 3 line(s) of comment ********* Catchment 203 - RFTOP ************************* 4 CATCHMENT 203.000 ID No.ó 99999 .240 Area in hectares 1.000 Length (PERV) metres .500 Gradient (%) Per cent Impervious 99.000 Length (IMPERV) 15.000 .000 %Imp. with Zero Dpth Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat 1 .250 Manning "n" 68.000 SCS Curve No or C .100 Ia/S Coefficient 5.000 Initial Abstraction Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv 1 .000 .080 .000 c.m/s .155 .920 .429 .915 C perv/imperv/total 15 ADD RUNOFF .155 .155 .080 .000 c.m/s 35 COMMENT line(s) of comment 3 East Building - Rooftop Control 10 POND 6 Depth - Discharge - Volume sets .000 .000 .0 .023 .00540 55.2 .031 .00660 74.4 .045 .00820 108.0 .061 .0101 146.4 .0499 .063 150.0 Peak Outflow = .049 c.m/s Maximum Depth = .062 metres Maximum Storage = 150. c.m .155 .155 .049 .000 c.m/s 16 NEXT LINK .049 .155 .049 .000 c.m/s 35 COMMENT line(s) of comment 3 **********

```
EAST LID
      10
      POND
     3 Depth - Discharge - Volume sets
         .000
                    .000
                                 .0
        1.000
                  .000700
                               30.0
        1.001
                   .0500
                               31.0
      Peak Outflow
                     =
                            .030 c.m/s
                           1.001 metres
      Maximum Depth
                     =
      Maximum Storage =
                            31. c.m
             .155
                       .049
                                 .030
                                            .000 c.m/s
16
      NEXT LINK
                       .030
                                 .030
                                            .000 c.m/s
             .155
35
      COMMENT
     3
           line(s) of comment
      **********
      Catchment 206 - Uncontrolled To Torrence
      ******
      CATCHMENT
4
    206.000
               ID No.ó 99999
      1.410
               Area in hectares
    120.000
               Length (PERV) metres
               Gradient (%)
      5.000
               Per cent Impervious
      1.000
               Length (IMPERV)
      5.000
       .000
               %Imp. with Zero Dpth
          1
               Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
               Manning "n"
       .250
     68.000
               SCS Curve No or C
       .100
               Ia/S Coefficient
      5.000
               Initial Abstraction
               Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
          1
             .229
                       .030
                                 .030
                                            .000 c.m/s
                       .813
             .436
                                 .440
                                          C perv/imperv/total
15
      ADD RUNOFF
             .229
                                            .000 c.m/s
                       .245
                                 .030
35
      COMMENT
     3
           line(s) of comment
      Catchment 205 - Park Block - Uncontrolled to Torrence
      ******
      CATCHMENT
4
               ID No.ó 99999
    205.000
               Area in hectares
       .230
               Length (PERV) metres
     50.000
               Gradient (%)
      2.000
     10.000
               Per cent Impervious
      5.000
               Length (IMPERV)
       .000
               %Imp. with Zero Dpth
          1
               Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
```

	.250	Mannin	g "n"		
	68.000	SCS Cu	rve No or C		
	.100	Ia/S C	oefficient		
	5.000	Initia	l Abstractio	n	
	1	Option	1=Trianglr;	2=Recta	nglr; 3=SWM HYD; 4=Lin. Reserv
		.043	.245	.030	.000 c.m/s
		.436	.831	.476	C perv/imperv/total
15	ADD RUN	OFF			
		.043	.283	.030	.000 c.m/s
20	MANUAL				

INFILTRATION GALLERY PARAMETERS

Subject:Infiltration InformationProject:1242-1260 Gordon and 9 ValleyProject No.:161413684Client:TricarDate:June 6, 2022

East Infiltration Gallery - Stone Gallery

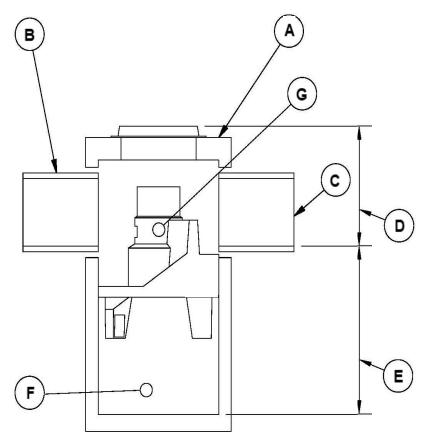
Infiltration Rate	32 mm/hr
Void Ratio	0.4
Depth	1 m
Footprint Provided	75 m²
Volume	30 m ³
Outflow Rate	0.0007 m³/s
Drawdown	12.5 hr

South Infiltration Gallery - StormTech® Infiltration Rate	23 mm/hr
Max Depth	0.705 m
Footprint Provided	302.7 m²
Voume	116.2 m³
Outflow Rate	0.0019 m³/s
Drawdown	16.7 hr

WATER QUALITY

Stantec | 1250 Gordon

Project Name:	1242-1260 Gordon St.		
Consulting Engineer:	Stantec		
Location:	Guelph, ON		
Sizing Completed By:	C. Neath	Email:	cody.neath@ads-pipe.com


Treatment Requirements			
Treatment Goal:	Enhanced (MOE)		
Selected Parameters:	80% TSS 90% Volume		
Selected Unit:	FD-4HC		

Summary of Results					
Model	TSS Removal	Volume Treated			
FD-4HC	87.0%	>90%			
FD-5HC	91.0%	>90%			
FD-6HC	93.0%	>90%			
FD-8HC	95.0%	>90%			
FD-10HC	97.0%	>90%			

FD-4HC Specification			
Unit Diameter (A):	1,200 mm		
Inlet Pipe Diameter (B):	450 mm		
Outlet Pipe Diameter (C):	450 mm		
Height, T/G to Outlet Invert (D):	1630 mm		
Height, Outlet Invert to Sump (E):	1515 mm		
Sediment Storage Capacity (F):	0.78 m³		
Oil Storage Capacity (G):	723 L		
Recommended Sediment Depth for Maintenance:	440 mm		
Max. Pipe Diameter:	600 mm		
Peak Flow Capacity:	510 L/s		

Site Elevations:			
Rim Elevation:	342.53		
Inlet Pipe Elevation:	340.90		
Outlet Pipe Elevation:	340.90		

Site Details				
Site Area:	0.87 ha			
% Impervious:	95%			
Rational C:	0.87			
Rainfall Station:	Waterloo_Wellington			
Particle Size Distribution:	Fine			
Peak Flowrate:				

Notes:

Removal efficiencies are based on NJDEP Test Protocols and independently verified.

All units supplied by ADS have numerous local, provincial, and international certifications (copies of which can be provided upon request). The design engineer is responsible for ensuring compliance with applicable regulations.

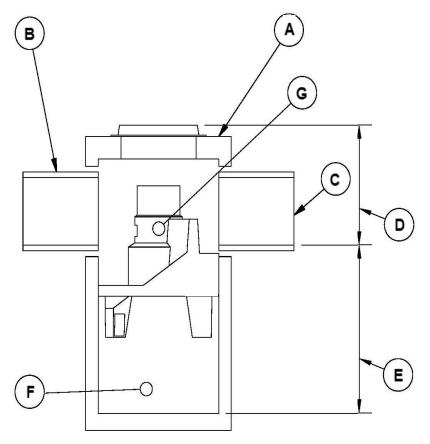
Net Annual Removal Efficiency Summary: FD-4HC

Rainfall Intensity ⁽¹⁾	Fraction of Rainfall ⁽¹⁾	FD-4HC Removal Efficiency ⁽²⁾	Weighted Net-Annual Removal Efficiency
mm/hr	%	%	%
0.50	0.3%	100.0%	0.3%
1.00	27.0%	97.0%	26.2%
1.50	3.2%	93.5%	3.0%
2.00	13.6%	91.0%	12.4%
2.50	7.2%	89.1%	6.4%
3.00	1.8%	87.6%	1.6%
3.50	6.7%	86.4%	5.8%
4.00	3.7%	85.3%	3.2%
4.50	1.5%	84.4%	1.3%
5.00	4.8%	83.6%	4.0%
6.00	3.3%	82.1%	2.7%
7.00	4.7%	81.0%	3.8%
8.00	2.8%	80.0%	2.2%
9.00	2.0%	79.1%	1.6%
10.00	2.5%	78.3%	2.0%
20.00	9.0%	73.4%	6.6%
30.00	3.1%	70.7%	2.2%
40.00	1.0%	68.9%	0.7%
50.00	0.8%	67.4%	0.5%
100.00	0.9%	63.2%	0.6%
150.00	0.1%	60.9%	0.1%
200.00	0.0%	59.3%	0.0%
	Total Net Annua	al Removal Efficiency:	87.0%
	99.9%		

Notes:

- (1) Rainfall Data: 1981:2007,HLY03 6149387, Waterloo/Wellingotn Airport, ON
- (2) Based on third party verified data and appoximating the removal of a PSD similar to the STC Fine distribution
- (3) Rainfall adjusted to 5 min peak intensity based on hourly average.

Project Name:	1250 Gordon St. A		
Consulting Engineer:	Stantec		
Location:	Guelph, ON		
Sizing Completed By:	C. Neath	Email:	cody.neath@ads-pipe.com


Treatment Requirements					
Treatment Goal:	Enhanced (MOE)				
Selected Parameters:	80% TSS	90% Volume			
Selected Unit:	FD-4HC				

Summary of Results						
Model	TSS Removal	Volume Treated				
FD-4HC	82.0%	>90%				
FD-5HC	83.0%	>90%				
FD-6HC	86.0%	>90%				
FD-8HC	91.0%	>90%				
FD-10HC	94.0%	>90%				

FD-4HC Specification	on
Unit Diameter (A):	1,200 mm
Inlet Pipe Diameter (B):	300 mm
Outlet Pipe Diameter (C):	300 mm
Height, T/G to Outlet Invert (D):	2000 mm
Height, Outlet Invert to Sump (E):	1515 mm
Sediment Storage Capacity (F):	0.78 m³
Oil Storage Capacity (G):	723 L
Recommended Sediment Depth for Maintenance:	440 mm
Max. Pipe Diameter:	600 mm
Peak Flow Capacity:	510 L/s

Site Elevat	ions:
Rim Elevation:	100.00
Inlet Pipe Elevation:	98.00
Outlet Pipe Elevation:	98.00

Site Details			
Site Area:	0.3 ha		
% Impervious:	90%		
Rational C:	0.84		
Rainfall Station:	Waterloo_Wellington		
Particle Size Distribution:	NJDEP / ETV		
Peak Flowrate:			

Notes:

Removal efficiencies are based on NJDEP Test Protocols and independently verified.

All units supplied by ADS have numerous local, provincial, and international certifications (copies of which can be provided upon request). The design engineer is responsible for ensuring compliance with applicable regulations.

Net Annual Removal Efficiency Summary: FD-4HC

Rainfall Intensity ⁽¹⁾	Fraction of Rainfall ⁽¹⁾	FD-4HC Removal Efficiency ⁽²⁾	Weighted Net-Annual Removal Efficiency
mm/hr	%	%	%
0.50	0.3%	105.5%	0.3%
1.00	27.0%	96.9%	26.1%
1.50	3.2%	91.9%	3.0%
2.00	13.6%	88.3%	12.0%
2.50	7.2%	85.6%	6.1%
3.00	1.8%	83.3%	1.5%
3.50	6.7%	81.4%	5.5%
4.00	3.7%	79.7%	2.9%
4.50	1.5%	78.3%	1.2%
5.00	4.8%	77.0%	3.7%
6.00	3.3%	74.7%	2.5%
7.00	4.7%	72.8%	3.4%
8.00	2.8%	71.1%	2.0%
9.00	2.0%	69.7%	1.4%
10.00	2.5%	68.4%	1.7%
20.00	9.0%	59.8%	5.4%
30.00	3.1%	54.7%	1.7%
40.00	1.0%	51.2%	0.5%
50.00	0.8%	48.4%	0.4%
100.00	0.9%	39.8%	0.4%
150.00	0.1%	0.0%	0.0%
200.00	0.0%	0.0%	0.0%
	Total Net Annua	al Removal Efficiency:	82.0%
	Total Ru	unoff Volume Treated:	99.9%

Notes:

- (1) Rainfall Data: 1981:2007,HLY03 6149387, Waterloo/Wellingotn Airport, ON
- (2) Based in NJDEP / ETV PSD, NJDEP Test Protocols 2013.
- (3) Rainfall adjusted to 5 min peak intensity based on hourly average.

STORMTECH DESIGN

Stantec | 1250 Gordon

PROJECT INFORMATION

ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

1242 - 1260 GORDON ST. GUELPH, CANADA

SC-310 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH SC-310. 1.
- CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE OR 2. POLYETHYLENE COPOLYMERS.
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET 3. THE REQUIREMENTS OF ASTM F2922 (POLETHYLENE) OR ASTM F2418 (POLYPROPYLENE), "STANDARD SPECIFICATION FOR CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD Δ IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS. SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 6 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.

REQUIREMENTS FOR HANDLING AND INSTALLATION: 7

- TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
- TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 50 mm (2")
- TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION. a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2922 SHALL BE GREATER THAN OR EQUAL TO 400 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN 8. ENGINEER OR OWNER. THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2922 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 9

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF THE SC-310 SYSTEM

- STORMTECH SC-310 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A 1 PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- STORMTECH SC-310 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE". 2.
- 3 CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 4.
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS. 6.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 20-50 mm (3/4-2"). 7.
- 8 THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 9. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- 1.
- 2. THE USE OF CONSTRUCTION EQUIPMENT OVER SC-310 & SC-740 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

STORMTECH SC-310 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE

WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

PROJECT INFORMATION

ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

1242 - 1260 GORDON ST. GUELPH, CANADA

MC-3500 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH MC-3500. 1.
- CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE 2. COPOLYMERS.
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET 3. THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD Δ IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS. SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 6 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.

REQUIREMENTS FOR HANDLING AND INSTALLATION: 7

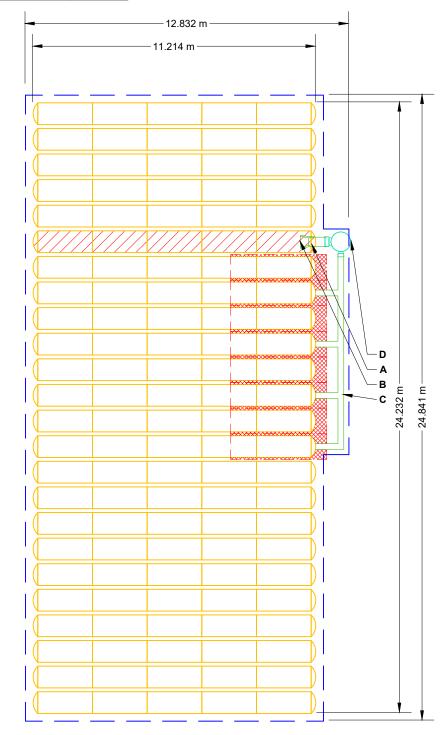
- TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
- TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 75 mm (3")
- TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION. a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN 8. ENGINEER OR OWNER. THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 9

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM

- STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 2.
- 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 4.
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS. 6.
- INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 300 mm (12") INTO CHAMBER END CAPS. 7
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE WELL GRADED BETWEEN 3/4" AND 2" (20-50 mm). 8.
- 9. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.
- 10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN FNGINFFR
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 11. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

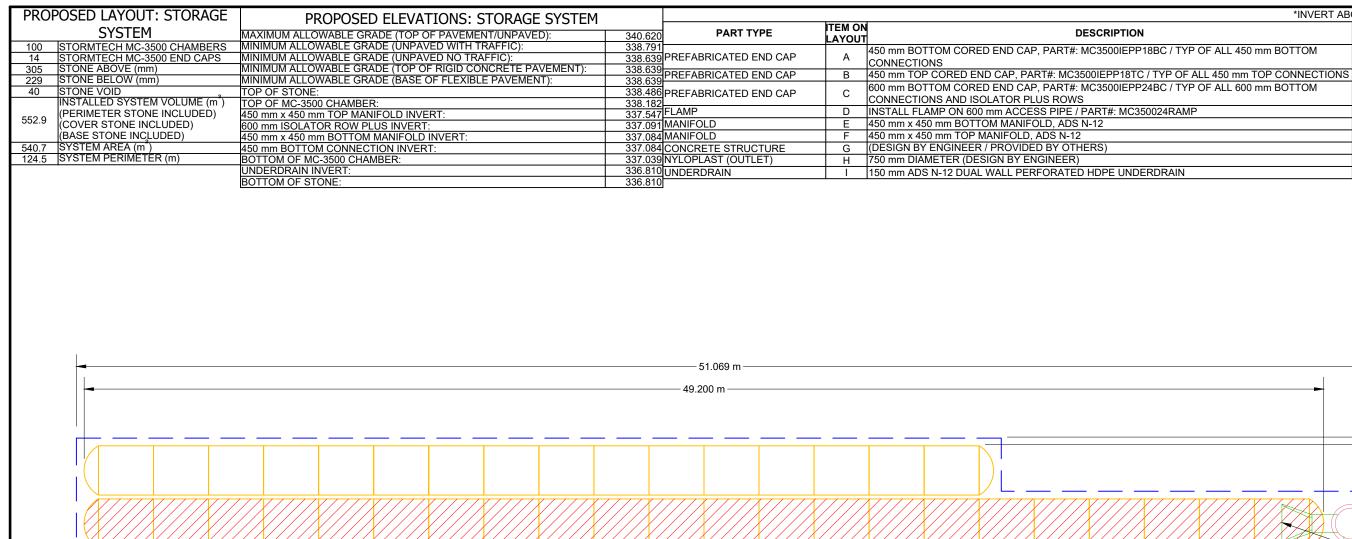
NOTES FOR CONSTRUCTION EQUIPMENT

- STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 1
- THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED: 2
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE . WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.


USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

-						
PROF	OSED LAYOUT: INFILTRAT	PROPOSED ELEVATIONS: INFILTRAT				
			0.40.70	PART TYPE	ITEM ON	
120		MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	343.724		LAYOUT	DESCRIPTION
48		MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC):	341.895			300 mm BOTTOM PREFABRICATED EZ END CAP, PART#: SC310ECE
152		MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):		PREFABRICATED EZ END CAP		BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWS
152		MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT):	<u>341.743</u> 341.743			INSTALL FLAMP ON 300 mm ACCESS PIPE / PART#: SC31012RAMP
40	STONE VOID	MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):	341 743			
					C	200 mm x 200 mm TOP MANIFOLD, MOLDED FITTINGS
			244 200	NYLOPLAST (INLET W/ ISO		750 mm DIAMETER (610 mm SUMP MIN)
116.2		200 mm x 200 mm TOP MANIFOLD INVERT:	340.968	PLUS ROW)		
	(BASE STONE INCLUDED)	300 mm ISOLATOR ROW PLUS INVERT:	340.902			
302.7	SYSTEM AREA (m ²)	BOTTOM OF SC-310 CHAMBER:	340.879	5		
75.3	SYSTEM PERIMETER (m)	BOTTOM OF STONE:	340.727]		



PLACE MINIMUM 3.810 m OF ADSPLUS125 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

 MOTES
 MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE.
 DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COMPONENTS IN THE FIELD.
 THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQU
 THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DETERMINING THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT ONE OF ECONO IN COMMENSIONAL STATEMENTS
 DETERMINING
 THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED O PROVIDED.
 NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE

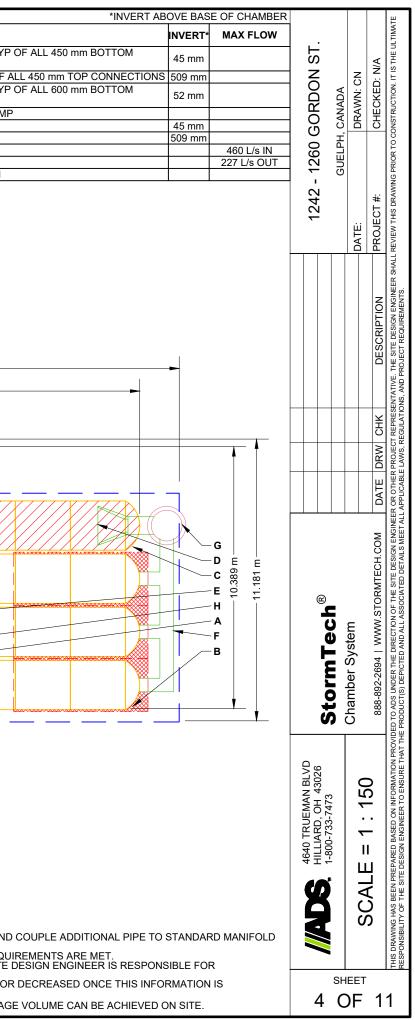
- BED LIMITS

TIMATE	(STORMTECH.COM DATE DRW CHK DESCRIPTION NOF THE SITE DESION ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESION ENGINEER SHALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.
E OF CHAMBER	
BOVE BAS	
^INVERT A	

PLACE MINIMUM 5.334 m OF ADSPLUS175 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

NOTES

MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE. DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD


COMPONENTS IN THE FIELD.

THE STEED ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET. THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR

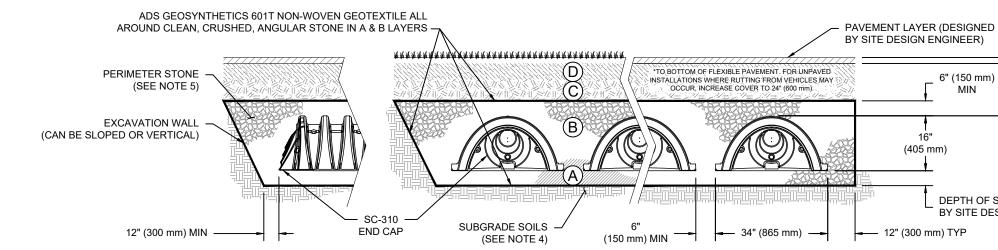
DETERMINING THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS PROVIDED.

NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE.

BED LIMITS

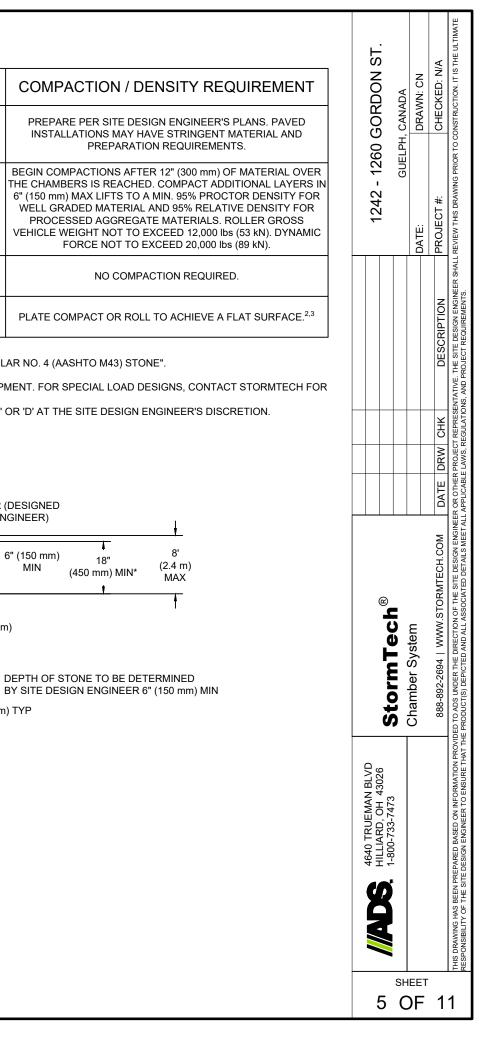
ACCEPTABLE FILL MATERIALS: STORMTECH SC-310 CHAMBER SYSTEMS

MATERIAL LOCATION		DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPA
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER.	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPAR INSTALL
с	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COM THE CHAMBI 6" (150 mm) WELL GRA PROCES VEHICLE W F
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE CO


PLEASE NOTE:

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".

2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.


3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.

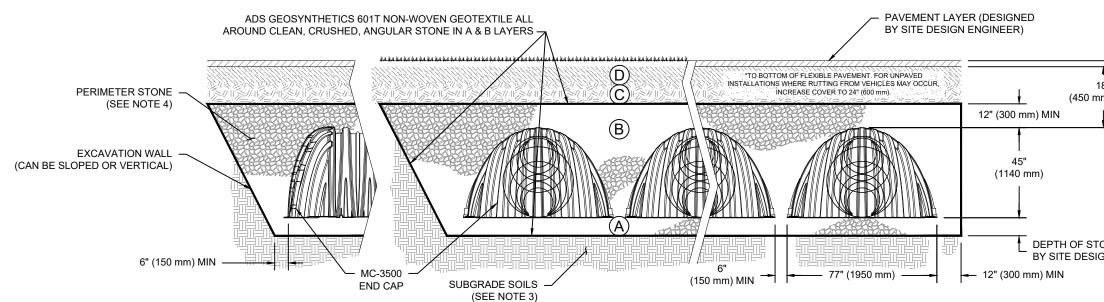
4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

NOTES:

- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2922 (POLETHYLENE) OR ASTM F2418 (POLYPROPYLENE), "STANDARD SPECIFICATION FOR CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 2. SC-310 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 400 LBS/FT/%. THE ASC IS DEFINED IN SECTION
 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS

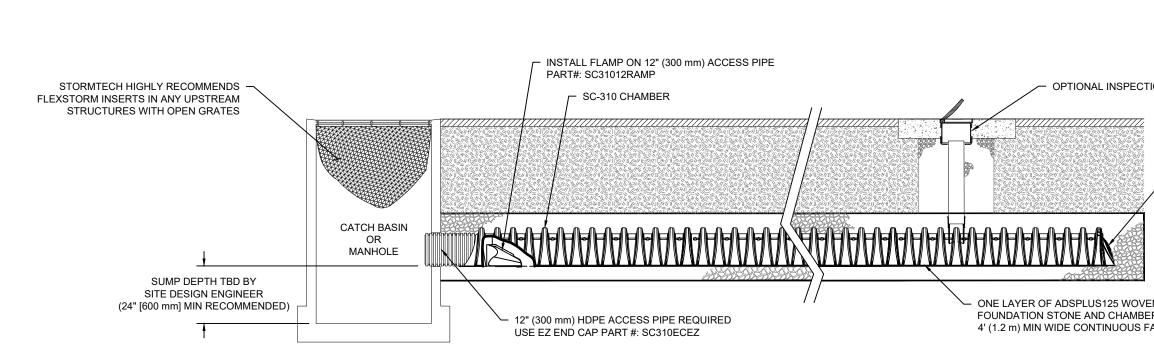
	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPA
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPAR INSTALL
с	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COM THE CHAMBI 12" (300 mm) WELL GRA
в	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M431 3, 4	
A	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43' 3, 4	PLATE CO


PLEASE NOTE:

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".

2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.

3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.


4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION

NOTES:

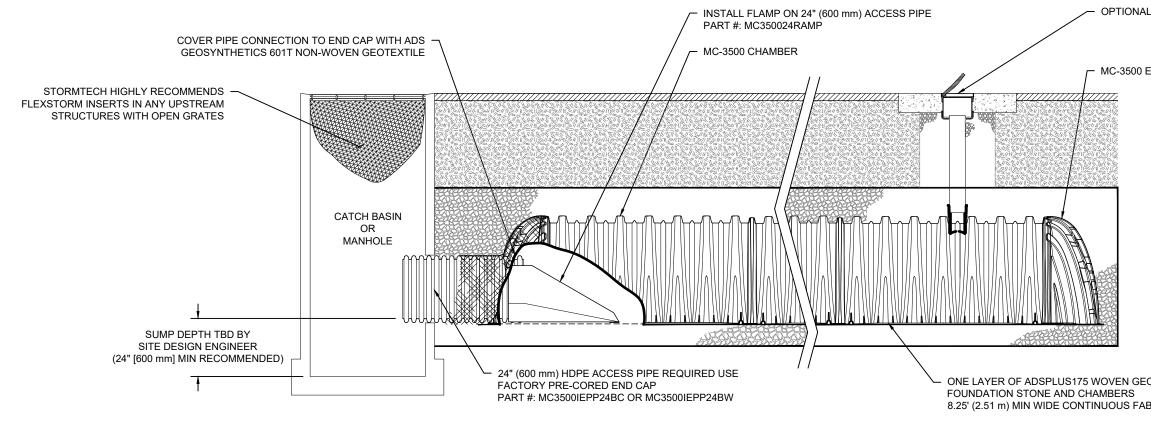
- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

ST GORDON S , CANADA DRAWN: CN CHECKED: PACTION / DENSITY REQUIREMENT ARE PER SITE DESIGN ENGINEER'S PLANS. PAVED LLATIONS MAY HAVE STRINGENT MATERIAL AND GUELPH, 1260 PREPARATION REQUIREMENTS. . MPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER 1242 BERS IS REACHED. COMPACT ADDITIONAL LAYERS IN m) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR PROJECT RÁDED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS. NO COMPACTION REQUIRED. No R COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.^{2,3} SCRIPT Ü ¥ ď DRW DATE NOC 8' 18" (2.4 m) НCП (450 mm) MIN* MAX **StormTech[®]** Chamber Syster DEPTH OF STONE TO BE DETERMINED BY SITE DESIGN ENGINEER 9" (230 mm) MIN 4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473 SHEET 6 OF 11

SC-310 ISOLATOR ROW PLUS DETAIL

NTS

INSPECTION & MAINTENANCE

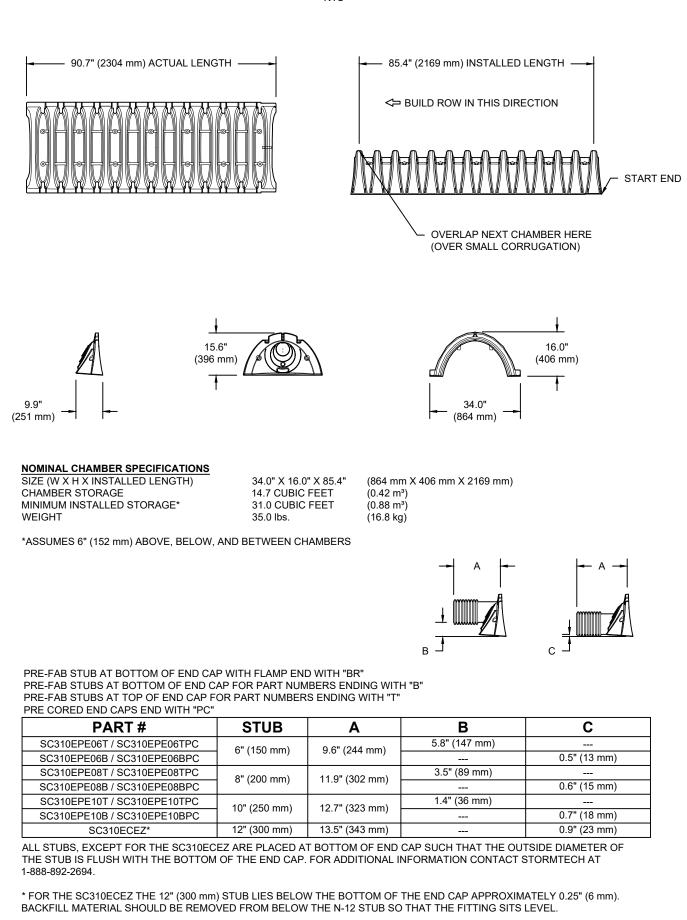

INSPECT ISOLATOR ROW PLUS FOR SEDIMENT STEP 1)

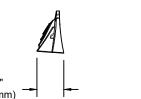
- A. INSPECTION PORTS (IF PRESENT)
 - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
 - A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
 - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.3.
 - A.4.
 - A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- B. ALL ISOLATOR PLUS ROWS
- B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE B.2.
- i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- STEP 2)
 - CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN Β.
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.

