

Gsd Developments & Management Inc.

Stormwater Management and Functional Servicing Report for 1166 - 1204 Gordon Street

GMBP File: 121139

March 9, 2022

GUELPH | OWEN SOUND | LISTOWEL | KITCHENER | LONDON | HAMILTON | GTA 650 WOODLAWN RD. W., BLOCK C, UNIT 2, GUELPH ON N1K 1B8 P: 519-824-8150 WWW.GMBLUEPLAN.CA

TABLE OF CONTENTS

1.0	INTRODUCTION	0
2.0	SITE INFORMATION	0
3.0	GEOLOGY	1
4.0	PROPOSED DEVELOPMENT	1
4.1	Storm Sewers	
4.2	Sanitary Sewers	2
4.3	Watermain	2
5.0	STORMWATER MANAGEMENT	2
5.1	Criteria	2
5.2	Modelling Parameters	2
5.3	Pre-Development Conditions	3
5.4	Post-Development Conditions	4
5.5	Infiltration	4
5.6	Routing	5
5.7	Water Quality	
6.0	WATER BUDGET	
7.0	MAINTENANCE PLAN	8
8.0	SEDIMENT AND EROSION CONTROL PLAN	8
9.0	CONCLUSIONS	9

LIST OF FIGURES

Figure No. 1	Site Location Map
Figure No. 2	Pre-Development Catchment Areas Figure
Figure No. 3	Post-Development Catchment Areas Figure

LIST OF APPENDICES

Appendix A	Pre-Development MIDUSS Model Output		
	Stage-Storage-Discharge Calculation Tables, Post-Development MIDUSS Model Output, Stormceptor EFO4 OGS Detail and Sizing Report		
Appendix C	Water Budget Analysis		

STORMWATER MANAGEMENT AND FUNCTIONAL SERVICING REPORT

1166-1204 GORDON STREET, GUELPH

March 9, 2022

GMBP file No: 121139

1.0 INTRODUCTION

In support of the Zoning By-law Amendment Application, GM BluePlan Engineering Limited (GMBP) provides this report that documents the proposed stormwater management design and servicing for the proposed multistorey high density residential development at 1166-1204 Gordon Street in the City of Guelph (City).

The Owner is required to have a Professional Engineer design a stormwater management system and have the said Engineer supervise and certify that the stormwater management system is installed in accordance with the approvals given under Section 41 of the Planning Act.

This report and stormwater management design is based on the following information:

- Topographic survey, by Van Harten Surveying Inc., File No. 27080-19, dated February 18, 2021
- 1166-1204 Gordon Street Residential Development, Site Plan and Project Statistics, by Broadview Architect, undated, dated December 6, 2021
- Hydrogeological Study for Residential Development at 1166, 1170, 1182, 1190, 1200 and 1204 Gordon Street, Guelph, by GM BluePlan Engineering Limited, dated February 2022
- The existing and proposed site details are shown on the GM BluePlan Engineering Plans.

Aside from documents generated by GMBP, GM BluePlan Engineering Limited accepts no responsibility for the accuracy or completeness of the information supplied.

2.0 SITE INFORMATION

The 1.12-hectare subject property is located at 1166-1204 Gordon Street in the City of Guelph. The subject property is generally rectangular, with approximately 171 m of frontage along Gordon Street to the south and approximately 65 m deep, with the opposing side fronting onto Landsdown Drive to the north. The site is further bordered by 1210 Gordon Street to the east and 1160 Gordon Street to the west.

The 1166-1204 Gordon Street properties currently contain detached single-family dwellings, asphalt driveways and garages. The overall site topography slopes from the north to the south. Existing runoff sheet flows uncontrolled to Gordon Street storm system.

3.0 GEOLOGY

The site is located in the physiographic region known as the "Guelph Drumlin Field", which is centred in the City of Guelph¹. The local soils in this area consist of stony tills and deep gravel terraces typical of drumlins and melt water spillways². Refer to the Hydrogeological Study for more detailed subsurface information.

4.0 PROPOSED DEVELOPMENT

The proposed development includes two apartment buildings with six (6) residential floors and one below grade parking level. Additionally, four (4) 3-storey townhouse blocks are proposed along Landsdown Drive.

The City of Guelph provided the following drawings for information:

- Dwg No. 2D-102 Gordon Street Reconstruction Gordon Street Proposed Works Station 4+380 to Station 4+525, As Recorded, by AECOM, dated December 2002.
- Dwg No. 2D-103 Gordon Street Reconstruction Gordon Street Proposed Works Station 4+525 to Station 4+690, As Recorded, by AECOM, dated December 2002.
- Dwg No. 2D-104 Gordon Street Reconstruction Gordon Street Proposed Works Station 4+690 to Station 4+855, As Recorded, by AECOM, dated December 2002.
- Dwg No. G-059 Gordon Street Reconstruction Gordon Street Proposed Works Station 4+240 to Landsdown Drive, As Recorded, by the City of Guelph, dated January 1987.
- Dwg No. G-059B Gordon Street Reconstruction Gordon Street Proposed Works Station 1+680 to Station 1+880, As Recorded, by IBI, dated May 2004.
- Dwg No. I-319 Landsdown Drive Reconstruction Station 1+110 to Station 1+260, As Recorded, by the City of Guelph, dated October 2009.

4.1 Storm Sewers

Based on record drawings I-319 and G-059 referenced in Section 4.0, there is a 300mm diameter storm sewer along north curb line of Landsdown Drive, starting to the east of the site and continuing to the west, eventually connecting to the 450mm diameter storm sewer on Gordon Street. This Gordon Street storm sewer flows west away from the site.

It is proposed that all runoff from the two apartment building roofs is to be conveyed through a clean water collector to a proposed Brentwood Module 25 Series infiltration gallery at the northwest end of the site. Overflow from the Brentwood infiltration system will be routed to an impermeable Brentwood system at the northwest end of the site that outlets to the Landsdown Drive storm sewer through a 300mm diameter pipe. The roadway through the site, other paved surfaces, and the rear roofs and rear yards of townhouses are proposed to be directly connected to the impermeable Brentwood System and bypass the infiltration gallery. The front half of the townhouse roofs and front yards of townhouses will runoff uncontrolled to Landsdown Drive. The southern area wrapping around the apartment buildings will flow uncontrolled south towards Gordon Street.

Based on record drawings 2D-103 referenced in Section 4.0, there is also a 300mm diameter storm sewer along south curb line of Gordon Street, starting in front of 1182 Gordon Street, and continuing east along Gordon Street. Currently, we do not propose any connections to this sewer.

¹ Chapman, L.J. and Putnam, D.F. 1985. Physiography of Southern Ontario – 3rd Edition. Ontario Geological Survey. Special Volume 2.

² Chapman, L.J. and Putnam, D.F. 1985. Physiography of Southern Ontario – 3rd Edition. Ontario Geological Survey. Special Volume 2.

4.2 Sanitary Sewers

Based on record drawing I-319 noted in Section 4.0, there is an existing 200mm diameter sanitary sewer on Landsdown Drive. The site is proposed to be serviced by a 200mm diameter pipe that will connect to the Landsdown Drive system at the north.

Based on record drawings 2D-103 referenced in Section 4.0, there is also a 200mm diameter sanitary sewer along the north curb line of Gordon Street. Currently, we do not propose any connections to this sewer.

4.3 Watermain

Based on record drawing I-319 noted in Section 4.0, there is a 150mm diameter PVC DR-25 watermain beneath the eastbound traffic lanes of Landsdown Drive. The site is proposed to be serviced by a 150mm diameter watermain connected to the existing 150mm diameter watermain on Landsdown Drive.

Based on record drawings 2D-103 referenced in Section 4.0, there is also a 400mm diameter watermain along the south curb line of Gordon Street. Currently, we do not propose any connections to this watermain.

5.0 STORMWATER MANAGEMENT

5.1 Criteria

The stormwater management criteria established by the City of Guelph, received by GMBP on October 4, 2021, are as follows:

- 1. Control Post Development discharge from site to Pre-development rates for the 2 to 100-year Guelph Design Storms.
- 2. Sites that do not have a positive outlet must be designed to provide storage on site for twice the 5-year design storm runoff volume.
- 3. For commercial, institutional and high-density residential developments, excess runoff for the 2-year design storm is to be stored underground or on roof tops.
- 4. Major storm flows are to be routed overland to the municipal stormwater drainage system.
- 5. Excess runoff from the 5-year design storm may pond in parking areas of least anticipated use to a maximum depth of 0.3 metres.
- 6. Clean runoff (roof water) should be directed to pervious areas for infiltration to encourage ground water recharge.
- 7. Quality control facilities are required to remove suspended solids (oil and grit) from areas draining driveways and parking lots.
- 8. The minimum acceptable water quality level for discharge to the municipal collection system is 70% TSS removal or an enhanced level 80% TSS removal depending on the receiving water course.

5.2 Modelling Parameters

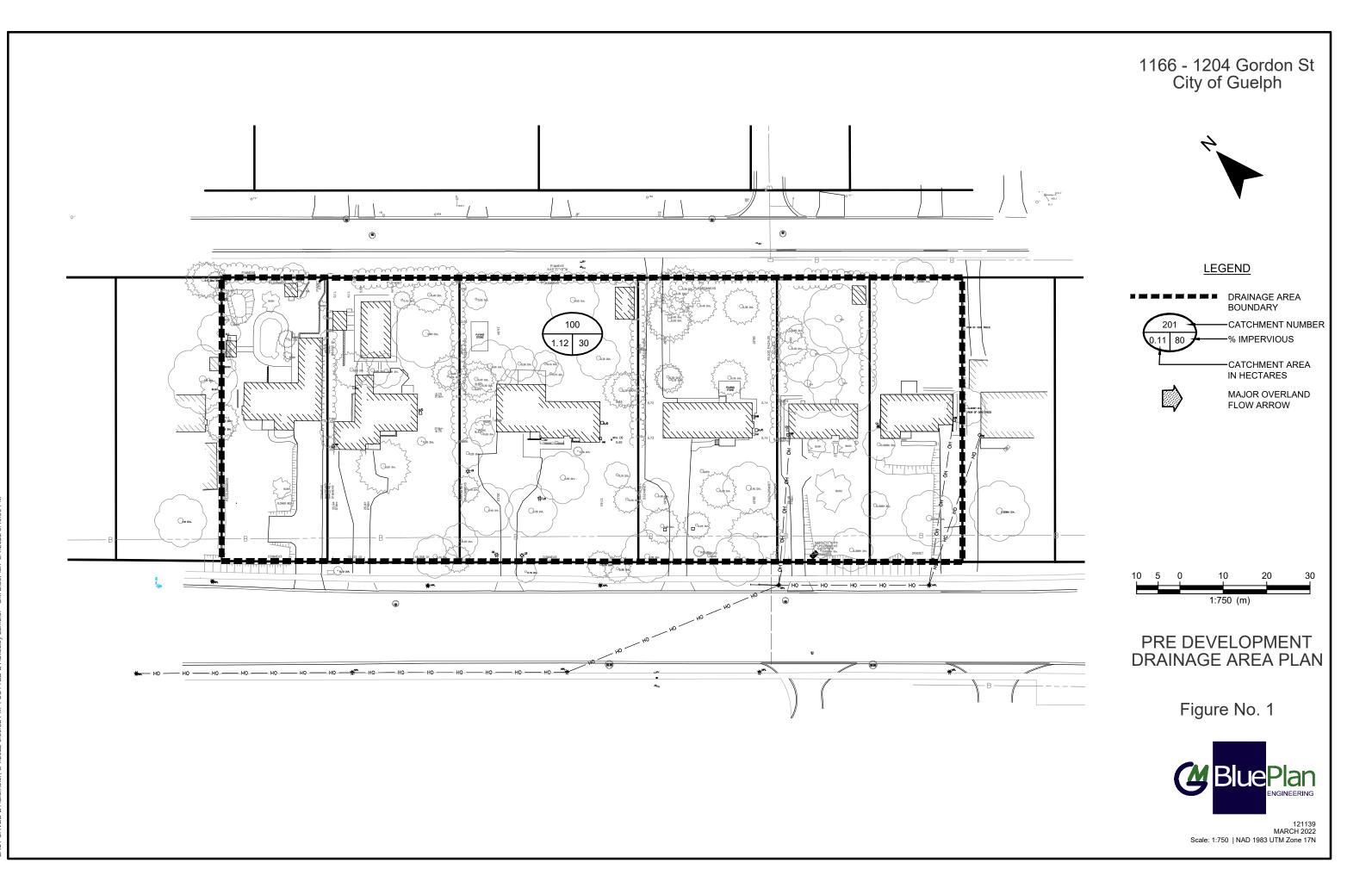
The City of Guelph mass rainfall data was used to model the full range of design storm events. The Chicago storm parameters and the total depth of rainfall for each storm are shown below in Table No. 1.

	2 Year	5 Year	25 Year	100 Year
a =	743	1,593	3,158	4,688
b =	6	11	15	17
c =	0.799	0.879	0.936	0.962
R =	0.4	0.4	0.4	0.4
td =	170	170	210	210
Rainfall depth (mm)	33.816	46.775	69.476	88.830

Table 1: Chicago Storm Parameters

The Horton infiltration method was used in the MIDUSS model. The following parameters summarized in Table No. 2 were used according to the City of Guelph Standards:

Table 2: MIDUSS Horton Parameters


	Impervious Areas	Pervious Areas
Manning's 'n'	0.013	0.300
Maximum Infiltration (mm/hr)	0.0	75.0
Minimum Infiltration (mm/hr)	0.0	12.5
Lag Constant (hr)	0.00	0.25
Depression Storage (mm)	1.5	5.0

5.3 **Pre-Development Conditions**

For pre-development analysis purposes, the 1.12 hectare site was modelled as single drainage catchment due to the single outlet at the south end of the site. The pre-development drainage catchment is shown on Figure No. 2 and described below. The pre-development MIDUSS computer modeling is attached in Appendix 'A'.

Catchment 100 (1.12 hectares, 30% impervious) represents the entire site including multiple family dwellings, garages, sheds and asphalt driveways. Runoff from Catchment 100 flows overland south towards Gordon Street.

A summary of the pre-development peak flow from the site for various design storm events are provided in Table No. 3 below.

FILE:W:/Guelph1121-2021/121139 1166-1204 Gordon St ZBA\5 Work In Progress/Drafting/121139 SWM Fig 1.dwg LAYOUT:SWM Fig 1 LAST SAVED BY:Blambier, 3/4/2022 3:39:52 PM PLOTTED BY:Bradley Lambier - GM BluePlan 3/4/2022 3:40:00 PM

	Total Discharge to Adjacent Properties and Municipal right-of-way (Catchment 100) (m³/s)
2 Year	0.072
5 Year	0.108
25 Year	0.212
100 Year	0.332

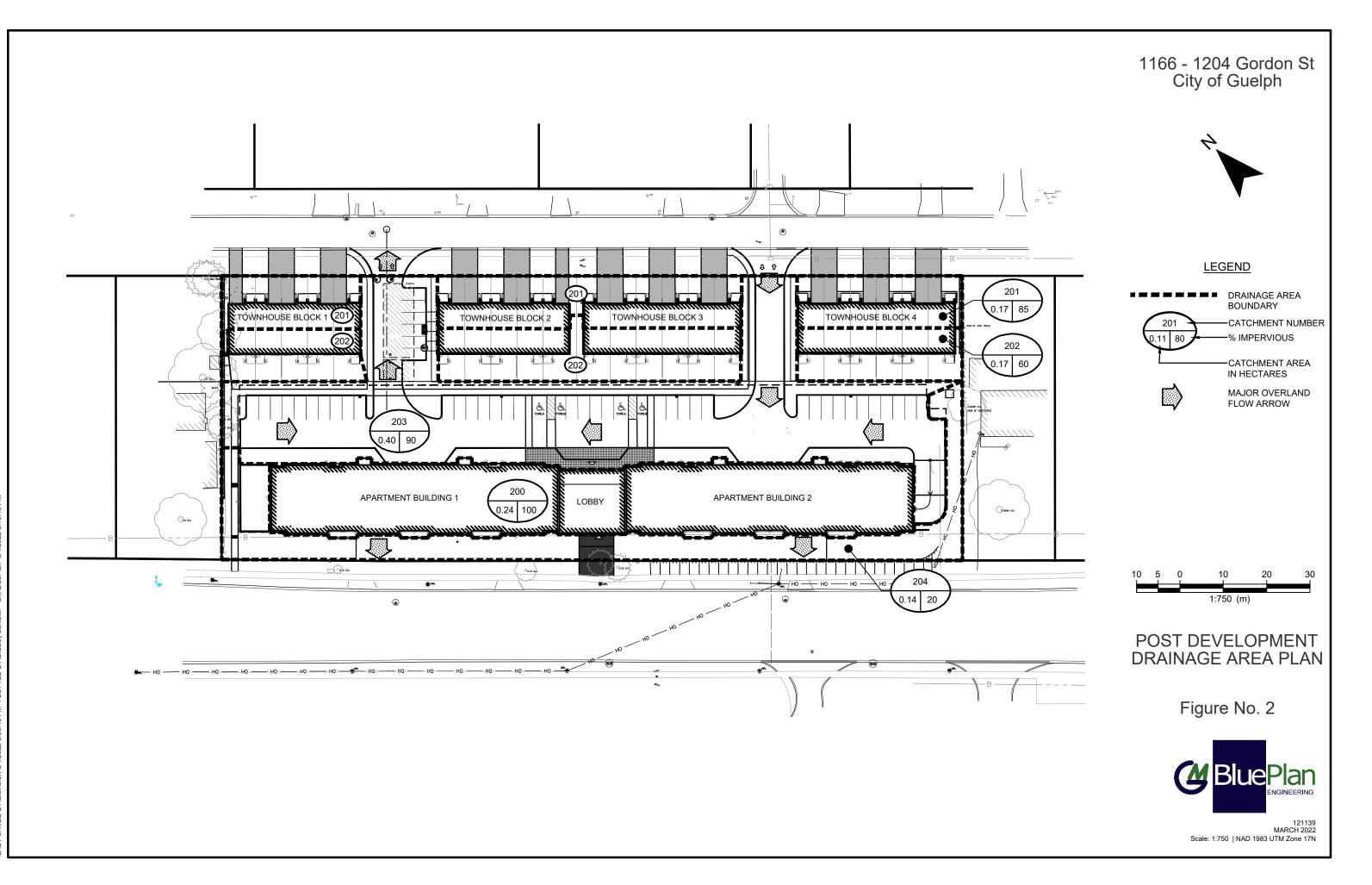
Table 3: Pre-development Conditions - Flow Rates

5.4 Post-Development Conditions

For post-development analysis purposes, the 1.12 hectare site was modelled as five (5) drainage catchments. The post-development drainage catchments are shown on Figure No. 3 and described below. The post-development MIDUSS computer modeling is attached in Appendix 'B'.

Catchment 200 (0.24 hectares, 100% impervious) represents the apartment building's rooftops. Stormwater runoff from Catchment 200 is proposed to be attenuated at a controlled rate by roof drains. Catchment 200 is modeled with seven roof drains, complete with three weirs in each. The roof drains are proposed to discharge into the infiltration gallery underneath the northwest entrance. Overflow form the infiltration gallery proceeds to the storm reservoir also under the northwest entrance and ultimately discharges to the Landsdown Drive storm sewer. The stage storage discharge calculations for the infiltration system, roof discharge controls, and storm reservoir are presented in Appendix B.

Catchment 201 (0.17 hectares, 85% impervious) represents the townhouse front yards and front half of roofs. Stormwater runoff from Catchment 200 is proposed to flow unattenuated to Landsdown Drive.


Catchment 202 (0.17 hectares, 60% impervious) represents the townhouse rear yards and rear half of roofs. The runoff generated from this catchment is directed to rear yards and overflows into catch basins throughout the asphalt area and will enter the storm system and ultimately discharge to the Landsdown Drive storm sewer.

Catchment 203 (0.4 hectares, 90% impervious) represents the proposed parking lot, driving isles, side walks and some vegetated surfaces between the townhouse blocks and apartment buildings. Runoff from this catchment will be directed to the catch basins throughout the asphalt area and will enter the storm system and ultimately discharge to the Landsdown Drive storm sewer.

Catchment 204 (0.14 hectares, 20% impervious) represents the south side of the site, between apartment buildings and the Gordon Street right-of-way. This area includes grassed areas, sidewalks, and a portion of the site entrance. Under post-development conditions, this area will sheetflow overland towards the Gordon Street municipal right-of-way.

5.5 Infiltration

An infiltration gallery is proposed to be located under the northwest entrance to the apartment building site. This infiltration gallery is proposed to be a Stormtank Module 25 infiltration gallery and be 7 m long, 5 m wide, and have a depth of 0.75m. The proposed infiltration gallery will provide a base area of 35 m² and approximately 25.5 m^3 of stormwater storage.

March 9, 2022

Insitu permeameter testing is proposed to be completed at one location. The permeameter test should be completed at the gallery below the northwest entrance. For the purposes of this report, as tests have not yet been completed, an infiltration rate of 20mm/hr has been assumed for infiltration gallery design and water balance calculations.

Table 4 below compares proposed grade of the infiltration gallery compared to interpreted groundwater elevations.

Location	Sub Location	Ground Water Elevation (m) *1	Grade Elevation (m)	Bottom of Infiltration Gallery Elevation (m) *2
Infiltration Gallery (under NW Entrance)	N/A	340.3	343.35	341.3

Table 4: Ground Water Table vs Underside of Infiltration Galleries

^{*1} Ground water levels are based on Figure 6 "Interpreted Groundwater Contour Plan" from the Hydrogeological Study report.

*² Underside of infiltration galleries are to be 1.0m above seasonal ground water table elevations in order to meet City of Guelph requirements.

5.6 Routing

The hydrologic model MIDUSS was used to create the design storm runoff hydrographs and to route the hydrographs. The routing results for the proposed Infiltration Gallery 2, located under the northwest entrance, is summarized in Table 5 below.

	Available Capacity			Actual Capacity Used		
	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m
Bottom of Gallery	9.00E-05	0.00	341.3			
Top of Gallery	9.00E-05	25.5	342.05			
Overflow to Reservoir	0.143	26	342.06			
2-Year Design Storm				0.009	25.56	342.07
100-Year Design Storm				0.026	25.68	342.10
Grade/Top of Grate	0.143	28.5	343.02			

Table 5: Brentwood Infiltration Gallery - Stage-Storage-Discharge Capacity

Peak flows in the above table for the design storm events are equivalent to the infiltration rate of the native soils except when overflowing to the storm reservoir.

Table 6 shows the stage-storage-discharge capacity at critical points in the storm reservoir located under the northwest entrance. The reservoir outlet is equipped with a 190 mm diameter orifice plate.

	Available Capacity			Actu	al Capacity	Used
	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m	Peak Flow m³/s	Storage Volume m³	Storage Elevation m
Reservoir Outlet Invert/Invert of Orifice Plate	0.000	0.00	341.0			
Bottom of Reservoir	0.000	0.00	341.0			
2-Year Design Storm				0.045	54.51	341.46
5-Year Design Storm				0.059	84.79	341.71
25-Year Design Storm				0.079	142.14	342.19
Top of Reservoir	0.115	154.7	342.30			
Top of CB Grate	0.146	167.2	343.02			
Start of Overflow to Landsdown Drive	0.153	178.3	343.20			
100-Year Design Storm				0.150	181.86	343.22
Top of Curb at Landsdown Outlet	0.500	199.1	343.32			

Table 6: Storm Reservoir - Stage-Storage-Discharge Capacity

A summary of the post-development peak flows from the site for the 2-year to 100-year design storm events are provided in Table 7 below.

Table 7: Propose	d Peak Flow Rat	e from Site (m³/s)

Catchment	2-Year	5-year	25-Year	100-Year
Catchment 200, 202, and 203 – To Storm System (Controlled)	0.045	0.059	0.079	0.150
Catchment 201 & 204 – To R.O.W. on Gordon Street/Landsdown Drive	0.043	0.059	0.095	0.133
Total Flow from Site	0.072	0.101	0.159	0.209

A summary of the pre- and post-development peak flow rates from the site for the 2-year to 100-year design storm events are provided in Table 8 below.

