

1 CLAIR ROAD EAST

GUELPH, ONTARIO

NOISE AND VIBRATION IMPACT STUDY

RWDI #2401100 December 12, 2023

SUBMITTED TO

Kara Green Manager, Development Kara.Green@fcr.ca

First Capital 85 Hanna Avenue, Suite 400 Toronto, Ontario M6K 3S3

T: 416.216.2752 D: 647.295.1137

SUBMITTED BY

Maja Bokara, PGCert, EP Project Manager Maja.Bokara@rwdi.com |ext. 2440

Ayman Shaaban, Ph.D., P.Eng. Senior Noise and Vibration Engineer Ayman.Shaaban@rwdi.com

RWDI – Head Office 600 Southgate Drive Guelph, Ontario, N1G 4P6

T: 519.823.1311 D: 226.962.2045

VERSION HISTORY

Index	Date	Description	Prepared by	Reviewed by
1	Dec. 12, 2023	Submitted for OPA/ZBA	Caelan Weber-Martin	Ayman Shaaban

RWDI#2401100 December 12, 2023 <u>K</u>

EXECUTIVE SUMMARY

RWDI was retained by FCHT Holdings (Ontario) Corporation, a subsidiary of First Capital REIT, to prepare a Noise and Vibration Impact Study for the proposed development located at 1 Clair Road East in Guelph, Ontario. The proposed development will consist of 4 blocks of mixed-use buildings. This assessment was completed to support the Official Plan and Zoning By-Law Amendment (OPA/ZBA) submissions as required by the City of Guelph.

The following noise control measures are recommended for the proposed development:

- 1. Installation of central air-conditioning so that all suites' windows can remain closed.
- 2. The inclusion of noise warning clauses related to:
 - a. Transportation sound levels at the building façade and in the outdoor amenity areas
 - b. Proximity to commercial/industrial land use
- 3. Minimum sound isolation performance:
 - a. Suite window glazing with minimum sound isolation performance up to STC-29 for certain façade of the podiums of Blocks C and D and Tower D, as detailed herein.
- 4. Construction of perimeter noise barriers along some outdoor amenity areas, if feasible, to address transportation noise. Otherwise, the applicable warning clause should be included.
- 5. Construction of perimeter noise barriers for the west outdoor amenity area on the podium of Tower D and to its north to address surrounding stationary sources of noise.
- 6. Apply offsite on-source mitigation for the HVAC equipment associated with the commercial plaza to the immediate west, as detailed herein.

The potential noise levels from stationary sources of sound were investigated. Based on the noise modeling results and setback distances, the land use compatibility of the proposed development with respect to the nearby industrial land uses is considered acceptable from the noise assessment perspective with implementation of mitigation measures for adjacent stationary sources. Due to the proximity of the proposed development to commercial facilities, a warning clause is recommended to inform prospective occupants of the potential for audible noise from these facilities. Moreover, offsite on-source mitigation is required for the HVAC equipment associated with the commercial plaza, to the immediate west, as discussed in the study.

At this stage in design, the noise levels produced by the development on itself and its surroundings could not be quantitatively assessed. However, the effect on both the building itself and its surroundings is expected to be feasible to meet the applicable criteria. We recommend that the building design is evaluated prior to building permit to ensure that the acoustical design is adequately implemented in order to meet the applicable criteria.

Based on the results of the analysis, including implementation of the recommendations included with this assessment, the proposed development is feasible to meet the applicable sound and vibration criteria.

TABLE OF CONTENTS

1	INTRODUCTION	.1
2	APPLICABLE CRITERIA	1
3	SITE VISIT	.1
4	THE EFFECTS OF THE ENVIRONMENT ON THE PROPOSED DEVELOPMENT	2
4.1 4.1.1 4.1.2 4.1.3	Transportation Source Assessment Road Traffic Volume Data Representative Receptors Analysis and Results	2 3
4.2 4.2.1 4.2.2	Stationary Source Assessment Land-Use Compatibility Review (D-6 Guideline Assessment) Stationary Source Modeling	7
4.3 4.3.1 4.3.2 4.3.3	Recommendations	0 3
5	THE EFFECTS OF THE PROPOSED DEVELOPMENT ON ITS SURROUNDINGS AND ON ITSELF	6
6	CONCLUSIONS	6
7	REFERENCES	8
STAT	EMENT OF LIMITATIONS	9

RWDI#2401100 December 12, 2023

LIST OF TABLES

Table 1:	Road Traffic Volumes	2
Table 2:	Predicted Ground Transportation Source Sound Levels – Plane of Window	4
Table 3:	Transportation Sound Levels in Outdoor Living Areas (OLAs)	5
Table 4:	Stationary Source Sound Power Level Assumptions	8
Table 5:	Predicted Sound Levels at Worst-case Receptor Locations – Continuous	
	Stationary Sources	10
Table 6:	Recommended Facade Component Minimum Sound Insulation Rating	11
Table 7:	Barrier Height Recommendations for OLAs	12
Table 8:	Recommended Sound Level Reductions	13

LIST OF FIGURES

- Figure 1: Context Site Plan
- Figure 2: Outdoor Living Areas (OLAs)
- Figure 3: OLA Noise Mitigation to meet 55 dBA
- Figure 4: Stationary Sources
- Figure 5: Stationary Sources Requiring Mitigation
- Figure 6: Stationary Sources Noise Barriers

LIST OF APPENDICES

- Appendix A: Drawings
- Appendix B: Criteria
- Appendix C: Transportation Volume Data
- Appendix D: Noise Mitigation Guidance
- Appendix E: Sample Calculations (Stationary Source Modeling)

1 INTRODUCTION

RWDI was retained by FCHT Holdings (Ontario) Corporation, a subsidiary of First Capital REIT, to prepare a Noise and Vibration Impact Study for the proposed development located at 1 Clair Road East in Guelph, Ontario. The proposed development will consist of 4 blocks of mixed-use buildings. The context site plan is shown in **Figure 1**.

The site is exposed to noise from road traffic from Clair Road to the north, Hawkins Drive to the east, Poppy Drive to the south, Farley Drive and Gordon Street to the west.

The nearest operational railway is more than 3 kilometres (km) to the east of the proposed development. The assessment of noise and vibration from the rail is not required per the Railway Association of Canada's Guidelines for New Development in Proximity to Railway Operations (RAC, 2013).

The development is surrounded by residential and commercial buildings in all directions, with no significant industrial facilities in the surrounding area within 1 km radius. A noise assessment of nearby stationary sources associated with commercial uses was conducted for buildings located within 70 m of the development, which aligns with the zone of influence for light Class I facilities as per Ontario Ministry of the Environment, Conservation and Parks (MECP) Guideline D-6 (MOE, 1995). Moreover, a car wash at approximately 120 m setback to the west was also included to assess for any potential sound impacts.

This assessment was completed to support the Official Plan and Zoning By-Law Amendment (OPA/ZBA) submissions as required by the City of Guelph. This assessment was based on design drawings received on and before December 12, 2023. A copy of the drawings is included in **Appendix A**.

2 APPLICABLE CRITERIA

Applicable criteria for transportation noise sources (road) and stationary noise sources are adopted from the MECP NPC-300 Environmental Noise Guideline (MOE, 2013) and from the Guelph Noise Control Guidelines (GNCG) (Guelph, 2018), with a summary of the applicable criteria included with **Appendix B**.

The proposed development site would be characterized as a "Class 1 Area", which is defined according to NPC-300 as an area with an acoustical environment typical of a major population centre, where the background sound level is dominated by the activities of people, usually road traffic, often referred to as "urban hum."

3 SITE VISIT

A site visit was conducted by RWDI on November 30, 2023 to obtain a better understanding of the acoustic environment of the area and to take measurements and gather information regarding stationary sources located on adjacent rooftops to the west of the proposed development. During the site visit, an audible "urban hum" was noted, which is characteristic of a Class 1 Area.

December 12, 2023

SY

4 THE EFFECTS OF THE ENVIRONMENT ON THE PROPOSED DEVELOPMENT

4.1 Transportation Source Assessment

4.1.1 Road Traffic Volume Data

Traffic data was obtained for Clair Road and Gordon Street from the City of Guelph as Automatic Traffic Recorders (ATRs), including hour-by-hour counts over the period of approximately 1 week, including vehicle classification breakdowns.

The average 24-hour total volumes over the monitoring period of the ATR data were assumed representative of the Annual Average Daily Traffic (AADT) volumes for each road, as indicated by the City of Guelph data. The average heavy vehicle breakdown and the average daytime/nighttime split were applied based on the ATR data for each of the respective roadways.

ATR data was not available for Farley Drive, Hawkins Drive, or Poppy Drive; however, Turning Movement Counts (TMCs) were provided by the City of Guelph for the intersections of Clair Road at Farley Drive, and Hawkins Drive at Poppy Drive. The TMCs were used to determine the traffic volume and types of vehicles on each link during the AM peak, PM peak, and 8-hour interval, which were assumed to be 9%, 10% and 60% of the Annual Average Daily Traffic (AADT), respectively. These typical percentages for traffic distribution were in fair agreement with the ATR data for Clair Road and Gordon Street. A medium-to-heavy vehicle ratio of 1:1 was applied to the total heavy vehicle volumes provided in the TMCs based on the trends observed in the ATR data for Clair Road and Gordon Street.

Traffic volumes were increased at a conservative annual growth rate of 2% per year to a future horizon year of 2041.

A summary of the traffic data used is included in **Table 1** below, with more detailed information included in **Appendix C**.

Roadway	2041 Future Traffic (AADT)	% Day/Night	Speed Limit (km/hr.)	% Medium Trucks	% Heavy Trucks
Gordon Street	24,061	90% /10%	60	3.9%	3.8%
Clair Road East	17,060	92% / 8%	60	3.1%	2.4%
Farley Drive	6,738	90% / 10%	40	4.9%	4.9%
Hawkins Drive	1,390	90% / 10%	40	2.2%	2.2%
Poppy Drive East	2,810	90% / 10%	40	2.1%	2.1%

Table 1: Road Traffic Volumes

4.1.2 Representative Receptors

The selection of receptors affected by transportation noise sources was based on the drawings reviewed for this assessment. Using the "building evaluation" feature of Cadna/A, each façade of the residential buildings was assessed. Commercial uses on the ground floor of Blocks C and D were excluded from the current assessment.

Outdoor Living Areas (OLAs) would include outdoor areas intended and designed for the quiet enjoyment of the outdoor environment and which are readily accessible from the building. OLAs may include any common outdoor amenity spaces associated with a multi-unit residential development (e.g. courtyards, rooftop terraces), and/or private backyards and terraces with a minimum depth of 4m provided they are the only outdoor living area for the occupant.

Daytime sound levels were assessed at the following identified OLAs:

- OLA_01a through OLA_01e: Southeast Block A At-grade Outdoor Amenity
- OLA_02a through OLA_02c: Southwest Block B At-grade Outdoor Amenity (South Amenity)
- OLA_03a through OLA_03c: Southwest Block B At-grade Outdoor Amenity (West Amenity)
- OLA_04a and OLA_04b: Northwest and Northeast Blocks At-grade Outdoor Amenity
- OLA_05: Northeast Block C Level 7 Outdoor Amenity
- OLA_06: Southeast Block A Level 7 Outdoor Amenity
- OLA_07a and OLA_07b: Southwest Block B Level 7 Outdoor Amenity
- OLA_08: Northwest Block D Level 7 Outdoor Amenity (West Amenity)
- OLA_09: Northwest Block D Level 7 Outdoor Amenity (East Amenity)

The OLAs are indicated in **Figure 2**.

4.1.3 Analysis and Results

Sound levels due to the adjacent transportation (road) sources were predicted using emission algorithms from the Ontario Road Noise Analysis Method for Environment and Transportation (ORNAMENT) guidelines implemented in the Cadna/A noise modeling software as line sources. A sample modeling output file is included in **Appendix C** for the north façade of the northwest block D at the worst-case receptor location at the height of 4.5m above ground. Moreover, a comparison is included between the STAMSON modeled impacts and the Cadna/A modeled impacts. The predicted Cadna/A sound levels are in fair agreement with those calculated in STAMSON.

To assess the effect of transportation noise on suites, the maximum sound level on each façade was determined with the results summarized in **Table 2**.

RWDI#2401100 December 12, 2023

		Ro		
Building	Façade	Day L _{EQ} , 16hr	Night L _{EQ} , 8hr	Notes
	Ν	68 dBA	60 dBA	2
Northeast Block C	E	66 dBA	58 dBA	2
6 Storey Podium	S	55 dBA	48 dBA	-
	W	64 dBA	57 dBA	1
	Ν	65 dBA	58 dBA	1
Northeast Block C	E	60 dBA	53 dBA	1
14 Storey Tower	S	54 dBA	47 dBA	-
	W	62 dBA	54 dBA	1
	Ν	59 dBA	52 dBA	1
Southeast Block A	E	60 dBA	53 dBA	1
6 Storey Podium	S	54 dBA	48 dBA	-
	W	56 dBA	49 dBA	1
	Ν	57 dBA	50 dBA	1
Southeast Block A	E	56 dBA	49 dBA	1
14 Storey Tower	S	53 dBA	46 dBA	-
	W	57 dBA	50 dBA	1
	Ν	62 dBA	55 dBA	1
Southwest Block B	E	55 dBA	48 dBA	-
6 Storey Podium	S	61 dBA	55 dBA	1
	W	65 dBA	59 dBA	1
	Ν	60 dBA	53 dBA	1
Southwest Block B	E	54 dBA	47 dBA	-
14 Storey Tower	S	59 dBA	53 dBA	1
	W	61 dBA	54 dBA	1
Southwest Block B	Ν	60 dBA	53 dBA	1
10 Storey Tower	E	52 dBA	45 dBA	-

Table 2: Predicted Ground Transportation Source Sound Levels - Plane of Window

RWDI#2401100 December 12, 2023

		Ro		
Building	Façade	Day L _{EQ} , 16hr	Night L _{EQ} , 8hr	Notes
	S	58 dBA	52 dBA	1
	W	61 dBA	54 dBA	1
	Ν	68 dBA	61 dBA	2
Northwest Block D	E	64 dBA	57 dBA	1
6 Storey Podium	S	61 dBA	54 dBA	1
	W	67 dBA	60 dBA	2
	Ν	66 dBA	58 dBA	2
Northwest Block D	E	56 dBA	48 dBA	1
14 Storey Tower	S	57 dBA	50 dBA	1
	W	63 dBA	56 dBA	1

Note(s): 1.

2.

Applicable for low and medium-density developments: Provision for future installation of air-conditioning with a warning clause. Refer to **Appendix D** for guidance regarding air-conditioning as a noise mitigation measure.

The acoustical performance of building components must be specified to meet the indoor sound level criteria. Installation of air conditioning to allow for windows and doors to remain closed, with a warning clause. Refer to **Appendix D** for guidance regarding air-conditioning as a noise mitigation measure.

To assess the effect of transportation noise on the qualifying OLAs for development, predicted sound level results are summarized in **Table 3**.

Receptor	Description	Daytime L _{EQ} , 16hr	Notes
OLA_01a	Southeast Block At-grade Outdoor Amenity	54	1
OLA_01b	Southeast Block At-grade Outdoor Amenity	50	1
OLA_01c	Southeast Block At-grade Outdoor Amenity	48	1
OLA_01d	Southeast Block At-grade Outdoor Amenity	49	1
OLA_01e	Southeast Block At-grade Outdoor Amenity	52	1
OLA_02a	Southwest Block At-grade Outdoor Amenity (South Amenity)	54	1
OLA_02b	Southwest Block At-grade Outdoor Amenity (South Amenity)	58	2
OLA_02c	Southwest Block At-grade Outdoor Amenity (South Amenity)	60	2
OLA_03a	Southwest Block At-grade Outdoor Amenity (West Amenity)	59	2

RWDI#2401100 December 12, 2023

Receptor	Description	Daytime L _{EQ} , 16hr	Notes
OLA_03b	Southwest Block At-grade Outdoor Amenity (West Amenity)	55	1
OLA_03c	Southwest Block At-grade Outdoor Amenity (West Amenity)	58	2
OLA_04a	Northwest and Northeast Blocks At-grade Outdoor Amenity	60	2
OLA_04b	Northwest and Northeast Blocks At-grade Outdoor Amenity	60	2
OLA_05	Northeast Block Level 7 Outdoor Amenity	55	1
OLA_06	Southeast Block Level 7 Outdoor Amenity	54	1
OLA_07a	Southwest Block Level 7 Outdoor Amenity	50	1
OLA_07b	Southwest Block Level 7 Outdoor Amenity	47	1
OLA_08	8 Northwest Block Level 7 Outdoor Amenity (West Amenity)		2
OLA_09	Northwest Block Level 7 Outdoor Amenity (East Amenity)		1

Note(s): 1.

2

The predicted sound level meets the NPC-300 and GNCG criterion for OLAs. Noise control measures are not required. For OLA sound levels >55 dBA and ≤60 dBA, noise controls may be applied to meet the 55 dBA criterion. If noise control measures are not provided, a warning clause is recommended.

4.2 Stationary Source Assessment

Stationary sources could be grouped into two categories: Those that have a permit with the Ontario Ministry of the Environment, Conservation and Parks (MECP) through an Environmental Compliance Approval (ECA) or Environmental Activity and Sector Registry (EASR) and those that are exempt from ECA or EASR permit requirements.

In the case where a stationary source has an Environmental Compliance Approval (ECA) or Environmental Activity and Sector Registry (EASR) permit with the MECP, and would be put in a position where it is no longer in compliance with the applicable sound level criteria due to the encroachment of the proposed new development, source-specific mitigation and/or formal classification of the proposed development lands as a "Class 4 Area" (refer to C.4.4.2 "Class 4 Area" in NPC-300) would be required. In this case, coordination and agreements between the stationary source owner, proposed new development owner, the land-use planning authority and potentially the MECP would be needed.

In the case where a stationary source is exempt from ECA or EASR permit requirements with the MECP, the noise provisions of the applicable Municipal Code / Noise By-Law and guidance from NPC-300 would be applicable. In this case, mitigation of sound levels due to stationary sources would be to meet the applicable sound level criteria, and to avoid nuisance complaints from future occupants of the proposed new development.

December 12, 2023

<u> K</u>

4.2.1 Land-Use Compatibility Review (D-6 Guideline Assessment)

The MECP Guideline D-6 (MOE, 1995) was used as a tool to classify the identified industries and asses their potential influence on the proposed development. The classifications and setback guidelines are summarized in **Appendix B**.

None of the buildings considered in this assessment currently have an environmental permit (ECA or EASR), nor are they required to obtain one. Therefore, the conversion of mixed-use zoning to residential is not anticipated to affect any environmental approvals. Potential noise was assessed from surrounding commercial buildings was completed to avoid nuisance complaints from occupants of the proposed new development.

4.2.1.1 Class III Industries

No facilities within the 1000m radius of the proposed development were identified as Class III.

4.2.1.2 Class II Industries

No facilities within the 300m radius of the proposed development were identified as Class II.

4.2.1.3 Class I Industries

The development is surrounded by residential and commercial buildings in all directions. For this assessment, stationary sources from the surrounding commercial/retail and residential buildings are included in this assessment, based on a 70 m separation distance from the proposed development. Moreover, a car wash at approximately 120 m setback to the west was also included to assess for any potential sound impacts.

4.2.2 Stationary Source Modeling

Stationary sources of noise surrounding the proposed development were identified using a combination of source identification during a site visit conducted by RWDI on November 30, publicly available aerial and street-level imagery, and business listing. Non-permitted commercial/retail and residential buildings within a 70m setback of the proposed development are included in the assessment, in addition to a car wash at approximately 120 m setback to the west.

4.2.2.1 Representative Receptors

As with the transportation assessment, the selection of receptors affected by stationary sources was based on the drawings reviewed for this assessment. The worst-case receptor locations were assessed to evaluate the potential stationary source noise effects on the proposed development.

Outdoor points of reception (OPORs) for noise from stationary sources were assessed at the worst-case location within each OLA included in the transportation noise modelling and indicated in Section 4.1.2.

4.2.2.2 Assumed Sources and Sound Power Levels

During the site visit conducted by RWDI on November 30, 2023, rooftops of the 2 Pergola Commons shopping center buildings and the Keg located directly to the west of the proposed development were accessed to take measurements and to obtain accurate information regarding model numbers and source locations. Manufacturer data was used to obtain sound power levels for most of the rooftop equipment, as HVAC equipment was not operating at full cooling capacity during the site visit. Measurements were used for sound power levels of the rooftop equipment that was operating normally during the site visit, such as exhaust fans and makeup air units. RWDI proxy data was used for the sound power levels of the stationary sources identified to the north of Clair Road.

The assumed sound power levels included in the stationary source assessment are presented in **Table 4**. The locations of the sources included in the stationary source assessment, summarized in **Table 4**, are illustrated in **Figure 4**.

		Proxy Data / ID Manufacturer Data / Measurement		Duty Cycle		
Source Description	Source ID		Sound Power Level (dBA)	Daytime and Evening (07:00h – 23:00h)	Nighttime (23:00h – 07:00h) ^[5]	
Lennox HVAC 1-Fan	Lennox_HVAC_1F	Manufacturer Data	73-81 ^[1]	Continuous	30 minutes/hour	
Lennox HVAC 2-Fan ^[2]	Lennox_HVAC_2F	Manufacturer Data	88-89 ^[1]	Continuous	30 minutes/hour	
Spinnaker Makeup Air Unit (MUA)	Spinnaker_MUA	Measurement	83	Continuous	30 minutes/hour	
York HVAC 1-Fan	York HVAC 1-Fan York_HVAC_1F		76 ^[2]	Continuous	30 minutes/hour	
York HVAC 2-Fan	York HVAC 2-Fan York_HVAC_2F		86-88 ^[2]	Continuous	30 minutes/hour	
York HVAC 4-Fan	York_HVAC_4F	Manufacturer Data	84 ^[2]	Continuous	30 minutes/hour	
lce Machine Condenser Unit	IceMachine	Measurement	74 ^[3]	Continuous	30 minutes/hour	
Carnes Kitchen Exhaust Fan	Carnes_K_Exh	Measurement	87	Continuous	0 minutes/hour	
Trenton Refrigeration Condensing Unit	Refrig_Cond	Measurement	86	Continuous	30 minutes/hour	
Typical Small Makeup Air Unit (MUA)	MUAsmall	Proxy Data	75	Continuous	30 minutes/hour	
Typical Kitchen Exhaust Fan	Exhaust	Proxy Data	78	Continuous	0 minutes/hour	

Table 4: Stationary Source Sound Power Level Assumptions

RWDI#2401100 December 12, 2023

				Duty Cycle		
Source Description	Description Source ID Proxy Data / Manufacturer Data / Measurement		Sound Power Level (dBA)	Daytime and Evening (07:00h – 23:00h)	Nighttime (23:00h – 07:00h) ^[5]	
Typical HVAC 1-Fan	HVAC_1F	Proxy Data	82	Continuous	30 minutes/hour	
Typical HVAC 2-Fan	HVAC_2F	Proxy Data	85	Continuous	30 minutes/hour	
Car Wash Entrance and Exit	CarWash	Proxy Data	102 ^[4]	15 minutes/hour	0 minutes/hour	

Note(s):

1. All Lennox HVAC units are LGH series. Sound power levels were assigned for each individual unit based on cooling capacities specified in the manufacturer data sheets.

2. All York HVAC units are ZJ series. Sound power levels were assigned for each individual unit based on cooling capacities specified in the manufacturer data sheets.

3. Sound power level for the ice machine not including the +5 dB correction applied for tonality.

4. Sound power level for the car wash not including the +5 dB correction applied for tonality.

5. Stationary sources associated with the Goodlife Fitness Center were assumed to operate continuously during nighttime hours as the Goodlife is open 24 hours.

The assumed sound power level values and duty-cycles for the stationary sources are based on manufacturer data and reasonable assumptions for the source type. During the site visit, it was noted that there was a sign for the car wash at the Mobil gas station that said the car wash was open 24 hours. However, the City of Guelph Noise By-Law states that the operation of a car wash is not permitted for nighttime period, regardless of the zoning. Therefore, the car wash was not assessed during nighttime hours.

4.2.2.3 Analysis and Results

Stationary source noise modelling was carried out using the Cadna/A software package, a commercially available implementation of the ISO 9613 (ISO, 1994 and ISO, 1996) algorithms. The sound level limits for the worst-case points of reception are the exclusion limits or the ambient due to road traffic, whichever is higher. Road traffic ambient sound levels were calculated for the quietest hour for the daytime and nighttime based on the traffic data obtained from the City of Guelph, applying no growth to the AADT volumes as a conservative approach. The ATR data for Gordon Street and Clair Road included the quietest hour volumes directly. The percentage of road volumes for these two roads was found to be approximately 1.4% and 0.3% of the AADT for Daytime/Evening and nighttime periods, respectively. These percentages were applied to Hawkins Drive, Poppy Drive and Farley Drive.

The predicted sound levels during the worst-case 1-hour from existing stationary sources are presented in **Table 5**. The worst-case facade locations are where the difference between the stationary source noise and predicted background noise is greatest. A sample calculation is included in **Appendix E** for the west façade of the southwest block B 10-storey tower at a worst-case height of 4.5 meters above the 2-storey podium below. The location of the receptor for the sample calculation is illustrated in **Figure 4**.

	Time Period		Sound Level Criteria		
Worst-case Receptor	Daytime- Evening	Nighttime 2300-0700h	Daytime / Nighttime	Notes	
	0700-2300h	[1]	L _{EQ-1hr}		
Northeast Block C	51 dBA	47 dBA	50 / 45 dBA	Exceeds Sound Level Criteria	
Southeast Block A	52 dBA	48 dBA	50 / 45 dBA	Exceeds Sound Level Criteria	
Southwest Block B	58 dBA	56 dBA	53 / 45 dBA	Exceeds Sound Level Criteria	
Northwest Block D	58 dBA	54 dBA	54 / 47 dBA	Exceeds Sound Level Criteria	
OPOR_08 Outdoor (Worst- case) ^[2]	58 dBA		53 / dBA	Exceeds Sound Level Criteria	

Table 5: Predicted Sound Levels at Worst-case Receptor Locations - Continuous Stationary Sources

Note(s):

1. Outdoor areas are not assessed during the nighttime period.

2. All other outdoor areas meet the applicable sound level limits.

As shown in **Table 5**, the daytime-evening and nighttime continuous sound levels due to existing stationary sources are predicted to exceed the applicable Class 1 sound level criteria. The outdoor point of reception OPOR_09 is also predicted to exceed the sound level criteria due to stationary source noise. All other outdoor points of reception meet the applicable Class 1 sound level criteria based on noise modelling analysis.

