

871 Equestrian Court, Unit 1, Oakville ON L6L 6L7 Tel: 647-795-8153 | www.pecg.ca

Hydrogeology Investigation Report

115 Watson Parkway North, Guelph, ON

Palmer Project # 1510449

Prepared For

Guelph Watson Holdings Inc.

September 27, 2024

September 27, 2024

Trina Sillano
Guelph Watson Holdings Inc.
405-46 The Esplanade
Toronto, ON, M5E1A7

Re: Hydrogeology Investigation Report

Project #: 1510449

Palmer is pleased to submit the attached report describing the results of our Hydrogeological Investigation for the proposed development at 115 Watson Parkway North, Guelph, ON. This report provides information on hydrogeological conditions to support design and permitting for based upon the results from our reviews, laboratory testing, and data analysis.

The site is currently overlaid by a sand and gravel unit over a sandy silt till unit. The sand and gravel unit acts as a surficial aquifer within the site area and extends to approximately 6 meters below ground surface (mbgs). The groundwater table at the site ranged from 2.09 to 5.72 mbgs and is generally deeper on the west side of the site. Groundwater flow within the site area generally follows topography and flows southeast.

Two separate one-level parking structures (Structure 1 and Structure 2) have been proposed for the development. A non-watertight dewatering rate estimate was completed for each structure. The total dewatering rate estimate for Structure 1 and Structure 2 including uncertainty was calculated to be 361,208 L/day and 346,207 L/day, respectively. Assuming these structures are not completed concurrently, each individual dewatering rate is below 400,000 L/day, but above 50,000 L/day, therefore a registration on the Environmental Activity and Sector and Registry (EASR), and not a Permit To Take Water (PTTW), will be required.

The site is located within a Well Head Protection Area (WHPA), with an A and B designation, as well as in Significant Groundwater Recharge Area (SGRA). Due to these designations, groundwater recharge (infiltration) associated with the site should be maintained post development. Based on the water balance completed by others, meeting pre-development infiltration and runoff values through the use of Low Impact Development (LID) is expected to be achievable for this site.

We trust this report will be satisfactory to your current needs. This report is subject to the Statement of Limitations found at the back of the report.

Jason Cole, M.Sc., P.Geo.

Technical Discipline Manager, Hydrology and

Hydrogeology

Table of Contents

Letter

1.	Intro	oduction	1
	1.1	Scope of Work	
2.	Hyd	rogeological Conditions	3
	2.1	Regional Conditions	
	2.2	Site Specific Conditions 2.2.1 Borehole Drilling and Monitoring Well Installations 2.2.2 Geology and Soil Profile 2.2.3 Groundwater Levels and Flow 2.2.4 Surface Water Features 2.2.5 MECP Water Wells 2.2.6 Hydraulic Conductivity 2.2.7 Infiltration Rate 2.2.8 Groundwater Chemistry	
3.	Dew	vatering Assessment	17
	3.1	Dewatering for P1	
4.	Hyd	rogeological Considerations and Impact Assessment	19
	4.1 4.2 4.3 4.4 4.5 4.6	Pre-to-post Development Water Balance Source Water Protection Natural Environment LID Considerations 4.4.1 Hydrogeological Conditions of the Tableland Wetland at MP4 Aquifer and Groundwater Users Dewatering and Discharge	19 20 20
5 .	Con	clusions and Recommendations	2 1
6.	Cert	tification	23
7.	Lim	itations of the Report	24
8.	Refe	erences	25

List of Figures

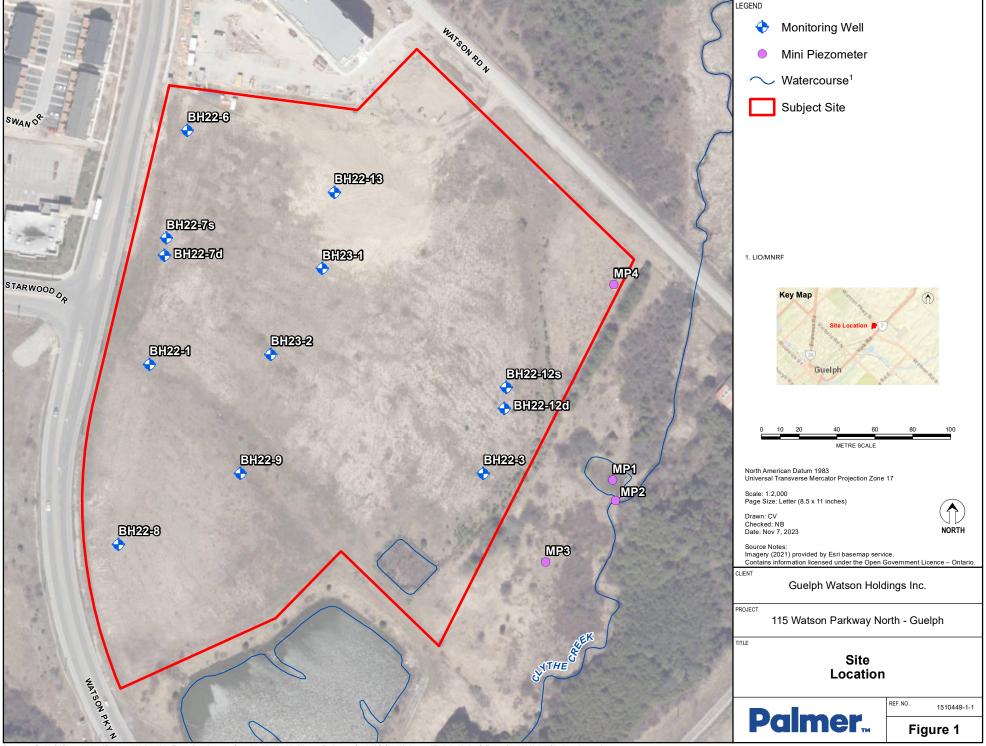
Figure 1. Site Map	
Figure 1. Site MapFigure 2. Surficial Geology	
Figure 3. Continuous Groundwater Level Data	
Figure 4A/B. Groundwater Flow	
Figure 5. MECP Water Wells	
List of Tables	
Table 1. Well Installation Details	6
Table 2. Groundwater Monitoring	
Table 3. Surface Water Monitoring	9
Table 4. MECP Water Well Records	
Table 5. Hydraulic Conductivity Summary	
Table 6. Infiltration Rates for Shallow Soils	
Table 7. Groundwater Chemistry	15
List of Annendices	

List of Appendices

Appendix A.	Design Drawings (Turner Fleischer Architects, 2024)
Appendix B.	Source Water Protection Mapping (2022)
Appendix C.	Borehole Logs (Toronto Inspection, 2023)
Appendix D.	AQTESOLV Analysis (Palmer, 2023)
Appendix E.	Certificate of Analysis (ALS, 2022)
Appendix F.	Water Balance (MTE, 2024)

1. Introduction

Palmer was retained by Guelph Watson Holdings Inc. to conduct a Hydrogeological Investigation for the proposed residential development at 115 Watson Parkway North, Guelph, ON (the "site") (**Figure 1**). The proposed development will be mixed-use residential with four buildings (Building A, B, C and D), townhouses, a park area, and two underground parking structures each with one-level (**Appendix A**). A focus of this report is the assessment of the hydrogeological connection and function of the surface water features located to the east of the site boundary. A construction dewatering assessment was also completed and recommendations made for permitting with the Ministry of the Environment, Conservations and Parks (MECP).


The site is located within Well Head Protection Areas (WHPA-A and WHPA-B) associated with Clythe Well, a Municipal supply well, and a Booster Pumping Station. Although this well is currently not being used for municipal supply, the WHPA area remains. The site is also located in a Significant Groundwater Recharge Area (SGRA). As this site is located within this SGRA, groundwater recharge associated with the site should be maintained post-development to ensure groundwater quantity and quality are protected. The site is also located adjacent to Clythe Creek, and an associated wetland complex.

A pre- to post-development water balance was completed by MTE (2024) and is discussed in this report. The reader is referred to the MTE report for additional water balance and mitigation details.

1.1 Scope of Work

The scope of work for the Hydrogeological Investigation included:

- Provide guidance on the siting and installation of twelve (12) groundwater monitoring wells including shallow and deep nested wells;
- Complete groundwater monitoring at all monitoring wells to determine the groundwater table across the site;
- Install four (4) small diameter mini-piezometer in Clythe Creek and wetlands features adjacent to the site to determine surface water/groundwater interactions;
- Complete surface water monitoring at the mini-piezometer locations to determine surface water and shallow groundwater levels;
- Compete a groundwater flow assessment using measured groundwater levels;
- Collect one (1) groundwater quality sample and compare against ODWS criteria;
- Complete hydraulic testing at each monitoring well to determine the hydraulic conductivity of the surficial soils;
- Complete infiltration tests across the site to determine percolation rates of the upper soils;
- Complete a dewatering assessment based on preliminary understanding of the proposed development, and assuming one-level of underground parking for the higher density structures; and.
- Complete a Hydrogeological Investigation Report.

2. Hydrogeological Conditions

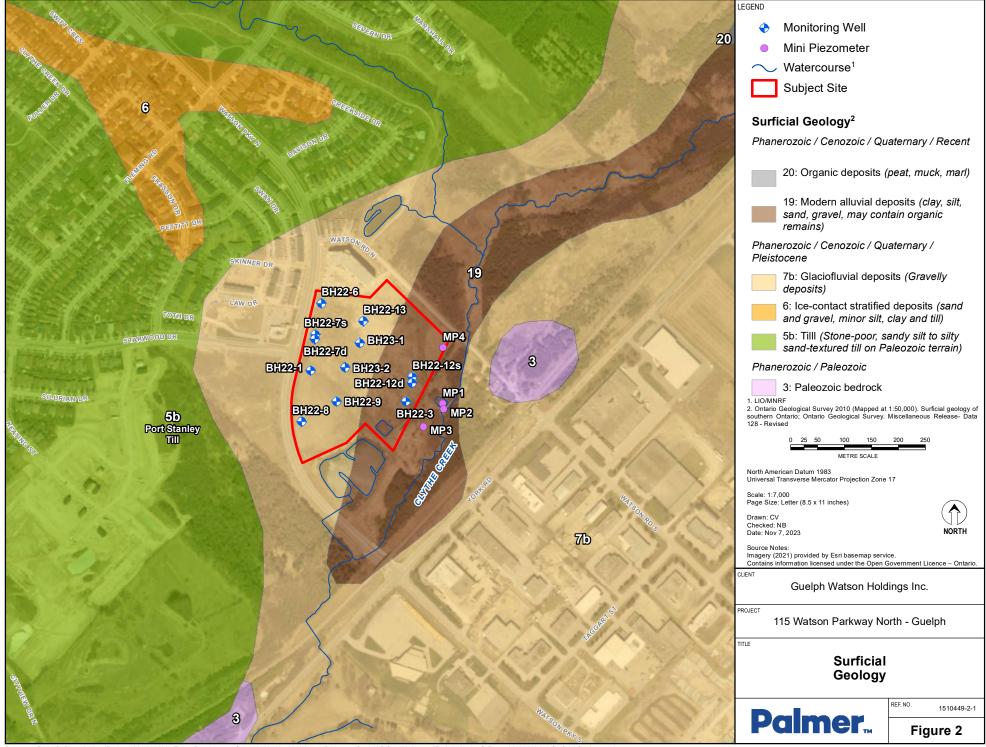
2.1 Regional Conditions

2.1.1 Physiography and Surficial Geology

The site is located within the Guelph Drumlin Field physiographic region (Chapman and Putnum, 1984). The Guelph Drumlin Field occupies 800 km² and spans across the City of Guelph and parts of Wellington County and Waterloo Region. This region is characterized by approximately 300 northwest-southeast trending drumlins, which are broad oval shaped hills with low slopes. These drumlins typically consist of sandy till soils, fringed by glaciofluvial sand and gravel deposits.

The surficial geology of the site as described by the Ontario Geological Survey (OGS) consists primarily of glaciofluvial deposits characterized by sandy and gravelly soils (**Figure 2**). These soils tend to facilitate vertical groundwater recharge in vadose zone towards deeper units. Horizontal flow in saturated zone is expected and the soils can be considered well drained. Modern alluvial deposits associated with the nearby Clythe Creek are also present on the eastern edges of the site boundary. These soils tend to be comprised of clay, silt and sand with minor gravels and organics.

Bedrock geology was mapped by OGS as sandstone, shale, dolostone, siltstone of Amabel Formation, which was deposited during Early Silurian (S1) in a shallow high energy shoal to deep basinal environment.


2.1.2 Hydrogeology

Hydrostratigraphic units can be subdivided into two distinct groups based on their ability to allow groundwater movement: an aquifer and an aquitard. An aquifer is defined as a layer of soil that is permeable enough to permit a usable supply of water to be extracted. An aquitard is a layer of soil that inhibits groundwater movement due to its low permeability. The major regional hydrostratigraphic unit that controls groundwater at the site is described below:

Modern alluvial deposits: This unit cuts through the spillway deposits and consist of clay, silt, sand, gravel, and possibly organic remains. Most of this unit was deposited during ancient channel stage, and modern Clythe Creek meanders off-regime within the boundary of this unit. The unit usually serves as a linear aquifer with abundant groundwater owing to its low position, high porosity and interaction with stream flow.

Coarse-Textured Glaciofluvial Deposits: These deposits are primarily made up of sands and gravels and are associated with glacial meltwater spillways (Karrow, 1968). These spillways tend to facilitate modern streams such as the Eramosa River and Clythe Creek. This unit acts as a shallow unconfined aquifer in the area and is generally drained as shallow groundwater flow within this unit is typically vertical towards less permeable units.

Wentworth Till: This till unit makes up the majority of the drumlins found in the Guelph area, and acts as a regional aquitard (GRCA, 2008). This unit is a stony till, primarily made up of sand and silts. Occasional

seams of gravel and sand can be found in the unit which permit some groundwater flow. This unit is interpreted to be identified beneath the glaciofluvial deposits, and acts as a confining aquitard.

2.1.3 Environmental Features and Drainage

The site is located within the Grand River watershed which drains approximately 6,800 km² starting near Dundalk and emptying into Lake Erie near Port Maitland. The site is within the Eramosa River subwatershed, which is one of the four major contributing tributaries to the Grand River. The Eramosa River valley follows a spillway channel trending southwest with headwaters originating in Brisbane. Eramosa River flows southwest and meets Speed River in Guelph, which ultimately contributes to the Grand River. Clythe Creek, a tributary to the Eramosa River, is present about 40 m south of the site boundary. This creek flows southwest and is associated with a wetland complex south of the site. Overland flow from the site is expected to contribute to the function of Clythe Creek and the associated wetland complex.

2.1.4 Source Water Protection

The site is located in the Grand River Source Protection Area. The Source Water Protection Plan identifies four main regulatory factors under the *Clean Water Act (2006)* relating to local hydrogeology to consider for site development: Significant Groundwater Recharge Areas (SGRAs), Highly Vulnerable Aquifers (HVAs), and Wellhead Protection Areas (WHPAs), and Intake Protection Zones (IPZs). The source water protection designations for this site are provided in **Appendix B**.

A Wellhead Protection Area (WHPA) is the area around the wellhead where land use activities have the potential to affect the quality or quantity of water that flows into the well. These areas are delineated into zones of vulnerability (A, B, C, and D) based on the time of travel of water into the well, and zones around a surface water body influencing a Groundwater Under Direct Influence (GUDI) (E, F). Other zones (Q1, and Q2) are defined as the areas where new water takings or reduced recharge could impact the quantity of water available to municipal supply wells. IPZs are the area on the water and land surrounding a municipal surface water intake. HVAs are aquifers that are susceptible to contamination as a result of the soil structure/material or due its location near the ground surface. Lastly, SGRAs are areas where recharge is important to maintain the water level in a community drinking water aquifer.

According to the Ministry of Environment, Conservation, and Parks (MECP) source protection information atlas, the site is within a groundwater Vulnerable Scoring Area with a vulnerability score ranging from 8 to 10, a SGRA, and WHPA-B due to the Clythe Well and Booster Pumping Station located at 24 Watson Road North. A small portion of the site on the eastern boundary is in a WHPA-A. It should be noted currently Clythe Well is not in use and the station is only utilized as a Booster Pumping Station. Based on the Source Water Protection policies, infiltration must be maintained post-development as to not impact the supply well located approximately 50 m south of the site boundary.

2.2 Site Specific Conditions

2.2.1 Borehole Drilling and Monitoring Well Installations

A borehole drilling investigation was completed by Toronto Inspections Ltd. in May 2022, February 2022, and August 22, 2023. A summary of the well installation details is provided in **Table 1**, and the borehole

logs are provided in **Appendix C.** A total of 18 boreholes were completed at the site with depths ranging from 4.7 to 15.7 meters below ground surface (mbgs). Twelve (12) of the boreholes were completed as 2-inch monitoring wells with two nested wells at BH22-7s/d, and BH22-12s/d.

Table 1. Well Installation Details

Well ID	Surface Elevation (mASL)	Depth (mbgs)	Screened Interval (mbgs)	Screened Unit
BH22- 1	327.20	15.7	12.7 - 15.7	Silty Sand / Sandy Silt Till
BH22- 3	325.26	6.6	3.6 - 6.6	Sand and Gravel
BH22- 6	328.20	15.7	12.7 - 15.7	Sandy Silt Till
BH22- 7s	327.80	6.1	3.1 - 6.1	Sand and Gravel
BH22- 7d	327.80	15.7	12.7 - 15.7	Sandy Silt Till
BH22- 8	326.75	15.7	12.7 - 15.7	Sandy Silt Till
BH22- 9	326.48	6.6	3.6 - 6.6	Sand and Gravel / Sandy Silt Till
BH22- 12s	325.55	6.1	3.1 - 6.1	Sand and Gravel
BH22- 12d	325.55	10.7	6.9 – 9.9	-
BH22- 13	327.30	6.6	3.6 - 6.6	Sand and Gravel / Sandy Silt Till
BH23- 1	327.30	7.6	4.6 – 7.6	Sand and Gravel / Sandy Silt Till
BH23- 2	326.80	7.9	4.9 – 7.9	Sand and Gravel / Sandy Silt Till / Silty Sand

2.2.2 Geology and Soil Profile

The stratigraphy of the site area encountered during the borehole drilling program is summarized below.

Topsoil / Fill: It is understood that the site was raised/graded with the placement of fill in the past. This unit was encountered at all borehole locations and extended from 0.6 to 3.5 mbgs. This unit was generally comprised of sandy silt with some gravel and contained occasional rootlets.

Sand and Gravel: This unit was encountered at all borehole locations below the fill and extended to depths ranging from 0.6 to 7.8 mbgs. This unit contained some silty sand, with occasional cobbles. The

thickness of this unit ranged from approximately 2 to 6 m. This unit was described as compact to very dense, and dry to wet.

Sandy Silt Till: This unit was encountered at boreholes BH22-1, BH22-2, BH22-5, BH22-6, BH22-7s/d, BH22-8, BH22-9, BH22-10, BH22-11, BH22-13, BH23-1, and BH23-2. This unit was encountered below the sand and gravel deposit at depths ranging from 4.0 to 7.8 m. This thickness of this unit ranged from approximately 1 m to >11 m. This unit is described as compact to very dense, and moist to wet.

2.2.3 Groundwater Levels and Flow

The groundwater level at each monitoring well was measured by Palmer personnel between June 2022 and April 2023. One round of groundwater level monitoring was completed by Toronto Inspections Ltd on May 26, 2022. One round of water levels was collected on September 12, 2023, by Palmer on newly installed wells. Water levels were measured using a water level tape and recorded to the nearest centimetre. **Table 2** provides a summary of the measured water levels. It should be noted that groundwater levels can vary and are subject to seasonal fluctuations in response to weather events.

The manually measured groundwater table ranges from 2.09 to 5.72 mbgs and 321.93 to 324.01 masl. The interpreted seasonal high groundwater levels based on continuous groundwater monitoring data are found in spring between March and May, with the highest recorded groundwater level being 2.09 mbgs from BH22-3 on May 26, 2022. Continuous groundwater level data is provided in **Figure 3** In general, groundwater levels are deeper on the west side of the site, and shallower on the east side of the site near Clythe Creek. The shallow and deep groundwater flow directions within the site boundary was interpreted using water levels date from August 10, 2022, and is estimated to flow southeast (**Figure 4A/B**).

Table 2. Groundwater Monitoring

									Wate	r Level								
Well ID		y 26, 022		ne 2, 022		y 11, 022		y 18, 022		ust 10, 022	Ŭ	ust 26, 022		ember 2022		il 25, 023		ember 2023
	mbgs	masl	mbgs	masl	mbgs	masl	mbgs	masl	mbgs	masl	mbgs	masl	mbgs	masl	mbgs	masl	mbgs	masl
BH22-1	3.69	323.51	3.80	323.40	4.17	323.03	4.24	322.96	4.42	322.78	4.45	322.75	4.50	322.70	3.67	323.53	-	-
BH22-3	2.09	323.17	2.27	322.99	2.62	322.64	2.65	322.61	2.83	322.43	2.82	322.44	2.97	322.29	2.15	323.11	-	-
BH22-6	5.26	322.94	5.02	323.18	5.05	323.15	7.72	320.48	5.42	322.78	5.42	322.78	5.40	322.80	4.49	323.71	-	-
BH22-7s	4.07	323.73	4.22	323.58	4.62	323.18	4.70	323.10	4.89	322.91	4.92	322.88	4.97	322.83	4.11	323.69	-	-
BH22-7d	4.12	323.68	4.14	323.66	4.56	323.24	4.62	323.18	4.81	322.99	4.85	322.95	4.90	322.90	4.04	323.76	-	-
BH22-8	2.92	323.83	2.74	324.01	3.20	323.55	3.31	323.44	3.36	323.39	3.35	323.40	3.46	323.29	2.82	323.93	-	-
BH22-9	2.96	323.52	2.94	323.54	3.25	323.23	3.30	323.18	3.45	323.03	3.52	322.96	3.48	323.00	2.82	323.66	-	-
BH22-12s	2.48	323.07	2.54	323.01	2.88	322.67	2.98	322.57	3.13	322.42	3.14	322.41	3.28	322.27	2.42	323.13	-	-
BH22-12d	2.59	322.96	2.60	322.95	2.95	322.60	3.03	322.52	3.19	322.36	3.21	322.34	3.33	322.22	2.47	323.08	-	-
BH22-13	3.72	323.58	-	-	4.22	323.08	-	-	4.47	322.83	4.47	322.83	5.37	321.93	3.72	323.58	-	-
BH23-1		Installed August, 2023 3.88 323.45																
BH23-2							Ins	talled Au	ıgust, 2	2023							3.58	323.25

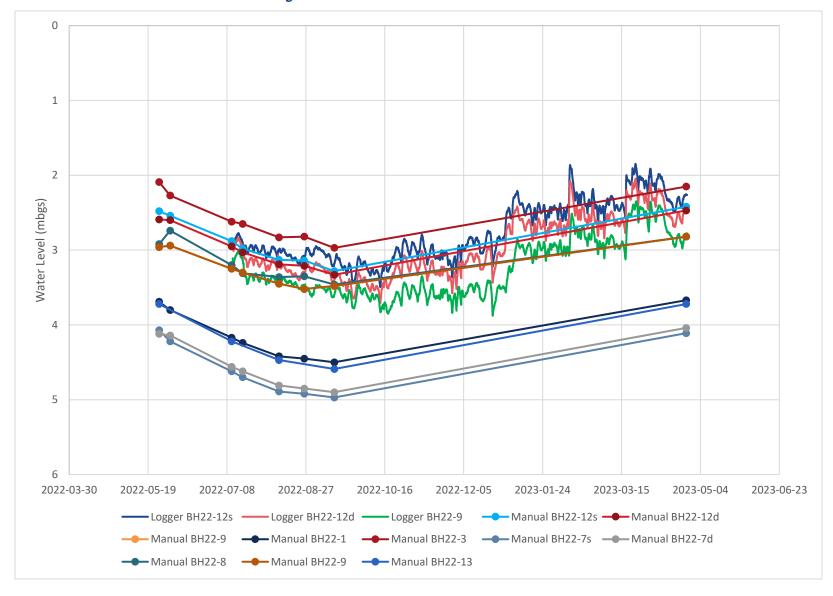
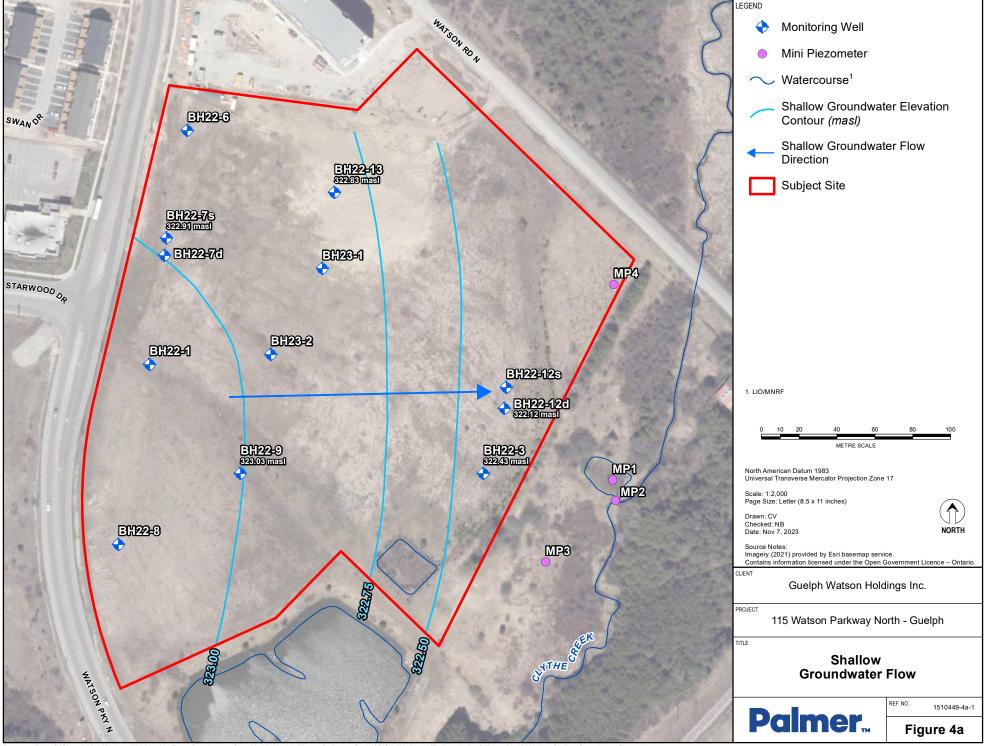


Figure 3. Continuous Groundwater Level Data

2.2.4 Surface Water Features

A large wetland complex is located to the east of the site area. To determine the function of the wetland complex, four mini-piezometers (MPs) were installed in the complex and on an adjacent wetland feature on the tablelands (**Figure 1**) (**Table 3**). Three (3) MPs (MP1, MP3, MP4) were installed in the wetland areas, and one (1) MP (MP2) was installed in Clythe Creek. Clythe Creek is located along the southeast boundary of the site and flows towards Eramosa River. The MPs were hand augured and post driven to approximately 1m below surface.