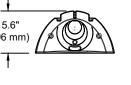
NOTES

- 1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

'ION PORT	1242 - 1260 GORDON ST		GUELPH, CANADA	DRAWN: CN	CHECKED: N/A	WING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE
- SC-310 END CAP	1242	1		DATE:	PROJECT #:	HALL REVIEW THIS DRAN
					DESCRIPTION	HE SITE DESIGN ENGINEER SI OJECT REQUIREMENTS.
EN GEOTEXTILE BETWEEN ERS ABRIC WITHOUT SEAMS						SENTATIVE. TI ONS. AND PR
					DRW CHK	JECT REPRE
					DATE DR	OTHER PRO
	(StormTach®		Chamber System	888-892-2694 WWW.STORMTECH.COM	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER TO CONSTRUCTION. IT IS THE ULTIMATE REPORDED TO ADS UNDER THE DRECTION OF THE SITE DESIGN ENGINEER AND ADDR. THE SITE DESIGN ENGINE
	4640 TRUEMAN BLVD					HIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PR SEPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT
	-	7		EET DF	1	

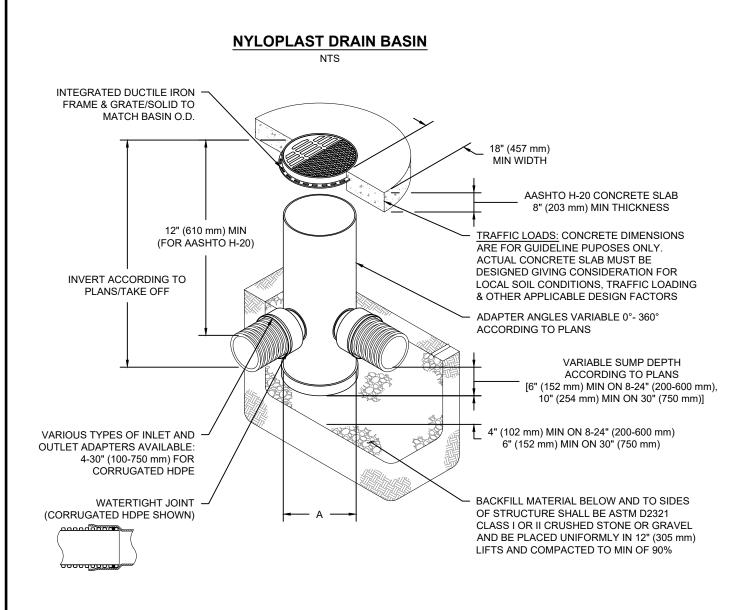

MC-3500 ISOLATOR ROW PLUS DETAIL


NTS


L INSPECTION PORT		1242 - 1260 GORDON ST.	GUELPH, CANADA	DRAWN: CN	CHECKED: N/A
		1242 - 120(GUELF	DATE:	PROJECT #:
					DESCRIPTION
TEXTILE BETWEEN		+			CHK
					DRW C
					DATE
			STORM L CON	Chamber System	888-892-2694 WWW.STORMTECH.COM
	4640 TRUEMAN BLVD		1-800-733-7473		
		8		EET DF	1

SC-310 TECHNICAL SPECIFICATION

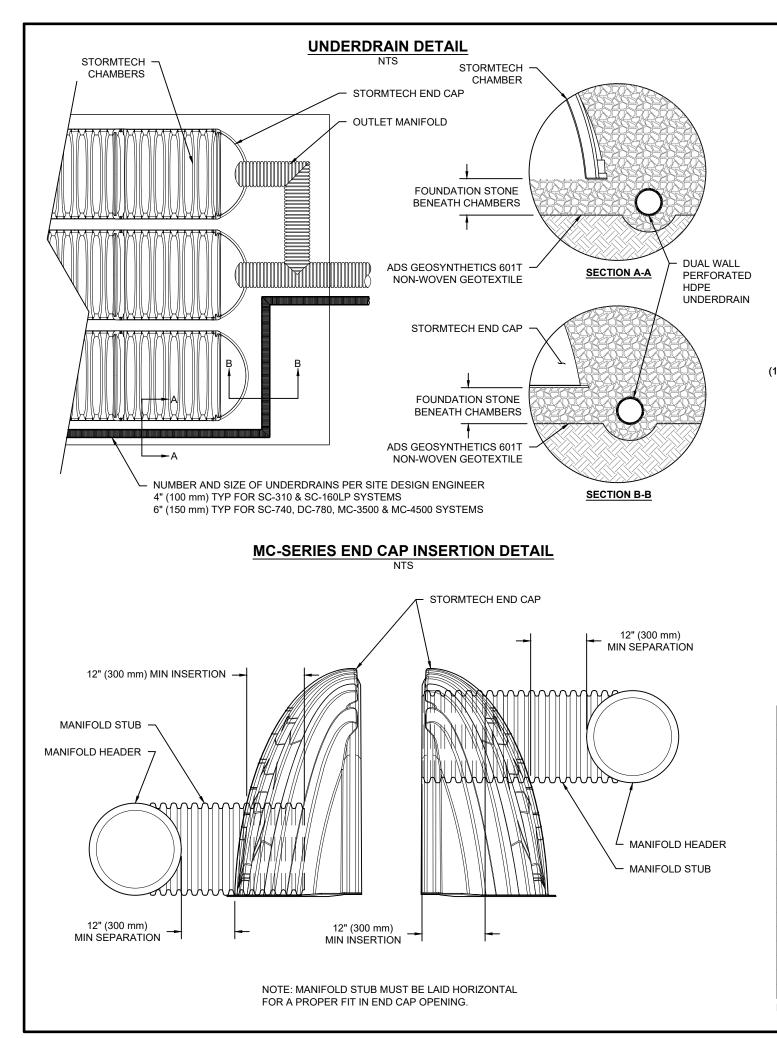
NTS

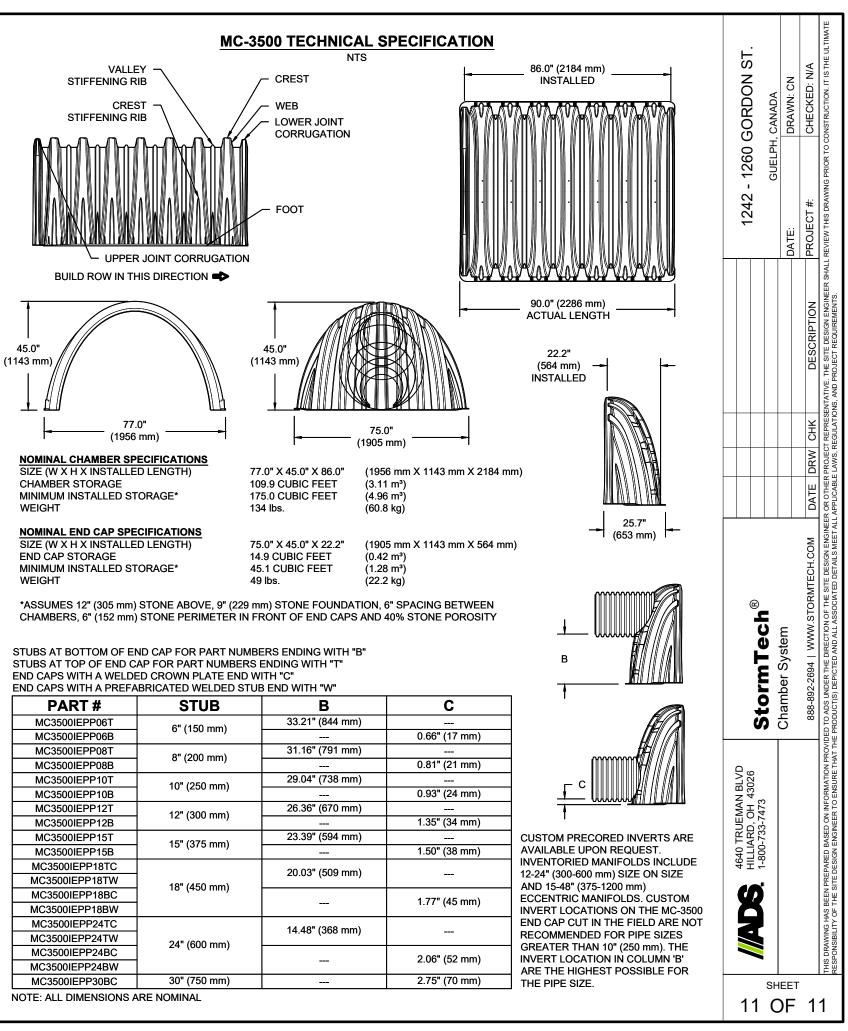

SIZE (W X H X INSTALLED LENGTH)	34.0" X 16.0" X 85.4"
CHAMBER STORAGE	14.7 CUBIC FEET
VINIMUM INSTALLED STORAGE*	31.0 CUBIC FEET
WEIGHT	35.0 lbs.

PART #	STUB	A	
SC310EPE06T / SC310EPE06TPC	6" (150 mm)	9.6" (244 mm)	
SC310EPE06B / SC310EPE06BPC	0 (100 mm)	3.0 (244 mm)	
SC310EPE08T / SC310EPE08TPC	8" (200 mm)	11.9" (302 mm)	
SC310EPE08B / SC310EPE08BPC	0 (200 mm)	11.9 (302 1111)	
SC310EPE10T / SC310EPE10TPC	10" (250 mm)	12.7" (323 mm)	
SC310EPE10B / SC310EPE10BPC	10 (230 mm)		
SC310ECEZ*	12" (300 mm)	13.5" (343 mm)	

NOTE: ALL DIMENSIONS ARE NOMINAL

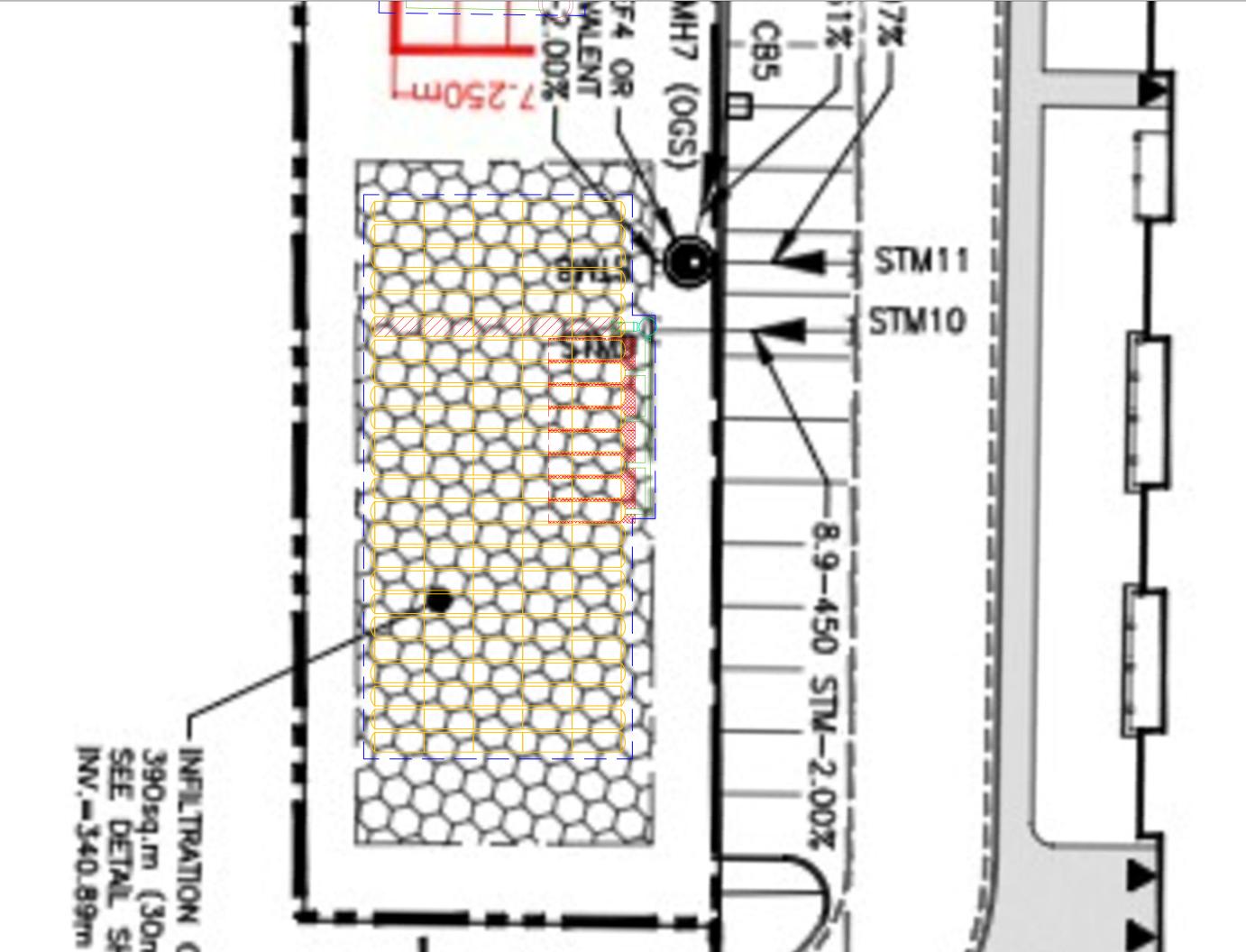
							1242 - 1260 (1242 - 1260 GORDON ST
9	R	ПІСПАКИ, ОП 43020 1-800-733-7473	StormTech®					
SH	Ē)					GUELPH,	GUELPH, CANADA
EE DF			Chamber System			•	DATE.	
T								
1			888-892-2694 WWW.STORMTECH.COM	DATE DRW CHK	HK DESCRIPTION		PROJECT #:	CHECKED: N/A
	S DRAWING HAS BEEN PI 3PONSIBILITY OF THE SIT	REPARED BASED ON INFORMATION PROVIE E DESIGN ENGINEER TO ENSURE THAT TH	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER TO SONSTRUCTION. IT IS THE ULTIMATE REPONDENTION FOR THE PROJECT TO SONSTRUCTION OF THE SITE DESIGN ENGINEER ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER TO SONSTRUCTION FOR TO CONSTRUCTION. IT IS THE ULTIMATE REPONDENTION FOR TO SONSTRUCTION FOR TO SONSTRUCTION OF THE SITE DESIGN ENGINEER ON INFORMATION FOR TO SONSTRUCTION OF THE SITE DESIGN ENGINE AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	R OR OTHER PROJECT RE . APPLICABLE LAWS, REGI	EPRESENTATIVE. THE SITE DES JLATIONS, AND PROJECT REQI	SIGN ENGINEER SHALL UIREMENTS.	REVIEW THIS DRAWING PRIOR TO CO	INSTRUCTION. IT IS THE ULTIMATE