	Peak Flow to Adjacent Properties / Gordon Street R.O.W. (m³/s)
2 Year	
Pre-Development	0.072
Post-Development	0.072
5 Year	
Pre-Development	0.108
Post-Development	0.101
25 Year	
Pre-Development	0.212
Post-Development	0.159
100 Year	
Pre-Development	0.332
Post-Development	0.209

Table 8: Pre- and Post-Development Conditions: Peak Flow Rates – All Storms

From Table 8 above, it can be observed that the proposed peak flow rate from the site, under the full range of design storm events, is estimated to be lower than or equal to the pre-development peak flow rate from site.

Upon completion of the development, all design storm flows from rooftops will be directed to the low impact development (LID) infiltration gallery and flows from storm events at or greater than the 100-year will be directed to the Landsdown Drive right-of-way.

5.7 Water Quality

Enhanced water quality treatment (80% TSS removal) for runoff generated from the asphalt area (Catchment 203) will be achieved by a treatment train approach routing runoff through a Stormceptor Model EFO4 oil/grit separator followed by an impermeable Brentwood system equipped with a Debris Row before exiting the site. Details of the oil/grit separator and Brentwood system have been included in Appendix "C".

6.0 WATER BUDGET

The average annual precipitation for the area in which the study site is located is estimated to be about 916.3mm. This amount is based on precipitation data recorded at the Waterloo Wellington Airport meteorological station for the period from 1981 to 2010. The water balance has been calculated on a monthly basis based on the strategy provided in "Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance" by Thornthwaite and Mather (dated 1957).

The 1.12-ha development site is understood to have underlying gravel and sand soils, with an estimated infiltration rate of 20mm/hr.

The existing pre-development site discharges to the south of the property via overland sheet flow. The 1.12-ha site is 30% impervious, given building and driveway characteristics, which produces approximately 2,293 m³ of runoff annually.

Under pre-development conditions, the site currently produces approximately 2,918 m³ of recharge volume annually.

The post-development site is approximately 78% impervious. The increase in impervious area results in additional precipitation being available for recharge and runoff, as evapotranspiration is reduced. The total annual runoff volume towards the infiltration gallery is 1,752 m³. Under post-development conditions the total annual natural recharge volume (through pervious surfaces) is 1,227 m³.

An infiltration gallery has been designed to facilitate recharge and try to satisfy the water balance requirements for the overall site. The gallery has been designed with 1 metre clearance from the seasonally high groundwater table and 1.2 m of frost protection, where feasible. The post development potential annual enhanced recharge volume available is 1,665 m³, for a total potential annual recharge volume of 2,892 m³.

Overall, the site development provides a decrease of 0.9% (26 m³) of annual recharge volume from existing to proposed conditions. This minor reduction in recharge volume is insignificant and within accuracy of such theoretical calculations.

The results of the site water budget analysis, including the additional recharge provided by the infiltration gallery has been included in Appendix C.

7.0 MAINTENANCE PLAN

To ensure that the stormwater management system continues to function as designed and constructed, we recommend that the following inspections and maintenance activities be completed on an annual basis:

- 1. Infiltration galleries will be kept "off-line" until construction is complete. They will not serve as a sediment control device during site construction. Sediment will be prevented from entering the infiltration facility using super silt fence, diversion berms or other means.
- 2. We have specified clean outs at either end of the infiltration gallery to provide a means of inspecting and flushing them out as part of routine maintenance.
- 3. Maintenance typically consists of cleaning out leaves, debris and accumulated sediment caught in sumps in catchbasins and manholes and inspection and cleanout of inlets and outlets annually or as needed.
- 4. Inspection via observation in cleanouts will be performed to ensure the facility drains within the maximum acceptable length of time at least annually and following every major storm event (>25 mm). If the time required to fully drain exceeds 48 to 72 hours, they will be drained via pumping and clean out of the perforated distribution pipe. If slow drainage persists, the system may need removal and replacement of granular material and/or geotextile fabric.
- 5. Regular inspections and cleanings of the Stormceptor Model EFO4 oil/grit separator and Brentwood Stormtank complete with Debris Row will be required as a part of the standard maintenance procedures carried out annually by the Owner.

8.0 SEDIMENT AND EROSION CONTROL PLAN

Silt fence will be installed along the property boundary in all locations where runoff will discharge from the site to adjacent lands. The silt fence will serve to minimize the opportunity for water borne sediments to be washed on to the adjacent properties.

Upon completion of the grading, any area not subject to active construction within 30 days will be topsoiled and hydroseeded as per OPSS 572.

Inspection and maintenance of all silt fencing will start after installation is complete. The silt fence will be inspected on a weekly basis during active construction or after a rainfall event of 13mm or greater. Maintenance will be carried out, within 48 hours, on any part of the silt fence found to need repair.

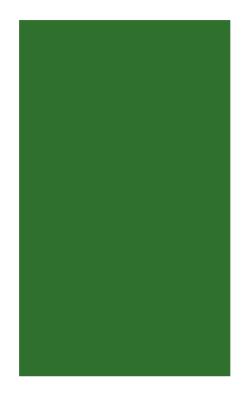
Once construction and landscaping has been substantially completed, the silt fence will be removed, any accumulated sediment will be removed, and the landscaping will be completed.

Details of the proposed sediment and erosion control measures will be detailed on a drawing at the Site Plan Application stage of the project.

9.0 CONCLUSIONS

The 1166-1204 Gordon Street Stormwater Management and Functional Servicing report developed and clearly illustrated the following:

- 1. The post-development release rate from the site to municipal right-of-way is 0.209 m³/s during the 100year design storm event and is lower than pre-development release rate of 0.332 m³/s. Additionally, the post-development release rates for the 2-, 5-, and 25-year design storms are below or equal to the predevelopment release rate and are summarized in Table 8.
- 2. Quality control for the stormwater collected from the paved surfaces will be provided through a treatment train approach by routing overland flows through a Stormceptor EFO4 oil/grit separator and Brentwood Debris Row prior to discharge into the Landsdown Drive storm system. The proposed water quality control measures are anticipated to achieve above 80% TSS removal.
- 3. The site will provide infiltration through the onsite infiltration gallery consisting of Brentwood Stormtank Module 25 or approved equivalent. The post-development annual recharge volume is approximately 0.9% below the pre-development recharge volume and is within modelling accuracy.
- 4. Prior to construction, a silt fence will be installed along the property boundary in all locations where runoff will discharge from the site to adjacent lands. This will minimize the transport of sediment off-site during the construction period.


All of which is respectfully submitted.

Yours truly, GM BLUEPLAN ENGINEERING LIMITED Per:

Jack Turner, P.Eng.

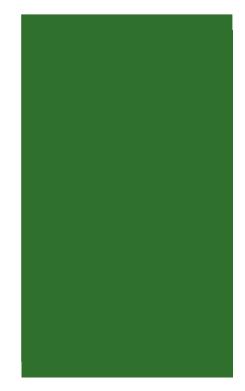
W:\Guelph\121-2021\121139 1166-1204 Gordon St ZBA\5 Work In Progress\Reports_Manuals_Contracts\Design Report\FSR Submission 1\121139 1166-1204 Gordon Street - SWM And FSR_2022-03-11.Docx

Appendix A Pre-Development MIDUSS Model Output

			MIDUSS Output	>"
п			•	2.25 rev. 473"
				ruary 07, 2010"
		10	Units used:	ie METRIC"
"			Job folder: C:\Users\smalicevic\Desktop\	MIDUSS\121139\"
				2021-11-19\pre" r pre SM 2.out"
			Licensee name:	gmbp"
			Company	giiiop "
			· ·	at 4:10:06 PM"
	31	т	TIME PARAMETERS"	at 4.10.00 PM
	51	5.000	Time Step"	
		210.000	Max. Storm length"	
п		2880.000	Max. Hydrograph"	
	32		STORM Chicago storm"	
	52	1	Chicago storm"	
		743.000	Coefficient A"	
		6.000		
		0.799		
п			Fraction R"	
п		170.000		
		1.000	Time step multiplier"	
			Naximum intensity 105.606 mm/hr"	
			Total depth 33.816 mm"	
		6		
"	33	C	CATCHMENT 100"	
"		1	Triangular SCS"	
"		1	Equal length"	
"		2	Horton equation"	
"		100	Existing Site to Gordon Street"	
"		30.000	% Impervious"	
"		1.120	Total Area"	
"		65.000	Flow length"	
"		4.000	Overland Slope"	
"		0.784	Pervious Area"	
"		65.000	Pervious length"	
"		4.000	Pervious slope"	
"		0.336	Impervious Area"	
"		65.000	Impervious length"	
"		4.000	Impervious slope"	
		0.300	Pervious Manning 'n'"	
		75.000	Pervious Max.infiltration"	
		12.500	Pervious Min.infiltration"	
		0.250	Pervious Lag constant (hours)"	
		5.000	Pervious Depression storage"	
		0.013	Impervious Manning 'n'"	
		0.000	Impervious Max.infiltration"	
		0.000	Impervious Min.infiltration"	
		0.001	Impervious Lag constant (hours)"	
		1.500	Impervious Depression storage"	

	0.072 0.00	0.000	0.000	c.m/sec"	
	Catchment 100	Pervious	Impervious	Total A	rea "
	Surface Area	0.784	0.336	1.120	hectare"
	Time of concentration	31.975	2.573	6.508	minutes"
н	Time to Centroid	101.732	84.728	87.004	minutes"
	Rainfall depth	33.816	33.816	33.816	mm"
"	Rainfall volume	265.12	113.62	378.74	c.m"
	Rainfall losses	31.709	1.997	22.795	mm"
	Runoff depth	2.107	31.819	11.021	mm"
	Runoff volume	16.52	106.91	123.43	c.m"
	Runoff coefficient	0.062	0.941	0.326	
	Maximum flow	0.008	0.072	0.072	c.m/sec"
" 40	HYDROGRAPH Add Runoff				
п	4 Add Runoff "				
п	0.072 0.07	2 0.000	0.000"		
" 38	START/RE-START TOTALS	100"			
п	3 Runoff Totals on EX	IT"			
п	Total Catchment area		1	.120	hectare"
п	Total Impervious area		0	.336	hectare"
п	Total % impervious		30	.000"	
" 19	EXIT"				

			MIDUSS Output	>"
			MIDUSS version Version 2.25	
			MIDUSS created Sunday, February	
"		10	Units used:	ie METRIC"
"			Job folder: C:\Users\smalicevic\Desktop\MIDU	
"			Output filename: 121139 5-yr pr	•
"			Licensee name:	gmbp"
"			Company	
"			Date & Time last used: 2/8/2022 at	4:07:45 PM"
"	31	T	TIME PARAMETERS"	
"		5.000	Time Step"	
"		210.000	Max. Storm length"	
"		2880.000	Max. Hydrograph"	
"	32	S	STORM Chicago storm"	
"		1	Chicago storm"	
"		1593.000	Coefficient A"	
"		11.000		
"		0.879	•	
"			Fraction R"	
		170.000	Duration"	
"		1.000	Time step multiplier"	
"			Maximum intensity 134.894 mm/hr"	
"			Fotal depth46.775mm"	
"		6	005hyd Hydrograph extension used in this file"	
	33		CATCHMENT 100"	
		1	Triangular SCS"	
		1	Equal length"	
		2	Horton equation"	
		100 30.000	Existing Site to Gordon Street" % Impervious"	
		1.120	Total Area"	
		65.000	Flow length"	
		4.000	Overland Slope"	
		0.784	Pervious Area"	
		65.000	Pervious length"	
		4.000	Pervious slope"	
		0.336	Impervious Area"	
		65.000	Impervious length"	
"		4.000	Impervious slope"	
		0.300	Pervious Manning 'n'"	
		75.000	Pervious Max.infiltration"	
"		12.500	Pervious Min.infiltration"	
"		0.250	Pervious Lag constant (hours)"	
"		5.000	Pervious Depression storage"	
"		0.013	Impervious Manning 'n'"	
"		0.000	Impervious Max.infiltration"	
"		0.000	Impervious Min.infiltration"	
"		0.001	Impervious Lag constant (hours)"	
"		1.500	Impervious Depression storage"	


"	0.108 0.00	0.000	0.000	c.m/sec"	
н	Catchment 100	Pervious	Impervious	Total A	rea "
н	Surface Area	0.784	0.336	1.120	hectare"
н	Time of concentration	22.134	2.333	9.522	minutes"
	Time to Centroid	94.640	82.876	87.147	minutes"
	Rainfall depth	46.775	46.775	46.775	mm"
	Rainfall volume	366.72	157.16	523.88	c.m"
	Rainfall losses	35.904	2.276	25.816	mm"
	Runoff depth	10.871	44.499	20.959	mm"
	Runoff volume	85.23	149.52	234.75	c.m"
п	Runoff coefficient	0.232	0.951	0.448	ш
	Maximum flow	0.049	0.098	0.108	c.m/sec"
" 40	HYDROGRAPH Add Runoff				
	4 Add Runoff "				
	0.108 0.10	8 0.000	0.000"		
" 38	START/RE-START TOTALS	100"			
"	3 Runoff Totals on EX	IT"			
	Total Catchment area		1	.120	hectare"
	Total Impervious area		0	.336	hectare"
	Total % impervious		30	.000"	
" 19	EXIT"				

			MIDUSS Output>"
			MIDUSS version Version 2.25 rev. 473"
п			MIDUSS created Sunday, February 07, 2010"
п		10	Units used: ie METRIC"
"			Job folder: C:\Users\smalicevic\Desktop\MIDUSS\121139\" 2021-11-19\pre"
"			Output filename: 121139 25-yr pre SM 2.out"
"			Licensee name: gmbp"
"			Company
"			Date & Time last used: 2/8/2022 at 4:05:24 PM"
"	31	T	IME PARAMETERS"
"		5.000	Time Step"
"		210.000	Max. Storm length"
"		2880.000	Max. Hydrograph"
"	32	S	TORM Chicago storm"
"		1	Chicago storm"
"		3158.000	Coefficient A"
"		15.000	Constant B"
"		0.936	Exponent C"
"		0.400	Fraction R"
"		210.000	Duration"
"		1.000	Time step multiplier"
"			aximum intensity 169.546 mm/hr"
"		Т	otal depth 69.476 mm"
"		6	025hyd Hydrograph extension used in this file"
	33		ATCHMENT 100"
		1	Triangular SCS"
		1	Equal length"
		2	Horton equation"
		100	Existing Site to Gordon Street"
		30.000	% Impervious"
		1.120	Total Area"
		65.000	Flow length"
		4.000	Overland Slope"
		0.784 65.000	Pervious Area" Dervious longth"
			Pervious length" Pervious slope"
		4.000	Impervious Area"
		0.336 65.000	Impervious length"
п		4.000	Impervious slope"
		4.000 0.300	Pervious Manning 'n'"
		75.000	Pervious Max.infiltration"
		12.500	Pervious Min.infiltration"
		0.250	Pervious Lag constant (hours)"
		5.000	Pervious Depression storage"
		0.013	Impervious Manning 'n'"
		0.000	Impervious Max.infiltration"
		0.000	Impervious Min.infiltration"
"		0.001	Impervious Lag constant (hours)"
"		1.500	Impervious Depression storage"
			· · · · · · · · · · · · · · · · · · ·

		0.212	0.000	0.000	0.000	c.m/sec"	1
н	Catchmer	nt 100		Pervious	Impervious	Total A	Area "
	Surface	Area		0.784	0.336	1.120	hectare"
	Time of	concentrat	tion	16.237	2.129	9.156	minutes"
	Time to	Centroid		107.441	98.716	103.062	2 minutes"
	Rainfall	l depth		69.476	69.476	69.476	mm"
	Rainfall	l volume		544.70	233.44	778.14	c.m"
	Rainfall	losses		40.961	2.429	29.401	mm"
	Runoff d	lepth		28.515	67.047	40.075	mm"
п	Runoff \	/olume		223.56	225.28	448.84	c.m"
II	Runoff d	coefficient	t	0.410	0.965	0.577	п
II	Maximum	flow		0.148	0.140	0.212	c.m/sec"
" 40	HYDROGRA	APH Add Rur	noff '	•			
"	4 Add F	Runoff "					
		0.212	0.212	2 0.000	0.000"		
" 38	START/RE	-START TO	TALS 1	l00"			
	3 Runof	f Totals o	on EXI	[Т"			
	Total Ca	atchment ar	rea		1	.120	hectare"
	Total In	npervious a	area		0	.336	hectare"
	Total %	impervious	5		30	.000"	
" 19	EXIT"						

			MIDUSS Output>"	,
п			MIDUSS version Version 2.25 rev. 473"	
			MIDUSS created Sunday, February 07, 2010"	
		10	Units used: ie METRIC	
"			Job folder: C:\Users\smalicevic\Desktop\MIDUSS\121139\"	
"			2021-11-19\pre"	
"			Output filename: 121139 100-yr pre SM 2.out	
"			Licensee name: gmbp"	ı
"			Company "	ı
"			Date & Time last used: 2/8/2022 at 4:01:43 PM"	1
"	31	T	IME PARAMETERS"	
"		5.000	Time Step"	
"		210.000	Max. Storm length"	
		2880.000	Max. Hydrograph"	
	32		TORM Chicago storm"	
"		1	Chicago storm"	
"		4688.000	Coefficient A"	
		17.000		
		0.962		
			Fraction R"	
		210.000 1.000	Duration" Time step multiplier"	
			aximum intensity 213.574 mm/hr"	
			otal depth 88.830 mm"	
		6	100hyd Hydrograph extension used in this file"	
	33	-	ATCHMENT 100"	
"		1	Triangular SCS"	
"		1	Equal length"	
"		2	Horton equation"	
"		100	Existing Site to Gordon Street"	
"		30.000	% Impervious"	
"		1.120	Total Area"	
"		65.000	Flow length"	
"		4.000	Overland Slope"	
		0.784	Pervious Area"	
"		65.000	Pervious length"	
		4.000	Pervious slope"	
		0.336	Impervious Area"	
		65.000	Impervious length"	
		4.000	Impervious slope"	
		0.300	Pervious Manning 'n'" Pervious Max.infiltration"	
		75.000 12.500	Pervious Min.infiltration"	
		0.250	Pervious Lag constant (hours)"	
		5.000	Pervious Depression storage"	
		0.013	Impervious Manning 'n'"	
"		0.000	Impervious Max.infiltration"	
"		0.000	Impervious Min.infiltration"	
"		0.001	Impervious Lag constant (hours)"	
"		1.500	Impervious Depression storage"	
			· · · ·	

	0.332 0.0	00 0.000	0.000	c.m/sec"	
	Catchment 100	Pervious	Impervious	Total Are	ea "
	Surface Area	0.784	0.336	1.120	hectare"
	Time of concentration	13.410	1.941	8.270	minutes"
	Time to Centroid	106.449	97.856	102.598	minutes"
	Rainfall depth	88.830	88.830	88.830	mm"
	Rainfall volume	696.43	298.47	994.89	c.m"
	Rainfall losses	43.350	2.649	31.140	mm"
	Runoff depth	45.480	86.181	57.690	mm"
	Runoff volume	356.56	289.57	646.13	c.m"
	Runoff coefficient	0.512	0.970	0.649	н
	Maximum flow	0.227	0.177	0.332	c.m/sec"
" 40	HYDROGRAPH Add Runoff				
	4 Add Runoff "				
п	0.332 0.3	32 0.000	0.000"		
" 38	START/RE-START TOTALS	100"			
	3 Runoff Totals on E	XIT"			
п	Total Catchment area		1	.120 h	ectare"
п	Total Impervious area		0	.336 h	ectare"
п	Total % impervious		30	.000"	
" 19	EXIT"				

Appendix **B**

Post-Development MIDUSS Model Output and Stage-Storage-Discharge Calculation Tables and Oil/Grit Separator and Brentwood Stormtank Details

1166- 1204 Gordon Street CITY OF GUELPH OUR FILE: 121139 11-Feb-22

Catchment 200: Proposed Rooftop Storage

Design Discharge Rate =	1.50 l/min/mm/we	eir 2.50E-05	m³/s/mm/weir
Max. Average Storage Depth =	100 mm		
Design Discharge =	150.0 l/min/weir	0.0015	m ³ /s/weir
No. of Drains =	7		
No. Weirs/Drain =	3		
Allowable Release Rate =	3150.0 l/min	0.032	m³/s
Rooftop Area =	2,400 m ²	(flat rooftop area	that is available for storage)

Therefore: 464.5 sq m/Roof Drain or 5000 sq ft/Roof Drain as per OBC

STAGE-STORAGE-DISCHARGE TABLE

Stage (m)	Storage (m ³)	Discharge (m ³ /s)
0.000	0.0	0.000
0.025	60.0	0.013
0.050	120.0	0.026
0.075	180.0	0.039
0.100	240.0	0.053

1166- 1204 Gordon Street CITY OF GUELPH OUR FILE: 121139 4-Mar-22

CATCHMENT 200 - INFILITRATION GALLERY

	STAGE ST	ORAGE VOLUM			
ELEV	DEPTH	SURFACE	INCR.	ACCUM.	_
		AREA	VOLUME	STORAGE	
				VOLUME	
(m)	(m)	(sq m)	(cu m)	(cu m)	
341.30	0.000	35.0	0.0	0.0	Bottom of Gallery
341.40	0.100	35.0	3.4	3.4	
341.50	0.200	35.0	3.4	6.8	
341.60	0.300	35.0	3.4	10.2	
341.70	0.400	35.0	3.4	13.6	
341.80	0.500	35.0	3.4	17.0	
341.90	0.600	35.0	3.4	20.4	
342.00	0.700	35.0	3.4	23.8	
342.05	0.750	35.0	1.7	25.5	Top of Gallery
342.06	0.760	1.0	0.5	26.0	Overflow to outlet MH (with backflow preventer)
342.31	1.010	1.0	0.5	26.5	
342.39	1.090	1.0	0.5	27.0	
342.49	1.190	1.0	0.5	27.5	
342.59	1.290	1.0	0.5	28.0	
343.02	1.720	1.0	0.5	28.5	Top of Grate

BOTTOM INFILTRATION ONLY

L(dw) =	7.00	m
W(dw) =	5.00	m
Perimeter=	24.00	m
D(dw) =	0.70	m
A(c) =	35.0	sq m
VOL(dw)=	24.5	cu m
VOL(st)=	23.8	cu m
K =	5.56E-06	m/s

STAGE/STORAGE/DISCHARGE TABLE

ELEV.	STAGE	STORAGE	SOIL	Overflow	TOTAL	
		VOLUME	DISCHARGE	DISCHARGE	DISCHARGE	
(m)	(m)	(m ³)	(m ³ /s)	(m ³ /s)	(m³/s)	
341.30	0.000	0.0	0.0001944	0.00000	0.000194	Bottom of Gallery
341.40	0.100	3.4	0.0001944	0.00000	0.000194	
341.50	0.200	6.8	0.0001944	0.00000	0.000194	
341.60	0.300	10.2	0.0001944	0.00000	0.000194	
341.70	0.400	13.6	0.0001944	0.00000	0.000194	
341.80	0.500	17.0	0.0001944	0.00000	0.000194	
341.90	0.600	20.4	0.0001944	0.00000	0.000194	
342.00	0.700	23.8	0.0001944	0.00000	0.000194	Top of Gallery
342.05	0.750	25.5	0.0001944	0.00000	0.000194	Overflow to outlet MH (with backflow preventer)
342.06	0.760	26.0	0.0001944	0.00000	0.000194	
342.31	1.010	26.5	0.0001944	0.07150	0.071694	
342.39	1.090	27.0	0.0001944	0.14300	0.143194	
342.49	1.190	27.5	0.0001944	0.14300	0.143194	
342.59	1.290	28.0	0.0001944	0.14300	0.143194	
343.02	1.720	28.5	0.0001944	0.14300	0.143194	Top of Grate