Water levels collected in MP1 show a neutral/negative gradient during the majority of monitoring events, and positive in April 2023. This suggests that this area of the wetland complex is supplied in majority by surface water with minor groundwater inputs in the spring. Monitoring data from MP2 in Clythe Creek show slightly negative and neutral gradients indicating the creek is primarily supported by surface water inputs. However, this creek is known to flow when groundwater levels are high, suggesting partial groundwater inputs in the spring. Finally, MP3 and MP4 were generally dry, indicating these areas of the wetland are surface water supported by storm events.

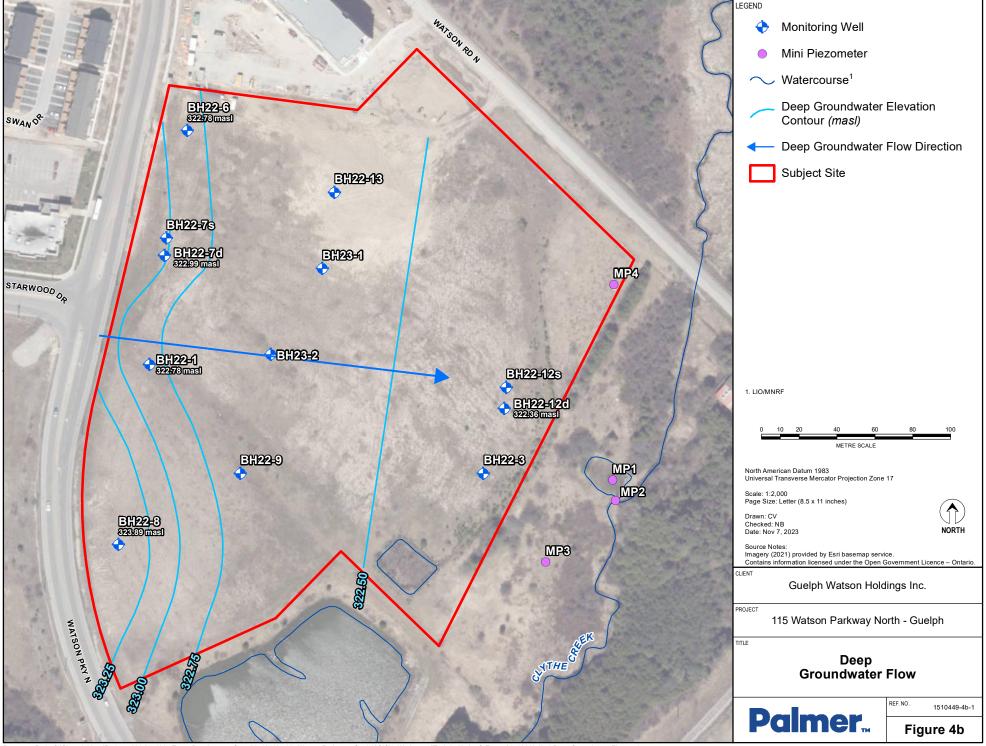

	Stick	Donth	Magazira			Water Lev	/el (mbgs)				
MP ID	Up (m)	Depth (m)	Measure- ment	July 11, 2022	July 18, 2022	August 10, 2022	August 27, 2022	September 14, 2022	April 25, 2023	Water Supply	
			in	0.95	0.03	-0.01	-0.05	0.00	-0.41	Neutral Surface	
MP1	1.13	1.27	out	Dry	0.00	-0.01	-0.09	Dry	-0.23	Water/ Seasonal	
			gradient	-	-0.02	0.00	-0.03	-	0.14	Groundwater	
MP2			in	0.71	-0.08	-0.03	-0.16	0.25	-0.28		
(In	1.25	1.15	out	-0.11	-0.11	-0.05	-0.18	Dry	-0.28	Surface Water	
Creek)			gradient	-0.71	-0.03	-0.02	-0.02	-	0		
			in	Dry	Dry	0.61	0.55	0.61	Dry		
MP3	1.01	1.39	out	Dry	Dry	Dry	Dry	Dry	Dry	Surface Water	
			gradient	-	-	-	-	-	-		
			in		Δ .	0.84	-	Dry	Dry		
MP4	1.16	1.24	out	Installed on August 10, 2022		Dry	-	Dry	Dry	Surface Water	
			gradient	10, 2	022	-	-	-	-		

Table 3. Surface Water Monitoring

2.2.5 MECP Water Wells

Based on a review of the MECP Water Well Records (WWR) database 48 wells were found within a 500 m radius of the site. A summary of these well records are presented in **Table 4** and are identified on **Figure 5**. Of these wells, 28 are stated to be for domestic use but were completed in the 1960's and are now within an area serviced with municipal water, as such it is assumed that they are no longer in use. Two (2) wells are for municipal water use, with one labelled as not in use. These are in reference to the Clythe Wells located south of the site. It is understood that neither of these wells are currently being used for municipal supply. The remaining nine (9) are for monitoring, seven (7) are unknown, and two (2) are not in use. The average depth of these wells is 29 mbgs, with static water levels ranging from 0.9 to 31.4 mbgs. As most of the wells are no longer in use, or are very deep, they are not likely to be impacted by the development.

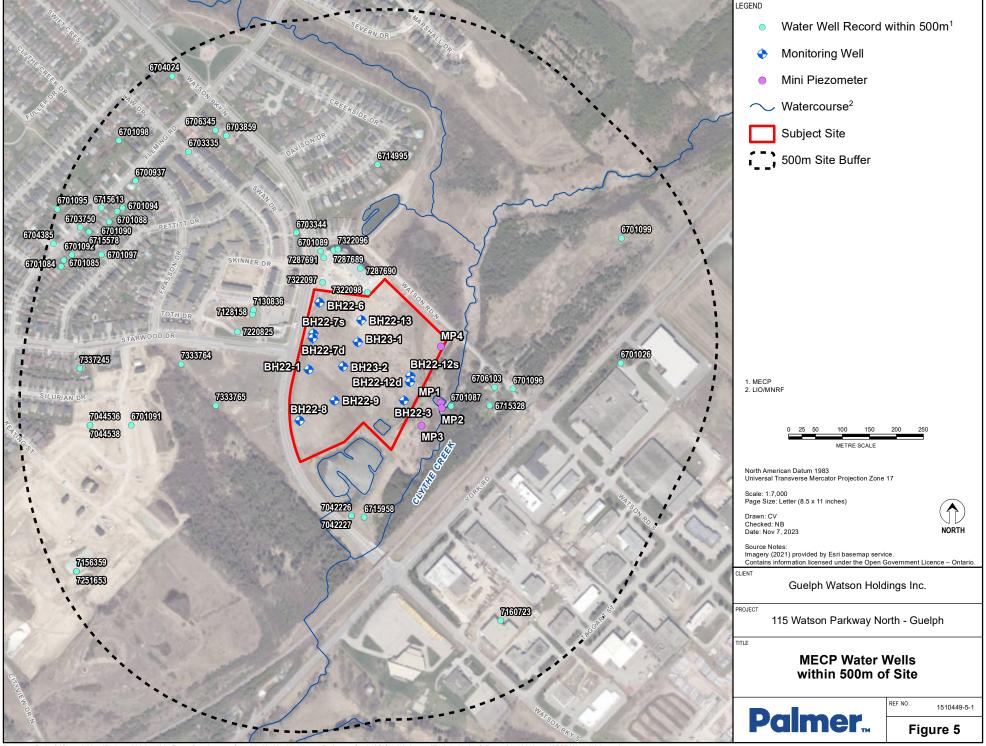


Table 4. MECP Water Well Records

Well ID	Date Completed	Depth	Static Water Level	Use
6700937	1967-08-29	37.5	17.4	Domestic
6701026	1959-12-02	27.7	9.1	Domestic
6701084	1963-06-05	47.2	7.3	Domestic
6701085	1963-06-13	46.6	31.4	Domestic
6701087	1953-06-11	27.4	6.1	Domestic
6701088	1961-05-08	27.4	3.7	Domestic
6701089	1957-05-22	41.1	22.9	Domestic
6701090	1961-05-12	17.7	0.9	Domestic
6701091	1957-08-11	31.7	6.7	Domestic
6701092	1959-11-11	30.5	12.2	Domestic
6701094	1961-06-30	24.4	4.0	Domestic
6701095	1961-07-31	25.0	5.2	Domestic
6701096	1962-04-16	34.1	12.2	Domestic
6701097	1962-08-28	30.5	8.5	Domestic
6701098	1964-10-03	25.0	7.0	Domestic
6701099	1946-07-03	21.3	7.9	Domestic
6703859	1970-11-24	36.6	20.7	Commercial/Domestic
6703335	1969-04-15	31.4	15.2	Domestic
6703344	1969-04-22	38.1	15.2	Domestic
6703750	1970-09-07	32.6	7.9	Domestic
6704024	1971-08-03	35.1	24.4	Domestic
6704385	1972-09-09	38.1	12.2	Domestic
6706103	1976-05-05	64.0	2.1	Not Used/Monitoring
6706345	1977-03-14	47.5	22.9	Domestic
6714995	2004-04-29	-	-	-
6715328	1999-04-07	-	-	Monitoring
6715578	2005-10-11	-	-	Domestic
6715613	2005-12-16	-	4.9	Domestic
6715958	2006-10-25	-	-	-
7042226	2006-06-21	12.5	-	Not Used
7042227	2006-06-20	57.9	-	Not Used
7044536	2007-04-19	80.8	-	-
7044538	2007-04-19	27.5	-	-
7128158	2009-08-05	-	-	-
7130836	2009-06-01	6.0	-	Monitoring
7156359	2010-01-20	76.5	-	Monitoring
7160723	2010-09-13	-	-	-
7220825	2014-04-15	7.6	-	Monitoring
7251653	2015-10-26	-	-	-

Well ID	Date Completed	Depth	Static Water Level	Use
7287689	2017-05-09	6.1	4.3	Monitoring
7287690	2017-05-09	6.1	4.6	Monitoring
7287691	2017-05-09	6.1	3.0	Monitoring
7322096	2018-10-09	-	-	Domestic
7322097	2018-10-09	-	-	Domestic
7322098	2018-10-09	-	-	Domestic
7333764	2019-04-18	4.9	-	Monitoring
7333765	2019-04-18	3.0	-	Monitoring
7337245	2019-06-07	7.0	4.9	Monitoring
	Note: "-" Ro	efers to no d	lata available	

2.2.6 Hydraulic Conductivity

Palmer personnel conducted single well response tests at select wells on site to determine the hydraulic conductivity of the screened soils. A summary of the hydraulic conductivity analysis is provided in **Table 5** and presented in **Appendix D**. Conductivity tests were completed by lowering a 1 m long slug into each well to create a change in hydraulic head. Hydraulic conductivity values were estimated by measuring the rate of change in recovery of the water level once the slug was inserted into the well (also known as a Falling Head (FH) Test). Once the falling head test was terminated, the slug was removed and the subsequent rate of change in the water level was recorded (also known as a rising head (RH) Test). Bail tests were also completed where water was removed from the water column, and the rate of recovery was monitored. Water levels in each well were recorded using a datalogger set to record water levels at 1 and 2 second intervals. Tests were terminated once 80% recovery had been attained.

Hydraulic conductivity values were calculated form the displacement-time data using the Bouwer and Rice (1976) method for confined and unconfined aquifers, as modelled by Aqtesolv[™] software. The hydraulic conductivity of the soils on site ranged from 7.36×10^{-8} to 1.31×10^{-4} m/s. The geomean hydraulic conductivity of the sandy silt till unit was 2.89×10^{-7} m/s, and the geomean of the sand and gravel unit was 2.67×10^{-5} m/s. The 90^{th} percentile hydraulic conductivity of the sandy silt till and the sand and gravel unit is 1.17×10^{-6} m/s and 1.17×10^{-4} m/s respectively.

Table 5. Hydraulic Conductivity Summary

Well ID	Screened Geology	Analysis Method	Hydraulic Conductivity (K) (m/s)	Geomean (m/s)	90 th Percentile (m/s)
DUIGO 4	Sandy Silt Till / Silty	FH	5.03 x 10 ⁻⁷	Sandy Silt	Sandy Silt
BH22-1	Sand	RH	1.94 x 10 ⁻⁷	Till	Till
BH22-3	Sand and Gravel	Bail	1.31 x 10 ⁻⁴	2.89 x 10 ⁻⁷	1.17 x 10 ⁻⁶
BH22-6	Sandy Silt Till / Silty Sand	FH	1.03 x 10 ⁻⁷		
BH22-	Sand and Gravel /	FH	1.89 x 10 ⁻⁷	Sand and	Sand and
7s	Sandy Silt Till	RH	2.21 x 10 ⁻⁷	Gravel	Gravel
		FH	9.43 x 10 ⁻⁷	2.67 x 10 ⁻⁵	1.17 x 10 ⁻⁴

Well ID	Screened Geology	Analysis Method	Hydraulic Conductivity (K) (m/s)	Geomean (m/s)	90 th Percentile (m/s)
BH22- 7d	Sandy Silt Till / Silty Sand	RH	1.72 x 10 ⁻⁶		
BH22-8	Sandy Silt Till / Silty Sand	Bail	7.36 x 10 ⁻⁸		
BH22-9	Sand and Gravel / Sandy Silt Till	Bail	5.13 x 10 ⁻⁶		
BH22- 12s	Sand and Gravel	Bail	5.16 x 10 ⁻⁶		
BH22- 12d	-	Bail	4.10 x 10 ⁻⁵		
BH23-2	Sand and Gravel / Sandy Silt Till	RH	9.50 x 10 ⁻⁵		

2.2.7 Infiltration Rate

Infiltration rate is used to describe the perviousness of soil in vadose zone, which has a unit of cm/min or min/cm (T-time). A summary of the infiltration rates is provided in **Table 6**. Several methods exist for estimating infiltration rate, including hydraulic conductivity (Kfs), pit or hole percolation testing and Guelph Permeameter testing. The Guelph Permeameter testing was used to calculate the following infiltration rates for shallow soils and hydraulic conductivity values from slug test were used to estimate infiltration rate for deeper soil.

Based on the completed infiltration tests at the site, the infiltration rates ranged from 34.1 to 126.6 mm/hr with an average of 70.8 mm/hr. Including a 2.5x factor for uncertainty, the average infiltration rate is 28.3 mm/hr. These tests were completed at a variety of soil types found at the site; however, the majority of the site is overlaid by sand and gravel. Therefore, the higher infiltration rates are interpreted to be more representative of the site.

Table 6. Infiltration Rates for Shallow Soils

Infiltration Test ID	Depth (m)	Soil Type	Hydraulic Conductivity K _{fs} (m/s)	Infiltration Rate (mm/hr)	Average Infiltration Rate (mm/hr)	Average Infiltration Rate Including 2.5x Uncertainty (mm/hr)
IT1	0.52	Silty clay	3.2 x 10 ⁻⁷	34.1		
IT2	0.28	Topsoil/ Clay with organics	1.5 x 10 ⁻⁵	95.5		
IT3	0.43	Sand and silt	4.3 x 10 ⁻⁵	126.6	70.8	28.3
IT4	0.60	Silty clay	1.0 x 10 ⁻⁶	46.3		
IT5	0.59	Silt with gravel	1.5 x 10 ⁻⁶	51.6		

2.2.8 Groundwater Chemistry

A groundwater chemistry sample was collected on August 9, 2022, from BH22-12s and analysed for a suite of water quality parameters including physical parameters, nutrients, metals, and bacteria. A summary of the groundwater analysis results is presented in **Table 7**, and the certificate of analysis is provided in **Appendix E**. Results were compared to both the aesthetic and microbiological/chemical Ontario Drinking Water Standards (ODWS).

The water sample exceeded the aesthetic ODWS for colour, total dissolved solids, turbidity, aluminium and iron. The sample exceeded the microbiological/chemical ODWS for sodium and total coliforms. The aesthetic exceedances are expected to be related to turbidity in the sample and will likely be reduced using settling tanks. The microbiological/chemical exceedances are likely related to salting of nearby roadways and infiltration through the coarse soils into the water table.

Table 7. Groundwater Chemistry

Parameter	ODWS Aesthetic	ODWS Chemical/ Microbiological	Lowest Detection Limit	Units	BH22-12s					
Physical Tests										
conductivity	-	-	1.0	μS/cm	1040					
Langelier index (@ 4°C)	-	-	0.010	-	0.377					
alkalinity, bicarbonate (as HCO3)	-	-	1.0	mg/L	378					
alkalinity, carbonate (as CO3)	-	-	1.0	mg/L	<1.0					
alkalinity, hydroxide (as OH)	-	-	1.0	mg/L	<1.0					
alkalinity, total (as CaCO3)	30 -> 500	-	1.0	mg/L	310					
colour, apparent	5	-	2.0	CU	67.2					
hardness (as CaCO3), from total Ca/Mg		-	0.50	mg/L	371					
рН	6.5 -> 8.5	-	0.10	pH units	7.62					
solids, total dissolved [TDS]	500	-	10	mg/L	562					
solids, total dissolved [TDS], calculated	-	-	1.0	mg/L	676					
turbidity	5	-	0.10	NTU	32.5					
Langelier index (@ 20°C)	-	-	0.010	-	0.624					
pH, saturation (@ 4°C)	-	-	0.010	pH units	7.24					
pH, saturation (@ 20°C)	-	-	0.010	pH units	7.00					
	Anions and Nutrients									
ammonia, total (as N)	-	-	0.0050	mg/L	0.0317					
bromide	-	-	0.10	mg/L	<0.10					
chloride	250	-	0.50	mg/L	146					
fluoride	-	1.5	0.020	mg/L	0.072					

Parameter	ODWS Aesthetic	ODWS Chemical/	Lowest Detection Limit	Units	DU22 120				
Parameter	ODWS Aesthetic	Microbiological	Lowest Detection Limit	Units	BH22-12s				
nitrate (as N)	-	10	0.020	mg/L	<0.020				
nitrate + nitrite (as N)	-	10	0.0032	mg/L	<0.0224				
nitrite (as N)	-	1	0.010	mg/L	<0.010				
phosphate, ortho-, dissolved (as P)	-	-	0.0030	mg/L	<0.0030				
sulfate (as SO4)	-	-	0.30	mg/L	17.3				
Microbiological Tests									
coliforms, Escherichia coli [E. coli]	-	1	1	CFU/100mL	<1				
coliforms, total	-	1	1	CFU/100mL	130				
coliforms, total background	-	-	1	CFU/100mL	>2000				
Metals									
sodium adsorption ratio [SAR]	-	-	0.10	-	1.98				
	Ion Balance								
anion sum	-	-	0.10	meq/L	10.7				
cation sum (total)	-	-	0.10	meq/L	11.3				
ion balance (cations/anions)	-	-	0.010	%	106				
ion balance (APHA)	-	-	0.010	%	2.73				
Total Metals									
aluminum, total	0.1	-	0.0030	mg/L	0.489				
antimony, total	-	0.006	0.00010	mg/L	0.00012				
arsenic, total	-	0.01	0.00010	mg/L	0.00036				
barium, total	-	1	0.00010	mg/L	0.0390				
beryllium, total	-	-	0.000020	mg/L	0.000021				
bismuth, total	-	-	0.000050	mg/L	<0.000050				
boron, total	-	5	0.010	mg/L	0.027				
cadmium, total	-	0.005	0.0000050	mg/L	0.000232				
calcium, total	-	-	0.050	mg/L	99.2				
cesium, total	-	-	0.000010	mg/L	0.000053				
chromium, total	-	0.05	0.00050	mg/L	0.00102				
cobalt, total	-	-	0.00010	mg/L	0.00032				
copper, total	1	-	0.00050	mg/L	0.00242				
iron, total	0.3	-	0.010	mg/L	0.634				
lead, total	-	0.01	0.000050	mg/L	0.00381				
lithium, total	-	-	0.0010	mg/L	0.0018				

Parameter	ODWS Aesthetic	ODWS Chemical/ Microbiological	Lowest Detection Limit	Units	BH22-12s
magnesium, total	-	-	0.0050	mg/L	29.9
manganese, total	0.05	-	0.00010	mg/L	0.0391
molybdenum, total	-	-	0.000050	mg/L	0.000246
nickel, total	-	-	0.00050	mg/L	0.00134
phosphorus, total	-	-	0.050	mg/L	<0.050
potassium, total	-	-	0.050	mg/L	1.82
rubidium, total	-	-	0.00020	mg/L	0.00162
selenium, total	-	0.05	0.000050	mg/L	0.000050
silicon (as SiO2), total	-	-	0.25	mg/L	10.7
silicon, total	-	-	0.10	mg/L	5.02
silver, total	-	-	0.000010	mg/L	<0.000010
sodium, total	200	20	0.050	mg/L	87.6
strontium, total	-	-	0.00020	mg/L	0.195
sulfur, total	-	-	0.50	mg/L	6.60
tellurium, total	-	-	0.00020	mg/L	<0.00020
thallium, total	-	-	0.000010	mg/L	0.000019
thorium, total	-	-	0.00010	mg/L	<0.00010
tin, total	-	-	0.00010	mg/L	0.00018
titanium, total	-	-	0.00030	mg/L	0.0167
tungsten, total	-	-	0.00010	mg/L	<0.00010
uranium, total	-	0.02	0.000010	mg/L	0.000487
vanadium, total	-	-	0.00050	mg/L	0.00099
zinc, total	5	-	0.0030	mg/L	0.0610
zirconium, total	-	-	0.00020	mg/L	0.00027

Exceedances in Aesthetic ODWS in BOLD

Exceedances in Chemical/Microbiological ODWS in GREY

Note "-" indicates no data/guideline available

3. Dewatering Assessment

The focus of the dewatering assessment is a proposed mixed use development consisting of four buildings (Building A, B, C and D) with one-level (P1) of underground parking. The proposed townhomes and other residential structures will be built above the groundwater table and therefore would not require a dewatering assessment.

Two separate one-level parking structures are proposed for the buildings; Structure 1 for building A and B, and Structure 2 for building C and D. The dimensions for each underground structure have been estimated based on the design drawings (**Appendix A**). Dewatering is expected to be required due to the presence of partially saturated sand and gravel soils between approximately 3.0 to 7.8 mbgs.