Recommendations to address stationary sound impacts are provided in the next section. Assumptions regarding the duty cycles and the sound power levels for the surrounding stationary sources are conservative. More details should be obtained surrounding the stationary source operation, including summer-time measurements, in the Detailed Design phase before implementing the recommended mitigation measures.

4.3 Recommendations

Based on the noise assessment results, the following recommendations were determined for the project. Recommendations are provided for both transportation sources and stationary sources.

4.3.1 Transportation Sources

The following recommendations are provided to address transportation sources.

4.3.1.1 Building Façade Components

Due to the elevated transportation sound levels in the area, acoustical design of the façade components, including spandrel, window glazing, and exterior doors, are recommended to be specified for the proposed development.

RWDI#2401100 December 12, 2023

To assess the development's feasibility, preliminary window glazing and exterior balcony door sound isolation requirements were determined. These were based on following assumptions:

- Typical residential living room:
 - Glazing 60% of façade, Door: 20% of façade
 - 55% Façade to floor area Ratio
- Typical residential bedroom:
 - Glazing 80% of façade, Door: N/A
 - 81% Façade to floor area Ratio
- Typical exterior sliding doors meeting approximately STC-25 sound isolation performance
- Typical façade spandrel constructions meeting approximately STC-45 sound isolation performance
- Acoustical character of rooms: High absorption finishes/furniture for bedrooms and intermediate absorption finishes/furniture for living rooms.

Based on the predicted plane of window sound levels and the assumptions listed above, recommendations for the minimum sound insulation ratings for the building components were determined using the National Research Council of Canada "BPN-56 method" (NRCC, 1985). The reported results are in terms of Sound Transmission Class (STC) ratings, as summarized in **Table 6**.

Portion of Development	Facade	Window Glazing Requirements
Northeast Block – 6 Storey	North	STC-28
Podium	East	STC-25
	North	STC-28
Northwest Block – 6 Storey	West	STC-26
Podium	Northwest Corner Units ^[1]	STC-29
Northwest Block – 14 Storey Tower	North	STC-25

Table 6: Recommended Facade Component Minimum Sound Insulation Rating

Note(s):

1. Corner units with 2 façades exposed to noise from road traffic (to the north and west)

The maximum requirement for the window glazing was determined to be STC-29, which is considered feasible as this can be achieved by various double-glazed configurations of insulated glazing units. Façade spandrel and doors meeting the minimum Ontario Building Code are predicted to be sufficient for all facades of the proposed development.

We recommend that the façade construction is reviewed during detailed design to ensure that the indoor sound level limits will be met and that the window/door supplier is requested to provide STC laboratory test reports as part of shop drawing submittal to confirm that the glazing components will meet the minimum STC requirements.

4.3.1.2 Ventilation Recommendations

Due to the transportation sound levels at the plane of the façade, central air conditioning is recommended for the proposed development to allow for windows and doors to remain closed as a noise mitigation measure. Further, prospective purchasers or tenants should be informed by appropriate warning clause provided in Section 4.3.3.

4.3.1.3 Outdoor Living Areas

Due to exposure to transportation sources, the predicted sound levels in the OLA is predicted to be elevated at OLA_02, OLA_03, OLA_04, and OLA_08. To reduce the transportation sound levels in OLAs to meet the applicable criteria of 55 dBA, noise barriers are recommended, if feasible.

The recommended geometry of the noise barriers is included in **Figure 3** (to meet 55 dBA). The barriers for the atgrade OLAs are presented with a height of 1.8m as per the Guelph Noise Control Guidelines. A barrier height of 1.1m is recommended for the level 7 west amenity space of Block D. The barrier heights are summarized in **Table 7**. General guidance with respect to noise barrier design is included in **Appendix D**. If mitigation is not provided for the OLAs, sound levels are predicted to meet 60 dBA criteria; however, appropriate warning clause should be included. Warning clause language is provided in Section 4.3.3.

Receptor	Description	Predicted OLA Sound Level Daytime L _{EQ} , 16hr	Barrier Height (m) to Meet Sound Level Criterion ≤ 55 dBA ¹
OLA_02b	Southwest Block At-grade Outdoor Amenity (South Amenity)	58	1.8 m
OLA_02c	Southwest Block At-grade Outdoor Amenity (South Amenity)	60	1.8 m
OLA_03a	Southwest Block At-grade Outdoor Amenity (West Amenity)	59	1.8 m
OLA_03b	Southwest Block At-grade Outdoor Amenity (West Amenity)	55	-
OLA_03c	Southwest Block At-grade Outdoor Amenity (West Amenity)	58	1.8 m
OLA_04a	Northwest and Northeast Blocks At-grade Outdoor Amenity	60	1.8 m
OLA_04b	Northwest and Northeast Blocks At-grade Outdoor Amenity	60	1.8 m
OLA_08	Northwest Block Level 7 Outdoor Amenity (West Amenity)	57	1.1 m

Table 7: Barrier Height Recommendations for OLAs

Note(s):

1. Refer to Figure 3 for barrier geometry to meet 55 dBA. If noise control measures are not provided, a warning clause is required.

4.3.2 Stationary Sources

Based on the noise modeling results and setback distances, the proposed development is not anticipated to infringe on the compliance of any facility with environmental noise permits (ECA or EASR). However, excesses of the guideline limits are predicted. Excesses of the guideline limits are predicted to range up to 5 dBA during daytime/evening and up to 11 dBA during nighttime.

First Capital owns the Pergola Commons plaza to the west of the proposed development. Thus, administrative arrangements for on-source mitigation will not involve any third party. With the implementation of mitigation for sources associated with the Keg and the shopping center building containing Goodlife Fitness, the proposed development is feasible to meet the guideline limits. Assumptions applied to the noise model regarding duty cycles and sound power levels of surrounding equipment should be verified and refined during the Detailed Design phase before mitigation measures are implemented. Moreover, sound measurement during peak summertime is recommended.

Overall reductions to meet compliance with the guideline limits are presented below, with corresponding source locations presented in **Figure 5**.

			Sound	Required	Duty Cycle		
Facility	Source Labels for Figure 5	Proxy Data / Manufacturer Data / Measurement	Power Level (dBA)	Overall Reduction (dB)	Daytime and Evening (07:00h – 23:00h)	Nighttime (23:00h – 07:00h) ^[5]	
Jysk	Jysk_HVAC_2F_1	Manufacturer Data	88	8	Continuous	30 minutes/hour	
Jysk	Jysk_HVAC_2F_2	Manufacturer Data	88	8	Continuous	30 minutes/hour	
Jysk	Jysk_HVAC_2F_3	Manufacturer Data	88	8	Continuous	30 minutes/hour	
Jysk	Jysk_HVAC_2F_4	Manufacturer Data	88	8	Continuous	30 minutes/hour	
Jysk	Jysk_MUA	Measurement	83	5	Continuous	30 minutes/hour	
Dollarama	Doll_HVAC_2F_1	Measurement	88	10	Continuous	30 minutes/hour	
Dollarama	Doll_HVAC_2F_2	Manufacturer Data	88	10	Continuous	30 minutes/hour	
Dollarama	Doll_HVAC_2F_3	Manufacturer Data	88	14	Continuous	30 minutes/hour	
Dollarama	Doll_HVAC_2F_4	Manufacturer Data	88	10	Continuous	30 minutes/hour	
Dollarama	Doll_HVAC_2F_5	Manufacturer Data	88	10	Continuous	30 minutes/hour	

Table 8: Recommended Sound Level Reductions

RWDI#2401100 December 12, 2023

			Cound	Dominad	Duty Cycle		
Facility	Source Labels for Figure 5	Proxy Data / Manufacturer Data / Measurement	Sound Power Level (dBA)	Required Overall Reduction (dB)	Daytime and Evening (07:00h – 23:00h)	Nighttime (23:00h – 07:00h) ^[5]	
Goodlife	Good_MUA	Measurement	83	9	Continuous	Continuous	
Goodlife	Good_HVAC_1F	Manufacturer Data	79	8	Continuous	Continuous	
Goodlife	Good_HVAC_2F_1	Manufacturer Data	89	20	Continuous	Continuous	
Goodlife	Good_HVAC_2F_2	Manufacturer Data	88	16	Continuous	Continuous	
Pergola West Building	West_HVAC_2F_1	Manufacturer Data	88	5	Continuous	30 minutes/hour	
Pergola West Building	West_HVAC_2F_2	Manufacturer Data	88	5	Continuous	30 minutes/hour	
Pergola West Building	West_HVAC_2F_3	Manufacturer Data	88	5	Continuous	30 minutes/hour	
The Keg	Keg_HVAC_2F_1	Manufacturer Data	86	8	Continuous	30 minutes/hour	
The Keg	Keg_HVAC_2F_2	Manufacturer Data	88	8	Continuous	30 minutes/hour	
The Keg	Keg_HVAC_2F_3	Manufacturer Data	88	11	Continuous	30 minutes/hour	
The Keg	Keg_HVAC_4F	Manufacturer Data	84	5	Continuous	30 minutes/hour	
The Keg	Keg_Kitch_Exh	Measurement	87	3	Continuous	0 minutes/hour	
The Keg	Keg_Refrig_Cond	Measurement	86	8	Continuous	30 minutes/hour	

The reductions shown in **Table 8** are considered feasible through a combination of replacement with low-noise units, oversizing the unit and operating at lower capacity, silencers, and/or inclusion of a cantilevered barrier. The noise model should be verified and refined to reduce the number of assumptions made and to ensure it accurately represents reality.

Moreover, a perimeter barrier of height of 1.3 m is required for OPOR_08 and a 1.1 m height barrier is required to the north of the podium, as shown in **Figure 6**, to meet the applicable sound level limits.

Due to the proximity of the proposed development to the commercial facilities, a warning clause is recommended to inform prospective occupants of the potential for audible noise from these facilities. Warning clause language is provided in Section 4.3.3.

4.3.3 Warning Clauses

The following warning clauses from the Guelph Noise Control Guidelines are recommended for the proposed development:

1. Outdoor Living Areas Subject to High Transportation Impacts if no barriers are included:

"The Transferee of [insert lots/blocks/units], for themselves, their heirs, executors, administrators, successors, and assigns acknowledge being advised that sound levels due to increasing road traffic may occasionally interfere with some outdoor activities of the dwelling occupants as the sound levels may at times exceed the sound level limits of the municipal and provincial noise criteria."

2. Central Air Conditioning Provided for the development:

"This dwelling unit has been supplied with a central air conditioning system which will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the municipal and provincial sound level limits."

3. Upgraded Glazing for podiums of Blocks C and D:

"The building components of this dwelling unit (walls, windows and exterior doors) have been designed to provide acoustic insulation so that, when windows and exterior doors are closed, the indoor sound levels are within the municipal and provincial sound level limits. The details of this building component design are available by contacting the builder of this unit."

4. Close Proximity to Stationary Sources of Noise:

"Purchasers/tenants are advised that due to the proximity of the adjacent commercial plaza, noise from the commercial plaza may at times be audible and interfere with outdoor activities."

In addition, this clause shall be included in all cases:

"The Transferee covenants with the Transferor that the below clause, verbatim, will be included in all subsequent Agreements of Purchase of sale or lease and Sale and Deeds conveying the lands described herein, which covenant shall run with the said lands and is for the benefit of the subsequent owners and renters of the said lands and the owner of the adjacent road."

RWDI#2401100 December 12, 2023

5 THE EFFECTS OF THE PROPOSED DEVELOPMENT ON ITS SURROUNDINGS AND ON ITSELF

On-site stationary sources for the development are expected to consist of HVAC-related equipment in the rooftop mechanical penthouse as well as various exhaust fans. Further, consideration should be given to control airborne and structure-borne noise generated within the proposed development.

Within the development itself, the main sources of noise that are likely to affect the use of the building are the mechanical systems. The potential noise effect of the commercial component of the development is recommended to be reviewed during detailed design to ensure the applicable criteria will be met.

Provided that best practices for the acoustical design of the building are followed, noise from building services equipment associated with the development is expected to be feasible to meet the applicable sound level criteria due to the nature (residential/mixed-use) of the proposed development.

We recommend that the potential noise effect of the proposed development is reviewed during detailed design to ensure the applicable sound level criteria will be achieved.

6 CONCLUSIONS

RWDI was retained to prepare a Noise and Vibration Impact Study for the proposed mixed-use development located in Guelph, Ontario.

The following noise control measures are recommended for the proposed development:

- 1. Installation of central air-conditioning so that all suites' windows can remain closed.
- 2. The inclusion of noise warning clauses related to:
 - a. Transportation sound levels at the building façade and in the outdoor amenity areas
 - b. Proximity to commercial/industrial land use
- 3. Minimum sound isolation performance:
 - a. Suite window glazing with minimum sound isolation performance up to STC-29 for certain façade of the podiums of Blocks C and D and Tower D, as detailed herein.
- 4. Construction of perimeter noise barriers along some outdoor amenity areas, if feasible, to address transportation noise. Otherwise, the applicable warning clause should be included.
- 5. Construction of perimeter noise barriers for the west outdoor amenity area on the podium of Tower D and to its north to address surrounding stationary sources of noise.
- 6. Apply offsite on-source mitigation for the HVAC equipment associated with the commercial plaza to the immediate west, as detailed herein.

RWDI#2401100 December 12, 2023

The potential noise levels from stationary sources of sound were investigated. Based on the noise modeling results and setback distances, the land use compatibility of the proposed development with respect to the nearby industrial land uses is considered acceptable from the noise assessment perspective with implementation of mitigation measures for adjacent stationary sources. Due to the proximity of the proposed development to commercial facilities, a warning clause is recommended to inform prospective occupants of the potential for audible noise from these facilities. Moreover, offsite on-source mitigation is required for the HVAC equipment associated with the commercial plaza to the immediate west, as discussed in the study.

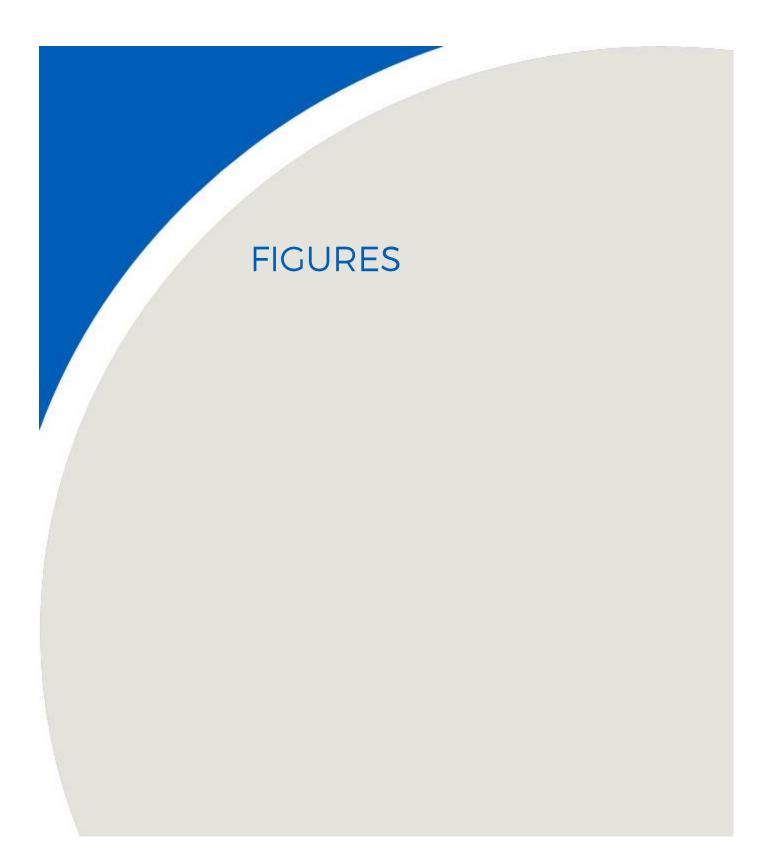
At this stage in design, the noise levels produced by the development on itself and its surroundings could not be quantitatively assessed. However, the effect on both the building itself and its surroundings is expected to be feasible to meet the applicable criteria. We recommend that the building design is evaluated prior to building permit to ensure that the acoustical design is adequately implemented in order to meet the applicable criteria.

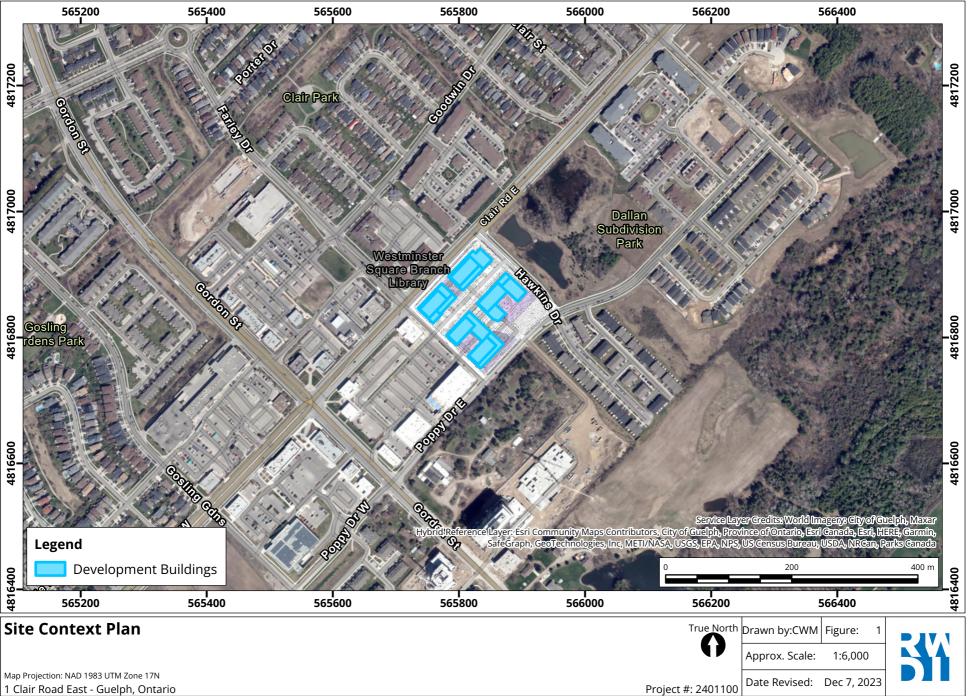
Based on the results of the analysis, including implementation of the recommendations included with this assessment, the proposed development is feasible to meet the applicable sound and vibration criteria.

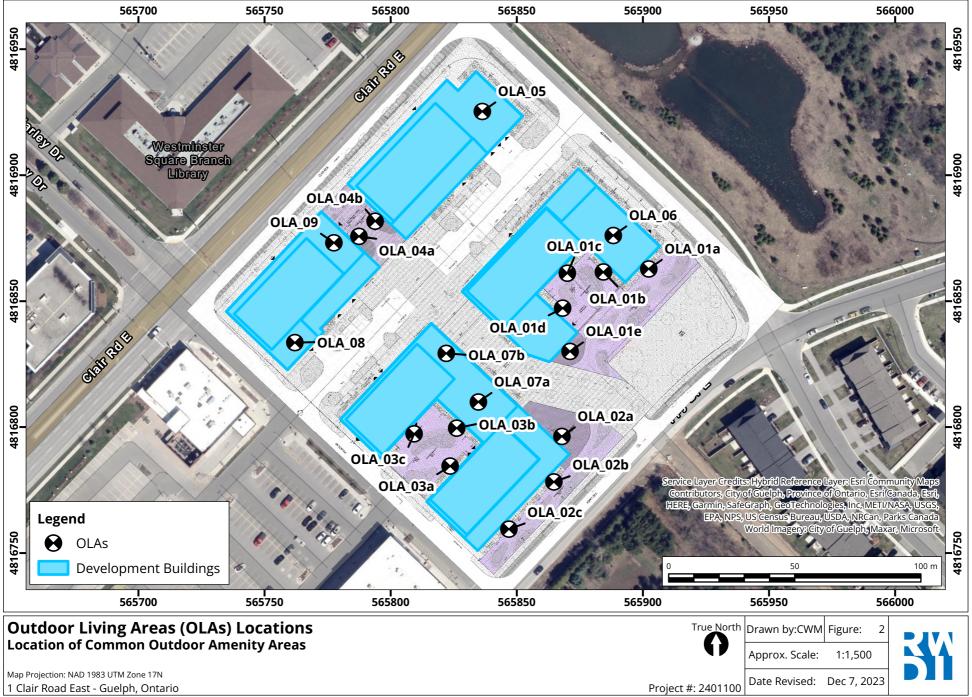
RWDI#2401100 December 12, 2023

7 REFERENCES

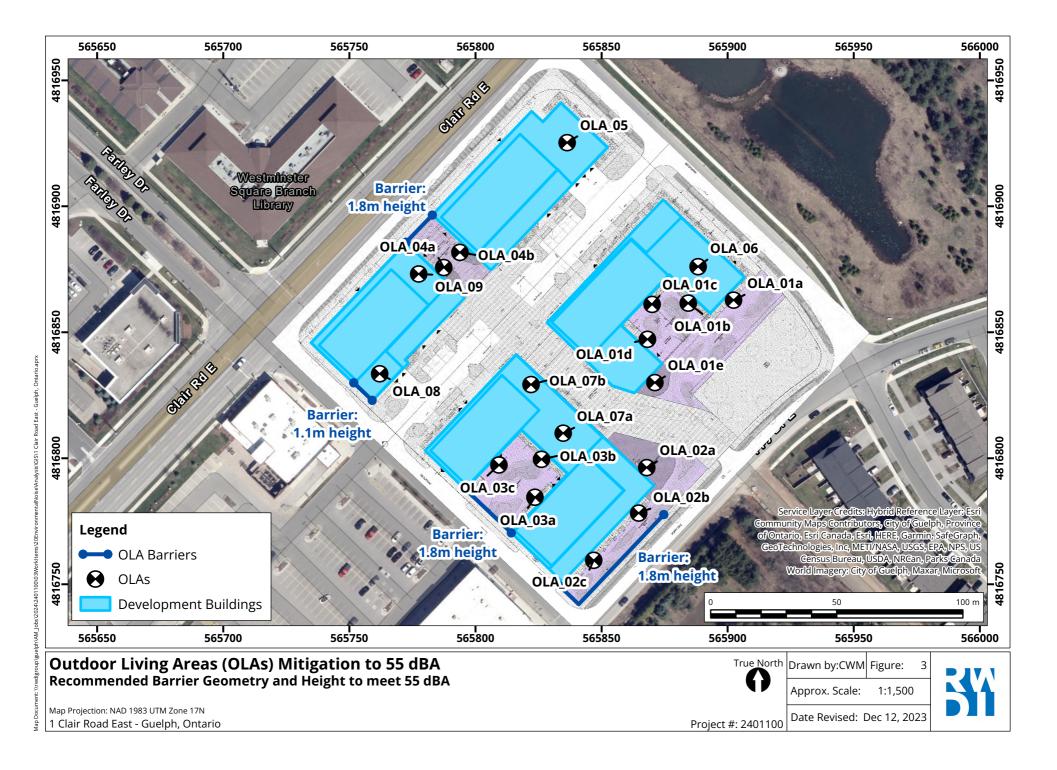
- 1. Ontario Ministry of the Environment (MOE), August 2013, Publication NPC-300, Environmental Noise Guideline Stationary and Transportation Sources Approval and Planning (MOE, 2013).
- 2. Ontario Ministry of the Environment (MOE), 1989, ORNAMENT Ontario Road Noise Analysis Method for Environment and Transportation, Technical Publication (MOE, 1989)
- 3. Ontario Ministry of the Environment (MOE) Publication Guideline D-6, "Compatibility Between Industrial Facilities and Sensitive Land Uses", July 1995 (MOE, 1995).
- 4. Controlling Sound Transmission into Buildings (BPN-56), National Research Council Canada (NRCC, 1985).
- 5. The Railway Association of Canada (RAC), Guidelines for New Development in Proximity to Railway Operations (RAC, 2013).
- 6. Ontario Ministry of the Environment (MOE), 1978, Model Municipal Noise Control Bylaw, which includes Publication NPC-103 Procedures, and Publication NPC-104 Sound Level Adjustments.
- 7. City of Guelph, 2018. Guelph Noise Control Guidelines (Guelph, 2018).