1166- 1204 Gordon Street CITY OF GUELPH OUR FILE: 121139 2-Mar-22

CATCHMENT 200, 202, & 203 - IMPERMEABLE BRENTWOOD SYSTEM

			Increase	Accum.	
		Surface	Active	Active	
Elevation	Depth	Area	Volume	Storage	
(m)	(m)	(m²)	(m ³)	(m ³)	
341.00	0.00	119.00	0.00	0.00	B/Cistern Storage/ Invert of Pipe to outlet structure
341.15	0.15	119.00	17.85	17.85	
341.25	0.25	119.00	11.90	29.75	
341.50	0.50	119.00	29.75	59.50	
341.75	0.75	119.00	29.75	89.25	
341.85	0.85	119.00	11.90	101.15	
341.95	0.95	119.00	11.90	113.05	
342.30	1.30	119.00	95.20	154.70	Soffit of Tank
342.50	1.50	1.00	12.00	166.70	Top of Top Slab of tank
342.51	1.51	1.00	0.01	166.71	
342.60	1.60	1.00	0.09	166.80	
342.85	1.85	1.00	0.25	167.05	
343.02	2.02	1.00	0.17	167.22	Start of surface Ponding
343.03	2.03	1.00	0.01	167.23	
343.07	2.07	31.00	0.64	167.87	
343.20	2.20	129.00	10.40	178.27	Overflow to Landsdown Street ROW
343.25	2.25	167.00	7.40	185.67	
343.30	2.30	205.00	9.30	194.97	
343.32	2.32	205.00	4.10	199.07	

Outlet Str #1

Orifice Control 1

te	o Outlet F	Pipe	Overflow Weir				
Q =	0.112	cu m/s	Q =	0.343	cu m/s		
Cd =	0.600		d1 =	2.320	m		
H =	2.320	m	h =	2.200	m		
2g =	19.620		H =	0.120	m		
A =	0.028	sq m	2g =	19.620			
D =	0.190	m	L =	6.000	m		
D/2 =	0.095	m					

			Outle	et Str #1		Total	
			Orifice	Outlet Str #1	Overflow	System	
Elevation	Stage	Storage	Control 1	Discharge	Weir	Discharge	
(m)	(m)	(m ³)	(m ³ /s)	(m³/s)	(m³/s)	(m³/s)	_
341.00	0.00	0.00	0.000	0.000	0.000	0.0000	B/Cistern Storage/ Invert of Pipe to outlet strue
341.15	0.15	17.85	0.018	0.018	0.000	0.0177	_
341.25	0.25	29.75	0.030	0.030	0.000	0.0297	
341.50	0.50	59.50	0.048	0.048	0.000	0.0480	
341.75	0.75	89.25	0.061	0.061	0.000	0.0610	
341.85	0.85	101.15	0.065	0.065	0.000	0.0655	
341.95	0.95	113.05	0.070	0.070	0.000	0.0697	
342.30	1.30	154.70	0.083	0.083	0.000	0.0827	Soffit of Tank
342.50	1.00	166.70	0.089	0.089	0.000	0.0893	Top of Top Slab of tank
342.51	1.01	166.71	0.090	0.090	0.000	0.0896	
342.60	1.10	166.80	0.092	0.092	0.000	0.0924	
342.85	1.35	167.05	0.100	0.100	0.000	0.0998	
343.02	1.52	167.22	0.105	0.105	0.000	0.1045	Start of surface Ponding
343.03	1.53	167.23	0.105	0.105	0.000	0.1048	
343.07	1.57	167.87	0.106	0.106	0.000	0.1059	
343.20	1.70	178.27	0.109	0.109	0.000	0.1093	Overflow to Landsdown Street ROW
343.25	1.75	185.67	0.111	0.111	0.091	0.2021	
343.30	1.80	194.97	0.112	0.112	0.260	0.3721	
343.32	1.82	199.07	0.112	0.112	0.343	0.4551	

			MIDUSS Output	>"
			•	2.25 rev. 473"
п				ruary 07, 2010"
п		10	Units used:	ie METRIC"
		10	Job folder: C:\Users\smalicevic\Desktop\	
				2022-03-04"
"			Output filename: 121139 2-yr pos	
"			Licensee name:	gmbp"
"			Company	U 1
"				at 8:41:01 AM"
"	31	T	TIME PARAMETERS"	
"		5.000	Time Step"	
"		210.000	Max. Storm length"	
"		4280.000	Max. Hydrograph"	
"	32	S	STORM Chicago storm"	
"		1	Chicago storm"	
"		743.000	Coefficient A"	
"		6.000		
"		0.799		
			Fraction R"	
		170.000	Duration"	
		1.000	Time step multiplier"	
			Maximum intensity 105.606 mm/hr"	
		-	Fotal depth 33.816 mm"	
		6	002hyd Hydrograph extension used in this file"	
	33	1	CATCHMENT 200" Triangular SCS"	
п		1	Equal length"	
п		2	Horton equation"	
п		200	Catch 200 Apartment Rooftops"	
		100.000	% Impervious"	
п		0.240	Total Area"	
		10.000	Flow length"	
"		1.000	Overland Slope"	
"		0.000	Pervious Area"	
"		10.000	Pervious length"	
"		1.000	Pervious slope"	
"		0.240	Impervious Area"	
"		10.000	Impervious length"	
"		1.000	Impervious slope"	
"		0.300	Pervious Manning 'n'"	
"		75.000	Pervious Max.infiltration"	
		12.500	Pervious Min.infiltration"	
		0.250	Pervious Lag constant (hours)"	
		5.000	Pervious Depression storage"	
		0.013	Impervious Manning 'n'" Impervious Max infiltration"	
		0.000	Impervious Max.infiltration"	
		0.000 0.001	Impervious Min.infiltration" Impervious Lag constant (hours)"	
		1.500	Impervious Lag constant (nours) Impervious Depression storage"	
		T. 700	TIMPELATORS DEDI ESSTON SCOLORE	

			0.059	0.000	0.000	0 000 0	c.m/sec"	
		Ca	tchment 200	0.000	Pervious		Total Area	
п			rface Area		0.000	0.240	0.240	hectare"
п			me of concentrat	ion	15.764	1.269	1.269	minutes"
"			me to Centroid		88.079	82.825	82.825	minutes"
"			infall depth		33.816	33.816	33.816	mm"
п			infall volume		0.00	81.16	81.16	c.m"
п			infall losses		31.715	2.203	2.203	mm"
"		Ru	noff depth		2.101	31.613	31.613	mm"
п		Ru	noff volume		0.00	75.87	75.87	c.m"
"		Ru	noff coefficient	Ξ	0.000	0.935	0.935	п
"		Ма	ximum flow		0.000	0.059	0.059	c.m/sec"
"	40	HY	DROGRAPH Add Rur	off '				
п		4	Add Runoff "					
"			0.059	0.059	9 0.000	0.000"		
"	54	PO	ND DESIGN"					
"		0.059	Current peak f	Low	c.m/sec"			
		0.030	Target outflow		.m/sec"			
"		75.9	Hydrograph volu		c.m"			
		5.	Number of stage					
"		0.000	Minimum water 1					
		3.000	Maximum water 1		metre"			
		0.000	Starting water			F - 1 U		
		0	Keep Design Dat		-	= False		
			Level Dischar	•	Volume"			
				000	0.000"			
п			0.02500 0.013 0.05000 0.026		60.000" 120.000"			
п			0.07500 0.039		120.000"			
			0.1000 0.053		240.000"			
		Pe	ak outflow		0.01	10 c.m/se	<u>-</u> د"	
			ximum level		0.01			
			ximum storage		44.86			
			ntroidal lag		2.66			
			0.059 0.6	959		0.000 c.m	/sec"	
"	40	HY	DROGRAPH Next li					
"		5	Next link "					
"			0.059	0.010	0.010	0.000"		
"	54	PO	ND DESIGN"					
		0.010	Current peak f	Low	c.m/sec"			
"		0.030	Target outflow		.m/sec"			
"		75.9	Hydrograph volu		c.m"			
		15.	Number of stage					
"		0.000	Minimum water 1		metre"			
		1.720	Maximum water 1		metre"			
		0.000	Starting water			[]]		
		0	Keep Design Dat		-	= Faise"		
			Level Dischar 341.300 0.000	•	Volume"			
			341.300 0.000 341.400 0.000		0.000" 3.400"			
			J+1.400 0.000	172	3.400			

"		341.500	0.00019	6.800"		
"		341.600	0.00019	10.200"		
"		341.700	0.00019	13.600"		
"		341.800	0.00019	17.000"		
"		341.900	0.00019	20.400"		
"		342.000	0.00019	23.800"		
"		342.050	0.00019	25.500"		
"		342.060	0.00019	26.000"		
"		342.310	0.07169	26.500"		
"		342.390	0.1432	27.000"		
"		342.490	0.1432	27.500"		
"		342.590	0.1432	28.000"		
"		343.020	0.1432	28.500"		
"	I	Peak outflow	V	0.008	c.m/sec"	
"	I	Maximum leve	21	342.089	metre"	
"	I	Maximum stor	rage	26.059	c.m"	
"	(Centroidal I	Lag	11.647	hours"	
"		0.059	0.010		.000 c.m/sec"	
"	40 H	HYDROGRAPH	Combine	2000"		
"	6	Combine '	I			
"	2000	Node #"				
"				1 Storm System"		
"		Maximum flow		0.008	c.m/sec"	
"	ł	Hydrograph N		74.742	c.m"	
"		0.05			0.008"	
				/ Tributary"		
"	2		lew Tributa	-		
"		0.0		0.008	0.008"	
		CATCHMENT 20				
	1	Triangula				
	1	Equal ler	•			
	2	Horton ed				
	203			r of Apartment	BIOCK	
	90.000	% Impervi				
	0.400	Total Are				
	30.000 3.000	Flow leng Overland	•			
			•			
	0.040 30.000	Pervious Pervious				
	3.000	Pervious	•			
	0.360	Impervious	•			
	30.000		is length"			
	3.000	Imperviou	-			
	0.300		Manning 'n			
	75.000		Max.infilt			
	12.500		Min.infilt			
	0.250			nt (hours)"		
	5.000		Depression	• •		
	0.013		us Manning	•		
	0.000	-	us Max.infi			

 		0.000 0.001	Impervious Min.inf Impervious Lag con	stant (hours)"		
п		1.500	Impervious Depress 0.083 0.0	-	0 008	c.m/sec"	
		Са	tchment 203	Pervious		Total Area	п
"			rface Area	0.040	0.360	0.400	hectare"
"		Ti	me of concentration	21.919	1.764	1.911	minutes"
"		Ti	me to Centroid	93.239	83.461	83.532	minutes"
"		Ra	infall depth	33.816	33.816	33.816	mm"
"			infall volume	13.53	121.74	135.26	c.m"
"			infall losses	31.710	1.965	4.940	mm"
			noff depth	2.106	31.851	28.876	mm"
			noff volume	0.84	114.66	115.51	c.m"
			noff coefficient	0.062	0.942	0.854	
	40		ximum flow ƊROGRAPH Add Runoff	0.001	0.083	0.083	c.m/sec"
	40	4	Add Runoff "				
		-	0.083 0.0	83 0.008	0.008"		
	40	HY	DROGRAPH Copy to Ou		0.000		
"		8	Copy to Outflow"				
"			0.083 0.0	83 0.083	0.008"		
"	40	HY	DROGRAPH Combine	2000"			
"		6	Combine "				
"		2000	Node #"				
			Outlet To Landsdow	-			
			ximum flow	0.0		ec"	
		ну	drograph volume 0.083 0.0	190.2 83 0.083			
п	40	нν	DROGRAPH Start - Ne				
п	40	2	Start - New Tribut	-			
		-	0.083 0.0	•	0.083"		
"	33	CA	TCHMENT 202"				
"		1	Triangular SCS"				
"		1	Equal length"				
"		2	Horton equation"				
"		202	Catch 202 Townhous	e Block to R	ear"		
		60.000	% Impervious"				
		0.170	Total Area"				
		15.000 3.000	Flow length" Overland Slope"				
		0.068	Pervious Area"				
п		15.000	Pervious length"				
		3.000	Pervious slope"				
"		0.102	Impervious Area"				
"		15.000	Impervious length"				
"		3.000	Impervious slope"				
"		0.300	Pervious Manning '				
"		75.000	Pervious Max.infil				
		12.500	Pervious Min.infil				
		0.250	Pervious Lag const	ant (nours)"			

"		5.000	Pervious De	epression	storage"			
		0.013	Impervious	Manning '	'n'"			
		0.000	Impervious	Max.infi]	ltration"			
"		0.000	Impervious					
"		0.001	-	-	tant (hours))"		
"		1.500	Impervious		-			
			0.025				.m/sec"	
"			tchment 202		Pervious	Impervious		
"			rface Area		0.068	0.102	0.170	hectare"
"			me of conce			1.164	1.733	minutes"
			ne to Centro		87.020	82.643	82.830	minutes"
			infall dept		33.816	33.816	33.816	mm"
			infall volu		22.99	34.49	57.49	c.m"
			infall loss	es	31.706	2.339	14.085	mm"
			noff depth		2.110	31.477	19.731	mm"
			noff volume		1.44	32.11	33.54	c.m"
			noff coefficient	cient	0.062	0.931	0.583	
	10		kimum flow DROGRAPH Add		0.001	0.025	0.025	c.m/sec"
	40	4	Add Runoff					
		4	0.025	0.025	5 0.083	0.083"		
	40	нл	DROGRAPH CO			0.005		
	40	8	Copy to Ou	-	TOW			
		0	0.025	0.025	5 0.025	0.083"		
	40	НУГ		Combine	2000"	0.005		
	10	6	Combine "	combine	2000			
		2000	Node #"					
"				Landsdown	Storm Syste	em"		
"		Мах	kimum flow		0.10		ec"	
"		Hyd	drograph vo	lume	223.78			
"		,	0.025	0.025	5 0.025	0.108"		
"	40	HYI	OROGRAPH (Confluence	e 2000"			
"		7	Confluence	"				
"		2000	Node #"					
"				Landsdown	Storm Syste			
"			ximum flow		0.10		ec"	
"		Нус	drograph vo		223.78			
			0.025	0.108	3 0.025	0.000"		
	54		ND DESIGN"		<i>,</i>			
"		0.108	Current pe		c.m/sec"			
		0.200	Target out		.m/sec"			
		223.8	Hydrograph		c.m"			
		19.	Number of a	0	matral			
		0.000	Minimum wa [.] Maximum wa [.]		metre" metre"			
		3.000 0.000						
п		0.000 0	Starting wa		= True; 0 =	- False"		
		U	Level Dis		Volume"			
			341.000	0.000	0.000"			
п				0.000 0.01800	17.850"			
					17.050			

"	341.250 0.03000	29.750"	
"	341.500 0.04800	59.500"	
"	341.750 0.06100	89.250"	
"	341.850 0.06500	101.150"	
	341.950 0.07000	113.050"	
	342.300 0.08300	154.700"	
	342.500 0.08900	166.700"	
	342.510 0.09000	166.710"	
	342.600 0.09200	166.800"	
	342.850 0.1000	167.050"	
	343.020 0.1050	167.220"	
	343.030 0.1050	167.230"	
	343.070 0.1060	167.870"	
	343.200 0.1090	178.270"	
	343.250 0.2020	185.670"	
"	343.300 0.3720	194.970"	
"	343.320 0.4550	199.070"	
"	Peak outflow	0.045	c.m/sec"
"	Maximum level	341.458	metre"
"	Maximum storage	54.509	c.m"
"	Centroidal lag	5.103	hours"
	0.025 0.108	0.045 0	.000 c.m/sec"
" 40	HYDROGRAPH Combine	3000"	
	6 Combine "		
п	3000 Node #"		
	Total Flow Leaving	Sito"	
	Maximum flow		c.m/sec"
		0.045	
	Hydrograph volume	223.968	c.m"
11 11	Hydrograph volume 0.025 0.1	223.968 08 0.045	
" " " 40	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne	223.968 08 0.045 w Tributary"	c.m"
" " " 40	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut	223.968 08 0.045 w Tributary" ary"	c.m" 0.045"
" " 40 "	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0	223.968 08 0.045 w Tributary" ary"	c.m"
" " 40 " " 33	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201"	223.968 08 0.045 w Tributary" ary"	c.m" 0.045"
" " 40 " 33	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS"	223.968 08 0.045 w Tributary" ary"	c.m" 0.045"
" 40 " 33	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS" 1 Equal length"	223.968 08 0.045 w Tributary" ary"	c.m" 0.045"
" 40 " 33	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS" 1 Equal length" 2 Horton equation"	223.968 08 0.045 w Tributary" ary" 00 0.045	c.m" 0.045" 0.045"
" 40 " 33 "	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 201 Catch 201 Townhous	223.968 08 0.045 w Tributary" ary" 00 0.045	c.m" 0.045" 0.045"
" 40 " 33	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS" 1 Equal length" 2 Horton equation"	223.968 08 0.045 w Tributary" ary" 00 0.045	c.m" 0.045" 0.045"
" 40 " 33 "	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 201 Catch 201 Townhous	223.968 08 0.045 w Tributary" ary" 00 0.045	c.m" 0.045" 0.045"
" 40 " 33 "	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 201 Catch 201 Townhous 85.000 % Impervious" 0.170 Total Area"	223.968 08 0.045 w Tributary" ary" 00 0.045	c.m" 0.045" 0.045"
" 40 " 33 "	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 201 Catch 201 Townhous 85.000 % Impervious" 0.170 Total Area" 11.000 Flow length"	223.968 08 0.045 w Tributary" ary" 00 0.045	c.m" 0.045" 0.045"
" 40 " 33 "	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 201 Catch 201 Townhous 85.000 % Impervious" 0.170 Total Area" 11.000 Flow length" 5.000 Overland Slope"	223.968 08 0.045 w Tributary" ary" 00 0.045	c.m" 0.045" 0.045"
" 40 " 33 "	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 201 Catch 201 Townhous 85.000 % Impervious" 0.170 Total Area" 11.000 Flow length" 5.000 Overland Slope" 0.025 Pervious Area"	223.968 08 0.045 w Tributary" ary" 00 0.045	c.m" 0.045" 0.045"
" 40 " 33 " "	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 201 Catch 201 Townhous 85.000 % Impervious" 0.170 Total Area" 11.000 Flow length" 5.000 Overland Slope" 0.025 Pervious Area"	223.968 08 0.045 w Tributary" ary" 00 0.045	c.m" 0.045" 0.045"
" 40 " 33 " "	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 201 Catch 201 Townhous 85.000 % Impervious" 0.170 Total Area" 11.000 Flow length" 5.000 Overland Slope" 0.025 Pervious Area" 11.000 Pervious length" 5.000 Pervious slope"	223.968 08 0.045 w Tributary" ary" 00 0.045	c.m" 0.045" 0.045"
" 40 " 33 " "	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 201 Catch 201 Townhous 85.000 % Impervious" 0.170 Total Area" 11.000 Flow length" 5.000 Overland Slope" 0.025 Pervious Area" 11.000 Pervious length" 5.000 Pervious slope" 0.145 Impervious Area"	223.968 08 0.045 w Tributary" ary" 00 0.045 e Block to Lands	c.m" 0.045" 0.045"
" 40 " 33 " "	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 201 Catch 201 Townhous 85.000 % Impervious" 0.170 Total Area" 11.000 Flow length" 5.000 Overland Slope" 0.025 Pervious Area" 11.000 Pervious length" 5.000 Pervious slope" 0.145 Impervious length"	223.968 08 0.045 w Tributary" ary" 00 0.045 e Block to Lands	c.m" 0.045" 0.045"
" 40 " 33 " "	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 201 Catch 201 Townhous 85.000 % Impervious" 0.170 Total Area" 11.000 Flow length" 5.000 Overland Slope" 0.025 Pervious Area" 11.000 Pervious length" 5.000 Pervious slope" 0.145 Impervious Area"	223.968 08 0.045 w Tributary" ary" 00 0.045 e Block to Land	c.m" 0.045" 0.045"
" 40 " 33 " " "	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 201 Catch 201 Townhous 85.000 % Impervious" 0.170 Total Area" 11.000 Flow length" 5.000 Overland Slope" 0.025 Pervious Area" 11.000 Pervious length" 5.000 Pervious slope" 0.145 Impervious Area" 11.000 Impervious length" 5.000 Impervious slope"	223.968 08 0.045 w Tributary" ary" 00 0.045 e Block to Land	c.m" 0.045" 0.045"
" 40 " 33 " " "	Hydrograph volume 0.025 0.1 HYDROGRAPH Start - Ne 2 Start - New Tribut 0.025 0.0 CATCHMENT 201" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 201 Catch 201 Townhous 85.000 % Impervious" 0.170 Total Area" 11.000 Flow length" 5.000 Overland Slope" 0.025 Pervious Area" 11.000 Pervious length" 5.000 Pervious slope" 0.145 Impervious Area"	223.968 08 0.045 w Tributary" ary" 00 0.045 e Block to Lands n'" tration"	c.m" 0.045" 0.045"

... 0.250 Pervious Lag constant (hours)" ... Pervious Depression storage" 5.000 н Impervious Manning 'n'" 0.013 ... 0.000 Impervious Max.infiltration" н 0.000 Impervious Min.infiltration" ... 0.001 Impervious Lag constant (hours)" ... 1.500 Impervious Depression storage" ... 0.000 0.036 0.045 0.045 c.m/sec" ... п Catchment 201 Pervious Impervious Total Area ... Surface Area 0.025 0.145 0.170 hectare" ... Time of concentration 10.300 0.829 0.941 minutes" ... Time to Centroid 83.376 82.192 82.206 minutes" ... Rainfall depth 33.816 33.816 33.816 mm" Rainfall volume 8.62 48.86 57.49 c.m" ... Rainfall losses 31.723 2.967 7.281 mm" ... mm" Runoff depth 2.093 30.849 26.535 ... Runoff volume 0.53 44.58 45.11 c.m" ... Runoff coefficient 0.062 0.912 0.785 ... Maximum flow 0.001 0.036 0.036 c.m/sec" HYDROGRAPH Add Runoff " 40 ... Add Runoff " 4 ... 0.036 0.036 0.045 0.045" 11 33 CATCHMENT 204" ... Triangular SCS" 1 ... 1 Equal length" н 2 Horton equation" ... 204 South Easement" ... 20.000 % Impervious" ... 0.140 Total Area" ... 7.000 Flow length" ... 2.000 Overland Slope" ... 0.112 Pervious Area" ... Pervious length" 7.000 ... 2.000 Pervious slope" ... 0.028 Impervious Area" ... 7.000 Impervious length" ... 2.000 Impervious slope" ... 0.300 Pervious Manning 'n'" ... Pervious Max.infiltration" 75.000 ... 12.500 Pervious Min.infiltration" ... 0.250 Pervious Lag constant (hours)" ... 5.000 Pervious Depression storage" ... 0.013 Impervious Manning 'n'" ... Impervious Max.infiltration" 0.000 ... 0.000 Impervious Min.infiltration" ... Impervious Lag constant (hours)" 0.001 ... 1.500 Impervious Depression storage" ... 0.007 0.036 0.045 0.045 c.m/sec" ... н Catchment 204 Pervious Impervious Total Area ... hectare" Surface Area 0.112 0.028 0.140

"		Time of concentration	10.338	0.832	2.862	minutes"
"			83.416	82.189	82.451	
"		Rainfall depth	33.816	33.816	33.816	mm"
"		Rainfall volume	37.87	9.47	47.34	c.m"
"		Rainfall losses	31.722	2.960	25.969	mm"
"		Runoff depth	2.094	30.856	7.847	mm"
"		Runoff volume	2.35	8.64	10.99	c.m"
"		Runoff coefficient	0.062	0.912	0.232	п
"		Maximum flow	0.003	0.007	0.007	c.m/sec"
"	40	HYDROGRAPH Add Runoff "				
"		4 Add Runoff "				
"		0.007 0.043	8 0.045	0.045"		
"	40	HYDROGRAPH Copy to Outf	low"			
"		8 Copy to Outflow"				
"		0.007 0.043	8 0.043	0.045"		
"	40	HYDROGRAPH Combine	3000"			
"		6 Combine "				
"		3000 Node #"				
"		Total Flow Leaving S	Site"			
"		Maximum flow	0.0	72 c.m/s	ec"	
"		Hydrograph volume	280.00			
"		0.007 0.043		0.072"		
"	38	START/RE-START TOTALS 2				
"		3 Runoff Totals on EXI	IT"			
"		Total Catchment area			.120	hectare"
"		Total Impervious area			.874	hectare"
"		Total % impervious		78	.080"	
"	19	EXIT"				

