

City of Guelph

2011 Annual Report – Solid Waste Transfer Station & Wet-Dry Recycling Centre, C of A (Waste Disposal Site) No. A170128

Prepared by:

AECOM

 300 – 300 Town Centre Boulevard
 905 477 8400 tel

 Markham, ON, Canada L3R 5Z6
 905 477 1456 fax

www.aecom.com

Project Number:

60241468

Date:

March, 2012

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("Consultant") for the benefit of the client ("Client") in accordance with the agreement between Consultant and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents Consultant's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to Consultant which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context:
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

Consultant shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. Consultant accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

Consultant agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but Consultant makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by Consultant represent Consultant's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since Consultant has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, Consultant, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by Consultant and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

Consultant accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of Consultant to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

March 27, 2012

Mr. Dean Wyman, Manager Solid Waste Services Division City of Guelph Works Department 59 Carden Street Guelph, ON N1H 3A1

Dear Mr. Wyman:

Project No: 60241468

Regarding: 2011 Annual Report - Solid Waste Transfer Station & Wet-Dry Recycling

Centre, C of A (Waste Disposal Site) No. A170128

Enclosed, please find our final report for this project, addressing the requirements of the WRIC and Transfer Station's Certificate of Approval.

Please do not hesitate to call me should you have any questions about this report. Thank you for allowing AECOM to be of continued service to the City of Guelph.

Sincerely,

AECOM Canada Ltd.

Terry La Chapelle, B.Sc., P.Geo. Senior Geologist

Terry.lachapelle@aecom.com

TLC/PW:mm Attach.

Distribution List

# of Hard Copies	PDF Required	Association / Company Name
8	1	City of Guelph
2		AECOM
bulkerele life. In		

PATTY WONG PRACTISING MEMBER

0801

AECOM Signatures

Report Prepared By:

Patty Wong, B.Sc., P.Geo.

Senior Geologist

Report Reviewed By:

Terry La Chapelle, B.Sc., P.Geo.

Senior Geologist

Executive Summary

The City of Guelph Solid Waste Transfer Station and the Wet-Dry Recycling Centre are adjacent facilities that operate under a combined Amended Provisional Certificate of Approval issued by the Ministry of Environment, dated February 10, 2011. At the request of the MOE, the annual monitoring reports have been consolidated here to produce one monitoring report for both the sites.

The following table presents a summary of the 2011 Annual Report for the City of Guelph Solid Waste Transfer Station and Wet-Dry Recycling Centre. The Certificate of Approval (C of A) specifies annual reporting requirements. These have been outlined in the left-hand column below, while the right hand column provides a reference to the section of this report where the reader will find further details.

	C of A Annual Report Requirement (Condition N)	Report Reference and Summary
52. 63(8) 68(a)	The City shall submit an annual report on the operation of the Site for the previous calendar year to the District Manager by March 31 st of each year. This report will include the information required as follows: (a) the information required by Condition 63(8) of the Certificate dealing with the Composting Site; By March 31 st following the end of each operating year, the Owner shall prepare and submit to the District Manager, an Annual Report summarizing the operation of the Composting Site covering the previous calendar year. This Annual Report shall include, as a minimum, the following information: A monthly mass balance of the Organic Waste received, processed and transferred from this composting site, including waste type, quantity, sources and/or disposal destinations;	received, processed and transferred from the site. 4,611 tonnes of material was received by the composting facility. Of the materials received, mixed organic materials constituted 3,162 tonnes (69%), brush, leaf and yard waste constituted 222 tonnes (5%) and residue and amendment/mulch made up the remaining 1,226 tonnes. Materials accepted were mainly from the City of Guelph and the County of Wellington. In 2011, four loads of finished compost (140.12 tonnes) was removed from the facility and shipped to a farmer in Atwood, Ontario. 9.28 tonnes of residues from the composting process were shipped to the Transfer Station and then the Green Lane Landfill site near
68(b)	An annual summary mass balance of the organic waste, the wood waste, the waste wood and the amendment material, received, processed and transferred from this composting site, including waste type, quantity, sources, and/or disposal destination;	Table 1 (Section 2.1) provides details on the organic materials received, processed and transferred from the site including amendment material. In addition to the 3,162 tonnes of mixed organic material received, 152 tonnes of amendment material/mulch from Growbark was also accepted at the site. 85 tonnes of clean wood/wood waste was received at the WRIC.
68(c)	An annual summary of any deficiencies, items of non-compliance or process aberrations that occurred at this composting site and any remedial/mitigative action taken to correct them;	As reported in Section 10, there were no deficiencies, items of non-compliance, or process aberrations in 2011.
68(d)	a descriptive summary of any spills, incidents or other emergency situations which have occurred at this composting site, any remedial measures taken and the measures taken to prevent future occurrences;	As reported in Section 2.2, no spills took place in 2011 at the composting site.
68(e)	A summary describing any rejected waste including quantity, waste type, reasons for rejection and origin of the rejected waste;	As reported in Section 2.2, no loads were rejected in 2011 coming into the facility. The occasional curbside recyclables collection bag (blue bag) is included in the organics deliveries, which are separated and removed by the staff at the facility.
68(f)	The quantity, by weight and volume of compost and residues produced and the quantity of compost and residues removed from the facility;	Table 1 (Section 2.1) shows that 140.12 tonnes of finished compost was removed from the facility. 9.28 tonnes of residues from the composting process were generated.
68(g)	Any environmental and operational problems, that could negatively impact the environment, encountered during the operation of the composting site or identified during the facility inspections and any mitigative actions taken;	 As reported in Section 2.2, there were no environmental or operational problems that negatively impacted the environment at the composting site in relation to the C of A in 2011.

	C of A Annual Report Requirement (Condition N)	Report Reference and Summary
68(h)	Any changes to the WRIC Environmental Emergency Plan, the Operations Manual or the Closure Plan that have been approved by the Director since the last Annual report;	 As reported in Section 2.2, there were no changes to the Operations Manual or the Closure Plan since the last annual report as the 2011 report is the first annual report to include the composting facility. The WRIC Environmental Emergency Plan was updated in 2011 to include the new organic waste processing facility.
68(i)	Any recommendations to minimize environmental impacts from the operation of the composting site and to improve the composting site operations and monitoring programs in this regard;	 As discussed in Section 2.5, the acidification system was not functioning as designed which may have resulted in increased odours being discharged from the site. As soon as the City became aware this issue, waste receipt was suspended and the facility designer was advised to develop an action plan to deal with the issue. Investigations into the electrochemical sensors revealed that they could not be used in a composting operation. The operation of the acidification system has to be converted to be based on the pH of the system. As the Certificate of Approval (Air) for the facility required the acidification system to be operated based on ammonia levels, an amendment to the Air Certificate of Approval was submitted to the Ministry that would permit the acid system to operate using a pH system. The amended Certificate of Approval (now called an Environmental Compliance Approval) was approved and received on February 10, 2012. Waste receipt resumed on February 13th.
68(j)	A summary of any complaints received and the responses made, as required by the C of A (Air/Noise) for the composting site;	 Section 2.3 discusses the six odour incidents received by staff at the Waste Resources Innovation Centre in 2011. These complaints were investigated by City of Guelph management staff and although staff conducting the investigations could only find faint odours originating from the site from one of the complaint dates, it is possible for the reasons discussed in Section 2.5, there may have been other odours attributable to site operations that dealt with the ammonia sensors not functioning properly. Each time a complaint was received, the complainant was contacted and a letter advising the complainant of the investigation findings was hand delivered to each of them. Further, the community was engaged by the City when an action plan was being developed to deal with any and all potential odour sources.
68(k)	A description of the compost distribution/markets;	As reported in Section 2.2, all compost produced at the site was shipped to a farmer in Atwood, Ontario, northwest of Guelph.
68(I)	Conclusions from the advanced pathogen testing as the results relate to the pasteurization temperature monitoring; and	 Section 2.4 reports samples taken from the maturation hall of the compost stream indicate that all compost that has been shipped off of the site has passed the conditions for a Class A compost under the CCME Guidelines and the conditions within the C of A. Temperature monitoring logs of the tunnels at the composting facility show that pasteurisation at 55 degrees C was maintained for 72 hours, as required.
68(m)	A condition-by-condition analysis of compliance with all Conditions of this Certificate.	Section 2.6 reports that the City is not aware of any non- compliance issues for 2011.
52(b)	A monthly summary of the waste and/or recyclable materials received at the Site, including quantity, source and Ontario Regulation 347 waste classes;	Table 4 (Section 6.1) provides details of the incoming materials. 89,023 tonnes of material was received by the site. Of the materials received, mixed organics constituted 12,144 tonnes (14% of the materials received in 2011). Recyclables and mixed dry materials constituted 41,046 tonnes (46%) of the total materials received at the site. This included about 4,459 tonnes of paper products and 48 tonnes of plastics. Non-recyclable materials (mixed solid waste, medical waste and Overs) constituted the remaining 35,832 tonnes (40%) of the total materials received at the site. Materials were accepted mainly from the City of Guelph and the County of Wellington. The Regulation 347 waste classes received at the site are summarized on Table 4.