3.1 Dewatering for P1

In our assessment for dewatering requirements for one-level of underground parking (P1), no watertight methods are deployed to construct the underground structures. The water level used for the calculation is the highest water level recorded on the west side of the site from the sand and gravel unit (2.82 mbgs from BH22-9). The depth of construction is estimated to be 4.5 m for one-level of underground parking. The calculation assumes dewatering 1 m below the base of the excavation to ensure a dry working area for a total excavation depth of 5.5 m. The dewatering rate is calculated using the Jacob's modified non-equilibrium equation for an unconfined aquifer (Powers et al., 2007).

$$Q_{Rectangle} = \frac{\pi K (H^2 - h^2)}{\ln{(\frac{R_0}{r_e})}} + 2 \left[\frac{x K (H^2 - h^2)}{2L} \right] \ m^3/s$$

Where

K = hydraulic conductivity – 2.67 x 10⁻⁵ m/s (Geomean of the Sand and Gravel Unit)

H = saturated thickness before dewatering – 3.18 m

h = saturated thickness after dewatering – 0.5m

 R_e = equivalent radius of influence estimated by $\sqrt{\frac{a*x}{\pi}}$

a = width (m) – Structure 1 - 72 m, Structure 2 – 72 m

x = length (m) - Structure 1 - 120 m, Structure 2 - 110 m

 R_0 = radius of influence estimated using $3000(H - h)\sqrt{K}$

Given the above equations and assumptions, the total dewatering rate is calculated to be 180,604 L/day for Structure 1 and 173,104 L/day for Structure 2. Including a 2x uncertainty factor, the total dewatering rate for Structure 1 and Structure 2 is 361,208 L/day and 346,207 L/day respectively. A maximum radius of influence for this level of dewatering is calculated to be 92 m. This amount of dewatering will require active dewatering methods (i.e., well points, eductors) to control seepage and for stability in the loose glaciofluvial soils, with sump pumps at the bottom of the excavation for additional groundwater control. Dewatering rates may be higher than those predicted during the initial phase of dewatering until an equilibrium is met.

3.1.1 Direct Precipitation

Storm based direct precipitation inputs must also be removed from each excavation. Assuming a 10 mm-storm event, this could add 86 m³ of water to Structure 1, and 79 m³ to Structure 2 that would need to be removed. If this volume was to be removed in 1-day, an additional 86,400 L/day would need to be removed from Structure 1, and 79,200 L/day from Structure 2. This assessment assumes that the area outside the excavation is sloped away from the excavation and that no runoff enters.

4. Hydrogeological Considerations and Impact Assessment

4.1 Pre-to-post Development Water Balance

A pre-to-post development water balance was completed by MTE (**Appendix F**) to determine the pre-to-post development infiltration and runoff values for both the site area, and the wetland complex identified south of the property. The pre-development infiltration and runoff values were calculated to be 14,961 m³/year and 8,056 m³/year respectively. The post-development infiltration and runoff values were determined including mitigation measures to meet pre-development conditions, and direct adequate surface water to the existing wetland complex. The post-development infiltration and runoff values are 15,307 m³/year and 8,279 m³/year respectively, a 2.3% increase in infiltration, and 2.8% increase in runoff.

4.2 Source Water Protection

The site is located within a SGRA. The site is also in a WHPA-B due to the Clythe Well and Booster Pumping Station located at 24 Watson Road North. A small portion of the site on the eastern boundary is in a WHPA-A, however no development is proposed for this area. It should be noted that currently Clythe Well is not in use and the station is only utilized as a Booster Pumping Station. Based on the Source Water Protection Policies, site infiltration must be maintained post development to ensure no impacts to the nearby municipal well and groundwater quantity. The infiltration should be realized through utilizing clean water to maintain the groundwater quality in the area.

4.3 Natural Environment

A wetland complex associated with Clythe Creek has been identified to the east and south of the site boundary. Palmer installed four MPs in the wetland complex to determine the groundwater/surface water interactions. Surface water monitoring conducted between July 2022 and April 2023 found that negative surface water gradients were recorded for the majority of the monitoring period, with minimal standing water. This suggests most of the wetland complex is mainly surface water supported. Clythe Creek was determined to be primarily supported by surface water runoff and from upstream inputs, however it is expected that baseflow in the creek is partially supported by groundwater in the spring.

Shallow groundwater flow within the site boundary is controlled by a unit of coarse-textured glaciofluvial sand and gravel. Groundwater flow within the site boundary is expected to flow southeast towards Clythe Creek. To maintain the wetland function and baseflow of Clythe Creek, it is important that clean runoff from the site is directed to the wetland complex. As infiltration across the site is expected to be maintained post-development, no adverse impacts to the wetlands or Clythe Creek are anticipated from development.

4.4 LID Considerations

The site is overlaid by a thick layer of coarse-textured deposits, with a moderately deep groundwater table in some areas. Groundwater table elevations range from 321.93 to 324.01 masl, with deeper water levels being observed on the west side of the site. These conditions are ideal for infiltration-based LIDs that can increase the post-development infiltration and groundwater recharge. To maintain groundwater quality, it is recommended that only clean water is used to meet infiltration targets. Based on the SWM report, the majority of rooftop runoff will be directed to the on-site infiltration galleries.

To maintain function of the wetland complex and environmental area associated with Clythe Creek, predevelopment runoff values must be maintained post-development. To achieve the runoff targets, a combination of overflow runoff from infiltration galleries, rooftop runoff, and runoff from landscaped areas will be directed towards the wetland complex.

Based on the hydrogeological conditions, the use of infiltration-based LIDs is expected sufficiently maintain the water balance for this development. This will also ensure any groundwater contributions to Clythe Creek are maintained post-development. Additional design details will be provided as part of detailed design submissions.

4.4.1 Hydrogeological Conditions of the Tableland Wetland at MP4

A wetland was identified within the site boundary and was instrumented with MP4 to determine the surface water/groundwater interactions. MP4 was monitored in August 2022, September 2022, and April 2023, and on all occasions no surface water was present, and little to no groundwater was measured. This indicates that the wetland is surface water supported.

The lowest elevation in the identified wetland area was approximately 323.54 masl. The highest groundwater elevation measured at the nearest shallow monitoring well (BH22-12s) was 323.07 masl, or 0.47 m below the wetland elevation. These results suggest that the wetland on site is above the water table and does not receive any groundwater. This wetland is interpreted to not be hydraulically connected to the wetland complex.

4.5 Aquifer and Groundwater Users

Based on MECP water well records, 48 wells were found within a 500 m radius of the site. Of these wells 28 are stated to be for domestic use. However, these wells were completed in the 1960's and are mainly located in a serviced area, and therefore assumed to be no longer in use. Clythe Well and Booster Pumping Station are located east of the site. Although currently Clythe Well is not in use, groundwater quantity and quality should be maintained as the site is within a WHPA-A/B and SGRA. As infiltration is expected to be maintained post-development, no impact to the aquifer or existing groundwater users are anticipated.

4.6 Dewatering and Discharge

Under the MECP requirements, registration on the Environmental Activity and Sector Registry (EASR) is required when dewatering is greater than 50,000 L/day and less than 400,000 L/day. A PTTW is required when dewatering is expected to be greater than 400,000 L/day.

Based on the design drawings, two separate one-level underground parking structures are proposed. Structure 1 will support parking for building A and B, and Structure 2 will support parking for building C and D. The dewatering rate estimate for Structure 1 and Structure 2 including uncertainty is 361,208 L/day and 346,207 L/day respectively. It is assumed that these underground parking structures are going to be completed separately. As the total dewatering rate for each structure is below 400,000 L/day, but above 50,000 L/day, a registration on the EASR would be required.

It should be noted that should these structures be completed concurrently, the total dewatering rate estimate would be above 400,000 L/day and a PTTW would be required. It is recommended that the structures are completed separately.

Dewatering discharge may be directed towards local storm/sanitary sewers pending approval from the City of Guelph. Any construction dewatering must meet the storm and sanitary discharge criteria prior to being discharged into the sewers, and it is recommended that an updated water sample is collected prior to discharge.

5. Conclusions and Recommendations

Based on the results of the Hydrogeological Investigation, the following summary of conclusions and recommendations are presented:

- The proposed site plan is understood to be a mixed-use residential with four buildings (Building A, B, C and D), townhouses, a park area, and two underground parking structures each with one-level.
- The surficial geology of the site as encountered through borehole drilling investigation consists of sand and gravel at surface over a sandy silt till unit.
- The groundwater table at the site is interpreted to be located between 321.93 to 324.01 masl, or 2.09 to 5.72 mbgs, and shallow groundwater flow is interpreted to move southeast.
- Based on the MECPs Source Water Protection mapping, the site is within a SGRA with a
 vulnerability score of 0, and a WHPA-B. A small portion of the eastern edge of the site is within a
 WHPA-A. This is due to the proximity of Clythe Well and Booster Pumping Station. Based on
 these Source Water Protection Policies, infiltration must be maintained post-development at the
 site.
- A wetland complex associated with Clythe Creek was identified to the east and south of the site.
 Four (4) mini piezometers were installed in this wetland complex to delineate the surface

water/groundwater interactions. It was determined that the majority of the wetland complex is surface water supported, with minor groundwater inputs to Clythe Creek.

- The hydraulic conductivity values were determined using falling and rising head tests, and bail tests. The hydraulic conductivity of the sand and gravel unit ranges from 5.2 x 10⁻⁶ to 1.3 x 10⁻⁴ m/s. The hydraulic conductivity of the sandy silt till ranges from 7.4 x 10⁻⁸ to 1.7 x 10⁻⁶ m/s.
- A groundwater sample was collected from BH22-12s and analyzed for a suite of water quality
 parameters including physical parameters, nutrients, and metals. The sample exceeded the
 aesthetic ODWS for colour, total dissolved solids, turbidity, aluminium and iron. The sample
 exceeded the microbiological/chemical ODWS for sodium and total coliforms. The majority of
 these exceedances are anticipated to be reduced through settling tanks. Should any groundwater
 discharge be directed to nearby storm/sanitary sewers, additional water sampling to confirm the
 water meets storm and sanitary discharge criteria is required.
- Based on a review of the MECP Water Well Records (WWR) 48 wells were found within 500 m of
 the site, with 28 being for domestic use. The majority of these wells however were constructed in
 the 1960s and are in serviced areas and therefore interpreted to no longer be in use. The Clythe
 Well and Booster Pumping Station were identified to the east of the site boundary. Although this
 well is considered a municipal supply well, it is currently not in use. No impact to any nearby wells
 is anticipated from development.
- Two separate one-level underground parking structures are proposed for the development. The
 dewatering rate estimate for Structure 1 and Structure 2 including uncertainty is 361,208 L/day
 and 346,207 L/day respectively. It is assumed that these structures will be completed separately.
 This level of dewatering will require a registration on the EASR.
- As the site is located within a WHPA and a SGRA, the pre-development infiltration should be
 maintained post-development. The site is ideal for the use of infiltration based LIDs due to the
 coarse surficial soils, and moderately deep groundwater table. LID methods including rooftop
 runoff being directed to infiltration galleries will be utilized to meet pre-development infiltration
 values. To maintain groundwater quality, only clean water is recommended to be directed to the
 LIDs. Should infiltration be maintained, no impacts to the nearby supply well are anticipated.
- Based on the results of the water balance completed by MTE (2024), the pre-to-post development infiltration and runoff values can be met by utilizing LID measures, and no negative impact to the aquifer or wetland complex is anticipated.
- Since infiltration is anticipated to be maintained post-development, groundwater inputs that may supply baseflow to Clythe Creek will also be maintained. No impact to the wetland complex or Clythe Creek is anticipated.

6. Certification

This report was prepared, reviewed and approved by the undersigned:

Prepared By:

Nolan Boyes, M.Sc., P.Geo. Hydrogeologist

Reviewed By:

Jason Cole, M.Sc., P.Geo. Technical Discipline Manager, Hydrology and Hydrogeology

7. Limitations of the Report

This report was prepared by Palmer for Guelph Watson Holdings Inc. in accordance with the scope of work described in the proposal. The conclusions and recommendations detailed in this report are based upon the information available at the time of preparation of the report. No investigative method eliminates the possibility of obtaining imprecise or incomplete information. Professional judgement was exercised in gathering and analyzing the information obtained and in the formulation of our conclusions and recommendations. The nature of the sampling works makes it possible that contrary conditions may be identified in locations which were not sampled. However, it does suggest that the conditions will be localized and not extensive. The soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations made during drilling and therefore should not be interpreted as exact planes of geological change.

The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects Palmer's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Palmer accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

Unless stated otherwise in this report, provided that the report is still reliable, and less than 18 months old, Palmer may issue a third-party reliance letter to parties client identifies in writing, upon payment of the then current fee for such letters. All third parties relying on Palmer's report, by such reliance agree to be bound by our proposal and Palmer's standard reliance letter. Palmer's standard reliance letter indicates that in no event shall Palmer be liable for any damages, howsoever arising, relating to third-party reliance on Palmer's report. No reliance by any party is permitted without such agreement. This report is not to be given over to any third party for any purpose whatsoever without the written permission of Palmer.

The original of this electronic document has been authenticated and will be retained by Palmer for a minimum of five years. Since the file transmitted is now out of Palmer's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document

8. References

Chapman, L.J. and Putnam, D.F. 1984:

Physiography of southern Ontario; Ontario Geological Survey.

Grand River Conservation Authority, 2008.

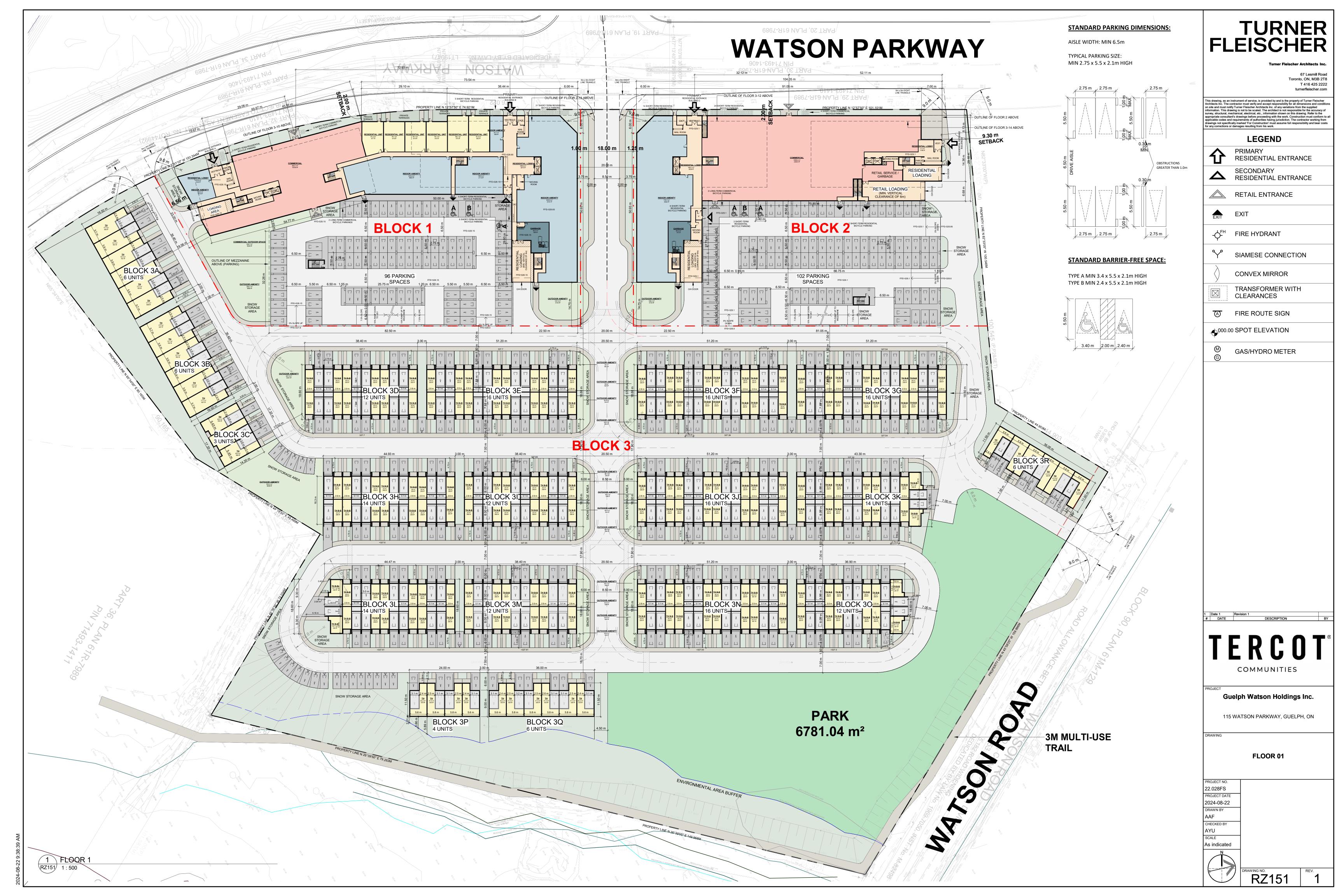
Grand River Watershed Characterization Report

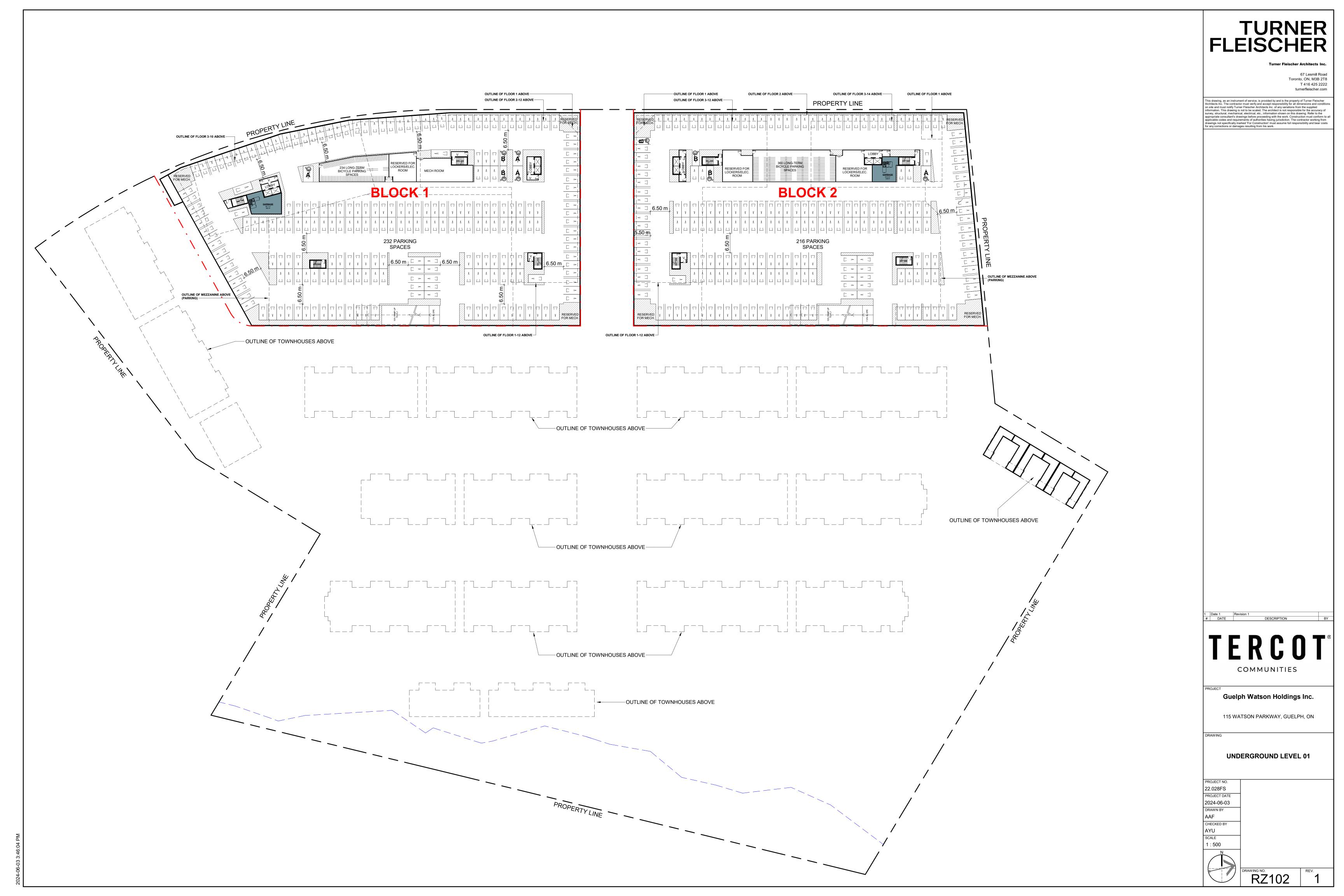
Karrow, 1968:

Pleistocene Geology of the Guelph Area Southern Ontario

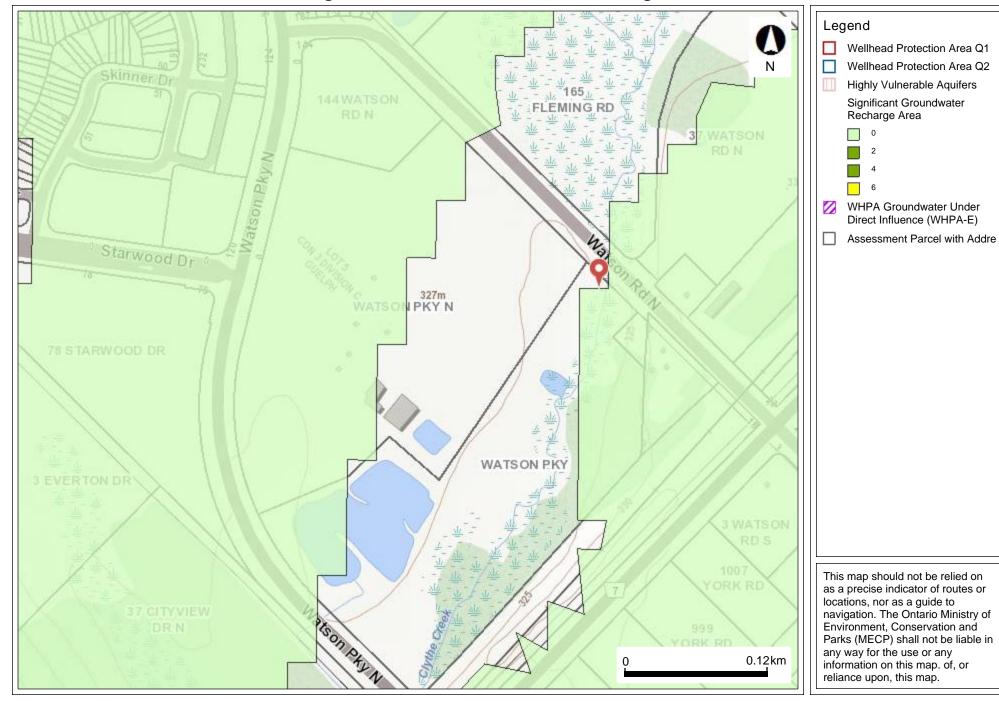
MTE Consultants Inc. 2024:

115 Watson Parkway North Function Servicing and Stormwater Management Report


Ontario Geological Survey (OGS). 2007:

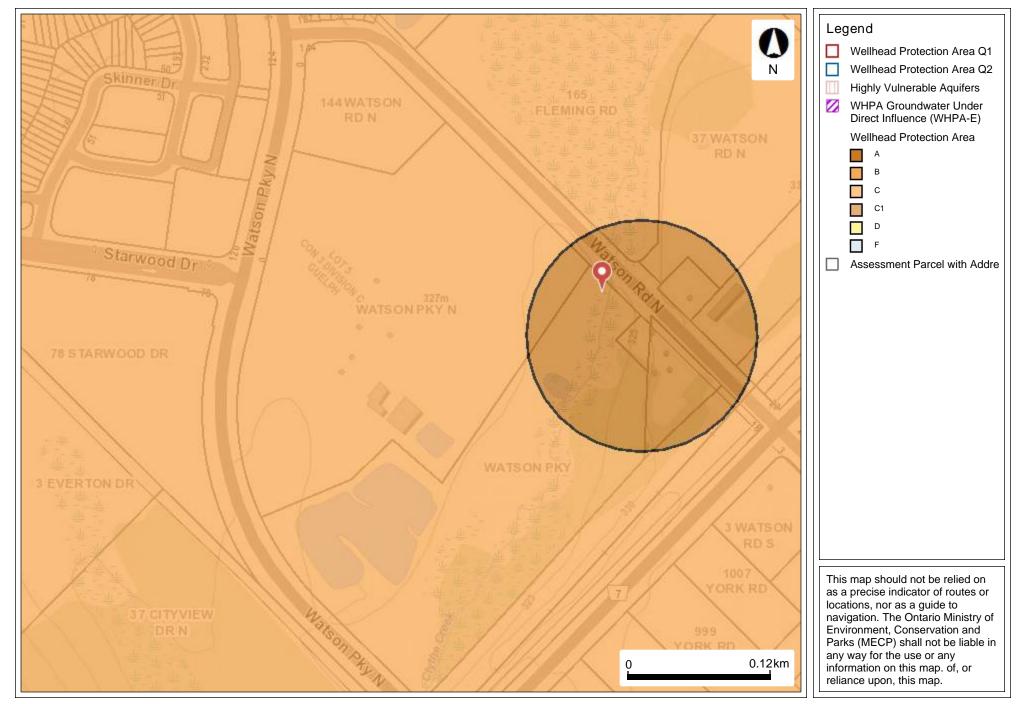

Paleozoic geology of Southern Ontario; Ontario Geological Survey, Map 2544

Appendix A – Design Drawings (Turner Fleischer Architects, 2024)



Appendix B – Source Water Protection Mapping (2022)

Significant Groundwater Recharge Area



Map Created: 10/6/2022

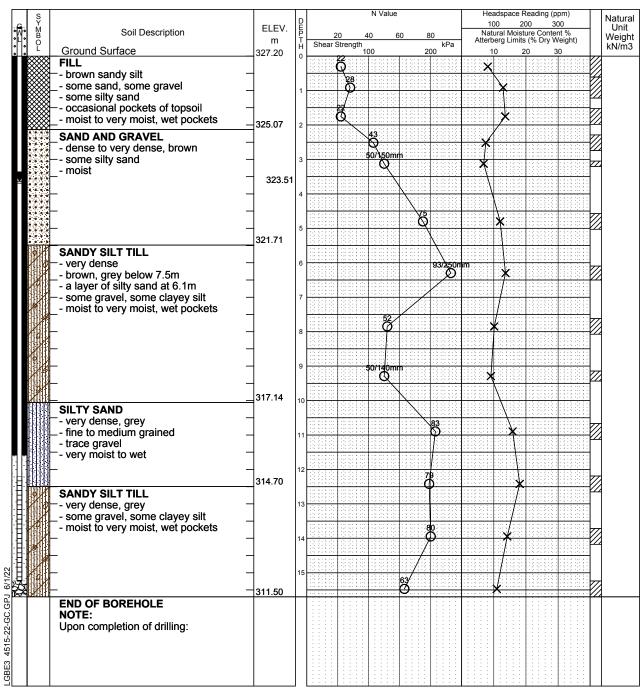
Map Center: 43.56558 N, -80.20995 W

Wellhead Protection Area

Map Created: 10/6/2022

Map Center: 43.56558 N, -80.20995 W

Appendix C – Borehole Logs (Toronto Inspection, 2023)


4515-22-GC Project No.