			MIDUSS Output>"	
			MIDUSS version Version 2.25 rev. 473"	
			MIDUSS created Sunday, February 07, 2010"	
		10	Units used: ie METRIC	
		20	Job folder: C:\Users\smalicevic\Desktop\MIDUSS\121139\"	
"			2022-03-04"	
			Output filename: 121139 5-yr post SM Mar 4 2.out"	
"			Licensee name: gmbp"	
"			Company "	•
"			Date & Time last used: 3/4/2022 at 8:58:08 AM"	•
"	31	T	IME PARAMETERS"	
"		5.000	Time Step"	
"		210.000	Max. Storm length"	
"		4280.000	Max. Hydrograph"	
"	32	S	TORM Chicago storm"	
"		1	Chicago storm"	
"		1593.000	Coefficient A"	
"		11.000		
		0.879	•	
"			Fraction R"	
		170.000	Duration"	
		1.000	Time step multiplier"	
			aximum intensity 134.894 mm/hr"	
		-	otal depth 46.775 mm"	
	33	6	005hyd Hydrograph extension used in this file" ATCHMENT 200"	
	55	1	Triangular SCS"	
		1	Equal length"	
		2	Horton equation"	
		200	Catch 200 Apartment Rooftops"	
		100.000	% Impervious"	
		0.240	Total Area"	
"		10.000	Flow length"	
"		1.000	Overland Slope"	
"		0.000	Pervious Area"	
"		10.000	Pervious length"	
"		1.000	Pervious slope"	
"		0.240	Impervious Area"	
"		10.000	Impervious length"	
"		1.000	Impervious slope"	
		0.300	Pervious Manning 'n'"	
		75.000	Pervious Max.infiltration"	
		12.500	Pervious Min.infiltration"	
		0.250	Pervious Lag constant (hours)"	
		5.000	Pervious Depression storage"	
		0.013	Impervious Manning 'n'" Impenvious Max infiltration"	
		0.000	Impervious Max.infiltration"	
		0.000 0.001	Impervious Min.infiltration" Impervious Lag constant (hours)"	
		1.500	Impervious Depression storage"	
		1.500		

			0.077	0.000	0.000	0,000	c.m/sec"	
		Ca	tchment 200	0.000	Pervious		Total Area	
			rface Area		0.000	0.240	0.240	hectare"
			me of concentrat	ion	10.913	1.150	1.150	minutes"
			me to Centroid		84.773	81.244	81.244	minutes"
"			infall depth		46.775	46.775	46.775	mm"
"			infall volume		0.00	112.26	112.26	c.m"
"		Ra	infall losses		35.901	2.639	2.639	mm"
"		Ru	noff depth		10.874	44.136	44.136	mm"
"		Ru	noff volume		0.00	105.93	105.93	c.m"
"		Ru	noff coefficient	2	0.000	0.944	0.944	"
"			ximum flow		0.000	0.077	0.077	c.m/sec"
"	40	HY	DROGRAPH Add Rur	noff '	11			
"		4	Add Runoff "					
"				0.07	7 0.000	0.000"		
"	54		ND DESIGN"					
"		0.077	Current peak f		c.m/sec"			
"		0.030	Target outflow		.m/sec"			
"		105.9	Hydrograph volu		c.m"			
		5.	Number of stage					
		0.000	Minimum water]					
		3.000	Maximum water]					
		0.000 0	Starting water Keep Design Dat			- Folco"		
		U	Level Dischar		Volume"	- Faise		
				900	0.000"			
			0.02500 0.013		60.000"			
			0.05000 0.026		120.000"			
			0.07500 0.039		180.000"			
			0.1000 0.053		240.000"			
		Pe	ak outflow		0.01	L4 c.m/se	ec"	
"		Ма	ximum level		0.02			
"		Ма	ximum storage		64.09	99 c.m"		
"		Ce	ntroidal lag		2.63	36 hours"		
"			0.077 0.6	977	0.014	0.000 c.m,	/sec"	
"	40	HY	DROGRAPH Next li	ink "				
"		5	Next link "					
"			0.077	0.014	4 0.014	0.000"		
	54		ND DESIGN"					
"		0.014	Current peak f		c.m/sec"			
		0.030	Target outflow		.m/sec"			
		105.9	Hydrograph volu		c.m"			
		15.	Number of stage					
		0.000	Minimum water]		metre"			
		1.720 0.000	Maximum water]		metre"			
п		0.000	Starting water Keep Design Dat			- Falco"		
п		U	Level Dischar		Volume"			
			341.300 0.000	•	0.000"			
п			341.400 0.000		3.400"			
			5111100 01000		5.100			

"	341.500 0	.00019	6.800"		
"	341.600 0	.00019	10.200"		
"	341.700 0	.00019	13.600"		
"	341.800 0	.00019	17.000"		
"	341.900 0	.00019	20.400"		
"	342.000 0	.00019	23.800"		
"	342.050 0	.00019	25.500"		
"	342.060 0	.00019	26.000"		
"	342.310 0	.07169	26.500"		
"	342.390	0.1432	27.000"		
"	342.490	0.1432	27.500"		
"	342.590	0.1432	28.000"		
"	343.020	0.1432	28.500"		
"	Peak outflow		0.013		
"	Maximum level		342.107		
"	Maximum storage	2	26.093	c.m"	
"	Centroidal lag		9.330	hours"	
"	0.077	0.014	0.013	0.000 c.m/sec"	
"		ombine	2000"		
"	6 Combine "				
"	2000 Node #"				
"		andsdowr	n Storm System'		
"	Maximum flow		0.013	-	
	Hydrograph volu		104.238	c.m"	
"	0.077	0.01		0.013"	
	40 HYDROGRAPH Star		•		
	2 Start - New		•		
"	0.077	0.00	0.013	0.013"	
	33CATCHMENT 203"				
"	1 Triangular				
	1 Equal lengt				
	2 Horton equa		-		
			r of Apartment	Block"	
	90.000 % Impervious	5"			
	0.400 Total Area"				
	30.000 Flow length				
	3.000 Overland Slo	•			
	0.040 Pervious Ard				
	30.000 Pervious le	•			
	3.000 Pervious slo	•			
	0.360 Impervious				
	30.000 Impervious	0			
	3.000 Impervious	•			
	0.300 Pervious Mai	•			
	75.000 Pervious Max				
	12.500 Pervious Min				
	-	-	ant (hours)"		
	5.000 Pervious De		•		
	0.013 Impervious /	-			
	0.000 Impervious /	hax.int:	litration"		

		0.000 0.001	Impervious Min Impervious Lag	const	tant (hours))"		
		1.500	Impervious Dep 0.112	0.000	•	0 013	c.m/sec"	
"		Ca	tchment 203	0.000	Pervious		Total Area	н
"			rface Area		0.040	0.360	0.400	hectare"
"		Ti	me of concentra	tion	15.173	1.599	1.956	minutes"
"			me to Centroid		88.550	81.788	81.966	minutes"
			infall depth		46.775	46.775	46.775	mm"
			infall volume		18.71	168.39	187.10	c.m"
			infall losses noff depth		35.918 10.857	2.140 44.636	5.517 41.258	mm" mm"
			noff volume		4.34	160.69	165.03	c.m"
			noff coefficien	t	0.232	0.954	0.882	"
"			ximum flow	-	0.003	0.112	0.112	c.m/sec"
"	40	HY	DROGRAPH Add Ru	noff '	ı			
"		4	Add Runoff "					
			0.112	0.112		0.013"		
	40		DROGRAPH Copy t		Flow"			
		8	Copy to Outflo		0 110	0 012"		
	40	ЦV	0.112 DROGRAPH Comb	0.112	2 0.112 2000"	0.013"		
	40	6	Combine "	THE	2000			
		2000	Node #"					
"			Outlet To Land	sdown	Storm Syste	em"		
"		Ма	ximum flow		0.1		ec"	
"		Ну	drograph volume		269.27			
			0.112	0.112		0.112"		
	40		DROGRAPH Start					
		2	Start - New Tr 0.112	0.000	•	0.112"		
	33	CA	TCHMENT 202"	0.000	0.112	0.112		
	55	1	Triangular SCS					
"		1	Equal length"					
"		2	Horton equatio	n"				
"		202	Catch 202 Town	house	Block to Re	ear"		
"		60.000	% Impervious"					
		0.170	Total Area"					
		15.000 3.000	Flow length" Overland Slope					
		0.068	Pervious Area"					
"		15.000	Pervious lengt					
"		3.000	Pervious slope					
"		0.102	Impervious Are	a"				
"		15.000	Impervious len	•				
"		3.000	Impervious slo	•				
		0.300	Pervious Manni	•				
		75.000 12.500	Pervious Max.i Pervious Min.i					
		0.250	Pervious Lag c					
		0.200		2	(

 		5.000 Pervious Depression storage" 0.013 Impervious Manning 'n'"									
		0.000 Impervious Max.infiltration" 0.000 Impervious Min.infiltration"									
		0.000 0.001				, "					
		0.001 Impervious Lag constant (hours)" 1.500 Impervious Depression storage"									
		1.500	0.03	-	-	0,112	.m/sec"				
		Cat	tchment 20		Pervious	Impervious					
			rface Area		0.068	0.102	0.170	hectare"			
"				centration		1.055	2.315	minutes"			
"			me to Cent		83.897	81.099	81.492	minutes"			
"		Rai	infall dep	oth	46.775	46.775	46.775	mm"			
"		Rai	infall vo	Lume	31.81	47.71	79.52	c.m"			
"		Rai	infall los	sses	35.989	2.874	16.120	mm"			
"			noff depth		10.786	43.902	30.655	mm"			
			noff volur		7.33	44.78	52.11	c.m"			
"			noff coeff		0.231	0.939	0.655				
"			kimum flow		0.007	0.033	0.034	c.m/sec"			
"	40			Add Runoff '	<u>.</u>						
		4	Add Runo		0 112	0 4400					
	40		0.03			0.112"					
	40	8	Copy to (Copy to Outf	TOM						
		0	0.03		0.034	0.112"					
	40	нуг	DROGRAPH	Combine	2000"	0.112					
	40	6	Combine '		2000						
		2000	Node #"								
				b Landsdown	Storm Syste	em"					
"		Мах	kimum flow		0.14		2C"				
"		Нус	drograph v	volume	321.38						
"			0.03	34 0.034	0.034	0.146"					
"	40	HYE	DROGRAPH	Confluence	e 2000"						
		7	Confluence	ce "							
"		2000	Node #"								
				o Landsdown	-						
			kimum flow		0.14		C				
		Нус	drograph v		321.38						
	54	DOM	0.03 ND DESIGN		6.034	0.000"					
	54	0.146		beak flow	c.m/sec"						
		0.200	Target ou		m/sec"						
		321.4	•	oh volume	c.m"						
		19.	, ,	f stages"	••••						
"		0.000		water level	metre"						
n		3.000		water level	metre"						
n		0.000	Starting	water level	metre"						
n		0	Keep Des	ign Data: 1	= True; 0 =	= False"					
"				Discharge	Volume"						
"			341.000	0.000	0.000"						
"			341.150	0.01800	17.850"						

"			341.250	0.03000	29.750"	
"			341.500	0.04800	59.500"	
"			341.750	0.06100	89.250"	
"			341.850	0.06500	101.150"	
"			341.950	0.07000	113.050"	
"			342.300	0.08300	154.700"	
п			342.500	0.08900	166.700"	
			342.510	0.09000	166.710"	
			342.600	0.09200	166.800"	
			342.850	0.1000	167.050"	
					167.220"	
			343.020	0.1050		
			343.030	0.1050	167.230"	
			343.070	0.1060	167.870"	
			343.200	0.1090	178.270"	
"			343.250	0.2020	185.670"	
"			343.300	0.3720	194.970"	
"			343.320	0.4550	199.070"	
"		Pe	ak outflow	N	0.059	c.m/sec"
"		Ma	aximum leve	el	341.713	metre"
"		Ma	aximum stor	rage	84.792	c.m"
"			entroidal I	•	4.267	hours"
"			0.034	0.146		0.000 c.m/sec"
	40	НУ	DROGRAPH	Combine	3000"	
п		6	Combine '		5000	
		3000	Node #"			
		5000		ow Leaving	Sito"	
		M -	intar Fic			c m/coc"
					0.059	
		пу	drograph v		321.192	c.m"
	40		0.03			0.059"
	40				v Tributary"	
		2		New Tributa	•	
			0.03		0.059	0.059"
"	33	CA	TCHMENT 20			
"		1	Triangula			
"		1	Equal ler	ngth"		
"		2	Horton ea	quation"		
"		201	Catch 201	L Townhouse	e Block to Lan	dsdown"
"		85.000	% Impervi	ious"		
"		0.170	Total Are			
"		11.000	Flow leng			
		5.000	Overland	-		
п		0.025	Pervious	-		
		11.000	Pervious			
				0		
		5.000	Pervious	-		
		0.145	Imperviou			
		11.000	•	us length"		
		5.000	•	us slope"		
		0.300		Manning 'r		
"		75.000		Max.infilt		
		12.500	Pervious	Min.infilt	tration"	

... 0.250 Pervious Lag constant (hours)" ... Pervious Depression storage" 5.000 н Impervious Manning 'n'" 0.013 ... 0.000 Impervious Max.infiltration" н 0.000 Impervious Min.infiltration" ... 0.001 Impervious Lag constant (hours)" ... 1.500 Impervious Depression storage" ... 0.000 0.059 0.047 0.059 c.m/sec" ... п Catchment 201 Pervious Impervious Total Area ... Surface Area 0.025 0.145 0.170 hectare" ... Time of concentration 7.130 0.751 1.023 minutes" ... Time to Centroid 81.566 80.775 80.808 minutes" ... Rainfall depth 46.775 46.775 46.775 mm" Rainfall volume 11.93 67.59 79.52 c.m" ... Rainfall losses 36.010 4.036 8.832 mm" ... mm" Runoff depth 10.765 42.739 37.943 ... Runoff volume 2.75 61.76 64.50 c.m" ... Runoff coefficient 0.230 0.914 0.811 ... Maximum flow 0.003 0.047 0.047 c.m/sec" ... HYDROGRAPH Add Runoff " 40 ... Add Runoff " 4 ... 0.047 0.047 0.059 0.059" 11 33 CATCHMENT 204" ... Triangular SCS" 1 ... Equal length" 1 н 2 Horton equation" ... 204 South Easement" ... 20.000 % Impervious" ... 0.140 Total Area" ... 7.000 Flow length" ... 2.000 Overland Slope" ... 0.112 Pervious Area" ... Pervious length" 7.000 ... 2.000 Pervious slope" ... 0.028 Impervious Area" ... 7.000 Impervious length" ... 2.000 Impervious slope" ... 0.300 Pervious Manning 'n'" ... Pervious Max.infiltration" 75.000 ... 12.500 Pervious Min.infiltration" ... 0.250 Pervious Lag constant (hours)" ... 5.000 Pervious Depression storage" ... 0.013 Impervious Manning 'n'" ... Impervious Max.infiltration" 0.000 ... 0.000 Impervious Min.infiltration" ... Impervious Lag constant (hours)" 0.001 ... 1.500 Impervious Depression storage" ... 0.017 0.047 0.059 0.059 c.m/sec" ... н Catchment 204 Pervious Impervious Total Area ... hectare" Surface Area 0.112 0.028 0.140

"		Time of concentration	7.156	0.754	3.968	minutes"
"		Time to Centroid	81.596	80.774	81.187	
"		Rainfall depth	46.775	46.775	46.775	mm"
"		Rainfall volume	52.39	13.10	65.49	c.m"
"		Rainfall losses	36.003	4.021	29.607	mm"
"		Runoff depth	10.772	42.754	17.168	mm"
"		Runoff volume	12.06	11.97	24.04	c.m"
"		Runoff coefficient	0.230	0.914	0.367	н
"		Maximum flow	0.014	0.009	0.017	c.m/sec"
"	40	HYDROGRAPH Add Runoff "	ı			
"		4 Add Runoff "				
"		0.017 0.059	0.059	0.059"		
"	40	HYDROGRAPH Copy to Outf	Flow"			
"		8 Copy to Outflow"				
"		0.017 0.059	0.059	0.059"		
"	40	HYDROGRAPH Combine	3000"			
"		6 Combine "				
"		3000 Node #"				
"		Total Flow Leaving S	Site"			
"		Maximum flow	0.10	01 c.m/s	ec"	
"		Hydrograph volume	409.7	29 c.m"		
"		0.017 0.059	0.059	0.101"		
"	38	START/RE-START TOTALS 2	204"			
"		3 Runoff Totals on EXI	[T"			
"		Total Catchment area		1	.120	hectare"
"		Total Impervious area		0	.874	hectare"
"		Total % impervious		78	.080"	
"	19	EXIT"				

			MIDUSS Output	>"
			MIDUSS version	Version 2.25 rev. 473"
			MIDUSS created	Sunday, February 07, 2010"
"		10	Units used:	ie METRIC"
"		-		<pre>Jsers\smalicevic\Desktop\MIDUSS\121139\"</pre>
"				2022-03-04"
"			Output filename:	121139 25-yr post SM Mar 4 2.out"
"			Licensee name:	gmbp"
"			Company	п
"			Date & Time last used:	3/4/2022 at 8:50:44 AM"
"	31	T	IME PARAMETERS"	
"		5.000	Time Step"	
"		210.000	Max. Storm length"	
		4280.000	Max. Hydrograph"	
	32		TORM Chicago storm"	
		1	Chicago storm"	
		3158.000	Coefficient A"	
			Constant B"	
			Exponent C"	
			Fraction R"	
		210.000 1.000	Duration" Time stop multiplion"	
			Time step multiplier" aximum intensity	169.546 mm/hr"
			otal depth	69.476 mm"
п		6	•	ension used in this file"
	33		ATCHMENT 200"	
"		1	Triangular SCS"	
"		1	Equal length"	
"		2	Horton equation"	
"		200	Catch 200 Apartment Roof	-tops"
"		100.000	% Impervious"	
"		0.240	Total Area"	
"		10.000	Flow length"	
"		1.000	Overland Slope"	
"		0.000	Pervious Area"	
		10.000	Pervious length"	
		1.000	Pervious slope"	
		0.240	Impervious Area"	
		10.000	Impervious length"	
		1.000	Impervious slope"	
		0.300	Pervious Manning 'n'"	\n"
		75.000 12.500	Pervious Max.infiltration Pervious Min.infiltration	
		0.250	Pervious Lag constant (
		5.000	Pervious Depression stor	
		0.013	Impervious Manning 'n'"	~ <u>~</u> ~
		0.000	Impervious Max.infiltrat	ion"
		0.000	Impervious Min.infiltrat	
"		0.001	Impervious Lag constant	
"		1.500	Impervious Depression st	
				-

			0.098	0.000	0.000	0 000	c.m/sec"	
		Ca	tchment 200	0.000	Pervious		Total Area	
			rface Area		0.000	0.240	0.240	hectare"
			me of concentrat	ion	8.005	1.050	1.050	minutes"
			me to Centroid		99.905	97.326	97.326	minutes"
			infall depth		69.476	69.476	69.476	mm"
			infall volume		0.00	166.74	166.74	c.m"
			infall losses		40.831	3.655	3.655	mm"
"			noff depth		28.646	65.821	65.821	mm"
"			noff volume		0.00	157.97	157.97	c.m"
"		Ru	noff coefficient	t	0.000	0.947	0.947	п
"		Ма	ximum flow		0.000	0.098	0.098	c.m/sec"
"	40	HY	DROGRAPH Add Rur	noff '				
"		4	Add Runoff "					
"			0.098	0.098	3 0.000	0.000"		
"	54	PO	ND DESIGN"					
"		0.098	Current peak f		c.m/sec"			
"		0.030	Target outflow		.m/sec"			
"		158.0	Hydrograph volu		c.m"			
		5.	Number of stage					
		0.000	Minimum water 1					
		3.000	Maximum water 1					
		0.000	Starting water			- Folco"		
		0	Keep Design Dat		Volume"	= False		
			Level Dischar 0.000 0.0	900	0.000"			
			0.02500 0.013		60.000"			
			0.05000 0.020		120.000"			
			0.07500 0.039		180.000"			
			0.1000 0.053		240.000"			
		Pe	ak outflow		0.02	20 c.m/se	ec"	
"		Ма	ximum level		0.03			
"		Ма	ximum storage		94.38	37 c.m"		
"		Ce	ntroidal lag		2.96	04 hours"		
"			0.098 0.0	998	0.020	0.000 c.m,	/sec"	
"	40	HY	DROGRAPH Next li	ink "				
"		5	Next link "					
"			0.098	0.020	0.020	0.000"		
	54		ND DESIGN"					
"		0.020	Current peak f		c.m/sec"			
"		0.030	Target outflow		.m/sec"			
"		158.0	Hydrograph volu		c.m"			
		15.	Number of stage		motical			
		0.000	Minimum water I		metre" motro"			
		1.720	Maximum water I		metre"			
		0.000 0	Starting water Keep Design Dat			- Falco"		
		U	Level Dischar		Volume"			
			341.300 0.000	•	0.000"			
			341.400 0.000		3.400"			
			5111100 01000		5.100			

"		341.500 0.00019	6.800"
"		341.600 0.00019	10.200"
"		341.700 0.00019	13.600"
"		341.800 0.00019	17.000"
"		341.900 0.00019	20.400"
"		342.000 0.00019	23.800"
"		342.050 0.00019	25.500"
"		342.060 0.00019	26.000"
"		342.310 0.07169	26.500"
"		342.390 0.1432	27.000"
"		342.490 0.1432	27.500"
"		342.590 0.1432	28.000"
"		343.020 0.1432	28.500"
"	Р	eak outflow	0.020 c.m/sec"
"	М	aximum level	342.131 metre"
"	М	aximum storage	26.141 c.m"
"	C	entroidal lag	7.527 hours"
		0.098 0.020	0.020 0.000 c.m/sec"
"	40 H	YDROGRAPH Combine	2000"
"	6	Combine "	
"	2000	Node #"	
"		Outlet To Landsdow	n Storm System"
"	Μ	aximum flow	0.020 c.m/sec"
"	Н	ydrograph volume	155.090 c.m"
"		0.098 0.0	020 0.020 0.020"
"	40 H	YDROGRAPH Start - Ne	ew Tributary"
"	2	Start - New Tribut	ary"
"		0.098 0.0	000 0.020 0.020"
"	33 C	ATCHMENT 203"	
"	1	Triangular SCS"	
"	1	Equal length"	
"	2	Horton equation"	
"	203	Catch 203 Remainde	er of Apartment Block"
	90.000	% Impervious"	
	0.400	Total Area"	
"	30.000	Flow length"	
"	3.000	Overland Slope"	
"	0.040	Pervious Area"	
	30.000	Pervious length"	
	3.000	Pervious slope"	
	0.360	Impervious Area"	
"	30.000	Impervious length	
"	3.000	Impervious slope"	
"	0.300	Pervious Manning '	
"	75.000	Pervious Max.infil	
"	12.500	Pervious Min.infil	tration"
"	0.250	Pervious Lag const	. ,
	5.000	Pervious Depressio	
	0.013	Impervious Manning	
"	0.000	Impervious Max.inf	iltration"