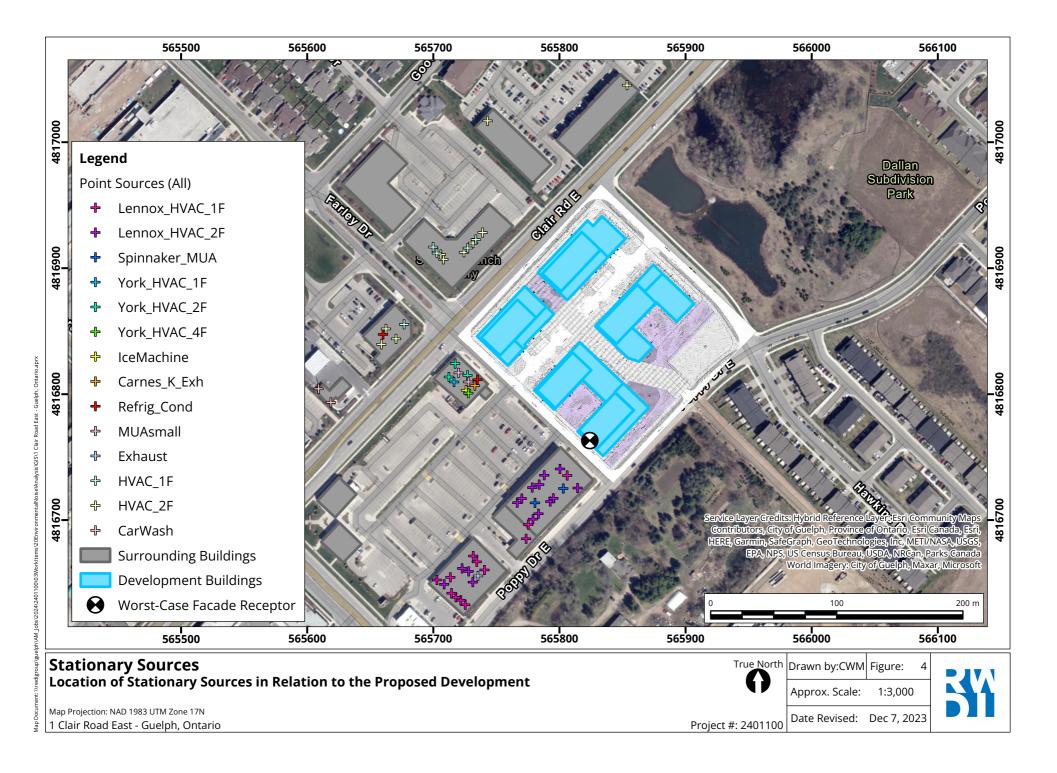

STATEMENT OF LIMITATIONS

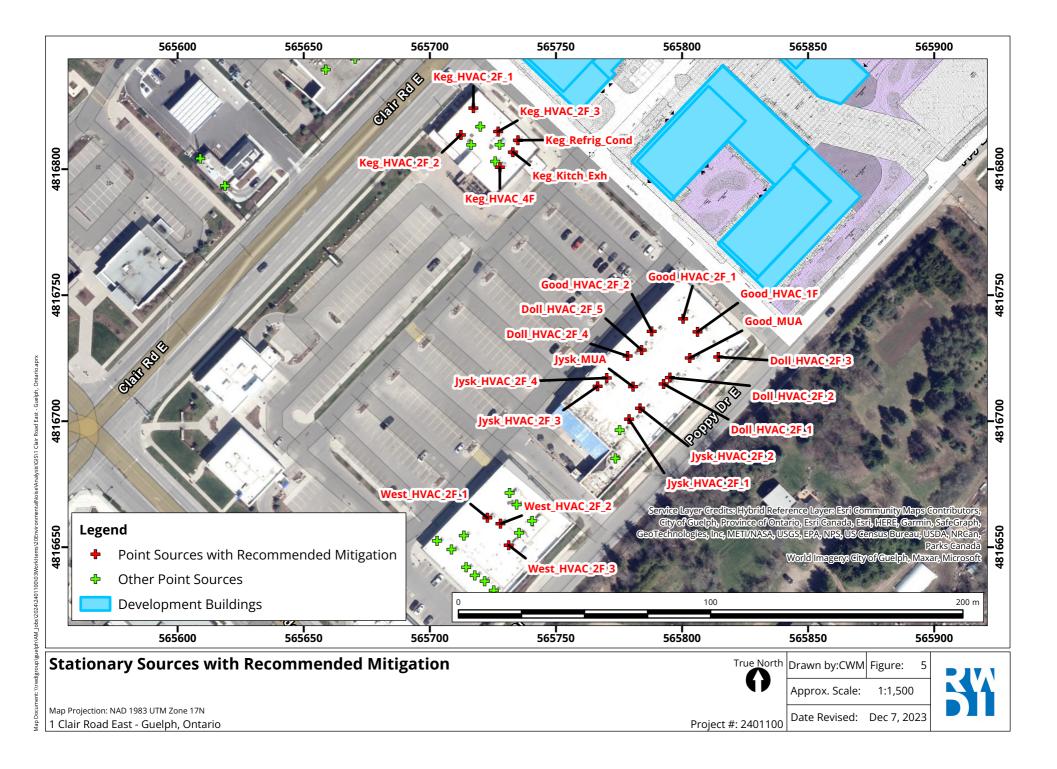

This report entitled "Noise and Vibration Impact Study – 1 Clair Road East", dated December 12, 2023, was prepared by RWDI AIR Inc. ("RWDI") for First Capital ("Client"). The findings and conclusions presented in this report have been prepared for the Client and are specific to the project described herein ("Project"). The conclusions and recommendations contained in this report are based on the information available to RWDI when this report was prepared. Because the contents of this report may not reflect the final design of the Project or subsequent changes made after the date of this report, RWDI recommendations provided in this report have been correctly interpreted in the final design of the Project.

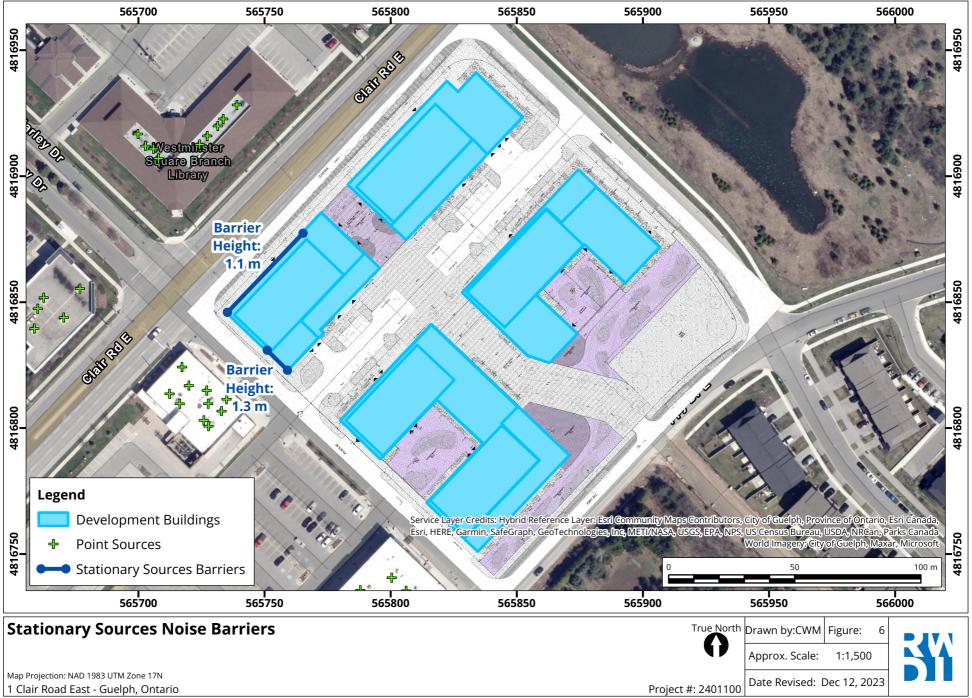

The conclusions and recommendations contained in this report have also been made for the specific purpose(s) set out herein. Should the Client or any other third party utilize the report and/or implement the conclusions and recommendations contained therein for any other purpose or project without the involvement of RWDI, the Client or such third party assumes any and all risk of any and all consequences arising from such use and RWDI accepts no responsibility for any liability, loss, or damage of any kind suffered by Client or any other third party arising therefrom.

Finally, it is imperative that the Client and/or any party relying on the conclusions and recommendations in this report carefully review the stated assumptions contained herein and understand the different factors which may impact the conclusions and recommendations provided.









Map Document: \\rwdgroup \u00f8uelph\VM Jobs 2024/2401100/03WorkItems \20EnvironmentalNois e\Analysis\GIS\1 Clair Road East - Guelph, Ontario apr

APPENDIX A

105 CLAIR RD E, GUELPH, ONTARIO

<u>civil</u> Civil go

(437)222-2062

PROJECT TEAM

OWNER FIRST CAPITAL REALTY 85 HANNA AVE, SUITE 400 TORONTO, ON M6K 3S3 (416)504-4114

ARCHITECTURAL SVN ARCHITECTS AND PLANNERS 110 ADELAIDE STREET EAST, 4TH FLOOR TORONTO, ON M5C 1K9 (416) 593-6499

LANDSCAPE SVN ARCHITECTS AND PLANNERS 110 ADELAIDE STREET EAST, 4TH FLOOR TORONTO, ON M5C 1K9 (416) 593-6499

TRAFFIC/LOADING BA GROUP 40 WEBER STREET, SUITE 60 KITCHENER, ON N2H 6R3 (416)961-7110

60 ATLANTIC AVENUE, SUITE 200, TORONTO, ONTARIO M6K 1X9,

540 BINGEMANS CENTRE DRIVE. SUITE 200 KITCHENER, ON, N2B 3X9 (519)576-3650

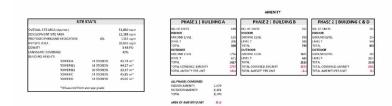
PLANNING

мнвс

URBAN DESIGN BOUSFIELDS 1 MAIN STREET EAST, SUITE 200 HAMILTON, ON, CANADA L8N 1E7 (905)549-3005

GEOTECHNICAL WSP

TORONTO (SPADINA AVENUE) 500 - 119 SPADINA AVENUE TORONTO, ON M5V 2L1 (416)260-1560


WIND.NOISE & ENERGY RWDI

625 QUEEN ST W, TORONTO, ON M5V 2B7 (647) 475-1048

	Sheet List - ZBA	Sheet List - ZBA					
Sheet Number	Sheet Name	Sheet					
A000 - BUIL	DING INFO	A 205	TYPICAL TOWER PLAN				
A 701	VIEWS	A 301	BUILDING ELEVATIONS				
		A 302	BUILDING ELEVATIONS				
PRELIMINARY SET			BUILDING ELEVATIONS - PRIVATE ACCESS RD				
	COVER						
A 101	PROJECT OVERVIEW		BUILDING ELEVATIONS - WOONERF				
A 102	GFA & NFA		BUILDING ELEVATIONS COURTYARI				
A 103	OVERALL SITE PLAN	A 401	BUILDING SECTIONS				
A 104	ROOF PLAN	A 402	BUILDING SECTIONS				
A 105	LEVEL P1 PARKING PLAN	A 403	ANGULAR PLANE SECTIONS				
A 106	LEVEL P2 PARKING PLAN	A 501	SHADOW STUDY - APRIL 21				
A 201	GROUND LEVEL PLAN	A 502	SHADOW STUDY - JUNE 21				
A 202	LEVEL 02 / MEZZANINE	A 503	SHADOW STUDY - SEPTEMBER 21				
A 203	TYPICAL PODIUM PLAN	A 504	SHADOW STUDY - DECEMBER 21				
A 204	LEVEL 07	_					

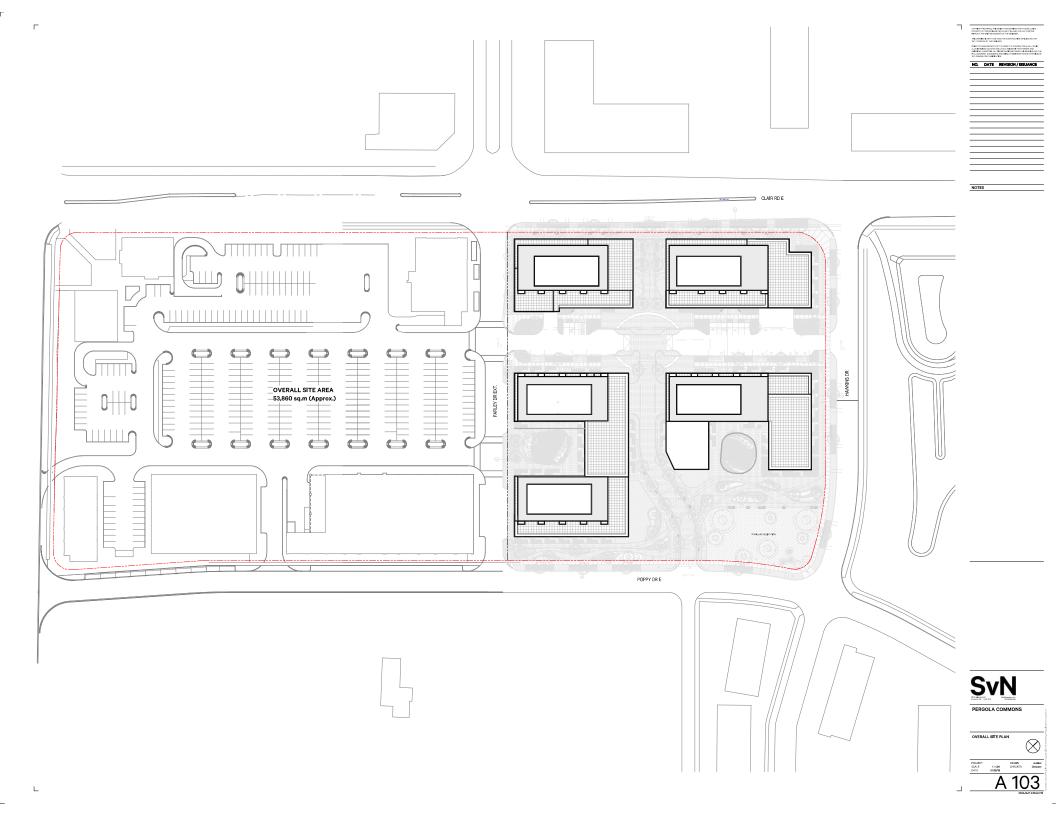
NECOMMEND ENCTION NO DATE

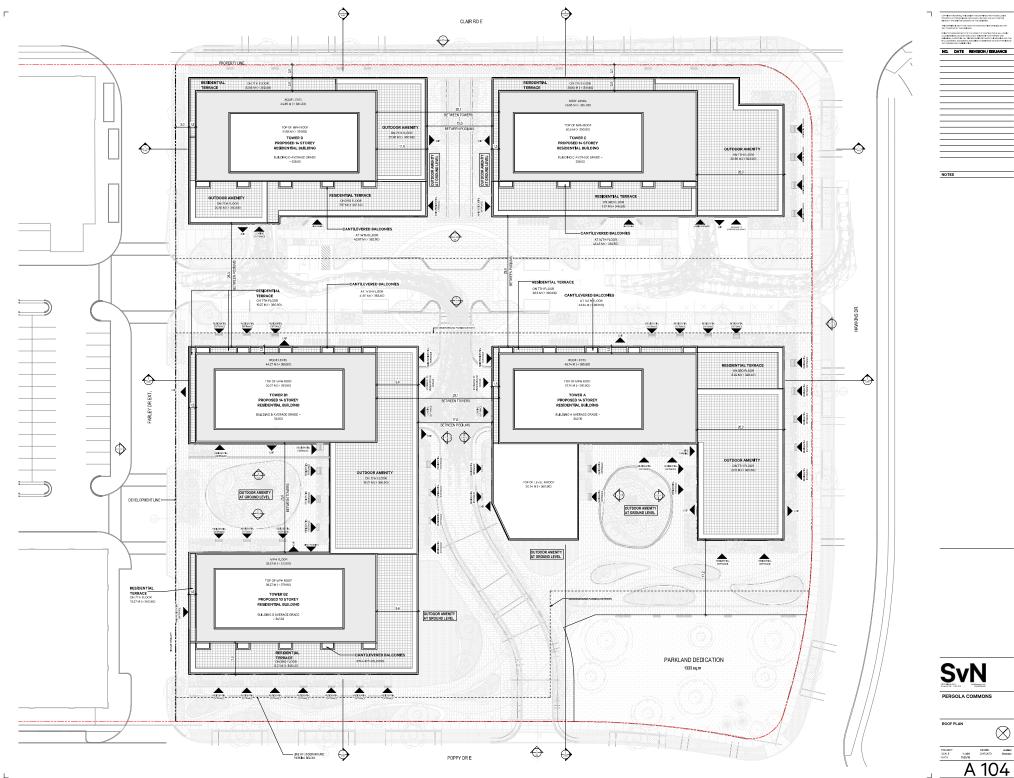
PH	ASE1 - BUILD	DING A	P	HASE 2 - BUIL	DING 8	PH	PHASE 3 - BUILDING C			PHASE 3 - BUILDING D		
	GFA (sq.m)	NET FLOOR AREA (sq.m)		GFA (sq.m)	NET FLOOR AREA (sq.m)		GFA (sq.rr)	NETFLOOR AREA (sq.m)		GFA (µq.m)	NET FLOOR	
LE/EL 1	2272	1525	LEVEL 1	3026	2193	LE/EL 1	2017	1572	LEVEL 1	1773	1844	
LEVEL 2	1821	1478	LEVEL 2	2296	1892	LE/EL 1	1055	786	LEVEL 2	453	537	
LEVEL \$	2023	1745	LEVEL 3	2425	2098	LEVEL 1	1557	1371	LEVEL 3	1391	1228	
LEVEL 4	2022	1745	LEVEL 4	2425	2098	LE/EL 4	1557	1371	LEVEL 4	1391	1228	
LEVEL 5	2023	1745	LEVEL 5	2425	2098	LE/EL E	1557	1371	LEVEL 5	1301	1228	
LE/EL (2023	1745	LEVEL 6	2425	2098	LE/EL E	1557	1371	LEVEL 6	1391	1728	
LEVEL 1	923	791	LEVEL 7	1675	1474	LE/EL 1	943	824	LEVEL 7	859	161	
LEVEL E	911	780	LEVEL 8	1656	1454	LE/EL 8	9:4	796	LEVEL 8	830	720	
LEVEL §	91:	780	LEVEL 4	1656	1454	LE/EL §	9:4	796	LEVEL 9	810	721	
LEVEL 10	911	780	LEVEL 1D	1658	1454	LEVEL 10	9:4	796	LEVEL 10	830	121	
LEVEL 11	911	780	LEVEL 11	829	790	LE/EL 11	9:4	796	LEVEL 11	830	721	
LEVEL 12	911	780	LEVEL 12	829	790	LE/EL 12	9:4	796	LEVEL 12	830	721	
LEVEL 13	911	780	LEVEL 15	829	790	LEVEL 13	9.4	796	LEVEL 13	830	721	
LEVEL M	911	780	LEVEL %	829	790	LE/EL M	9:4	796	LEVEL 14	830	721	
MECH PH	420	0	MECH PH	420	0	MECH PH	420	0	MECH PH	420	0	
TOTAL	19900	16234	TOTAL	25424	21473	TOTAL	17961	14238	TOTAL	14199	11500	

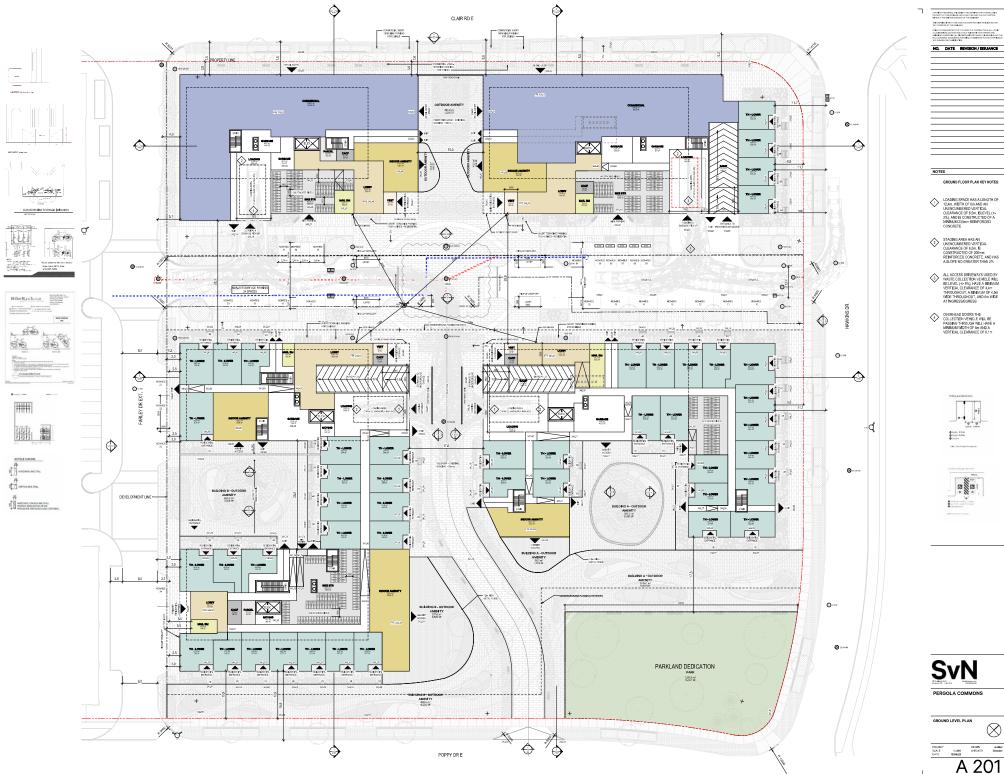
TOTAL SFA (sq.m) FOR ALL PHASES TOTAL NEA (sq.m) FOR ALL PHASES New Zoning By-law (2023)-20710

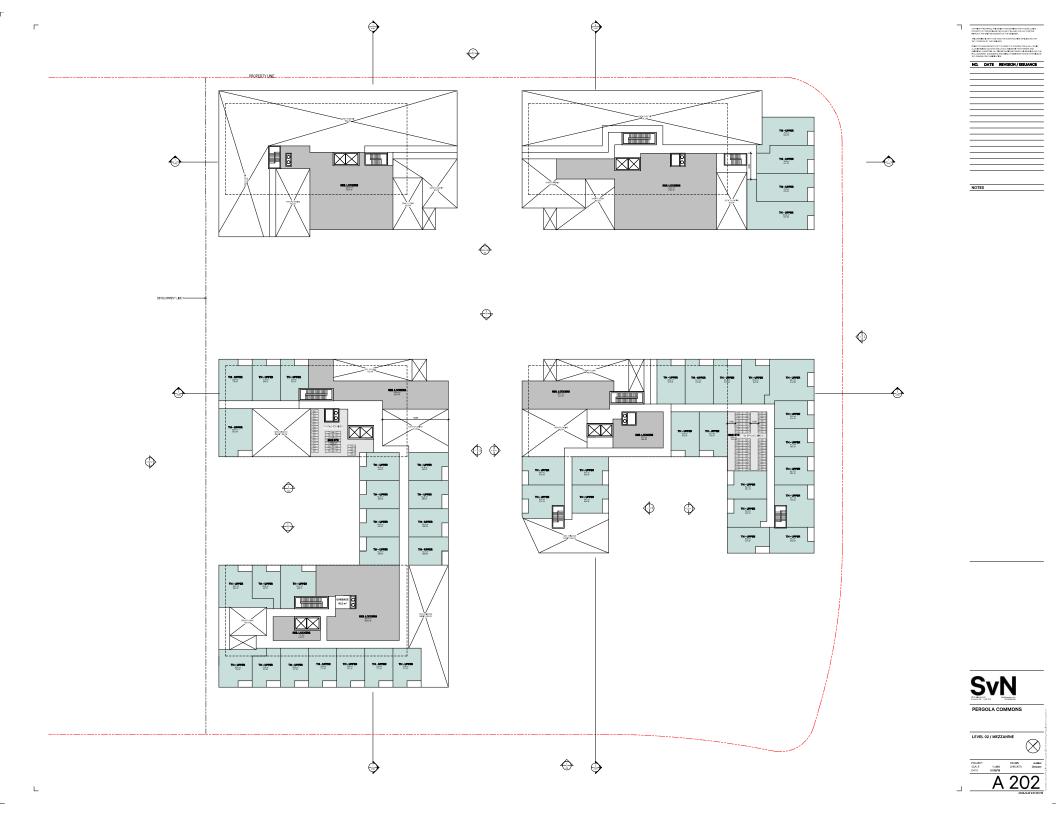
PHASE 1 B	UILDINGA		PHASE 2 BUILDI	NG B	PHASE 3 BUILDINGS C& D			
NO.OF UNITS		101	ND. OF UNITS		250	NO. OF UNITS		392
VIN REQ. VEHICR	.3./ve.#	15	N IN REQ. VISITOR	Same	25	MN REQ VOLCE	A/veit.	28.2
VIN REQ. RESERVITIN	.8/m.8	151	IN IN REQ. RESIDENTIAL	Marit	200	MN REQ. #ESDENTAL	Ares.	726
RED. ACCESS BUI SPACES	1+2%	- 1	KID. ACCESSIBLE SPACES	342%	. 6	RHL ACCESSIBLE SPICES	1+2%	.7
PROPOSED			PROPOSED			MOROSED		
LEVIL P1			LEVEL PL			LINEL P.		- 1
NOB-RES PARKING		21	NOM-RES PARONG		25	NON-RES PARIONS		- 29
RESIDENTIAL PARENTS		110	RISIDESTIAL PAER 95		80	RESIDENTIAL FARKING		106
TOTAL		233	TOTAL		305	TOTAL		135
LEVE P2		- T	L/VEL P2		- 1	LEVEL PC		- 1
NOR-RES MARKINS		- 4	NON-RIS PARCING		0	NON-RES PARIONS		0
RESIDENTIAL PARKING		1.39	RESIDENTIAL PARKING		112	RESIDENTIAL FARKING		146
TOTAL		2.39	TOTAL		322	TOTAL		146
TOTAL ACCESSIBLE		10	TOTAL ACCESSIBLE		2	TOTAL ACCESSIBLE		10
OVIRALL TOTAL		264	OVERALL TOTAL		237	OVERAL TOTAL		263
PROPOSED PARKING LATIO		0.3	PROPOSED FARKING RATO NON-RIS		0.3	PEOPOSED PARKING RATIO NON-RES		3.1
PROPOSED PARIENS RATIO	I RES	3.3	PROPOSED PARKING RATIO RES		0.6	PROPOSED PARKING RATIO RIS		3.9
OVIRALL ALL PRASES								
NON-RES PARKING		71	COMMITCIAL PARKING	1.2	/80.91.1	1		
RESDENTAL PARKING		693	COMMERCIAL AREA		1150 sqm	4		
PROPOSED PARIENS NATIO	NON-RES	0.1	REQUIRED COMMETCIAL PARKING		26	1		

PHASE 1 BUILDING A RES			PRASE 2 BUI.DIN	G B RES		PHASE 3 BUILDING C R	ES	FHASE 3 BUILDING D FES			
NO OF URITS REQUERED SHORT-TERM		189	ND. OF UNITS		250	NO OF UNITS	144	NO. OF UNITS		116	
PARCING	-3/mit	11	REQUIRED SHORT-TERM INJUGNO	Junit	25	NOURD SHORT TOM PURCING New	38	RECURED 2HORT TERN PARKING	Sherit	34	
REQUIRED LONG-TERM PARCING PROPOSED SHORT-TERM	1/unit	181	REQUIRED LONG TERM PARKING	Shrit	250	REQUIRED LONG-TERM PARKING LAWS	146	REQUIRED LONG REMINARIZAD	1/anit	136	
PARCING INCROSED LONG TERM		28	PROPOSED SHORT-SIRM BARIONS		26	PROPOSED SHORT-TOTAL PARKING	2.6	PROPOSED SHORT-TERM PAREING		36	
PARCING		211	PROPOSED LONG-THMI PARKING		278	PEOPOSED LONG TELM PARKING	146	PROFOSED LONG TERM PARKING		1.00	
						PHASE 3 BUILDING C COMM	24	PRASE 3 BUILDING D			
OVERALL RESIDENTIAL- ALL P	HASIS	734	OVERALL COMMERCIAL LONG TERM END PURCING			NEW OF CONVERTING SPREE NEW IND SHORT TOWN PURCING 2/300 NOUND LONG TERM PURCING 2/300 PLOPOSED SHORT-TOWN PURCING	un 2	RECURED SHORT TERM PARKING RECURED CONG TERMINATION PROTOSED SHORT TERM PAREING	.2/200 an	946 2 1	