C of A Annual Report Requirement (Condition N)	Report Reference and Summary
52(c) A monthly summary of wastes and/or recyclable materials processed at the Site, including quantity and Ontario Regulation 347 waste classes.	Table 5 (Section 6.2) provides details on processed waste to the site. There were 21,362 tonnes of materials processed at the site, mainly paper and cardboard products. 4,881 tonnes of material remained in inventory at the end of 2011. Materials that are accepted by the site are either diverted to be re-used or sent to the landfill for disposal.
52(d) A monthly summary of wastes and/or recyclable materials transferred off-Site, including quantity, destination, and Ontario Regulation 347 waste classes.	• Table 5 (Section 6.2) provides details on the outgoing materials. Of the 84,511 tonnes of outgoing material, 21,362 tonnes (25%) is processed on-site through the Material Recovery (MRF) or composting facilities. The remaining 63,150 tonnes (75%) is shipped off-site to other destinations. In 2011, 21,362 tonnes of marketable processed material transferred off the site 17,316 tonnes (81%) was paper-based goods such as cardboard and newsprint, 1,260 tonnes (6%) was plastics and the remaining 2,786 tonnes (13%) was other recyclable materials such as aluminum, steel cans, glass, concrete and finished compost. As reflected in the volumes above, the majority of the marketable materials sold were paper products. Of the 63,150 tonnes of non-processed outgoing materials, 45,354 tonnes (54% of the outgoing materials) is sent to the Transfer station for disposal. HHW materials were shipped by the haulers identified in Section 6.2 for disposal or re-use.
52(e) An annual summary of the analytical results for the groundwater and surface water monitoring program including an interpretation of the results and any remedial/mitigative action undertaken,	 Section 8 discusses groundwater quality. Groundwater monitoring results indicate road salt effects at some up-gradient groundwater monitoring locations (5-96, 8-96, 18b-08, 19b-08, 20b-08). These are related to off-site winter road salting of the adjacent major roadways. Road salt impacts are detected in some on-site downgradient groundwater monitors (6b-96, 7-96, 13b-01, 15b-01, 17b-08). Monitors 5-96, 6b-96, 7-96, 17b-08 and 19b-08 exceeded ODWS for sodium and/or chloride in 2011 as a result of road salt impacts. There were no apparent leachate impacts observed in the groundwater at the site boundary. There were no exceedances of the nitrate ODWS in 2011. Historically, elevated nitrate concentrations were prevalent across the site at all locations prior to development of the site. Elevated nitrates are most likely a result of long-term agricultural land use in the area and are not a result of site operations. Exceedances of the iron ODWS occurred at many of the monitoring locations during the December 2011. These iron exceedances will be investigated further in future monitoring events. Aside from the sodium, chloride and iron exceedances discussed above, there were no other exceedances of the Ontario Drinking Water Standards in 2011 for the groundwater monitors sampled for the WRIC and Transfer Station monitoring programs. As the shallow outwash water quality is not impacted by site operations, no impacts to the deeper bedrock groundwater would be expected. No leachate impacts were detected in the bedrock monitors sampled in 2011. Section 8.5 discusses organic groundwater results. The 2011 organic sampling showed there were detections of DEHP, PCP, BBP, m- and p-xylene, bromodichloromethane, chloroform and acetone in a few of the monitors. However, based on the historic detections of occasional low levels of VOC throughout the site in both upgradient and downgradient monitors, most of the 2011 VOC detections are concluded to be a result of sampling or laboratory a

C of A Annual Report Requirement (ondition N) Report Reference and Summary
C of A Annual Report Requirement (f	 Section 8.7 discusses the Guideline B-7 assessment for the new monitor nest 22-11, located along the western property boundary. B7 limits were exceeded by nitrate at 22b-11 and iron and nitrate at 22a-11. Historically, elevated nitrate concentrations were prevalent across the site at all locations prior to development of the site. Shallow background monitors 1b-91 and 6b-96 historically have also shown elevated nitrate concentrations in the early 1990s and late 1990s indicating that the elevated nitrates were present prior to the commencement of facility operations. As previously discussed, iron concentrations at some of the monitor locations were unusually high during the December 2011 monitoring event. Therefore, it is unknown if the iron concentrations from 22-11 reflect actual conditions at this location as this was only based on one sampling event. Section 8.8 discusses surface water quality results. Monthly monitoring of the stormwater management pond in the northwest corner of the site was conducted, with samples collected at the culvert on the west side of the pond (TP1) on seven occasions and at the discharge at the north end of the pond (TP1 (out)) on eight occasions in 2011. SWM pond samples at both TP1 and at TP1 (out) exceeded the PWQO for zinc, iron, total phosphorus and phenols during one or more 2011 sampling events. The elevated total phosphorus is a result of agricultural land use and not a result of operations at the Transfer Station. Elevated zinc, total phosphorus and iron concentrations appear to be related to external factors since background surface water have also exceeded PWQO for these parameters. Metals are a common contaminant from roadway runoff. Elevated phosphorus is typical in rural and urbanized areas. There were no detections of organic compounds in either of the 2011 samples collected from the SWM pond in June/August. Of the two sets of samples collected in 2011 at EPTS-01 (the existing Transfer Station on-site surface water pond (East Pond), the PW
52(f) An annual summary of any deficiencies, its or process aberrations that occurred and raction taken to correct them.	 Section 12 of the report briefly discusses site compliance. As reported by the City, there were no deficiencies, items of non-compliance, or process aberrations in 2011.
52(g) A summary to any changes to the Engineer Design and Operations Report that have be Director since the last annual report;	

C of A Annual Report Requirement (Condition N)		Report Reference and Summary
52(h)	A summary of any changes to the Design and Operations Report Design and the WRIC Environmental Emergency Plan that were made in accordance with Condition 68(1) of this Certificate;	As stated in Section 12, there have been no changes to the Engineer's Report or the Design and Operations Report since the last annual report. The WRIC Environmental Emergency Plan was updated in 2011 to include the new organic waste processing facility.
52(i)	A summary of any changes to the Design and Operations Report that have been approved by the Director since the last annual report;	Modifications to the MRF and Transfer Station are discussed in Section 12. Based on Golder's review of the modifications implemented at the Site, all modifications made are permitted within the Limited Operational Flexibility for the Site, are consistent with generally accepted best management practices, and are not likely to result in an adverse effect (e.g., discharge of a contaminant into the natural environment).
52(j)	Update on activities of the PLC; and	Section 9 summarizes the 2011 PLC activities, as provided by the City.

Table of Contents

Statement of Qualifications and Limitations Letter of Transmittal Distribution List Executive Summary

			page
1.	Intro	duction and Background	1
	1.1	Annual Reporting Requirements	3
2.	Com	posting Facility	4
	2.1	Material Received, Processed and Transferred	4
	2.2	Deficiencies/Non-Compliance and Environmental/Operational Issues	
	2.3	Public Complaints	
	2.4	Enhanced Pathogen Testing	
	2.5	Site Operation Recommendations	
	2.6	Compliance with the Conditions of the Certificate of Approval	6
3.	Grou	ınd and Surface Water Monitoring Program	7
	3.1	Groundwater Monitoring Program	7
	3.2	Surface Water Monitoring Program	9
4.	Wet-	Dry Recycling Facility Operations	10
	4.1	HHW Waste Screening Procedures and Acceptance Criteria	10
5.	Wast	te Transfer Station Operations	13
	5.1	Facility Inspection and Routine Maintenance	13
	5.2	Contaminant Sources	
		5.2.1 Site Design and Operations	13
6.	Inco	ming and Outgoing Waste and/or Recyclables	14
	6.1	Summary of Incoming Materials	14
	6.2	Summary of Wastes/Recyclables Processed and Outgoing	16
7.	Leac	hate Quality	20
	7.1	Leachate Indicators	20
	7.2	Petroleum Indicators	21
8.	Grou	ındwater, Leachate and Surface Water	21
	8.1	Groundwater Elevation and Flow Directions	21
	8.2	WRIC Detention Pond 1 (SW 3) Monitoring	22
	8.3	Groundwater Monitoring	
		8.3.1 Groundwater Quality	
		8.3.1.1 Background Outwash Water Quality	
	8.4	8.3.1.2 Background Bedrock Water Quality Downgradient Groundwater Quality	
	0.4	8.4.1 Shallow Outwash Groundwater Quality	
		8.4.2 Downgradient Bedrock Groundwater Quality	
	8.5	Groundwater Organics Results	
	8.6	General Groundwater Quality Discussion	

	8.7 8.8	Guideline B-7 Assessment	
	8.9	Adequacy of Program and Proposed Changes	
9.	Pub	lic Liaison (PLC) Activities	41
10.	WR	IC Certificate of Approval for Discharge	41
11.	WR	IC Contingency Plans	41
	11.1	Spills	41
	11.2	Fire or Similar Emergency	42
	11.3	1 9	
	11.4		
	11.5		
	11.6 11.7		
	11.7		
	11.9		
12.		nmary of Site Operational Changes and Compliance	
13.		clusions	
14.		ommendations	
15.	Dof	erences	5 2
List	of Fig	jures	
Figure	e 1. (Groundwater Location Map	2
Figure		Shallow Groundwater Flow (September 2011)	23
Figure		Bedrock Groundwater Flow (September 2011)	
List (of Tal	bles	
Table	1. 2	2011 Monthly Summary of Incoming and Outgoing Material, Composting Facility	5
Table	2.	Groundwater Monitoring Program	7
Table	3.	Analytical Parameter List	8
Table	4.	2011 Monthly Summary of Waste Resource Innovation Centre Incoming Material	15
Table	5. 2	2011 Monthly Summary of Outgoing Materials	17
Table	6.	Summary of Incoming, Outgoing and Processed Quantities	18
Table	7.	Summary of Leachate Quality from the Waste Monitors, Eastview Landfill	20
Table	8. (Guideline B-7 Calculated Maximum Parameter Concentrations	35
Table	9.	Summary of 2011 MOE Guideline B-7 (Reasonable Use) Calculations	35
Table	10.	Guelph WRIC MRF Modifications	44
Table	11. (Guelph WRIC Waste Transfer Station Modifications	45
Table	12. I	Monitoring Program Summary	51

Appendices

AECOM

Appendix A. Groundwater Elevations, Hydrographs and 2011 Borehole Logs

Appendix B. Groundwater Chemistry and Time-Concentration Plots – Routine and Organics

Appendix C. Surface Water Chemistry – Routine and Organics Appendix D. Certificate of Approval – WRIC and Transfer Station