 		0.000 0.001	Impervious Mi Impervious La	g const	tant (hours))"		
		1.500	Impervious De	-	•	0 000		
		Ca	0.150 tchment 203	0.000	0.020 Pervious		c.m/sec" Total Area	п
			rface Area		0.040	0.360	0.400	hectare"
"			me of concentr	ation	11.130	1.459	1.899	minutes"
"			me to Centroid		102.628	97.778	97.998	minutes"
"		Ra	infall depth		69.476	69.476	69.476	mm"
"		Ra	infall volume		27.79	250.12	277.91	c.m"
"		Ra	infall losses		40.827	2.549	6.377	mm"
"			noff depth		28.649	66.928	63.100	mm"
"			noff volume		11.46	240.94	252.40	c.m"
"			noff coefficie	nt	0.412	0.963	0.908	" , "
	40		ximum flow		0.009	0.144	0.150	c.m/sec"
	40		DROGRAPH Add R	unott '				
		4	Add Runoff " 0.150	0.150	0.020	0.020"		
п	40	нν	DROGRAPH Copy			0.020		
п	40	8	Copy to Outfl		IIOW			
		Ũ	0.150	0.150	0.150	0.020"		
"	40	HY		bine	2000"			
"		6	Combine "					
"		2000	Node #"					
"			Outlet To Lan	dsdown	Storm Syste	em"		
"			ximum flow		0.1		ec"	
		Hy	drograph volum		407.49			
			0.150	0.150		0.150"		
	40		DROGRAPH Start					
		2	Start - New T 0.150	0.006	•	0.150"		
	33	C۵	TCHMENT 202"	0.000	0.130	0.130		
	55	1	Triangular SC	S"				
"		1	Equal length"					
"		2	Horton equati	on"				
"		202	Catch 202 Tow		Block to Re	ear"		
"		60.000	% Impervious"					
"		0.170	Total Area"					
		15.000	Flow length"					
"		3.000	Overland Slop					
		0.068	Pervious Area					
		15.000	Pervious leng					
		3.000 0.102	Pervious slop Impervious Ar					
		15.000	Impervious le					
		3.000	Impervious ie Impervious sl	-				
		0.300	Pervious Mann	•				
"		75.000	Pervious Max.	•				
"		12.500	Pervious Min.					
"		0.250	Pervious Lag	constar	nt (hours)"			

"		5.000		Depression				
		0.013	-	s Manning '				
		0.000	•	s Max.infi]				
		0.000 0.001	•	s Min.infi]	ant (hours)			
		1.500	-	-	on storage")		
		1.300	0.05	-	-	0 150 0	.m/sec"	
		Cat	tchment 20		Pervious	Impervious		
			rface Area	2	0.068	0.102	0.170	hectare"
п				entration		0.963	2.394	minutes"
			ne to Cent		99.157	97.210	97.647	minutes"
			infall dep [.]		69.476	69.476	69.476	mm"
			infall vol		47.24	70.87	118.11	c.m"
			infall los		41.117	4.103	18.908	mm"
			noff depth		28.359	65.374	50.568	mm''
"			noff volum	e	19.28	66.68	85.97	c.m"
"			noff coeff:		0.408	0.941	0.728	"
"		Max	kimum flow		0.019	0.042	0.052	c.m/sec"
"	40	HYE	OROGRAPH A	dd Runoff '	ı			
"		4	Add Runof	f "				
"			0.05	2 0.052	0.150	0.150"		
"	40	HYE	DROGRAPH C	opy to Outf	low"			
"		8	Copy to O	utflow"				
			0.05	2 0.052	0.052	0.150"		
"	40	HYE	DROGRAPH	Combine	2000"			
"		6	Combine "					
"		2000	Node #"					
				Landsdown	Storm Syste			
			kimum flow	- 1	0.20		;C	
		Нус	drograph v		493.45			
	40		0.05	2 0.052 Confluence		0.202"		
	40	7	DROGRAPH Confluence		e 2000"			
		2000	Node #"	e				
		2000		Landsdown	Storm Syste	-m"		
		Max	kimum flow	Lanasaowii	0.20		יר"	
			drograph v	olume	493.45			
			0.05			0.000"		
"	54	PO	ND DESIGN"					
"		0.202	Current p	eak flow	c.m/sec"			
"		0.200	Target ou		m/sec"			
"		493.5	Hydrograp	h volume	c.m"			
"		19.	Number of	stages"				
"		0.000	Minimum wa	ater level	metre"			
"		3.000		ater level	metre"			
"		0.000	•	water level				
"		0		•	= True; 0 =	= False"		
"				ischarge	Volume"			
			341.000	0.000	0.000"			
"			341.150	0.01800	17.850"			

"			341.250	0.03000	29.750"	
"			341.500	0.04800	59.500"	
"			341.750	0.06100	89.250"	
"			341.850	0.06500	101.150"	
"			341.950	0.07000	113.050"	
"			342.300	0.08300	154.700"	
п			342.500	0.08900	166.700"	
п			342.510	0.09000	166.710"	
			342.600	0.09200	166.800"	
			342.850	0.1000	167.050"	
			343.020	0.1050	167.220"	
			343.030	0.1050	167.230"	
			343.070	0.1060	167.870"	
			343.200	0.1090	178.270"	
"			343.250	0.2020	185.670"	
"			343.300	0.3720	194.970"	
"			343.320	0.4550	199.070"	
"		Pe	ak outflow	N	0.079	c.m/sec"
"		Ma	aximum leve	el	342.185	metre"
"		Ma	aximum stor	rage	141.059	c.m"
"			entroidal I	•	3.859	hours"
"			0.052	0.202		.000 c.m/sec"
	40	НУ	DROGRAPH	Combine	3000"	,
п		6	Combine '		5000	
		3000	Node #"			
		5000		ow Leaving	Sito"	
		м-	aximum flow			c.m/sec"
					0.079	
		пу	drograph v		493.544	c.m"
	40		0.0			0.079"
	40				v Tributary"	
		2		New Tributa	•	
			0.0		0.079	0.079"
"	33	CA	TCHMENT 20			
"		1	Triangula			
"		1	Equal ler	ngth"		
"		2	Horton ea	quation"		
"		201	Catch 201	L Townhouse	Block to Land	lsdown"
"		85.000	% Impervi	ious"		
"		0.170	Total Are			
"		11.000	Flow leng			
		5.000	Overland	-		
		0.025	Pervious	-		
		11.000	Pervious			
		5.000	Pervious	0		
				-		
		0.145	Imperviou			
		11.000	•	us length"		
		5.000	•	us slope"		
		0.300		Manning 'r		
		75.000		Max.infilt		
"		12.500	Pervious	Min.infilt	ration"	

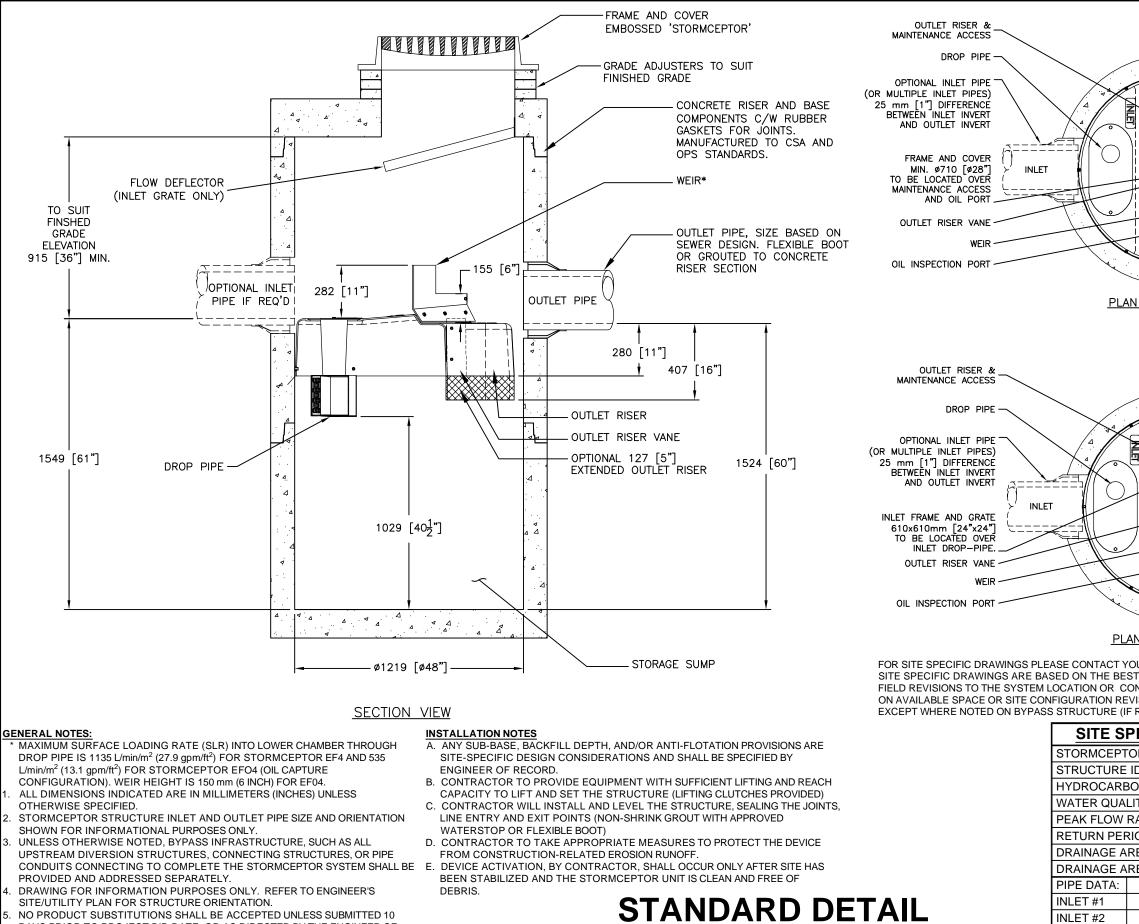
... 0.250 Pervious Lag constant (hours)" ... Pervious Depression storage" 5.000 н Impervious Manning 'n'" 0.013 ... 0.000 Impervious Max.infiltration" н 0.000 Impervious Min.infiltration" ... 0.001 Impervious Lag constant (hours)" ... 1.500 Impervious Depression storage" ... 0.000 0.079 0.061 0.079 c.m/sec" ... п Catchment 201 Pervious Impervious Total Area ... Surface Area 0.025 0.145 0.170 hectare" ... Time of concentration 5.230 0.686 1.022 minutes" ... Time to Centroid 97.133 96.896 96.913 minutes" ... Rainfall depth 69.476 69.476 69.476 mm" Rainfall volume 17.72 100.39 118.11 c.m" ... Rainfall losses 40.897 6.309 11.497 mm" ... mm" Runoff depth 57.979 28.579 63.168 ... Runoff volume 7.29 91.28 98.57 c.m" ... Runoff coefficient 0.411 0.909 0.835 ... Maximum flow 0.007 0.059 0.061 c.m/sec" ... HYDROGRAPH Add Runoff " 40 ... Add Runoff " 4 ... 0.061 0.061 0.079 0.079" 11 33 CATCHMENT 204" ... Triangular SCS" 1 ... Equal length" 1 н 2 Horton equation" ... 204 South Easement" ... 20.000 % Impervious" ... 0.140 Total Area" ... 7.000 Flow length" ... 2.000 Overland Slope" ... 0.112 Pervious Area" ... Pervious length" 7.000 ... 2.000 Pervious slope" ... 0.028 Impervious Area" ... 7.000 Impervious length" ... 2.000 Impervious slope" ... 0.300 Pervious Manning 'n'" ... Pervious Max.infiltration" 75.000 ... 12.500 Pervious Min.infiltration" ... 0.250 Pervious Lag constant (hours)" ... 5.000 Pervious Depression storage" ... 0.013 Impervious Manning 'n'" ... Impervious Max.infiltration" 0.000 ... 0.000 Impervious Min.infiltration" ... Impervious Lag constant (hours)" 0.001 ... 1.500 Impervious Depression storage" ... 0.039 0.061 0.079 0.079 c.m/sec" ... н Catchment 204 Pervious Impervious Total Area ... hectare" Surface Area 0.112 0.028 0.140

"		Time of concentration	5.250	0.688	3.626	minutes"
"		Time to Centroid	97.153	96.895	97.061	minutes"
"		Rainfall depth	69.476	69.476	69.476	mm"
"		Rainfall volume	77.81	19.45	97.27	c.m"
"		Rainfall losses	40.895	6.281	33.973	mm"
"		Runoff depth	28.581	63.195	35.504	mm"
"		Runoff volume	32.01	17.69	49.71	c.m"
"		Runoff coefficient	0.411	0.910	0.511	н
"		Maximum flow	0.029	0.011	0.039	c.m/sec"
"	40	HYDROGRAPH Add Runoff				
"		4 Add Runoff "				
"		0.039 0.09	5 0.079	0.079"		
"	40	HYDROGRAPH Copy to Out	flow"			
"		8 Copy to Outflow"				
"		0.039 0.09		0.079"		
"	40	HYDROGRAPH Combine	3000"			
"		6 Combine "				
"		3000 Node #"				
"		Total Flow Leaving	Site"			
"		Maximum flow	0.1		ec"	
"		Hydrograph volume	641.8			
"		0.039 0.09		0.159"		
"	38	START/RE-START TOTALS				
"		3 Runoff Totals on EX	IT"			
"		Total Catchment area			.120	hectare"
"		Total Impervious area			.874	hectare"
"		Total % impervious		78	.080"	
"	19	EXIT"				

			MIDUSS Output	>"
			•	/ersion 2.25 rev. 473"
				day, February 07, 2010"
		10	Units used:	ie METRIC"
		20		Desktop\MIDUSS\121139\"
"				2022-03-04"
"			Output filename: 121139 100	0-yr post SM Mar 4.out"
"			Licensee name:	gmbp"
"			Company	
"			Date & Time last used:	3/4/2022 at 8:49:18 AM"
"	31	T	IME PARAMETERS"	
"		5.000	Time Step"	
"		210.000	Max. Storm length"	
"		4280.000	Max. Hydrograph"	
"	32	S	STORM Chicago storm"	
"		1	Chicago storm"	
"		4688.000	Coefficient A"	
"		17.000		
		0.962	•	
			Fraction R"	
"		210.000	Duration"	
		1.000	Time step multiplier"	- 11
			Maximum intensity 213.574 mm/hr	
		-	otal depth 88.830 mm"	. filo"
	33	6	100hyd Hydrograph extension used in thi CATCHMENT 200"	
	55	1	Triangular SCS"	
п		1	Equal length"	
		2	Horton equation"	
		200	Catch 200 Apartment Rooftops"	
"		100.000	% Impervious"	
"		0.240	Total Area"	
"		10.000	Flow length"	
"		1.000	Overland Slope"	
"		0.000	Pervious Area"	
"		10.000	Pervious length"	
"		1.000	Pervious slope"	
"		0.240	Impervious Area"	
"		10.000	Impervious length"	
		1.000	Impervious slope"	
		0.300	Pervious Manning 'n'"	
"		75.000	Pervious Max.infiltration"	
		12.500	Pervious Min.infiltration"	
		0.250	Pervious Lag constant (hours)"	
		5.000	Pervious Depression storage"	
		0.013	Impervious Manning 'n'" Impervious Max.infiltration"	
		0.000 0.000	Impervious Max.Infiltration	
		0.000	Impervious Lag constant (hours)"	
		1.500	Impervious Depression storage"	
		1.500		

п			0.124	0.000	0.000	a aga a	c.m/sec"	
		Ca	tchment 200	0.000	Pervious		Total Area	
			rface Area		0.000	0.240	0.240	hectare"
			me of concentrat	ion	6.611	0.957	0.957	minutes"
"			me to Centroid		99.535	96.633	96.633	minutes"
"			infall depth		88.830	88.830	88.830	mm"
"			infall volume		0.00	213.19	213.19	c.m"
			infall losses		43.947	4.892	4.892	mm"
			noff depth		44.883	83.938	83.938	mm"
"			noff volume		0.00	201.45	201.45	c.m"
"		Ru	noff coefficient	-	0.000	0.945	0.945	п
"		Ма	ximum flow		0.000	0.124	0.124	c.m/sec"
"	40	HY	DROGRAPH Add Rur	noff '				
"		4	Add Runoff "					
"			0.124	0.124	1 0.000	0.000"		
"	54	PO	ND DESIGN"					
"		0.124	Current peak fl	OW	c.m/sec"			
		0.030	Target outflow		.m/sec"			
"		201.5	Hydrograph volu		c.m"			
"		5.	Number of stage					
"		0.000	Minimum water 1					
		3.000	Maximum water 1					
		0.000	Starting water			F - 1 U		
		0	Keep Design Dat			= False"		
			Level Dischar	•	Volume"			
			0.000 0.0 0.02500 0.013	000 000	0.000" 60.000"			
			0.05000 0.026		120.000"			
			0.07500 0.039		120.000"			
			0.1000 0.053		240.000"			
		Pe	ak outflow		0.02	26 c.m/se	°C"	
			ximum level		0.05			
"			ximum storage		120.70			
"			ntroidal lag		2.89			
"			0.124 0.1	L24	0.026	0.000 c.m,	/sec"	
"	40	HY	DROGRAPH Next li	ink "				
"		5	Next link "					
"			0.124	0.026	5 0.026	0.000"		
"	54	PO	ND DESIGN"					
"		0.026	Current peak f		c.m/sec"			
		0.030	Target outflow		.m/sec"			
		201.5	Hydrograph volu		c.m"			
"		15.	Number of stage					
"		0.000	Minimum water 1		metre"			
		1.720	Maximum water 1		metre"			
		0.000	Starting water					
		0	Keep Design Dat		-	= raise		
п			Level Dischar 341.300 0.000	•	Volume" 0.000"			
			341.400 0.000		0.000 3.400"			
			J+1.400 0.000	229	3.400			

"	341.500 0.0001	19 6.800"
"	341.600 0.0001	19 10.200"
"	341.700 0.0001	
"	341.800 0.0001	19 17.000"
"	341.900 0.0001	19 20.400"
"		
		0.026 c.m/sec"
		342.151 metre"
		26.181 c.m"
	-	6.562 hours"
	8	
		down Storm System"
		0.026 c.m/sec"
		198.113 c.m"
		0.026 0.026 0.026"
"		
		-
		0.000 0.026 0.026"
	33 CATCHMENT 203"	
"		
	÷	
"	2 Horton equation	n
	203 Catch 203 Remain	nder of Apartment Block"
"	90.000 % Impervious"	
"	0.400 Total Area"	
"	30.000 Flow length"	
"	3.000 Overland Slope"	
"	0.040 Pervious Area"	
"	30.000 Pervious length'	n
"	3.000 Pervious slope"	
"	0.360 Impervious Area	n
"	30.000 Impervious lengt	th"
"	3.000 Impervious slope	e"
"	0.300 Pervious Manning	g 'n'"
"	75.000 Pervious Max.inf	filtration"
"	12.500 Pervious Min.inf	filtration"
"	0.250 Pervious Lag cor	nstant (hours)"
"	5.000 Pervious Depress	sion storage"
	0.013 Impervious Manni	ing 'n'"
"	0.000 Impervious Max.i	infiltration"


 		0.000 0.001	Impervious Min. Impervious Lag	const	ant (hours)) "		
		1.500	Impervious Depr 0.192	essic 0.000	-	0 076	c.m/sec"	
		Ca	tchment 203		Pervious		Total Area	
			rface Area		0.040	0.360	0.400	hectare"
"			me of concentrat		9.192	1.331	1.765	minutes"
"		Ti	me to Centroid		102.017	97.031	97.307	minutes"
"			infall depth		88.830	88.830	88.830	mm"
			infall volume		35.53	319.79	355.32	c.m"
			infall losses		43.671	3.096	7.154	mm"
			noff depth noff volume		45.159	85.733	81.676	mm"
			noff coefficient		18.06 0.508	308.64 0.965	326.70 0.919	c.m"
			ximum flow		0.014	0.183	0.192	c.m/sec"
	40		DROGRAPH Add Run			0.105	0.172	
"		4	Add Runoff "	•••				
"			0.192	0.192	0.026	0.026"		
"	40	HY	DROGRAPH Copy to		low"			
"		8	Copy to Outflow					
				0.192		0.026"		
	40		DROGRAPH Combi	ne	2000"			
		6 2000	Combine " Node #"					
		2000	Outlet To Lands	down	Storm Syste			
		Ma	ximum flow	uown	0.19		י"	
"			drograph volume		524.81			
"		,		0.192	0.192	0.192"		
"	40	HY	DROGRAPH Start -	New	Tributary"			
"		2	Start - New Tri		•			
				0.000	0.192	0.192"		
	33		TCHMENT 202"					
		1 1	Triangular SCS" Equal length"					
		2	Horton equation					
"		202	Catch 202 Townh		Block to Re	ear"		
"		60.000	% Impervious"					
"		0.170	Total Area"					
"		15.000	Flow length"					
		3.000	Overland Slope"					
		0.068	Pervious Area"					
		15.000	Pervious length					
		3.000 0.102	Pervious slope" Impervious Area					
		15.000	Impervious leng					
"		3.000	Impervious slop					
"		0.300	Pervious Mannin		"			
"		75.000	Pervious Max.in	-				
"		12.500	Pervious Min.in					
"		0.250	Pervious Lag co	nstan	it (hours)"			

 		5.000 0.013 0.000 0.000	Pervious Depressic Impervious Manning Impervious Max.inf Impervious Min.inf	g 'n'" iltration"			
		0.001	Impervious Lag cor)"		
"		1.500	Impervious Depress	•	•		
"			0.073 0.0	-		c.m/sec"	
"		Ca	atchment 202	Pervious	Impervious	Total Area	п
"		Su	urface Area	0.068	0.102	0.170	hectare"
"		Ti	me of concentration	n 6.065	0.878	2.254	minutes"
"		Ti	lme to Centroid	98.913	96.529	97.162	minutes"
"			ainfall depth	88.830	88.830	88.830	mm"
"			ainfall volume	60.40	90.61	151.01	c.m"
			ainfall losses	43.743	5.562	20.834	mm"
			noff depth	45.087	83.268	67.996	mm"
			noff volume	30.66	84.93	115.59	c.m"
			unoff coefficient	0.508	0.937	0.765	
	40		aximum flow ⁄DROGRAPH Add Runoff	0.027	0.053	0.073	c.m/sec"
	40	4	Add Runoff "	-			
		4	0.073 0.0	0.192	0.192"		
	40	нл	DROGRAPH Copy to Ou		0.172		
	10	8	Copy to Outflow"				
		•	0.073 0.0	0.073	0.192"		
"	40	Нλ	/DROGRAPH Combine	2000"			
"		6	Combine "				
"		2000	Node #"				
"			Outlet To Landsdow	n Storm Syst	em"		
"		Ma	aximum flow	0.2	.65 c.m/s	ec"	
		Ну	/drograph volume	640.4			
"			0.073 0.0		0.265"		
	40	_	DROGRAPH Confluer	nce 2000"			
		7	Confluence "				
		2000	Node #"				
		M -	Outlet To Landsdow Aximum flow	0.2		oc"	
			/drograph volume	640.4		ec	
			0.073 0.2				
	54	PC	OND DESIGN"	0.075	0.000		
	5.	0.265	Current peak flow	c.m/sec"			
"		0.200	Target outflow	c.m/sec"			
"		640.4	Hydrograph volume	c.m"			
"		19.	Number of stages"				
"		0.000	Minimum water leve	el metre"			
"		3.000	Maximum water leve	el metre"			
п		0.000	Starting water lev				
		0	Keep Design Data:	-	= False"		
"			Level Discharge	Volume"			
			341.000 0.000	0.000"			
			341.150 0.01800	17.850"			