Log of Borehole 22BH-01 (MW)

Penetrometer

Dwg No. 2 Geotechnical Investigation Sheet No. 1 of 1 Project: 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario Location: Headspace Reading (ppm) Auger Sample 2/17/22 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum:

Field Vane Test

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
Mar. 1, 2022 May 26, 2022	3.56m 3.69m	

Log of Borehole 22BH-02

Dwg No. 3 Geotechnical Investigation Sheet No. 1 of 1 Project: 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario Location: Headspace Reading (ppm) Auger Sample 2/17/22 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Headspace Reading (ppm) Natural Unit 100 200 300 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description 20 Shear Strength _____100 Weight kPa kN/m3 **Ground Surface** 325.71 FILL ÖĦ 325.10 - brown silty sand some gravel - wet SAND AND GRAVEL - very dense, brown - some silt - very moist to wet 321.75 **SANDY SILT TILL** - dense to very dense - brown, grey below 7.5m - some gravel, some clayey silt - occasional layers of sandy silt - moist to very moist, wet pockets 316.11 **END OF BOREHOLE** NOTE: Upon completion of drilling: - water level at 2.4m - cave-in at 2.9m .GBE3 4515-22-GC.GPJ 6/1/22

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)

Project No. 4515-22-GC Log of Borehole 22BH-03 (MW)

Dwg No. 4 Geotechnical Investigation Sheet No. 1 of 1 Project: 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario Location: Headspace Reading (ppm) Auger Sample 2/18/22 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Headspace Reading (ppm) Natural Unit 100 200 300 ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description 20 Shear Strength _____100 Weight kN/m3 **Ground Surface** 325.26 FILL brown sandy silt 324.35 very minor rootlets some gravel, trace clayey silt SAND AND GRAVEL 323.17 - compact to very dense brown, grey below 4.5m - occasional trace silt - with river sand and gravel below 4.5m - very moist to wet **END OF BOREHOLE** NOTE: Upon completion of drilling: -GBE3 4515-22-GC.GPJ 6/1/22

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
Mar. 1, 2022 May 26, 2022	2.16m 2.09m	

Log of Borehole 22BH-04

4515-22-GC Project No. Dwg No. 5 Geotechnical Investigation Sheet No. 1 of 1 Project: 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario Location: Headspace Reading (ppm) Auger Sample 2/18/22 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Headspace Reading (ppm) Natural Unit 100 200 300 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description Weight Shear Strength kN/m3 **Ground Surface** 326.01 FILL - brown sandy silt to silty sand some gravel - trace topsoil at 1.5m - wet to very moist
SAND AND GRAVEL 324.33 ö - dense to very dense, brown - occasional cobbles - with river sand and gravel below 4.5m - wet 319.76 SANDY SILT TILL 319.61 very dense, grey some gravel, some clayey silt **END OF BOREHOLE** NOTE: Upon completion of drilling: - water level at 2.9m - cave-in at 3.0m

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

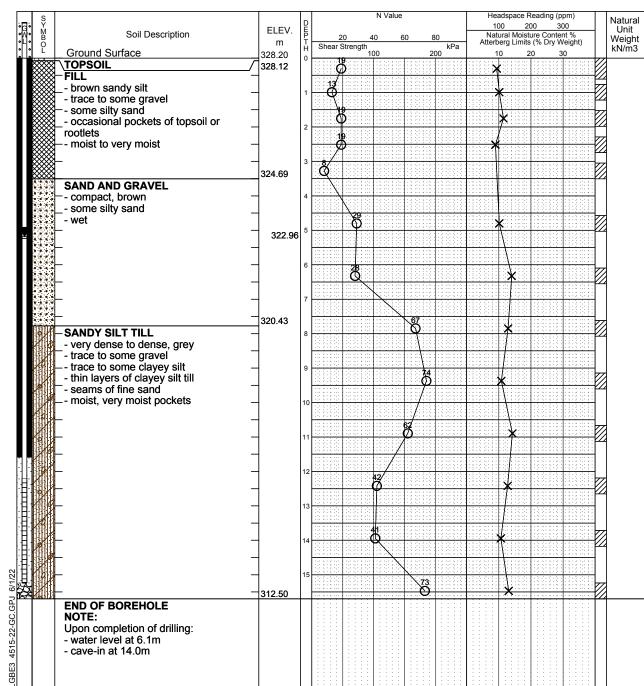
Toronto Inspection Ltd.

-GBE3 4515-22-GC.GPJ 6/1/22

Time	Water Level (m)	Depth to Cave (m)
	, ,	, ,

Log of Borehole 22BH-05

Dwg No. 6 Geotechnical Investigation Sheet No. 1 of 1 Project: 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario Location: Headspace Reading (ppm) Auger Sample 2/17/22 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Headspace Reading (ppm) Natural Unit 100 200 300 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description Weight Shear Strength kPa kN/m3 **Ground Surface** 324.52 FILL brown sandy silt - some gravel, some sand - minor topsoil at 1.8m - very moist to wet 322.54 **SAND AND GRAVEL** - very dense to dense, brown - some silty sand - occasional cobbles - moist to very moist 319.03 **SANDY SILT TILL** - compact, grey - some gravel, some clayey silt 317.96 **END OF BOREHOLE** NOTE: Upon completion of drilling: - water level at 2.7m - cave-in at 3.0m -GBE3 4515-22-GC.GPJ 6/1/22

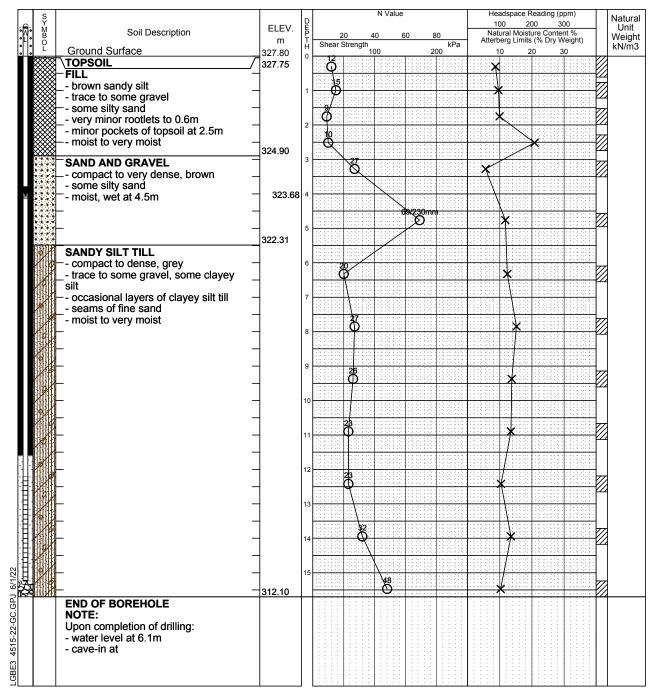

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
	, ,	, ,

Project No. <u>4515-22-GC</u>

Log of Borehole 22BH-06 (MW)

Dwg No. 7 Geotechnical Investigation Sheet No. 1 of 1 Project: 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario Location: Headspace Reading (ppm) Auger Sample 5/11/22 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer



NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
May 26, 2022	5.26m	, ,

Log of Borehole 22BH-07 (MW)

Dwg No. 8 Geotechnical Investigation Sheet No. 1 of 1 Project: 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario Location: Headspace Reading (ppm) Auger Sample 5/10/22 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression \otimes Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
May 26, 2022	4.12m	, ,

Project No. 4515-22-GC Log of Borehole 22BH-07S (MW)

Dwg No. 9 Geotechnical Investigation Sheet No. _1_ of _1_ Project: 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario Location: Headspace Reading (ppm) \boxtimes Auger Sample 5/10/22 × Date Drilled: Natural Moisture O 🛛 SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test **Unconfined Compression** Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer

S Y	0.05	ELEV.	P			N Value	1		He 1	eadspace F	Reading (p 00 30	pm) 00	Natur
S Y M B O L	Soil Description Ground Surface	m	DEPTH	Shear	Strenath	40 00		80 kPa 00		tural Moist berg Limits		nt % /eight) 0	Unit Weig kN/m
	NO SAMPLING	327.80	0	10 316 10		100		.00		10 2	.0 3		
	straight drill to 6.12m	7	1										
			'										
			2						11.2.2.1		10.7.7.2.		
u													
	_	4	3	10 21 21									
		4											
7· -	_	323.75	4	10 (11)		-24-14	10000		1113011				
		_		10000									
		-	5	10 11 10									
	_	_		2011									
\vdash	END OF BOREHOLE	321.70	6		1::::::	1 1 1 1 1	1:2:2:1:2						
	NOTE:												
	Upon completion of drilling:												
			1	1::::	1::::	1::::	1::::	1::::	1 : : : :	1::::	1 : : : :	1::::	1

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
May 26, 2022	4.07m	

4515-22-GC Project No.

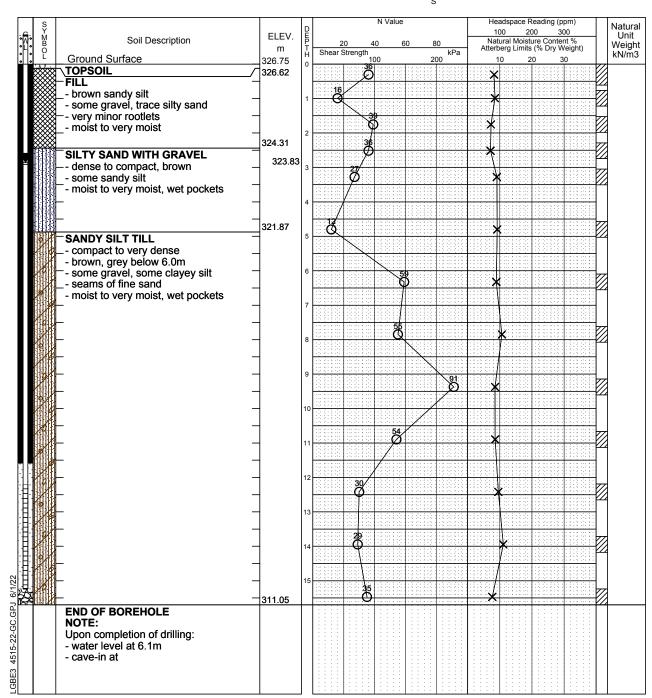
Geodetic

Project:

Location:

Datum:

Log of Borehole 22BH-08 (MW)

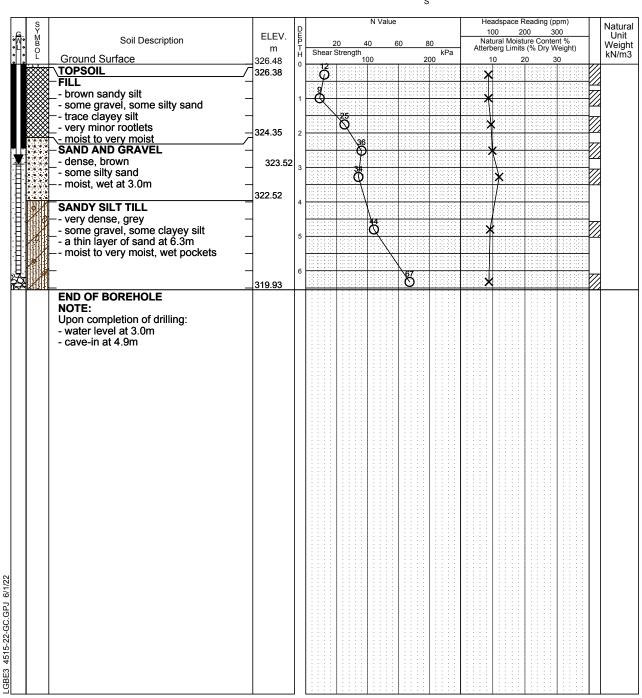

% Strain at Failure

Penetrometer

Dwg No. 10 Geotechnical Investigation Sheet No. 1 of 1 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario Headspace Reading (ppm) Auger Sample 5/10/22 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression

Shelby Tube

Field Vane Test

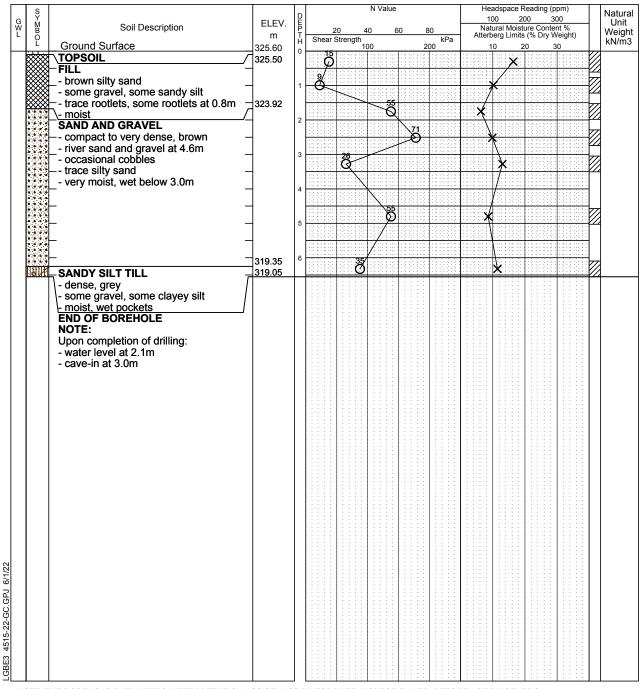


NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
May 26, 2022	2.92m	, ,

Log of Borehole 22BH-09 (MW)

Dwg No. 11 Geotechnical Investigation Sheet No. _1_ of _1_ Project: 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario Location: Headspace Reading (ppm) Auger Sample 5/12/22 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer

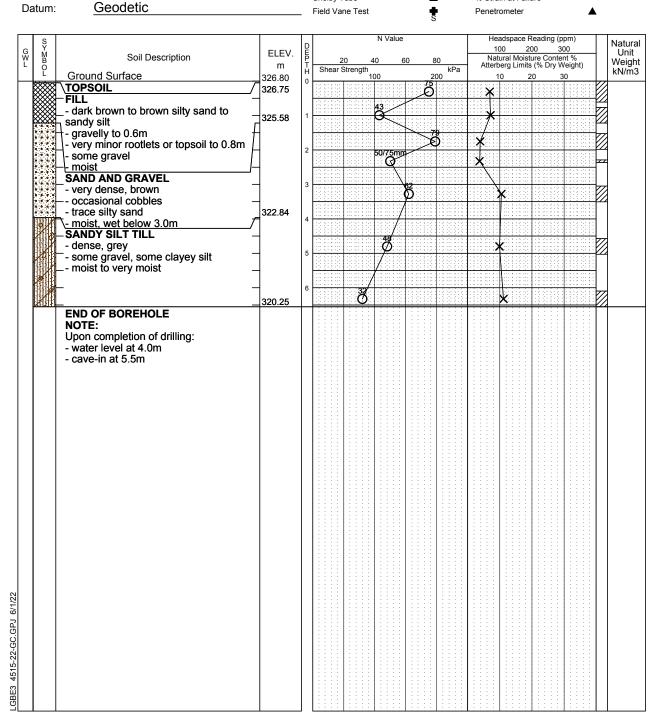

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

epth to Cave		Water Level (m)	Time
<u>(111)</u>	T	2.96m	May 26, 2022

4515-22-GC Project No.

Log of Borehole 22BH-10

Dwg No. 12 Geotechnical Investigation Sheet No. 1 of 1 Project: 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario Location: Headspace Reading (ppm) Auger Sample 5/12/22 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Headspace Reading (ppm) 100 200 300

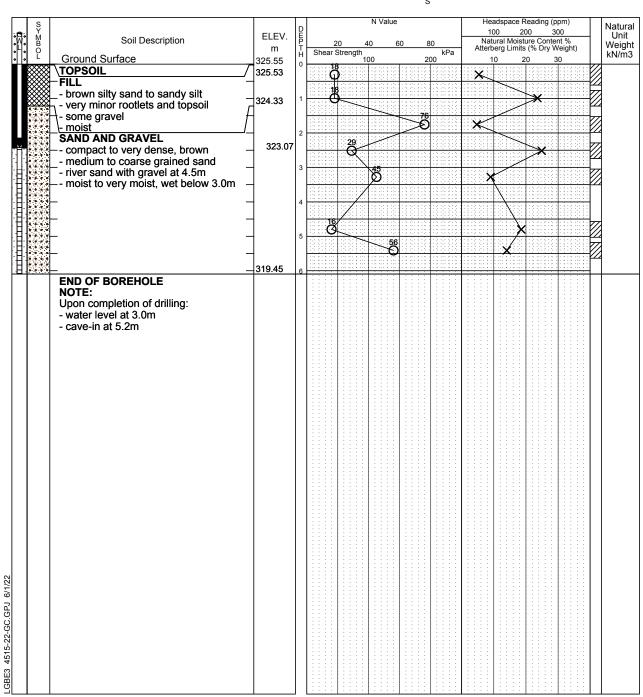


NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)

Log of Borehole 22BH-11

Dwg No. 13 Geotechnical Investigation Sheet No. 1 of 1 Project: 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario Location: Headspace Reading (ppm) Auger Sample 5/11/22 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure



NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
	, ,	, ,

Log of Borehole 22BH-12 (MW)

Dwg No. 14 Geotechnical Investigation Sheet No. 1 of 1 Project: 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario Location: Headspace Reading (ppm) Auger Sample 5/12/22 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
May 26, 2022	2.48m	, ,

Log of Borehole 22BH-12D (MW)

Penetrometer

Dwg No. 15 Geotechnical Investigation Sheet No. _1_ of _1_ Project: 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario Location: Headspace Reading (ppm) \boxtimes Auger Sample 5/12/22 × Date Drilled: Natural Moisture SPT (N) Value $O \square$ Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test **Unconfined Compression** Shelby Tube % Strain at Failure Geodetic Datum:

Field Vane Test

.⊜.	SYMBOL	Cail Decariation	ELEV.	D					Value					He 1	eadsp	ace	Read 200	ding (p 3 Conte Dry V	pm) 00		Natural Unit Weight kN/m3
	B O	Soil Description	m	D E P T H	Shea	20 r Stre	ength	40 1		60	80	kPa	١,							t)	Weight
0 0	L	Ground Surface NO SAMPLING	325.55	0	10.012	: 1::	::::	100) 20110		200			201	10		20	3	30	20.00	KIVIIIO
Ш		straight drill to 9.9m	4		13 (11)																
Н		_	4	1			3.7		2										1 2 1 2		
Ш		_	_				311														
Ш		_	_	2			211		2000			::::::								::::::	
H			322.96		10 110																
П				3																84	
Ш				3																	
Н			٦				2:1:		2 1												
Ш			7	4																	
Ш			┪		12 2 12 1		2:1:		2 22 1 2												
		<u> </u>	\dashv	5	2000		3111														
		-	-		12.212		2111		<u> </u>			<u> </u>							1 1 1 1	::::::	
П		_	\dashv	6	10.000	:	3:11		2 23 2 3 3 2 3 3 1 5											55 5 5	
Ш		_	4		13 5 3 3 3		3111												1:1:3	::::::::::::::::::::::::::::::::::::::	
		_	4	7	10.012		5111) (11) (1) (1) (1)												
		_	4		16 7 11 1		200													31.71	
$\ \ \ $				8			317							:::;					1		
間																					
刖				9																::: : :	
IIII				9																	
間			٦																		
			7	10)																
묌		END OF BOREHOLE	314.88	-			1 1				 										
		NOTE:																			
		Upon completion of drilling:									1			: :	1 : :				1 : :		
											1										
											1				1 : :						
											1										
																	1				
							: :							::					1		
											1								: :		
											1:										
											1										
221.00 10.00 22.00.01 3 01.125											1			::							
											1										
\Box					Liii	: 1 :	: :	:		1:	 _1:		L::	- :	1::		1:		1::		

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Water Level	Depth to
2.59m	(111)
	Level (m)

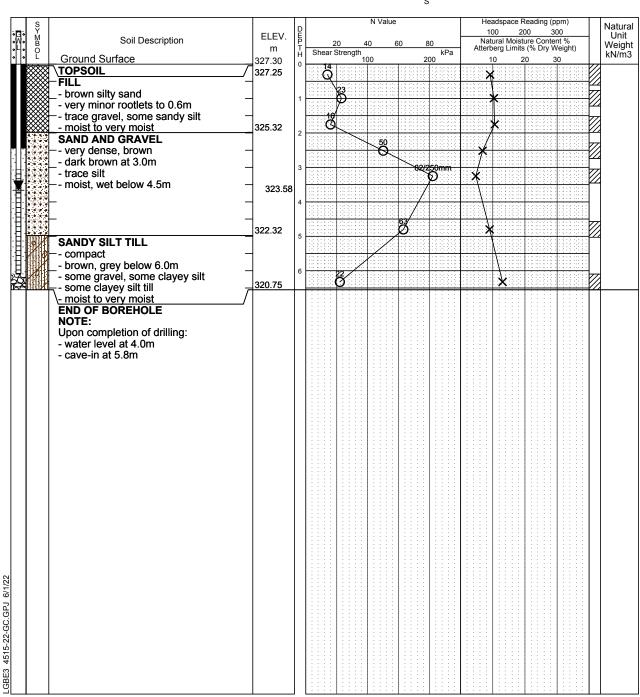
Log of Borehole 22BH-13 (MW)

Dwg No. 16

Project: Geotechnical Investigation Sheet No. 1 of 1

Location: 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario

Date Drilled: 5/11/22


Drill Type: Track Mounted Drill Rig

Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube

Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube

Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube

Headspace Reading (ppm) Natural Moisture X Plastic and Liquid Limit Unconfined Compression % Strain at Failure

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
May 26, 2022	3.72m	\/

Log of Borehole 22BH-14

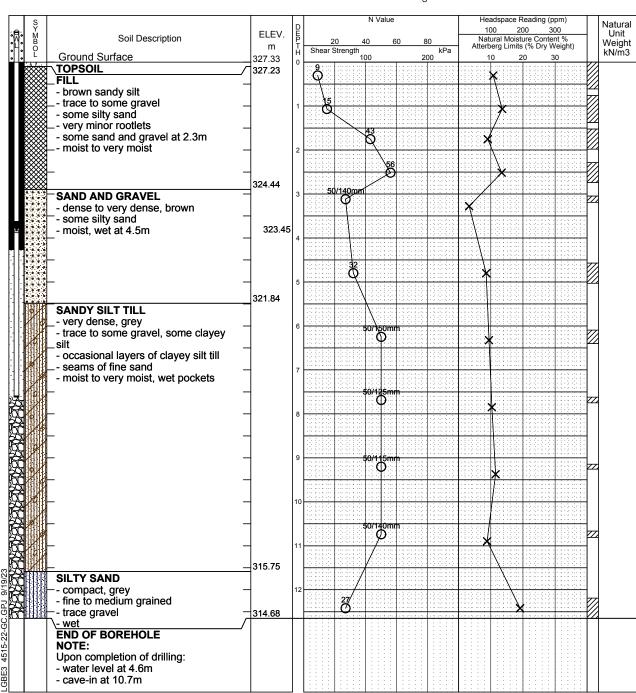
4515-22-GC Project No. Dwg No. 17 Geotechnical Investigation Sheet No. 1 of 1 Project: 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario Location: Headspace Reading (ppm) Auger Sample 5/10/22 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Headspace Reading (ppm) Natural Unit 100 200 300 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description Weight Shear Strength kPa kN/m3 **Ground Surface** 326.55 TOPSOIL Ö 326.50 FILL - brown sand to silty sand - some gravel - pockets of topsoil at 1.5m 324.87 - some sandy silt
- moist, very moist to wet at 0.8m
- SAND AND GRAVEL - dense to very dense, brown trace silt, pockets of silty sandmoist, wet below 3.0m 321.83 **END OF BOREHOLE** NOTE: Upon completion of drilling: - no free water -GBE3 4515-22-GC.GPJ 6/1/22

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)

4515-22-GC Project No.