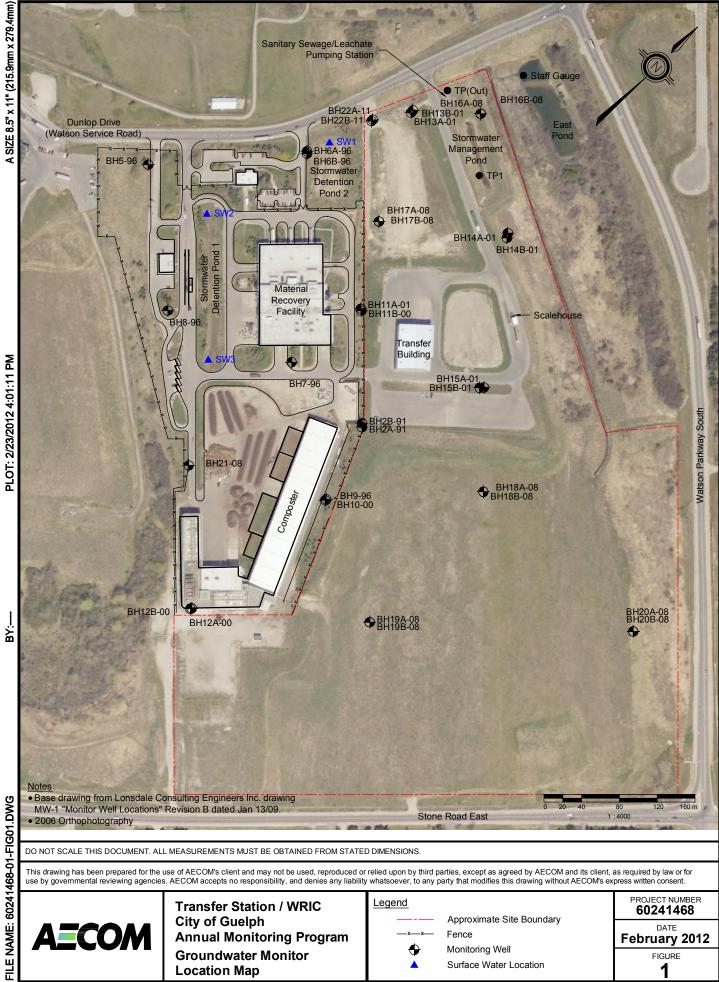
1. Introduction and Background

In June 2000, Guelph's City Council made the decision to seek future solid waste disposal capacity through an agreement with a landfill owner outside of the city's corporate boundaries. Since the potential disposal site was to be distant from Guelph, the City needed a Transfer Station to facilitate waste bulking from small collection vehicles into larger transport vehicles. The City constructed the Solid Waste Transfer Station adjacent to the existing Waste Resource Innovation Centre (WRIC), formerly the Wet-Dry Recycling Centre. The WRIC was designed as a composting and multi-material recovery operation for the County of Wellington and the City of Guelph. The 29.54 ha site is located at 110 Dunlop Drive in the southeast part of Guelph. Figure 1 shows the location and layout of the Transfer Station and WRIC.

The Transfer Station has been designed to manage up to 299 tonnes/day of waste, calculated on a weekly average (six days), including municipal, industrial, commercial, and institutional wastes. The Transfer Station began receiving waste on October 14, 2003.

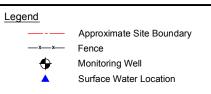
The City carries out a number of waste management operations at the WRIC. These operations include processing of recyclables from the City's "dry" waste stream, transfer of non-compostable materials and non-recyclable waste residues to disposal off-site, a public waste drop-off area, and a household hazardous waste depot. The City discontinued the composting operations during 2006. The new composting facility was briefly active from September 27 to November 25, 2011. The site is licensed to handle up to 200 tonnes of residual waste transported for disposal per day. Both the Transfer Station and WRIC facility operate under a combined Ministry of the Environment Amended Provisional Certificate of Approval (C of A) #A170128, dated February 10, 2011.

As part of the requirements to develop and design the WRIC, a hydrogeological assessment was conducted in 1991¹. Further groundwater sampling at the proposed site was completed in 1992, 1994 and 1995 prior to the construction of the site².


The main conclusions of these reports were:

- a) groundwater flow in the shallow subsurface is towards the northeast to the Correctional Centre pond and Clythe Creek; and
- b) background groundwater quality in the area is considered hard with calcium, magnesium, and alkalinity the dominant ions. The concentrations of the other major ions (i.e., sodium, potassium, sulphate and chloride) were found for the most part to be low. The exception to this was the 1995 sample collected from monitor 5-91, which exhibited higher than background concentrations of sodium and chloride. The source of the sodium and chloride was considered unknown at that time. The only other parameter of concern was nitrate. This was found at consistently elevated levels at monitors 1a-91, 1b-91, 2b-91 and 3-91, from 1991 until locations 1a-91, 1b-91 and 3-91 were destroyed due to construction activities.

In July 1997, the C of A was amended to allow the WRIC service area to be expanded.


Jagger Hims Limited; Hydrogeological Assessment, Proposed Wet/Dry Facility, Guelph, Ontario; Report prepared for the City of Guelph, October 1991.

^{2.} Jagger Hims Limited; Groundwater Monitoring Program; Guelph Wet/Dry Recycling Facility; Draft Report completed for the City of Guelph, September 1995.

This drawing has been prepared for the use of AECOM's client and may not be used, reproduced or relied upon by third parties, except as agreed by AECOM and its client, as required by law or for use by governmental reviewing agencies. AECOM accepts no responsibility, and denies any liability whatsoever, to any party that modifies this drawing without AECOM's express written consent.

Transfer Station / WRIC City of Guelph **Annual Monitoring Program Groundwater Monitor Location Map**

PROJECT NUMBER **60241468** February 2012 FIGURE 1

1.1 Annual Reporting Requirements

Section N, Condition 52 of the Amended Provisional Certificate of Approval states that:

The City shall submit an annual report on the operation of the Site for the previous calendar year to the District Manager by March 31st of each year. This report will include the information required as follows:

- (a) the information required by Condition 63(8) of the Certificate dealing with the Composting Site;
- By March 31st following the end of each operating year, the Owner shall prepare and submit to the District Manager, an Annual Report summarizing the operation of the Composting Site covering the previous calendar year. This Annual Report shall include, as a minimum, the following information:
- 68(a) A monthly mass balance of the Organic Waste received, processed and transferred from this composting site, including waste type, quantity, sources and/or disposal destinations;
- An annual summary mass balance of the organic waste, the wood waste, the waste wood and the amendment material, received, processed and transferred from this composting site, including waste type, quantity, sources, and/or disposal destination;
- 68(c) An annual summary of any deficiencies, items of non-compliance or process aberrations that occurred at this composting site and any remedial/mitigative action taken to correct them;
- 68(d) A descriptive summary of any spills, incidents or other emergency situations which have occurred at this composting site, any remedial measures taken and the measures taken to prevent future occurrences;
- 68(e) A summary describing any rejected waste including quantity, waste type, reasons for rejection and origin of the rejected waste;
- The quantity, by weight and volume of compost and residues produced and the quantity of compost and residues removed from the facility;
- Any environmental and operational problems, that could negatively impact the environment, encountered during the operation of the composting site or identified during the facility inspections and any mitigative actions taken;
- 68(h) Any changes to the WRIC Environmental Emergency Plan, the Operations Manual or the Closure Plan that have been approved by the Director since the last Annual report;
- 68(i) Any recommendations to minimize environmental impacts from the operation of the composting site and to improve the composting site operations and monitoring programs in this regard;
- 68(j) A summary of any complaints received and the responses made, as required by the C of A (Air/Noise) for the composting site;
- 68(k) A description of the compost distribution/markets;
- 68(I) Conclusions from the advanced pathogen testing as the results relate to the pasteurization temperature monitoring; and
- 68(m) A condition-by-condition analysis of compliance with all Conditions of this Certificate.
- 52(b) A monthly summary of the waste and/or recyclable materials received at the Site, including quantity, source and Ontario Regulation 347 waste classes;

- 52(c) A monthly summary of wastes and/or recyclable materials processed at the Site, including quantity and Ontario Regulation 347 waste classes.
- 52(d) A monthly summary of wastes and/or recyclable materials transferred off-Site, including quantity, destination, and Ontario Regulation 347 waste classes.
- 52(e) An annual summary of the analytical results for the groundwater and surface water monitoring program including an interpretation of the results and any remedial/mitigative action undertaken
- An annual summary of any deficiencies, items of non-compliance or process aberrations that occurred and remedial/mitigative action taken to correct them.
- 52(g) A summary to any changes to the Engineer's Report and/or the Design and Operations Report that have been approved by the Director since the last annual report;
- 52(h) A summary of any changes to the Design and Operations Report Design and the WRIC Environmental Emergency Plan that were made in accordance with Condition 68(1) of this Certificate;
- 52(i) A summary of any changes to the Design and Operations Report that have been approved by the Director since the last annual report;
- 52(j) Update on activities of the PLC

The current C of A for the site is included in Appendix D.

2. Composting Facility

The original compost facility was shut down in 2006. The City commissioned a new compost facility design, which was completed by the summer of 2011. The new compost facility began to receive organics for composting on September 27 but stopped excepting organics on November 25, 2011. This shut down was to facilitate review of the design specification of the odour control system, as discussed below.

2.1 Material Received, Processed and Transferred

As per Section N, Condition 68(8)(a) and (b), Table 1 presents a summary of the waste volumes received, processed and transferred from the site. 4,611 tonnes of material was received by the composting facility. Of the materials received, mixed organic materials constituted 3,162 tonnes (69%), brush, leaf and yard waste constituted 222 tonnes (5%) and residue and amendment/mulch made up the remaining 1,226 tonnes. During 2011, the site accepted organic material from the City of Guelph and Region of Waterloo. Brush waste and leaf and yard waste was received from the City of Guelph WRIC site. Residue (Overs) was received from the City of Hamilton organic waste processing facility³. Amendment material was received from Growbark.