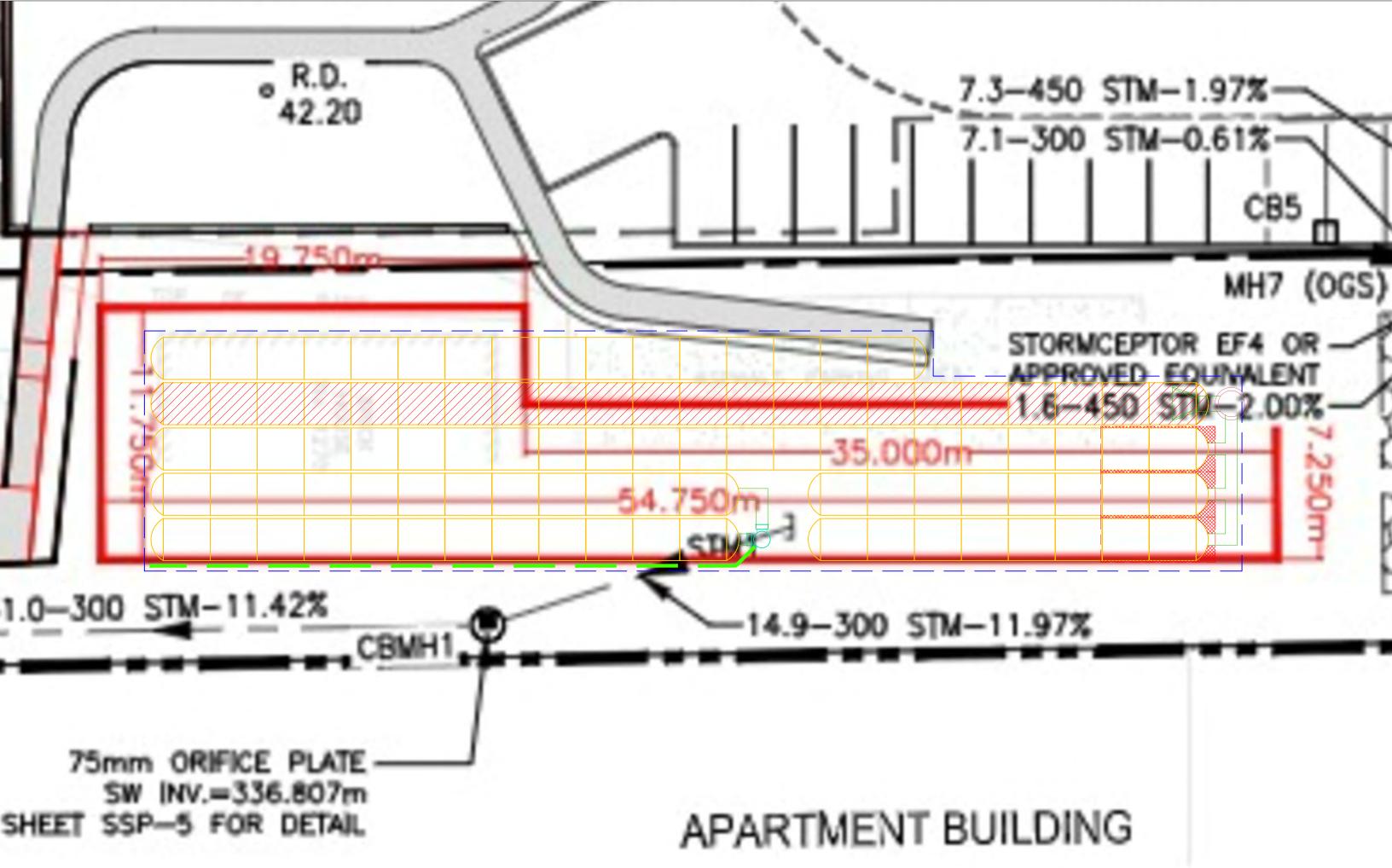


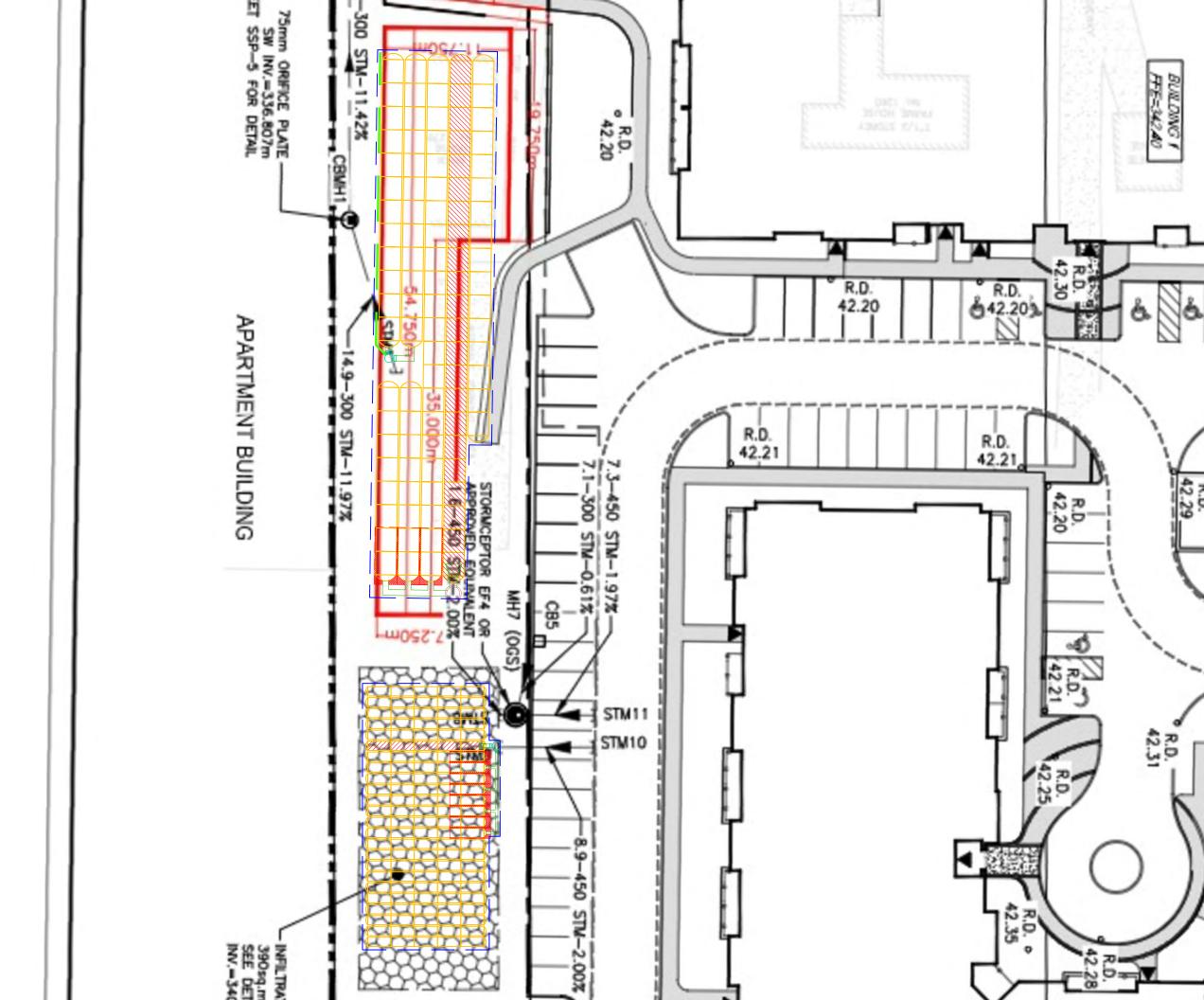

NOTES

- 1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
- 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
 DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS
- DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 4.
- FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC 5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM
- 6. TO ORDER CALL: 800-821-6710

Α	PART #	GRATE/S	SOLID COVER (OPTIONS
8" (200 mm)	2808AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
10" (250 mm)	2810AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
12"	2812AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(300 mm)		AASHTO H-10	H-20	AASHTO H-20
15"	2815AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(375 mm)		AASHTO H-10	H-20	AASHTO H-20
18"	2818AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(450 mm)		AASHTO H-10	H-20	AASHTO H-20
24"	2824AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(600 mm)		AASHTO H-10	H-20	AASHTO H-20
30"	2830AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(750 mm)		AASHTO H-20	H-20	AASHTO H-20

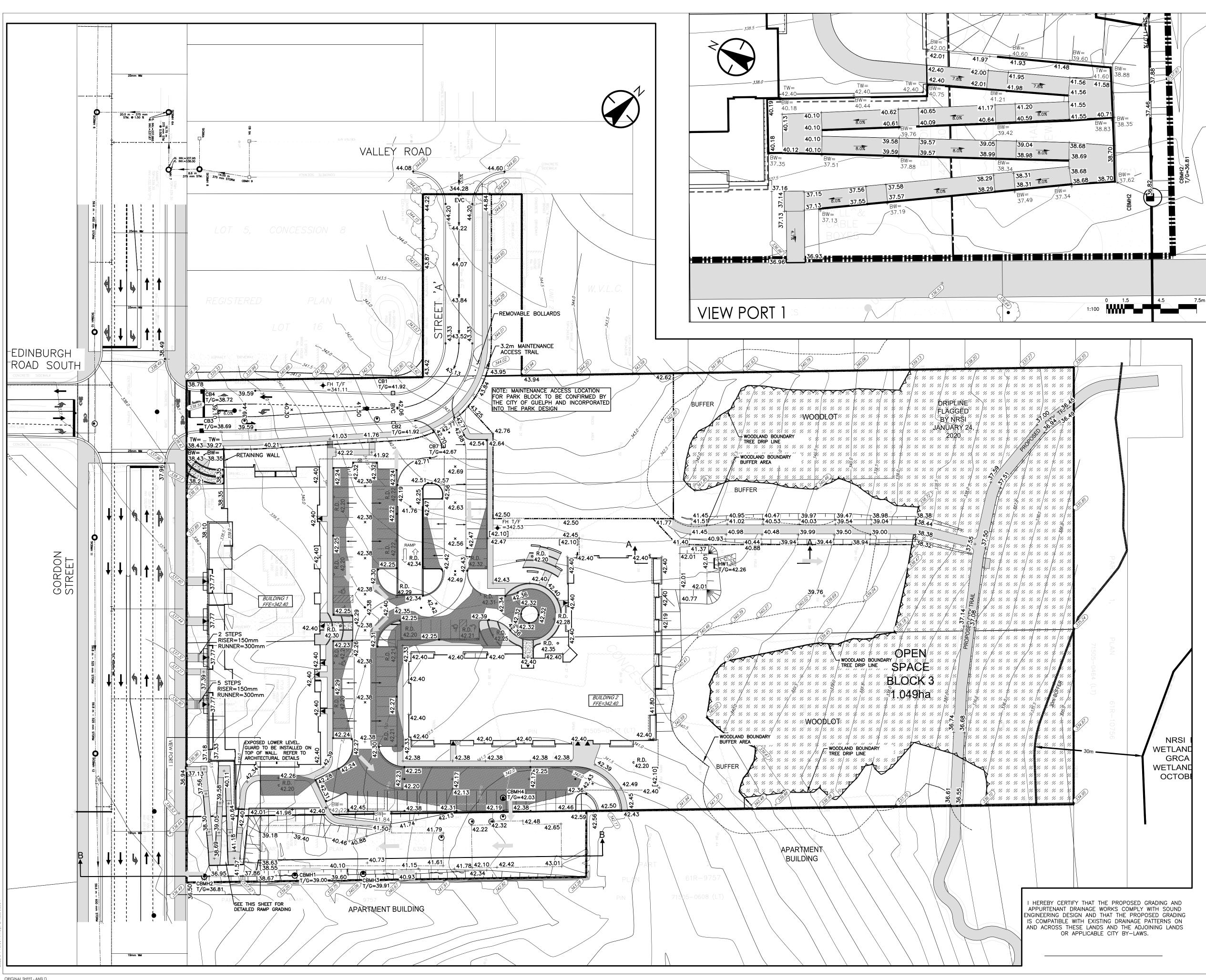

	4640 TRUEMAN BLVD HILLIARD OH 43026						
						1242 - 126C	1242 - 1260 GORDON ST
P		Nvioniact [®]					
E						GUELF	GUELPH, CANADA
						DATE:	DRAWN: CN
		770-932-2443 WWW.NYLOPLAST-US.COM	DATE DRW CHK	¥	DESCRIPTION	PROJECI #:	CHECKED: N/A





STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" END CAPS WITH A WELDED CROWN PLATE END WITH "C" END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W"

PART #	STUB	B	
MC3500IEPP06T		33.21" (844 mm)	
MC3500IEPP06B	6" (150 mm)		0.66
MC3500IEPP08T	011 (2020)	31.16" (791 mm)	
MC3500IEPP08B	8" (200 mm)		0.81
MC3500IEPP10T	10" (250 mm)	29.04" (738 mm)	
MC3500IEPP10B	10" (250 mm)		0.93
MC3500IEPP12T	12" (300 mm)	26.36" (670 mm)	
MC3500IEPP12B	12 (300 mm)		1.35
MC3500IEPP15T	15" (375 mm)	23.39" (594 mm)	
MC3500IEPP15B	15 (57511111)		1.50
MC3500IEPP18TC		20.03" (509 mm)	
MC3500IEPP18TW	18" (450 mm)	20.03 (303 mm)	
MC3500IEPP18BC	10 (450 1111)		1.77
MC3500IEPP18BW			1.77
MC3500IEPP24TC		14.48" (368 mm)	
MC3500IEPP24TW	24" (600 mm)		
MC3500IEPP24BC	24 (000 mm)		2.06
MC3500IEPP24BW			
MC3500IEPP30BC	30" (750 mm)		2.75
NOTE ALL DIMENSIONS A	RE NOMINAI		



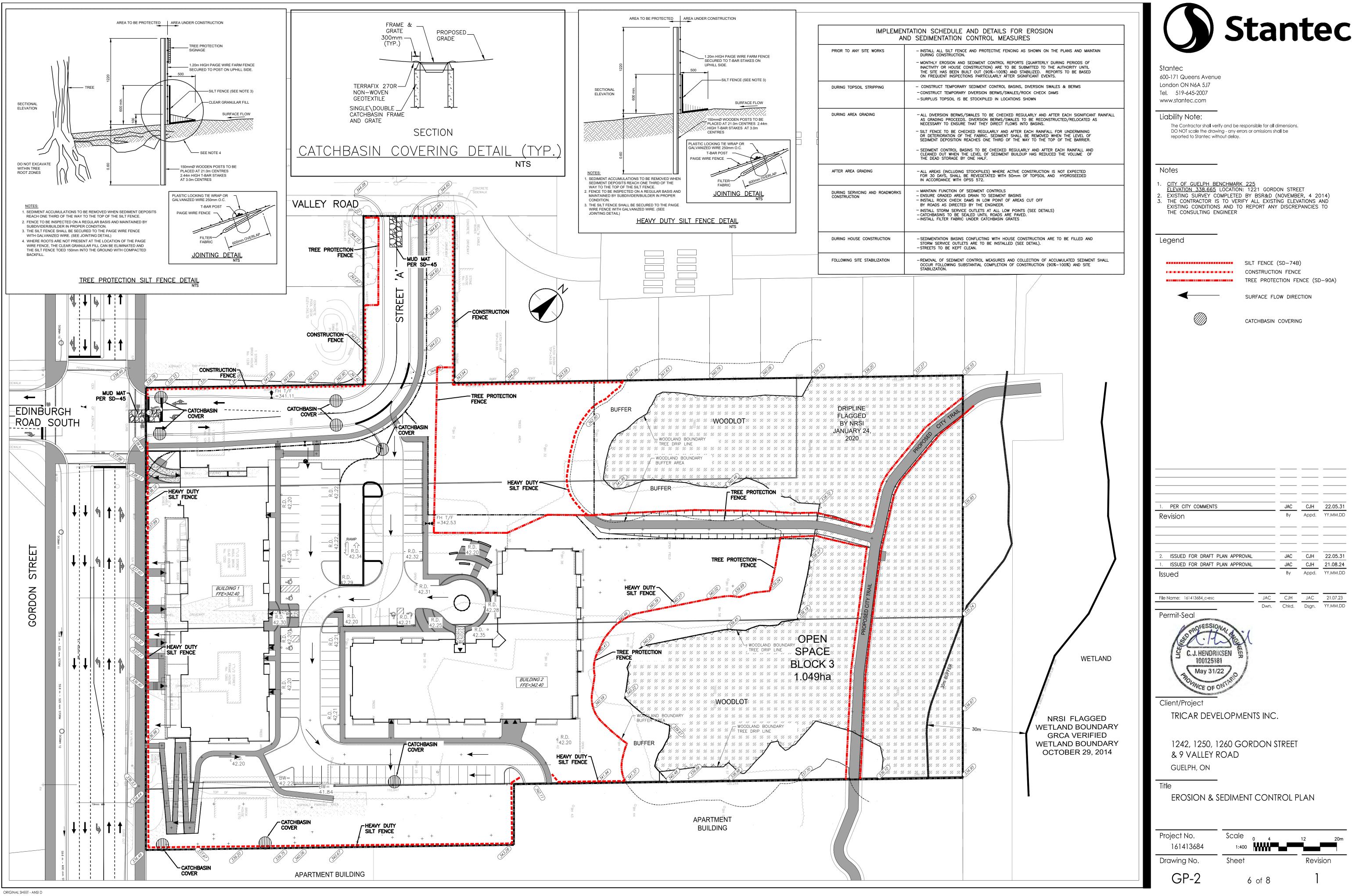
1242, 1250, 1260, 1270 GORDON STREET AND 9 VALLEY ROAD, GUELPH, ON – ENVIRONMENTAL IMPACT STUDY ADDENDUM VERSION 2

APPENDIX I GRADING AND EROSION AND SEDIMENT CONTROL PLANS

ORIGINAL SHEET - ANSI D

Stantec 600-171 Queens Avenue London ON N6A 5J7 Tel. 519-645-2007 www.stantec.com

Liability Note: The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.