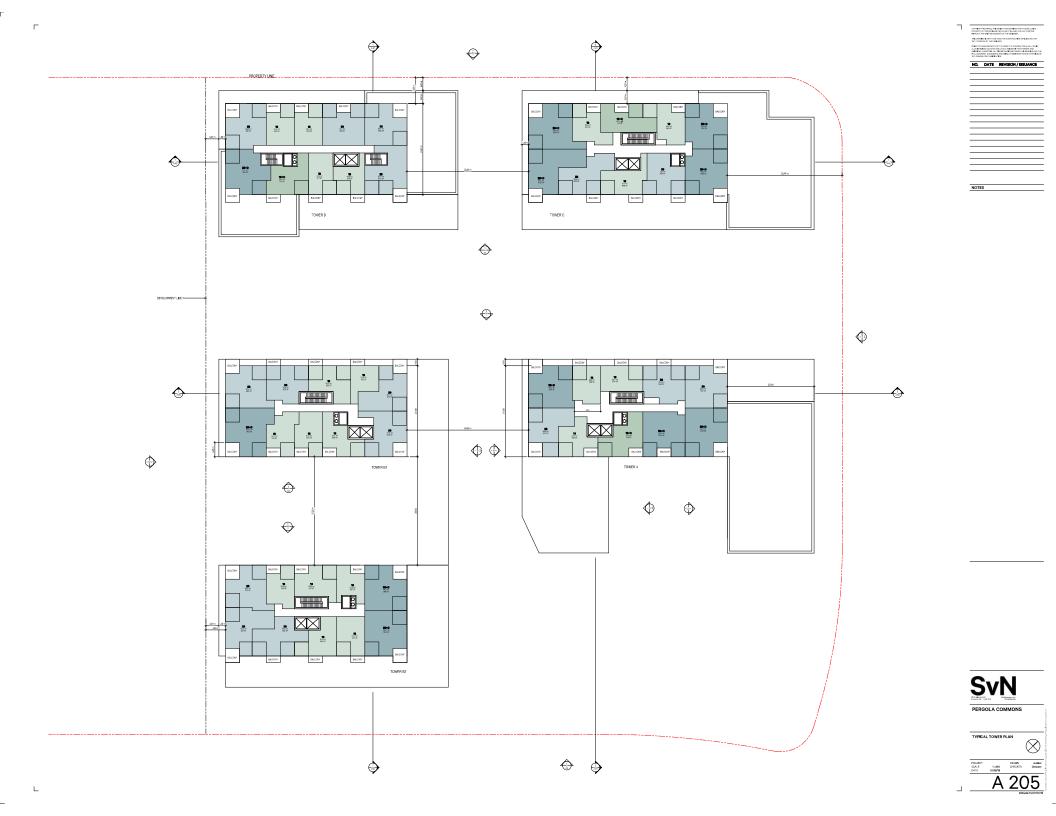



PERGOLA COMMONS PROJECT OVERVIEW


_


Г

 \otimes



				, LINE	1
	t			RÖPERT	
		D 422 + (((((
			m	THE	
	 		m	TUT	
	 		m		5000
	 		m		540 FLORID (1998)
		-	10°	m	542-FUTUR (1)
	 <u>↓ ↓ ↓</u> ∞		\61		5 CALO TOTAL (1993)
	••••••••••••••••••••••••••••••••••••••				1 CAL - TO DE MORE
	111			T T	-0.00 (4.1. F. OR. 14 (1996)
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	φ.	E ACCE			
		RIVATI			R R R
Agglaren	· · · · · · · · · · · · · · · · · · ·	- Kanadaad			