In 2011, there were four loads of finished compost removed from the facility for a total of 140.12 tonnes. All the finished compost was shipped to a famer in Atwood, Ontario, northwest of Guelph. The only residuals that were removed from the facility were the screening waste. A total of 9.28 tonnes residuals from the composting process were shipped to the Transfer Station and then the Green Lane Landfill site near London, Ontario.

^{3.} Residue created during the composting process to commission the City's new organic facility over from the Hamilton Organic Facility.

Table 1. 2011 Monthly Summary of Incoming and Outgoing Material, Composting Facility

Material	Sept.	Oct.	Nov.	Dec.	Total Material
Incoming					
Mixed Organics (Guelph)	107.42	759.95	714.36	0.00	1,581.73
Mixed Organics (Waterloo)	49.72	787.48	743.35	0.00	1,580.55
Overs (Hamilton)	166.23	608.53	300.06	0.00	1,074.82
Amendment/Mulch	0.00	75.85	0.00	75.69	151.54
Brush	0.00	82.58	38.01	33.25	153.84
Leaf and Yard Waste	0.00	0.00	45.79	22.78	68.57
TOTAL	323.37	2,314.39	1,841.57	131.72	4,611.05
Outgoing					
Finished Compost	0.00	0.00	0.00	140.12	140.12
Residuals ¹	0.00	0.00	3.22	6.06	9.28
TOTAL	0.00	0.00	3.22	146.18	149.40

Notes:

All volumes in tonnes.

Residuals are destined for the Green Lane Landfill, London, Ontario Overs/Hamilton = a type of residue created during the composting process

2.2 Deficiencies/Non-Compliance and Environmental/Operational Issues

The sensors to measure ammonia in the process air exiting the humidifiers before the air entered the bio-filter did not function well in a composting environment. There has also been more ammonia generated within the composting operation system. These two factors meant that the City were unable to operate the acid dosing system in the correct manner and stay within compliance of the site Certificate of Approval. In order to mitigate the issue, the City of Guelph ceased receiving waste and modified the humidifiers. A program of manually monitoring the levels of ammonia with tubes was implemented and the acid system will now be dosed by pH being the primary trigger.

No spills occurred in 2011 at the composting site.

No loads were rejected in 2011 coming into the facility. The occasional curbside recyclables collection bag (blue bag) is included in the organics deliveries, which are separated and removed by the staff at the facility.

There were no environmental or operational problems that negatively impacted the environment at the composting site in relation to the C of A.

There were no changes to the WRIC Environmental Emergency Plan, the Operations Manual or the Closure Plan since the last annual report as the 2011 report is the first annual report to include the composting facility.

To minimise environmental impacts from the operation of the composting site and to improve composting site operations, the acceptance of waste at the facility is being carried out in a more controlled manner as the facility builds up towards full capacity. Continued compliance with the C of A is of utmost importance.

2.3 Public Complaints

There were six odour incidents received by staff at the Waste Resources Innovation Centre from 15 different complainants in 2011. These complaints were investigated by City of Guelph management staff and although staff conducting the investigations could only find faint odours originating from the site from one of the complaint dates, it is possible for the reasons discussed in Section 2.5, there may have been other odours attributable to site operations that dealt with the ammonia sensors not functioning properly.

^{1.} Residuals included as part of MSW totals in Table 5

Each time a complaint was received, the complainant was contacted and a letter advising the complainant of the investigation findings was hand delivered to each of them.

Further, the community was engaged by the City when an action plan was being developed to deal with any and all potential odour sources.

2.4 Enhanced Pathogen Testing

Samples taken from the maturation hall of the compost stream indicate that all compost that has been shipped off of the site has passed the conditions for a Class A⁴ compost under the CCME⁵ Guidelines and the conditions within the C of A.

To reduce the health risks of pathogenic organisms, yard waste must attain a temperature of 55 degrees C for a period of three days (72-hours) using in-vessel composting methods. Temperature monitoring logs of the tunnels at the composting facility show that pasteurisation at 55 degrees C was maintained for 72 hours.

2.5 Site Operation Recommendations

In 2011, there were several odour complaints that were investigated by site management staff. As a result of the investigations, it was determined that the acidification system that's sprays an acid into the humidification chambers to ensure the concentration of ammonia leaving the humidification chamber did not exceed 25 parts per million (Air C of A requirement) was the potential cause. Upon review, it was determined that this was not functioning as designed which may have resulted in increased odours being discharged from the site.

As soon as the City became aware this issue, waste receipt was suspended and the facility designer was advised to develop an action plan to deal with the issue. A thorough analysis of the ammonia sensors had indicated that the electrochemical sensors installed were providing erroneous values. Further investigations into these electrochemical sensors revealed that they could not be used in a composting operation. The operation of the acidification system will now be converted to be based on the pH of the system, which is in-line with operations at other composting facilities in Ontario.

As the Certificate of Approval (Air) for the facility required the acidification system to be operated based on ammonia levels, an amendment to the Air Certificate of Approval was submitted to the Ministry that would permit the acid system to operate using a pH system. The amended Certificate of Approval (now called an Environmental Compliance Approval) was approved and received of February 10, 2012. Waste receipt resumed on February 13th.

2.6 Compliance with the Conditions of the Certificate of Approval

Section N, 52(a) refers to reporting requirements associated with the Composting site. Section 63 (8)(m) requires:

A condition-by-condition analysis of compliance with all Conditions of this Certificate.

^{4.} Category A = Unrestricted use. Compost that can be used in any application (i.e., agricultural, residential gardens, horticultural operations, nursery industry, other businesses.

^{5.} CCME = Canadian Council of Ministers of the Environment, 2005: Guidelines for Compost Quality, PN 1340.

The City provided the following statement with respect to this condition:

"A condition by condition analysis of compliance of all conditions of this Certificate of Approval was done and the City is not aware of any non-compliance issues for 2011.

The Executive Director of Planning & Building, Engineering and Environment and the General Manager of Solid Waste Resources continue to put a very high priority on compliance with applicable laws. Staff training continues to be provided both in-house and by external providers, and included inspections, reporting, due diligence, environmental regulations, competent person, contingency plans, emergency procedures, certificate of approval conditions, spills, TDGA, laboratory packing and other relevant topics."

3. Ground and Surface Water Monitoring Program

3.1 Groundwater Monitoring Program

Groundwater levels are measured at all monitoring locations on a quarterly basis each year. During 2011, groundwater level measurements were conducted on four occasions; in April, June, September and December. As per Section N Condition 32 of the C of A, groundwater sampling was conducted two times in 2011; in June (dry period, late spring) and in December (wet period, late fall). Each of the 2011 sampling events included analyses for leachate indicator parameters, general chemistry and organics. Tables 2 and 3 below summarize the groundwater monitoring program and analytical parameters, respectively.

Location	April	June	September	December
13a-01 •		S	•	S
13b-01	•	S	•	S
14a-01	•	S	•	S
14b-01	•	S	•	S
15a-01	•	S	•	S
15-b-01	•	S	•	S
16a-08	•	S	•	S
16b-08	•	S	•	S
17a-08	•	S	•	S
17b-08	•	S	•	S
18a-08	•	S	•	S
18b-08	•	S	•	S
19a-08	•	S	•	S
19b-08	•	S	•	S
20a-08	•	S	•	S
20b-08	•	S	•	S
21-08	•	S	•	S
Staff Gauge ¹	S	S	S	S

Table 2. Groundwater Monitoring Program

Notes:

- 1. Pond located in eastern portion of property ("East Pond" on Figure 1).
- Water Levels Only
- S Sampling and Water Levels

Table 3. Analytical Parameter List

Leachate Indicator Parameters	 Biological Oxygen Demand (BOD) Chemical Oxygen Demand (COD) Total Kjeldahl Nitrogen (TKN) Ammonia as Nitrogen (NH3-N) Total Phosphorus (Total P) Total Suspended Solids (TSS) for surface water and leachate only Total Sulphate (SO4) Phenols 	 Chloride (CI) Sodium (Na) Calcium (Ca) Boron (B) Total Iron (Fe) Phosphorus (P) Zinc (Zn) Nitrate (NO3) and Nitrite (NO2)
General Parameters	pHConductivityAlkalinity	Magnesium (Mg)Potassium (K)
Organics	• EPA 624,625 (ATG 16+17+18 & ATG 19+20)	

The organic compound parameter list for the ATG MISA Groups are as follows:

Misa Group 16	Misa Group 19			
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethylene 1,1-Dichloroethylene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Bromodichloromethane Bromodichloromethane Bromomethane Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloromethane Cis-1,3-Dichloropropylene Dibromochloromethane 1,2-Dibromoethane Methylene Chloride Tetrachloroethylene trans-1,2-Dichloropropylene Trichloroethylene Trichloroethylene Trichloroethylene Trichloroethylene Trichloroethylene Trichlorofluoromethane Vinyl chloride	Acenaphthene 5-Nitroacenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)Fluoranthene Benzo(b)Fluoranthene Benzo(k)Fluoranthene Benzo(k)Fluoranthene Biphenyl Camphene 1-Chloronaphthalene 2-Chloronaphthalene Chrysene Dibenzo(a,h)Anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)Pyrene Indole 1-Methylnaphthalene	2-Methylnaphthalene Naphthalene Perylene Phenanthrene Pyrene Benzyl Butyl Phthalate bis(2-ethylhexyl)Phthalate Di-N-butylPhthalate Di-N-octylPhthalate 4-Bromophenyl phenyl Ether 4-Chlorophenyl Phenyl Ether bis(2-chloroethyl)Ether bis(2-Chloroethyl)Ether Diphenyl ether 2,4-Dinitrotoluene 2,6-Dinitrotoluene bis(2-chloroethoxy)Methane Diphenylamine N-Nitrosodi-N-propylamine		
Misa Group 17	Misa Group 20			
Benzene Ethylbenzene Styrene Toluene o-Xylene m-Xylene and p-Xylene Misa Group 18 Acrolein Acrylonitrile	2,3,4,5-Tetrachlorophenol 2,3,4,6-Tetrachlorophenol 2,3,5,6-Tetrachlorophenol 2,3,4-Trichlorophenol 2,3,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dichlorophenol	2,6-Dichlorophenol 4,6-Dinitro-o-Cresol 2-Chlorophenol 4-Chloro-3-methylphenol 4-Nitrophenol m-,p-Cresol o-Cresol Pentachlorophenol Phenol		

Section F, Monitoring Program

Section E of the C of A discusses the ground and surface water monitoring program as described below:

Condition 32 and 33 (Groundwater)

- 32. Groundwater shall be sampled on semi-annual basis (spring and fall).
- 33. The analysis of samples collected in accordance with Condition 32 shall seek to identify chloride, nitrate and a suite of compounds characteristic of waste at the site. Sampling frequency and parameters for analysis may be adjusted upon the approval of the District Manager, as groundwater information becomes available.