"			341.250	0.03000	29.750"	
"			341.500	0.04800	59.500"	
			341.750	0.06100	89.250"	
"			341.850	0.06500	101.150"	
			341.950	0.07000	113.050"	
"			342.300	0.08300	154.700"	
"			342.500	0.08900	166.700"	
			342.510	0.09000	166.710"	
"			342.600	0.09200	166.800"	
			342.850	0.1000	167.050"	
п			343.020	0.1050	167.220"	
п			343.030	0.1050	167.230"	
			343.070	0.1050	167.870"	
п			343.200	0.1000	178.270"	
			343.250	0.2020	185.670"	
			343.300		194.970"	
		D.	343.320	0.4550	199.070"	
			ak outflow		0.132	
			iximum leve		343.219	
			iximum stor	0	181.085	
		Ce	entroidal i	•	3.548	
			0.073	0.265		0.000 c.m/sec"
	40	HY	′DROGRAPH	Combine	3000"	
"		6	Combine '			
		3000	Node #"			
"			Total Flo	ow Leaving	Site"	
"		Ma	aximum flow	N	0.132	c.m/sec"
"		Ну	drograph v	volume	638.334	c.m"
"			0.0	73 0.26	65 0.132	0.132"
"	40	Нλ	DROGRAPH	Start - New	v Tributary"	
"		2	Start - I	New Tributa	ary"	
"			0.0		•	0.132"
	33	CA	TCHMENT 20			
"		1	Triangula			
п		- 1	Equal ler			
		2	Horton e	-		
п		201		•	Block to Land	lsdown"
		85.000	% Imperv:			
		0.170	Total Are			
		11.000	Flow leng			
				-		
		5.000	Overland	•		
		0.025	Pervious			
		11.000	Pervious	0		
		5.000	Pervious			
		0.145	Impervio			
		11.000		us length"		
		5.000		us slope"		
		0.300		Manning 'r		
		75.000		Max.infilt		
"		12.500	Pervious	Min.infilt	tration"	

... 0.250 Pervious Lag constant (hours)" ... Pervious Depression storage" 5.000 н Impervious Manning 'n'" 0.013 ... 0.000 Impervious Max.infiltration" н 0.000 Impervious Min.infiltration" ... 0.001 Impervious Lag constant (hours)" ... 1.500 Impervious Depression storage" ... 0.000 0.079 0.132 0.132 c.m/sec" ... п Catchment 201 Pervious Impervious Total Area ... Surface Area 0.170 0.025 0.145 hectare" ... Time of concentration 4.320 0.625 0.959 minutes" ... Time to Centroid 97.133 96.278 96.355 minutes" ... Rainfall depth 88.830 88.830 88.830 mm" Rainfall volume 22.65 128.36 151.01 c.m" ... Rainfall losses 43.691 8.704 13.952 mm" ... mm" Runoff depth 45.139 80.126 74.878 ... Runoff volume 11.51 115.78 127.29 c.m" ... Runoff coefficient 0.508 0.902 0.843 ... Maximum flow 0.011 0.074 0.079 c.m/sec" ... HYDROGRAPH Add Runoff " 40 ... Add Runoff " 4 ... 0.079 0.079 0.132 0.132" 11 33 CATCHMENT 204" ... Triangular SCS" 1 ... Equal length" 1 н 2 Horton equation" ... 204 South Easement" ... 20.000 % Impervious" ... 0.140 Total Area" ... 7.000 Flow length" ... 2.000 Overland Slope" ... 0.112 Pervious Area" ... Pervious length" 7.000 ... 2.000 Pervious slope" ... 0.028 Impervious Area" ... 7.000 Impervious length" ... 2.000 Impervious slope" ... 0.300 Pervious Manning 'n'" ... Pervious Max.infiltration" 75.000 ... 12.500 Pervious Min.infiltration" ... 0.250 Pervious Lag constant (hours)" ... 5.000 Pervious Depression storage" ... 0.013 Impervious Manning 'n'" ... Impervious Max.infiltration" 0.000 ... 0.000 Impervious Min.infiltration" ... Impervious Lag constant (hours)" 0.001 ... 1.500 Impervious Depression storage" ... 0.060 0.079 0.132 0.132 c.m/sec" ... н Catchment 204 Pervious Impervious Total Area ... hectare" Surface Area 0.112 0.028 0.140

"		Time of concentration	4.336	0.628	3.196	minutes"
"		Time to Centroid	97.151	96.278	96.883	minutes"
"		Rainfall depth	88.830	88.830	88.830	mm"
"		Rainfall volume	99.49	24.87	124.36	c.m"
"		Rainfall losses	43.676	8.665	36.674	mm"
"		Runoff depth	45.154	80.164	52.156	mm"
"		Runoff volume	50.57	22.45	73.02	c.m"
"		Runoff coefficient	0.508	0.902	0.587	"
"		Maximum flow	0.048	0.014	0.060	c.m/sec"
"	40	HYDROGRAPH Add Runoff	н			
"		4 Add Runoff "				
"		0.060 0.13	0.132	0.132"		
"	40	HYDROGRAPH Copy to Out	flow"			
"		8 Copy to Outflow"				
"		0.060 0.13	0.133	0.132"		
"	40	HYDROGRAPH Combine	3000"			
"		6 Combine "				
"		3000 Node #"				
"		Total Flow Leaving	Site"			
"		Maximum flow	0.2	09 c.m/s	ec"	
"		Hydrograph volume	838.6	44 c.m"		
"		0.060 0.13	0.133	0.209"		
"	38	START/RE-START TOTALS	204"			
"		3 Runoff Totals on EX	(IT"			
"		Total Catchment area		1	.120	hectare"
"		Total Impervious area		0	.874	hectare"
"		Total % impervious		78	.080"	
"	19	EXIT"				

NO PRODUCT SUBSTITUTIONS SHALL BE ACCEPTED UNLESS SUBMITTED 10 DAYS PRIOR TO PROJECT BID DATE, OR AS DIRECTED BY THE ENGINEER OF RECORD.

STANDARD DETAIL NOT FOR CONSTRUCTION

						1 5 8	and contractor by Imbrium Systems ("Imbrium"). A Neither this drawing, nor any part thereof, may be the servement or modified is nor memory without	_	discrimts any intolling or responsibility for such use. If discretionation the subplied information upon			inaccurate information supplied by others.
		1 K	$\overline{\ }$				####	####	####	JSK	JSK	₽
PLA	N VIEW	(STANDAF			. ()		####	####	####	UPDATES	INITIAL RELEASE	REVISION DESCRIPTION
							####	####	####	6/8/18	5/26/17	DATE
	4	X A					####	####	####	-	0	MARK
PL SECONTACT Y DED ON THE BE DCATION OR C FIGURATION RC FIGURATION RE (I	AN VIEW OUR LOCA ST AVAILAN ONNECTIC	BLE INFORM N PIPING M ELEVATION	OP) EPTOR RI MATION AT MAY BE NE	THE TIME	TATIVE. SOME BASED							SCALE = NTS
,			REQ	JIREM	ENTS	1				L1N 3A9 +1-416-860-86	CHANG PATRY	
STORMCEPT				04		1			Ξ		NEOT THE FO	
STRUCTURE		•			*				2	0-9900 INTL	VOKE ORINO 1006 - 770401	A CONTRACTOR
HYDROCARE					*		Ó		0	DRIVE 416-96	MOTECTED 707,100-724	
WATER QUA			_/S)		*	-				107 FAIRVIEW DRIVE, 565-4801 CA 416-96	CANTEMIS P	
PEAK FLOW		,	W (vre)		*	ł				407 FA	AND PARTY OF	A LEASE AND A LEAS
DRAINAGE A			(913)		*	L				l⊧	e a	
DRAINAGE A		RVIOUS	NESS (%)	*	DATE 10/		2017				
PIPE DATA:	I.E.	MAT'L	DIA	SLOPE	% HGL	DESI	GNE		0	RAW		
INLET #1	*	*	*	*	*	JSI CHEO	K CKED			JSK	OVED:	
INLET #2	*	*	*	*	*	BS	F		:	SP		
OUTLET	*	*	*	*	*	PRO.		No.:	S	EQUE	ENCE	No.:
* PER ENGIN	EER OF R	ECORD				SHEE		1		OF	1	
						1			1	UF	1	

Nearest Rainfall Station: WA	elph ATERLOO WELLINGTON AP	Project Number: Designer Name:	57660			
	TERLOO WELLINGTON AP	Designer Name:		57660		
Climate Station Id: 614		Designer Martie.	Jack Turner	Jack Turner		
	19387	Designer Company:	GM BluePlan ENgir	GM BluePlan ENgineering		
Years of Rainfall Data: 34		Designer Email:	jack.turner@gmblu	ueplan.ca		
		Designer Phone:	519-824-8150			
Site Name:		EOR Name:				
Drainage Area (ha): 0.40		EOR Company:				
% Imperviousness: 90.00		EOR Email:				
Runoff Coefficier	it 'c': 0.84	EOR Phone:				
Particle Size Distribution: Fine				l Sediment		
Target TSS Removal (%): 80.0				Reduction		
Required Water Quality Runoff Volu	me Capture (%): 90.	00	Sizing S	ummary		
Estimated Water Quality Flow Rate			Stormceptor	TSS Removal		
	12,3).		Model	Provided (%)		
Oil / Fuel Spill Risk Site?	Yes	5	EFO4	80		
Upstream Flow Control?	No		EFO6	89		
Peak Conveyance (maximum) Flow F	Rate (L/s):		EFO8	94		
			EFO10	97		
Site Sediment Transport Rate (kg/ha	/yr):					
			EFO12	98		
		Recommended St	tormceptor EFO	Model: E		
	Estimated Net	t Annual Sediment (T	SS) Load Reduct	ion (%):		
		•	-			
		Water Quality Runo	off Valuma Cant	ure (%): >		

Forterra

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

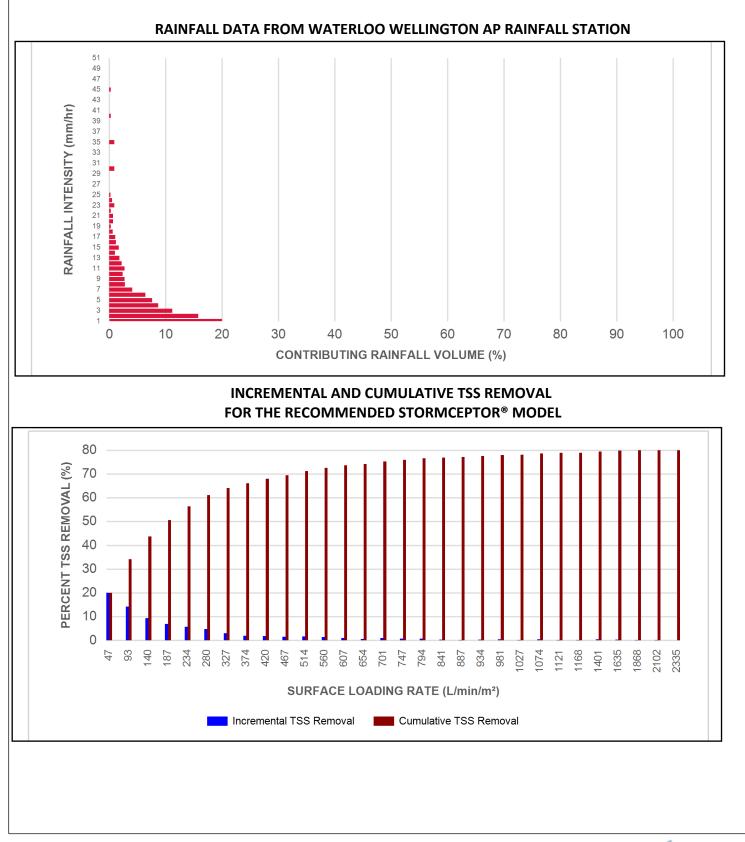
PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators** for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Dorsont
Size (µm)	Than	Fraction (µm)	Percent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5



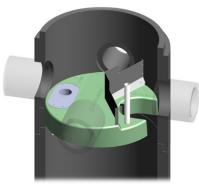
Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
1	20.0	20.0	0.93	56.0	47.0	100	20.0	20.0
2	15.8	35.8	1.87	112.0	93.0	90	14.2	34.2
3	11.2	47.0	2.80	168.0	140.0	84	9.4	43.7
4	8.7	55.7	3.74	224.0	187.0	80	7.0	50.6
5	7.6	63.3	4.67	280.0	234.0	76	5.7	56.4
6	6.4	69.7	5.60	336.0	280.0	74	4.7	61.1
7	4.1	73.8	6.54	392.0	327.0	72	3.0	64.1
8	2.8	76.7	7.47	448.0	374.0	70	2.0	66.1
9	2.7	79.4	8.41	504.0	420.0	68	1.8	67.9
10	2.4	81.7	9.34	560.0	467.0	66	1.6	69.4
11	2.7	84.5	10.27	616.0	514.0	64	1.7	71.2
12	2.2	86.7	11.21	673.0	560.0	62	1.3	72.5
13	1.8	88.4	12.14	729.0	607.0	60	1.1	73.6
14	1.0	89.5	13.08	785.0	654.0	60	0.6	74.2
15	1.7	91.2	14.01	841.0	701.0	59	1.0	75.2
16	1.2	92.3	14.95	897.0	747.0	59	0.7	75.9
17	1.1	93.5	15.88	953.0	794.0	59	0.7	76.6
18	0.6	94.1	16.81	1009.0	841.0	58	0.3	76.9
19	0.3	94.3	17.75	1065.0	887.0	58	0.1	77.1
20	0.7	95.0	18.68	1121.0	934.0	58	0.4	77.5
21	0.7	95.7	19.62	1177.0	981.0	57	0.4	77.9
22	0.3	96.0	20.55	1233.0	1027.0	57	0.2	78.1
23	0.9	96.9	21.48	1289.0	1074.0	56	0.5	78.6
24	0.5	97.4	22.42	1345.0	1121.0	55	0.3	78.8
25	0.2	97.6	23.35	1401.0	1168.0	54	0.1	78.9
30	0.9	98.5	28.02	1681.0	1401.0	49	0.5	79.4
35	0.9	99.4	32.69	1962.0	1635.0	42	0.4	79.8
40	0.3	99.7	37.36	2242.0	1868.0	37	0.1	79.9
45	0.3	100.0	42.03	2522.0	2102.0	32	0.1	79.9
50	0.0	100.0	46.70	2802.0	2335.0	29	0.0	79.9
		-	Es	timated Ne	t Annual Sedim	ent (TSS) Loa	d Reduction =	80 %

Climate Station ID: 6149387 Years of Rainfall Data: 34

FORTERRA

	Maximum Pipe Diameter / Peak Conveyance								
Stormceptor EF / EFO	Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inle Diame		Max Out Diame	•		nveyance Rate
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100
EF12 / EF012	3.6	12	90	1828	72	1828	72	2830	100

SCOUR PREVENTION AND ONLINE CONFIGURATION


► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

45*-90* 0*-45* 0*-45* 45*-90*

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

	-				Poll	utant C	apacity					
Stormceptor EF / EFO	Moo Diam		Depth Pipe In Sump		Oil Volume		Recommended Sediment Maintenance Depth *		Maximum Sediment Volume *		Maximum Sediment Mass **	
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EF012	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

*Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer
Third-party verified light liquid capture	Proven performance for fuel/oil hotspot	Regulator, Specifying & Design Engineer,
and retention for EFO version	locations	Site Owner
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer
Minimal drop between inlet and outlet	Site installation ease	Contractor
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units:
6 ft (1829 mm) Diameter OGS Units:
8 ft (2438 mm) Diameter OGS Units:
10 ft (3048 mm) Diameter OGS Units:
12 ft (3657 mm) Diameter OGS Units:

 $\begin{array}{l} 1.19 \ m^3 \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^3 \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^3 \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^3 \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^3 \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada, and only rainfall intensities greater than 0.5 mm/hr shall be included in sizing calculations. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 $L/min/m^2$ shall be assumed to be identical to the sediment removal efficiency at 40 $L/min/m^2$. No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 $L/min/m^2$.

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

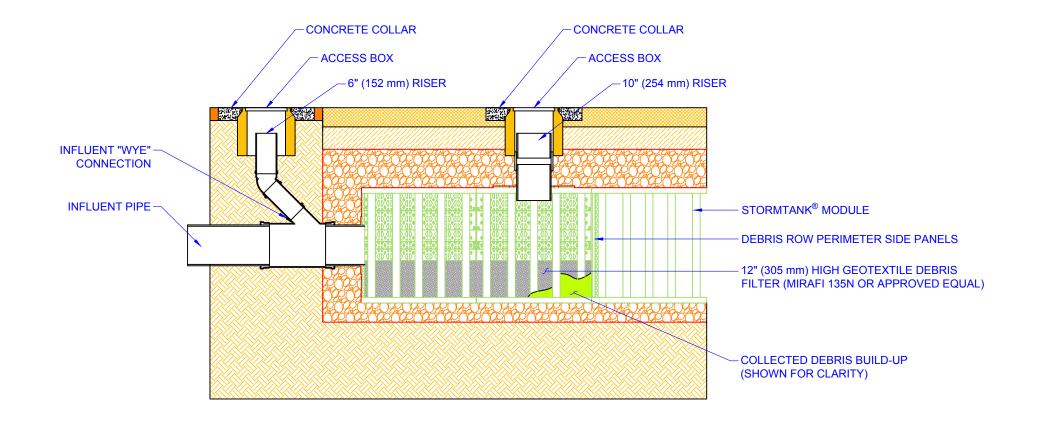
3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

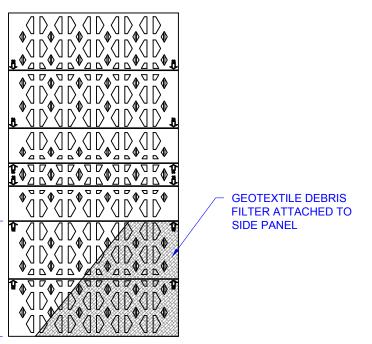
3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a



surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.



CROSS-SECTION

NOTES:

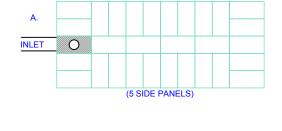
- a. REFERENCE CURRENT INSTALLATION INSTRUCTIONS FOR PROPER INSTALLATION PRACTICES.
- b. DEBRIS ROW CONFIGURATIONS AND PORT LOCATIONS ON SHEET 2 OF 2.
- c. CONCRETE COLLAR REQUIRED AROUND ACCESS BOXES TO MEET HS-20 AND HS-25 LOAD RATING (DESIGN BY ENGINEER OF RECORD).

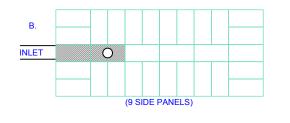
JKB JKB	JKB FK
JKB	JKB
-	

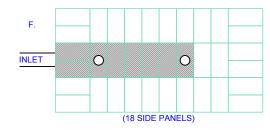
SIDE PANEL DETAIL

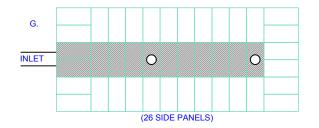
2

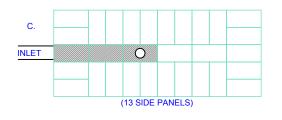
Project Name DEBRIS ROW SECTION DETAIL

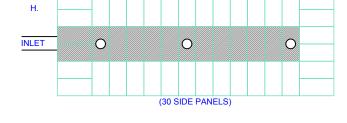


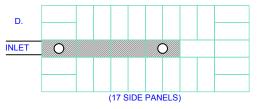

610 Morgantown Road Reading, PA 19611 U.S.A. Phone: (610) 374-5109 Fax: (610) 376-6022 www.brentwoodindustries.com

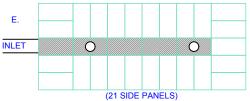

JIUNM IANK	
MODULE	

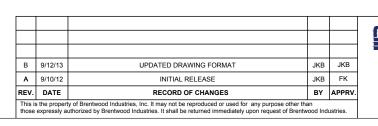

CTODUTAUV

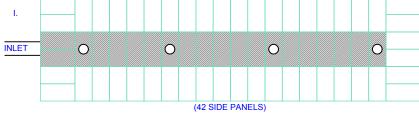

Drawn By J.BAILEY		Date 9/10/12
Drawing No. STM-005-00	Sheet 1 of 2	Scale NTS
3110-003-00	1012	N13

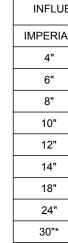











CONCEPTUAL USE:

DEBRIS ROW MINIMUM DESIGN REQUIREMENTS ARE BASED ON THE INFLUENT PIPE CROSS SECTIONAL AREA. SEE TABLES FOR THE MINIMUM **REQUIRED DEBRIS ROW INTERNAL SIDE PANEL** INTERFACES TO MEET PROPER HYDRAULIC PERFORMANCE AS CONFIGURATIONS MAY VARY.

DEBRIS ROW LAYOUTS

INFLUENT PIPE DIA.		FIGURE	REQ'D NUMBER OF SIDE PANELS	REQ'D NUMBER OF SUCTION PORTS
IMPERIAL	METRIC		QTY	QTY
4"	102 mm	А	5	1
6"	152 mm	А	5	1
8"	203 mm	В	9	1
10"	254 mm	С	13	1
12"	305 mm	D	17	2
14"	356 mm	E	21	2
18"	18" 457mm		30	3

INFLUENT	PIPE DIA.	FIGURE	REQ'D NUMBER OF SIDE PANELS	REQ'D NUMBER OF SUCTION PORTS
IMPERIAL	METRIC		QTY	QTY
4"	102 mm	В	9	1
6"	152 mm	В	9	1
8"	203 mm	В	9	1
10"	254 mm	С	13	1
12"	305 mm	С	13	1

Project Name

4"
6"
8"
10"
12"

ST-36 and ST-30 STORMTANK SYSTEM							
JENT	PIPE DIA.	FIGURE	REQ'D NUMBER OF SIDE PANELS	REQ'D NUMBER OF SUCTION PORTS			
IAL	METRIC		QTY	QTY			
	102 mm	А	5	1			
	152 mm	A	5	1			
	203 mm	А	5	1			
	254 mm	В	9	1			
	305 mm	В	9	1			
	356 mm	С	13	1			
	457mm	F	18	2			
	610 mm	G	26	2			
	762 mm	I	42	4			

* 30" (762 mm) INFLUENT PIPE ONLY APPLICABLE TO ST-36 MODULE

ST-24 STORMTANK SYSTEM

ST-18 STORMTANK SYSTEM

DEBRIS ROW LAYOUT DETAIL

610 Morgantown Road Reading, PA 19611 U.S.A. Phone: (610) 374-5109 Fax: (610) 376-6022 www.brentwoodindustries.com

Drawn By		Date
J.BAILEY		9/10/12
Drawing No.	Sheet	Scale
STM-005-00	2 of 2	NTS

Technical Report for StormTank Hydraulic Performance and Sediment Removal Efficiency

11 November 2015

Page 1 of 21

StormTank[®] Hydraulic Performance and Sediment Removal Efficiency

Karl Koch

Executive Summary

Testing for the hydraulic performance and sediment removal efficiency of the Brentwood Industries StormTank[®] Debris Row was conducted at the Brentwood Industries Research and Development Facilities following ASTM Standard C1746/C1746M-12, Standard Test Method for Measurement of Suspended Sediment Removal Efficiency of Hydrodynamic Stormwater Separators and Underground Settling Devices. Trapping efficiencies for AGSCO Silica Sand #110 was greater than 95% at all flow ranges tested. Hydraulic performance was limited only by the design of the test rig, namely the flow into the 8" slotted effluent pipe, with flow ranges tested up to nearly 27 GPM/ft². The hydraulic data was used to determine detention times and ultimately slurry feed and sampling rates.

The StormTank[®] Debris Row trapping efficiencies were determined using both a direct and indirect method. The direct method physically weighed the sediment injected into the system, the sediment trapped within the Debris Row, and the sediment trapped within the Effluent Sump. Mass Balances for each test accounted for over 97% of all solids mixed into the feed slurry. The indirect method followed Standard D3977-97, Standard Test Methods for Determining Sediment Concentration in Water Samples. Five evenly spaced samples were drawn from the both the Influent and Effluent flow streams, from which the average concentrations were used to determine the StormTank[®] Debris Row trapping efficiencies.

Introduction

The Brentwood StormTank system is a rugged yet lightweight subsurface stormwater storage unit. The simple to assemble and install modules, designed to exceed the AASHTO HS-25 load rating, are utilized under most surfaces for detention, infiltration, harvesting, and flood mitigation of rain water. Integral to the system is a Debris Row; a series of StormTank modules subsequential to the inlet pipe and isolated by a series of internally installed side panels with a geotextile fabric liner on the bottom and extending 12" up the side panels. The dual purpose of this Debris Row is: (1) the isolation of larger debris; (2) filtration of sediment.