BUILDING A

BUILDING C

NORTH ELEVATION

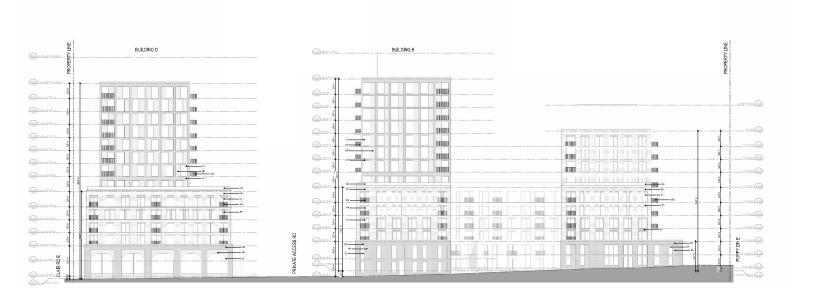
2 EAST ELEVATION 1:200

				BUILDIN	GC					BUILI	DING D			LIN .
PERTY														OPERTY
~~~~								 _						E
			mm					000				Internet		3
			0000					 						8
		m						 _ hum						
			mm					 - 1000						8
		m				0, 		 _ <u>1</u> 0000						8
						• • • • • •								
				and and a second										380
				m										
	unter anno anno a	HI 5mm 8 E		num L	rara				<u>-    "</u>		mm	mm	°	
B				$\Delta c \Gamma$			STRIAN.			14.P				8 s
WKINS						- mt//	LED BE							PRIVATE I

-	
NOTE	8
	-
(M)	MASONRY
12	COLOURED MASONRY
$\odot$	PRECAST PANEL
æ	METAL PANEL
٩	GLASS
$\odot$	BIRD FRIENDLY GLASS"
6	GLASS GUARD
Ŵ	NETAL PICKET GUARD
	"BID FRENDLY REIT WITH A MINIMUM DIAMETER OF BMM AND MAXMUM SPACHNO GF B0 MM WILL BE APPLIED TO THE PIRST 18M OF THE BULLDINGS RACING THE PARCIAND DEDICATION AND STORM WATER FONDS FACING HWIKINS DR

Compare regimes, se previous more than the second at the second s

NO. DATE REVISION / ISSUANCE


Svanske Markets Bergola commons

BUILDING ELEVATIONS

_ _

PROCEET 11.850 DOUMN AND CONTROL OF THE DESCRIPTION OF THE DESCRIPTION

_

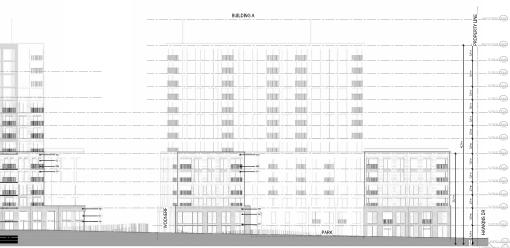


PREFE	CONTRACTOR	OF THE WORK THE CONTRACTOR & MUL YOR
CARDINE IN CARDING	CONTRACTOR I	INCLEVELT FORMET VANY DRUGHLAND CONTRACTOR FORMET VALUE AND
NO.	DATE	REVISION / ISSUANCE
NOTE		

COLOURED MAS PP PRECAST PANEL GI GLASS BIRD FRIENDLY GLASS GG GLASS GUARD MG NETAL PICKET GUARD BIRD FRENDLY FRIT WITH A MINIMUM DIAMETER OF SMM AND MAXIMUM SPACING OF 50 MM WILL BE APPLIED TO THE FIRST 181 OF THE BULDINGS FACING THE PARALAND DEDICATION AND STORW WATER PONDS FACING HAWKINS DR

MI MASONRY

뷛 BUILDING B DPMENT L and a ana i 11010 10.000 191991 mm mm auror. mm TIMIT


ams.

**HITTH** 

0000

-

THE REAL PROPERTY.





1 SOUTH ELEVATION

<u>Anners</u>

<u>(1997) 10-110</u>

anna a

, throad a

THERE

rindulte

NUMB.

alter i

CHINE ALL

2 WEST ELEVATION 4 302 1:200

L

Г

BUILDING ELEVATIONS

	BUILDING A	BUILDING B	E . B. C. (1990)
		EVT LIVE	
			<u></u>
(j)	. 1969		

1 ELEVATION - BUILDING A & B NORTH

and the warments			BUILDING C	ITINE
-604	SVELOFMI			
Caralle Contractore	8 1			
(1)				
(a) and a second a se				
@@uz.uzz				
@@az-1982				
agg an 1988		<u> </u>	manini manani immini	
		······································	WINN WINN WINN	
(100 cup 10000			www wxw L.   uww	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			nun in interiore	
(2000) C.S.D. T. CORT. M			i na le can le fand le le na	
		<u> </u>		
Gegitae weer 💦 🚬 👘				Sector Se
EARLE				

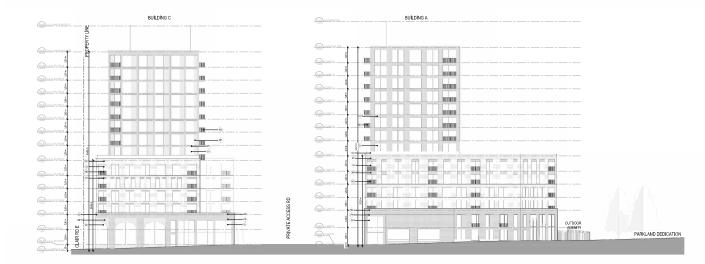
ELEVATION - BUILDING D & C SOUTH



MASCHRY CO.OURED MASCHRY FEAL PAREL FEAL PAREL CO.OURED MASCHRY FEAL PAREL CLASS GUARD FEAL PAREL FEAL PAREL FEAL PAREL OF AND FEAL PAREL

Svanski te statistické service service

BUILDING ELEVATIONS - PRIVATE ACCESS RD




L

_

RTYLINE		BUILDING B		90 (All)	BUILDING D
PROPERTY					
j –		<u></u>			
		<u></u>			
		=			
(1))) R (0) (2) (2))		L			
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		LIUIII			
(100 A) R. (100 B)					
(100 100 F 2	U				
	[] [] [] [] [] [] [] [] [] [] [] [] []				
(1) 100 10 10 10 10 10 10 10 10 10 10 10 10					
6.0.1.00 ×					
		(1) Brind II Berlad II Berlan I radraf II Datraf I			
POPPY DR E			• · · · · · · · · · · · · · · · · · · ·		
Cardona a			<b>3</b>		
1 and the and				<u>τ</u>	

(	ELEVATION - BUILDING B & D EAST	
4 304	1:200	



2 ELEVATION - BUILDING C & A WEST (1300) 1:200

____ _____ _ ____ ____ ____ ____ _ NOTES MASONRY N2 COLOURED MASONRY PP PRECAST PANEL NP NETAL PANEL G1 GLASS BIRD FRENDLY GLASS PERAL FRANCE GUARD "BRD FRENDLY FRIT WITH A MIMMUN DARFERS OF SMM AND MAXMUN SPACING OF SM MM WILL BE APPLIED TO THE FIRST 16M OF THE BUILDINGS FACING THE PARKLAND DEDICATION AND STORM WATER FONDS FACING HAWKING DR

COMMENT RESIDUE. SE EXCEPTI NO SUMPRIME MARINE PRESIDUE N PORTATO PRE DELEMAN ANALAMENTE COMPOSITIONE PREVIDENCE MILLON 74 MILLON 74 MILLONGO O SE EXCEPTIS THE COMPOSITION OF SECTION AND RESIDUES.

PEDITOCOMMENCIALITY IN VOICE E CONTINUENDE AUX VOIEY AUX ELEVERIDAD DE LA CONTENTE DE LA VOIEY AUX VOIENT AUX CARACTER AUXORITY AUX DE LA CONTENTE AUX VOIENT AUX RELACIÓN DE LA CONTENTE AUX DE LA CONTENTE AUXORITY AUXORITY RELACIÓN DE LA CONTENTE AUXORITY DE LA CONTENTE AUXORITY ES CONTENTE CLARATERIA DE LA CONTENTE AUXORITY AUXORITY NO. DATE REVISION / ISSUANCE





BUILDING ELEVATIONS - WOONERF

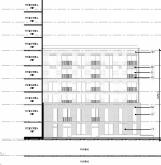
Водет Бате 11.800 Сноста очные А 304 1



BUILDING ELEVATIONS - COURTYARD

SvN

PERGOLA COMMONS


### BUILDING B - COURTYARD NORTH ELEVATION

INE					
DEVELOPMENT LINE					
EVELO					
Caral Mich Hi (1928 1		1			
A A A A A A A A A A A A A A A A A A A					_
		шш			
(1)(1) N (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					
Cong Rocks -	"	шш			
(87.0) 1.008.00					
(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1000			
(100 100 10		1111	mm		·
(100 1000					RESERVA.
And Token		11.00.0	l nin 1	1	NESECONA. UNIT
A CONTRACTOR					NEREMAN, UNIT
		- Contrast	hand		NESEXAN. UNT
EXTERNAL TROOP			1		REEMIN. UNT
ARLE - ST	01				ISSEMA. UNT
Carlos and					
		9483			
	L	1985	**		

			DEVELOPMENT LINE
			B // B /
	LL LL India LL A	•	- rounigg
			P (SEAL)
NEEDENIN. UNT	0101000		-
Marcone.			roradou)
astowia, UNI			1
RESIDENTER.			
REDEATS.			
sstearts.			
			FAR
	PARKING		PLONET (STAT
	PMRING		

1 BUILDING A - COURTYARD EAST ELEVATION 1 200

REDSHILL UNT	1.001 (0 (102))
REDEXING	
Reference unit	- + + - <u>none (au)</u>
	a second a second
All and a second a	- <u>100700</u>
	1001 
	5
Patrolika)	a antipade material
Patellag	2



_000____ 

mm

2 BULDING A - COURTYARD WEST ELEVATION 1:200

-----

HINH

C. MENTE RECE, CARL

NOTE	S
<b>M1</b>	MASONRY
∞	COLOURED MASONRY
$\diamond$	PRECAST PANEL
Ŷ	NETAL PANEL
ᢀ	GLASS
Ŷ	BIRD FRIENDLY GLASS"
✨	GLASS GUARD
Ŵ	NETAL PICKET GUARD
	"BRD FREINDLY FRIT MITH A MINIMUM DIAMETER OF 5MM AND MAXIMUM SPACING OF 50 MM WILL BE APPLIED TO THE FIRST 16M OF THE BULDINGS FACING THE PARKLAND DEDICATION AND STORM WATER PONDS FACING HWWKING DR

÷.,	COMPLEXE MEDIANE, THE DESIGN AND BANK BEAM THE BROAT IN PROPERTY OF THE DISLOYER AND CANNUT BEURED FOR HIT PURPOSE IN THESE THE METTINE CONSIST OF THE DESIGNER.
	THE ORANDO E NET FORE LEED FOR CONSTRUCTED ANTE EXCROLOGY TRATEGRAPHICS IN THE ORIGINAL
	IN DRITCOMMENDIALY OF THE WORK THE CONTRACTOR BUILL WORK ALL CLEWED ME, CATTURE AND LEVELT TO DIST TY ANY EPIDER AND
	CALIFICATE AND THE ANY DECEMPTION DESIGNMENT AND AND THE PAGE CONTRACT DOCUMENTS AND REPORT THEM TO BE AT THE ATTRACT ON THE ATTRACT DECEMPTING ON A DECEMPTIN
	NO. DATE REVISION / ISSUANCE
	-

4 BULIDING B - COURTYARD ELEVATION SOUTH



2 Section Building C & A (4.401 1:200

<u>figura</u> re



BUILDING SECTIONS

1

A 401

15

CONVENT RESERVE: 5-E DETEN AND SAME OF AND THE RECLUSIVE PRETERT OF THE DELEMENT AND SAME TRUE OF THE PRETER NETWORT 5-E INF THE CONSTRUCT OF THE DELEMENT

NO. DATE REVISION / ISSUANCE

THE OWNER ENTYTOIN UNE FOR CO TAAT PURSUE BY THE ORIGINAL IN DETECTION DESCRIPTION TO A TECHNIC Y LE CONTRACTOR IN ALL VOIRY ALL CLANDONC DETENTION UNULL'IT DENTY AND INVESTIGATION CARLONN AND DENTY A AN ORDER ACTIVITY MAN INVESTIGATION OF FALL CONTRACT DOCUMENTA AND INTO THEIR THEM TO THE ATTIVITY THE OWNER CLAND CLATCH.

NOTES

ETRICTER UNTE EDURCON

L

<u></u>				BUILDING (	0			·					BUILDING	c								KINS DR	
<u> and an </u>	DEVELOPIN			MECHER		1					0	MEDING						1				Y LINE HAWKINS DR	
-4539 (Stath Case - 71098 H	REPORTED ON THE	\$TAR	NES, UNITS	RESIDENTIAL UNITS	]	RS UMS	SUAR	NES UNITS			nesteart	a. un ra	RESERVICE UNITS		REDOCH, UNPS	$\square$	REDDOMAL UNITS					ROPERI	1000
San Care States	READER THE UNITS	SD R	NOS. UNITS	REDEMIN, UNTR	]	RS UNES	STAR	RES UNITS			neseeve	N. UNITS	RESERVICE, UNITS		NEROSCIEL UNIS		READEMENT UNITS					۹.	100 - FORD (100 - 100 -
())) ()) ()) ()) () () () () () () () ()	RESIDENTIN, UNITS	sue	805. UNIS	RESIDENTIAL UNITS		PES UNES	SDAR	RES UNITS			RESERVE	NUM IS	RESERVITEL UNITS		RESIDENTIAL UNITS		RESIDENTIAL UNITS						1000
Charles Floren	sestexmu unra	STAR	825, UN75	RESIDENTIAL UNITS	l	PSS UMPS	5141	RES UNIS			RESERVE	u un ra	RESERVICE, UNITS		RESIDENCIAL USING	$\Box I$	RESIDENTIAL UNITS						
A CHE-FUREN	RESIDENTING UNITS	SUB	805, 0175	RESIDENTIAL UNITS	ļ	PSS UMPS	ST41	RES UNTS			RESERVE	a un ra	ESECORE UNIS	L	RESIDENT UNITS	Ш	RESIDENTIAL UNITS						
A CHARGE CLASS OF COMPANY	asposte ums	\$75 <b>R</b>	NOS. UNITS	RESIDENTIAL UNITS	I	RS UNES	5141	NCS UNITS			nespent	u unes	RESIDENTING UNITS		RESIDENTIAL UNITS	Ц	RESIDENTIAL UNITS						10-5000 (M)
AND CAR FURNIS	RESIDENTING UNITS	SDR	S ans	RESIDENTIAL UNITS		RS UNFS	ST44	RES UNITS			RESERVE	N. UNITS	RESERVITE, UNITS		RESIDENTIAL UNITS	our	RESIDENTIAL UNITS						ar rosa and
END CAR PLOTE	Accos water	814 M	ass. DATS	NEOOR AMEMIN	Į	RSS UMPS	SDIR	NECCHI MIGNA			READON	4.UMTS	RESIDENTIK, LAIPS	[	READORN UNIS	Ш	NECORAMENTY				<u> </u>		CLU-FORM (1999)
San and a statement	RESERVING UNITS	ē		RESIDENTINE UNITS	TOR CODE		81344	RESIDENTING UNITS	RESIDENTIAL UNITS		RESDENDIG UNITS	RESIDENTIAL WITH		108.004	RENDERFUNCTION		REDORN, WAS	STOP		RENDENTIALUMPS			A CAR FORM (SAN)
Salar Jose S	RESERVITE UNITS	NO3		PESIDENTING UMITS	⁶		8144	PESIDENTING UMITS	RESIDENTING UMPS		nestextis, units	restorme, untra		â	READORNLOADS		REFERENCIAL UNITS	574 P		READENTING UMPA	4		5 CALO - F CORE OF (14)
2000 CAR-FURNA	RESERVENT OF THE	100		PESIDENTINE UMITS			81344	PESIDONTINE UNITS	RESIDENTING UNITS		RESDENTIN, UNITS	ASSESSMENT UNITS			READONIN, UNPO		RESOLUTION, UNITS	STAR		READENTINGUMPA			CALO-FORMA (144)
6150 CAR - 100100	RESIDENTIAL UNITS	ana a		RESIDENTING UNITS	l		81344	RESIDENTING UNITS	PESDO(THLUMPS	I	REDEMPLONTS	RESIDENCIAL UNITS			READERTHEORYS		HEIDENDY, UMIS	STOP		READENTPLUMTS			100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -
5		ŧ.		HES, LOCKENS		REIS. LOOKENS	5144					REALO	XIRG		RELIQUERS		RELLOCKERS	STAR	226880008	ТН			1 (1) (1) (1) (1) (1)
-120 (Strain) C & D - FLOOR (1)	COMITICAL	and the second se	CARINA	x		1004	SDAR		NDOOR AND ITY	SALAND C & D OUTDOOK MIGNITY	RECORNERATIV	COMINE	GN.			GARDAGE		STOR	840	тн			CAD-ROOMS (MAD)
	N844		RES.LOD	1110 (1000) (0000)	1	CLEV.	RSS. LOCKERS			873.1004F6			1000 CORDA			10		STOR		_	PARTING	8	
	Palativa		REF-LOO	EERA SEA	I	LOBOL	NSS LUCXBRS			R5.10988			ji k		Þa	NS		STOR	///////////////////////////////////////	2	Pu8dva		

		EDDEN AND DAMAINED AND THE EXCLUSION IF AND LANKET BE UNDO FOR INT TOWARD							
1400	MTHOLY THE MATTER CONDUCTOR THE DELEVER. THE ORIGINAL BLACK TO BE LEED OF CONTRACTOR WITH EXAMPTION TAXAT PURCHERS THE DELEVERANCE.								
ALL D CAUSE PLATE	HENDONE, CARTINEED	OF THE WORK THE CONTRACTOR & MALL WORK INCLUDED TO DON'T ANY DIFFERENCE OF DOMESTIC DON'T ANY DIFFERENCE OF DOMESTIC DON'T ANY DIFFERENCE OF ANY DIFFE THEM TO BE AT THE CON- ATTON							
NO	DATE	REVISION / ISSUANCE							
_									
_									
_									
_									
_	-								
_									
_									
_									
_									

1 Section C & D 4 402 1 : 200

	IN																dus DR	
And the state	MEN				BUILDING B					 	BUIL	DING A					 . LINE HAWKI	
	VELOPI				WOHPS.							MECHT26.						1
	<u>۳</u>	1					_	<u>q</u>		 1					<u> </u>		 PROPERT	
		READENTING UNITS	RESEC	STRUUNTS	57.4165	RECE	MP4 UNTS			RESERVENTION	PESDOCIFICATIO	574R	PESCONTINU UNITS	RESIDENTIAL UNITS			H N	Access (State
1000 A007.0		READERTING UM IS	NOTICE A	STRUURTS	57.476	101	MPLUNTS	]		RESERVENTION	PESDOVINLOWIS	574R	PESDOVTNL UMIS	RESIDENTIAL UNITS				- <u>P. (100.11</u> (2008)
Cardenary	<u> </u>	READORNE, UNITS	READ	STINL UNITS	57.475	nca:	STREENTS			RESERVENTIONS	PESDOVINE UNITS	574P	RESIDENTIAL UNITS	RESERVED. UNITS				1000 R.018.11 (1948)
maner -	L	READORN, UNIS	searce	STRUMITS	57495	101	ND-LUNTS			RESERVENTIONES	PESDONTHLIMIDS	5749	RESIDENTIAL UNITS	RESPONDENCES			8	
		READONING UM IS	ALSEC	NTHE UNITS	57.4%5	A03	MR-LINTS			 RESERVICTORIS	PESDOCINE WITS	SAR	RESIDENTIAL UNITS	RESDENTIGUERS			 8	
Second and a second		READENTING UNITS	RESER	STRUUNTS	57.416	123	MPLUNTS			 RESERVENTION	PESDOCIFICIONIS	574R	RESIDENTIAL UNITS	REPORTED ON THE			 	
	4	READORN, UNIS	reste	STML UNITS	57.495	823	STREED ITS	<u> </u>	280	 RESERVICE	PESDOCIPLONIS	574R	RESIZEMEN, DATS	RESERVATION OF THE			 	ACCR 16 (1997)
A CONTRACTOR OF A CONTRACTOR O		satistic ma	RESEC	STIN, UNITS	STARS	8231	MALINTS	4	<u> </u>	 RESERVICEMENTS	PERDOVING	STAR:	RESIDENTIAL UNITS	MERCHARMY			 -12 W	KORD (1998)
		RESIDENTIAL UNITS	READEMING	ND .	87.49%	898	ND-LUNTS	PERDENTIA, LATS		REFERENCE	PERDEVIPLONIS	8748	SSDEMAL WES	REDENTIQUITS				LOOK IN (17.40)
A PERSON AND A PER		REDEMIN, UNITS	REIDEMINU	NIR	87498	884	AD-LUNTS	RENDENTIA, LAITS	7	 RESPONDENCES	PERDEVTPLIMITS	8748	REDEMIN, UNITS	REPENDENT				R.COR II (SHA)
1000 E.0010		RENDEMEN, UNITS	READENTIAL	INTE	87498	830	MH, UNITS	RENDERTIN, UMPR	Z.	READERLINES	PERDOCIPLIANTS	874P	RESIDENTIAL UNITS	REQUESTING UNITS				TUREN GLA
100		RESIDENTIAL UNITS	RESIDENTIN, I	ell's	874 <b>F</b> /8	ACK.	stis, usits	SEMENTA, LAPS	7	 RESIDENTIA, UMPS	READONNAL UNITS	87 <b>4</b> 3	RESIDENTIA, UNITS	sesbestik, untra				Turan (aga
		Тн	Тн	ъ	sr <b>u</b> es		10100	<b>N</b> 4.100875	1100		RESIDENTIAL LOOKERS	57 <b>4</b> 8	тн	DH	ъ	тн		
And a series of a	Min	TH	тн		57.4%5	LOBBY				 		LOBBY NRL FM	тн	тн	тн тн	тн	 	
<u>(100)</u> (100) (10)					300		1600		1621	 7.9%	1 man de	ليبلي	+			<u> </u>		R.008.11 (1008)
	-			мекро	7.5%	-t-	22	<u> </u>	,	 2	7.5%		*		veres		 	
	-		_	NAMORE	3000		ABFABELOV DUP	20	NCH		REALER.OW KNOP		7.9%		nerates		 	
											430	197	3001					

2 Section B & A 4.402 1:200

> 19002007 11.800 0-000 00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.0

States I.E. States Terror States

BUILDING SECTIONS

L

_



# APPENDIX B

### CRITERIA

The Guelph Noise Control Guidelines are to be read in conjunction with the MECP publication "Environmental Noise Guideline Stationary and Transportation Sources – Approval and Planning" Publication NPC-300, August 2013. Unless otherwise indicated in the Guelph Noise Control Guidelines, the principles and policies of NPC-300 must be followed for all noise studies submitted.

### **Transportation Sources**

Guidance from the Ontario Ministry of the Environment, Conservation and Parks (MECP) NPC-300 Environmental Noise Guideline was used to assess environmental noise generated by transportation-related sources. There are three aspects to consider, which include the following:

- i. Transportation source sound levels in indoor living areas (living rooms and sleeping quarters), which determines building façade elements (windows, exterior walls, doors) sound insulation design recommendations.
- ii. Transportation source sound levels at the plane of the window, which determines air-conditioning and ventilation system recommendations and associated warning clauses which inform the future occupants that windows and doors must be closed in order to meet the indoor sound level criteria.
- iii. Transportation source sound levels in Outdoor Living Areas (OLAs), which determines OLA noise mitigation and related warning clause recommendations.

### **Road and Rail**

### Indoor Sound Level Criteria

For assessing sound originating from transportation sources, NPC-300 defines sound level criteria as summarized in **Table 1** for indoor areas of sensitive uses. The specified values are maximum sound levels and apply to the indicated indoor spaces with the windows and doors closed.

		Sound Level Criteria (Indoors)				
Type of Space	Source	Daytime L _{eq,16-hr} 07:00h – 23:00h	Nighttime L _{eq,8-hr} 23:00h – 07:00h			
<b>Living Quarters</b> Examples: Living, dining and den areas of residences,	Road	ad 45 dBA				
hospitals, nursing homes, schools and daycare centres	Rail	Rail 40 dBA				
Sleeping Quarters	Road	45 dBA	40 dBA			
	Rail	40 dBA	35 dBA			

### Table 1: Indoor Sound Level Criteria for Road and Rail Sources



NPC-300 also provides guidelines for acceptable indoor sound levels that are extended to land uses and developments which are not normally considered noise sensitive. The guideline sound level criteria presented in **Table 2** are provided to inform good-practice design objectives.

		Sound Level Criteria (Indoors)				
Type of Space	Source	Daytime L _{eq,16-hr} 07:00h – 23:00h	Nighttime L _{eq,8-hr} 23:00h - 07:00h			
General offices, reception areas, retail stores, etc.	Road	50 dBA	-			
	Rail	45 dBA	-			
Theatres, places of worship, libraries, individual or semi-	Road	45 dBA	-			
private offices, conference rooms, reading rooms, etc.	Rail	40 dBA	-			
Sleeping quarters of residences, hospitals,	Road	-	40 dBA			
nursing/retirement homes, etc.	Rail	-	35 dBA			
Sleeping quarters of hotels/motels	Road	-	45 dBA			
	Rail	-	40 dBA			

### Table 2: Supplementary Indoor Sound Level Criteria for Road and Rail Sources

### **Outdoor Living Areas (OLAs)**

Outdoor Living Areas (OLAs) would include outdoor areas intended and designed for the quiet enjoyment of the outdoor environment and which are readily accessible from the building.

OLAs may include any common outdoor amenity spaces associated with a multi-unit residential development (e.g. courtyards, roof-top terraces), and/or private backyards and terraces with a minimum depth of 4m provided they are the only outdoor living area for the occupant. The sound level criteria for outdoor living areas is summarized in **Table 3**.

### Table 3: Sound Level Criteria – Outdoor Living Area

	Sound Level Criteria (Outdoors)					
Assessment Location	Daytime L _{eq,16-hr} 07:00h – 23:00h	Nighttime L _{eq,8-hr} 23:00h – 07:00h				
Outdoor Living Area (OLA) (Combined Road and Rail)	55 dBA	-				



### **Outdoor and Plane of Window Sound Levels**

In addition to the sound level criteria, noise control measures and requirements for ventilation and warning clauses requirements are recommended for residential land-uses based on predicted transportation source sound levels incident in the plane of window at bedrooms and living/dining rooms, and/or at outdoor living areas. These recommendations are summarized in **Table 4** below.

<b>A</b>	Transportation Sou	nd Level (Outdoors)	
Assessment Location	Daytime L _{eq.16-hr} 07:00h – 23:00h	Nighttime L _{eq.8-hr} 23:00h - 07:00h	Recommendations
			Installation of air conditioning to allow windows to remained closed.
2	> 65 dBA	> 60 dBA	The sound insulation performance of building components must be specified and designed to meet the indoor sound level criteria.
indo			Warning clause "Type D" is recommended.
Plane of Window (Road)	> 55 dBA	> 50 dBA	Applicable for low and medium density development: Forced-air ventilation system to allow for the future installation of air- conditioning. Warning clause "Type C" is recommended.
			Applicable for high density development: Air conditioning to allow windows to remained closed. Warning clause "Type D" is recommended.
Plane of Window (Rail ^{1, 2} )	> 60 dBA	> 55 dBA	The acoustical performance of building façade components should be specified such that the indoor sound level limits are predicted to be achieved.
e of Wind (Rail ^{1, 2} )			Warning clause "Type D" is recommended.
Plane (		L _{eq, 24h} r) and	Exterior walls consisting of a brick veneer or masonry equivalent for the first row of dwellings.
	< 100m fr	om tracks	Warning clause "Type D" is recommended.
Outdoor Living Area Combined Road and	≤ 60 dBA > 55 dBA	-	If sound levels are predicted to exceed 55 dBA, but are less than 60 dBA, noise controls may be applied to reduce the sound level to 55 dBA.
Co Co Ro	~ 55 UDA		If noise control measures are not provided, a warning clause "Type A" is recommended.

### Table 4: Ventilation, Building Component, and Warning Clauses Recommendations for Road/Rail Sources

# Š

<b>6</b>	Transportation Sou	ind Level (Outdoors)				
Assessment Location	Daytime L _{eq.16-hr} 07:00h – 23:00h	Nighttime L _{eq,8-hr} 23:00h – 07:00h	Recommendations			
			Noise controls (barriers) should be implemented to meet the 55 dBA criterion.			
	> 60 dBA	-	If mitigation is not feasible to meet the 55 dBA criterion for technical, economic or administrative reasons, an exceedance of 5 dB may be acceptable (to a maximum sound level of 60 dBA). In this case a warning clause "Type B" would be recommended.			

vote(s)

1. Whistle noise is included (if applicable) in the determination of the sound level at the plane of window.

2. Some railway companies (e.g. CN, CP) may require that the exterior walls include a brick veneer or masonry equivalent for the façade facing the railway line, regardless of the sound level.

3. Whistle noise is not included in the determination of the sound level at the OLA.

### **Stationary Sources**

### NPC-300 Sound Level Criteria – Stationary Sources

Guidance from the MECP NPC-300 Environmental Noise Guideline is used to assess environmental noise generated by stationary sources, for example industrial and commercial facilities.

Noise from stationary sources is treated differently from transportation sources and requires sound levels be assessed for the predictable worst-case one-hour average sound level (Leq) for each period of the day. For assessing sound originating from stationary sources, NPC-300 defines sound level criteria for two types of Points of Reception (PORs): outdoor and plane of window.

### **Continuous Sources – Regular Operations**

The assessment criteria for all PORs is the higher of either the exclusion limit per NPC-300 or the minimum background sound level that occurs or is likely to occur at a POR. The applicable exclusion limit is determined based on the level of urbanization or "Class" of the area. The NPC-300 exclusion limits for continuously operating stationary sources are summarized in **Table 5**.

Time Period	Class	1 Area	Class	2 Area	Class	3 Area	Class 4 Area		
	Outdoor	Plane of Window	Outdoor	Plane of Window	Outdoor	Plane of Window	Outdoor	Plane of Window	
Daytime 0700-1900h	50 dBA	50 dBA	50 dBA	50 dBA	45 dBA	45 dBA	55 dBA	60 dBA	
Evening 1900-2300h	50 dBA	50 dBA	45 dBA	50 dBA	40 dBA	40 dBA	55 dBA	60 dBA	