Groundwater monitoring was conducted at all locations in June and December 2011. The results of the groundwater monitoring are discussed in Sections 5.4 to 5.7.

3.2 Surface Water Monitoring Program

The objectives of the surface water monitoring program are outlined in the C of A in Section F, Condition 35. These are:

- (a) The City shall annually review and update the existing surface water sampling program, designed to detect and quantify any impacts originating from the site;
- (b) A surface water sampling program shall be implemented to ensure early detection of contaminants in the event that such contaminants escape the site. Surface water shall be sampled monthly for the following conventional parameters: BOD, TSS, ammonia, nitrogen, TKN, total phosphorus and phenolics. For all other parameters surface water shall be sampled on a semi-annual basis (spring and fall). The analysis shall seek to identify chloride, nitrate and a suite of organic and inorganic compounds characteristic of waste generated at the site;
- (c) Sampling frequency and parameters for analysis may be adjusted upon the approval of the District Manager, as surface water information become available;
- (d) Surface water shall be sampled at the discharge location of the final surface water detention pond;
- (e) The City shall ensure that all stormwater which comes in contact with waste material is treated or discharged into the sanitary sewer; and
- (f) the City shall annually review and update the detailed maintenance schedules for the infiltration trenches and stormwater detention ponds.

During 2011, monthly monitoring of surface water runoff into Detention Ponds 1 (SW2, SW3) and 2 (SW1) was completed. However, samples were only collected in April, June, October, November and December at SW2 and SW3 from Detention Pond 1 and in April, June, October, November and December from at SW1 in Detention Pond 2. For the remaining months in 2011, no water remained in the detention ponds after rain events or they were dry by the end of each month or they were frozen/snow laden. The results of the surface water monitoring are discussed in Section 5.8.

Surface water sampling is undertaken on a monthly basis in the stormwater management pond (SWM) for the parameters (excluding organics) shown in Table 3. Organics were sampled twice in 2011 in the East Pond (EPTS-01) and once each in the SWM pond (TP1 and TP1(out)). During each month, sampling will be undertaken when surface water runoff conditions occur (weather permitting). If no surface water events occur, sampling will be undertaken at the end of the month regardless. Measurements of discharge, surface water runoff events and overall

conditions of the detention ponds (e.g., dry, or stagnant water) will be documented on a weekly basis throughout each month. Two surface water stations in the SWM pond were established by the City staff; TP1, located at the culvert along the western shore of the pond adjacent to the access road and TP1 (out), located at the discharge at the north end of the pond. Sampling for organic parameters was conducted in June (TP1(out)) and August (TP1) in 2011. 2011 monthly inorganic samples were collected from TP1 and TP1 (out) in April, June, August, September, October, November and December. No inorganic samples were collected from the SWM pond locations in the remaining months due to frozen, dry or snow-laden conditions.

The existing surface water pond ("East Pond" in Figure 1) was sampled in June and December 2011 (for inorganic and organic parameters shown on Table 3) together with the groundwater monitoring. The East Pond setting is similar to the Transfer Station SWM and the WRIC ponds (influenced by road salting and within similar overburden soils) though it is within a different catchment area. As suggested by the MOE, surface water quality from the samples collected from the staff gauge in the East Pond (designated EPTS-01) can be considered as background surface water quality as it is upstream of both facilities and will be used as comparison to the on-site surface water features.

A ditch located between the stormwater management pond and the East Pond is designed to receive pond overflow and direct it in a northwesterly direction beneath Dunlop Drive.

4. Wet-Dry Recycling Facility Operations

4.1 HHW Waste Screening Procedures and Acceptance Criteria

The information presented in this section was reported by the City of Guelph. Household hazardous waste materials can only be received at the City of Guelph Depot in accordance with the conditions specified on amended Certificate of Approval A170128.

Purpose

This procedure is designed to assist the employees at the Household Hazardous Waste (HHW) Depot in the screening of waste that is brought to the depot and to prevent the acceptance of items not permitted by Certificate of Approval A170128. Adherence to these conditions is mandatory in order to ensure the operating permit is not revoked as a result of non-compliance issues.

Scope

These procedures are for employees at the Household Hazardous Waste (HHW) Depot and their Supervisor. The Depot is restricted to accepting only spent household consumer commodity goods that are widely available to the general public in quantities and concentrations typically found at conventional retail outlets.

Definitions

Industrial/Commercial/Institutional Waste Waste from businesses, medical centres, etc. Such waste is not accepted at the HHW.

^{6.} Memorandum from Lynnette Latulippe (MOE) to Bill Shields (City of Guelph), Re: Annual Monitoring Report – 2009 Guelph Wet-Dry Recycling Centre and Waste Transfer Station, dated February 7, 2011.

PCBs	. Polychlorinated biphenyls. The import, manufacturing and re-sale of materials containing PCB's was banned in Canada in 1977, but legislation allowed the continued use of previously acquired products until the end of their functional life.
Residential Waste	. Waste generated by an individual or a family at the place where the individual or the family lives.
TDG	. Transportation of Dangerous Goods. This is a set of rules to follow regarding the transportation of dangerous substances, including how the materials are to be contained and labelled.
WHMIS	. The Workplace Hazardous Materials Information System (WHMIS) is Canada's national hazard communication standard. The key elements of the system are cautionary labelling of containers of WHMIS "controlled products", the provision of material safety data sheets (MSDSs) and worker education and training programs.

Conditions

- The Depot is restricted to accepting HHW waste from residents within the City of Guelph or County of Wellington only. This information shall be documented on the Waste Ticket Form prior to acceptance of the HHW materials and must include all contact information necessary to validate residency status.
- 2. Spent consumer commodity goods that are widely available to the general public in quantities and concentrations typically found at conventional retails outlets, examples include:
 - · Canadian Tire products; and
 - · Home Depot products.
- 3. No industrial, commercial or institutional hazardous waste shall be received at this facility. Waste materials originating from these sources are items that would not be readily available to the general public nor would be considered consumer commodity. Examples include:
 - Laboratory reagents from the local University;
 - Large pesticide containers typically sold to farmers; and
 - · Chemical agents in containers greater than 20 L in capacity.
- 4. The following are not acceptable under any circumstance:
 - · Radioactive wastes;
 - Explosives and ammunition;
 - Pathological wastes (sharps however, are permitted if they are placed in a rigid plastic container, soaked in bleach overnight, drained, and labelled);
 - Unknown wastes; and
 - Polychlorinated biphenyls (PCBs).
- 5. Any unacceptable materials inadvertently received at the HHW or other areas on the WRIC site, must be handled and disposed of in accordance with applicable legislation. The HHW Co-ordinator is to be contacted immediately upon discovery for processing and handling of these unacceptable materials.

Additional Information

All waste received shall be clearly identified either by the labels of the original consumer packaging or if no
labels are present, by the resident dropping the material off. The materials must be in a clear container and
the contents identifiable by the HHW attendant. Materials identified by the homeowner will be labelled by City
of Guelph staff prior to acceptance and laboratory packing.

- 2. Only propane in containers typically available to the public is acceptable [Small 1 kg tanks up to barbeque size containers (20 kg)].
- 3. The City of Guelph HHW depot reserves the right to reject any waste materials which if received could jeopardize the operational permits held by the site.

Procedures

- 1. Always wear the appropriate PPE (personal protective equipment) to handle the waste items.
- 2. All waste containers brought to the Depot shall be sealed prior to acceptance and must be surrendered by the resident. Unacceptable activities include:
 - Decanting gasoline for the purpose of returning jerry-cans to the homeowner; and
 - Decanting pesticides from small portable pumps.
- 3. Hazardous waste material characteristic ranking will determine the order in which waste is handled. Many items will have the properties of two or more hazards and items with more than one hazard must be placed in the highest hazards characteristic class. Use the following in order of highest to lowest precedence of hazard:

Radioactive;
 Pyrophoric materials;

Poisonous gases;
 Self-reactive;

3. Flammable gases;4. Non-flammable gases;9. Flammable liquids;10. Flammable solids;

4. Non-flammable gases;5. Biohazardous materials;10. Flammable solids;11. Combustible materials; and

6. Poisonous liquid; 12. Miscellaneous hazardous materials.

- Refused items shall be recorded in the Waste Rejection section of the HHW Waste Ticket Form with reasons for the refusal documented. Offer the resident a list of Alternate Disposal Options. (See HHW Operations Manual).
- 5. Abandoned wastes will be recorded on an Unacceptable Waste Log. (See HHW Operations Manual).
- 6. Items of concern (extremely dangerous, toxic, explosive, biohazardous, infectious, or radioactive materials) shall be brought to the attention of the Supervisor of Governance and Compliance.
- 7. The resident will be contacted within three days in order to trace the whereabouts of any items of concern and to ensure that the material was properly disposed of. If required, the Ministry of Environment, City of Guelph Police Department, Fire Department or the Community Emergency Management Co-ordinator may also need to be notified.
- 8. Wastes containing PCB's or suspect PCB materials are not acceptable at the City of Guelph HHW depot, however should such material be suspected or identified after drop-off or in the case of illegal dumping, the following steps shall be taken:
 - 1. The PCB or suspect PCB waste materials shall be set aside in a secure area, along with the ticket identifying the resident that brought these materials to the depot if it was not illegally dumped.
 - 2. The material must be sampled and set for analysis to an accredited laboratory to determine the PCB concentration.
 - 3. Analytical results over 50 ppm confirm the waste to be PCBs.
 - 4. Upon confirmation of the presence of PCB waste, The City of Guelph shall obtain Directors Instructions from the Ministry of the Environment after which arrangements shall be made for removal and disposal.