Brentwood Industries, Inc.

610 Morgantown Road, Reading, PA 19611,

11 November 2015

Page 2 of 21

Purpose

The purpose of this study is: (1) to quantify the hydraulic performance, in terms of stage and detention time for testing purposes; (2) to quantify the sediment removal efficiency of a StormTank[®] Debris Row system subjected to simulated stormwater runoff conditions.

Scope

Construct a 12' x 6' x 4' Test Basin capable of holding 12' x 6' x 1' #2 Angular stone, a three StormTank[®] module Debris Row, and a seven StormTank[®] module system surrounding the Debris Row. Set up a system capable of controlled water flow ranges of 90 - 400 GPM (7.0 – 30.6 GPM/ft²), with a means of injecting a sediment slurry simulating stormwater runoff. Construct a 10' x 6' x 2' sump to capture the simulated stormwater runoff and filter the effluent for recirculation. Have the means to directly weigh the sediment before and after addition to the test apparatus to determine the removal efficiency. Have the means to indirectly determine the influent and effluent sediment concentrations to determine the removal efficiency.

<u> Apparatus (Appendix A – System Overview)</u>

4000 gallon Reservoir Tank
(4) - 4" Ball Valve
Grundfos E-Pump, Model# CRE90-1-1AN-G-A-E-HQQE
DCT-7088 Portable Digital Correlation Transit Time Ultrasonic Flowmeter
Masterflex B/T variable-speed wash-down modular pump, 12-321rpm, Model# K-77110-40
30 gallon Slurry Tank
Dayton Tank Mixer, Model# 2M168D
8" Ball Valve
12" Inlet Connection, Brentwood Industries
12' x 6' x 4' Test Basin with 12' x 6' x 1' of #2 Angular stone
10' x 6' x 2' Sump
8" Slotted High – Density Polyethylene Pipe, 12'
50 micron filter sock
(2) ISCO 4700 Refrigerated Samplers

Considerations

ASTM Standard C1746/C1746M-12 was followed with the following exceptions:

Brentwood Industries, Inc.

11 November 2015

Page 3 of 21

6.1, 6.4 - The influent system consists of an 8" pipe 78" long, with a slurry injection port 60" from the influent point, and a ball valve / mixing valve 40" from the influent point. This valve remains 100% open.

8.1.1 – Specific gravity and particle-size distribution is not necessary as the sediment is a specialty blend with included technical data sheets (Appendix B).

Conclusions

Using the flow/volume relationship to determine the Detention (residence) Time it can be concluded that the water load limiting factor is the test rig itself rather than any aspect of the StormTank[®] system through the flow levels tested. (See Test Results and Discussion)

At all flow levels tested sediment removal efficiency is greater than 95% by direct measurement and greater than 97% by indirect sampling. (See Test Results and Discussion)

Evaluation

Test Sample (10) – 18" StormTank Modules, ST-18

(14) – 18" Side Panels
Geotextile Fabric (Appendix C)
AGSCO Silica Sand #110, Item# SSS000110—B5MBNK (Appendix B)

Test Method

Set-up and Test Run

- 1. Fill out the initial section of the StormTank Water Quality Test Data Sheet (Appendix D).
- Record the tare weights of the Influent and Effluent sample containers in the StormTank Water Quality Test Data Sheet and place the crucibles and filter papers in the oven to dry. (See Sample Analysis Procedure, steps 40 – 43)
- 3. Ensure that the Reservoir Tank has \geq 2000 gallons of water.
- 4. Cut approximately $\frac{1}{2}$ " behind the ring of a 50micron filter sock to remove the ring.
- 5. Weigh the filter sock and one Vacuum Filter as a unit and record in the StormTank Water Quality Test Data Sheet.
- 6. Cut and weigh the following three pieces of Geotextile 601 Fabric and record in the StormTank Water Quality Test Data Sheet:
 - a. 2 pieces Geotextile @ 150" x 24"
 - b. 1 piece Geotextile @ 150" x 80"

11 November 2015

Page 4 of 21

- 7. Place the 150" x 80" piece of geotextile fabric over the stone in the Test Basin, cutting around the well pipe.
- 8. Position the three StormTank Modules (STM's) that make up the Debris Row down the center of the Test Basin. Module DB1 is placed on the influent pipe and placed against the Test Rig wall, with modules DB2 and DB3 lined up behind.
- 9. Place the two 150" x 24" geotextile fabric pieces on either side of the Debris Row with 12" lying against the Debris Row and 12" lying on the 150" x 80" piece of geotextile fabric. Each side will extend 12" past module DB1.
- 10. Cut the excess geotextile fabric near the inlet pipe in line with the wall.
 - a. Tuck the vertical flaps between DB1 and the wall.
 - b. Fold the vertical flaps up against the basin wall.
- 11. Position STM's 1 3 and 4 6 on either side of the Debris Row, on top of the 150" x 24" geotextile fabric. Place one 25 lb weight on top of each STM.
- 12. Cut the geotextile fabric at approximately 45° from the corners of DB3 to allow wrapping of the fabric around the module. Position STM 7 against this fabric.
- 13. Cable tie the 12" of geotextile fabric between the debris and outer row to the side panels of the outer row.
- 14. Insert the Sump Effluent Filter sock frame into the sock and cable tie it around the 4" sump effluent line.
- 15. Position and attach the Influent Sampler to the Influent Sampler Port on the Influent Pipe. Program the sampler to the parameters listed in Table 1 Hydraulic Performance for the testing conditions to be performed.
- 16. Position and attach the Effluent Sampler to the Effluent Sampler Line in the Test Basin Effluent Pipe. Program the sampler to the parameters listed in Table 1 Hydraulic Performance for the testing conditions to be performed.
- 17. Attach the Slurry Pump to the Injection Port. Mix sediment slurry per the following:
 - a. Add 20 gallons of water to the Slurry Tank.
 - b. Plug in the Mixer Motor and Slurry Pump
 - c. Slowly add 27.5 lbs of AGSCO #110 sediment.
 - d. Fill with water until the mixture reaches the 25 gallon mark, cycling the mixer to achieve the correct volume.
 - e. Power on the Slurry Pump but do not start.
- 18. Attach the flowmeter to the sensors and power on.
- 19. Open valves 1 and 4.
- 20. Open the bleeder valve on the Pump to extricate any air in the influent piping and pump.
- 21. Power on the Pump, and set the desired flow rate.
- 22. When the fill line is reached in the Sump open valve 2 and slowly close valve 1. To maintain the water level slowly open / close valve 1 as needed.
- 23. Record the time as the Equilibration Start Time. The test will need to equilibrate for 10 detention times. During this time:

11 November 2015

Page 5 of 21

- a. Take the Sump water temperature
- b. Program the Slurry Pump per Table 1
- c. Remove crucibles and filters from drying oven and place in desiccator.
- d. Record the actual flow rate on the StormTank Water Quality Test Data Sheet.
- 24. After 10 Detention Times record the time as the Equilibration End Time.
- 25. Start the Influent Sampler and record the time.
- 26. After 11 Detention Times start the Effluent Sampler and record the time.
- 27. Start the Slurry Pump.
- 28. Start the test timer.
- 29. Record the Sump water temperature and the time taken.
- 30. Halt the Influent and Effluent Sampler programs until the sampling interval has been met on the test timer.
 - a. When the sampling interval has been met restart the Influent Sampler on bottle 2.
 - b. After one detention time restart the Effluent Sampler on bottle 2.
- 31. Measure the maximum stage at the well and record in the StormTank Water Quality Test Data Sheet.
- 32. At this time the water in the reservoir Tank can begin to be replaced by a garden hose.
- 33. A few minutes before the end of the test, measure the water level in the StormTank chamber and record in the StormTank Water Quality Test Data Sheet.
- 34. When the Test Length has been met <u>and</u> the Influent Sampler has recovered the seventh sample, shut down the Influent Sampler and the Slurry Pump. Record the time.
- 35. When one more detention time has elapsed *and* the final Effluent grab sample has been recovered, shut down the Effluent Sampler. Record the time.
- 36. Record the Sump water temperature and the time taken.
- 37. Reduce the pump to the minimum flow rate and shut down the pump.
- 38. Close all the valves.
- 39. Check the water level in the Reservoir Tank and shut down the water if \geq 2000 gallons.

Shutdown and Cleanout Procedure

- 40. Cut the cable ties holding the geotextile fabric to the STM side panels and carefully rinse each STM onto the Geotextile as it is removed from the Test Basin.
 - a. Carefully fold the Geotextile lengthwise and remove from the Test Basin.
 - b. Allow the geotextile to dry thoroughly before weighing and recording in the StormTank Water Quality Test Data Sheet.
- 41. Remove the slurry pump Influent Line and wash out the contents into the Slurry Tank.
- 42. Empty the contents of the Slurry Tank onto a tarp and allow to dry.
- 43. Carefully remove the filter sock from the Test Basin Sump effluent pipe and allow to dry thoroughly.

11 November 2015

Page 6 of 21

- 44. Using a sump pump placed in the Sump, begin a flow through the garden hose and then disconnect the garden hose from the sump pump, ensuring that it remains submerged at all times, and set on the floor of the Sump. Allow it to siphon to the sanitary sewer.
- 45. Disconnect the Flow Meter.
- 46. Disconnect the Influent Sampler from the influent pipe.
- 47. Disconnect the Effluent Sampler from the effluent pipe.
- 48. When the Sump has been drained, vacuum the remaining water and sediment with a vacuum containing the clean tared filter, disposing of the water in the sanitary sewer.
- 49. Place the Vacuum Filter with the Filter Sock and allow to dry thoroughly.
 - a. Weight the Vacuum Filter and Filter Sock as a unit and record in the StormTank Water Quality Test Data Sheet.

Sample Analysis Procedure

- 50. Weigh and record tare weights for the 7 Influent and 7 Effluent Sample bottles making sure to include the lids. Weights are to be recorded on the data sheet in the Bottle Chart under the column Tare (g).
- 51. Wash the glass-fiber filter disc with water to remove soluble compounds. Record pore size and diameter on the data sheet.
- 52. Place the filter inside a crucible.
- 53. Dry the filter and its crucible in the drying oven for 1H at 105°C.
- 54. Weigh each of the 7 Influent and 7 Effluent Sample bottles with their samples inside and record on the data sheet in the Bottle chart under the column Gross (g).
- 55. Transfer the crucible and filter paper to the desiccator, then, after the parts have cooled to room temperature, weigh them to the nearest 0.0001 g and record the reading on the data sheet.
- 56. Place the crucible inside a crucible holder.
- 57. Place the crucible holder into the vacuum flask that is attached to the vacuum pump.
- 58. While a vacuum is being applied to the bottom of the crucible, filter sample into the crucible. Flush the inner surfaces of the sample bottle with water several times to complete the transfer.
- 59. As filtering proceeds, inspect the filtrate. If it is turbid, pour the filtrate back through the filter a second and possibly a third time. If the filtrate is still turbid, the filter may be leaking. In this case, substitute a new filter and repeat from step 51. If the filtrate is transparent but discolored, a natural dye is present; re-filtration is not necessary.
- 60. When filtration is complete, place the crucible and its contents in the drying oven for 1H at 105°C.
- 61. Remove crucible and filter from oven and place in desiccator. After the crucible has cooled, weigh to the nearest 0.0001 g and record on the data sheet.
- 62. Place crucible and filter back in oven for 1H at 105°C.
- 63. Remove crucible and filter from oven and place in desiccator. After the crucible has

11 November 2015

Page 7 of 21

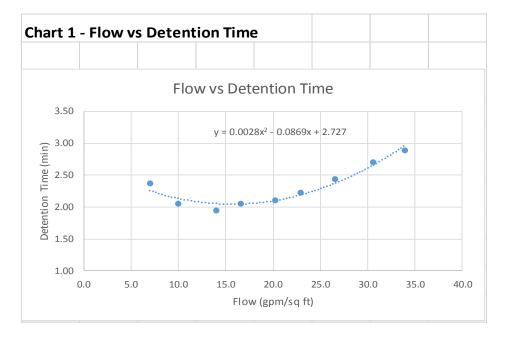
cooled, weigh to the nearest 0.0001 g and record on the data sheet.

- 64. If values from steps 61 and 63 are less than 4% or 0.5 mg (whichever is smaller) different, then drying complete.
- 65. If values from steps 61 and 63 are more than 4% or 0.5 mg different, then repeat steps 52 53.
- 66. Enter all values in the Excel Spreadsheet "StormTank Water Quality Test Data Sheet".

Test Results and Discussion

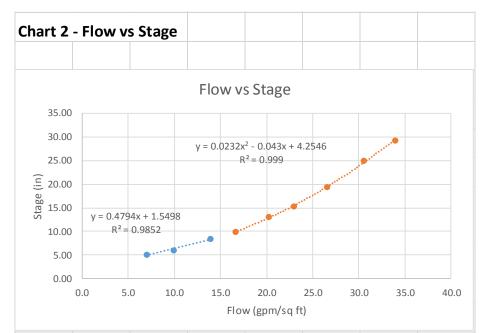
Looking at the flow/volume relationship, determined by measuring the stage at each flow rate by means of a well installed midway through the test basin, several expected results occur: (1) the stage increases along with flow, (2) the volume increases along with flow, (3) the test length required to inject 21 pounds of sediment at an approximate concentration of 200 mg/L decreases as flow increases, (4) the indirect sampling interval decreases as the flow increases.

Table 1-	Hydrauli	c Perform	ance						
Flow (cfs)	Flow (gpm)	Flow (gpm/ft ²)	Stage Relative to Outlet (in)	Total Volume (ft ³)	Total Volume (gal)	Detention Time, X (min)	Test Length (min)	Pump Speed to Deliver 20 gallons (GPM)	Sampling Interval (min)
0.21	95	7.0	5.03	30.08	225.00	2.37	139	0.14	23.1
0.30	133	10.0	6.09	36.44	272.52	2.05	99	0.20	16.5
0.42	192	14.0	8.34	49.89	373.14	1.94	69	0.29	11.4
0.50	217	16.6	9.97	59.60	445.81	2.05	61	0.33	10.1
0.61	276	20.3	13.03	77.92	582.77	2.11	48	0.42	8.0
0.69	305	22.9	15.22	91.00	680.59	2.23	43	0.46	7.2
0.80	357	26.6	19.41	116.03	867.86	2.43	37	0.54	6.2
0.92	413	30.6	25.00	149.48	1118.02	2.71	32	0.63	5.3
1.02	453	33.9	29.25	174.89	1308.08	2.89	29	0.69	4.8


However, the Detention Time, expected to decrease as flow increased, follows more of a second-order polynomial (See Chart 1 – Flow vs Detention Time). Considering the mechanism through which the water exits the test basin, an 8" slotted pipe, the increase in Detention Time can be explained by assuming a maximum flow through the total area of the slots dependent on head pressure. After passing through the StormTank[®] system, the geotextile, and the stone, the

Brentwood Industries, Inc.

11 November 2015


Page 8 of 21

water must infiltrate the culvert pipe through the slots. For the first three data points, to 14.0 GPM/ft², the maximum flow through the pipe wall is not achieved, therefore, the results are as expected, a linear increase in the stage with decreasing Detention Times (See Chart 2 – Flow vs Stage). For the flows greater than 16.6 GPM/ft² the maximum flow through the pipe wall is achieved at equilibrium with head pressure, therefore, we see the stage increasing as a second-order polynomial with Detention Times increasing (See Chart 2 – Flow vs Stage).

11 November 2015

Page 9 of 21

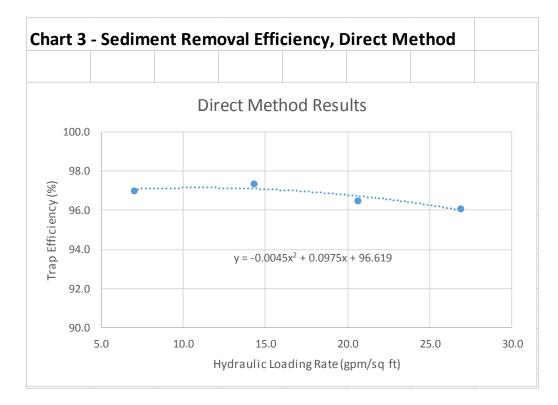
At all water flow rates tested, both the direct and indirect measurement methods indicated sediment trapping efficiencies greater than 95%. The direct method is the standard method and shows a 2% decline in sediment trapping efficiency, 97% to 95%, as the flow increases 400%, from 7.0 GPM/ft² to 26.9 GPM/ft². The direct method also allows a mass balance to be performed between the sediment weighed from the packaging and the sediment collected at the completion of each test run. This mass balance shows that we can account for greater than 97% of the solids used.

11 November 2015

Page 10 of 21

Table 2-	Sedimen	t Removal	Efficiency					
Flow	Measur	ediment ements, ight	Indirect Con Measure		Removal	Mass Balance		
(gpm/ft ²)	Injected in Influent Flow (lbs)	Retained in Debris Row (Ibs)	Influent (mg/L)	Effluent (mg/L)	Direct Method (%)	Indirect Method (%)	(%)	
7.0	20.1	19.5	128.0	2.7	97.0	97.9	98.2	
14.3	22.5	21.9	685.9	12.2	97.3	98.2	98.2	
20.6	25.6	24.7	197.9	2.1	96.5	98.9	97.6	
20.3*	18.1	17.2	346.4	0.0	95.0	100.0	97.1	
26.9	20.5	19.7	410.4	1.5	96.1	99.6	97.8	
*Witnesse	d by Craig N	lomose, P.E.;	Systems Desi	gn Engineei	ring, Inc., Octo	ober 15, 2015		

The direct method for determining the sediment removal efficiency of the Brentwood StormTank[®] Debris Row utilizes a calibrated scale to weigh the sediment in the feed slurry, the sediment collected in the Debris Row, and the sediment deposited in the Effluent Sump. The sediment remaining in the slurry tank is also dried and weighed at the end of a test run to calculate the amount of sediment actually fed to the system. Through this measurement system the percentage of injected sediment trapped by the Debris Row is directly measured:

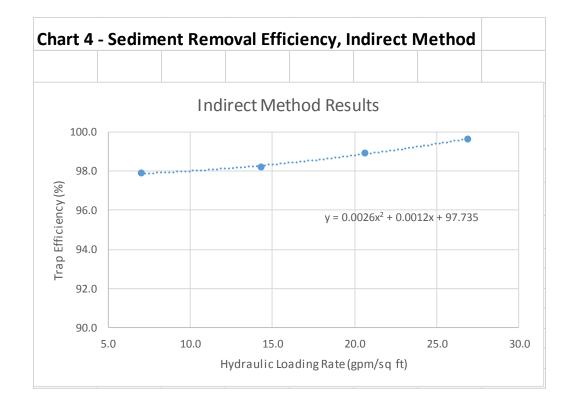

Trap Efficiency = $(DB/IS) \times 100$

Where, DB is the sediment captured by the Debris Row

And, IS is the Injected Sediment (Total added to the slurry tank - Total remaining at the end)

11 November 2015

Page 11 of 21

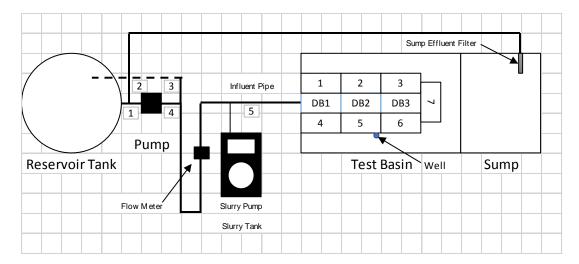


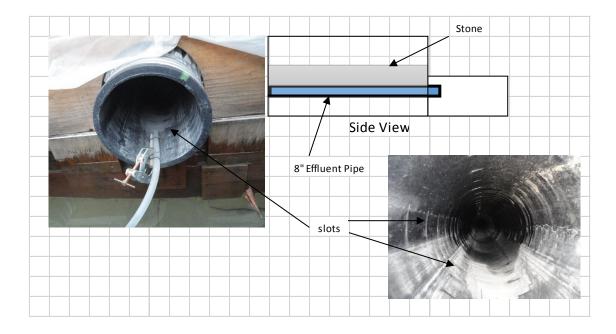
For the purposes of the evaluations in Chart 3 and Chart 4 the duplicate run (20.3 GPM/ft^2) for Systems Design Engineering, Inc. was omitted. Only 18.1 pounds of sediment were added, outside of the standard method. Additionally, there was no detectable sediment in the effluent samples, leading to a 100% trapping efficiency, which may lead one to question the validity of the results. However, the purpose of that test run was to allow the outside firm to verify our methods, not our results, and that was accomplished with the run.

Brentwood utilized dormant resources to employ an indirect method to verify the results of the direct measurements. This was meant to be a broad verification, as the numerous steps involved and small concentrations of sediment, coupled with the difficulty of obtaining discrete well - mixed samples representative of the average concentrations, introduce compounding errors. Surprisingly, most of the results were within 3% of the direct method with the exception of the duplicate test, showing sediment trapping efficiencies greater than 97%. The results show a trend toward increasing sediment trapping efficiency as the flow increases. This could be due to numerous error factors: balance errors to the .00001g, humidity fluctuations, a decreasing sample cross-section as the water level in the effluent pipe increased (the sample line was set in the effluent pipe at the bottom counter to the flow).

11 November 2015

Page 12 of 21




11 November 2015

Page 13 of 21

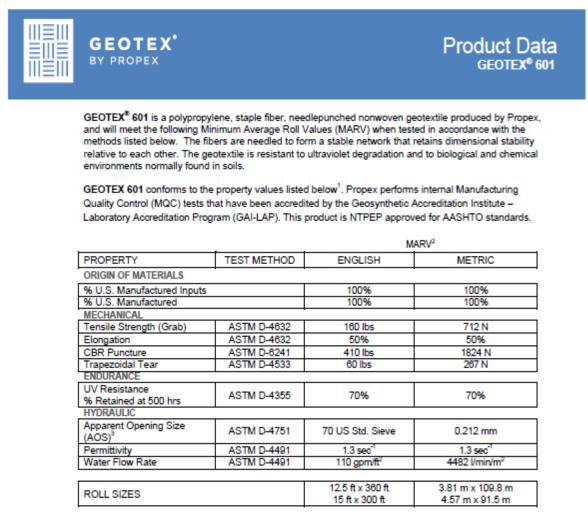
Appendices

Appendix A – System Overview

11 November 2015

Page 14 of 21

TECHNICAL DATA 103,000 wheeling CORPORATION AGSCO SILICA SAND TYPICAL SCREEN ANALYSIS ROUND GRAIN SAND (Percent Retained) (#110) (#16) (#10) (#1) (#2) (#7) US SIEVE 140-270 40-70 50-80 70-100 100-140 140-200 20-40 35-50 12 14 16 18 20 0.2 7.0 0.3 25 0.3 20.6 2.0 30 20.5 35 42.8 5.2 2.7 1.2 0.3 16.5 29 40 23.3 35.3 32.7 37.0 39.3 17.4 2.9 1.5 50 6.0 23.8 60 4.7 14.2 39.9 13.2 4.4 16.2 70 2.2 9.3 5.5 9.1 2.3 80 27.7 41.4 19.8 4.8 5.4 100 7.2 3.5 120 42.8 27.8 11.2 36.3 140 170 0.9 4.8 20.5 50.9 200 230 19.3 0.1 8.3 270 2.3 2.0 325/PAN 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 **AFS Grain Number** 25 35 47 50 59.6 80.3 111.8 144 0.30 .15 .15 .11 0.43 Effective Size (mm). SILICA FLOUR (Typical Percent Retained) #140 / 106 #200/90 #325 / 45 U.S. Sieve #70 / 250 70 100 11 140 8 200 270 14 10 325 8 50 98 75 83 Passing 325 100 100 100 Totals 100 60 Chapin Road, PO Box 669 160 West Hintz Road Pine Brook, New Jersey 07058 Wheeling, Ilinois 60090 P:973-244-0005 • F:973-244-0091 P: 847-520-4455 • F: 847-520-4970


Appendix B – AGSCO #110 Screen Analysis

Brentwood Industries, Inc.