Table 5: NPC-3	300 Exclusion Limits -	Continuous and	Quasi-Steady	Impulsive Statior	ary Sources (LAeq-1hr)



Time	Class	1 Area	Class	2 Area	Class	3 Area	Class 4 Area		
Period	Outdoor	Plane of Window	Outdoor	Plane of Window	Outdoor	Plane of Window	Outdoor	Plane of Window	
Nighttime 2300-0700h		45 dBA		45 dBA		40 dBA		55 dBA	

Note(s):

1. The applicable sound level criterion is the background sound level or the exclusion limit, whichever is higher.

2. Class 1, 2 and 3 sound level criteria apply to a window that is assumed to be open.

Class 4 area criteria apply to a window that is assumed closed. Class 4 area requires formal designation by the land-use planning authority. 3.

### **Continuous Sources - Emergency Equipment Testing**

Sound level criteria for emergency backup equipment (e.g. generators) operating in non-emergency situations such as testing or maintenance are 5 dB greater than the applicable sound level criteria for stationary sources.

In addition, the operation of emergency equipment under maintenance and testing conditions is assessed separately from all other stationary noise sources.

### **D-Series Guidelines**

The MECP D-series guidelines (MOE, 1995) provide direction for land use planning to maximize compatibility of industrial uses with adjacent land uses. The goal of Guideline D-6 is to minimize encroachment of sensitive land uses on industrial facilities and vice versa, in order to address potential incompatibility due to adverse effects such as noise, odour and dust.

For each class of industry, the guideline provides an estimate of potential influence area and states that this influence area shall be used in the absence of the recommended technical studies. Guideline D-6 also recommends a minimum separation distance between each class of industry and sensitive land uses (see **Table 6**). Section 4.10 of D-6 identifies exceptional circumstances with respect to redevelopment, infill and mixed-use areas. In these cases, the guideline suggests that separation distances at, or less than, the recommended minimum separation distance may be acceptable if a justifying impact assessment is provided.

Industry Class	Definition	Potential Influence Area ^[1]	Recommended Minimum Separation Distance ^[1]
Class I	Small scale, self-contained, daytime only, infrequent heavy vehicle movements, no outside storage.	70 m	20 m
Class II	Medium scale, outdoor storage of wastes or materials, shift operations and frequent heavy equipment movement during the daytime.	300 m	70 m
Class III	Large scale, outdoor storage of raw and finished products, large production volume, continuous movement of products and employees during daily shift operations.	1000 m	300 m
Note(s):			

### Table 6: Summary of Guideline D-6

. 1. Measured from Property Line to Property Line.

Guideline D-6 provides criteria for classifying industrial land uses, based on their outputs, scale of operations, processes, schedule and intensity of operations. **Table 7** provides the classification criteria and examples.

# <u> K</u>N

Criteria	Class I	Class II	Class III
Outputs	<ul> <li>Sound not audible off property</li> <li>Infrequent dust and/ or odour emissions and not intense</li> <li>No ground-borne vibration</li> </ul>	<ul> <li>Sound occasionally audible off property</li> <li>Frequent dust and/ or odour emissions and occasionally intense</li> <li>Possible ground-borne vibration</li> </ul>	<ul> <li>Sound frequently audible off property</li> <li>Persistent and intense dust and/ or odour emissions</li> <li>Frequent ground-borne vibration</li> </ul>
Scale	<ul> <li>No outside storage</li> <li>Small scale plant or scale is irrelevant in relation to all other criteria</li> </ul>	<ul> <li>Outside storage permitted</li> <li>Medium level of production</li> </ul>	<ul> <li>Outside storage of raw and finished products</li> <li>Large production levels</li> </ul>
Process	<ul> <li>Self-contained plant or building which produces / stores a packaged product</li> <li>Low probability of fugitive emissions</li> </ul>	<ul> <li>Open process</li> <li>Periodic outputs of minor annoyance</li> <li>Low probability of fugitive emissions</li> </ul>	<ul> <li>Open process</li> <li>Frequent outputs of major annoyances</li> <li>High probability of fugitive emissions</li> </ul>
Operation / Intensity	<ul> <li>Daytime operations only</li> <li>Infrequent movement of products and/or heavy trucks</li> </ul>	<ul> <li>Shift operations permitted</li> <li>Frequent movements of products and/or heavy trucks with majority of movements during daytime hours</li> </ul>	<ul> <li>Continuous movement of products and employees</li> <li>Daily shift operations permitted</li> </ul>
Examples	<ul> <li>Electronics Manufacturing</li> <li>Furniture refinishing</li> <li>Beverage bottling</li> <li>Auto parts</li> <li>Packaging services</li> <li>Dairy distribution</li> <li>Laundry and linen supply</li> </ul>	<ul> <li>Magazine printing</li> <li>Paint spray booths</li> <li>Metal command</li> <li>Electrical production</li> <li>Dairy product manufacturing</li> <li>Feed packing plant</li> </ul>	<ul> <li>Paint and varnish manufacturing</li> <li>Organic chemicals manufacturing</li> <li>Breweries</li> <li>Solvent recovery plant</li> <li>Soap manufacturing</li> <li>Metal manufacturing</li> </ul>

### Table 7: Guideline D-6 Industrial Categorization Criteria



# **APPENDIX C**

Page 17

Gordon St btwn Clair Rd and Poppy Dr

NB, SB													DIWI		п орру Ві
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	
Time	Bikes	Trailers	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
06/18/23	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
01:00	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
02:00	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
03:00	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
04:00	4	41	13	0	1	4	1	0	0	0	0	0	0	0	64
05:00	2	86	16	0	1	1	0	0	1	0	0	0	0	0	107
06:00	9	135	13	0	6	5	0	0	0	0	0	0	0	0	168
07:00	10	260	26	2	8	6	0	1	0	0	0	0	0	0	313
08:00	12	414	48	1	9	3	1	2	2	0	0	0	0	5	497
09:00	11	617	59	2	11	3	1	0	1	0	1	0	0	2	708
10:00	22	885	113	4	9	5	2	2	1	0	0	0	0	8	1051
11:00	25	951	94	7	16	6	2	1	1	0	0	0	0	19	1122
12 PM	33	1049	121	8	9	7	4	0	0	0	0	0	1	26	1258
13:00	31	1056	100	2	12	6	8	2	2	0	0	0	0	17	1236
14:00	26	973	131	3	15	5	1	3	1	0	0	0	1	14	1173
15:00	25	1005	113	4	11	6	6	1	0	0	0	0	0	11	1182
16:00	27	866	107	2	13	4	2	1	1	0	1	0	1	10	1035
17:00	24	821	96	1	7	6	1	2	0	0	0	0	0	7	965
18:00	20	799	81	1	8	4	2	2	1	0	0	0	0	5	923
19:00	31	806	89	0	10	5	1	2	1	0	0	0	0	9	954
20:00	19	765	70	1	10	7	5	1	0	0	0	0	0	8	886
21:00	14	619	43	2	12	2	4	0	0	0	0	0	0	3	699
22:00	8	392	31	3	7	2	1	1	0	0	0	0	0	3	448
23:00	2	203	14	0	2	1	0	0	0	0	0	0	0	1	223
Total	355	12743	1378	43	177	88	42	21	12	0	2	0	3	148	15012
Percent	2.4%	84.9%	9.2%	0.3%	1.2%	0.6%	0.3%	0.1%	0.1%	0.0%	0.0%	0.0%	0.0%	1.0%	
AM Peak	11:00	11:00	10:00	11:00	11:00	07:00	10:00	08:00	08:00		09:00			11:00	
Vol	25	951	113	7	16	6	2	2	2		1_			19	
PM Peak	12:00	13:00	14:00	12:00	14:00	12:00	13:00	14:00	13:00		16:00		12:00	12:00	
Vol.	33	1056	131	8	15	7	8	3	2		1		1	26	

Gordon St btwn Clair Rd and Poppy Dr

NB, SB															г орру Бі
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	
Time	Bikes	Trailers	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
06/19/23	0	174	7	2	1	0	0	0	0	0	0	0	0	0	184
01:00	1	84	11	1	1	1	0	0	0	0	0	0	0	0	99
02:00	0	39	7	1	0	0	0	0	0	0	0	0	0	0	47
03:00	1	37	10	0	3	1	0	0	0	1	0	0	0	1	54
04:00	8	96	17	0	5	6	0	0	3	0	0	0	0	0	135
05:00	13	245	46	3	11	7	2	0	1	0	0	0	0	0	328
06:00	19	426	95	7	15	12	1	5	0	1	0	0	0	5	586
07:00	41	715	112	10	43	11	1	7	1	1	0	0	0	8	950
08:00	39	867	128	12	53	16	6	5	2	0	1	0	0	16	1145
09:00	33	623	132	9	36	20	4	11	3	0	0	0	1	16	888
10:00	32	580	137	6	31	22	4	6	5	1	0	0	2	19	845
11:00	32	687	118	5	23	23	2	3	0	0	0	0	1	16	910
12 PM	30	776	149	10	34	12	3	9	7	0	0	0	1	10	1041
13:00	29	671	131	13	35	13	2	6	3	0	0	0	0	12	915
14:00	41	749	145	10	47	21	3	4	3	1	0	0	0	12	1036
15:00	44	847	148	11	35	20	4	3	2	0	0	0	2	19	1135
16:00	35	1011	146	10	39	13	6	11	4	0	0	0	0	25	1300
17:00	31	1061	151	7	29	8	2	8	0	0	0	0	0	29	1326
18:00	26	878	102	7	23	12	1	4	3	0	0	0	0	13	1069
19:00	23	680	87	6	15	7	5	2	2	0	0	0	0	10	837
20:00	21	585	80	9	11	5	1	1	1	0	0	0	0	3	717
21:00	15	463	40	2	10	5	1	1	1	0	0	0	1	4	543
22:00	6	295	26	4	4	3	1	0	0	0	0	0	0	3	342
23:00	7	176	14	3	4	9	0	1	0	0	0	0	0	1	215
Total	527	12765	2039	148	508	247	49	87	41	5	1	0	8	222	16647
Percent	3.2%	76.7%	12.2%	0.9%	3.1%	1.5%	0.3%	0.5%	0.2%	0.0%	0.0%	0.0%	0.0%	1.3%	
AM Peak	07:00	08:00	10:00	08:00	08:00	11:00	08:00	09:00	10:00	03:00	08:00		10:00	10:00	
Vol.	41	867	137	12	53	23	6	11	5	1	1		2	19	
PM Peak	15:00	17:00	17:00	13:00	14:00	14:00	16:00	16:00	12:00	14:00			15:00	17:00	
Vol.	44	1061	151	13	47	21	6	11	7	1			2	29	

Site Code:

Gordon St btwn Clair Rd and Poppy Dr

NB, SB													DIWI		г өрру Вг
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Ax	5 Axle	>6 Ax	<6 Axl	6 Axle	>6 Axl	Not	
Time	Bikes	Trailers	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
06/20/23	2	104	13	1	4	2	0	1	1	0	0	0	0	0	128
01:00	3	55	9	3	2	1	0	0	1	0	0	0	0	0	74
02:00	1	47	8	1	2	0	0	0	0	0	0	0	0	0	59
03:00	2	48	10	0	4	2	0	0	1	0	0	0	0	0	67
04:00	9	89	10	1	6	4	1	0	1	0	0	0	0	2	123
05:00	10	243	51	3	16	7	0	0	1	0	0	0	0	1	332
06:00	25	500	99	6	25	17	2	2	0	1	0	0	0	7	684
07:00	36	760	112	6	42	12	1	2	3	0	0	0	2	21	997
08:00	32	893	130	17	44	16	3	8	1	1	0	0	0	18	1163
09:00	23	611	116	9	36	19	3	3	0	0	0	0	0	16	836
10:00	36	632	135	10	52	15	0	6	5	2	0	0	2	6	901
11:00	39	642	124	11	47	24	5	4	5	1	0	0	0	12	914
12 PM	41	740	167	13	46	14	4	3	2	1	0	0	0	14	1045
13:00	50	754	135	9	35	18	6	8	2	0	0	0	1	16	1034
14:00	40	809	164	7	38	18	3	4	5	0	0	0	1	24	1113
15:00	37	805	131	15	46	12	7	4	6	0	0	0	1	31	1095
16:00	35	1092	168	11	43	12	7	7	2	0	0	0	0	30	1407
17:00	30	1126	164	3	27	9	7	3	5	0	0	0	0	25	1399
18:00	30	920	100	3	22	10	1	3	1	0	0	0	0	21	1111
19:00	12	694	79	3	24	5	1	0	2	0	0	0	0	5	825
20:00	14	600	80	6	13	8	1	1	0	0	0	0	0	15	738
21:00	13	485	63	3	11	4	0	1	2	0	0	0	0	4	586
22:00	13	340	26	2	3	5	0	1	1	0	0	0	0	0	391
23:00	7	290	23	4	3	4	1	0	0	0	0	0	0	0	332
Total	540	13279	2117	147	591	238	53	61	47	6	0	0	7	268	17354
Percent	3.1%	76.5%	12.2%	0.8%	3.4%	1.4%	0.3%	0.4%	0.3%	0.0%	0.0%	0.0%	0.0%	1.5%	
AM Peak	11:00	08:00	10:00	08:00	10:00	11:00	11:00	08:00	10:00	10:00			07:00	07:00	
Vol.	39	893	135	17	52	24	5	8	5	2			2	21	
PM Peak	13:00	17:00	16:00	15:00	12:00	13:00	15:00	13:00	15:00	12:00			13:00	15:00	
Vol.	50	1126	168	15	46	18	7	8	6	1			1	31	

Site Code:

Page 20

Gordon St btwn Clair Rd and Poppy Dr

NB, SB													DIW		п орру Di
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	
Time	Bikes	Trailers	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
06/21/23	5	140	15	2	2	0	1	0	0	0	0	0	0	0	165
01:00	5	63	10	3	4	1	0	0	0	0	0	0	0	0	86
02:00	4	39	5	2	1	2	0	0	0	0	0	0	0	0	53
03:00	2	41	5	0	1	0	0	1	3	0	0	0	0	1	54
04:00	8	87	12	1	4	2	0	0	2	0	0	0	0	0	116
05:00	14	221	50	6	22	6	0	0	0	0	0	0	1	0	320
06:00	30	423	96	1	18	15	2	5	4	0	0	0	2	6	602
07:00	28	803	112	8	36	13	0	4	5	0	0	0	0	10	1019
08:00	42	893	111	11	50	17	4	8	5	0	1	0	0	19	1161
09:00	38	660	128	11	51	24	9	4	4	1	0	0	0	13	943
10:00	52	645	145	8	30	19	2	7	8	1	0	0	2	16	935
11:00	42	703	141	11	41	21	6	2	3	0	0	0	1	18	989
12 PM	39	773	150	13	48	13	2	2	3	0	0	0	1	13	1057
13:00	38	697	112	9	42	19	6	6	7	0	1	0	0	16	953
14:00	39	803	147	12	36	21	0	6	4	0	1	0	2	15	1086
15:00	50	914	171	9	46	16	0	8	6	0	1	0	0	13	1234
16:00	42	1083	174	8	29	22	4	7	3	0	0	0	0	36	1408
17:00	41	1159	171	10	34	17	5	3	5	0	0	0	0	33	1478
18:00	25	963	114	7	22	10	2	0	3	0	1	0	0	8	1155
19:00	20	749	102	3	16	8	4	1	3	0	0	0	1	11	918
20:00	21	588	51	5	7	6	0	2	1	0	0	0	0	6	687
21:00	17	505	67	2	12	5	1	1	1	0	1	0	0	4	616
22:00	13	373	23	3	6	5	0	0	0	0	0	0	0	1	424
23:00	4	251	17	4	3	2	0	1	0	0	0	0	1	3	286
Total	619	13576	2129	149	561	264	48	68	70	2	6	0	11	242	17745
Percent	3.5%	76.5%	12.0%	0.8%	3.2%	1.5%	0.3%	0.4%	0.4%	0.0%	0.0%	0.0%	0.1%	1.4%	
AM Peak	10:00	08:00	10:00	08:00	09:00	09:00	09:00	08:00	10:00	09:00	08:00		06:00	08:00	
Vol	52	893	145	11	51	24	9	8	8	1	1		2	19	
PM Peak	15:00	17:00	16:00	12:00	12:00	16:00	13:00	15:00	13:00		13:00		14:00	16:00	
Vol.	50	1159	174	13	48	22	6	8	7		1		2	36	

Page 21

Gordon St btwn Clair Rd and Poppy Dr

NB, SB													DIWI		г орру Бг
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	
Time	Bikes	Trailers	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
06/22/23	3	150	15	2	3	2	0	0	0	0	0	0	0	0	175
01:00	5	83	8	2	1	2	0	0	1	0	0	0	0	0	102
02:00	4	49	13	2	3	3	0	0	0	0	0	0	0	0	74
03:00	2	41	8	0	3	1	0	0	0	0	0	0	0	0	55
04:00	8	96	26	0	4	3	0	0	2	0	0	0	0	0	139
05:00	16	215	51	4	16	6	1	1	2	0	0	0	0	5	317
06:00	34	419	103	8	33	15	2	6	1	2	0	0	0	8	631
07:00	47	746	118	7	36	16	7	7	1	0	0	0	0	12	997
08:00	33	847	153	8	46	12	5	8	2	0	0	0	2	21	1137
09:00	38	697	140	9	34	24	1	4	2	0	0	0	1	11	961
10:00	30	657	126	9	36	17	6	7	2	1	0	0	2	10	903
11:00	41	754	118	7	50	13	4	5	6	1	1	0	1	16	1017
12 PM	41	791	158	18	36	20	8	12	3	0	1	0	1	15	1104
13:00	77	744	137	8	48	33	6	6	5	0	1	0	0	25	1090
14:00	71	797	163	14	41	30	1	6	5	0	0	0	0	19	1147
15:00	89	873	172	12	55	41	2	9	3	1	0	0	3	17	1277
16:00	62	1044	145	13	47	30	3	4	5	0	0	0	0	24	1377
17:00	42	1110	143	8	36	14	1	2	3	0	0	0	0	32	1391
18:00	27	968	126	2	20	8	1	1	3	1	0	0	1	23	1181
19:00	22	736	119	5	14	8	4	1	4	0	1	0	1	6	921
20:00	20	663	82	10	13	4	2	2	0	0	0	0	0	12	808
21:00	11	520	70	3	13	3	1	0	1	0	0	0	0	4	626
22:00	10	355	33	4	12	0	2	0	0	0	0	0	0	1	417
23:00	3	235	27	3	7	0	0	0	0	0	0	0	0	0	275
Total	736	13590	2254	158	607	305	57	81	51	6	4	0	12	261	18122
Percent	4.1%	75.0%	12.4%	0.9%	3.3%	1.7%	0.3%	0.4%	0.3%	0.0%	0.0%	0.0%	0.1%	1.4%	
AM Peak	07:00	08:00	08:00	09:00	11:00	09:00	07:00	08:00	11:00	06:00	11:00		08:00	08:00	
Vol.	47	847	153	9	50	24	7	8	6	2	1		2	21	
PM Peak	15:00	17:00	15:00	12:00	15:00	15:00	12:00	12:00	13:00	15:00	12:00		15:00	17:00	
Vol.	89	1110	172	18	55	41	8	12	5	1	1		3	32	

Site Code:

Gordon St btwn Clair Rd and Poppy Dr

NB, SB													DIWI		п орру Di
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	
Time	Bikes	Trailers	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
06/23/23	5	145	16	1	1	5	0	0	0	0	0	0	0	1	174
01:00	6	62	12	3	0	1	0	0	0	0	0	0	0	1	85
02:00	2	49	12	1	3	1	0	0	1	0	0	0	0	0	69
03:00	4	46	19	0	3	1	0	0	1	0	0	0	0	0	74
04:00	10	80	17	1	2	5	0	0	1	0	0	0	0	0	116
05:00	8	232	47	3	15	5	1	0	2	1	0	0	0	3	317
06:00	26	376	99	5	20	11	1	6	2	0	0	0	0	5	551
07:00	41	639	110	8	33	16	5	7	3	0	0	0	0	11	873
08:00	23	767	131	10	43	8	4	4	4	1	0	0	1	10	1006
09:00	46	661	127	12	36	21	3	7	5	0	0	0	1	14	933
10:00	35	681	138	7	51	18	5	8	5	1	0	0	0	14	963
11:00	39	740	154	7	34	15	3	14	3	0	0	0	0	19	1028
12 PM	33	840	153	5	35	18	4	7	4	0	0	0	0	20	1119
13:00	31	806	154	10	43	12	2	6	5	1	0	0	2	23	1095
14:00	39	807	159	18	43	16	4	5	2	1	0	0	0	23	1117
15:00	50	994	131	11	44	23	7	1	3	0	1	0	0	12	1277
16:00	50	1196	161	10	38	18	3	1	4	2	0	0	0	33	1516
17:00	26	1080	141	7	35	12	7	2	2	0	0	0	0	35	1347
18:00	21	985	100	4	22	4	1	1	1	0	1	0	0	28	1168
19:00	18	769	80	6	23	10	3	2	0	0	0	0	1	11	923
20:00	9	600	71	4	13	6	2	0	1	0	0	0	0	11	717
21:00	15	489	59	4	13	6	2	1	1	0	0	0	0	8	598
22:00	8	378	46	5	7	0	1	1	0	0	0	0	0	2	448
23:00	5	359	40	4	3	2	2	1	0	0	0	0	0	2	418
Total	550	13781	2177	146	560	234	60	74	50	7	2	0	5	286	17932
Percent	3.1%	76.9%	12.1%	0.8%	3.1%	1.3%	0.3%	0.4%	0.3%	0.0%	0.0%	0.0%	0.0%	1.6%	
AM Peak	09:00	08:00	11:00	09:00	10:00	09:00	07:00	11:00	09:00	05:00			08:00	11:00	
Vol	46	767	154	12	51	21	5	14	5	1	45.00		1	19	
PM Peak	15:00	16:00	16:00	14:00	15:00	15:00	15:00	12:00	13:00	16:00	15:00		13:00	17:00	
Vol.	50	1196	161	18	44	23	/	7	5	2	1		2	35	

Page 23

Gordon St btwn Clair Rd and Poppy Dr

NB, SB													DIWI		п орру Вг
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	
Time	Bikes	Trailers	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
06/24/23	5	247	32	4	4	3	2	0	0	0	0	0	0	2	299
01:00	1	142	12	1	4	1	1	0	0	0	0	0	0	0	162
02:00	2	58	3	2	1	1	0	0	0	0	0	0	0	1	68
03:00	0	53	3	1	0	0	0	0	0	0	0	0	0	0	57
04:00	2	47	13	0	3	3	0	0	2	0	0	0	0	0	70
05:00	0	108	14	1	2	0	0	0	1	1	0	0	0	1	128
06:00	7	179	21	0	9	4	0	1	1	0	0	0	0	0	222
07:00	3	298	49	1	11	0	1	2	2	0	0	0	0	1	368
08:00	12	552	83	2	20	1	2	1	0	0	0	0	0	4	677
09:00	18	768	106	4	18	7	5	0	1	0	0	0	0	13	940
10:00	23	926	140	9	27	7	4	1	1	0	0	0	1	12	1151
11:00	20	972	122	3	14	5	4	2	0	0	0	0	0	13	1155
12 PM	18	982	112	5	25	4	4	1	2	0	1	0	0	20	1174
13:00	15	1051	106	1	19	6	2	2	0	0	0	0	0	18	1220
14:00	26	953	125	5	28	4	5	2	0	0	2	0	0	15	1165
15:00	17	977	120	0	17	4	4	3	0	0	0	0	0	15	1157
16:00	15	976	111	2	25	11	7	1	2	1	0	0	0	11	1162
17:00	27	966	114	1	17	6	5	3	0	0	1	0	1	13	1154
18:00	15	809	94	4	12	2	4	2	0	0	0	0	0	12	954
19:00	7	712	63	1	8	2	3	3	0	0	0	0	0	5	804
20:00	10	663	64	1	16	3	6	1	0	0	0	0	0	3	767
21:00	10	610	53	1	8	2	0	0	1	0	0	0	0	3	688
22:00	11	478	42	2	2	3	3	0	0	0	0	0	0	1	542
23:00	7	387	33	2	4	1	2	0	1	0	0	0	0	0	437
Total	271	13914	1635	53	294	80	64	25	14	2	4	0	2	163	16521
Percent	1.6%	84.2%	9.9%	0.3%	1.8%	0.5%	0.4%	0.2%	0.1%	0.0%	0.0%	0.0%	0.0%	1.0%	
AM Peak	10:00	11:00	10:00	10:00	10:00	09:00	09:00	07:00	04:00	05:00			10:00	09:00	
Vol.	23	972	140	9	27	7	5	2	2	1			1	13	
PM Peak	17:00	13:00	14:00	12:00	14:00	16:00	16:00	15:00	12:00	16:00	14:00		17:00	12:00	
Vol.	27	1051	125	5	28	11	7	3	2	1	2		1	20	

Site Code:

Page 24

### Gordon St btwn Clair Rd and Poppy Dr

	NI /		0.4.1	.0.4.1		<b>F A I</b>		4 4 1	0.4.1	0.4.1		0.4.1	0		IB, SB
<b>-</b> .	Not	>6 Axl	6 Axle	<6 Axl	>6 Axl	5 Axle	<5 Axl	4 Axle	3 Axle	2 Axle	-	2 Axle	Cars &	<b>D</b> .1	Start
Tota	Classed	Multi	Multi	Multi	Double	Double	Double	Single	Single	6 Tire	Buses	Long	Trailers	Bikes	Time
29	4	0	0	0	0	0	0	0	2	3	1	21	261	7	06/25/23
12	0	0	0	0	0	0	0	0	0	2	0	13	107	1	01:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	02:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	03:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	04:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	05:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	06:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	07:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	08:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	09:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	10:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	11:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	12 PM
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	13:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	14:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	15:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	16:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	17:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	18:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	19:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	20:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	21:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	22:00
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	23:00
42	4	0	0	0	0	0	0	0	2	5	1	34	368	8	Total
	0.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.5%	1.2%	0.2%	8.1%	87.2%	1.9%	Percent
	00:00								00:00	00:00	00:00	00:00	00:00	00:00	AM Peak
	4								2	3	1	21	261	7	Vol.
															PM Peak
															Vol.
11975	1594	48	0	19	28	285	417	373	1458	3303	845	13763	94016	3606	Grand
															Total
	1.3%	0.0%	0.0%	0.0%	0.0%	0.2%	0.3%	0.3%	1.2%	2.8%	0.7%	11.5%	78.5%	3.0%	Percent

Site Code: 31 Station ID: MC50/MC43 Clair Rd E btwn Beaver Meadow Dr/Dallan Dr and Hawkins Dr Latitude: 0' 0.0000 Undefined Longitude: 0' 0.0000 Undefined

NB, SB												Longia		Undenned
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	
Time	Bikes	Trailers	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/05/22	0	80	9	4	3	0	0	0	2	0	0	0	0	98
01:00	0	34	0	3	0	1	0	0	0	3	0	0	0	41
02:00	0	26	3	1	0	1	0	0	2	0	0	0	0	33
03:00	0	21	4	0	0	0	0	0	4	2	0	0	0	31
04:00	0	50	15	0	1	2	0	0	11	0	0	0	0	79
05:00	1	213	38	5	4	3	0	0	5	2	0	0	0	271
06:00	1	304	71	2	11	5	3	3	5	4	0	0	0	409
07:00	0	538	95	22	22	8	0	1	6	4	0	0	0	696
08:00	1	691	134	27	24	5	5	4	6	6	0	0	0	903
09:00	1	420	95	14	23	12	4	1	11	6	0	0	0	587
10:00	4	430	103	15	20	6	0	1	11	6	0	0	0	596
11:00	6	464	86	15	17	16	2	1	15	6	0	0	0	628
12 PM	4	581	131	11	22	14	3	0	13	3	0	0	0	782
13:00	7	531	104	13	21	6	1	0	15	3	0	0	0	701
14:00	6	626	107	19	38	11	3	1	16	5	0	0	0	832
15:00	4	815	155	16	20	6	2	2	9	4	0	0	0	1033
16:00	7	901	169	16	24	9	5	3	5	4	0	0	0	1143
17:00	8	980	147	7	17	2	5	2	4	3	0	0	0	1175
18:00	5	784	126	6	10	7	5	4	5	1	0	0	0	953
19:00	3	637	91	6	8	10	3	3	3	1	0	0	0	765
20:00	2	431	68	4	5	3	2	0	2	1	0	0	0	518
21:00	2	331	37	3	1	4	1	1	5	1	0	0	0	386
22:00	0	202	26	5	7	2	0	0	4	0	0	0	0	246
23:00	0	153	13	3	2	2	0	0	1	2	0	0	0	176
Total	62	10243	1827	217	300	135	44	27	160	67	0	0	0	13082
Percent	0.5%	78.3%	14.0%	1.7%	2.3%	1.0%	0.3%	0.2%	1.2%	0.5%	0.0%	0.0%	0.0%	
AM Peak	11:00	08:00	08:00	08:00	08:00	11:00	08:00	08:00	11:00	08:00				08:00
Vol.	6	691	134	27	24	16	5	4	15	6				903
PM Peak	17:00	17:00	16:00	14:00	14:00	12:00	16:00	18:00	14:00	14:00				17:00
Vol.	8	980	169	19	38	14	5	4	16	5				1175

Site Code: 31 Station ID: MC50/MC43 Clair Rd E btwn Beaver Meadow Dr/Dallan Dr and Hawkins Dr Latitude: 0' 0.0000 Undefined Longitude: 0' 0.0000 Undefined

NB, SB Start Time 10/06/22 01:00	Bikes 0 0 0 0	Cars & Trailers 93 39 33	2 Axle Long 11 4	Buses 7	2 Axle 6 Tire	3 Axle Single	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	
10/06/22 01:00	0 0 0	93 39	11	Buses 7	6 Tire	Single	<u>.</u>							
01:00	0 0	39		7		Olligic	Single	Double	Double	Double	Multi	Multi	Multi	Total
	0		4		1	0	0	0	2	2	0	0	0	116
00.00	-	22	т	3	0	1	0	0	2	0	0	0	0	49
02:00	0		8	1	0	0	0	0	0	0	0	0	0	42
03:00		31	6	0	0	2	0	0	5	1	0	0	0	45
04:00	0	55	11	1	2	4	0	0	6	0	0	0	0	79
05:00	3	162	37	3	5	2	0	1	6	3	0	0	0	222
06:00	2	308	68	3	9	7	1	1	9	4	0	0	0	412
07:00	1	516	94	13	25	7	4	3	9	2	0	0	0	674
08:00	2	775	129	24	18	9	6	2	8	7	1	0	0	981
09:00	2	442	95	16	15	13	3	1	16	7	0	0	0	610
10:00	3	421	90	12	21	2	0	0	14	4	0	0	0	567
11:00	3	465	112	15	21	12	0	4	7	5	0	0	0	644
12 PM	3	540	116	16	30	8	3	1	13	2	0	0	0	732