Notes

- CITY OF GUELPH BENCHMARK 225 ELEVATION 338.665 LOCATION: 1221 GORDON STREET EXISTING SURVEY COMPLETED BY BSR&D (NOVEMBER, 4 2014) THE CONTRACTOR IS TO VERIFY ALL EXISTING ELEVATIONS AND EXISTING CONDITIONS AND TO REPORT ANY DISCREPANCIES TO THE CONSULTING ENGINEER

Legend	PROPOSED SWALE
\odot	PROPOSED STORM MANHOLE
õ	PROPOSED STORM CATCH BASIN MANHOLE
•	PROPOSED SANITARY MANHOLE
Θ	EX. STORM MANHOLE
Θ	EX. SANITARY MANHOLE
	PROPOSED CATCH BASIN
	EX. CATCH BASIN
● 75.95	PROPOSED GRADES
● 75.95 (SP)	PROPOSED OVERLAND FLOW SPILL POINT
75.95	EXISTING GRADES
	MAJOR OVERLAND FLOW ROUTE
	SITE BOUNDARY
• 71.77 • (SW)	PROPOSED SWALE GRADE
	EXISTING CONTOURS
	FLOW DIRECTION
.	HYDRANTS
I	

		- <u> </u>		
1. PER CITY COMMENTS		JAC	CJH	22.05.31
Revision		Ву	Appd.	YY.MM.DD
2. ISSUED FOR DRAFT PL		JAC	CJH	22.05.31
1. ISSUED FOR DRAFT PL	N APPROVAL	JAC	CJH	21.08.24
Issued		Ву	Appd.	YY.MM.DD
File Name: 161413684_c-fb	JAC	CJH	JAC	21.07.23
Permit-Seal	Dwn.	Chkd.	Dsgn.	YY.MM.DD
Client/Project TRICAR DEVEL 1242, 1250, 12 & 9 VALLEY RO GUELPH, ON	OPMENTS INC			
GRADING PLA	N			
Project No.	Scale _{0 5}		15	25m
161413684	1:500			25m
Drawing No.	Sheet		Revi	sion
GP-1	5 of 8		1	

NOTES AND SPECIFICATIONS:

A. GENERAL:

- 1. BUILDINGS ARE NOT TO BE SITED WITH THIS DRAWING. THIS DRAWING TO BE READ IN CONJUNCTION WITH THE SITE SERVICING PLANS (SSP SERIES)
- & THE GRADING PLAN (GP SERIES) PREPARED BY STANTEC CONSULTING. HESE PLANS FOR CONSTRUCTION ONLY WHEN APPROVED BY THE CITY OF GUELPH AND
- SEALED BY THE ENGINEER. 3. THE CONTRACTOR MUST CHECK AND VERIFY DIMENSIONS; OBTAIN ALL UTILITY LOCATES AND OBTAIN ALL REQUIRED PERMITS/LICENSES AND VERIFY ELEVATIONS OF EXISTING
- SERVICES BEFORE PROCEEDING WITH ANY WORK. 4. ALL WORK WITHIN THE RIGHTS-OF-WAY OR CITY EASEMENTS ARE TO BE INSTALLED BY
- CITY OF GUELPH AT THE OWNER'S EXPENSE UNLESS OTHERWISE NOTED. ANY PROPOSED CHANGES SHALL BE APPROVED BY THE ENGINEER AND CITY OF GUELPH. ALL UNDERGROUND SERVICING TO BE INSPECTED BY STANTEC CONSULTING LTD. AND
- ALL ONDERGROUND SERVICING TO BE INSPECTED BY STATEC COORDINATE WITH STANTEC CERTIFIED FOR THE CITY OF GUELPH. CONTRACTOR SHALL COORDINATE WITH STANTEC AND SHALL CONTACT SAME AT LEAST 48 HOURS PRIOR TO INSTALLATION OF SERVICES.
 CONTRACTOR SHALL COORDINATE WITH STANTEC AND SHALL CONTACT SAME AT LEAST 48 HOURS PRIOR TO INSTALLATION OF SERVICES.
 ALL CONSTRUCTION WORK SHALL BE CARRIED OUT IN ACCORDANCE WITH THE COORDINATE WITH STANTEC AND CONTRACT AND CONTRACT SAME AT LEAST 48
- REQUIREMENTS OF THE OCCUPATIONAL HEALTH AND SAFETY ACT AND REGULATIONS FOR
- CONSTRUCTION PROJECTS (LATEST EDITION). THE PROPERTY OWNER IS RESPONSIBLE FOR RESTORATION OF ALL DAMAGED AND/OR DISTURBED PROPERTY WITHIN THE MUNICIPAL RIGHT-OF-WAY TO CITY OF GUELPH
- STANDARDS. 10. IF, FOR UNFORESEEN REASONS, THE OWNER AND/OR HIS/HER REPRESENTATIVE MUST ENCROACH ONTO PRIVATE LANDS TO UNDERTAKE ANY WORKS, HE/SHE MUST OBTAIN WRITTEN PERMISSION FROM THE ADJACENT PROPERTY OWNERS PRIOR TO ENTERING UPON THE PRIVATE PROPERTY TO PERFORM ANY WORKS. COPIES OF THESE LETTERS OF CONSENT MUST BE SUBMITTED TO THE DEVELOPMENT & TECHNICAL SERVICES – ENGINEERING DEVELOPMENT DIVISION, PRIOR TO ANY WORK BEING PERFORMED. FAILURE TO COMPLY WITH THE ABOVE IS AT THE PROPERTY OWNERS OWN RISK.

B. UNDERGROUND SERVICES:

- CONTRACTOR SHALL VERIFY ELEVATION AND LOCATION OF EXISTING SANITARY AND STORM SEWERS AND WATERMAINS PRIOR TO COMMENCING SITE WORK AND SHALL NOTIFY THE ENGINEER OF ANY CONFLICTS BETWEEN EXISTING AND PROPOSED SERVICES.
- THE CONTRACTOR TO MAKE CONNECTIONS TO SERVICES AT STUB LOCATION FOR SANITARY, STORM SEWERS, WATERMAIN AND TO RESTORE ALL OFF-SITE AFFECTED PROPERTY TO
- 3. ON-SITE SERVICING SHALL NOT BE UNDERTAKEN PRIOR TO COMPLETION OF
- SERVICE CONNECTIONS WITHIN THE ROAD R.O.W.'S. 4. ALL UNDERGROUND SERVICES TO BE IN COMPLIANCE WITH THE LATEST REVISED BUILDING CODE, CITY OF GUELPH ENGINEERING STANDARDS, ONTARIO PROVINCIAL STANDARDS (OPSS, OPSD) AND WITH THE LATEST REGULATIONS OF THE ONTARIO PLUMBING CODE AND SUPPLEMENT SPECIFICATION FOR MUNICIPAL SERVICES (DGSSMS) AND INSPECTED BY
- CITY STAFF/CONSULTANT PRIOR TO BACKFILLING. 5. UNDERGROUND SERVICES TO TERMINATE 1.5m FROM BUILDING LINE, PLUGGED OR
- ONDERVICES TO TERMINATE TO THOM BUILDING LINE, PLUGGED OR CAPPED C/W MARKER EXTENDING FROM INVERT TO 1.0M ABOVE FINISHED GRADE.
 ALL BEDDING TO BE AS NOTED BELOW. TRENCH BACKFILL TO BE APPROVED NATIVE MATERIAL COMPACTED IN 200mm MAX. LIFTS TO 95% STANDARD PROCTOR DENSITY.
 ALL SERVICES SHALL BE TESTED AS SPECIFIED IN THE APPLICABLE OPSS (OPSS
- ALL SERVICES SHALL BE TESTED AS SPECIFIED IN THE AT LICADLE OF 35 (0135) 410 & 441).
 ALL SERVICES, UTILITIES AND CATCHBASIN LEADS ARE TO BE SUPPORTED AS PER OPSD 1007.01 DURING TRENCHING ACTIVITIES. THE CONTRACTOR IS RESPONSIBLE FOR LOCATING AND PROTECTING ALL EXISTING UTILITIES PRIOR TO AND DURING CONSTRUCTION. LOCATION OF EXISTING UTILITIES TO BE VERIFIED IN THE FIELD.
 ANY UTILITY RELOCATION DUE TO THIS DEVELOPMENT TO BE UNDERTAKEN AT THE EVENCE OF THE OWNED (DEED)
- EXPENSE OF THE OWNER/DEVELOPER.
- C. SEWERS/APPURTENANCES:
- 4. STORM SEWERS:
 LESS THAN 200mmø PVC DR–28 200mmø TO 375mmø – PVC DR-35
- PVC RIBBED PIPE (ULTRA-RIB OR EQUIVALENT) - CI - 3 CONCRETE • 450mmø TO 600mmø – PVC RIBBED PIPE (ULTRA-RIB OR EQUIVALENT)
- 65D CONCRETE 450mmø TO 600mmø – 65D CONCRETE
- 5. SANITARY SEWERS:
- LESS THAN 200mmø PVC DR-28 200mmø OR LARGER PVC DR-35 2.5m MINIMUM COVER FOR SANITARY SEWERS.
- 3. SEWER BEDDING: CITY OF GUELPH SD-29
- 150mm (MIN) GRAN 'A' TO 98% S.P.D.
 4. STORM MANHOLES: OPSD 701.010 (1200mmø) OPSD 701.011 (1500mmø) • 0PSD 701.012 (1800mmø) OPSD 701.013 (2400mmø) OPSD 701.014 (3000mmø
- 6. SANITARY MAINTENANCE HOLE:
 OPSD 701.010 (1200mmø) 7. MAINTENANCE HOLE BENCHING
- CITY OF GUELPH SD-44 • CBMH'S WITH AN OUTLET PIPE GREATER THAN 450mmø SHOULD BE BENCHED. 450mmø OR LESS SHALL BE PROVIDED WITH A 600mm SUMP. 8. CATCHBASINS/CATCHBASIN LEADS:
- OPSD 705.01 (SINGLE) OPSD 705.02 (DOUBLÉ)
- OPSD 705.03 (DITCH INLET 3:1 SLOPE)
 MINIMUM LEAD DIAMETER. 200mmø FOR SINGLE, 300mmø FOR DOUBLE CATCHBASINS.
- 9. FRAMES AND GRATES/COVERS:

- D. WATER SERVICES/APPURTENANCES:
- 1. WATERMAIN
- WALEKMAIN 100mmø TO 300mmø AWWA C–900 PVC SDR–18 350mmø TO 600mmø AWWA C905 PVC SDR–25 2.0m MINIMUM COVER FITTINGS TO AWWA C–907
- WHERE CONFLICT ARISES AT WATERMAIN/SERVICE CROSSING OTHER UNDERGROUND SERVICES, WATERMAIN/SERVICES SHALL BE LOWERED TO MAINTAIN 0.50m VERTICAL SEPARATION.
- 2. PIPE BEDDING: CITY OF GUELPH SD-29
- 150mm (MIN) GRANULAR 'A' 98% S.P.D. 5. THRUST BLOCKING:
- CITY OF GUELPH SD-27
 TRACER WIRE:
 CITY OF GUELPH SD-54A
 CITY OF GUELPH SD-54A 5. HYDRANTS:

ORIGINAL SHEET - ANSI D

CITY OF GUELPH SD-25A (OPEN RIGHT)

- 6. VALVES:
 ALL VALVES TO OPEN COUNTER-CLOCKWISE AND COMPLY WITH A.W.W.A. SPEC.
 CITY OF GUELPH SD-24 WATER SERVICES
- 25mmø TYPE K COPPER PIPING WET TAPPED TO PVC WATERMAIN WITH APPROVED SADDLE CITY OF GUELPH SD-54B 8. WATER METERS:
- BUILDING UNITS TO HAVE INDIVIDUAL WATER METERS TO THE SATISFACTION OF CITY OF GUELPH WATERWORKS DEPARTMENT
 MAINTAIN SPATIAL SEPARATION FOR SITE SERVICES PER BUILDING CODE PART 7.3.5.6
- 1. ALL NEW WATER PIPING INSTALLATIONS AS PER AWAR C651-05 1. CATHODIC PROTECTION IN ACCORDANCE WITH CITY OF GUELPH STANDARDS. 12. A WATERMAIN COMMISSIONING PLAN IN ACCORDANCE WITH DGSSMS WILL BE REQUIRED.

E. GRADING:

- 1. COMPLETE ALL EXCAVATION, GRADING, TRIMMING AND COMPACTION AS REQUIRED TO FACILITATE THE WORK, ALL SUBGRADE AREAS SHALL BE PROOF ROLLED TO 98% S.D.P.
- PRIOR TO GRANULAR SUBBASE PLACEMENT. DISPOSE OF ALL SURPLUS AND UNSUITABLE MATERIAL OFFSITE. SAWCUT ASPHALT IN NEAT LINES AT ALL MATCH LINES. MATCH EXISTING GRADES AT ADJACENT PROPERTY LINES. 5. TRANSITION SLOPES TO BE MAXIMUM 3:1 (HORIZONTAL TO VERTICAL) UNLESS OTHERWISE

NOTED

- . SURFACE WORKS: 1. CURBS:
- OPSD 600.040 (CONCRETE BARRIER CURB WITH STANDARD GUTTER) OPSD 600.070 (CONCRETE BARRIER CURB WITH STANDARD GUTTER, TWO STAGE CONSTRUCTION)
- OPSD 600.080 (CONCRETE BARRIER CURB WITH NARROW GUTTER)
- OPSD 600.110 (CONCRETE BARRIER CURB)
 ASPHALT PAVEMENT: (PARKING AREA) 40mm HL 3 (SURFACE ASPHALT) 97% MARSHALL 97% S.P.D.
- 50mm HL4 (BASE ASPHALT) 150mm GRANULAR 'A' BASE 100% S.P.D. 300mm GRANULAR 'B' SUB-BASE 100% S.P.D.
- 3. ASPHALT PAVEMENT: (ABOVE PARKING GARAGE) CONCRETE DECK ROOFING MEMBRANE
- PROTECTION BOARD
- 40MM HL 3 (SURFACE ASPHALT) 97% MARSHALL 50MM HL4 (BASE ASPHALT) 97% S.P.D.
- 4. PAVEMENT: (HEAVY DUTY/FIRE ROUTE) 50mm HL-3 SURFACE ASPHALT 97% MARSHALL – (WHERE IN PLACE) 60mm HL-4 BASE ASPHALT 97% MARSHALL
- 150mm GRANULAR 'A' 100% S.P.D. 400mm GRANULAR 'B' 100% S.P.D. SAW CUT CLEAN EDGES AT ALL MATCH LINES AND APPLY TACK COAT.
- 5. CONCRETE SIDEWALKS:
- CITY OF GUELPH SD-2, 1.5m WIDE (CONCRETE SIDEWALK) CITY OF GUELPH SD-4 (SIDEWALK RAMPS)
 SITE AREAS DISTURBED BY CONSTRUCTION AND NOT INDICATED FOR REMOVAL TO BE RESTORED TO ORIGINAL CONDITIONS.