11 November 2015

Page 15 of 21

Appendix C: GEOTEX 601 Product Data

NOTES:

The property values listed above are effective 04/2011 and are subject to change without notice. Values shown are in weaker principal direction. Minimum average roll values (MARV) are calculated as the typical minus two standard deviations. 2 Statistically, it yields a 97.7% degree of confidence that any samples taken from quality assurance testing will exceed the value reported.

3 Maximum average roll value.

^{1.}

11 November 2015

Page 16 of 21

	StormTank ^T	^M Water Quality ′	Test Data Sheet
			Date
			Page 1 of 3
Test Name:			
Test Length:		min	
Detention Time:		min	
Target Influent Concentration:		mg/L	
Slurry Concentration:		lbs/gal	
Slurry Pump Speed:		gpm	
Sampling Interval:		min	
Glass-fiber Filter Diameter:		mm	
Glass-fiber Filter Pore Size:		μm	
Geotex Weight Initial:		lbs	
Geotex Weight _{Final} :		lbs	
Filter Sock and Vacuum Filter Weight Initial:		lbs	
Filter Sock and Vacuum Filter Weight Final:		lbs	
Tarp Weight _{Initial} :		lbs	
Tarp Weight _{Final} :		lbs	
Flow water:		cfs	
Water Load:	0	gpm/ft ²	
Maximum Stage _{Rig} :		in	
Depth in Chamber:		in	
Total Volume:	0.00	gal	
Equilibration Start Time:			
Equilibration End Time:			
Sump Water Temperature / Time:		°F /	
Sampler Influent Start Time:			
Sampler Effluent Start Time:			
Test / Slurry Pump Start Time:			
Sump Water Temperature / Time:		°F /	
		· /	
Sampler _{Influent} End Time:			
Sampler _{Effluent} End Time:			
Test / Slurry Pump End Time:			
Sump Water Temperature / Time:		°F/	

Appendix D – StormTank Water Quality Test Data Sheet

Brentwood Industries, Inc.

11 November 2015

Page 17 of 21

				Storm	Гank™ Wa	ter Quality Test Da	
							Date
						F	Page 2 of 3
Sample Bot	tle Weight	: Table					
Sample	Tare (g)	Gross (g)	Net (g)	Solids (mg)	Water (mL)	Concentration (mg/L)	
Influent 0			0.0000	0.0	0.0	#DIV/0!	
Influent 1			0.0000	0.0	0.0	#DIV/0!	
Influent 2			0.0000	0.0	0.0	#DIV/0!	
Influent 3			0.0000	0.0	0.0	#DIV/0!	
Influent 4			0.0000	0.0	0.0	#DIV/0!	
Influent 5			0.0000	0.0	0.0	#DIV/0!	
Influent 6			0.0000	0.0	0.0	#DIV/0!	
Effluent 0			0.0000	0.0	0.0	#DIV/0!	
Effluent 1			0.0000	0.0	0.0	#DIV/0!	
Effluent 2			0.0000	0.0	0.0	#DIV/0!	
Effluent 3			0.0000	0.0	0.0	#DIV/0!	
Effluent 4			0.0000	0.0	0.0	#DIV/0!	
Effluent 5			0.0000	0.0	0.0	#DIV/0!	
Effluent 6			0.0000	0.0	0.0	#DIV/0!	
Crucible W	eight Table	<u> </u>					
Sample	Tare (g)	1H @ 10)5°C (g)	1H @ 1	05°C (g)	Solids (mg)	
Influent 0						0.0	
Influent 1						0.0	
Influent 2						0.0	
Influent 3						0.0	
Influent 4						0.0	
Influent 5						0.0	
Influent 6						0.0	
Effluent 0						0.0	
Effluent 1						0.0	
Effluent 2						0.0	
Effluent 3						0.0	
Effluent 4						0.0	
Effluent 5						0.0	
Effluent 6						0.0	

Brentwood Industries, Inc.

11 November 2015

Page 18 of 21

				Storm	Гank™ Wat	er Qual	ity Test	Data Sheet
								Date
								Page 3 of 3
Geotex T	are weigh	nt (Ibs)	Dry	Geotex Weig	ht (lbs)	Solic	ds (lbs)	
	0			0		(0.0	
Solids Remai	ning in Sl	urry Tank (lbs)	0				
Vacuum Filt	ter and Fi	lter Sock	Dry Vacu	um Filter and	l Filter Sock			
Tare	weight (It	os)		Weight (lbs	5)	Solic		
	0			0		(0.0	
				Accounted	Unaccounted	Slurry		
Mass Balance	e (lbs)			0.0	0.0			
Direct Remov	Direct Removal Efficiency:			0	%			
Indirect Rem	ndirect Removal Efficiency:			0IV/0!	%			

11 November 2015

Page 19 of 21

	StormTank TM W	vater Qual	ity Test Data Sheet
			September 25, 2015
			Page 1 of
Test Name:	WQ 0.4 cfs 2015 09 25		
Test Length:	69	min	
Detention Time:	1.94	min	
Target Influent Concentration:	200	mg/L	
Slurry Concentration:	1.1	lbs/gal	
Slurry Pump Speed:	0.29	gpm	
Sampling Interval:	11.0	min	
Glass-fiber Filter Diameter:	34	mm	
Glass-fiber Filter Pore Size:	1.5	μm	
Geotex Weight _{Initial} :	5.2	lbs	
	27.1	lbs	
Geotex Weight _{Final} :			
Filter Sock and Vacuum Filter Weight Initial:	0.9	lbs	
Filter Sock and Vacuum Filter Weight _{Final} :	1.0	lbs	
Tarp Weight Initial:	6.8	lbs	
Tarp Weight _{Final} :	11.8	lbs	
Flow water:	0.43	cfs	
Water Load:	14.3	gpm/ft ²	
Maximum Stage _{Rig} :	9.88	in	
Depth in Chamber:	5.75	in	
Total Volume:	490.0	gal	
Equilibration Start Time:	9:55		
Equilibration End Time:	10:14		
Sump Water Temperature / Time:	71.8	°F /	9:56
Sampler Influent Start Time:	10:14		
Sampler _{Effluent} Start Time:	10:16		
Test / Slurry Pump Start Time:	10:16		
Sump Water Temperature / Time:	72	°F/	10:17
Pause - Influent feed line not	working; re-start at 10:3	-	
Sampler Influent End Time:	11:37		
Sampler _{Effluent} End Time:	11:39		
Test / Slurry Pump End Time:	11:40		
Sump Water Temperature / Time:	72.3	°F /	11:39

Appendix E – Sample Completed StormTank Water Quality Test Data Sheet

Brentwood Industries, Inc.

11 November 2015

Page 20 of 21

				Storm	ſank™ Wa	ter Quality Test Da	ta Sheet
						September	25, 2015
]	Page 2 of 3
Sample Bot	tle Weight	Table					
Sample	Tare (g)	Gross (g)	Net (g)	Solids (mg)*	Water (mL)	Concentration (mg/L)	
Influent 0	117.1047	211.1727	94.0680	1.0	94.1	10.6	
Influent 1	113.7627	199.6820	85.9193	59.5	85.9	693.6	
Influent 2	120.2428	205.2000	84.9572	77.9	84.9	917.2	
Influent 3	119.0744	210.0568	90.9824	72.5	90.9	796.9	
Influent 4	116.4428	212.7409	96.2981	69.1	96.2	718.1	
Influent 5	116.5622	203.3854	86.8232	51.1	86.8	589.5	
Influent 6	115.9707	206.8581	90.8874	36.3	90.9	400.1	
Effluent 0	115.6987	203.4775	87.7788	1.2	87.8	13.1	
Effluent 1	116.0757	205.6834	89.6077	1.1	89.6	12.3	
Effluent 2	120.8946	215.6025	94.7079	1.1	94.7	15.8	
Effluent 3	119.1743	214.1430	94.9687	1.6	95.0	16.8	
Effluent 4	119.0589	231.6127	112.5538	0.7	112.6	5.8	
Effluent 5	119.0389	214.6678	94.9392	1.0	94.9	10.5	
Effluent 6	119.7286	214.6678	93.4341	1.0	94.9	10.5	
Ennuent o	116.2419	211.0700	95.4541				
				inegative v	alues ale lec	orded as zero	
Crucible We	aight Table						
Sample	Tare (g)	1H @ 10)5°C (g)	1H @ 10)5°C (g)	Solids (mg)	
Campie	1010 (8/		0 0 (8/		00 0 (8)	001100(11.8)	
Influent 0	44.5359	44.5	5362	44.5	376	1.0	
Influent 1	44.0679	44.1	1264	44.1	.285	59.5	
Influent 2	44.9158	44.9	929	44.9	944	77.9	
Influent 3	44.5755	44.6	5473	44.6	6486	72.5	
Influent 4	43.5355	43.6	5040	43.6	6052	69.1	
Influent 5	44.3170	44.3	8674	44.3	689	51.1	
Influent 6	44.4361	44.4	1718	44.4	731	36.3	
Effluent 0	44.3461	44.3	3469	44.3	3476	1.2	
Effluent 1	44.4199	44.4	1204	44.4	216	1.1	
Effluent 2	44.5589		595		613	1.5	
Effluent 3	44.4879	44.4	1889	44.4	901	1.6	
Effluent 4	44.2916		2916		929	0.7	
Effluent 5	44.3202		3207		3217	1.0	
Effluent 6	44.2992		2998	44.3		1.1	

Brentwood Industries, Inc.

11 November 2015

Page 21 of 21

				Storm'	Fank™ Wat	er Qual	ity Test E	ata Sheet
							Septemb	er 25, 2015
								Page 3 of 3
Geotex	Tare weigh	nt (lbs)	Dry (Geotex Weig	ht (lbs)	Solic	ds (lbs)	
			-					
	5.2			27.1		2	21.9	
Solids Rema	aining in SI	urry Tank (lbs)	5				
Vacuum F	ilter and Fi	lter Sock	Dry Vacu	um Filter and	d Filter Sock			
Tare	e weight (It	os)		Weight (lb	s)	Solic	ds (Ibs)	
			1					
	0.9			1			0.1	
				Accounted	Unaccounted	Slurry		
Mass Balan	ce (lbs)	[Į	27.0	0.5	27.5	98.2%	
Direct Removal Efficiency:		g	97.3	%				
Indirect Rer	ndirect Removal Efficiency:		g	98.2	%			
Indirect Removal Efficiency:		ç	98.2	%				

sdei.net

November 12, 2015

Karl Koch, Supervisor Brentwood Industries, Inc. Research & Development Laboratories 610 Morgantown Road Reading, PA 19611

Re: StormTank Debris Row Sediment Removal Efficiency Certification of Testing

Dear Karl:

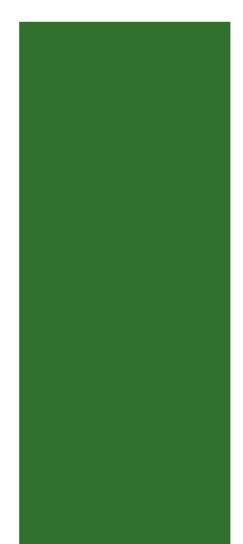
I have reviewed your technical report entitled, "StormTank[®] Hydraulic Performance and Sediment Removal Efficiency," dated November 11, 2015. Based on my personal observations of the test performed on October 15, 2015, I hereby certify that the testing procedure and results summarized in the technical report accurately describes the test that I observed.

If you require additional information, please do not hesitate to contact me.

Sincerely,

Ciaig Momose

Craig Momose, P.E. Director of Civil Engineering



I:\Projects\Brentwood Industries\2015-11-12 Certification Letter.docx

1032 James Drive, Leesport, PA 19533 • P: 610.916.8500 • F: 610.916.8501

Appendix C Water Budget Analysis

EXISTING	CONDITION
----------	-----------

Contributing Catchments:	100	Soil Type: Silt Loam			Runoff Factor =	0.44	
Contributing Area =	1.12 ha	Vegetation: Shallow-rooted crops			Evapotranspiration		
Percent Impervious =	30.0%	Root Zone Depth = 0.62m			Factor for Impervious		
		Soil Moisture Retention Capacity =	125	mm	Surfaces =	0.33	

Month	Daily Average Temperature	Monthly Heat Index	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration	Average Precipitation	P-PE	Accum. Pot. Water Loss	Storage	ΔS	Actual Evapotrans- piration	Moisture Surplus	Water Runoff	Snow Melt Runoff	Total Recharge & Runoff	Actual Runoff
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
Jan	-6.5	0.00	0.0	24.3	0.0	65.2	65.2		261.4	0.0	0.0	0.0	8.6	0.0	8.6	3.8
Feb	-5.5	0.00	0.0	24.6	0.0	54.9	54.9		316.3	0.0	0.0	0.0	4.3	0.0	4.3	1.9
Mar	-1.0	0.00	0.0	30.6	0.0	61.0	61.0		377.3	0.0	0.0	0.0	2.1	0.0	2.1	0.9
Apr	6.2	1.39	1.0	33.6	33.6	74.5	40.9		125.0	0.0	26.8	47.7	23.9	25.2	49.1	21.6
May	12.5	4.00	2.0	37.8	75.6	82.3	6.7		125.0	0.0	60.3	22.0	22.9	113.5	136.5	60.0
Jun	17.6	6.72	2.9	38.4	111.4	82.4	-29.0	-29.0	99.0	-26.0	86.5	21.9	22.4	56.8	79.2	34.8
Jul	20.0	8.16	3.4	38.7	131.6	98.6	-33.0	-61.9	75.0	-24.0	97.8	24.8	23.6	28.4	52.0	22.9
Aug	18.9	7.49	3.2	36.0	115.2	83.9	-31.3	-93.2	58.0	-17.0	80.5	20.4	22.0	14.2	36.2	15.9
Sep	14.5	5.01	2.4	31.2	74.9	87.8	12.9		70.9	12.9	59.7	15.2	18.6	7.1	25.7	11.3
Oct	8.2	2.12	1.3	28.5	37.1	67.4	30.4		101.3	30.4	29.5	7.5	13.0	4.0	17.1	7.5
Nov	2.5	0.35	0.4	24.3	9.7	87.1	77.4		125.0	23.7	7.8	55.6	34.3	2.0	36.4	16.0
Dec	-3.3	0.00	0.0	23.1	0.0	71.2	71.2		196.2	0.0	0.0	0.0	17.2	1.0	18.2	8.0
Total		35.2				916.3	327.3				448.8	215.2	213.0	252.3	465.3	204.7

POST-DEVELOPMENT CONDITION

Contributing Catchments:	Non-Apartment Roo 201, 202, 203, C204	Soil Type: Silt Loam			Runoff Factor =	0.78
Contributing Area =	0.88 ha	Vegetation: Shallow-rooted crops			Evapotranspiration	
Percent Impervious =	72%	Root Zone Depth = 0.62m			Factor for Impervious	
		Soil Moisture Retention Capacity =	125	mm	Surfaces =	0.33

Month	Daily Average Temperature	Monthly Heat Index	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration	Average Precipitation	P-PE	Accum. Pot. Water Loss	Storage	ΔS	Actual Evapotrans- piration	Moisture Surplus	Water Runoff	Snow Melt Runoff	Total Recharge & Runoff	Actual Runoff
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
Jan	-6.5	0.00	0.0	24.3	0.0	65.2	65.2		261.4	0.0	0.0	0.0	11.1	0.0	11.1	8.7
Feb	-5.5	0.00	0.0	24.6	0.0	54.9	54.9		316.3	0.0	0.0	0.0	5.6	0.0	5.6	4.3
Mar	-1	0.00	0.0	30.6	0.0	61.0	61.0		377.3	0.0	0.0	0.0	2.8	0.0	2.8	2.2
Apr	6.2	1.39	1.0	33.6	33.6	74.5	40.9		125.0	0.0	17.3	57.2	28.6	25.2	53.9	41.8
May	12.5	4.00	2.0	37.8	75.6	82.3	6.7		125.0	0.0	38.8	43.5	36.1	113.5	149.6	116.2
Jun	17.6	6.72	2.9	38.4	111.4	82.4	-29.0	-29.0	99.0	-26.0	55.7	52.7	44.4	56.8	101.2	78.6
Jul	20	8.16	3.4	38.7	131.6	98.6	-33.0	-61.9	75.0	-24.0	62.9	59.7	52.0	28.4	80.4	62.5
Aug	18.9	7.49	3.2	36.0	115.2	83.9	-31.3	-93.2	58.0	-17.0	51.8	49.1	50.6	14.2	64.8	50.3
Sep	14.5	5.01	2.4	31.2	74.9	87.8	12.9		70.9	12.9	38.4	36.4	43.5	7.1	50.6	39.3
Oct	8.2	2.12	1.3	28.5	37.1	67.4	30.4		101.3	30.4	19.0	18.0	30.8	4.0	34.8	27.0
Nov	2.5	0.35	0.4	24.3	9.7	87.1	77.4		125.0	23.7	5.0	58.4	44.6	2.0	46.6	36.2
Dec	-3.3	0.00	0.0	23.1	0.0	71.2	71.2		196.2	0.0	0.0	0.0	22.3	1.0	23.3	18.1
Total		35.2				916.3	327.3				288.9	375.1	372.3	252.3	624.6	485.2

Notes: Precipitation and Temperature data from Environment Canada Climate Normals 1981-2010 for Waterloo Wellington A Monthly water balance strategy as outlined in the document Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance (Thornthwaite and Mather, 1957)

Runoff Volume	Recharge Volume						
(m ³)	(m ³)						
42	54						
21	27						
11	13						
242	308						
672	856						
390	497						
256	326						
178	227						
127	161						
84	107						
179	228						
90	114						
2,293	2,918						

Runoff Volume	Recharge Volume
(m ³)	(m ³)
76	22
38	11
19	5
368	106
1,023	294
692	199
550	158
443	127
346	99
238	68
319	92
159	46
4,269	1,227

POST-DEVELOPMENT CONDITION

Contributing Catchments:	Apartment Roofs C200	Soil Type: Silt Loam			Runoff Factor =	1.00
Contributing Area =	0.24 ha	Vegetation: Shallow-rooted crops			Evapotranspiration	
Percent Impervious =	100%	Root Zone Depth = 0.62m		Factor for Impervious		
		Soil Moisture Retention Capacity =	125	mm	Surfaces =	0.33

Month	Daily Average Temperature	Monthly Heat Index	Unadjusted Daily Potential Evapotranspiration	Correction Factors	Adjusted Potential Evapotranspiration	Average Precipitation	P-PE	Accum. Pot. Water Loss	Storage	ΔS	Actual Evapotrans- piration	Moisture Surplus	Water Runoff	Snow Melt Runoff	Total Recharge & Runoff	Total Recharge & Runoff	Enhanced Recharge	Runoff Volume	Recharge Through Pervious Surfaces	Total Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m³)	(m³)	(m ³)	(m ³)	(m ³)
Jan	-6.5	0.00	0.0	24.3	0.0	65.2	65.2		261.4	0.0	0.0	0.0	12.8	0.0	12.8	30.8	29	1.8	0	29
Feb	-5.5	0.00	0.0	24.6	0.0	54.9	54.9		316.3	0.0	0.0	0.0	6.4	0.0	6.4	15.4	15	0.4	0.0	15.0
Mar	-1	0.00	0.0	30.6	0.0	61.0	61.0		377.3	0.0	0.0	0.0	3.2	0.0	3.2	7.7	7	0.7	0.0	7.0
Apr	6.2	1.39	1.0	33.6	33.6	74.5	40.9		125.0	0.0	10.9	63.6	31.8	25.2	57.0	136.8	130	6.8	0.0	130.0
May	12.5	4.00	2.0	37.8	75.6	82.3	6.7		125.0	0.0	24.6	57.7	44.8	113.5	158.3	379.9	361	18.9	0.0	361.0
Jun	17.6	6.72	2.9	38.4	111.4	82.4	-29.0	-29.0	99.0	-26.0	35.3	73.1	59.0	56.8	115.7	277.7	264	13.7	0.0	264.0
Jul	20	8.16	3.4	38.7	131.6	98.6	-33.0	-61.9	75.0	-24.0	39.9	82.7	70.8	28.4	99.2	238.1	226	12.1	0.0	226.0
Aug	18.9	7.49	3.2	36.0	115.2	83.9	-31.3	-93.2	58.0	-17.0	32.8	68.1	69.5	14.2	83.7	200.8	191	9.8	0.0	191.0
Sep	14.5	5.01	2.4	31.2	74.9	87.8	12.9		70.9	12.9	24.4	50.5	60.0	7.1	67.1	161.0	153	8.0	0.0	153.0
Oct	8.2	2.12	1.3	28.5	37.1	67.4	30.4		101.3	30.4	12.0	25.0	42.5	4.0	46.5	111.7	106	5.7	0.0	106.0
Nov	2.5	0.35	0.4	24.3	9.7	87.1	77.4		125.0	23.7	3.2	60.2	51.4	2.0	53.4	128.1	122	6.1	0.0	122.0
Dec	-3.3	0.00	0.0	23.1	0.0	71.2	71.2		196.2	0.0	0.0	0.0	25.7	1.0	26.7	64.1	61	3.1	0.0	61.0
Total		35.2				916.3	327.3				183.0	481.0	477.8	252.3	730.1	1,752.2	1,665.0	87.2	0.0	1,665.0

Notes: Precipitation and Temperature data from Environment Canada Climate Normals 1981-2010 for Waterloo Wellington A Monthly water balance strategy as outlined in the document Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance (Thornthwaite and Mather, 1957)

Infiltration Gallery Catchment 201

Site Infiltration Gallery								
Structure Length =	7.00	m						
Structure Width =	5.00	m						
Structure Depth =	0.75	m						
Contact Area of Gallery =	53.00	sq m		Volume of G	Sallery =	26.25	cu m	
				Storage Vo	lume of Galle	ery =	25.46	cu m
A = contact area of structure V = runoff volume to be infilt P = percolation rate of native n = porosity of storage media	rated = e soils =	red) =		53.00 25.46 20.0 0.97	sq m cu m mm/hr	Note: Drawdown is based on flow from sides and bottom of gallery		
T = retention time =	a (noight			Solve for T		90		
T = (1000 x V) / (P x n x A) =	:	24.	.76	hours or	1.0	day drain	down perio	d
Contributing Area Recharge Time Recharge Volume Potential			0.240 24.76 25.46	hours /	(Area to Infi 1.03	Itration Ga 3 days	llery)	

Month	Total Recharge & Runoff	No. of Max days Recharge		Available Recharge	Enhanced Recharge	
	(mm)		(m ³)	(m ³)	(m ³)	
Jan	12.8	31	765	31	29	
Feb	6.4	28	691	15	15	
Mar	3.2	31	765	8	7	
Apr	57.0	30	740	137	130	
May	158.3	31	765	380	361	
Jun	115.7	30	740	278	264	
Jul	99.2	31	765	238	226	
Aug	83.7	31	765	201	191	
Sep	67.1	30	740	161	153	
Oct	46.5	31	765	112	106	
Nov	53.4	30	740	128	122	
Dec	26.7	31	765	64	61	
Total	730.1	365.0	9,007.0	1,752.2	1,665.0	

	Site										
Month	Existing Recharge Volume	Proposed Recharge Volume	Proposed Recharge Volume	Proposed Recharge Volume	Percent Change						
	Total Site	Catch. 201, 202, 203, C204	Catch. 200	Total Site							
	(m ³)	(m ³)	(m ³)	(m ³)	(%)						
Jan	54	22	29	51	-5.5%						
Feb	27	11	15	26	-3.6%						
Mar	13	5	7	12	-7.3%						
Apr	308	106	130	236	-23.4%						
Мау	856	294	361	655	-23.5%						
Jun	497	199	264	463	-6.9%						
Jul	326	158	226	384	17.7%						
Aug	227	127	191	318	40.1%						
Sep	161	99	153	252	56.6%						
Oct	107	68	106	174	62.6%						
Nov	228	92	122	214	-6.4%						
Dec	114	46	61	107	-6.4%						
Total	2,918	1,227	1,665	2,892	-0.9%						