13:00	5	554	119	14	24	9	2	2	9	3	0	0	0	741
14:00	10	672	134	23	25	8	3	3	12	8	0	0	0	898
15:00	11	840	182	18	33	9	7	1	9	3	0	0	0	1113
16:00	6	962	174	16	27	6	6	5	5	4	0	0	0	1211
17:00	6	974	159	9	13	4	5	4	4	5	0	0	0	1183
18:00	5	841	103	5	11	4	5	4	3	0	0	0	0	981
19:00	2	694	106	4	9	5	1	2	5	0	0	0	0	828
20:00	3	489	56	5	14	3	0	1	5	1	0	0	0	577
21:00	6	321	51	3	2	2	0	0	3	0	0	0	0	388
22:00	0	240	25	3	5	1	0	0	3	0	0	0	0	277
23:00	2	180	20	2	3	4	0	0	3	1	0	0	0	215
Total	75	10647	1910	216	313	122	46	35	158	62	1	0	0	13585
Percent	0.6%	78.4%	14.1%	1.6%	2.3%	0.9%	0.3%	0.3%	1.2%	0.5%	0.0%	0.0%	0.0%	
AM Peak	05:00	08:00	08:00	08:00	07:00	09:00	08:00	11:00	09:00	08:00	08:00			08:00
Vol.	3	775	129	24	25	13	6	4	16	7	1			981
PM Peak	15:00	17:00	15:00	14:00	15:00	13:00	15:00	16:00	12:00	14:00				16:00
Vol.	11	974	182	23	33	9	7	5	13	8				1211

NB SB

Site Code: 31 Station ID: MC50/MC43 Clair Rd E btwn Beaver Meadow Dr/Dallan Dr and Hawkins Dr Latitude: 0' 0.0000 Undefined Longitude: 0' 0.0000 Undefined

NB, SB												Longiu		Undenned
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	
Time	Bikes	Trailers	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/07/22	0	80	10	4	1	5	0	0	6	1	0	0	0	107
01:00	0	45	4	3	1	0	0	0	3	0	0	0	0	56
02:00	0	35	2	3	0	0	0	0	0	1	0	0	0	41
03:00	0	36	4	0	0	0	0	0	4	0	0	0	0	44
04:00	0	51	11	0	2	2	0	0	10	1	0	0	0	77
05:00	1	160	35	5	3	1	0	0	2	1	0	0	0	208
06:00	1	305	55	6	9	3	3	1	5	3	0	0	0	391
07:00	0	498	85	14	21	8	4	3	8	1	0	0	0	642
08:00	0	705	125	33	14	14	7	5	6	7	0	0	0	916
09:00	1	496	115	16	12	9	3	1	10	4	0	0	0	667
10:00	2	539	93	9	14	9	2	1	13	2	0	0	0	684
11:00	2	522	117	9	21	12	3	2	17	6	0	0	0	711
12 PM	1	666	126	8	20	10	3	2	10	3	0	0	0	849
13:00	1	614	123	14	18	10	3	1	15	7	0	0	0	806
14:00	0	750	137	16	27	8	6	2	16	5	0	0	0	967
15:00	2	927	165	17	29	9	2	3	10	4	0	0	0	1168
16:00	1	998	135	20	18	13	5	4	7	5	0	0	0	1206
17:00	1	990	134	7	18	7	5	3	1	1	0	0	0	1167
18:00	1	737	114	5	12	7	3	3	0	0	0	0	0	882
19:00	1	715	79	3	9	4	3	0	3	1	0	0	0	818
20:00	1	537	56	5	6	3	0	0	4	1	0	0	0	613
21:00	0	401	60	3	5	3	1	0	5	2	0	0	0	480
22:00	0	269	17	2	3	4	0	0	4	0	0	0	0	299
23:00	0	187	9	2	2	1	1	0	0	0	0	0	0	202
Total	16	11263	1811	204	265	142	54	31	159	56	0	0	0	14001
Percent	0.1%	80.4%	12.9%	1.5%	1.9%	1.0%	0.4%	0.2%	1.1%	0.4%	0.0%	0.0%	0.0%	
AM Peak	10:00	08:00	08:00	08:00	07:00	08:00	08:00	08:00	11:00	08:00 7				08:00
Vol.	2	705	125	33	21	14	7	5	17	/				916
PM Peak	15:00	16:00	15:00	16:00	15:00	16:00	14:00	16:00	14:00	13:00				16:00
Vol.	2	998	165	20	29	13	6	4	16	7				1206

Site Code: 31 Station ID: MC50/MC43 Clair Rd E btwn Beaver Meadow Dr/Dallan Dr and Hawkins Dr Latitude: 0' 0.0000 Undefined Longitude: 0' 0.0000 Undefined

NB, SB												Longia		Ondenned
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	
Time	Bikes	Trailers	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/08/22	0	127	7	6	0	0	0	0	1	1	0	0	0	142
01:00	0	61	7	0	0	0	1	0	0	0	0	0	0	69
02:00	0	39	5	0	1	1	0	0	3	0	0	0	0	49
03:00	0	26	4	0	0	2	0	0	1	0	0	0	0	33
04:00	0	28	3	0	0	0	0	0	2	0	0	0	0	33
05:00	0	53	11	3	1	2	0	0	1	0	0	0	0	71
06:00	0	115	13	3	4	1	0	0	2	0	0	0	0	138
07:00	0	153	25	6	7	2	0	0	2	2	0	0	0	197
08:00	1	332	43	4	6	1	3	0	1	3	0	0	0	394
09:00	1	485	86	4	6	1	3	1	3	0	0	0	0	590
10:00	3	618	101	7	15	3	3	4	1	1	0	0	0	756
11:00	1	712	101	5	13	4	1	0	2	2	0	0	0	841
12 PM	4	683	108	4	17	3	2	3	3	0	0	0	0	827
13:00	2	749	126	6	13	2	2	2	3	1	0	0	0	906
14:00	4	710	102	4	11	1	3	3	1	2	0	0	0	841
15:00	1	647	71	4	7	1	4	2	1	1	0	0	0	739
16:00	3	616	68	4	13	4	3	2	4	0	0	0	0	717
17:00	2	583	65	1	6	2	0	0	0	0	0	0	0	659
18:00	1	536	65	3	4	1	0	0	1	0	0	0	0	611
19:00	0	492	67	2	8	2	2	0	0	0	0	0	0	573
20:00	0	419	46	2	12	1	1	1	0	1	0	0	0	483
21:00	1	358	55	2	6	2	0	0	0	0	0	0	0	424
22:00	2	190	19	2	5	0	0	0	1	0	0	0	0	219
23:00	0	199	17	2	4	1	0	0	0	0	0	0	0	223
Total	26	8931	1215	74	159	37	28	18	33	14	0	0	0	10535
Percent	0.2%	84.8%	11.5%	0.7%	1.5%	0.4%	0.3%	0.2%	0.3%	0.1%	0.0%	0.0%	0.0%	
AM Peak	10:00	11:00	10:00	10:00	10:00	11:00	08:00	10:00	02:00	08:00				11:00
Vol.	3	712	101	7	15	4	3	4	3	3				841
PM Peak	12:00	13:00	13:00	13:00	12:00	16:00	15:00	12:00	16:00	14:00				13:00
Vol.	4	749	126	6	17	4	4	3	4	2				906

Site Code: 31 Station ID: MC50/MC43 Clair Rd E btwn Beaver Meadow Dr/Dallan Dr and Hawkins Dr Latitude: 0' 0.0000 Undefined Longitude: 0' 0.0000 Undefined

NB, SB												Longia		Undenned
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	
Time	Bikes	Trailers	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/09/22	0	125	17	3	2	1	0	0	0	0	0	0	0	148
01:00	0	79	4	0	1	0	0	0	0	0	0	0	0	84
02:00	0	41	4	0	2	0	0	0	1	0	0	0	0	48
03:00	0	20	2	0	1	0	0	0	1	0	0	0	0	24
04:00	0	15	5	0	0	1	0	0	1	0	0	0	0	22
05:00	0	28	9	0	0	1	0	0	2	0	0	0	0	40
06:00	0	80	12	0	0	2	0	0	1	0	0	0	0	95
07:00	0	124	11	1	2	1	0	0	2	1	0	0	0	142
08:00	0	207	24	0	6	1	0	0	3	0	0	0	0	241
09:00	1	345	68	5	12	1	0	0	2	0	0	0	0	434
10:00	2	483	69	2	2	1	2	0	1	0	0	0	0	562
11:00	3	625	91	2	7	1	0	0	0	0	0	0	0	729
12 PM	0	637	115	3	8	3	1	2	0	0	0	0	0	769
13:00	2	678	83	3	9	2	1	1	1	0	0	0	0	780
14:00	1	706	88	2	11	1	1	0	2	0	0	0	0	812
15:00	2	615	72	2	5	0	1	2	1	0	0	0	0	700
16:00	1	583	76	3	9	0	2	2	1	1	0	0	0	678
17:00	1	497	51	3	8	1	0	0	1	1	0	0	0	563
18:00	3	419	56	3	7	1	0	0	0	0	0	0	0	489
19:00	2	462	52	1	7	1	4	1	0	0	0	0	0	530
20:00	0	378	35	1	8	0	0	0	1	0	0	0	0	423
21:00	0	297	33	0	6	0	0	0	1	0	0	0	0	337
22:00	1	223	26	1	0	0	1	0	0	1	0	0	0	253
23:00	0	134	22	0	2	1	0	0	0	0	0	0	0	159
Total	19	7801	1025	35	115	20	13	8	22	4	0	0	0	9062
Percent	0.2%	86.1%	11.3%	0.4%	1.3%	0.2%	0.1%	0.1%	0.2%	0.0%	0.0%	0.0%	0.0%	
AM Peak	11:00	11:00	11:00	09:00	09:00	06:00	10:00		08:00	07:00				11:00
Vol.	3	625	91	5	12	2	2		3	1				729
PM Peak	18:00	14:00	12:00	12:00	14:00	12:00	19:00	12:00	14:00	16:00				14:00
Vol.	3	706	115	3	11	3	4	2	2	1				812

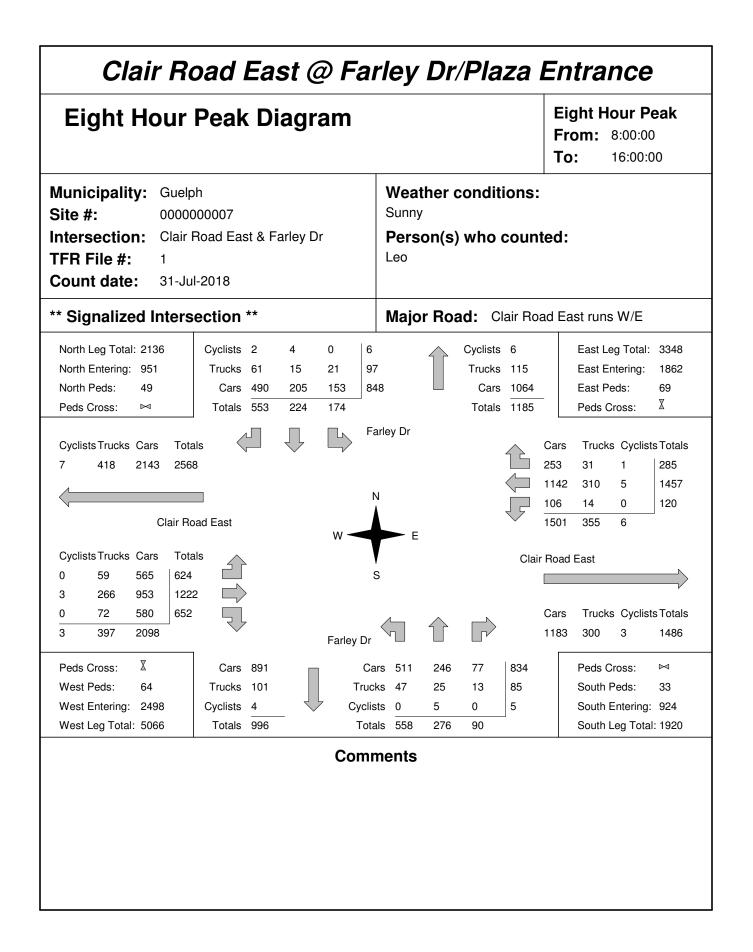
Site Code: 31 Station ID: MC50/MC43 Clair Rd E btwn Beaver Meadow Dr/Dallan Dr and Hawkins Dr Latitude: 0' 0.0000 Undefined Longitude: 0' 0.0000 Undefined

NB, SB												Longia	uue. 0 0.0000	Undenned
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Ax	6 Axle	>6 Axl	
Time	Bikes	Trailers	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/10/22	0	102	10	0	2	1	0	0	0	0	0	0	0	115
01:00	0	59	1	0	3	1	0	0	1	0	0	0	0	65
02:00	0	39	0	0	0	0	0	0	3	0	0	0	0	42
03:00	0	18	4	0	0	0	0	0	1	0	0	0	0	23
04:00	0	27	2	0	1	0	0	0	2	0	0	0	0	32
05:00	1	56	6	0	1	1	0	0	1	0	0	0	0	66
06:00	2	67	6	0	2	1	0	0	1	0	0	0	0	79
07:00	0	59	16	0	1	0	0	0	4	2	0	0	0	82
08:00	1	136	20	0	2	4	0	0	6	2	0	0	0	171
09:00	1	204	32	2	6	1	0	0	1	0	0	0	0	247
10:00	4	329	45	0	8	0	1	3	1	4	0	0	0	395
11:00	8	406	65	3	5	1	0	0	0	1	0	0	0	489
12 PM	4	440	82	4	6	1	2	0	1	1	0	0	0	541
13:00	10	487	69	3	10	3	3	2	0	1	0	0	0	588
14:00	4	501	71	2	8	2	1	0	1	0	0	0	0	590
15:00	5	498	63	1	10	2	1	0	1	1	0	0	0	582
16:00	4	448	63	2	8	2	4	1	2	1	0	0	0	535
17:00	7	450	67	3	8	4	0	0	1	0	0	0	0	540
18:00	0	416	45	4	9	3	0	1	3	3	0	0	0	484
19:00	1	416	59	1	3	2	2	0	1	1	0	0	0	486
20:00	0	328	38	2	6	1	0	0	1	0	0	0	0	376
21:00	3	259	33	1	2	1	0	0	0	0	0	0	0	299
22:00	0	160	21	0	1	0	0	0	0	0	0	0	0	182
23:00	1	94	9	0	2	1	0	0	2	1	0	0	0	110
Total	56	5999	827	28	104	32	14	7	34	18	0	0	0	7119
Percent	0.8%	84.3%	11.6%	0.4%	1.5%	0.4%	0.2%	0.1%	0.5%	0.3%	0.0%	0.0%	0.0%	
AM Peak	11:00	11:00	11:00	11:00	10:00	08:00	10:00	10:00	08:00	10:00				11:00
Vol.	8	406	65	3	8	4	1	3	6	4				489
PM Peak	13:00	14:00	12:00	12:00	13:00	17:00	16:00	13:00	18:00	18:00				14:00
Vol.	10	501	82	4	10	4	4	2	3	3				590

Site Code: 31 Station ID: MC50/MC43 Clair Rd E btwn Beaver Meadow Dr/Dallan Dr and Hawkins Dr Latitude: 0' 0.0000 Undefined Longitude: 0' 0.0000 Undefined

NB, SB														
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	
Time	Bikes	Trailers	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/11/22	0	47	5	2	1	3	0	0	3	0	0	0	0	61
01:00	0	23	5	1	0	2	0	0	0	1	0	0	0	32
02:00	0	20	4	1	1	0	0	0	1	1	0	0	0	28
03:00	0	21	4	1	1	0	0	0	2	0	0	0	0	29
04:00	0	46	11	0	2	3	0	1	2	1	0	0	0	66
05:00	0	188	44	5	1	3	3	1	4	5	0	1	0	255
06:00	2	316	59	3	5	3	0	4	4	6	0	0	0	402
07:00	1	530	100	14	15	5	5	2	5	5	0	0	0	682
08:00	2	723	122	28	24	13	5	3	4	6	0	0	0	930
09:00	1	488	112	13	18	10	2	1	10	3	0	0	0	658
10:00	5	472	105	14	15	15	2	1	12	4	0	0	0	645
11:00	5	511	101	16	20	11	0	2	8	7	0	0	0	681
12 PM	3	548	104	19	19	19	2	0	9	5	0	0	0	728
13:00	5	549	121	12	18	9	4	1	7	6	0	0	0	732
14:00	8	688	134	19	28	10	2	4	7	4	1	0	0	905
15:00	7	847	159	22	31	7	6	5	10	2	0	0	0	1096
16:00	9	940	173	16	33	6	4	2	8	2	1	0	0	1194
17:00	3	958	159	6	16	7	6	4	3	1	0	0	0	1163
18:00	7	904	143	10	15	4	1	5	1	1	0	0	0	1091
19:00	1	675	83	7	10	6	2	1	3	0	0	0	0	788
20:00	0	494	58	5	7	2	2	2	2	0	0	0	0	572
21:00	2	335	32	4	6	4	0	0	6	0	0	0	0	389
22:00	1	187	20	2	3	2	0	1	0	1	0	0	0	217
23:00	0	169	8	2	1	2	0	0	3	1	0	0	0	186
Total	62	10679	1866	222	290	146	46	40	114	62	2	1	0	13530
Percent	0.5%	78.9%	13.8%	1.6%	2.1%	1.1%	0.3%	0.3%	0.8%	0.5%	0.0%	0.0%	0.0%	
AM Peak	10:00	08:00	08:00	08:00	08:00	10:00	07:00	06:00	10:00	11:00		05:00		08:00
Vol.	5_	723	122	28	24	15	5_	4	12	7		1		930
PM Peak	16:00	17:00	16:00	15:00	16:00	12:00	15:00	15:00	15:00	13:00	14:00			16:00
Vol.	9	958	173	22	33	19	6	5	10	6	1			1194

NB SB


#### Accu-Traffic Inc. 85 West Wilmot St., Unit 13, Richmond Hill, ON, L4B 1K7 Tel: 1- 416-910-0171 Fax: 1-888-711-3125 E-mail: solutions@accu-traffic.ca URL: http://www.accu-traffic.ca

Site Code: 31 Station ID: MC50/MC43 Clair Rd E btwn Beaver Meadow Dr/Dallan Dr and Hawkins Dr Latitude: 0' 0.0000 Undefined Longitude: 0' 0.0000 Undefined

NB, SB												Longit	ude: 0° 0.0000	
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	
Time	Bikes	Trailers	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/12/22	0	77	8	5	1	0	0	0	3	1	0	0	0	95
01:00	0	45	3	2	1	0	0	0	3	0	0	0	0	54
02:00	1	38	5	0	0	0	0	0	0	0	0	0	0	44
03:00	0	35	7	2	1	2	0	0	1	1	0	0	0	49
04:00	0	49	9	0	1	3	0	0	5	0	0	0	0	67
05:00	0	198	38	4	1	3	0	1	7	1	0	0	0	253
06:00	0	325	73	3	10	6	2	0	7	2	0	0	0	428
07:00	1	506	85	14	14	3	1	1	5	6	0	0	0	636
08:00	1	763	137	24	20	8	5	1	8	4	0	0	0	971
09:00	3	454	98	12	18	8	0	2	11	6	0	0	0	612
10:00	3	457	107	19	15	13	1	0	12	5	1	0	0	633
11:00	1	467	98	14	20	15	3	0	14	3	0	0	0	635
12 PM	5	540	114	18	17	6	2	1	16	3	0	0	0	722
13:00	5	523	119	18	11	11	1	3	21	1	0	0	0	713
14:00	4	590	101	26	27	11	3	2	12	2	0	0	0	778
15:00	5	774	160	17	18	3	3	3	7	1	0	0	0	991
16:00	1	963	167	16	17	10	5	4	11	3	1	0	0	1198
17:00	3	1031	173	10	15	6	1	3	4	2	0	0	0	1248
18:00	3	749	118	5	15	1	2	2	5	1	0	0	0	901
19:00	1	659	83	6	11	3	1	0	4	1	0	0	0	769
20:00	0	472	52	3	4	4	2	0	2	0	0	0	0	539
21:00	0	315	40	4	3	2	1	1	1	0	0	0	0	367
22:00	0	188	26	3	4	2	1	0	2	1	0	0	0	227
23:00	0	179	8	2	2	1	0	0	1	2	0	0	0	195
Total	37	10397	1829	227	246	121	34	24	162	46	2	0	0	13125
Percent	0.3%	79.2%	13.9%	1.7%	1.9%	0.9%	0.3%	0.2%	1.2%	0.4%	0.0%	0.0%	0.0%	
AM Peak	09:00	08:00	08:00	08:00	08:00	11:00	08:00	09:00	11:00	07:00	10:00			08:00
Vol.	3	763	137	24	20	15	5	2	14	6	1			971
PM Peak	12:00	17:00	17:00	14:00	14:00	13:00	16:00	16:00	13:00	12:00	16:00			17:00
Vol.	5	1031	173	26	27	11	5	4	21	3	1			1248
Grand Total	353	75960	12310	1223	1792	755	279	190	842	329	5	1	0	94039
Percent	0.4%	80.8%	13.1%	1.3%	1.9%	0.8%	0.3%	0.2%	0.9%	0.3%	0.0%	0.0%	0.0%	
ADT	AD	DT 11,755	AAD	T 11,755										

Morning Peak Diagram	Specified Period         One Hour Peak           From:         7:00:00         From:         7:30:00           To:         9:00:00         To:         8:30:00
Municipality:GuelphSite #:000000007Intersection:Clair Road East & Farley DrTFR File #:1Count date:31-Jul-2018	Weather conditions: Sunny Person(s) who counted: Leo
** Signalized Intersection **	Major Road: Clair Road East runs W/E
North Leg Total: 295       Cyclists       0       0       0       0         North Entering:       164       Trucks       8       1       2       1         North Peds:       7       Cars       129       12       12       12         Peds Cross:       IM       Totals       137       13       14	Cyclists0East Leg Total:7691Trucks14East Entering:55453Cars117East Peds:2Totals131Peds Cross:X
Cyclists Trucks Cars Totals 0 62 570 632	arley Dr Cars Trucks Cyclists Totals 60 10 0   70 417 52 0   469
Clair Road East	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Cyclists Trucks Cars Totals	Clair Road East
0 71 118 189	S
0 7 24 31 0 82 192 Farley Dr	Cars Trucks Cyclists Totals 141 74 0 215
West Peds:     5     Trucks     10     Trucks       West Entering:     274     Cyclists     0     Cyclists	ars     24     7     11     42     Peds Cross:     ⋈       ks     2     0     1     3     South Peds:     3       sts     0     0     0     South Entering:     45       als     26     7     12     South Leg Total:     104
	nents

Afternoon P	eak Diagram	Specified Period           From:         15:00:00           To:         18:00:00	One Hour Peak           From:         17:00:00           To:         18:00:00
Municipality:GuelphSite #:000000Intersection:Clair RdTFR File #:1Count date:31-Jul-	00007 oad East & Farley Dr	Weather conditions: Sunny Person(s) who count Leo	ed:
** Signalized Interse	ction **	Major Road: Clair Roa	ad East runs W/E
North Leg Total: 622 North Entering: 248 North Peds: 20 Peds Cross: ⊠	Trucks 11 7 6	2 Cyclists 0 24 Trucks 32 222 Cars 342 Totals 374	East Leg Total: 1040 East Entering: 418 East Peds: 20 Peds Cross: ∑
Cyclists Trucks Cars Totals 2 72 469 543			Cars Trucks Cyclists Totals 61 7 0   68 247 55 2   304
Clair Roa	] d East	N ŢŢ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Cyclists Trucks Cars Totals	W -	E Clair	Road East
0 19 207 226 1 61 470 532		S	
0 10 183 193 1 90 860	Farley D		Cars Trucks Cyclists Totals 552 69 1 622
Peds Cross: X West Peds: 36 West Entering: 951	Trucks 18 Tru	Cars 112 74 30 216 Icks 6 6 2 14 Iists 0 0 0 0	Peds Cross: ⋈ South Peds: 19 South Entering: 230
West Leg Total: 1494		tals 118 80 32	South Leg Total: 538
	Com	ments	





Morning Pe	ak Diagram	Specified Period           From:         7:00:00           To:         9:00:00	One Hour Peak           From:         7:45:00           To:         8:45:00
Intersection:PoppyTFR File #:1Count date:29-Set	500007 y Dr E & Hawkins Dr ep-22	Weather condition Person counted: Person prepared: Person checked:	-
** Non-Signalized In North Leg Total: 62 North Entering: 23 North Peds: 25 Peds Cross: ► Cyclists Trucks Cars Tota 0 5 89 94 Cyclists Trucks Cars Tota 0 5 89 94 Cyclists Trucks Cars Tota 0 3 18 21	Cyclists 0 0 0 Trucks 1 0 0 Cars <u>15 2 5</u> Totals 16 2 5 als ppy Dr E W	Totals 39	East Leg Total: 105 East Entering: 81 6 East Peds: 7
0       1       17       18         0       0       3       3         0       4       38         Peds Cross:       X         West Peds:       10         West Entering:       42         West Leg Total:       136	Trucks 0 Truc Cyclists 0 Cycli	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	South Peds: 19
	Comr	nents	



Afternoon F	Peak Diagram		<b>1 Period</b> 5:00:00 8:00:00	One Hour Peak           From:         17:00:00           To:         18:00:00
Intersection: Popp TFR File #: 1 Count date: 29-Se	500007 y Dr E & Hawkins Dr ep-22	Person c Person p Person c	repared: hecked:	
Cyclists Trucks         Cars         Tota           0         5         43         48           1         0         51         52           0         0         10         10	Cyclists 0 0 0 Trucks 0 0 0 Cars <u>16</u> 7 <u>15</u> Totals <u>16</u> 7 <u>15</u> als ppy Dr E W -	Hawkins Dr $ \begin{array}{c} 0\\ 0\\ 38 \end{array} $ Hawkins Dr	Poppy C Cyclists 0 Trucks 5 Cars <u>61</u> Totals 66	Cars Trucks Cyclists Totals 1 0 2 3 78 2 3 Cars Trucks Cyclists Totals 12 0 0 12 65 2 1 68 1 0 2 3 78 2 3
15104Peds Cross:XWest Peds:10West Entering:110West Leg Total:204	Cyclists 2 Totals 20	s Dr Cars 8 6 Trucks 0 0 Cyclists <u>2 0</u> Totals 10 6	3 17 0 0 2 3	69 0 1 70 Peds Cross:  ◄ South Peds: 11 South Entering: 19 South Leg Total: 39



Municipality:	Guelpl	า			Wea	ther	conditions	:		
Site #:	22055									
		Dr E & Hav	wkins Dr	-	Pers	on c	ounted:			
FR File #:	1	<u>, ,,,</u>				-	repared:			
Count date:	29-Sej	J-22			Pers	on c	hecked:			
* Non-Signali	zed In	tersectio	on **		Majo	or Ro	ad: Poppy	Dr E r	uns W/E	
North Leg Total: 507		Cyclists 0	0	0	0	$\wedge$	Cyclists 4		East Leg Total	843
North Entering: 209		Trucks 6	0	0	6		Trucks 17		East Entering:	479
North Peds: 118		Cars 10	3 34	66	203		Cars 277	_	East Peds:	40
Peds Cross: M		Totals 10	9 34	66			Totals 298	L	Peds Cross:	X
4 27 532	563 Pop	] py Dr E			N		1 4 F	61 385 5 451	1     2       21     2       0     2       22     6	64 408 7
Cyclists Trucks Cars	Total	\$ •		W -			5		_	
2 16 172	190	。 公			v S		Po	opy Dr I	=	
3 4 285	292	$\Box$								V
0 0 53	53	Ź			<u>/</u>	$\wedge$		Cars	Trucks Cyclis	ts Total:
5 20 510		$\checkmark$		Hawkin	s Dr	Т		357	4 3	364
Peds Cross: X		Cars 92	ſ		Cars 44	44	6 94		Peds Cross:	Χ
West Peds: 66		Trucks 0			Trucks 0	0	0 0		South Peds:	65
West Entering: 535		Cyclists 2	र		Cyclists 2	0	0 2		South Entering	: 96
West Leg Total: 109	8	Totals 94			Totals 46	44	6		South Leg Tota	al: 190
				<b>C</b> -	mments					
				L.O	mments					

STAMSON 5.0 NORMAL REPORT Date: 07-12-2023 08:45:57 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: 1clairrd.te Time Period: Day/Night 16/8 hours Description: STAMSON Calculation for 1 Clair Rd Road data, segment # 1: Clair Rd E (day/night) -----Car traffic volume : 14963/1301 veh/TimePeriod Medium truck volume : 481/42 veh/TimePeriod Heavy truck volume : 311/27 veh/TimePeriod Posted speed limit : 60 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) Data for Segment # 1: Clair Rd E (day/night) -----Angle1 Angle2 : -90.00 deg 90.00 deg Wood depth:0No of house rows:0 / 0Surface:2 (No woods.) 0/0 (Reflective ground surface) Receiver source distance : 19.00 / 19.00 m Receiver height : 4.50 / 4.50 m : 1 (Flat/gentle slope; no barrier) Topography Reference angle : 0.00 ♠ Road data, segment # 2: Farley Dr (day/night) _____ Car traffic volume : 5474/608 veh/TimePeriod Medium truck volume : 227/25 veh/TimePeriod Heavy truck volume : 363/40 veh/TimePeriod Posted speed limit : 40 km/h Road gradient:0 %Road pavement:1 (Typical asphalt or concrete) Data for Segment # 2: Farley Dr (day/night) _____ Angle1Angle2:0.00 deg90.00 degWood depth:0(No woods.)No of house rows:0 / 0Surface:2(Reflective ground surface) Receiver source distance : 15.00 / 15.00 m Receiver height : 4.50 / 4.50 m : 1 (Flat/gentle slope; no barrier) Topography Reference angle : 0.00

Results segment # 1: Clair Rd E (day)

Source height = 1.19 mROAD (0.00 + 66.91 + 0.00) = 66.91 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 90 0.00 67.93 0.00 -1.03 0.00 0.00 0.00 0.00 66.91 Segment Leq : 66.91 dBA ♠ Results segment # 2: Farley Dr (day) Source height = 1.56 mROAD (0.00 + 60.33 + 0.00) = 60.33 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -----_ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ 0 90 0.00 63.34 0.00 0.00 -3.01 0.00 0.00 0.00 60.33 _____ Segment Leq : 60.33 dBA Total Leq All Segments: 67.77 dBA Results segment # 1: Clair Rd E (night) _____ Source height = 1.18 m ROAD (0.00 + 59.31 + 0.00) = 59.31 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 90 0.00 60.34 0.00 -1.03 0.00 0.00 0.00 0.00 59.31 _____ Segment Leq : 59.31 dBA ♠ Results segment # 2: Farley Dr (night) _____ Source height = 1.56 mROAD (0.00 + 53.77 + 0.00) = 53.77 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq 0 90 0.00 56.78 0.00 0.00 -3.01 0.00 0.00 0.00 53.77 Segment Leq : 53.77 dBA Total Leq All Segments: 60.38 dBA ↑ TOTAL Leq FROM ALL SOURCES (DAY): 67.77 (NIGHT): 60.38

**↑** 



## APPENDIX D



### NOISE MITIGATION GUIDANCE

#### Acoustic/Noise Barrier

#### **Transportation Noise**

Generally, noise controls to attenuate transportation sound levels at Outdoor Living Areas (OLAs) would consist of the implementation of acoustic/noise barriers with materials that would meet the guidance included in NPC-300, for example:

- A wall, berm, wall/berm combination or similar structure, used as a noise control measure, and high enough to break the line-of-sight between the source and the receptor.
- The minimum surface density (face weight) is 20 kg/m²
  - Many materials could satisfy the surface density requirement, e.g. wood, glass, concrete, Plexiglas, Acrylite.
  - The required thickness can be determined by dividing the 20 kg/m² face weight by the material density (kg/m³). Typically, this would imply:
    - 50 mm (2") thickness of wood
    - 13 mm (0.5") thickness of lighter plastic (like Plexiglas or PVC)
    - 10 mm (0.4") thickness of heavier material (like aluminum, glass, concrete)
- The barrier should be structurally sound, appropriately designed to withstand wind and snow load, and constructed without cracks or surface gaps. Joints between panels may need to be overlapped to ensure surfaces are free of gaps, particularly for wood construction.
- Any gaps under the barrier that are necessary for drainage purposes should be minimized and localized, so that the acoustical performance of the barrier is maintained.
- If a sound absorptive face is to be included in the barrier design, the minimum noise reduction coefficient is recommended to be NRC 0.7.

The Guelph Noise Control Guidelines specify the following requirements for noise barriers in addition to the above requirements:

- Noise barrier wall/fence heights for new development shall be 1.8m
- Have no holes or gaps
- Be non-combustible
- Be resistant to graffiti or include a graffiti resistive coating conforming to relevant ASTM standards (fences)
- Be vermin and fungus resistant (fences)
- Have a minimum predicted maintenance free lifespan of 20 years
- Final barrier material/manufacturer shall be approved by the City
- As an alternative to the mass density requirement of 20 kg/m²:
  - the Sound Transmission Class (STC) of the panel material must be 20 or greater when tested in accordance with ASTM-E90 (with a test report to be submitted for approval), or

#### rwdi.com



• The Sound Transmission Class (STC) of the panel material has historically been demonstrated to be 30 or greater (include references)