Project:


Location:

Geotechnical Investigation

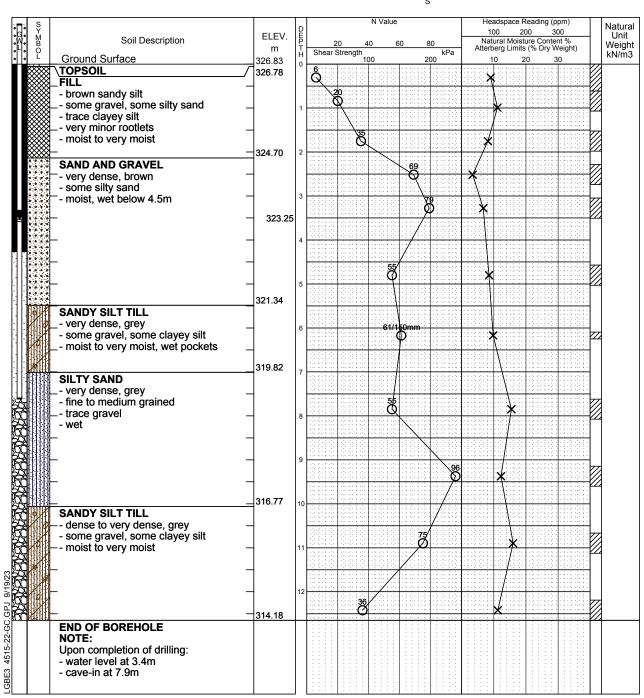
Log of Borehole 23BH-02 (MW)

Dwg No. 22 Sheet No. 1 of 1 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario

Headspace Reading (ppm) Auger Sample 8/22/23 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer

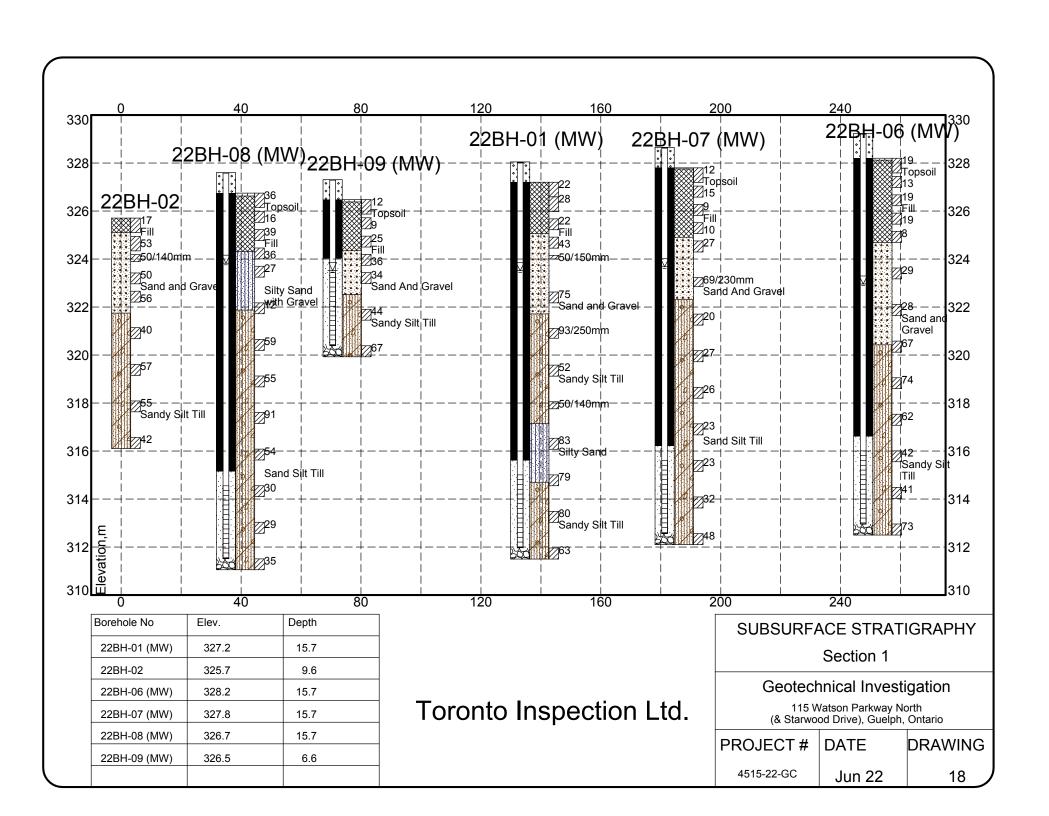
NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

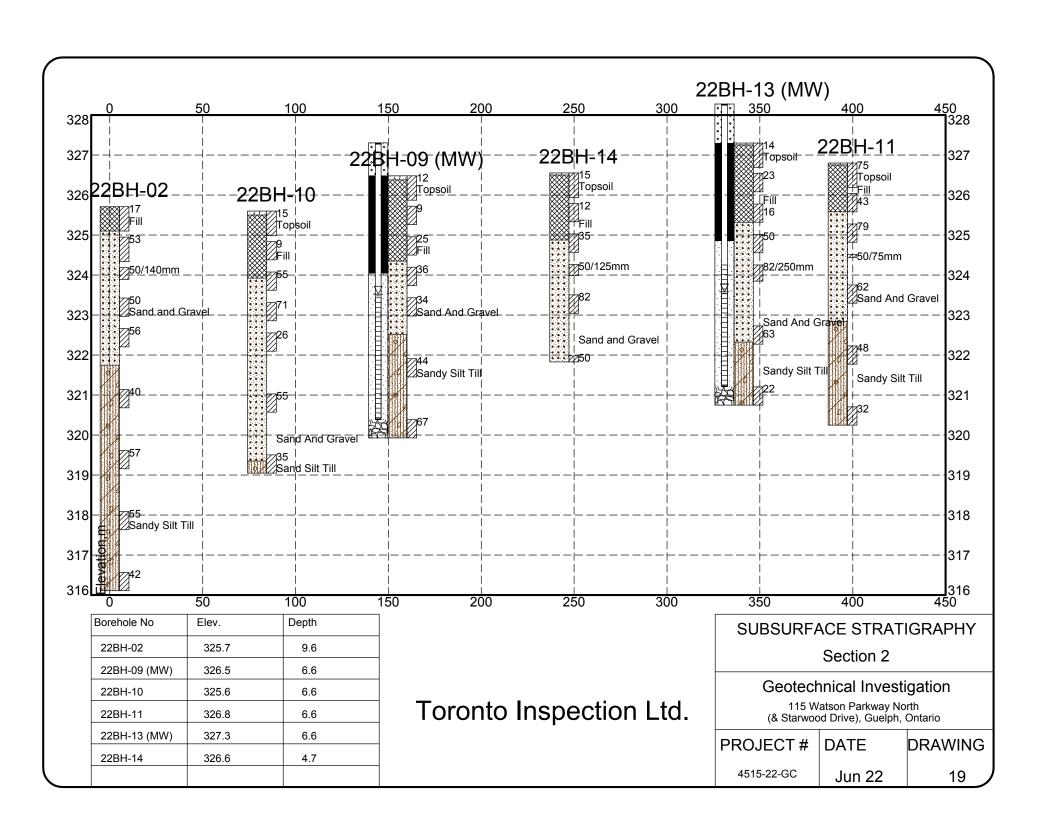
Time	Water Level (m)	Depth to Cave (m)
Sept. 12, 2023	3.88m	, ,

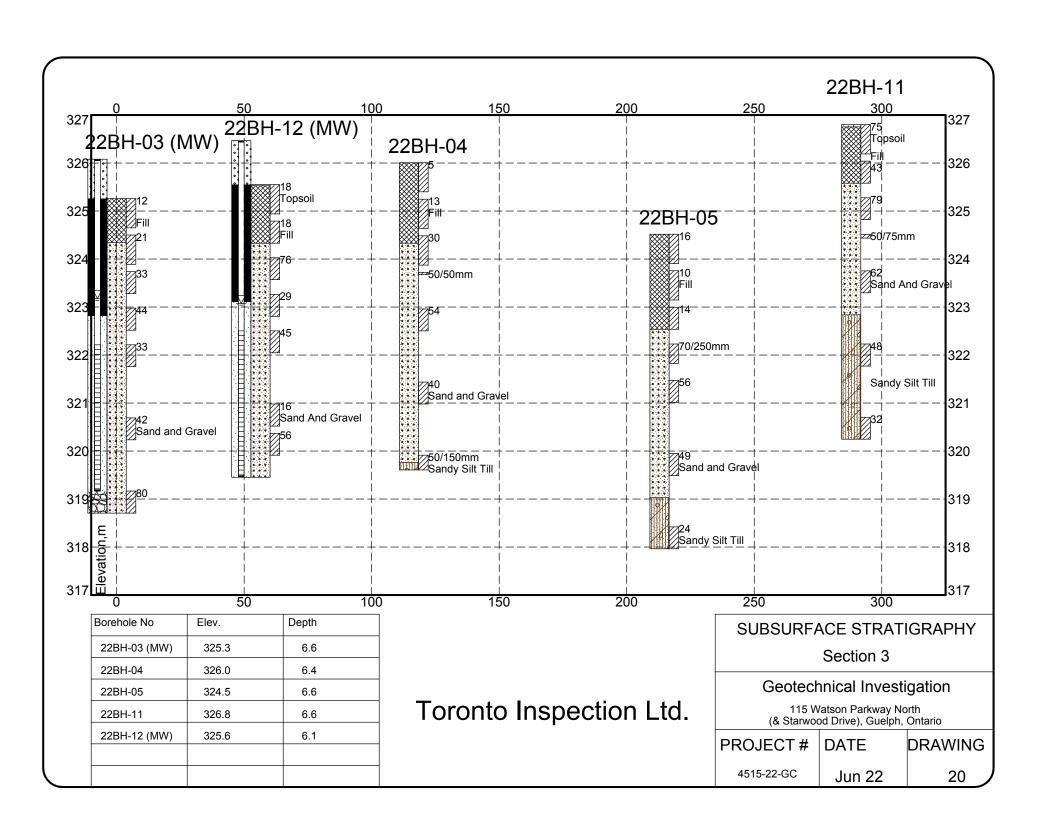

Log of Borehole 23BH-03 (MW)

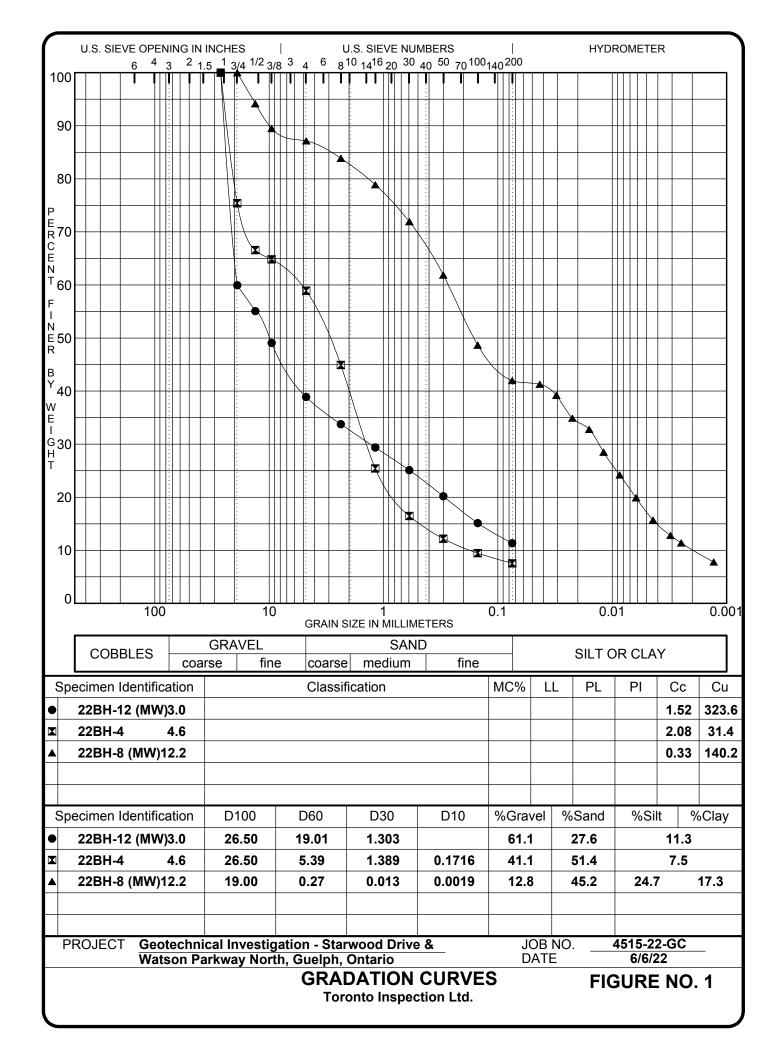
Dwg No. 23

Project: Geotechnical Investigation Sheet No. 1 of 1

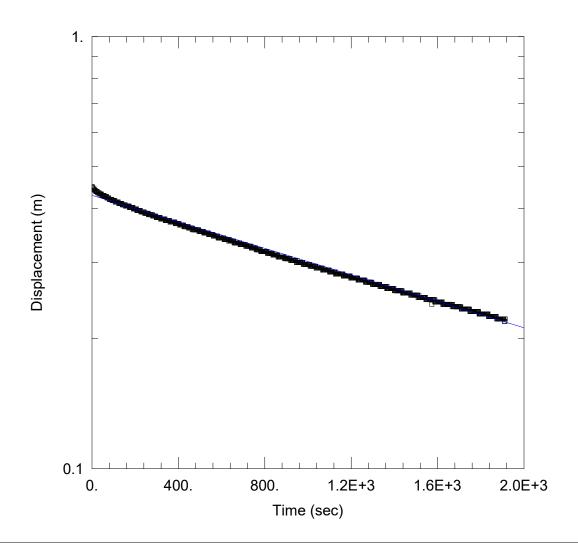

Location: 115 Watson Parkway North (& Starwood Drive), Guelph, Ontario


Headspace Reading (ppm) Auger Sample 8/23/23 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer




NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
Sept. 12, 2023	3.58m	, ,



Appendix D – AQTESOLV Analysis (Palmer, 2023)

Data Set: C:\...\115 Watson BH1 RH June2024.aqt

Date: 06/10/24 Time: 13:16:35

PROJECT INFORMATION

Company: Palmer
Client: Tercot
Project: 1510449
Location: 115 Watson

Test Well: BH1

AQUIFER DATA

Saturated Thickness: 10.2 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (New Well)

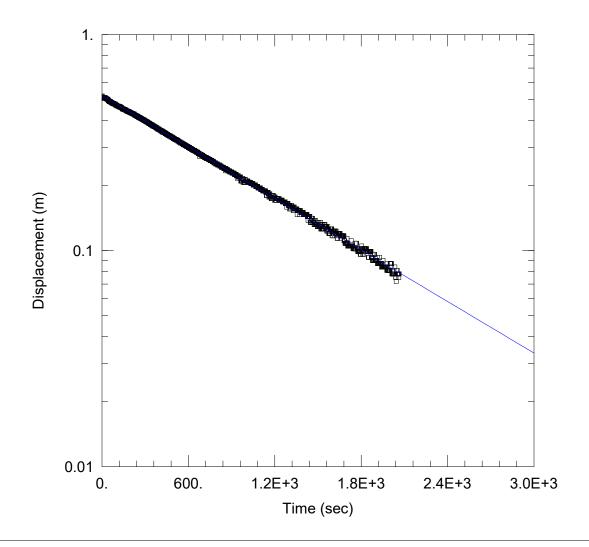
Initial Displacement: 0.45 m

Total Well Penetration Depth: 9.6 m

Casing Radius: 0.0254 m

Static Water Column Height: 12.01 m

Screen Length: 3. m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 1.937E-7 m/sec

y0 = 0.429 m

PROJECT INFORMATION

Company: Palmer
Client: Tercot
Project: 1510449
Location: 115 Watson

Test Well: BH1

AQUIFER DATA

Saturated Thickness: 10.2 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (New Well)

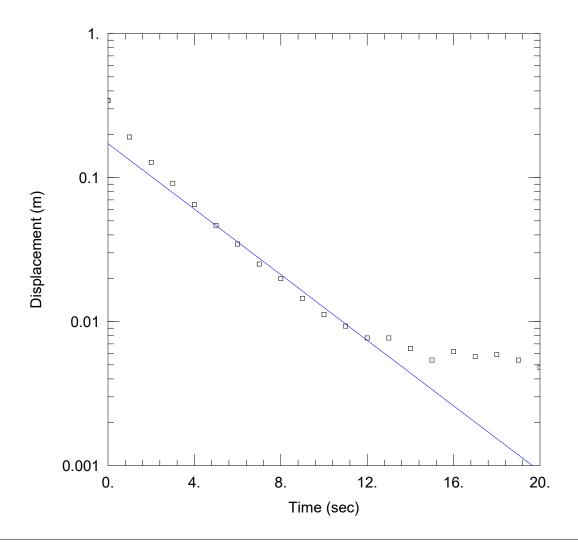
Initial Displacement: 0.519 m

Total Well Penetration Depth: 9.6 m

Casing Radius: 0.0254 m

Static Water Column Height: 12.01 m

Screen Length: 3. m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 5.026E-7 m/sec

y0 = 0.523 m

Data Set: C:\Users\NolanBoyes\Documents\115 Watson BH3 BAIL.aqt Date: 10/19/22 Time: 16:32:07

PROJECT INFORMATION

Company: Palmer Client: Tercot Project: <u>1510449</u> Location: 115 Watson

Test Well: BH3

AQUIFER DATA

Saturated Thickness: 4.51 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (New Well)

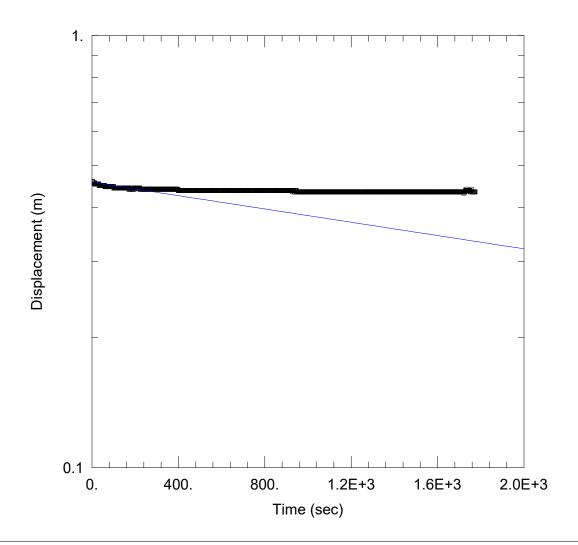
Initial Displacement: 0.3418 m

Total Well Penetration Depth: 4.1 m

Casing Radius: 0.0254 m

Static Water Column Height: 4.51 m

Screen Length: 3. m Well Radius: 0.0254 m


Solution Method: Bouwer-Rice

SOLUTION

Aquifer Model: Unconfined

K = 0.0001308 m/sec

y0 = 0.1721 m

Data Set: C:\Users\NolanBoyes\Documents\115 Watson BH6 FH.aqt
Date: 10/19/22 Time: 16:32:21

PROJECT INFORMATION

Company: Palmer
Client: Tercot
Project: 1510449
Location: 115 Watson

Test Well: BH6

AQUIFER DATA

Saturated Thickness: 7.9 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (New Well)

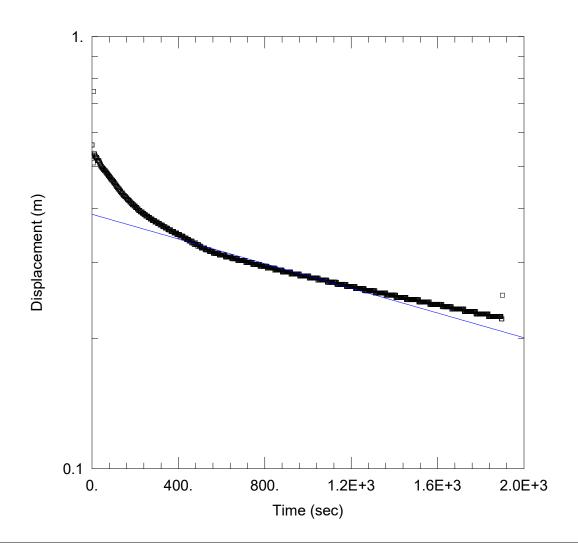
Initial Displacement: 0.459 m

Total Well Penetration Depth: 7.9 m

Casing Radius: 0.0254 m

Static Water Column Height: 10.44 m

Screen Length: 3. m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 1.029E-7 m/sec

y0 = 0.4572 m

Data Set: C:\...\115 Watson BH7s FH June2024.aqt

Date: 06/10/24 Time: 13:19:54

PROJECT INFORMATION

Company: Palmer
Client: Tercot
Project: 1510449
Location: 115 Watson
Test Well: BH7s

AQUIFER DATA

Saturated Thickness: 2.03 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (New Well)

Initial Displacement: 0.561 m

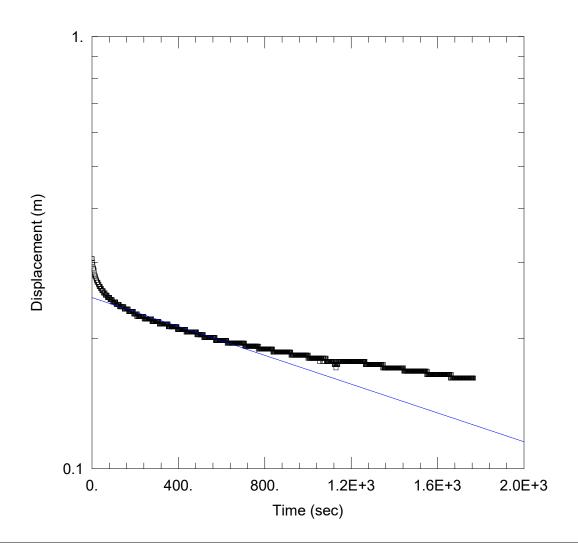
Total Well Penetration Depth: 3 m

Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m

Static Water Column Height: 2.03 m

Screen Length: 3. m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Unconfined

K = 1.891E-7 m/sec

Solution Method: Bouwer-Rice

y0 = 0.3878 m

Data Set: C:\...\115 Watson BH7s RH June2024.aqt

Date: 06/10/24 Time: 13:18:55

PROJECT INFORMATION

Company: Palmer Client: Tercot Project: 1510449 Location: 115 Watson Test Well: BH7s