Training

All HHW employees must be trained in WHMIS, TDG, Spills Response, Competent Person, and First Aid to perform these procedures.

Applicable Legislation and References

- OHSA Regulation 860 Workplace Hazardous Material Information System.
- O. Reg. 347 General Waste Management Transportation of Dangerous Goods Act, 2002.

5. Waste Transfer Station Operations

5.1 Facility Inspection and Routine Maintenance

The following information was reported by the City of Guelph. The facility is inspected on an ongoing basis by site employees. Corrective maintenance is carried out as required. There were no environmental or operational problems reported during 2011.

A log of all security and grounds inspection noting the condition of the fences, litter, birds, vermin and vectors and any off-site discharges is recorded daily. Routine maintenance is conducted at the site that includes litter pick-up, dust control, rodent control and clean-up of external roads within 1 km of the facility. The compactor is cleaned and inspected weekly when in use. Inspection of the inside floor drains, oil and grit separator, etc., are conducted weekly. The floor drain in the loading ramp is pumped and cleaned every three weeks. Maintenance was conducted on the holding tanks, floor drains and oil and grit separator once per month. The overhead doors are oiled every three weeks. All preventative maintenance performed on equipment are filled under the equipment number (hard copy) as well as recorded electronically in the Synergen program to indicate that the required maintenance has been completed.

A log book recording the weekly inspection of the detention ponds, ditches and facility inspections is kept on-site. Weekly inspections were recorded in 2011.

5.2 Contaminant Sources

5.2.1 Site Design and Operations

To determine if the Transfer Station is having an impact on the ground and surface water in the area, it is important to examine what are the potential sources of impact. The site has been designed to minimize the possible sources of impacts and limit the risk of their emission to the environment, as discussed below.

Waste is dumped from incoming collection vehicles onto an indoor tipping floor located within the transfer building. The transfer building is a steel framed, metal clad building with a reinforced, surface-hardened slab-on-grade floor. The tipping floor is curbed such that liquid discharges onto the floor cannot readily flow off of the floor to the building exterior. It is drained by floor drains and routed through an oil-water separator, with the provision to divert flows to holding tanks prior to reaching the pumping station through the sanitary sewer. Spill cleanup materials (e.g., sorbents) are kept on hand and any liquid spills on the tipping floor are cleaned up immediately. Washing of spilled materials into the floor drain system is avoided to the greatest degree possible. In the event of any potential for leachate or liquid discharge from the building, the shut-off valve for the stormwater management pond will be closed to prevent any off-site discharge.

No waste processing is undertaken in the Transfer Station, with the exception of removal of recyclable material that arrives in incoming waste loads (i.e., metal, wood, cardboard). Truck boxes (both incoming waste and transfer loads out) are tarped when outside of the transfer building to prevent odour and dust emissions as well as to prevent contact between the waste and precipitation that could potentially produce impacted runoff.

The Transfer Station building and the scale house are serviced with a connection to the City sanitary sewer. Domestic sewage from the washrooms in the transfer building and the scale house are discharged directly to the sewage pumping station. The stormwater management pond has a valved connection to the pumping station, which will permit any stormwater that becomes impacted to be discharged to the sanitary sewer system. The site is graded such that all runoff drains to the stormwater management pond. As all waste handling occurs within the Transfer Station building, runoff from the site will be initially considered to be unimpacted.

Ditches are located on both sides of the driveway to collect road runoff and to convey upstream runoff to the pond. A culvert conveys flow from the ditch on the west side of the driveway to the ditch on the east side and ultimately to the pond. MOE approved dust suppressant and road salt for the internal paved areas may be used occasionally.

6. Incoming and Outgoing Waste and/or Recyclables

6.1 Summary of Incoming Materials

As per Section N, Condition 52(b) of the amended C of A, Table 4 is a monthly summary of the incoming materials received at the site during 2011, based on data recorded by City staff.

As shown on Table 4, 89,023 tonnes of material was received by the site. Of the materials received, mixed organics constituted 12,144 tonnes (14% of the materials received in 2011). Recyclables and mixed dry materials constituted 41,046 tonnes (46%) of the total materials received at the site. This included about 4,459 tonnes of paper products and 48 tonnes of plastics. Non-recyclable materials (mixed solid waste, medical waste and Overs) constituted the remaining 35,832 tonnes (40%) of the total materials received at the site.

The on-site Household Hazardous Waste (HHW) depot serves residents of the City of Guelph and the County of Wellington. The depot accepted 16,908 drop offs of materials during 2011. A monthly summary of the 2011 drop off numbers are shown on the table below.

Public	Drop Offs
January	445
February	428
March	695
April	1,118
May	2,309
June	2,219
July	2,044
August	1,896
September	1,660
October	1,600
November	1,563
December	931
Totals	16,908

Table 4. 2011 Monthly Summary of Waste Resource Innovation Centre Incoming Material

Incoming Material	Jan	Feb	March	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
incoming waterial	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Material
Mixed Solid Waste	2013.3	1798.52	2349.74	3022.4	3914.57	3776.31	2069.47	3641.54	3482.16	3090.99	3080.07	2495.79	34,735
Mixed Organics	925.54	809.75	893.32	859.81	976.47	880.3	846.36	972.14	881.92	1544.16	1613.63	940.83	12,144
C & D	140.28	90.13	146.09	184.02	214.16	394.16	651.73	501.92	763.07	361.06	153.8	81.06	3,681
Medical Waste	1.74	2.06	1.3	2.52	1.72	1.48	5.21	0	2.71	1.23	1.11	1.25	22
Mixed Papers	33.82	52.09	52.32	79	107.51	100.66	92.83	100.78	96.84	120.47	91.1	89.41	1,017
Commingle	113.99	135.38	60.68	67.4	54.05	208.91	145.92	165.07	142.1	202.14	205.17	214.05	1,715
Single Stream Bagged	797.05	669.87	796.89	755.48	802.62	760.79	695.14	770.27	743.11	759.81	820.11	820.72	9,192
Single Stream Loose	1099.79	880.99	1235.89	988.35	980.57	1078.23	1008.52	1090.71	1086.52	1161.1	1283.6	1283.46	13,178
Single Stream Baled	2.23	0	0	0	0	0	0	0	0	0	0	0	2
PET #1	2.47	0	0	0	0	0.37	0	0	0	0	0	0.08	3
HDPE #2	0	0.14	2.81	0.07	3.29	2.27	0.48	3.85	1.65	3.19	2.24	2.94	23
Mixed Plastics	0	0	0	0.39	20.88	0	0.06	0.77	0	0	0	0	22
OCC - Baled	0	0	1.8	0	3.48	0	4.64	0	0	0	18.66	1.19	30
OCC - Loose	203.25	186.98	219.19	211.18	236.61	242.94	246.45	269.4	285.04	292.41	277.13	351.03	3,022
OWP/Fine - loose	57.87	19.47	38.31	31.44	33.56	43.39	21.67	41.96	31.32	20.08	24.76	27	391
Scrap Metal	23.55	32.46	31.31	23.6	58.89	57.87	53.08	52.99	47.26	51.05	72.94	25.63	531
Electronics	10.56	15.61	17.39	25.34	25.35	23.03	27.83	38.83	36.53	14.31	28.9	10.32	274
Tires	1.59	0	2.01	3.47	4.54	5.48	3.44	4.17	2.84	2.24	3.8	3.51	37
Clothing	0.47	0.67	0.73	0.75	0.82	0.9	0.76	0.89	0.59	1.22	0.53	0.74	9
Brush	7.29	17.17	22.38	24.54	256.26	329.05	351.33	234.35	214.7	159.03	127.09	35.14	1,778
Leaves	0	0	0	0	0	0	0	7.99	0	0	1510.77	0	1,519
Yard waste	0	0	0	129.25	782.79	586.64	233.76	135.49	222.47	293.03	798.88	25.93	3,208
Shingles	0	0	0	0	0	0	0	101.74	217.6	274.69	307.82	171.69	1,074
Clean Wood	0	0	0	0	0	0	0	1.94	20.6	40.91	15.69	5.59	85
Drywall	0	0	0	0	0	0	0	3.74	24.58	9.36	10.66	14.11	62
Rubble/Brick/Toilets	0	0	0	0	0	0	0	1.9	8.71	8.52	17.48	5.7	42
Ammendment/Mulch	0	0	0	0	0	0	0	0	0	75.85	0	75.69	152
Overs/Hamilton	0	0	0	0	0	0	0	0	166.23	608.53	300.51	0	1,075
Total Month	5,435	4,711	5,872	6,409	8,478	8,493	6,459	8,142	8,479	9,095	10,766	6,683	89,023

Notes: C & D = Construction and Demolition

Commingle = containers only, no fiber (bottles and cans)

Single Stream = all dry recyclable products mixed together (bottles, cans, paper, cardboard, etc.)

OCC = Old Corrugated Cardboard

OWP = Office Waste Paper (also known as Fine Paper)

Overs/Hamilton = a type of residue created during the composting process

Incoming HHW is sent to hazardous waste haulers for disposal or recycling. The City's Paint Plus Re-Use Program was conducted between April 19 and October 15, 2011. The results of the Paint Plus Re-Use Program for 2011 are tabulated below.