#### **Mechanical Equipment**

Noise controls to attenuate mechanical equipment sound levels at Outdoor Points of Reception (OPOR) would consistent with the of the implementation of acoustic/noise barriers for Transportation sources, with the exception of the following:

• The minimum surface density (face weight) is **10** kg/m².

All other barrier quality and characteristics would be consistent with the details provided above.

#### **Building Ventilation and Air Conditioning**

The use of air conditioning itself is not a noise control measure; however, it allows for windows and doors to remain closed, thereby reducing the indoor sound levels.

NPC-300 provides the following guidance with respect to implementation of building ventilation and air conditioning:

- a. the noise produced by the proposed ventilation system in the space served does not exceed 40 dBA. In practice, this condition usually implies that window air conditioning units are not acceptable;
- b. the ventilation system complies with all national, provincial and municipal standards and codes;
- c. the ventilation system is designed by a heating and ventilation professional; and
- d. the ventilation system enables the windows and exterior doors to remain closed.

Air conditioning systems also need to comply with Publication NPC-216, and/or any local municipal noise by-law that has provisions relating to air conditioning equipment.



# APPENDIX E

Parameter	Unit	Definition
Nr		Ray Number
Х	(m)	X-axis Cartesian Coordinate
Y	(m)	Y-axis Cartesian Coordinate
Z	(m)	Z-axis Cartesian Coordinate
Refl.	order	Order of Reflection
DEN	D/E/N	Time of Day (Day, Evening, or Night)
Freq.	(Hz)	1/1 Octave Band Dominant Frequency or Frequency Type ("A" for A-weighted)
Lw	(dBA)	Overall Sound Power Level
l/a	dB	Line/Area Source Correction
Optime	dB	Operating Time Correction
K0	(dB)	D_omega in ISO 9613-2 (correction for radiation into solid angles less than 4 Pi)
Di	(dB)	Directivity Index
Adiv	(dB)	Attenuation Due to Divergence
Aatm	(dB)	Atmospheric Attenuation
Agr	(dB)	Ground Attenuation
Afol	(dB)	Attenuation Due to Foliage
Ahous	(dB)	Attenuation from Houses
Abar	(dB)	Barrier Attenuation
Cmet	(dB)	Meteorological Correction
RL	(dB)	Reflection Loss
Lr	(dBA)	Resulting Noise Impact at Receptor - Leq (1-Hr)

#### Cadna/A ISO-9613 Calculation Protocol - Definitions

#### Receiver

Southwest Block Worst-case West Facade Receptor Name:

!0G01! ID:

X: Y: 565824.06 m 4816763.14 m

Z: 24.50 m

Point Source, ISO 9613, Name: "11 - Lennox HVAC-2F 150 - Goodlife - unmit", ID: "!0600!"           Nr.         X         Y         Z         Refl. DEN Freq.         Lw         I/a         Optime         K0         Di         Adiv         Aatm         Agr         Afol         About Shar         Cmet         RL         Lr														it" IF		001"				
NIm	V																Ahar	Cm-+	Ы	
Nr.	X	Y	Z (ma)	Retti.	DEN		Lw				Di									
	(m)	(m)	(m)				dB(A)		dB		(dB)	<u> </u>	(dB)	<u> </u>	· · /	(dB)	(dB)	<u> </u>	· /	dB(A)
1643	565800.41	4816740.63	13.50	0	DEN	A	89.2	0.0	0.0	0.0	0.0	41.7	0.1	-2.4	0.0	0.0	0.0	0.0	0.0	49.7
				00.00	10.11		10 1			100										
							-		IVAC-2F											
Nr.	Х	Y	Z	Refl.	DEN		Lw	l/a	Optime		Di					Ahous				Lr
	(m)	(m)	(m)			(Hz)	dB(A)		dB	· /	· ·	(dB)	(dB)	· /	· · ·	· · /	(dB)	(dB)		dB(A)
1660	565814.37	4816725.48	13.50	0	D	A	88.3	0.0	0.0	0.0	0.0	43.1	0.2	-2.4	0.0	0.0	0.0	0.0	0.0	47.4
		Point S	Source, I	SO 9	613, N	ame:	<u>"19 - L</u>	ennox	HVAC-2	2F 120	) - Go									
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
1675	565787.97	4816735.62	13.50	0	DEN	A	88.3	0.0	0.0	0.0	0.0	44.4	0.2	-2.4	0.0	0.0	0.0	0.0	0.0	46.1
LI		1										I								
		Point S	ource, IS	SO 96	13, Na	ame: "	18 - Le	nnox l	HVAC-2	= 120	- Dol	laram	a - unn	nit", I	D: "!0	600!"				
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)				dB(A)		dB		(dB)		(dB)				(dB)			dB(A)
1690		4816728.22	13.50	0	D	A	88.3		0.0	· /	· ,	· ,	· ·	-2.4	· ,	0.0	· /	· · ·	· /	44.8
1000	000700.00	4010720.22	10.00		0		00.0	0.0	0.0	0.0	0.0	40.7	0.2	2.7	0.0	0.0	0.0	0.0	0.0	0
		Point S	Source L	SO 96	313 N	ame [.] '	'7 - L er	nox F	IVAC-2F	092	- Doll	arama	ı - unm	it" IC	J	300!"				
Nr.	Х	Y	Z		DEN		Lw	l/a	Optime		Di					Ahous	Ahar	Cmet	RI	Lr
	(m)	(m)	(m)	r ton.	DEN		dB(A)		dB		(dB)		(dB)				(dB)			dB(A)
1707	. ,	4816717.30	13.50	0	D	(112) A	88.3		0.0	· /	0.0	· · ·	· ·	-2.4	· · ·	· · /	· · /	· · ·	· /	( )
1707	505795.19	4010717.30	13.50	0	D	A	00.3	0.0	0.0	0.0	0.0	45.9	0.2	-2.4	0.0	0.0	0.0	0.0	0.0	44.6
				Do	int Co	uroo		12 No	me: "Ca	nucol	חו יי		יוכר							
Nu	X	X	7				-							A	A.C. I	A I	A I	0		1
Nr.	X	Ý	Z	Refi.	DEN		Lw	l/a	Optime		Di		Aatm			Ahous				Lr
	(m)	(m)	(m)		_	· ·	dB(A)		dB	· /	(dB)	· · /	· · /	(dB)	· · ·	· · /	(dB)	· · /	· /	dB(A)
1722	565618.75	4816793.41	2.00		D	A			-6.0					-2.1		0.0		0.0		48.4
1736	565618.75	4816793.41	2.00	1	D	A	107.3	0.0	-6.0	0.0	3.1	60.9	2.0	-2.0	0.0	0.0	24.4	0.0	3.4	15.8
									IVAC-2F											
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw		Optime		Di					Ahous				Lr
	(m)	(m)	(m)			(Hz)	dB(A)		dB	· /	· /	(dB)	(dB)	<u> </u>	· · /	(dB)	(dB)	(dB)	(dB)	dB(A)
1751	565792.69	4816714.76	13.50	0	D	A	88.3	0.0	0.0	0.0	0.0	46.4	0.2	-2.4	0.0	0.0	0.0	0.0	0.0	44.1
				Po	int So	urce,	SO 96	13, Na	me: "Ca	rwasl	h", ID	: "!060	)3!"							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
1768	565608.99	4816804.25	2.00	0	D	Α	107.3	0.0	-6.0	0.0	-4.9	57.9	1.7	-2.1	0.0	0.0	15.8	0.0	0.0	23.3
1783	565608.99	4816804.25	2.00	1	D	Α	107.3	0.0	-6.0	0.0	-4.9	61.1	2.1	-2.0	0.0	0.0	25.0	0.0	2.8	7.6
	-	_					· · · ·								·					
		Point S	ource, IS	SO 96	13, Na	ame: "	17 - Le	nnox l	HVAC-2	= 120	- Dol	laram	a - unn	nit", I	D: "!0	600!"				
Nr.	Х	Y	Z		DEN		Lw	l/a	Optime					,		Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)				dB(A)		dB			(dB)	(dB)				(dB)			dB(A)
1798	( )	4816725.86	13.50	0	D	(112) A	88.3		0.0	· /	· ·	46.6	· /	-2.4	· · ·	. ,	0.0	· · ·	· /	43.9
1130	505770.45	-010120.00	10.00	0	5	А	00.0	0.0	0.0	0.0	0.0	<del>-</del> 0.0	0.5	-2.4	0.0	0.0	0.0	0.0	0.0	40.9
		Poin	t Source	0.21	9613	Name	- 16	Lenn	x HVAC	-2F 1	20 -	lvsk -	unmit"	יחו	"1060	01"				
Nr	Х	Y	Z			Freq.	Lw		Optime							Ahous	Abor	Creat	Ы	Lr
Nr.				ILEII.																
1014	(m)	(m)	(m)				dB(A)		dB			(dB)					(dB)			dB(A)
1814	565770.13	4816717.14	13.50	0	D	A	88.3	0.0	0.0	0.0	0.0	48.1	0.3	-2.4	0.0	0.0	0.0	0.0	0.0	42.3
		<u> </u>	1.0	. 100	0010	N 1				05 11	<u> </u>				10000					
<b>.</b> ,							-		x HVAC									_		
Nr.	Х	Y	Z	Refl.	DEN		Lw	l/a	Optime							Ahous				Lr
	(m)	(m)	(m)			(Hz)	dB(A)		dB			(dB)					(dB)		(dB)	dB(A)
1829	565783.34	4816705.10	13.50	0	D	Α	88.3	0.0	0.0	0.0	0.0	48.1	0.3	-2.4	0.0	0.0	0.0	0.0	0.0	42.3

	Point Source, ISO 9613, Name: "8 - Spinnaker MUA - Goodlife - unmit", ID: "!0600!"																			
Nr.	Х	Y	Z	Refl. [	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)						
1883	565803.05	4816725.08	13.50	0	DEN	Α	82.5	0.0	0.0	0.0	0.0	44.0	0.5	-2.4	0.0	0.0	0.0	0.0	0.0	40.3

	Point Source, ISO 9613, Name: "15 - Lennox HVAC-2F 120 - Jysk - unmit", ID: "!0600!"																			
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)						
1899	565766.52	4816713.83	13.50	0	D	Α	88.3	0.0	0.0	0.0	0.0	48.7	0.3	-2.4	0.0	0.0	0.0	0.0	0.0	41.7

		Poir	nt Source	e, ISO	9613	, Nam	Point Source, ISO 9613, Name: "3 - Lennox HVAC-2F 120 - Jysk - unmit", ID: "!0600!"														
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr	
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)							
1915	565778.99	4816700.78	13.50	0	D	Α	88.3	0.0	0.0	0.0	0.0	48.8	0.3	-2.4	0.0	0.0	0.0	0.0	0.0	41.6	

	Point Source, ISO 9613, Name: "10 - Lennox HVAC-1F 060 - Goodlife - unmit", ID: "!0600!"																			
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)						
1931	565806.13	4816735.44	13.50	0	DEN	Α	78.5	0.0	0.0	0.0	0.0	41.8	0.1	-2.4	0.0	0.0	0.0	0.0	0.0	38.9

		Point	Source	, ISO 9	9613,	Name	: "44 - `	York ⊦	IVAC-2F	102	- The	Keg -	unmit	", ID:	"!060	0!"				
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
1949	565727.08	4816814.93	7.50	0	D	A	88.1	0.0	0.0	0.0	0.0	51.9	0.5	-2.4	0.0	0.0	0.0	0.0	0.0	38.1
1964	565727.08	4816814.93	7.50	1	D	Α	88.1	0.0	0.0	0.0	0.0	57.1	0.8	-2.4	0.0	0.0	24.8	0.0	2.1	5.8

		Point	Source,	ISO 9	9613,	Name	: "41 - `	York ⊦	IVAC-2F	102	- The	Keg -	unmit	", ID:	"!060	0!"				
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
1979	565712.33	4816813.61	7.50	0	D	А	88.1	0.0	0.0	0.0	0.0	52.9	0.5	-2.4	0.0	0.0	0.0	0.0	0.0	37.1
1994	565712.33	4816813.61	7.50	1	D	Α	88.1	0.0	0.0	0.0	0.0	57.7	0.9	-2.4	0.0	0.0	24.8	0.0	2.1	5.1

		Р	oint Sou	rce, IS	SO 96	13, Na	ame: "1	4 - Sp	innaker	MUA	- Jys	k - unr	nit", ID	: "!06	00!"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2009	565780.58	4816713.70	13.50	0	D	Α	82.5	0.0	0.0	0.0	0.0	47.5	0.7	-2.4	0.0	0.0	0.0	0.0	0.0	36.7

	F	Point Source, I	SO 9613	3, Nar	ne: "5	1 - Tre	enton R	efrige	ration Co	nden	sing	Unit - ˈ	The Ke	eg - u	nmit"	, ID: "!0	600!"			
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2025	565734.93	4816811.47	6.50	0	D	A	85.9	0.0	0.0	0.0	0.0	51.3	1.1	-2.4	0.0	0.0	0.0	0.0	0.0	36.0
2039	565734.93	4816811.47	6.50	1	D	A	85.9	0.0	0.0	0.0	0.0	56.8	1.7	-2.4	0.0	0.0	24.8	0.0	2.1	2.9

	P	oint Source, I	SO 9613	3, Nar	ne: "2	8 - Ler	nox H۱	/AC-2	F 120 - I	Pergo	ola Sh	oppin	g Cent	er - u	nmit"	, ID: "!0	600!"			
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2053	565727.99	4816659.32	9.50	0	D	Α	88.3	0.0	0.0	0.0	0.0	54.1	0.5	-2.4	0.0	0.0	0.0	0.0	0.0	36.1
2068	565727.99	4816659.32	9.50	2	D	Α	88.3	0.0	0.0	0.0	0.0	61.8	1.2	-2.4	0.0	0.0	24.2	0.0	5.0	-1.4

	F	oint Source, I	SO 9613	3, Nar	ne: "2	7 - Ler	nox H	VAC-2	F 092 - I	Pergo	ola Sh	oppin	g Cent	er - u	nmit"	, ID: "!0	600!"			
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2083	565722.81	4816661.67	9.50	0	D	Α	88.3	0.0	0.0	0.0	0.0	54.2	0.6	-2.4	0.0	0.0	0.0	0.0	0.0	36.0

	P	oint Source, I	SO 9613	3, Nan	ne: "2	9 - Ler	nox H	VAC-2	2F 092 -	Pergo	ola Sh	noppin	g Cent	er - u	nmit"	, ID: "!0	600!"			
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2099	565731.27	4816650.76	9.50	0	D	Α	88.3	0.0	0.0	0.0	0.0	54.3	0.6	-2.4	0.0	0.0	0.0	0.0	0.0	35.8
2113	565731.27	4816650.76	9.50	2	D	Α	88.3	0.0	0.0	0.0	0.0	62.0	1.2	-2.4	0.0	0.0	24.2	0.0	5.0	-1.7

		Point Sou	rce, ISO	9613	, Nam	ie: "48	- Carne	es Kito	chen Exh	aust	Fan -	The k	Keg - u	nmit"	, ID: '	'!0600!"				
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2128	565732.93	4816806.75	7.50	0	D	A	86.7	0.0	0.0	0.0	0.0	51.2	0.4	-2.4	0.0	0.0	0.0	0.0	0.0	37.4
2142	565732.93	4816806.75	7.50	1	D	A	86.7	0.0	0.0	0.0	0.0	56.9	0.7	-2.4	0.0	0.0	25.0	0.0	2.1	4.4

		Point	Source,	ISO	9613,	Name	: "40 - `	York H	IVAC-2F	090	- The	Keg -	unmit	", ID:	"!060	0!"				
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2158	565717.26	4816824.23	7.50	0	D	Α	85.9	0.0	0.0	0.0	0.0	52.9	0.5	-2.4	0.0	0.0	0.0	0.0	0.0	34.9
2174	565717.26	4816824.23	7.50	1	D	Α	85.9	0.0	0.0	0.0	0.0	57.4	0.8	-2.4	0.0	0.0	25.0	0.0	2.0	3.1

		Point Source	e, ISO 9	9613,	Name	: "24 -	Lenno	x HVA	C-2F 10	2 - Pe	ergola	a Shop	oping C	Cente	r", ID:	: "!0603	!"			
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2189	565708.58	4816649.07	9.50	0	D	Α	88.3	0.0	0.0	0.0	0.0	55.2	0.6	-2.4	0.0	0.0	0.0	0.0	0.0	34.8

		Point	Source,	ISO 9	9613,	Name	: "49 - `	York ⊦	IVAC-4F	150	- The	Keg -	unmit	", ID:	"!060	0!"				
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2204	565727.78	4816800.75	7.50	0	D	A	84.4	0.0	0.0	0.0	0.0	51.4	0.4	-2.4	0.0	0.0	0.0	0.0	0.0	34.9
2218	565727.78	4816800.75	7.50	1	D	A	84.4	0.0	0.0	0.0	0.0	57.2	0.8	-2.4	0.0	0.0	25.0	0.0	2.1	1.7

			Point So	ource,	ISO 9	613, N	lame: "	2 - Le	nnox HV	AC-1	F 072	2 - Jys	k", ID:	"!060	3!"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2231	565775.26	4816696.43	13.50	0	D	A	80.6	0.0	0.0	0.0	0.0	49.4	0.3	-2.4	0.0	0.0	0.0	0.0	0.0	33.2

		Poi	nt Sourc	e, ISC	D 9613	3, Nam	ie: "Re	frigera	ation Cor	Idens	ing U	nit - L	CBO",	ID: "!	0603	"				
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2247	565660.08	4816847.39	8.50	0	D	А	85.9	0.0	0.0	0.0	0.0	56.3	1.7	-2.4	0.0	0.0	0.0	0.0	0.0	30.3

			F	oint Sc	ource	, ISO	9613, N	lame:	"HVAC-	2F - L	CBO	", ID: '	'!0603	!"						
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2263	565670.39	4816843.88	9.50	0	D	Α	85.0	0.0	0.0	0.0	0.0	55.8	0.3	-2.4	0.0	0.0	0.0	0.0	0.0	31.2

			Point S	ource,	ISO 9	9613, I	Name:	"HVA	C-2F - 33	8 Farle	ey Dr	Plaza	a", ID: '	'!060;	3!''					
Nr.	Nr. X Y Z Refl. DEN Freq. Lw I/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr																			
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2279	565724.32	4816912.99	7.50	0	D	Α	85.0	0.0	0.0	0.0	0.0	56.1	0.3	-2.4	0.0	0.0	23.4	0.0	0.0	7.5

			P	oint S	Source	, ISO	9613, N	lame:	"HVAC-	2F - L	СВО	", ID: '	"!0603	!"						
Nr.																				
	Nr.     X     Y     Z     Refi.     DEN     Freq.     Lw     1/a     Optime     K0     DI     Adiv     Aam     Agr     Afoi     Anous     Abar     Cmet     RL     Lr       (m)     (m)     (m)     (Hz)     dB(A)     dB     dB     (dB)     (dB)<																			
2301	565658.73	4816839.52	9.50	0	D	Α	85.0	0.0	0.0	0.0	0.0	56.2	0.4	-2.4	0.0	0.0	0.0	0.0	0.0	30.8

			Point S	ource	, ISO 9	9613,	Name:	"HVA	C-2F - 33	3 Farl	ey Dı	⁻ Plaza	a", ID: '	"!060;	3!"					
Nr.																				
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																			
2317	565730.95	4816919.93	7.50	0	D	A	85.0	0.0	0.0	0.0	0.0	56.3	0.4	-2.4	0.0	0.0	23.7	0.0	0.0	7.0

			P	oint S	Source	, ISO	9613, N	lame:	"HVAC-	2F - L	СВО	", ID:	"!0603	!"						
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2335	565662.43	4816851.77	9.50	0	D	Α	85.0	0.0	0.0	0.0	0.0	56.3	0.4	-2.4	0.0	0.0	0.0	0.0	0.0	30.7

			Point S	ource	, ISO	9613,	Name:	"HVA	C-2F - 3	3 Farl	ey Dr	Plaza	a", ID: '	"!060	3!"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2351	565707.96	4816906.97	7.50	0	D	A	85.0	0.0	0.0	0.0	0.0	56.4	0.4	-2.4	0.0	0.0	22.1	0.0	0.0	8.5
2371	565707.96	4816906.97	7.50	1	D	A	85.0	0.0	0.0	0.0	0.0	57.8	0.4	-2.4	0.0	0.0	25.0	0.0	2.0	2.2

			Point S	ource	, ISO	9613,	Name:	"HVA	C-2F - 33	3 Farl	ey Dr	Plaza	a", ID: '	'!060	3!"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2386	565739.69	4816927.74	7.50	0	D	Α	85.0	0.0	0.0	0.0	0.0	56.4	0.4	-2.4	0.0	0.0	24.0	0.0	0.0	6.7
2401	565739.69	4816927.74	7.50	2	D	A	85.0	0.0	0.0	0.0	0.0	59.4	0.5	-2.4	0.0	0.0	25.0	0.0	4.0	-1.5

			Point S	ource	, ISO	9613,	Name:	"HVA	C-2F - 33	3 Farl	ey Dr	Plaza	a", ID: '	!!060	3!"					
Nr.																Lr				
	(m) (m) (m) (Hz) dB(A) dB dB dB (dB) (dB) (dB) (dB) (dB) (dB)															dB(A)				
2421	565705.94	4816910.81	7.50	0	D	A	85.0	0.0	0.0	0.0	0.0	56.6	0.4	-2.4	0.0	0.0	22.0	0.0	0.0	8.4
2441	565705.94	4816910.81	7.50	1	D	A	85.0	0.0	0.0	0.0	0.0	57.9	0.4	-2.4	0.0	0.0	25.0	0.0	2.0	2.1

			Point So	urce,	ISO 9	613, N	lame: "	1 - Le	nnox HV	AC-1	F 060	) - Jys	k", ID:	"!060	3!"					
Nr.	Nr. X Y Z Refl. DEN Freq. Lw I/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr																			
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2455	565773.56	4816685.20	7.50	0	D	A	78.5	0.0	0.0	0.0	0.0	50.5	0.4	-2.4	0.0	0.0	13.0	0.0	0.0	17.0

		Point Sour	ce, ISO 9	9613,	Name	: "33 -	Lenno	x HVA	C-1F 07	2 - Pe	ergola	a Shoj	oping (	Cente	r", ID	: "!0603	!"			
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2472	565731.62	4816671.51	9.50	0	D	Α	80.6	0.0	0.0	0.0	0.0	53.3	0.5	-2.4	0.0	0.0	0.0	0.0	0.0	29.1
2488	565731.62	4816671.51	9.50	2	D	A	80.6	0.0	0.0	0.0	0.0	61.4	1.1	-2.4	0.0	0.0	24.4	0.0	4.7	-8.6

		Point Source	ce, ISO 9	9613,	Name	: "31 -	Lenno	x HVA	C-1F 07	2 - Pe	ergola	a Shop	oping (	Cente	r", ID	: "!0603	!"			
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2503	565740.53	4816660.43	9.50	0	D	Α	80.6	0.0	0.0	0.0	0.0	53.5	0.5	-2.4	0.0	0.0	0.0	0.0	0.0	29.0
2519	565740.53	4816660.43	9.50	2	D	Α	80.6	0.0	0.0	0.0	0.0	61.7	1.1	-2.4	0.0	0.0	24.3	0.0	4.7	-8.9

			Point	Sourc	e, ISC	9613	, Name	: "46	Ice Mad	chine	- The	Keg"	, ID: "!(	0603!						
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2536	565725.90	4816803.06	6.50	0	D	Α	78.6	0.0	0.0	0.0	0.0	51.6	1.2	-2.3	0.0	0.0	0.0	0.0	0.0	28.1
2553	565725.90	4816803.06	6.50	1	D	Α	78.6	0.0	0.0	0.0	0.0	57.2	1.6	-2.3	0.0	0.0	25.0	0.0	2.1	-5.0

			P	oint S	ource	, ISO 9	9613, N	lame:	"HVAC-	1F - L	СВО	", ID: '	"!0603	"						
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2632	565676.81	4816855.35	9.50	0	D	A	82.0	0.0	0.0	0.0	0.0	55.8	0.3	-2.4	0.0	0.0	0.0	0.0	0.0	28.2

			Point S	ource	, ISO 9	9613, I	Name:	"HVA	C-1F - 3	3 Farl	ey Dı	Plaza	a", ID: '	!!060	3!"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2648	565727.33	4816916.06	7.50	0	D	A	82.0	0.0	0.0	0.0	0.0	56.2	0.4	-2.4	0.0	0.0	23.6	0.0	0.0	4.3

			Point S	ource	, ISO 9	9613,	Name:	"HVA	C-1F - 33	3 Farl	ey Dr	[·] Plaza	a", ID: '	'!060;	3!"					
Nr.	Nr. X Y Z Refl. DEN Freq. Lw I/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr																			
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2669	565733.66	4816922.52	7.50	0	D	Α	82.0	0.0	0.0	0.0	0.0	56.3	0.4	-2.4	0.0	0.0	23.8	0.0	0.0	3.9

			Point S	ource	e, ISO	9613,	Name:	"HVA	C-2F - 8	8 Cla	ir Rd	Plaza	", ID: "	10603	s!"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2688	565742.98	4817016.92	13.50	0	D	A	85.0	0.0	0.0	0.0	0.0	59.5	0.5	-2.4	0.0	0.0	23.3	0.0	0.0	4.1

			Point S	ource	, ISO 9	9613,	Name:	"HVA	C-1F - 33	3 Farl	ey Dr	Plaza	a", ID: '	'!060;	3!"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2704	565702.78	4816911.93	7.50	0	D	Α	82.0	0.0	0.0	0.0	0.0	56.7	0.4	-2.4	0.0	0.0	21.6	0.0	0.0	5.7
2723	565702.78	4816911.93	7.50	1	D	Α	82.0	0.0	0.0	0.0	0.0	58.0	0.4	-2.4	0.0	0.0	25.0	0.0	2.0	-1.0

			Point S	ource	, ISO	9613,	Name:	"HVA	C-1F - 33	3 Farl	ey Dr	Plaza	ı", ID: '	'!060	3!"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2737	565699.80	4816916.73	7.50	0	D	Α	82.0	0.0	0.0	0.0	0.0	56.9	0.4	-2.4	0.0	0.0	21.6	0.0	0.0	5.5
2755	565699.80	4816916.73	7.50	1	D	Α	82.0	0.0	0.0	0.0	0.0	57.3	0.4	-2.4	0.0	0.0	25.0	0.0	2.0	-0.3

		Point Source	ce, ISO 9	9613,	Name	e: "32 -	Lenno	x HVA	C-1F 06	0 - Pe	ergola	a Shop	oping C	Cente	r", ID:	: "!0603	!"			
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2769	565734.41	4816666.88	9.50	0	D	A	78.5	0.0	0.0	0.0	0.0	53.4	0.5	-2.4	0.0	0.0	0.0	0.0	0.0	27.0
2784	565734.41	4816666.88	9.50	2	D	A	78.5	0.0	0.0	0.0	0.0	61.5	1.1	-2.4	0.0	0.0	24.3	0.0	4.9	-10.9

			Point S	Source	, ISO	9613,	Name:	"HVA	C-2F - 8	8 Cla	ir Rd	Plaza	", ID: "	10603	8!"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2799	565853.55	4817045.25	13.50	0	D	Α	85.0	0.0	0.0	0.0	0.0	60.1	0.5	-2.4	0.0	0.0	24.2	0.0	0.0	2.6

		Point Source	ce, ISO 9	9613, I	Name:	: "26 -	Lenno	x HVA	C-1F 06	0 - Pe	ergola	a Shop	oping C	Cente	r", ID:	: "!0603	!"			
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2814	565713.50	4816654.58	9.50	0	D	Α	78.5	0.0	0.0	0.0	0.0	54.8	0.5	-2.4	0.0	0.0	0.0	0.0	0.0	25.5

		P	oint Sou	irce, I	SO 96	13, Na	ame: "4	2 - Yo	ork HVAC	C-1F (	)49 -	The K	eg", ID	: "!06	603!"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2830	565716.39	4816809.67	7.50	0	D	Α	75.8	0.0	0.0	0.0	0.0	52.5	0.5	-2.4	0.0	0.0	0.0	0.0	0.0	25.2
2845	565716.39	4816809.67	7.50	1	D	Α	75.8	0.0	0.0	0.0	0.0	57.5	0.9	-2.4	0.0	0.0	24.1	0.0	2.2	-6.6

			Point	Sour	ce, IS	D 9613	3, Nam	e: "50	- Price M	/UA -	The	Keg",	ID: "!0	603!"	1					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2862	565727.66	4816809.68	7.50	0	D	А	75.0	0.0	0.0	0.0	0.0	51.7	0.2	-2.4	0.0	0.0	0.0	0.0	0.0	25.5
2877	565727.66	4816809.68	7.50	1	D	Α	75.0	0.0	0.0	0.0	0.0	57.1	0.4	-2.4	0.0	0.0	25.0	0.0	2.0	-7.1

		Point Source	ce, ISO 9	9613,	Name	: "21 -	Lenno	x HVA	C-1F 06	0 - Pe	ergola	a Shop	oping C	Cente	r", ID:	: "!0603	!"			
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2891	565721.73	4816636.45	9.50	0	D	Α	78.5	0.0	0.0	0.0	0.0	55.3	0.6	-2.4	0.0	0.0	0.0	0.0	0.0	25.0

		Point Source	ce, ISO 9	9613,	Name	: "23 -	Lenno	x HVA	C-1F 06	0 - Pe	ergola	a Shoj	oping C	Cente	r", ID:	: "!0603	!"			
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2907	565714.39	4816642.00	9.50	0	D	Α	78.5	0.0	0.0	0.0	0.0	55.3	0.6	-2.4	0.0	0.0	0.0	0.0	0.0	25.0

		Point Source	ce, ISO 9	9613,	Name	: "20 -	Lenno	Point Source, ISO 9613, Name: "20 - Lennox HVAC-1F 060 - Pergola Shopping Center", ID: "!0603!"														
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr		
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)								
2923	565725.35	4816632.81	9.50	0	D	A	78.5	0.0	0.0	0.0	0.0	55.3	0.6	-2.4	0.0	0.0	0.0	0.0	0.0	25.0		
2938	565725.35	4816632.81	9.50	2	D	Α	78.5	0.0	0.0	0.0	0.0	62.4	1.2	-2.4	0.0	0.0	24.2	0.0	5.0	-11.9		

		Point Source	e, ISO 9	9613,	Name	Point Source, ISO 9613, Name: "22 - Lennox HVAC-1F 060 - Pergola Shopping Center", ID: "10603!"														
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)						
2953	565717.83	4816638.77	9.50	0	D	Α	78.5	0.0	0.0	0.0	0.0	55.3	0.6	-2.4	0.0	0.0	0.0	0.0	0.0	25.0

	Point Source, ISO 9613, Name: "43 - Spinnaker MUA (for washroom) - The Keg", ID: "!0603!"																			
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)						
2968	565720.00	4816816.90	7.50	0	D	A	75.0	0.0	0.0	0.0	0.0	52.5	0.2	-2.4	0.0	0.0	0.0	0.0	0.0	24.7
2983	565720.00	4816816.90	7.50	1	D	A	75.0	0.0	0.0	0.0	0.0	57.3	0.4	-2.4	0.0	0.0	25.0	0.0	2.0	-7.3

	Point Source, ISO 9613, Name: "38 - Kitchen Exhaust Fan - Pergola Shopping Center", ID: "!0603!"																			
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)						
2998	565735.38	4816655.69	9.50	0	D	Α	77.9	0.0	0.0	0.0	0.0	53.9	0.5	-2.4	0.0	0.0	0.0	0.0	0.0	25.9
3013	565735.38	4816655.69	9.50	2	D	A	77.9	0.0	0.0	0.0	0.0	61.8	0.9	-2.4	0.0	0.0	21.7	0.0	8.9	-13.1

		Point Source	ce, ISO 9	9613,	Name	: "25 -	Lenno	x HVA	C-1F 03	6 - Pe	ergola	a Shop	oping C	Cente	r", ID	: "!0603	!"	Point Source, ISO 9613, Name: "25 - Lennox HVAC-1F 036 - Pergola Shopping Center", ID: "!0603!"														
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr												
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)												
3028	565702.85	4816652.49	9.50	0	D	Α	73.3	0.0	0.0	0.0	0.0	55.3	0.6	-2.4	0.0	0.0	0.0	0.0	0.0	19.7												