G. EROSION CONTROL:

- ALL SILT FENCING TO BE INSTALLED PRIOR TO COMMENCEMENT OF ANY AREA GRADING, EXCAVATION OR DEMOLITION.
 EROSION CONTROL FENCE TO BE PLACED AROUND THE BASE OF ALL STOCKPILES. ALL STOCKPILES TO BE KEPT A MINIMUM OF 2.5m FROM ALL PROPERTY LINES.
 P-250 FILTER FABRIC UNDERLYING CONSTRUCTION VEHICLE ENTRANCE TO CONSIST OF CLEANED OR REPLACED 200mm THICK, 50mmø STONE. STONE TO BE TAKEN UP AND WITH ACQUINT ATALANCE CONSTRUCTION (SEE DETAIL)
- WHEN ACCUMULATIONS COVER 50% OF TOP OF STONE (SEE DETAIL). 4. EROSION PROTECTION TO BE PROVIDED AROUND ALL STORM AND SANITARY MANHOLES
- EROSION PROTECTION TO BE PROVIDED AROUND ALL STORM AND SANTIART MAINFOLES AND/OR CATCHBASINS.
 ADDITIONAL EROSION CONTROL MEASURES MAY BE REQUIRED AS SITE DEVELOPMENT PROGRESSES, CONTRACTOR TO PROVIDE ALL ADDITIONAL EROSION CONTROL STRUCTURES.
 EROSION CONTROL STRUCTURES TO BE MONITORED REGULARLY BY STANTEC CONSULTING LTD. AND ANY DAMAGE REPAIRED IMMEDIATELY. SEDIMENTS TO BE REMOVED WHEN
- ACCUMULATIONS REACH A MAXIMUM OF ONE THIRD (1/2) THE HEIGHT OF THE SILT
- ALL EROSION CONTROL STRUCTURES TO REMAIN IN PLACE UNTIL ALL DISTURBED GROUND SURFACES HAVE BEEN RE-STABILIZED EITHER BY PAVING OR RESTORATION OF VEGETATIVE
- GROUND COVER. 8. NO ALTERNATE METHODS OF EROSION PROTECTION SHALL BE PERMITTED UNLESS
- APPROVED BY STANTEC CONSULTING LTD. AND THE CITY OF GUELPH'S WORKS EPARTMENT
- 9. THE CONTRACTOR IS RESPONSIBLE FOR REMOVING SEDIMENTS FROM THE MUNICIPAL ROAD AND SIDEWALKS AT THE END OF EACH WORK DAY. 10. MUD MATS TO BE PROVIDED ON SITE AT ALL LOCATIONS WHERE CONSTRUCTION VEHICLES EXIT THE SITE. MUD MATS SHALL BE A MINIMUM OF 3.0m WIDE, 15.0m LONG (LENGTH MAY VARY DEPENDING ON SITE LAYOUT) AND 0.3m DEEP AND SHALL CONSIST OF 20mm CLEAR STONE MATERIAL OR APPROVED EQUIVALENT. CONTRACTOR TO ENSURE ALL
- VEHICLES LEAVE THE SITE VIA THE MUD MAT AND THAT THE MAT IS MAINTAINED IN A MANNER TO MAXIMIZE ITS EFFECTIVENESS AT ALL TIMES. 11. STANTEC CONSULTING LTD. TO MONITOR THE SITE DEVELOPMENT TO ENSURE ALL EROSION CONTROLS ARE INSTALLED AND MAINTAINED TO CITY REQUIREMENTS. CONTRACTOR TO COMPLY WITH THE ENGINEER'S INSTRUCTIONS TO INSTALL, MODIFY, OR MAINTAIN EROSION CONTROL WORKS.

H. RETAINING WALLS:

- 9. FRAMES AND GRATES/COVERS:
 OPSD 400.10 (CB'S & CBMH'S)
 OPSD 410.01 TYPE 'A' (SANITARY AND STORM MH'S)
 CITY OF GUELPH SD-15 (RLCB'S)
 CITY OF GUELPH SD-9 (SAFETY GRATE FOR MH'S)
 ALL FRAMES ON STRUCTURES TO BE SET USING PRECAST CONCRETE ADJUSTMENT UNITS
 1. RETAINING WALL TO BE CONSTRUCTED AS DESIGNED BY OTHERS. APPROPRIATE CONSTRUCTION DETAILS SHALL BE PROVIDED FOR RETAINING WALLS HIGHER THAN 0.80m.
 D. WATER SERVICES (APPLIETENANCES)

 - I. <u>DEWATERING NOTES:</u>
 - 1. PUMPED GROUNDWATER WILL BE DIRECTED OFFSITE VIA SWALE AND/OR TEMPORARY PIPE OP OPPY DRIVE EAST, WHERE THE WATER WILL BE DISCHARGED TO EITHER THE STORM OR SANITARY SEWER SYSTEM.
 - 2. DISCHARGE TO THE STORM AND/OR SANITARY SEWER SYSTEM MUST ADHERE TO THE QUALITY REQUIREMENTS AS PER CITY OF GUELPH BY-LAW NUMBER (1996)-15202.

J. MISCELLANEOUS:

344

343

342

341

340

339

338^L

- WHERE COVER OVER SEWERS IS LESS THAN 1.2m IN PAVED AREAS, OR LESS THAN 0.90m IN GRASSED AREAS INSTALL INSULATION AS PER DETAIL. INSULATION TO BE 60mm THICK × 1800mm WIDE UNLESS OTHERWISE NOTED. INSTALL LONGITUDINALLY OVER OCHTERIN INC. DISC NUTL OVER 10 MODION INSTALL LONGITUDINALLY OVER
- CENTERLINE OF PIPE WITH OVERLAPPING JOINTS. 2. IT IS THE SITE OWNERS' RESPONSIBILITY TO ENSURE THAT ALL SEDIMENT CONTROLS ARE IMPLEMENTED AND MAINTAINED IN ACCORDANCE WITH THE ABOVE CRITERIA.

300mm AMMENDED SOIL -

INV.=341.536m

PROPOSED GROUND -

INSULATION OR APPROVED EQUIVALENT

300 STM SEWER

300x200 REDUCER -

EXISTING GROUND ----

HIGH GROUND WATER -----339.510m

NILEX 4545 FILTER FABRIC, OR

APPROVED EQUIVALENT, LINES -

TOP, BOTTOM AND SIDES OF

DRY WELL (OVERLAP 300MM

AT SEAMS)

√.=341.5*°*

INV.=340.510/

STYROFOAM HI-BRAND -

- 1 PRIOR TO INSTALLATION
- · LAYDOWN OR STOCKPILE LOCATIONS; • EQUIPMENT STORAGE;
- TRAFFIC FLOW OR SITE ACCESS.
- 2 INSTALLATION
- PROTECTED IN THE EVENT OF RAIN.
- AT THE MINIMUM OVERLAP

NOT TO BE USED.

3 MAINTENANCI

1 INSTALLATION

2 MAINTENANCE

UNDERGROUND STORAGE AND INFILTRATION TRENCHES

• EFFORTS SHOULD BE MADE TO AVOID COMPACTION BY NOT USING THE FACILITY LOCATION AS:

• MATERIAL TO BE USED IN THE CONSTRUCTION OF THE FACILITY SHOULD NOT BE BROUGHT ON SITE PRIOR TO IT BEING NEEDED. IF THIS MATERIAL IS ON SITE PRIOR TO FINAL PLACEMENT, IT SHALL BE STOCKPILED SEPARATELY FROM ANY OTHER CONSTRUCTION MATERIALS AND ADEQUATELY PROTECTED (AS DIRECTED BY THE LID INSPECTOR).

• TRENCH FLOOR TO BE SCARIFIED TO A DEPTH OF 0.15M UNLESS THE LID INSPECTOR DIRECTS GREATER DEPTHS OF SCARIFICATION. • ONCE THE AREA IS SCARIFIED, AT LEAST 2 LOCATIONS IN EACH FACILITY ARE TO BE TESTED FOR IN-SITU INFILTRATION RATE. ADDITIONAL SCARIFICATION MAY BE REQUIRED FOLLOWING THESE TESTS, AFTER WHICH THE TESTS SHOULD BE COMPLETED AGAIN IN OTHER LOCATIONS. • SHOULD THE TRENCH WORK BE COMPLETED IN ADVANCE ON THE INSTALLATION OF THE GEOTEXTILE AND STONE, THE TRENCH SHOULD BE

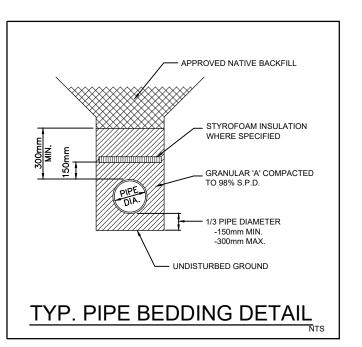
• THE OVERLAP ON THE GEOTEXTILE SHALL BE A MINIMUM OF 0.3M. THE GEOTEXTILE SHALL BE WRAPPED OVERTOP OF THE STORE STORAGE

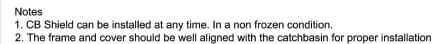
• ALL STONE INSTALLED IS TO BE TRIPLE WASHED TO PREVENT DUST FROM CLOGGING THE FABRIC AND SOIL PORES, STONE IS TO BE INSTALLED IN LIFTS OF 0.3M MAXIMUM. THESE LIFTS SHOULD BE LIGHTLY WORKED TO SETTLE THE STONE BUT MECHANICAL COMPACTION IS • ALL UNDERDRAIN PIPES ARE TO BE WRAPPED IN A SEDIMENT SOCK.

• IF THE FACILITY IS COMPLETED PRIOR TO SITE STABILIZATION, RUNOFF SHOULD BE DIRECTED AWAY FROM THE FACILITY TO PREVENT HEAVY SEDIMENTATION. EROSION CONTROLS SHOULD BE INSTALLED AS PER THE DIRECTION OF THE LID INSPECTOR.

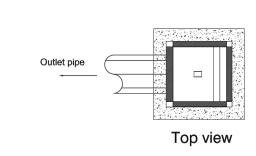
• REMOVE ANY DEBRIS, GARBAGE, LEAVES, STICKS, OR OTHER ITEMS FROM THE FACILITY INLETS. THIS SHOULD BE DONE BIANNUALLY WITH SPECIAL ATTENTION IN FALL TO REMOVE FALLEN LEAVES;

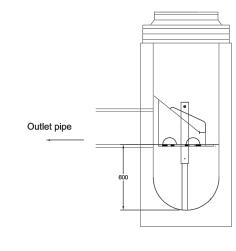
• REMOVE ACCUMULATED SEDIMENT FROM THE BOTTOM OF THE FACILITY AS NEEDED BY FLUSHING; • MONITOR PERFORMANCE; OBSERVE WATER DEPTHS IN THE FACILITY DURING RAIN EVENTS BIANNUALLY.

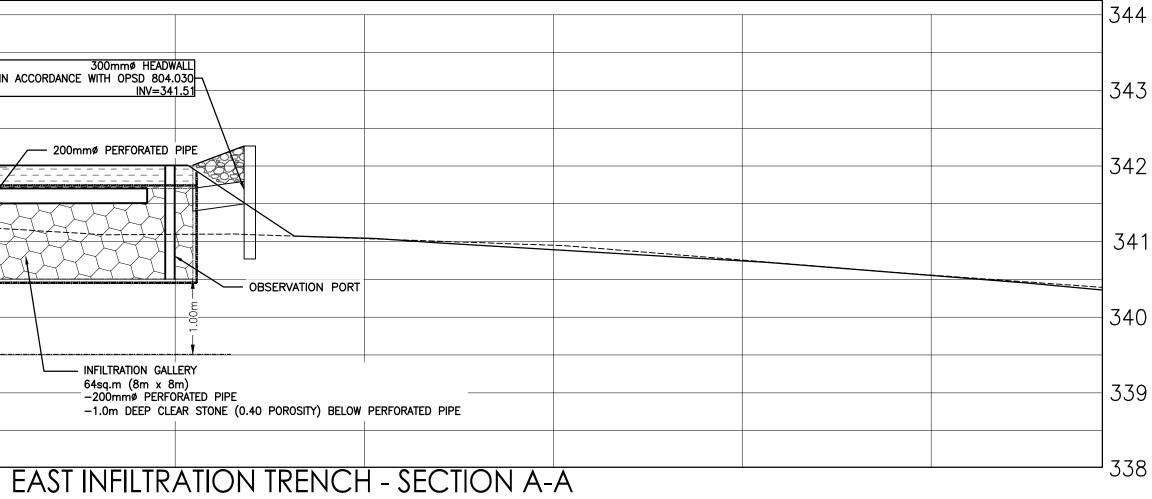

OIL GRIT SEPARATOR


• ONCE INSTALLED, THE INLET TO THE OGS SHOULD BE SURROUNDED BY A FILTER SOCK RING TO REMOVE THE HEAVIEST SEDIMENT LOADS. THE OGS SHOULD BE INSPECTED BIWEEKLY DURING CONSTRUCTION AND CLEANED BY VACUUM TRUCK WHEN THE SUMP IS 50% FULL OF

• WHEN CONSTRUCTION IS COMPLETE, THE OGS SHOULD BE CLEANED OF ANY SEDIMENT.


INSPECTION SHOULD BE DONE BIANNUALLY;


• REMOVE ACCUMULATED SEDIMENT FROM THE BOTTOM OF THE FACILITY WHEN 50% FULL BY VACUUM TRUCK; • REMOVAL OF ANY OILS OR FLOATABLES AS NEEDED, WITH SPECIAL ATTENTION PAID IN THE EVENT OF A DELETERIOUS SPILL.


3. The catchbasin sump must be clean before installation 4. The grate should be at the same level as the standing water in the sump.

Profile view

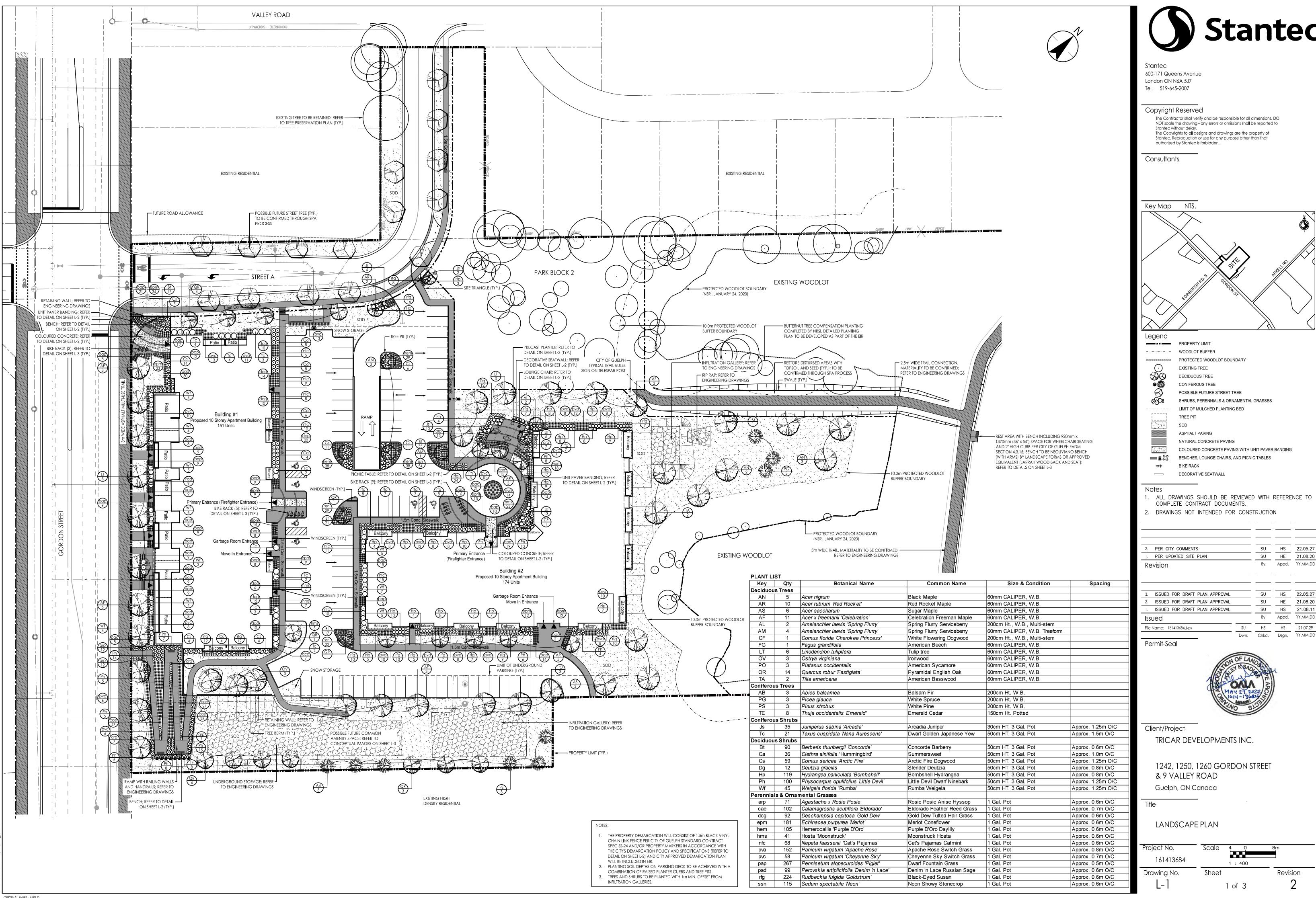
CB Shield (600mm Sump)