Material/Month	April	May	June	July	August	September	October	Total
Paints and coatings Non-aerosol; #145 (L)	109.5	1116.5	2088.5	2467	1629.5	679	100	8190
Paints and coatings Aerosol; # 331 (kg)	13.5	43	90	47	41.5	13.5	0	248.5
Solvents # 213 (L)	17	25	72	86	104	17.5	2	323.5
Antifreeze (L)	4	13.5	4.5	3	0	1	0	26
Propane Cylinders (kg)	14	10.5	4.5	6.5	9	0.5	0	45
Cleaners/Detergents #148 (L)	19	88	131	105.5	64.5	22.5	1	431.5
Car products #213 (L)	4	56	34	32	34.5	13.5	2.5	176.5
Non-paint aerosols #331 (kg)	9.5	6	19	16.5	4.5	1	0	56.5
Motor Oil (L)	17	4.5	22.5	10.5	19	10.5	5	89
Plaster/cement/Grout (kg)	1.5	24	52	28.5	5	12.5	0	123.5
Client Count	37	164	223	253	246	111	20	1054

The above table is a monthly summary of the amounts of HHW (separated by waste class) received at the site. A total of about 204,537 L and 28,573 kg of household special wastes were received in 2011. In addition, 716 propane tanks, 4,300 propane cylinders, 5,970 m (29,795 ft) of fluorescent tubes, 343 fire extinguishers, 13 compressed gas tanks and 16 oxygen tanks (for welding) were received in 2011. All materials accepted at the HHW depot are reused, recycled or shipped off-site for disposal.

As shown on Table 4, the source of the bulk of the materials received was primarily mixed solid waste of domestic origin. Waste accepted by the site originated mainly from the City of Guelph (79%), the County of Wellington (9%), Dufferin County (6%), the Region of Waterloo (2.3%) and the Region of Hamilton (1.7%). The Transfer Station can accept waste from anywhere in Ontario as long as it is within the acceptable daily tonnage limit.

There were no rejected and no suspect loads received during 2011.

6.2 Summary of Wastes/Recyclables Processed and Outgoing

Materials that are accepted by the site are either processed (composted), diverted to be re-used or sent to the waste Transfer Station for disposal. Section N, Condition 52(c) requires monthly reporting of processed materials at the site, which are presented on Table 5. Of the 84,511 tonnes of outgoing material, 21,362 tonnes (25%) is processed on-site through the Material Recovery (MRF) or composting facilities. The remaining 63,150 tonnes (75%) is shipped off-site to other destinations.

Table 5. 2011 Monthly Summary of Outgoing Materials

Outgoing	Jan	Feb	March	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Mixed Waste	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Total
	Processed Outgoing Materials												
Mixed Recyclables	90.32	84.2	114.6	25.64	0	0	0	0	0	0	0	0	315
Empty Oil Containers	0.1	0.12	0.1	0.16	0.47	0.65	0.39	0.35	0.07	0	0.16	0.04	3
Mixed Glass	94.77	21.45	57.29	32.15	22.02	10.59	10.02	11.51	88.22	122.28	171.53	84.93	727
Single Stream Loose	0	0	0	0	0	0	0	0	0	0	0	0	0
Single Stream Baled	0	211.27	39.84	0	0	0	0	0	0	112.27	0	0	363
PET #1	39.76	56.11	65.67	56.27	55.28	58.85	66.26	67.03	78.76	64.37	62.24	38.33	709
HDPE #2	15.88	18.04	38.87	26.84	20.56	20.87	22.8	42.48	21.89	34.24	19.67	18.37	301
Mixed Plastics Baled	0	0	20.97	27.28	61.61	21.49	21.03	21.52	0	40.94	17.06	18.17	250
Aluminum Baled	40.23	0	27.31	13.68	14.08	27.73	25.28	13.92	26.99	26.42	12.83	26.56	255
OCC Baled	625.31	506.63	592.22	616.52	534.67	584.17	547.25	589.89	657.64	652.55	747.4	810.24	7,464
ONP #6 Baled	459.4	237.07	283.73	433.11	390.43	342.47	262.25	420.65	280.08	247.31	414.88	381.92	4,153
ONP#7 Baled	0	0	0	0	0	0	39.91	0	0	0	0	0	40
ONP #8 Baled	351.02	218.05	453.18	342.7	503.16	554.87	459.66	421.6	480.44	437.65	498.48	493.95	5,215
OWP/Fine Paper	72.18	19.87	18.07	37.36	37.62	38.74	38.33	39.98	41.16	40.77	18.38	40.92	443
Tubs and Lids	0	19.21	15.5	0	0	0	0	24.59	0	0	0	0	59
Steel Cans Baled	85.48	67.27	99.71	55.77	80.58	30.49	86.24	80.79	53.95	51.01	84.68	85.95	862
Polycoat/Tetra Pak	0	0	18.57	0	0	0	20.37	0	0	23.62	0	0	63
Concrete, Rubble	0	0	0	0	0	0	0	0	0	0	0	0	0
Finished Compost	0	0	0	0	0	0	0	0	0	0	0	140.12	140
Sub-Total	1,874	1,459	1,846	1,667	1,720	1,691	1,600	1,734	1,729	1,853	2,047	2,140	21,362
					Non-Proces	ssed Outgo	oing Materi	als					
Mixed Solid Waste	2863.21	2545.55	3164.6	3776.71	4883.31	4469.48	3605.65	4249.46	4117.8	3568.37	4115.22	3994.77	45,354
EFW (MSW)	532.22	538.9	621.62	565.39	639.99	669.98	615.06	818.8	565.41	0	0	0	5,567
Mixed Organics	2.69	0	0	0	0	0	0	0	0	0	0	0	3
Yard Waste	0	0	0	129.25	782.79	586.64	233.76	135.49	222.47	293.03	753.09	0	3,137
Brush	7.29	17.17	22.38	24.54	256.26	329.05	351.33	234.35	214.7	76.45	89.08	0	1,623
Leaves	0	0	0	0	0	0	0	7.99	0	0	1510.77	21.84	1,541
C & D	30.97	39.8	133.58	128.41	168.91	638.95	838.51	652.73	711.12	356.82	161.6	109.25	3,971
Tires	1.59	0	2.01	3.47	4.54	5.48	3.44	4.17	2.84	2.24	3.8	3.51	37
Scrap Metal	23.55	32.46	31.31	23.6	58.89	57.87	53.08	52.99	47.26	51.05	72.94	25.63	531
Electronics	10.56	15.61	17.39	25.34	25.35	23.03	27.83	38.83	36.53	14.31	28.9	10.32	274
Clothing	0.47	0.67	0.73	0.75	0.82	0.9	0.76	0.89	0.59	1.22	0.53	0.74	9
Shingles	0	0	0	0		0	0	101.74	231.64	205.93	289.04	148.5	977
Clean Wood	0	0	0	0		0	0	0	16.28	38.52	19.13	6.31	80
Drywall	0	0	0	0		0	0	0	15.26	14.85	0	17.14	47
Sub-Total	3,473	3,190	3,994	4,677	6,821	6,781	5,729	6,297	6,182	4,623	7,044	4,338	63,150
Total	5,347	4,649	5,839	6,345	8,541	8,472	7,329	8,032	7,911	6,476	9,091	6,478	84,511

Notes: EFW (MSW) = Mixed solid waste sent to the Waste to Energy facility in Niagara Falls, New York

Tonnages of incoming and outgoing materials will not be equal as some mass is lost through evaporation and processing. Table 6 is reconciliation of the incoming and outgoing materials and materials processed from the site.

Table 6. Summary of Incoming, Outgoing and Processed Quantities

Recyclable and Other Materials Processed in 2011	(tonnes)
Quantity Received (Table 4: Incoming 2011)	89,023
Quantity in Inventory from Prior Year (2010)	370
Quantity Sold (Table 5)	63,150
Quantity Sent to Landfill/Transfer Station (Table 5)	21,362
Quantity in Inventory at the End of 2011	(89,023 + 370) - 63,150 - 21,362 = 4,881

There is a difference of 4,881 tonnes between incoming and outgoing wastes/materials. This can largely be attributed to several factors:

- material in the organic facility that is still in the composting stage;
- stored recyclable material not yet processed;
- baled recyclable product awaiting shipment; and
- construction and demolition material including shingles, drywall, clean wood and rubble awaiting shipment.

Table 5 also shows a monthly summary of the outgoing materials shipped off during 2011 as per Section N, Condition 52(d) of the amended C of A. Of the 63,150 tonnes of non-processed outgoing materials, 45,354 tonnes (54% of the outgoing materials) is sent to the Transfer station for disposal. 5,567 tonnes of material was sent to the Waste to Energy facility in Niagara Falls, New York. The remaining 12,198 tonnes of non-processed materials is marketable consisting of 6,273 tonnes brush, yard waste and leaves, 5,926 tonnes was other recyclable materials such as scrap metal, tires, electronics and clothing.

In 2011, 21,362 tonnes of marketable processed material transferred off the site 17,316 tonnes (81%) was paper-based goods such as cardboard and newsprint, 1,260 tonnes (6%) was plastics and the remaining 2,786 tonnes (13%) was other recyclable materials such as aluminum, steel cans, glass, concrete and finished compost. As reflected in the volumes above, the majority of the marketable materials sold were paper products.

The WRIC achieved a 100% diversion rate for organic (yard, leaf and brush) and a 45% rate⁷ of diversion for the remaining materials accepted at the site in 2011.

Most of the HHW materials were shipped by Hotz Environmental Services Inc., Hamilton (the waste removal contractor for 2011) for disposal or re-use.

Outgoing household hazardous waste materials were manifested to Hotz and disposed of by the companies identified below for recycling and re-use.