AQUIFER DATA

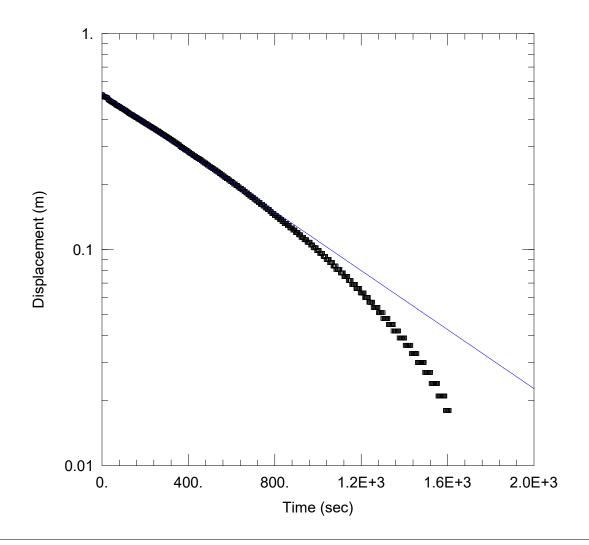
Saturated Thickness: 2.03 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (New Well)

Initial Displacement: 0.306 m

Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m


Static Water Column Height: 2.03 m

Screen Length: 3. m Well Radius: 0.0254 m

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 2.206E-7 m/secy0 = 0.2486 m

Data Set: C:\Users\NolanBoyes\Documents\115 Watson BH7d FH.aqt Date: 10/19/22 Time: 16:32:33

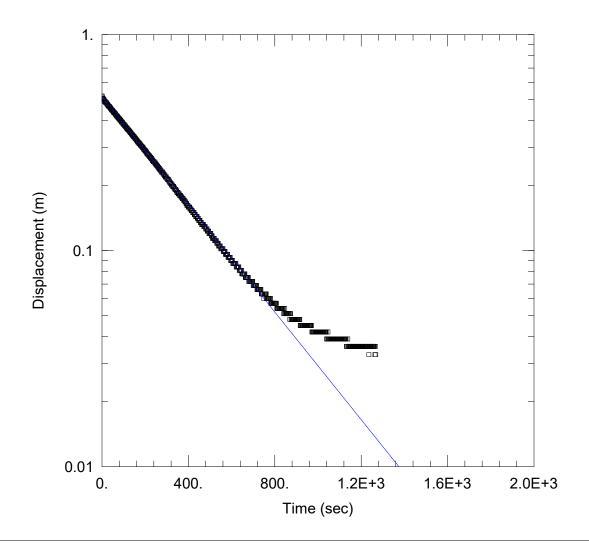
PROJECT INFORMATION

Company: Palmer
Client: Tercot
Project: 1510449
Location: 115 Watson
Test Well: BH7d

AQUIFER DATA

Saturated Thickness: 10.2 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (New Well)


Initial Displacement: 0.522 m Static Water Column Height: 11.58 m

Total Well Penetration Depth: 10.2 m Screen Length: 3. m Casing Radius: 0.0254 m Well Radius: 0.0254 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 9.431E-7 m/sec y0 = 0.5279 m

PROJECT INFORMATION

Company: Palmer
Client: Tercot
Project: 1510449
Location: 115 Watson
Test Well: BH7d

AQUIFER DATA

Saturated Thickness: 10.2 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (New Well)

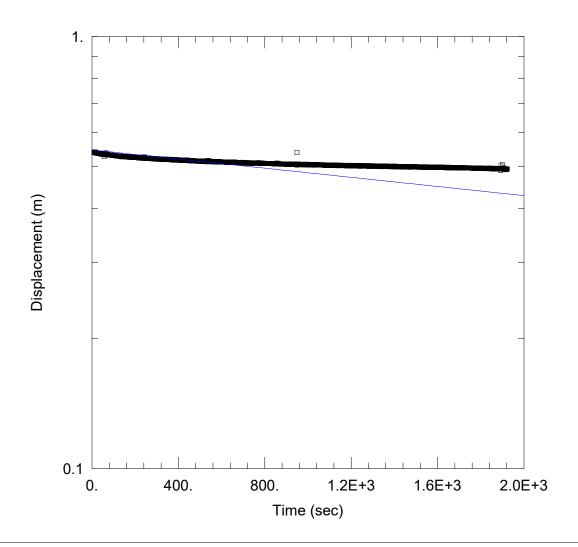
Initial Displacement: 0.519 m

Total Well Penetration Depth: 10.2 m

Casing Radius: 0.0254 m

Static Water Column Height: 11.58 m

Screen Length: 3. m Well Radius: 0.0254 m


SOLUTION

Aguifer Model: Confined

K = 1.72E-6 m/sec

Solution Method: Bouwer-Rice

y0 = 0.5154 m

Data Set: C:\Users\NolanBoyes\Documents\115 Watson BH8 BAIL.aqt
Date: 10/19/22 Time: 16:38:27

PROJECT INFORMATION

Company: Palmer
Client: Tercot
Project: 1510449
Location: 115 Watson

Test Well: BH8

AQUIFER DATA

Saturated Thickness: 10.8 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (New Well)

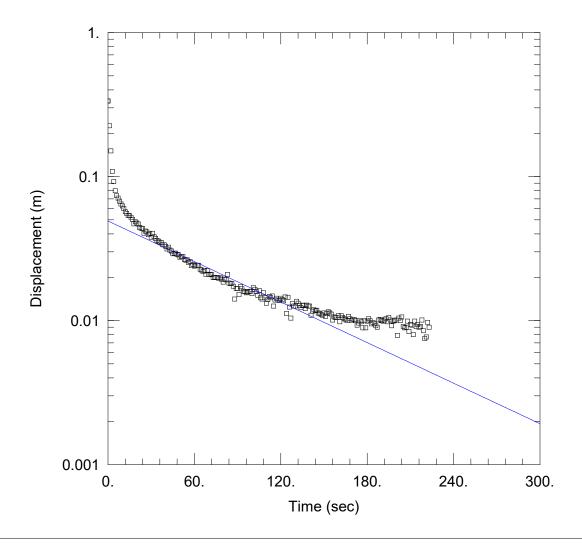
Initial Displacement: 0.5401 m

Total Well Penetration Depth: 10.9 m

Casing Radius: 0.0254 m

Static Water Column Height: 12.78 m

Screen Length: 3. m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 7.362E-8 m/sec

y0 = 0.5465 m

Data Set: C:\...\115 Watson BH9 BAIL June2024.aqt

Date: 06/10/24 Time: 13:17:35

PROJECT INFORMATION

Company: Palmer Client: Tercot Project: 1510449 Location: 115 Watson

Test Well: BH9

AQUIFER DATA

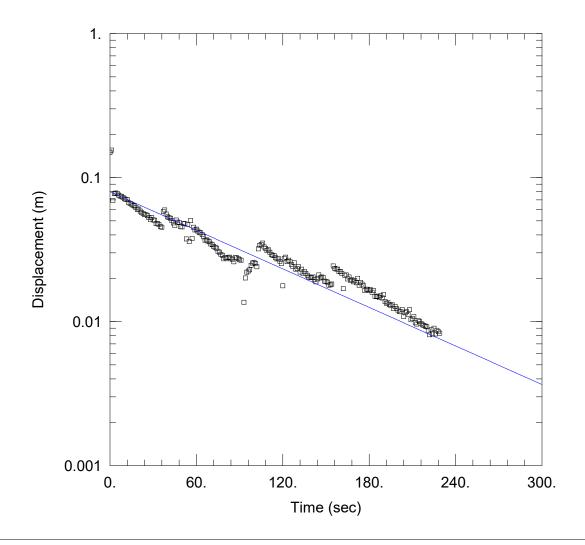
Saturated Thickness: 3.64 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (New Well)

Initial Displacement: 0.335 m

Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m


Static Water Column Height: 3.64 m

Screen Length: 3. m Well Radius: 0.0254 m

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 5.125E-6 m/secy0 = 0.04912 m

Data Set: C:\Users\NolanBoyes\Documents\115 Watson BH12s BAIL.aqt Time: 16:39:09 Date: 10/19/22

PROJECT INFORMATION

Company: Palmer Client: Tercot Project: 1510449 Location: 115 Watson Test Well: BH12s

AQUIFER DATA

Saturated Thickness: 3.62 m Anisotropy Ratio (Kz/Kr): 0.1

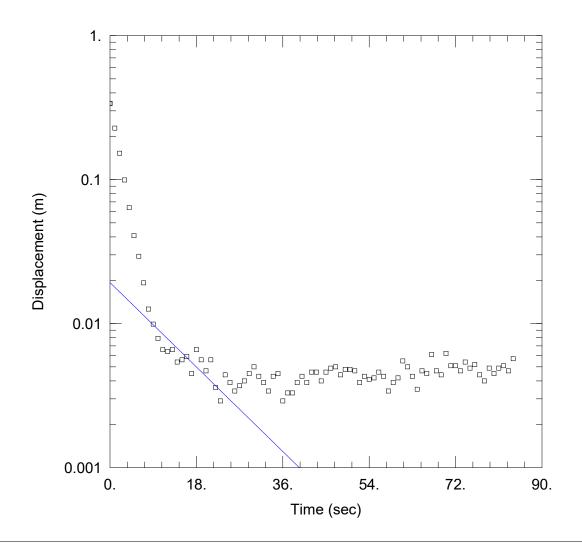
WELL DATA (New Well)

Initial Displacement: 0.15 m

Total Well Penetration Depth: 3.5 m

Casing Radius: 0.0254 m

Static Water Column Height: 3.62 m


Screen Length: 3. m Well Radius: 0.0254 m

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 5.161E-6 m/sec

y0 = 0.07966 m

WELL TEST ANALYSIS

Data Set: C:\Users\NolanBoyes\Documents\115 Watson BH12d BAIL.aqt Date: 10/19/22 Time: 16:39:23

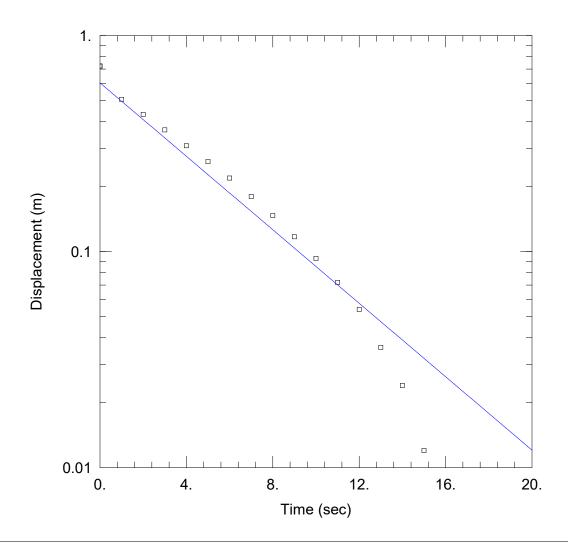
PROJECT INFORMATION

Company: Palmer
Client: Tercot
Project: 1510449
Location: 115 Watson
Test Well: BH12d

AQUIFER DATA

Saturated Thickness: 4. m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (New Well)


Initial Displacement: 0.3377 m Static Water Column Height: 8.11 m

Total Well Penetration Depth: 5. m Screen Length: 3. m Casing Radius: 0.0254 m Well Radius: 0.0254 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 4.104E-5 m/sec y0 = 0.01927 m

WELL TEST ANALYSIS

Data Set: C:\Users\NolanBoyes\OneDrive - SLR Consulting\Documents\115 Watson BH23-2 RH.aqt

Date: <u>06/12/24</u> Time: <u>14:00:26</u>

PROJECT INFORMATION

Company: Palmer
Client: Tercot
Project: 1510449
Location: 115 Watson
Test Well: BH23-2

AQUIFER DATA

Saturated Thickness: 6.42 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (New Well)

Initial Displacement: 0.723 m

Total Well Penetration Depth: 4.32 m

Casing Radius: 0.0254 m

Static Water Column Height: 4.42 m

Screen Length: 3. m Well Radius: 0.0254 m

SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 9.497E-5 m/sec

y0 = 0.604 m

Appendix E – Certificate of Analysis (ALS, 2022)

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : WT2210181 Page : 1 of 10

Amendment

Client : Palmer Environmental Consulting Group Inc. · Waterloo - Environmental Laboratory

Contact : Nolan Boyes **Account Manager** : Karanpartap Singh

Address : 74 Berkeley Street Address : 60 Northland Road, Unit 1 Toronto ON Canada M5V 1E3

Waterloo, Ontario Canada N2V 2B8

: 19055076910

Telephone : ----Telephone

Project Date Samples Received : 1510449 : 09-Aug-2022 16:55 PO Issue Date : 01-Sep-2022 10:06

C-O-C number : 20-955470 Sampler · CLIENT

Site : ----

Quote number : (Q88296) PALMER 2022 STANDING OFFER

No. of samples received :1 No. of samples analysed : 1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit). RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

<u>No</u> Quality Control Sample Frequency Outliers occur.		

Page : 3 of 10

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E	/aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pro	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) [ON MECP]										
12S	E298	09-Aug-2022	11-Aug-2022				12-Aug-2022	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC										
HDPE [ON MECP]										
12S	E235.Br	09-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP]										
128	E235.CI	09-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (0.003 mg/L)										
HDPE [ON MECP]										
128	E378-T	09-Aug-2022					14-Aug-2022	7 days	5 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE [ON MECP]										
128	E235.F	09-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	2 days	✓
Anions and Nutrients : Nitrate in Water by IC										
HDPE [ON MECP]										
128	E235.NO3	09-Aug-2022	11-Aug-2022				11-Aug-2022	7 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC										
HDPE [ON MECP]										,
128	E235.NO2	09-Aug-2022	11-Aug-2022				11-Aug-2022	7 days	2 days	✓

Page : 4 of 10

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						aluation. • -	Holding time exce	suarice , .	- vvitiiiii	riolaling rill
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Anions and Nutrients : Sulfate in Water by IC			Date		1 1010101			1100	1 10 10 10 10 10 10 10 10 10 10 10 10 10	
HDPE [ON MECP]										
128	E235.SO4	09-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	2 days	✓
Microbiological Tests : E. coli (MF-mFC-BCIG)	10.00									
Sterile HDPE (Sodium thiosulphate) [ON MECP]										
12S	E012A.EC	09-Aug-2022					11-Aug-2022	48 hrs	47 hrs	✓
Microbiological Tests : Total Coliforms (MF-mEndo)										
Sterile HDPE (Sodium thiosulphate) [ON MECP]										
128	E012.TC	09-Aug-2022					11-Aug-2022	48 hrs	47 hrs	✓
Microbiological Tests : Total Coliforms Background (MF-mEndo)	10.00									
Sterile HDPE (Sodium thiosulphate) [ON MECP] 12S	E012.BG.TC	09-Aug-2022					11-Aug-2022	48 hrs	47 hrs	✓
Physical Tests : Alkalinity Species by Titration	1000									
HDPE [ON MECP]										
12S	E290	09-Aug-2022	11-Aug-2022				11-Aug-2022	14 days	2 days	✓
Physical Tests : Colour (Apparent) by Spectrometer										
HDPE [ON MECP]										
12S	E330	09-Aug-2022					11-Aug-2022	48 hrs	47 hrs	✓
Physical Tests : Conductivity in Water	1000									
HDPE [ON MECP]										
12S	E100	09-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	2 days	✓
Physical Tests : pH by Meter										
HDPE [ON MECP]										
128	E108	09-Aug-2022	11-Aug-2022				11-Aug-2022	14 days	2 days	✓
Physical Tests : TDS by Gravimetry										
HDPE [ON MECP]										
12S	E162	09-Aug-2022					11-Aug-2022	7 days	2 days	✓

Page : 5 of 10

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holding	Holding Times Eval		Analysis Date	Holding	Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Physical Tests: Turbidity by Nephelometry											
HDPE [ON MECP]											
12S	E121	09-Aug-2022					11-Aug-2022	3 days	2 days	✓	
Total Metals : Total Metals in Water by CRC ICPMS											
HDPE total (nitric acid)											
12S	E420	09-Aug-2022	10-Aug-2022				11-Aug-2022	180	1 days	✓	
								days			

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 6 of 10

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluation: × = QC frequency outside specification; √ = QC frequency within specificati											
Quality Control Sample Type				ount		Frequency (%)							
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation						
Laboratory Duplicates (DUP)													
Alkalinity Species by Titration	E290	597460	1	3	33.3	5.0	✓						
Ammonia by Fluorescence	E298	598859	1	12	8.3	5.0	✓						
Bromide in Water by IC	E235.Br	597464	1	2	50.0	5.0	✓						
Chloride in Water by IC	E235.Cl	597466	1	18	5.5	5.0	✓						
Colour (Apparent) by Spectrometer	E330	597964	1	2	50.0	5.0	✓						
Conductivity in Water	E100	597461	1	10	10.0	5.0	✓						
Dissolved Orthophosphate by Colourimetry (0.003 mg/L)	E378-T	602284	1	7	14.2	5.0	✓						
E. coli (MF-mFC-BCIG)	E012A.EC	598242	1	11	9.0	5.0	✓						
Fluoride in Water by IC	E235.F	597465	1	3	33.3	5.0	✓						
Nitrate in Water by IC	E235.NO3	597462	1	5	20.0	5.0	✓						
Nitrite in Water by IC	E235.NO2	597463	1	4	25.0	5.0	✓						
pH by Meter	E108	597459	1	20	5.0	5.0	✓						
Sulfate in Water by IC	E235.SO4	597467	1	11	9.0	5.0	✓						
TDS by Gravimetry	E162	598494	1	18	5.5	5.0	✓						
Total Coliforms (MF-mEndo)	E012.TC	598203	1	10	10.0	5.0	✓						
Total Coliforms Background (MF-mEndo)	E012.BG.TC	598204	1	10	10.0	5.0	✓						
Total Metals in Water by CRC ICPMS	E420	597155	1	17	5.8	5.0	✓						
Turbidity by Nephelometry	E121	598018	1	8	12.5	5.0	✓						
Laboratory Control Samples (LCS)													
Alkalinity Species by Titration	E290	597460	1	3	33.3	5.0	✓						
Ammonia by Fluorescence	E298	598859	1	12	8.3	5.0	✓						
Bromide in Water by IC	E235.Br	597464	1	2	50.0	5.0	✓						
Chloride in Water by IC	E235.Cl	597466	1	18	5.5	5.0	✓						
Colour (Apparent) by Spectrometer	E330	597964	1	2	50.0	5.0	✓						
Conductivity in Water	E100	597461	1	10	10.0	5.0	✓						
Dissolved Orthophosphate by Colourimetry (0.003 mg/L)	E378-T	602284	1	7	14.2	5.0	✓						
Fluoride in Water by IC	E235.F	597465	1	3	33.3	5.0	✓						
Nitrate in Water by IC	E235.NO3	597462	1	5	20.0	5.0	✓						
Nitrite in Water by IC	E235.NO2	597463	1	4	25.0	5.0	✓						
pH by Meter	E108	597459	1	20	5.0	5.0	✓						
Sulfate in Water by IC	E235.SO4	597467	1	11	9.0	5.0	✓						
TDS by Gravimetry	E162	598494	1	18	5.5	5.0	✓						
Total Metals in Water by CRC ICPMS	E420	597155	1	17	5.8	5.0	✓						
Turbidity by Nephelometry	E121	598018	1	8	12.5	5.0	✓						
Method Blanks (MB)													
Alkalinity Species by Titration	E290	597460	1	3	33.3	5.0	1						
Ammonia by Fluorescence	E298	598859	1	12	8.3	5.0							

Page : 7 of 10

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

wattix. water		Lvaluati	on. 🗸 – QC neque	ericy outside spe	cincation, • -	QC ITEQUETICY WIL	mm specificat
Quality Control Sample Type			Co	ount	Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued							
Bromide in Water by IC	E235.Br	597464	1	2	50.0	5.0	✓
Chloride in Water by IC	E235.Cl	597466	1	18	5.5	5.0	√
Colour (Apparent) by Spectrometer	E330	597964	1	2	50.0	5.0	√
Conductivity in Water	E100	597461	1	10	10.0	5.0	√
Dissolved Orthophosphate by Colourimetry (0.003 mg/L)	E378-T	602284	1	7	14.2	5.0	✓
E. coli (MF-mFC-BCIG)	E012A.EC	598242	1	11	9.0	5.0	✓
Fluoride in Water by IC	E235.F	597465	1	3	33.3	5.0	√
Nitrate in Water by IC	E235.NO3	597462	1	5	20.0	5.0	√
Nitrite in Water by IC	E235.NO2	597463	1	4	25.0	5.0	√
Sulfate in Water by IC	E235.SO4	597467	1	11	9.0	5.0	√
TDS by Gravimetry	E162	598494	1	18	5.5	5.0	√
Total Coliforms (MF-mEndo)	E012.TC	598203	1	10	10.0	5.0	√
Total Coliforms Background (MF-mEndo)	E012.BG.TC	598204	1	10	10.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	597155	1	17	5.8	5.0	√
Turbidity by Nephelometry	E121	598018	1	8	12.5	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	598859	1	12	8.3	5.0	✓
Bromide in Water by IC	E235.Br	597464	1	2	50.0	5.0	√
Chloride in Water by IC	E235.Cl	597466	1	18	5.5	5.0	√
Dissolved Orthophosphate by Colourimetry (0.003 mg/L)	E378-T	602284	1	7	14.2	5.0	√
Fluoride in Water by IC	E235.F	597465	1	3	33.3	5.0	✓
Nitrate in Water by IC	E235.NO3	597462	1	5	20.0	5.0	√
Nitrite in Water by IC	E235.NO2	597463	1	4	25.0	5.0	✓
Sulfate in Water by IC	E235.SO4	597467	1	11	9.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	597155	1	17	5.8	5.0	√

Page : 8 of 10

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Coliforms Background (MF-mEndo)	E012.BG.TC	Water	APHA 9222B (mod)	Noncoliform bacteria observed on Total Coliform plates are enumerated.
	Waterloo - Environmental			
Total Coliforms (MF-mEndo)	E012.TC Waterloo - Environmental	Water	APHA 9222B (mod)	Following filtration (0.45 μ m), and incubation at 35.0 \pm 0.5°C for 24 hours, colonies exhibiting characteristic morphology of the target organism are enumerated and confirmed.
E. coli (MF-mFC-BCIG)	E012A.EC Waterloo - Environmental	Water	ON E3433 (mod)	Following filtration (0.45 µm), and incubation at 44.5±0.2°C for 24 hours, colonies exhibiting characteristic morphology of the target organism are enumerated.
Conductivity in Water	E100 Waterloo - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108 Waterloo - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121 Waterloo - Environmental	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
TDS by Gravimetry	E162 Waterloo - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at $180 \pm 2^{\circ}$ C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC	E235.Br Waterloo - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Chloride in Water by IC	E235.Cl Waterloo - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Fluoride in Water by IC	E235.F Waterloo - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.

Page : 9 of 10

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Nitrite in Water by IC	E235.NO2 Waterloo -	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Environmental			
Nitrate in Water by IC	E235.NO3	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo - Environmental			
Sulfate in Water by IC	E235.SO4 Waterloo - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	Waterloo - Environmental			alkalinity values.
Ammonia by Fluorescence	E298 Waterloo - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Colour (Apparent) by Spectrometer	E330 Waterloo - Environmental	Water	APHA 2120 C (mod)	Colour (Apparent) is measured in an unfiltered sample spectrophotometrically using the single wavelength method. The colour contribution of settleable solids are not included in the result. This method is intended for potable waters. Colour measurements can be highly pH dependent, and apply to the pH of the sample as received (at time of testing), without pH adjustment.
Dissolved Orthophosphate by Colourimetry (0.003 mg/L)	E378-T Waterloo - Environmental	Water	APHA 4500-P E (mod)	Dissolved Orthophosphate is determined colourimetrically on a water sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Waterloo - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Hardness (Calculated) from Total Ca/Mg	EC100A Waterloo - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.
Ion Balance using Total Metals	EC101A Waterloo - Environmental	Water	АРНА 1030Е	Cation Sum (using total metals), Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).

Page

: 10 of 10 : WT2210181 Amendment 1 Work Order

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Sodium Adsorption Ratio [SAR] from Total Metals	EC102 Waterloo - Environmental	Water	CCME Sodium Adsorption Ratio (SAR)	The Sodium Adsorption Ratio (SAR) for a water sample is calculated from the Sodium, Calcium, and Magnesium concentrations of the water, using the same calculations as would be used for a sediment paste extract.
TDS calculated from conductivity	EC103A Waterloo - Environmental	Water	APHA 1030 E	Total dissolved solids (as mg/L) can be estimated by multiplying electrical conductance (in umhos/cm) by 0.65.
Langelier Index using Laboratory pH (Ca-T)	EC105A Waterloo - Environmental	Water	APHA 2330B	Langelier Index provides an indication of scale formation potential at a given pH and temperature, and is calculated as per APHA 2330B Saturation Index. Positive values indicate oversaturation with respect to CaCO3. Negative values indicate undersaturation of CaCO3. This calculation uses laboratory pH measurements and provides estimates of Langelier Index at temperatures of 4, 15, 20, 25, 66, and 77°C.
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Waterloo - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).
Total Silicon as Silica (Calculation)	EC420.SiO2 Waterloo - Environmental	Water	N/A	Total Silicon (as SiO2) is a calculated parameter. Total Silicon (as SiO2 mg/L) = 2.139 x Total Silicon (mg/L).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Waterloo - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.