VERT - 1:50 HORZ - 1:100

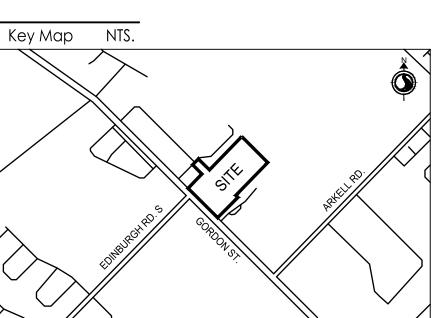
Stantec 600-171 Queens Avenue London ON N6A 5J7 Tel. 519-645-2007 www.stantec.com

Liability Note: The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

Notes

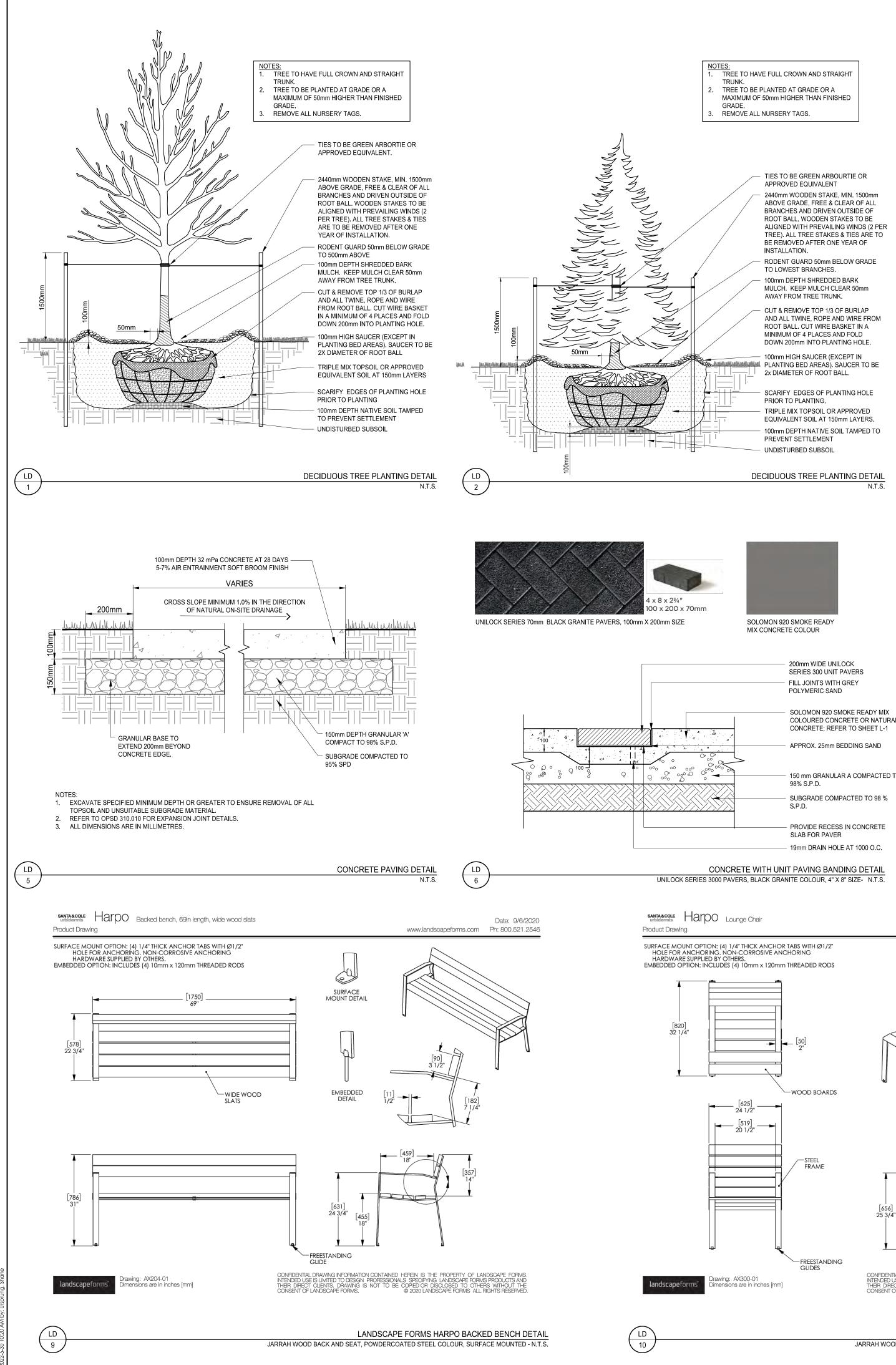

- CITY OF GUELPH BENCHMARK 225 ELEVATION 338.665 LOCATION: 1221 GORDON STREET
- EXISTING SURVEY COMPLETED BY BSR&D (NOVEMBER, 4 2014) THE CONTRACTOR IS TO VERIFY ALL EXISTING ELEVATIONS AND EXISTING CONDITIONS AND TO REPORT ANY DISCREPANCIES TO THE CONSULTING ENGINEER

Legend


1. PER CITY COMMENTS		JAC	CJH	22.05.3
Revision		By	Appd.	YY.MM.DI
2. ISSUED FOR DRAFT	PLAN APPROVAL	JAC	CJH	22.05.3
1. ISSUED FOR DRAFT	PLAN APPROVAL		CJH	21.08.24
Issued		Ву	Appd.	YY.MM.DI
File Name: 161413684_c-dt	JA	C CJH	JAC	21.07.23
Permit-Seal	Dw	n. Chkd.	Dsgn.	YY.MM.D
Client/Project	JWTAP.			
Client/Project TRICAR DEV	ELOPMENTS IN			
Client/Project TRICAR DEV 1242, 1250, & 9 VALLEY	ELOPMENTS IN			
Client/Project TRICAR DEV 1242, 1250, & 9 VALLEY GUELPH, ON	ELOPMENTS IN 260 GORDON			
Client/Project TRICAR DEV 1242, 1250, & 9 VALLEY I GUELPH, ON Title NOTES & DE	ELOPMENTS IN 260 GORDON COAD	N STREET		
Client/Project TRICAR DEV 1242, 1250, & 9 VALLEY GUELPH, ON Title	ELOPMENTS IN 260 GORDON COAD		3	5m
Client/Project TRICAR DEV 1242, 1250, & 9 VALLEY GUELPH, ON Title NOTES & DE Project No.	ELOPMENTS IN 260 GORDON COAD	N STREET		

_____ _____ 1242, 1250, 1260, 1270 GORDON STREET AND 9 VALLEY ROAD, GUELPH, ON – ENVIRONMENTAL IMPACT STUDY ADDENDUM VERSION 2

APPENDIX J LANDSCAPE PLAN

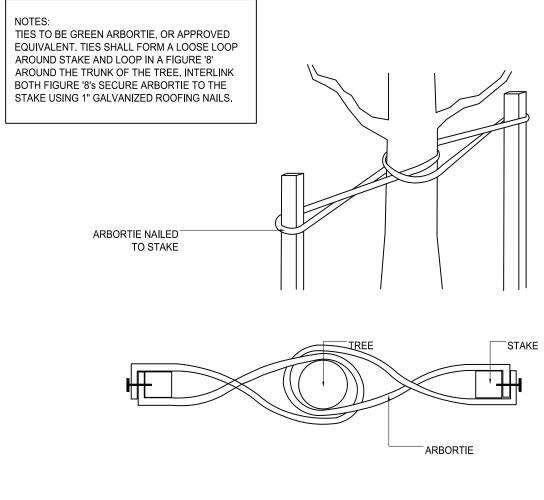


	WOODLOT BUFFER
an an an an an an an an	PROTECTED WOODLOT BOUNDARY
$\overline{\mathbf{\cdot}}$	EXISTING TREE
DO	DECIDUOUS TREE
	CONIFEROUS TREE
Ð	POSSIBLE FUTURE STREET TREE
30.	SHRUBS, PERENNIALS & ORNAMENTAL GRASSES
	LIMIT OF MULCHED PLANTING BED
1	TREE PIT
	SOD
	ASPHALT PAVING
	NATURAL CONCRETE PAVING
	COLOURED CONCRETE PAVING WITH UNIT PAVER BANDING
• * \$\$	BENCHES, LOUNGE CHAIRS, AND PICNIC TABLES
⊐‡	BIKE RACK
	DECORATIVE SEATWALL

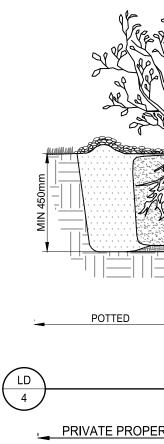
2.	PER CITY COMMENTS		SU	HS	22.05.27
1.	PER UPDATED SITE PLAN		SU	HE	21.08.20
Revision			Ву	Appd.	YY.MM.DD
3.	ISSUED FOR DRAFT PLAN APPROVAL		SU	HS	22.05.27
2.	ISSUED FOR DRAFT PLAN APPROVAL		SU	HE	21.08.20
1.	ISSUED FOR DRAFT PLAN APPROVAL		SU	HS	21.08.11
SS	ued		Ву	Appd.	YY.MM.DD
File	Name: 161413684 I-ps	SU	HS	HS	21.07.29

ORIGINAL SHEET - ANSI D

TREE TO HAVE FULL CROWN AND STRAIGHT TREE TO BE PLANTED AT GRADE OR A MAXIMUM OF 50mm HIGHER THAN FINISHED


TIES TO BE GREEN ARBOURTIE OR APPROVED EQUIVALENT 2440mm WOODEN STAKE, MIN. 1500mm ABOVE GRADE, FREE & CLEAR OF ALL BRANCHES AND DRIVEN OUTSIDE OF ROOT BALL, WOODEN STAKES TO BE ALIGNED WITH PREVAILING WINDS (2 PER TREE) ALL TREE STAKES & TIES ARE TO BE REMOVED AFTER ONE YEAR OF RODENT GUARD 50mm BELOW GRADE

100mm DEPTH SHREDDED BARK MULCH. KEEP MULCH CLEAR 50mm AWAY FROM TREE TRUNK.


AND ALL TWINE, ROPE AND WIRE FROM ROOT BALL. CUT WIRE BASKET IN A MINIMUM OF 4 PLACES AND FOLD DOWN 200mm INTO PLANTING HOLE. 100mm HIGH SAUCER (EXCEPT IN

SCARIFY EDGES OF PLANTING HOLE TRIPLE MIX TOPSOIL OR APPROVED EQUIVALENT SOIL AT 150mm LAYERS. 100mm DEPTH NATIVE SOIL TAMPED TO PREVENT SETTLEMENT

DECIDUOUS TREE PLANTING DETAIL

ARBOURTIE DETAIL

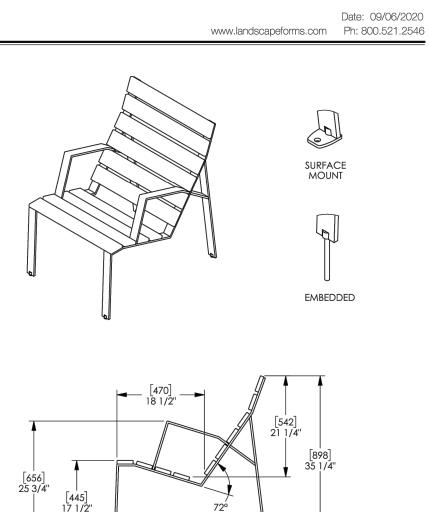
CITY OF GUELPH **IDENTIFICATION TO FACE**

PUBLIC PROPERTY

LEGAL SURVEY BAR

COMPACTED SUBGRADE

PRECAST CONCRETE POST

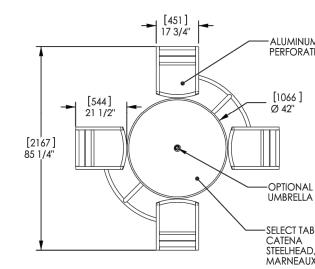

BAREROOT

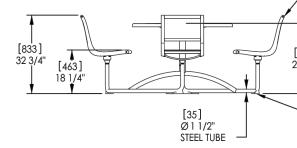
200mm WIDE UNILOCK SERIES 300 UNIT PAVERS - FILL JOINTS WITH GREY POLYMERIC SAND

150 mm GRANULAR A COMPACTED TO SUBGRADE COMPACTED TO 98 %

PROVIDE RECESS IN CONCRETE SLAB FOR PAVER 19mm DRAIN HOLE AT 1000 O.C.

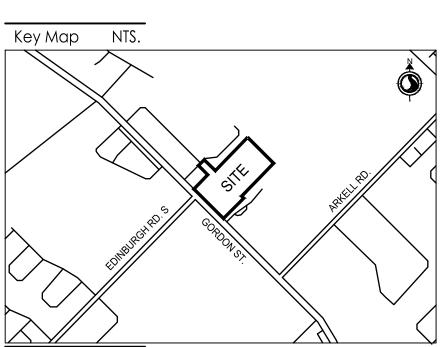
CONCRETE WITH UNIT PAVING BANDING DETAIL UNILOCK SERIES 3000 PAVERS, BLACK GRANITE COLOUR, 4" X 8" SIZE- N.T.S.


CONFIDENTIAL DRAWING INFORMATION CONTAINED HEREIN IS THE PROPERTY OF LANDSCAPE FORMS. INTENDED USE IS LIMITED TO DESIGN PROFESSIONALS SPECIFYING LANDSCAPE FORMS PRODUCTS AND THEIR DIRECT CLIENTS, DRAWING IS NOT TO BE COPIED OR DISCLOSED TO OTHERS WITHOUT THE CONSENT OF LANDSCAPE FORMS.

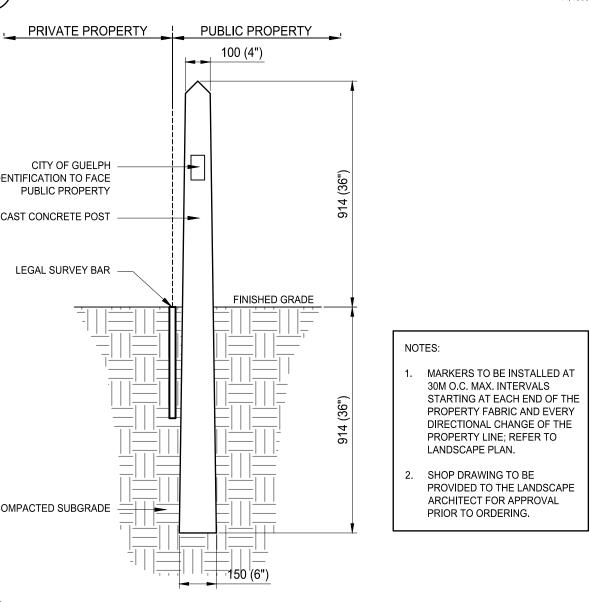

LANDSCAPE FORMS HARPO LOUNGE CHAIR DETAIL JARRAH WOOD BACK AND SEAT, POWDER COATED STEEL COLOUR, SURFACE MOUNTED - N.T.S

CONCEPTUAL SEAT WALL DETAIL N.T.S.

ing: MG614-04 ensions are in inches [mm] Patent Nos.: D513,566; D542,060 ndscapefori



Stantec 600-171 Queens Avenue London ON N6A 5J7 Tel. 519-645-2007


Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Consultants

Legend

NOTES:

SHRUB TO BE PLANTED AT GRADE

100mm DEPTH SHREDDED BARK

- 100mm HIGH SAUCER (EXCEPT IN

ENDS FOR BAREROOT PLANTED

ROOTBALL WHERE APPLICABLE

- TRIPLE MIX (FRONTAGE)/ NATIVE

- CLEANLY PRUNE ALL DAMAGED ROOT

- POT TO BE CUT AND REMOVED FROM

SCREENED TOPSOIL (RÉSTORATION)

- 100mm DEPTH NATIVE SOIL TAMPED

SHRUB PLANTING DETAIL

PLANTING BED AREAS).

SOIL AT 150mm LAYERS

- UNDISTURBED SUBSOIL

TO PREVENT SETTLEMENT

OR A MAXIMUM OF 50mm HIGHER

THAN FINISHED GRADE.

MULCH.

SHRUBS

REMOVE ALL NURSERY TAGS

CITY OF GUELPH PROPERTY DEMARCATION POST

Date: 12/19/2019 www.landscapeforms.com Ph: 800.521.2546

PERFORATED PANEL ATTACHED TO FRAME AT **|**⊲ [71] ► 2 3/4" THIS LOCATION -∠____ Ø 1/2" [12] HOLE FOR ANCHORING. 4 SURFACE UMBRELLA HOLE MOUNT TABS PER UNIT. SURFACE MOUNT TAB DETAIL NOT TO SCALE -SELECT TABLETOP OPTION: STEELHEAD, SOLID MARNEAUX (SHOWN) - ALUMINUM SEAT CASTINGS DETAIL PERFORATED PATTERN OPTION GLIDES AND SURFACE MOUNT TABS NOTE: ALL TABLES WITH NON-COLLAPSABLE UMBRELLA OPTION MUST BE SURFACE MOUNTED. CONFIDENTIAL DRAWING INFORMATION CONTAINED HEREIN IS THE PROPERTY OF LANDSCAPE FORMS, INC INTENDED USE IS LIMITED TO DESIGN PROFESSIONALS SPECIFYING LANDSCAPE FORMS, INC. PRODUCTS AND THEIR DIRECT CLIENTS. DRAWING IS NOT TO BE COPIED OR DISCLOSED TO OTHERS WITHOUT THE CONSENT OF LANDSCAPE FORMS, INC. © 2013 LANDSCAPE FORMS, INC. ALL RIGHTS RESERVED. LANDSCAPE FORMS MINGLE TABLE DETAIL 4 BACK SEATS, POWDER COATED STEEL COLOUR, SURFACE MOUNTED, WITH CAMPANION SHADE UMBRELLA - N.T.S.

Notes

ALL DRAWINGS SHOULD BE REVIEWED WITH REFERENCE TO COMPLETE CONTRACT DOCUMENTS.

DRAWINGS NOT INTENDED FOR CONSTRUCTION

SU SU By	HS HE Appd.	22.05.27 21.08.20 YY.MM.DD
SU	HE	21.08.20
Ву	Appd.	YY.MM.DD
SU	HS	22.05.27
SU	HE	21.08.20
00		
SU	HS	21.08.11

File Name: 161413684_I-ps

Permit-Seal

SU HS HS 21.07.29

Dwn. Chkd. Dsgn. YY.MM.DD

Client/Project

TRICAR DEVELOPMENTS INC.

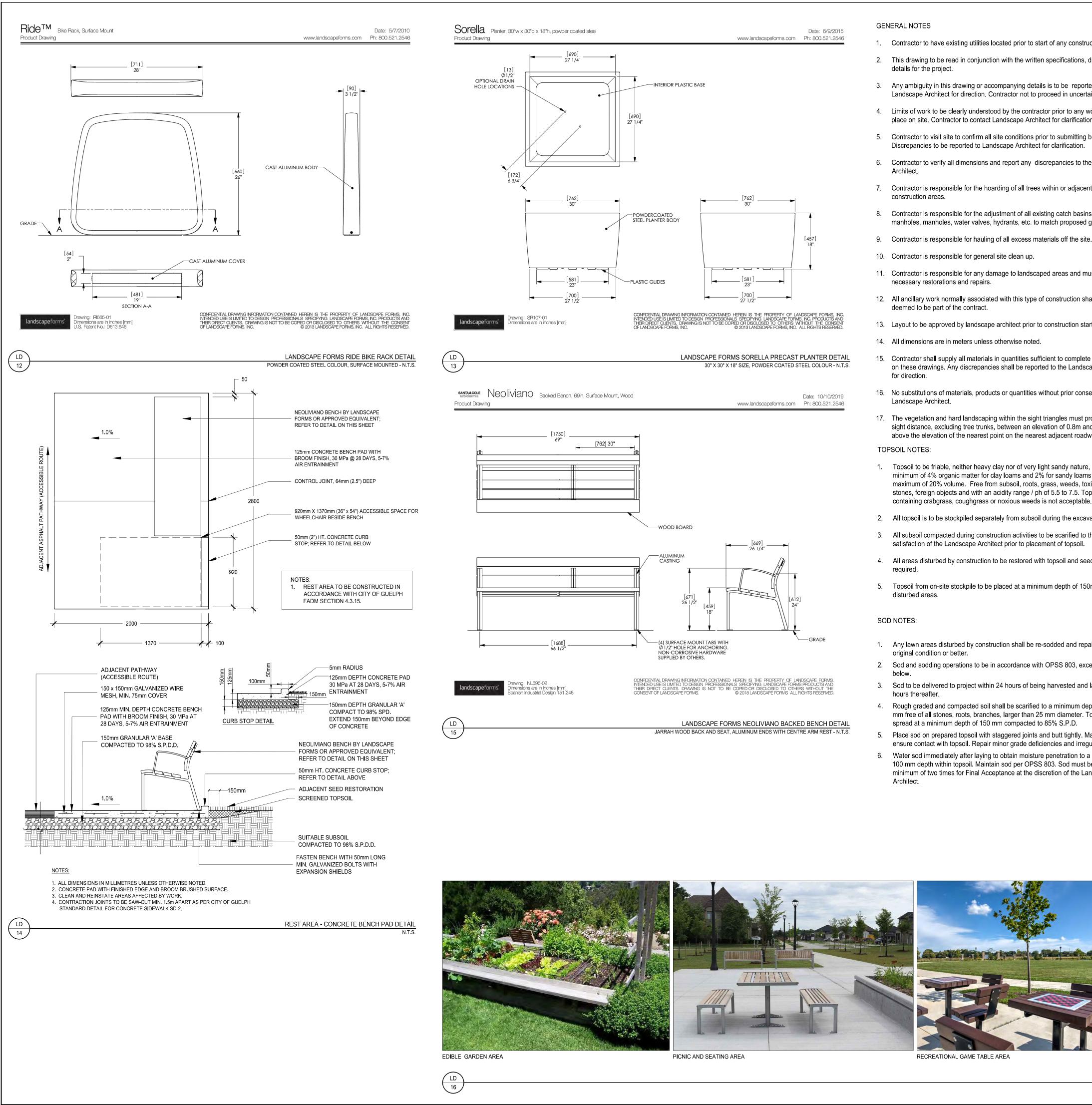
1242, 1250, 1260 GORDON STREET & 9 VALLEY ROAD Guelph, ON Canada

LANDSCAPE DETAILS

Project No. 161413684

Drawing No.

L-2


Title

Scale

SCALE AS SHOWN

Revision

Sheet 2 of 3

ORIGINAL SHEET - ANSI D

- 1. Contractor to have existing utilities located prior to start of any construction.
- 2. This drawing to be read in conjunction with the written specifications, drawings and
- 3. Any ambiguity in this drawing or accompanying details is to be reported to the Landscape Architect for direction. Contractor not to proceed in uncertainty.
- 4. Limits of work to be clearly understood by the contractor prior to any work taking place on site. Contractor to contact Landscape Architect for clarification if required.
- 5. Contractor to visit site to confirm all site conditions prior to submitting bids. Discrepancies to be reported to Landscape Architect for clarification.
- 6. Contractor to verify all dimensions and report any discrepancies to the Landscape
- 7. Contractor is responsible for the hoarding of all trees within or adjacent to
- 8. Contractor is responsible for the adjustment of all existing catch basins, catch-basin manholes, manholes, water valves, hydrants, etc. to match proposed grades.

- 11. Contractor is responsible for any damage to landscaped areas and must make all
- 12. All ancillary work normally associated with this type of construction shall be
- 13. Layout to be approved by landscape architect prior to construction starting.
- 15. Contractor shall supply all materials in quantities sufficient to complete work shown on these drawings. Any discrepancies shall be reported to the Landscape Architect
- 16. No substitutions of materials, products or quantities without prior consent of
- 17. The vegetation and hard landscaping within the sight triangles must provide clear sight distance, excluding tree trunks, between an elevation of 0.8m and 2.7m above the elevation of the nearest point on the nearest adjacent roadway.

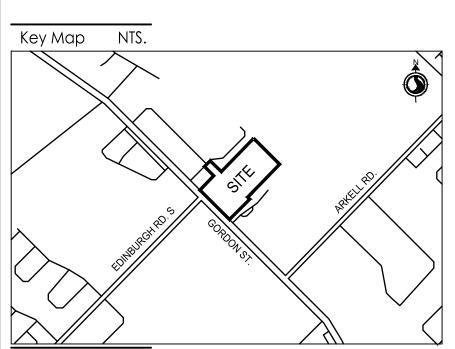
- 1. Topsoil to be friable, neither heavy clay nor of very light sandy nature, containing a minimum of 4% organic matter for clay loams and 2% for sandy loams to a maximum of 20% volume. Free from subsoil, roots, grass, weeds, toxic materials, stones, foreign objects and with an acidity range / ph of 5.5 to 7.5. Topsoil containing crabgrass, coughgrass or noxious weeds is not acceptable.
- All topsoil is to be stockpiled separately from subsoil during the excavation period.
- 3. All subsoil compacted during construction activities to be scarified to the satisfaction of the Landscape Architect prior to placement of topsoil.
- 4. All areas disturbed by construction to be restored with topsoil and seed, as
- 5. Topsoil from on-site stockpile to be placed at a minimum depth of 150mm in all

- 1. Any lawn areas disturbed by construction shall be re-sodded and repaired to
- 2. Sod and sodding operations to be in accordance with OPSS 803, except as noted
- Sod to be delivered to project within 24 hours of being harvested and laid within 36
- 4. Rough graded and compacted soil shall be scarified to a minimum depth of 150 mm free of all stones, roots, branches, larger than 25 mm diameter. Topsoil to be spread at a minimum depth of 150 mm compacted to 85% S.P.D.
- Place sod on prepared topsoil with staggered joints and butt tightly. Machine roll to ensure contact with topsoil. Repair minor grade deficiencies and irregularities.
- 6. Water sod immediately after laying to obtain moisture penetration to a minimum of 100 mm depth within topsoil. Maintain sod per OPSS 803. Sod must be cut a minimum of two times for Final Acceptance at the discretion of the Landscape

PLANTING NOTES:

- 1. The Contractor must notify the Landscape Architect prior to the commencement of any planting. Contractor shall supply all plants and materials in quantities sufficient to complete work shown on this drawing. Any discrepancies between quantities shall be reported to the Landscape Architect for direction.
- 2. The Landscape Architect is to be contacted for inspection and written approval prior to plant material arriving on site. The Landscape Architect reserves the right to reject any plant materials that have not been inspected and approved.
- Plant material collected from wild sources will not be accepted. The Landscape Architect reserves the right to require that supplier invoices be submitted for inspection and approval prior to acceptance.
- Staking (layout) of plant materials to be approved by Landscape Architect prior to installation. Drawing may be scaled for approximate layout of individual trees and planting beds.
- All frontage plant materials will be planted in 450mm min depth approved triple mix. All restoration plant materials will be installed in 450mm min depth approved screened native topsoil. No additional soils or additives will be permitted unless by the Landscape Architect at no additional cost to the project. Planting soil to be free from weeds, subsoil, roots, stones, lumps of clay and toxic material.
- 6. Plant materials specified for this project will conform to the Canadian Nursery Landscape Association (CNLA) for size, variety, and condition as indicated on the plant schedule shown on these drawings. Any plant materials that do not conform (in the sole opinion of the Landscape Architect) will be promptly removed from the site and replaced by the Contractor at no additional cost to the Owner or project.
- 7. Do not make substitutions of materials, products or quantities without the prior written permission of the Landscape Architect.
- 8. Remove dead and/or damaged branches on trees or shrubs. All pruning shall be performed in accordance with standard horticultural practices and appropriate timing for each species.
- Plants are not to be installed during extreme heat, drought, or other undesirable conditions. Thoroughly water all plants immediately after installation. Contractor not to proceed in uncertainty. Contact Landscape Architect for direction.
- 10. The Contractor is required to water plant material regularly or as directed by the Landscape Architect during construction and the two year warranty period. Plants will be watered within 48 hours of a written request by the Landscape Architect. Failure to do so after the second request will result in this work being undertaken by others. The cost of this work shall be deducted from the total contract price.
- 11. Do not plant in drainage swales. Where proposed drainage swales conflict with proposed plantings, contact the Landscape Architect for direction.
- 12. All trees and shrubs are to be planted in accordance with the planting details included in this drawing set.
- 13. Minor field adjustments to plant material locations may be necessary to respond to the locations of existing plants. Contractor to review with Landscape Architect where relocations are necessary. Contractor must receive approval from Landscape Architect prior to installation.
- 14. Shredded pine mulch or an approved other will be spread uniformly in all planting beds and around the base of all trees and shrubs to a depth of 100mm. Do not place mulch in direct contact with trunks; allow a 50mm mulch free ring around trunks. Provide a sample of mulch to the Landscape Architect for approval prior to installation.
- 15. All landscape works will be guaranteed for a period of two years following inspection substantial completion. Plant material, which is not in a healthy growing condition two years after inspection, shall be replaced to the satisfaction of the Landscape Architect / Client.
- 16. The Contractor is responsible for location of all underground services prior to excavation of tree pits and shrub beds.
- 17. All wood stakes and associated ties to be removed at the conclusion of the warranty period.
- 18. Contractor to identify with owner and Landscape Architect any maintenance requirements necessary for warranty purposes.
- 19. The Landscape Architect reserves the right to refuse acceptance of any plant material displaying poor growth habits, injury or disease. Any plant material rejected by the Landscape Architect will be promptly removed from the site and replaced with material of acceptable quality at no additional cost to the project.
- 20. The Landscape Architect reserves the right to extend contractor's warranty responsibilities for an additional year if, at the end of initial warranty period, leaf development and growth is not sufficient to ensure future survival as determined by the Landscape Architect.

RECREATIONAL BOCCE BALL COURTS



Stantec 600-171 Queens Avenue London ON N6A 5J7 Tel. 519-645-2007

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden

Consultants

Legend

Notes

ALL DRAWINGS SHOULD BE REVIEWED WITH REFERENCE TO COMPLETE CONTRACT DOCUMENTS DRAWINGS NOT INTENDED FOR CONSTRUCTION

∠.	DRAWINGS	NUT	INTENDED	FUN	CONSTRUCTION

2.	PER CITY COMMENTS		HS	22.05.27
1.	PER UPDATED SITE PLAN	SU	HE	21.08.20
Re	evision	Ву	Appd.	YY.MM.DD
3.	ISSUED FOR DRAFT PLAN APPROVAL	SU	HS	22.05.27
2.	ISSUED FOR DRAFT PLAN APPROVAL	SU	HE	21.08.20
1.	ISSUED FOR DRAFT PLAN APPROVAL	SU	HS	21.08.11

Appd. YY.MM.DD ssued SU HS HS 21.07.29 File Name: 161413684_I-ps

Permit-Seal

Dwn. Chkd. Dsgn. YY.MM.DD

Client/Project

TRICAR DEVELOPMENTS INC.

1242, 1250, 1260 GORDON STREET & 9 VALLEY ROAD Guelph, ON Canada

Title

LANDSCAPE DETAILS AND NOTES

roject No. 161413684

Drawing No.

L-3

Scale SCALE AS SHOWN

Revision

Sheet 3 of 3