QUALITY CONTROL REPORT

Work Order :WT2210181

Amendment

Client : Palmer Environmental Consulting Group Inc.

Contact : Nolan Boyes

Address :74 Berkeley Street

Toronto ON Canada M5V 1E3

Telephone

Project : 1510449

PO

C-O-C number :20-955470

Sampler : CLIENT

Site

: (Q88296) PALMER 2022 STANDING OFFER Quote number

No. of samples received : 1 No. of samples analysed : 1 Page : 1 of 13

Laboratory : Waterloo - Environmental

Account Manager : Karanpartap Singh

Address :60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone : 19055076910

Date Samples Received :09-Aug-2022 16:55

Date Analysis Commenced : 10-Aug-2022

Waterloo Metals, Waterloo, Ontario

Issue Date :01-Sep-2022 10:06

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

Position

Supervisor - Inorganic

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

Greg Pokocky

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Laboratory Department Amanda Ganouri-Lumsden Department Manager - Microbiology and Prep Waterloo Microbiology, Waterloo, Ontario Greg Pokocky Supervisor - Inorganic Waterloo Inorganics, Waterloo, Ontario

Page : 2 of 13

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 13

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	atory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	C Lot: 597459)		100								
WT2210129-001	Anonymous	рН		E108	0.10	pH units	6.67	6.61	0.904%	4%	
Physical Tests (QC	C Lot: 597460)										
WT2210129-001	Anonymous	alkalinity, total (as CaCO3)		E290	1.0	mg/L	4.5	3.9	0.6	Diff <2x LOR	
Physical Tests (QC	C Lot: 597461)		1000								
WT2210129-001	Anonymous	conductivity		E100	1.0	μS/cm	20.8	20.4	1.94%	10%	
Physical Tests (QC	C Lot: 597964)		1000								
WT2210098-001	Anonymous	colour, apparent		E330	2.0	CU	4.8	<2.0	2.8	Diff <2x LOR	
Physical Tests (QC	C Lot: 598018)		100000								
WT2210098-001	Anonymous	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR	
Physical Tests (QC	C Lot: 598494)		1000								
WT2210129-001	Anonymous	solids, total dissolved [TDS]		E162	10	mg/L	<10	<10	0	Diff <2x LOR	
Anions and Nutrien	nts (QC Lot: 597462)										
WT2210129-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	0.542	0.555	2.50%	20%	
Anions and Nutrion	nts (QC Lot: 597463)		100000								
WT2210129-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	0.028	0.028	0.0002	Diff <2x LOR	
Anions and Nutrion	nts (QC Lot: 597464)										
WT2210129-001	Anonymous	bromide	24959-67-9	E235.Br	0.10	mg/L	<0.10	<0.10	0	Diff <2x LOR	
Anions and Nutrion	nts (QC Lot: 597465)										
WT2210129-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
Anione and Nutrion	nts (QC Lot: 597466)										
WT2210129-001	Anonymous	chloride	16887-00-6	E235.CI	0.50	mg/L	1.51	1.50	0.009	Diff <2x LOR	
Aniono and Nutrion	nts (QC Lot: 597467)										1
WT2210129-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	0.57	0.57	0.002	Diff <2x LOR	
National and Nestrica	,	canato (ao oo 1)				J				-	
Anions and Nutrien WT2210050-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0987	0.100	1.41%	20%	
	,	difficilia, total (as 14)			0.0000	9.2	3.333.				
Anions and Nutrien WT2210181-001	nts (QC Lot: 602284)	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-T	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
		priospilate, ortilo-, dissolved (as P)	17200-77-2	2070-1	0.0000	1119/1	-0.0000	٠٥.٥٥٥٥		DIII YEA LOIK	
Microbiological Tes WT2210206-002	sts (QC Lot: 598203)	a life was Astal		E042 TC		OF11/400mcl	-1		0	Diff <0v LOD	
	Anonymous	coliforms, total		E012.TC	1	CFU/100mL	<1	<1	0	Diff <2x LOR	
	sts (QC Lot: 598204)					0=11/4					
WT2210206-002	Anonymous	coliforms, total background		E012.BG.TC	1	CFU/100mL	<1	<1	0	Diff <2x LOR	

Page : 4 of 13

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
licrobiological Tes	ts (QC Lot: 598242)										
VT2210206-003	Anonymous	coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	<1	<1	0	Diff <2x LOR	
otal Metals (QC Lo	ot: 597155)										
VT2210160-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00033	0.00038	0.00004	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.164	0.164	0.0268%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.018	0.018	0.0002	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0000531	0.0000523	1.52%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	92.3	93.6	1.39%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00054	0.00055	0.000002	Diff <2x LOR	
	copper, total	7440-50-8	E420	0.00050	mg/L	0.00069	0.00072	0.00003	Diff <2x LOR		
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.00584	0.00597	2.09%	20%	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0028	0.0027	0.00005	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	26.1	26.6	1.68%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.271	0.277	2.32%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000526	0.000563	6.88%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00142	0.00139	0.00002	Diff <2x LOR	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.36	1.37	0.835%	20%	
		rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00069	0.00066	0.00003	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		silicon, total	7440-21-3	E420	0.10	mg/L	6.98	7.01	0.514%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	38.8	38.9	0.267%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.173	0.180	3.53%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	3.49	3.45	0.04	Diff <2x LOR	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000048	0.000049	0.0000007	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	

Page : 5 of 13

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Total Metals (QC Lo	ot: 597155) - continued											
WT2210160-001	Anonymous	titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR		
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000619	0.000629	1.54%	20%		
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0196	0.0198	0.0002	Diff <2x LOR		
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		

Page : 6 of 13

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

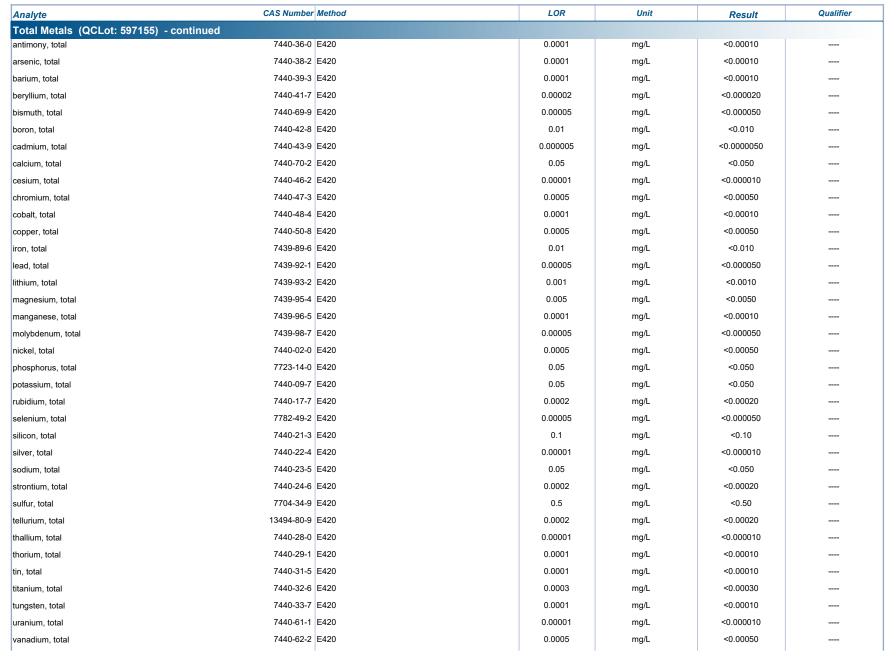
Project : 1510449

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 597460)					
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 597461)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 597964)					
colour, apparent	E330	2	CU	<2.0	
Physical Tests (QCLot: 598018)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 598494)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 597462)					
nitrate (as N)	14797-55-8 E235.NO3	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 597463)					
nitrite (as N)	14797-65-0 E235.NO2	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 597464)					
bromide	24959-67-9 E235.Br	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 597465)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 597466)					
chloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 597467)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 598859)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 602284)					
ohosphate, ortho-, dissolved (as P)	14265-44-2 E378-T	0.003	mg/L	<0.0030	
Microbiological Tests (QCLot: 598203)	5040.70		0511/400		
coliforms, total	E012.TC	1	CFU/100mL	<1	
Microbiological Tests (QCLot: 598204)			0511115		
coliforms, total background	E012.BG.TC	1	CFU/100mL	<1	
Microbiological Tests (QCLot: 598242)	50404.50		0511/400		
coliforms, Escherichia coli [E. coli]	E012A.EC	1	CFU/100mL	<1	
Total Metals (QCLot: 597155)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	


Page : 7 of 13

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Sub-Matrix: Water

Page : 8 of 13

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 597155) - continued					
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7 E420	0.0002	mg/L	<0.00020	

Page : 9 of 13

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 597459)									
рН		E108		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 597460)									
alkalinity, total (as CaCO3)		E290	1	mg/L	150 mg/L	100	85.0	115	
Physical Tests (QCLot: 597461)	100								
conductivity		E100	1	μS/cm	1409 μS/cm	99.1	90.0	110	
Physical Tests (QCLot: 597964)									
colour, apparent		E330	2	CU	25 CU	99.7	70.0	130	
Physical Tests (QCLot: 598018)		E-101							
turbidity		E121	0.1	NTU	200 NTU	98.0	85.0	115	
Physical Tests (QCLot: 598494)		E400					05.0		
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	98.0	85.0	115	
Anions and Nutrients (QCLot: 597462)	14797-55-8	E225 NO2	0.02	mg/l	0.5	00.2	90.0	110	
nitrate (as N)	14/9/-05-8	LZ00.INO0	0.02	mg/L	2.5 mg/L	99.3	90.0	110	
Anions and Nutrients (QCLot: 597463) nitrite (as N)	14797-65-0	E235 NO2	0.01	mc/l	0.5	101	90.0	110	
	14/9/-05-0	LZ00.INOZ	0.01	mg/L	0.5 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 597464)	24959-67-9	F235 Br	0.1	mg/L	0.5 mg/L	103	85.0	115	
	24000-07-9		0.1	mg/L	0.5 mg/L	103	00.0	110	
Anions and Nutrients (QCLot: 597465)	16984-48-8	F235 F	0.02	mg/L	1 mg/L	101	90.0	110	
	1000-1-0-0		3.02	9, _	i ilig/L	101	23.0	. 10	
Anions and Nutrients (QCLot: 597466)	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	101	90.0	110	
			0.0	9, =	100 mg/L	101	33.3		
Anions and Nutrients (QCLot: 597467) sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	101	90.0	110	
					100 mg/L	101			
Anions and Nutrients (QCLot: 598859) ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	96.8	85.0	115	
		*		3	5.2 mg/L	55.5	1		
Anions and Nutrients (QCLot: 602284) phosphate, ortho-, dissolved (as P)	14265-44-2	E378-T	0.003	mg/L	0.0196 mg/L	107	80.0	120	
(45.7)				3	5.5.50 mg/L				
Total Metals (QCLot: 597155)		100							
aluminum, total	7429-90-5	E420	0.003	mg/L	0.1 mg/L	104	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	0.05 mg/L	101	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	0.05 mg/L	101	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.0125 mg/L	101	80.0	120	
I and the second se		I	I	1	I	1			I

Page : 10 of 13

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

		Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number N	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 597155) - continued									
beryllium, total	7440-41-7 E	420	0.00002	mg/L	0.005 mg/L	102	80.0	120	
bismuth, total	7440-69-9 E	420	0.00005	mg/L	0.05 mg/L	98.1	80.0	120	
boron, total	7440-42-8 E	420	0.01	mg/L	0.05 mg/L	96.7	80.0	120	
cadmium, total	7440-43-9 E	420	0.000005	mg/L	0.005 mg/L	101	80.0	120	
calcium, total	7440-70-2 E	420	0.05	mg/L	2.5 mg/L	99.3	80.0	120	
cesium, total	7440-46-2 E	420	0.00001	mg/L	0.0025 mg/L	99.1	80.0	120	
chromium, total	7440-47-3 E	420	0.0005	mg/L	0.0125 mg/L	99.4	80.0	120	
cobalt, total	7440-48-4 E	E420	0.0001	mg/L	0.0125 mg/L	98.5	80.0	120	
copper, total	7440-50-8 E	420	0.0005	mg/L	0.0125 mg/L	98.5	80.0	120	
iron, total	7439-89-6 E	420	0.01	mg/L	0.05 mg/L	98.6	80.0	120	
lead, total	7439-92-1 E	420	0.00005	mg/L	0.025 mg/L	102	80.0	120	
lithium, total	7439-93-2 E	420	0.001	mg/L	0.0125 mg/L	103	80.0	120	
magnesium, total	7439-95-4 E	E420	0.005	mg/L	2.5 mg/L	107	80.0	120	
manganese, total	7439-96-5 E	E420	0.0001	mg/L	0.0125 mg/L	103	80.0	120	
molybdenum, total	7439-98-7 E	420	0.00005	mg/L	0.0125 mg/L	98.8	80.0	120	
nickel, total	7440-02-0 E	420	0.0005	mg/L	0.025 mg/L	99.3	80.0	120	
phosphorus, total	7723-14-0 E	420	0.05	mg/L	0.5 mg/L	106	80.0	120	
potassium, total	7440-09-7 E	420	0.05	mg/L	2.5 mg/L	101	80.0	120	
rubidium, total	7440-17-7 E	420	0.0002	mg/L	0.005 mg/L	101	80.0	120	
selenium, total	7782-49-2 E	420	0.00005	mg/L	0.05 mg/L	99.3	80.0	120	
silicon, total	7440-21-3 E	420	0.1	mg/L	0.5 mg/L	108	80.0	120	
silver, total	7440-22-4 E	420	0.00001	mg/L	0.005 mg/L	91.2	80.0	120	
sodium, total	7440-23-5 E	420	0.05	mg/L	2.5 mg/L	108	80.0	120	
strontium, total	7440-24-6 E	420	0.0002	mg/L	0.0125 mg/L	98.6	80.0	120	
sulfur, total	7704-34-9 E	420	0.5	mg/L	2.5 mg/L	105	80.0	120	
tellurium, total	13494-80-9 E	420	0.0002	mg/L	0.005 mg/L	97.6	80.0	120	
thallium, total	7440-28-0 E		0.00001	mg/L	0.05 mg/L	103	80.0	120	
thorium, total		E420	0.0001	mg/L	0.005 mg/L	103	80.0	120	
tin, total	7440-31-5 E		0.0001	mg/L	0.025 mg/L	97.8	80.0	120	
titanium, total	7440-32-6 E		0.0003	mg/L	0.0125 mg/L	99.5	80.0	120	
tungsten, total	7440-33-7 E		0.0001	mg/L	0.005 mg/L	98.0	80.0	120	
uranium, total	7440-61-1 E		0.00001	mg/L	0.00025 mg/L	104	80.0	120	
vanadium, total	7440-62-2 E		0.0005	mg/L	0.025 mg/L	102	80.0	120	
zinc, total	7440-66-6 E		0.003	mg/L	0.025 mg/L	101	80.0	120	
zirconium, total	7440-67-7 E		0.0002	mg/L	0.005 mg/L	97.2	80.0	120	
Ziroomani, total		- :=-	0.0002	9, =	0.000 mg/L	J1.2	55.5		

Page : 11 of 13

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Page : 12 of 13

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutr	ients (QCLot: 597462)	100000000000000000000000000000000000000								
WT2210129-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3	2.51 mg/L	2.5 mg/L	100	75.0	125	
Anions and Nutr	ients (QCLot: 597463)									
WT2210129-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2	0.513 mg/L	0.5 mg/L	102	75.0	125	
Anions and Nutr	ients (QCLot: 597464)		1000							
WT2210129-001	Anonymous	bromide	24959-67-9	E235.Br	0.50 mg/L	0.5 mg/L	101	75.0	125	
nions and Nutr	ients (QCLot: 597465)									
WT2210129-001	Anonymous	fluoride	16984-48-8	E235.F	1.02 mg/L	1 mg/L	102	75.0	125	
Anions and Nutr	ients (QCLot: 597466)		1000							
WT2210129-001	Anonymous	chloride	16887-00-6	E235.CI	101 mg/L	100 mg/L	101	75.0	125	
Anions and Nutr	ients (QCLot: 597467)									
WT2210129-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	101 mg/L	100 mg/L	101	75.0	125	
Anions and Nutr	ients (QCLot: 598859)	100000000000000000000000000000000000000	11.79.00							
WT2210050-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.100 mg/L	0.1 mg/L	100	75.0	125	
Anions and Nutr	ients (QCLot: 602284)									
WT2210181-001	12S	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-T	0.0164 mg/L	0.0196 mg/L	83.8	70.0	130	
otal Metals (QC	CLot: 597155)		11000							
WT2210160-002	Anonymous	aluminum, total	7429-90-5	E420	0.103 mg/L	0.1 mg/L	103	70.0	130	
		antimony, total	7440-36-0	E420	0.0531 mg/L	0.05 mg/L	106	70.0	130	
		arsenic, total	7440-38-2	E420	0.0506 mg/L	0.05 mg/L	101	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.00511 mg/L	0.005 mg/L	102	70.0	130	
		bismuth, total	7440-69-9	E420	0.0473 mg/L	0.05 mg/L	94.6	70.0	130	
		boron, total	7440-42-8	E420	0.048 mg/L	0.05 mg/L	97.1	70.0	130	
		cadmium, total	7440-43-9	E420	0.00502 mg/L	0.005 mg/L	100	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		cesium, total	7440-46-2	E420	0.00258 mg/L	0.0025 mg/L	103	70.0	130	
		chromium, total	7440-47-3	E420	0.0124 mg/L	0.0125 mg/L	99.6	70.0	130	
		cobalt, total	7440-48-4	E420	0.0121 mg/L	0.0125 mg/L	97.0	70.0	130	
		copper, total	7440-50-8	E420	0.0118 mg/L	0.0125 mg/L	94.6	70.0	130	
	I	iron, total	7439-89-6	E420	ND mg/L	0.05 mg/L	ND	70.0	130	

Page : 13 of 13

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Sub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	Lot: 597155) - continu	ed								
WT2210160-002	Anonymous	lead, total	7439-92-1	E420	0.0241 mg/L	0.025 mg/L	96.2	70.0	130	
		lithium, total	7439-93-2	E420	0.0125 mg/L	0.0125 mg/L	99.7	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0130 mg/L	0.0125 mg/L	104	70.0	130	
		nickel, total	7440-02-0	E420	0.0240 mg/L	0.025 mg/L	95.8	70.0	130	
		phosphorus, total	7723-14-0	E420	0.534 mg/L	0.5 mg/L	107	70.0	130	
		potassium, total	7440-09-7	E420	2.45 mg/L	2.5 mg/L	98.0	70.0	130	
		rubidium, total	7440-17-7	E420	0.00528 mg/L	0.005 mg/L	106	70.0	130	
		selenium, total	7782-49-2	E420	0.0506 mg/L	0.05 mg/L	101	70.0	130	
		silicon, total	7440-21-3	E420	ND mg/L	0.5 mg/L	ND	70.0	130	
		silver, total	7440-22-4	E420	0.00456 mg/L	0.005 mg/L	91.2	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	2.65 mg/L	2.5 mg/L	106	70.0	130	
		tellurium, total	13494-80-9	E420	0.00501 mg/L	0.005 mg/L	100	70.0	130	
		thallium, total	7440-28-0	E420	0.0492 mg/L	0.05 mg/L	98.3	70.0	130	
		thorium, total	7440-29-1	E420	0.00511 mg/L	0.005 mg/L	102	70.0	130	
		tin, total	7440-31-5	E420	0.0253 mg/L	0.025 mg/L	101	70.0	130	
		titanium, total	7440-32-6	E420	0.0126 mg/L	0.0125 mg/L	101	70.0	130	
		tungsten, total	7440-33-7	E420	0.00488 mg/L	0.005 mg/L	97.7	70.0	130	
		uranium, total	7440-61-1	E420	0.000249 mg/L	0.00025 mg/L	99.7	70.0	130	
		vanadium, total	7440-62-2	E420	0.0260 mg/L	0.025 mg/L	104	70.0	130	
		zinc, total	7440-66-6	E420	0.0234 mg/L	0.025 mg/L	93.7	70.0	130	
		zirconium, total	7440-67-7	E420	0.00520 mg/L	0.005 mg/L	104	70.0	130	

Canada Toll Free: 1 800 668 9878

www.alsglobal.com

SUSPECTED HAZARD (see notes) N/A 1,30 AFFIX ALS BARCODE LABEL HERE EXTENDED STORAGE REQUIRED A COOLING INITIATED □ YES SAMPLES ON HOLD FINAL SHIPMENT RECEPTION (ALS use only Sample Custody Seals Intact. - YES SAMPLE RECEIPT DETAILS (ALS use only Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below 50 01/x 0 **Environmental Division** For all tests with rush TATs requested, please contact your AM to ☐ ICE PACKS ☐ FROZEN Felephone: +1 519 886 6910 Submission Comments identified on Sample Receipt Notification: may apply to rush requests on weekends, statutory hollarys and non-routine tests Analysis Request Same day [E2] If received by 10am M-S - 200% rush surcharge. Additional 4 day [Pt] if received by 3pm MF - 20% rush surcherge minimum
3 day [Ps] if received by 3pm MF - 25% rush surcherge minimum
2 day [P2] if received by 3pm MF - 50% rush surcherge minimum
1 day [E] if received by 3pm MF - 100% rush surcherge minimum
1 day [E] if received by 3pm MF - 100% rush surcherge minimum TYES | NA Waterloo Routine [R] if received by 3pm M-F - no surcharges apply Turnaround Time (TAT) Requ 301 ES Date and Time Required for all E&P TATS; 00 NONE L ooler Custody Seals Intact. Received by: Cooling Method: 0.0 G: SS иливек об соитыиека Sample Type INITIAL SHIPMENT RECEPTION (ALS use only) Prof D EXCEL D BDD (DIGITAL) YES ON ON NA Compare Results to Criteria on Report - provide details below if box checked Email Tor Fax notal Doyes (y Pecg. Cq 3 Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) Date: A-3-Cm FAX Email 1 or Fax a cocounting Olecy . Cq. Email 2 Socah . Sipak @ Pecg. Cq. □ MAIL □ FAX Oil and Gas Required Fields (client use) MAIL | MAIL Routing Code: (hh:mm) Time 1:00 Sampler: Reports / Recipients Invoice Recipients #Od ODMS 10-4-20 Merge QC/QCI Reports with COA D BMAIL Burta Select Invoice Distribution: Select Report Format: Select Distribution: Received by: Compare to ALS Contact: tajor/Minar Code: AFE/Cost Center. Requisitioner. ocation: Email 2 Email 3 TAC. Sample Identification and/or Coordinates (This description will appear on the report) Calmer Entronmental Coust they would REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION Company address below will appear on the final raport HATE | NO ON C SY C Phase: Monitor ing SHIPMENT RELEASE (client use) Stret 138 Project Information Drinking Water (DW) Samples (client use) ALS Lab Work Order # (ALS use only): /k at The bankeley Are samples taken from a Regulated DW System Copy of Invoice with Report Are samples for human consumption/ use? Same as Report To Accounting Palmer 2 ALS Account # / Quote #: Released by: NV □ YES D YES ALS Sample #
(ALS use only) City/Province ostal Code nvoice To Report To Company: company: PO / AFE: Contact: Contact hone: Job #:

delay analysis, Please fill in this form, LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy

If any water samples are taken from a Regulated Drinking Water (DW). System, please submit using an Authorized DW COC form

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order : **WT2210181** Page : 1 of 6

Amendment : 1

Client : Palmer Environmental Consulting Group Inc. Laboratory : Waterloo - Environmental

Contact : Nolan Boyes : Karanpartap Singh

Address : 74 Berkeley Street Address : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

 Telephone
 : --- Telephone
 : 19055076910

 Project
 : 1510449
 Date Samples Received
 : 09-Aug-2022 1

 Project
 : 1510449
 Date Samples Received
 : 09-Aug-2022 16:55

 PO
 : --- Date Analysis Commenced
 : 10-Aug-2022

C-O-C number : 20-955470 Issue Date : 01-Sep-2022 10:06

Sampler : CLIENT Site : ----

Quote number : (Q88296) PALMER 2022 STANDING OFFER

Toronto ON Canada M5V 1E3

No. of samples received : 1

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Microbiology, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Metals, Waterloo, Ontario

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key: LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μS/cm	Microsiemens per centimetre
CFU/100mL	colony forming units per 100 mL
CU	colour units (1 CU = 1 mg/L Pt)
meq/L	milliequivalents per litre
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

>: greater than.

Red shading is applied where the result is greater than the Guideline Upper Limit or the result is lower than the Guideline Lower Limit.

For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).

<: less than.

Page

: 3 of 6 : WT2210181 Amendment 1 Work Order

: Palmer Environmental Consulting Group Inc. : 1510449 Client

Project

Analytical Results

			Client sample ID	128						
Sub-Matrix: Water (Matrix: Water)		\$	Sampling date/time	09-Aug-2022 13:00						
Analyte	Method	LOR	Unit	WT2210181-001		ONDWS AO/OG	ONDWS MAC			
Physical Tests										
alkalinity, bicarbonate (as HCO3)	E290	1.0	mg/L	378						
alkalinity, carbonate (as CO3)	E290	1.0	mg/L	<1.0						
alkalinity, hydroxide (as OH)	E290	1.0	mg/L	<1.0						
alkalinity, total (as CaCO3)	E290	1.0	mg/L	310		30 - 500 mg/L				
colour, apparent	E330	2.0	CU	67.2		5 CU				
conductivity	E100	1.0	μS/cm	1040						
hardness (as CaCO3), from total Ca/Mg	EC100A	0.50	mg/L	371						
pH	E108	0.10	pH units	7.62		6.5 - 8.5 pH units				
solids, total dissolved [TDS], calculated	EC103A	1.0	mg/L	676						
solids, total dissolved [TDS]	E162	10	mg/L	562	DLDS	500 mg/L				
turbidity	E121	0.10	NTU	32.5		5 NTU				
Langelier index (@ 20°C)	EC105A	0.010	-	0.624						
Langelier index (@ 4°C)	EC105A	0.010	-	0.377						
pH, saturation (@ 20°C)	EC105A	0.010	pH units	7.00						
pH, saturation (@ 4°C)	EC105A	0.010	pH units	7.24						
Anions and Nutrients	'							'		'
ammonia, total (as N)	E298	0.0050	mg/L	0.0317						
bromide	E235.Br	0.10	mg/L	<0.10						
chloride	E235.CI	0.50	mg/L	146		250 mg/L				
fluoride	E235.F	0.020	mg/L	0.072			1.5 mg/L			
nitrate (as N)	E235.NO3	0.020	mg/L	<0.020			10 mg/L			
nitrate + nitrite (as N)	EC235.N+N	0.0032	mg/L	<0.0224			10 mg/L			
nitrite (as N)	E235.NO2	0.010	mg/L	<0.010			1 mg/L			
phosphate, ortho-, dissolved (as P)	E378-T	0.0030	mg/L	<0.0030						
sulfate (as SO4)	E235.SO4	0.30	mg/L	17.3						
Microbiological Tests										
coliforms, Escherichia coli [E. coli]	E012A.EC	1	CFU/100mL	<1			1 CFU/100mL			
coliforms, total background	E012.BG.TC	1	CFU/100mL	>2000	DLM					

Page

: 4 of 6 : WT2210181 Amendment 1 Work Order

: Palmer Environmental Consulting Group Inc. : 1510449 Client

Project

Analyte	Method	LOR	Unit	WT2210181-001 (Continued)	ONDWS AO/OG	ONDWS MAC		
Microbiological Tests - Contin	nued			(Continued)	AO/OG	IIIAO		
coliforms, total	E012.TC	1	CFU/100mL	130	DLM	1 CFU/100mL		
Metals		ı			ı	ı		
sodium adsorption ratio [SAR]	EC102	0.10	-	1.98				
Ion Balance					·		'	·
anion sum	EC101A	0.10	meq/L	10.7				
cation sum (total)	EC101A	0.10	meq/L	11.3				
ion balance (APHA)	EC101A	0.010	%	2.73				
ion balance (cations/anions)	EC101A	0.010	%	106				
Total Metals					,		·	
aluminum, total	E420	0.0030	mg/L	0.489	0.1 mg/L			
antimony, total	E420	0.00010	mg/L	0.00012		0.006 mg/L		
arsenic, total	E420	0.00010	mg/L	0.00036		0.01 mg/L		
barium, total	E420	0.00010	mg/L	0.0390		1 mg/L		
beryllium, total	E420	0.000020	mg/L	0.000021				
bismuth, total	E420	0.000050	mg/L	<0.000050				
boron, total	E420	0.010	mg/L	0.027		5 mg/L		
cadmium, total	E420	0.0000050	mg/L	0.000232		0.005 mg/L		
calcium, total	E420	0.050	mg/L	99.2				
cesium, total	E420	0.000010	mg/L	0.000053				
chromium, total	E420	0.00050	mg/L	0.00102		0.05 mg/L		
cobalt, total	E420	0.00010	mg/L	0.00032				
copper, total	E420	0.00050	mg/L	0.00242	1 mg/L			
iron, total	E420	0.010	mg/L	0.634	0.3 mg/L			
lead, total	E420	0.000050	mg/L	0.00381		0.01 mg/L		
lithium, total	E420	0.0010	mg/L	0.0018				
magnesium, total	E420	0.0050	mg/L	29.9				
manganese, total	E420	0.00010	mg/L	0.0391	0.05 mg/L			
molybdenum, total	E420	0.000050	mg/L	0.000246				
nickel, total	E420	0.00050	mg/L	0.00134				
phosphorus, total	E420	0.050	mg/L	<0.050				
potassium, total	E420	0.050	mg/L	1.82				
rubidium, total	E420	0.00020	mg/L	0.00162				
selenium, total	E420	0.000050	mg/L	0.000050		0.05 mg/L		
silicon (as SiO2), total	EC420.SiO2	0.25	mg/L	10.7				
silicon, total	E420	0.10	mg/L	5.02				
silver, total	E420	0.000010	mg/L	<0.00010				
sodium, total	E420	0.050	mg/L	87.6	200 mg/L	20 mg/L		

Page : 5 of 6

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 1510449

Analyte	Method	LOR	Unit	WT2210181-001 (Continued)	ONDWS AO/OG	ONDWS MAC		
Total Metals - Continued				,				
strontium, total	E420	0.00020	mg/L	0.195				
sulfur, total	E420	0.50	mg/L	6.60				
tellurium, total	E420	0.00020	mg/L	<0.00020				
thallium, total	E420	0.000010	mg/L	0.000019				
thorium, total	E420	0.00010	mg/L	<0.00010				
tin, total	E420	0.00010	mg/L	0.00018				
titanium, total	E420	0.00030	mg/L	0.0167				
tungsten, total	E420	0.00010	mg/L	<0.00010				
uranium, total	E420	0.000010	mg/L	0.000487		0.02 mg/L		
vanadium, total	E420	0.00050	mg/L	0.00099				
zinc, total	E420	0.0030	mg/L	0.0610	5 mg/L			
zirconium, total	E420	0.00020	mg/L	0.00027				

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 6 of 6

Work Order : WT2210181 Amendment 1

Client : Palmer Environmental Consulting Group Inc.

Project : 151044

Summary of Guideline Breaches by Sample

SampleID/Client ID	Matrix	Analyte	Analyte Summary	Guideline	Category	Result	Limit
128	Water	colour, apparent	May interfere with disinfection; removal is important to ensure effective treatment.	ONDWS	AO/OG	67.2 CU	5 CU
	Water	solids, total dissolved [TDS]	Based on taste; TDS above 500 mg/L results in excessive scaling in water pipes, water heaters, boilers and appliances; TDS is composed of calcium, magnesium, sodium, potassium, carbonate, bicarbonate, chloride, sulphate and nitrate.	ONDWS	AO/OG	562 mg/L	500 mg/L
	Water	turbidity	Filtration systems should be designed and operated to reduce turbidity levels as low as reasonably achievable and strive to achieve a treated water turbidity target from individual filters of less than 0.1 NTU. Particles can harbour microorganisms, protecting them from disinfection, and can entrap heavy metals and biocides; elevated or fluctuating turbidity in filtered water can indicate a problem with the water treatment process and a potential increased risk of pathogens in treated water.	ONDWS	AO/OG	32.5 NTU	5 NTU
	Water	aluminum, total	There is no consistent, convincing evidence that aluminum in drinking water causes adverse health effects in humans. The operational guideline applies to treatment plants using aluminum-based coagulants; it does not apply to naturally occurring aluminum found in groundwater. For treatment plants using aluminum-based coagulants, monthly samples should be taken of the water leaving the plant; the OGs are based on a running annual average of monthly samples.	ONDWS	AO/OG	0.489 mg/L	0.1 mg/L
	Water	iron, total	Based on taste and staining of laundry and plumbing fixtures; no evidence exists of dietary iron toxicity in the general population.	ONDWS	AO/OG	0.634 mg/L	0.3 mg/L
	Water	coliforms, total	Total coliforms are not used as indicators of potential health effects from pathogenic microorganisms; they are used as a tool to determine how well the drinking water treatment system is operating and to indicate water quality changes in the distribution system. Detection of total coliforms from consecutive samples from the same site or from more than 10% of the samples collected in a given sampling period should be investigated.	ONDWS	MAC	130 CFU/100mL	1 CFU/100mL
	Water	sodium, total	Based on taste; where a sodium-based water softener is used, a separate unsoftened supply for cooking and drinking purposes is recommended.	ONDWS	MAC	87.6 mg/L	20 mg/L

Key:

ONDWS Ontario Drinking Water Regulation (JAN, 2020)

AO/OG Aesthetic Objective/Operational Guideline

MAC Schedule 1 (Microbiological) and 2 (Chemical) Standards (JAN,2018)

Appendix F – Water Balance (MTE, 2024)

115 Watson Parkway North SITE WATER BUDGET ANALYSIS

Guelph, Ontario

 Project Number:
 54763-100

 Date:
 June 25, 2024

Design By: DXN

File: Q:\54127\100\Water Balance - DXN\54127-100_Water Balance (Thornthwaite-Mather)_CAD_DXN.xlsx

PRE-DEVELOPMENT WATER BALANCE CONDITION

Contributing Catchments: Total Site Soil Type: Fine Sandy Loam Runoff Factor: 0.35

Contributing Area (ha): 6.448 ha Vegetation: Urban Lawn

Percent Impervious 0.0 % Topography: Flat

Weather Station: Guelph Arboretum Soil Moisture Retention Capacity: 75 mm for Impervious Surfaces: 0.33

Month	Daily Average Temperature	Monthly Heat Index	Unadjusted Daily PE	Correction Factor	Adjusted PE	Average Precipitation	P-PE	Accum. Pot. Water Loss	Storage	ΔS	Pervious ET	Actual ET	Moisture Surplus	Water Runoff	Snow Melt Runoff	Total Recharge & Runoff	Total Recharge & Runoff	Total Infiltration Depth	Total Infiltration	Actual Runoff	Runoff Volume
	(C°)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m³)	(mm)	(m ³)	(mm)	(m³)
Jan	-7.6	0.00	0.0	24.3	0.0	56.4	56.4	0.0	209.1	0.0	0.0	0.0	0.0	11.7	0.0	11.7	757	7.6	492	4.1	265
Feb	-6.9	0.00	0.0	24.4	0.0	50.8	50.8	0.0	259.9	0.0	0.0	0.0	0.0	5.9	0.0	5.9	378	3.8	246	2.1	132
Mar	-1.3	0.00	0.0	30.6	0.0	72.1	72.1	0.0	332.0	0.0	0.0	0.0	0.0	2.9	0.0	2.9	189	1.9	123	1.0	66
Apr	5.9	1.28	0.9	33.6	31.8	78.3	46.5	0.0	75.0	0.0	31.8	31.8	46.5	24.7	23.8	48.5	3,125	31.5	2,031	17.0	1,094
May	12.3	3.91	2.0	38.0	77.1	79.9	2.8	0.0	75.0	0.0	77.1	77.1	2.8	13.8	106.9	120.7	7,782	78.4	5,058	42.2	2,724
Jun	16.9	6.32	2.8	38.6	108.9	76	-32.9	-32.9	17.0	-58.0	134.0	134.0	0.0	0.9	53.5	54.4	3,508	35.4	2,280	19.0	1,228
Jul	19.7	7.97	3.3	38.9	128.7	88.5	-40.2	-73.1	13.0	-4.0	92.5	92.5	0.0	0.5	26.7	27.2	1,754	17.7	1,140	9.5	614
Aug	18.6	7.31	3.1	36.0	112.3	95.9	-16.4	-89.5	16.0	3.0	112.3	112.3	0.0	0.2	13.4	13.6	877	8.8	570	4.8	307
Sep	14.1	4.80	2.3	31.2	73.0	92.1	19.1	0.0	35.1	19.1	73.0	73.0	0.0	0.1	6.7	6.8	438	4.4	285	2.4	153
Oct	7.9	2.00	1.3	28.5	36.5	69.2	32.7	0.0	67.8	32.7	36.5	36.5	0.0	0.1	3.3	3.4	219	2.2	143	1.2	77
Nov	2.4	0.33	0.4	24.1	9.0	86.3	77.3	0.0	75.0	7.2	9.0	9.0	70.1	35.1	1.7	36.7	2,368	23.9	1,540	12.9	829
Dec	-4.0	0.00	0.0	22.9	0.0	77.7	77.7	0.0	152.7	0.0	0.0	0.0	0.0	23.5	1.7	25.1	1,621	16.3	1,054	8.8	567
Total		33.9	16.2		577.3	923.2	345.9					566.2	119.3	119.3	237.6	357.0	23,017	232.0	14,961	124.9	8,056

Evapotranspiration factor

 $Note: P-Precipitation, PE-Potential \ Evapotran spiration, \Delta S-Change \ in \ Soil \ Moisture \ Storage, \ ET-Evapotran spiration$

Data taken from Canadian Climate Normals for Guelph Arboretum, 1971 to 2000

Guelph Arboretum Lat: 43°33'0"N

a= 1.037962188

n= 2.99 0.00

115 Watson Parkway North SITE WATER BUDGET ANALYSIS - INFILTRATION AND PERVIOUS RUNOFF

0.0 %

Guelph, Ontario

Percent Impervious

Project Number: 54127-100 August 26, 2024 Date:

Design By: DXN

Q:\54127\100\Water Balance - DXN\2024-08-26\2024-08-26_54127-100_Water Balance (Thornthwaite-Mather)_CAD_DXN.xlsx File:

577.3

923.2

345.9

POST-DEVELOPMENT WATER BALANCE CONDITION*

Contributing Area Description: Infiltrated Areas on Site Contributing Area (ha):

1.85 ha + 1.650ha of roof to infiltration gallery

Vegetation: Urban Lawn Topography: Flat

Soil Type: Fine Sandy Loam

Runoff Factor: 0.35 Evapotranspiration

566.2 119.3 119.3 237.6 357.0 6,595

2,308

Factor for Impervious

Weather S	•		Guelph Arbore	etum				oil Moisture on Capacity:		mm		Surfaces:		0.33										
Month	Daily Average Temperature		Unadjusted Daily PE	Correction Factor	Adjusted PE	Average Precipitation	P-PE	Accum. Pot. Water Loss	Storage	ΔS	Pervious ET	Actual ET	Moisture Surplus	Water Runoff	Snow Melt Runoff	Total Recharge & Runoff	Total Recharge & Runoff	Pervious Runoff before Enhanced Infiltration		Total Enhanced Infiltration	Total Enhanced Recharge	Passive Pervious Infiltration	Passive Recharge Pervious	Total Infiltration
	(C°)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m³)	(mm)	(m³)	(m ³)	(mm)	(m ³)	(mm)	(m ³)
Jan	-7.6	0.00	0.0	24.3	0.0	56.4	56.4	0.0	209.1	0.0	0.0	0.0	0.0	11.7	0.0	11.7	217	4.1	76	0	0	141	8	141
Feb	-6.9	0.00	0.0	24.4	0.0	50.8	50.8	0.0	259.9	0.0	0.0	0.0	0.0	5.9	0.0	5.9	108	2.1	38	0	0	70	4	70
Mar	-1.3	0.00	0.0	30.6	0.0	72.1	72.1	0.0	332.0	0.0	0.0	0.0	0.0	2.9	0.0	2.9	54	1.0	19	0	0	35	2	35
Apr	5.9	1.28	0.9	33.6	31.8	78.3	46.5	0.0	75.0	0.0	31.8	31.8	46.5	24.7	23.8	48.5	895	17.0	313	1,441	78	582	32	2,023
May	12.3	3.91	2.0	38.0	77.1	79.9	2.8	0.0	75.0	0.0	77.1	77.1	2.8	13.8	106.9	120.7	2,230	42.2	780	2,716	147	1,449	78	4,165
Jun	16.9	6.32	2.8	38.6	108.9	76	-32.9	-32.9	17.0	-58.0	134.0	134.0	0.0	0.9	53.5	54.4	1,005	19.0	352	1,414	77	653	35	2,068
Jul	19.7	7.97	3.3	38.9	128.7	88.5	-40.2	-73.1	13.0	-4.0	92.5	92.5	0.0	0.5	26.7	27.2	503	9.5	176	1,049	57	327	18	1,376
Aug	18.6	7.31	3.1	36.0	112.3	95.9	-16.4	-89.5	16.0	3.0	112.3	112.3	0.0	0.2	13.4	13.6	251	4.8	88	1,003	54	163	9	1,166
Sep	14.1	4.80	2.3	31.2	73.0	92.1	19.1	0.0	35.1	19.1	73.0	73.0	0.0	0.1	6.7	6.8	126	2.4	44	1,103	60	82	4	1,185
Oct	7.9	2.00	1.3	28.5	36.5	69.2	32.7	0.0	67.8	32.7	36.5	36.5	0.0	0.1	3.3	3.4	63	1.2	22	952	52	41	2	993
Nov	2.4	0.33	0.4	24.1	9.0	86.3	77.3	0.0	75.0	7.2	9.0	9.0	70.1	35.1	1.7	36.7	679	12.9	238	1,313	71	441	24	1,754
Dec	-4	0.00	0.0	22.9	0.0	77 7	77.7	0.0	152.7	0.0	0.0	0.0	0.0	23.5	1.7	25.1	464	8.8	163	30	2	302	16	332

Note: P - Precipitation, PE - Potential Evapotranspiration, ΔS - Change in Soil Moisture Storage, ET - Evapotranspiration

16.2

*The contributing area considered in this sheet consists of the areas that will infiltrate on site, including the rooftop areas which will be actively infiltrated by the site, as well as all landscaped areas on site which will be passively infiltrated. Furthermore, this sheet accounts for any surface runoff which will occur on the pervious areas of the site, in addition to the passive infiltration by these pervious areas. It is noted that half of the runoff from a portion of the Block 3A, 3B, 3P, and 3Q roofs being directed to the rear landscaped areas is considered to passively infiltrate, while the remaining half is considered as surface runoff.

Data taken from Canadian Climate Normals for Guelph Arboretum, 1971 to 2000

Guelph Arboretum Lat: 43°33'0"N

1.037962188

Total

2.99 Diference= 0.00 n=

115 Watson Parkway North SITE WATER BUDGET ANALYSIS - IMPERVIOUS RUNOFF

Guelph, Ontario

Project Number: 54127-100 Date: August 26, 2024

Design By: DXN

Q:\54127\100\Water Balance - DXN\2024-08-26\2024-08-26 54127-100 Water Balance (Thornthwaite-Mather) CAD DXN.xlsx File:

POST-DEVELOPMENT WATER BALANCE CONDITION*

Contributing Area Description: Runoff to Wetland

0.81 ha (Impervious Areas Piped to Wetland)

Vegetation: Urban Lawn

Soil Type: Fine Sandy Loam

Runoff Factor: Evapotranspiration 0.35

100.0 %

Topography: Flat

Factor for Impervious

Percent Impervious Weather Station:

Contributing Area (ha):

Guelph Arboretum

Soil Moisture 75 mm **Surfaces:**

0.33

Retention Capacity:

Accum. Total Total Snow Monthly Unadjusted Moisture Water **Daily Average** Correction Pot. **Pervious** Average Adjusted PE P-PE Storage ΔS **Actual ET** Melt Recharge & Recharge & **Temperature Heat Index** Daily PE **Factor** Precipitation Water ET Surplus Runoff Month Runoff Runoff Runoff Loss (m³)(C°) (mm) -7.6 0.00 0.0 24.3 0.0 56.4 56.4 0.0 209.1 0.0 0.0 14.8 0.0 14.8 Jan 0.0 0.0 120 -6.9 50.8 50.8 0.0 259.9 0.0 0.0 0.0 7.4 7.4 60 0.00 0.0 24.4 0.0 0.0 0.0 Feb 72.1 332.0 0.0 -1.3 0.00 0.0 30.6 0.0 72.1 0.0 0.0 0.0 0.0 3.7 0.0 3.7 30 Mar 5.9 78.3 46.5 0.0 75.0 0.0 31.8 35.7 59.5 482 1.28 0.9 33.6 31.8 10.5 67.8 23.8 Apr 79.9 2.8 0.0 75.0 0.0 77.1 May 12.3 3.91 2.0 38.0 77.1 25.4 54.5 45.1 106.9 152.0 1,233 16.9 6.32 2.8 38.6 108.9 76 -32.9 -32.9 17.0 -58.0 134.0 44.2 89.8 67.4 53.5 120.9 980 Jun 88.5 -40.2 19.7 7.97 38.9 128.7 -73.1 13.0 -4.0 92.5 30.5 62.0 64.7 26.7 91.4 741 Jul 3.3 36.0 112.3 95.9 -16.4 -89.5 16.0 3.0 112.3 37.1 70.0 83.3 676 18.6 7.31 3.1 75.2 13.4 Aug 92.1 Sep 14.1 4.80 2.3 31.2 73.0 19.1 0.0 35.1 19.1 73.0 24.1 48.9 59.4 6.7 66.1 536 69.2 Oct 7.9 2.00 1.3 28.5 36.5 32.7 0.0 67.8 32.7 36.5 12.1 24.5 42.0 3.3 45.3 367 86.3 0.33 9.0 77.3 0.0 75.0 59.0 1.7 60.7 Nov 2.4 0.4 24.1 7.2 9.0 3.0 76.1 492 77.7 77.7 -4 0.00 0.0 22.9 0.0 0.0 152.7 0.0 0.0 0.0 0.0 29.5 1.7 31.2 253 Dec 16.2 923.2 33.9 577.3 345.9 186.9 498.7 498.7 237.6 736.3 5,971 Total

Note: P - Precipitation, PE - Potential Evapotranspiration, ΔS- Change in Soil Moisture Storage, ET - Evapotranspiration

Data taken from Canadian Climate Normals for Guelph Arboretum, 1971 to 2000

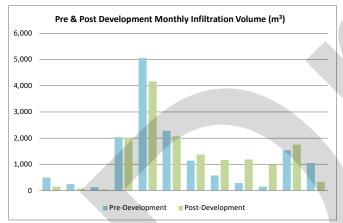
Guelph Arboretum Lat: 43°33'0"N

a= 1.037962188

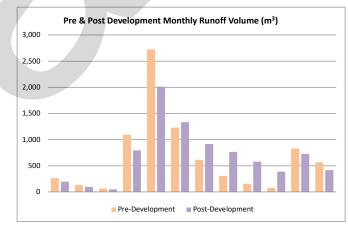
2.58 Diference= 0.00 n=

^{*}The contributing area considered in this sheet consists of the impervious areas (internal drive aisles) which will be treated for water quality and directly outletted to the wetland as surface runoff.

115 Watson Parkway North SITE WATER BUDGET ANALYSIS - To Wetland


Guelph, Ontario

Project Numb 54127-100 Date: August 26, 2024


Design By: DXN

File: Q:\54127\100\Water Balance - DXN\2024-08-26\2024-08-26_54127-100_Water Balance (Thornthwaite-Mather)_CAD_DXN.xlsx

Month	Total Infiltration Volume (m³)											
Wionen	Pre-development	Post-development	Difference	Change %								
Jan	492	141	-351	-71.3								
Feb	246	70	-175	-71.3								
Mar	123	35	-88	-71.3								
Apr	2,031	2,023	-8	-0.4								
May	5,058	4,165	-893	-17.7								
Jun	2,280	2,068	-212	-9.3								
Jul	1,140	1,376	236	20.7								
Aug	570	1,166	596	104.5								
Sep	285	1,185	900	315.7								
Oct	143	993	850	596.5								
Nov	1,540	1,754	214	13.9								
Dec	1,054	332	-722	-68.5								
	14,961	15,307	346	2.3								

Month	Total Runoff Volume (m³)												
Wionen	Pre-development	Post-development	Difference	Change %									
Jan	265	196	-69	-26.2									
Feb	132	98	-35	-26.2									
Mar	66	49	-17	-26.2									
Apr	1,094	796	-298	-27.2									
May	2,724	2,013	-710	-26.1									
Jun	1,228	1,332	104	8.5									
Jul	614	917	303	49.4									
Aug	307	764	457	148.8									
Sep	153	580	427	278.0									
Oct	77	389	313	407.4									
Nov	829	730	-99	-12.0									
Dec	567	415	-152	-26.8									
	8,056	8,279	223	2.8									