Waste Types	List of Intended Receivers						
Paints	Hotz Environmental, Hamilton, ON Systech Environmental, Paulding, Ohio Hukill Environmental Corporation, Ohio	Canflow Environmental, Petrolia, ON Newalta Industrial Services Inc., Brantford, ON					
Motor Oil/Oil Filters	Safety Kleen, Breslau, ON	Newalta Industrial Services Inc., Brantford, ON					
Antifreeze	Fielding Chemicals, Mississauga, ON	Safety Kleen, Breslau, ON					
Pesticides	Clean Harbours, Thorold, ON						

^{7.} Diversion rate (excluding yard waste) = Dry Incoming (82,518 tonnes) – Outgoing to Transfer Station (45,354 tonnes)/Dry Incoming (89,023 tonnes) x 100 = 45%.

Waste Types	List of Intended Receivers							
Pharmaceuticals	Clean Harbours, Corruna, ON	Chemical Waste Management, New York						
Petroleum Distillates	Systech Environmental, Paulding, OhioHukill Environmental Corporation, Ohio	Keystone Cement Co., Pennsylvania						
Fuels	Systech Environmental, Paulding, Ohio	Hotz Environmental, Hamilton, ON						
Inorganic Oxidizers	Clean Harbours, Thorold, ONStablex Canada Inc., Quebec	Hotz Environmental, Hamilton, ON						
Inorganic Acids	Newalta Industrial Services Inc., Fort Erie, ONClean Harbours, Mississauga, ON	Stablex Canada Inc., Quebec Hotz Environmental, Hamilton, ON						
Inorganic Bases	 Newalta Industrial Services Inc., Fort Erie, ON Stablex Canada Inc., Quebec 	Hotz Environmental, Hamilton, ON						
Miscellaneous Organics	Systech Environmental, Paulding, Ohio	Chemical Waste Management, New York						
Solid/Liquid	Hukill Environmental Corporation, OhioClean Harbours, Sarnia, ON	Hotz Environmental, Hamilton, ON						
Syringes	Stericycle, Toronto, ON							
Waste Dry Cell Batteries	Chemical Waste Management, New York Newalta Industrial Services Inc., Fort Erie, ON	Inmelco, Elwood, PA Raw Materials Corp., Port Colbourne, ON						
Fluorescent Lamps, Mercury	Fluorescent Lamp Recyclers, Cambridge, ON	Bethlehem Lamp Recyclers, PA						
Lead-Acid Batteries	Tonolli Canada Ltd.	Raw Materials Corp., Port Colbourne, ON						
Propane Tanks	Superior Propane, ON	Hotz Environmental, Hamilton, ON						
Disposable 1 lb Propane Cylinders	Hotz Environmental, Hamilton, ON	Hotz Ferrous Inc., Hamilton, ON						
Freon	Fielding Chemicals, Mississauga, ON	Hotz Ferrous Inc., Hamilton, ON						
Aerosols	Hotz Environmental, Hamilton, ONSystech Environmental, Paulding, Ohio	Hotz Ferrous Inc., Hamilton, ON						
Organic Peroxides	Newalta Industrial Services Inc., ON							
Fire Extinguishers	Chemical Waste Management, New York	Hotz Ferrous Inc., Hamilton, ON						
Gas Cylinders	Clean Harbours, ON							

Other hazardous waste contractors/destinations include:

Material	Destination, Major Buyers
Fluorescent Tubes, cfls	Aevitas
Propane Tanks (20 lbs)	Simcoe Energy & Technical Services
Pathological Wastes/Syringes	Stericycle
Re-chargeable Household Batteries	Call2Recycle
Motor Oil/Antifreeze	Safety-Kleen
Car Batteries	Interstate Batteries
Cooking Oil	Rothsay

Destinations/buyers for dry recyclable processed materials include:

Material		Destination, Major Buyers
Shredded Yard Waste	•	Gro-Bark Ltd.
Corrugated Cardboard	•	Strathcona, Atlantic Packaging, Norampac, Solvay
Newsprint	•	Spruce Falls Inc., Cascades, Krueger, Bowater
Fine Paper	•	Cascades
Steel Cans	•	Triple M Metals
Aluminum Cans	•	Connecticut Metals
PET Bottles (#1)	•	Plastrec, Ecotex
HDPE (#2 plastics)	•	Entropex
Mixed Plastic (# 4,5, 7)	•	Entropex
Scrap Metal/White Goods	•	Triple M Metals
Tires	•	Envirocan
Scrap Wood	•	Gro-Bark Ltd.
Construction and Demolition	•	Sittlers Environmental

In 2011, 52% of the outbound waste/materials were shipped off-site primarily to the St. Thomas (Green Lane) Landfill in Elgin County. A portion of the outbound waste was shipped to EFW in Niagara Falls, New York (6.6%), Tri Recycling (4.8%), All Treat Farms (2.8%) and Greenstep (2.5%) with various other locations making up the remaining 31.3%.

7. Leachate Quality

7.1 Leachate Indicators

To determine the potential leachate quality that may be generated from the Transfer Station, the leachate quality from the City of Guelph closed Eastview Landfill was examined. Prior to closure in 2003, this landfill accepted a similar mix of waste as the Transfer Station. Groundwater monitoring has been routinely conducted on this site since 1991. Leachate quality is measured by a series of groundwater monitors in the waste and in the outwash layer beneath the waste. In general, the leachate quality is characterized by elevated concentrations of chloride, boron, phenols (critical leachate parameters), sodium, potassium, magnesium, iron, manganese, ammonia and alkalinity (leachate indicator parameters). Also, BOD, COD and oil and grease have been found to be elevated. Though monitoring continues at the site, leachate quality up to 2009 was only considered since leachate strength is expected to decrease over time with closure of the landfill. Table 7 provides a summary of the historic leachate concentrations (1997 to 2009) for the leachate monitors.

Table 7. Summary of Leachate Quality from the Waste Monitors, Eastview Landfill

	Parameters	Avg.	Min.	Max.
General	• pH	7.68	7.09	8.63
	 Conductivity (μS) 	14,364	3,880	21,500
	 Alkalinity (mg/L) 	6,195	2,900	9,050
	 Hardness (mg/L) 	2,161	1,010	2,900
Critical	Chloride (mg/L)	1,841	101	2,660
Indicators	Boron (mg/L)	22.8	6.22	47
	 Phenol (μg/L) 	100	0.72	830
Leachate	Calcium (mg/L)	96	33	221
Indicators	Sodium (mg/L)	1,468	424	2,300
	 Magnesium (mg/L) 	468	144	661
	 Potassium (mg/L) 	794	149	1,410
	• Iron (mg/L)	11	1.1	41.4
	 Manganese (mg/L) 	0.10	0.027	0.688
	Ammonia (mg/L)	583	0.05	1,200

The concentrations of the leachate indicator parameters vary with location across the landfill but in most cases are elevated above the background concentrations. However, it should be noted that parameters such as chloride and sodium are also elevated in the background due to other sources such as road salt. Further, parameters such as iron, manganese, and ammonia can be elevated due to natural background conditions, in either the sandy outwash (manganese) or the wetland peat (iron and ammonia). Of all the leachate indicator parameters identified, boron, chloride and phenols are considered as critical leachate indicator parameters.

Annual routine organic analysis of the leachate shows low concentrations of BTEX (benzene, toluene, ethyl benzene and xylene) and organic compounds at the closed Eastview Landfill indicating that organic compounds are not generated in significant quantities in this landfill.

With regard to the Transfer Station, downgradient water quality is compared to background water quality for the critical leachate indicator parameters, as identified above, to determine impacts from site operations.

The Transfer Station operation is not expected to generate any significant quantities of leachate because all waste handling operations are conducted in an indoor environment within the transfer building. The Design and Operations plan incorporates a number of features to protect the groundwater and surface water resources. This includes features such as a completely contained waste tipping floor and collection system and operating procedures that ensure that waste is handled indoors in a closed environment and is not stored on-site for any length of time. Nevertheless, it is still appropriate to examine water quality at the site for indicators of leachate impacts to confirm that all of the safeguards are functioning.

7.2 Petroleum Indicators

The Transfer Station operations do not involve the use, storage or handling of significant quantities of potential contaminants, other than machine fuel/lubricants (the only on-site equipment that requires fuelling is a front-end loader) and occasional dust suppressant chemicals. If these are handled with normal, reasonable precaution (according to the regulations) then the risk of groundwater contamination is very low. Established procedures for spills response and contingency are in place. BTEX analysis results are examined to determine if there is any indication of hydrocarbon contamination. Downgradient water quality is discussed in Sections 5.4 and 5.5.

8. Groundwater, Leachate and Surface Water

A ground and surface water monitoring program is conducted on the sites as outlined in Section 2.

8.1 Groundwater Elevation and Flow Directions

Groundwater levels were collected in April, June, September and December during 2011. Groundwater elevations were measured at 18 locations that included a total of 32 monitors. These monitors are outlined below with the geological unit they are measuring. Groundwater elevations are appended. Hydrographs for each location are presented in Appendix A.

Monitor	Geological Unit	Groundwater Zone
2a-91	Sandy Silt Till	Not Used
2b-91	Sandy Outwash	Water Table
5-96	Dolostone Bedrock	Water Table/Bedrock
6a-96	Dolostone Bedrock	Bedrock
6b-96	Sandy Outwash	Water Table
7-96	Sandy Outwash	Water Table
8-96	Dolostone Bedrock	Water Table/Bedrock
9-96	Sandy Outwash	Water Table
10-00 ¹	Dolostone Bedrock	Bedrock
11a-01 ¹	Dolostone Bedrock	Bedrock
11b-00 ¹	Gravelly Outwash	Water Table
12a-00 ²	Dolostone Bedrock	Bedrock
12b-00	Gravelly Outwash	Water Table
13a-01 ³	Dolostone Bedrock	Bedrock
13b-01 ³	Gravelly Outwash	Water Table
14a-01 ³	Dolostone Bedrock	Bedrock

Notes: (1) Locations recommended by MOE.

(2) Replaces 3-97.

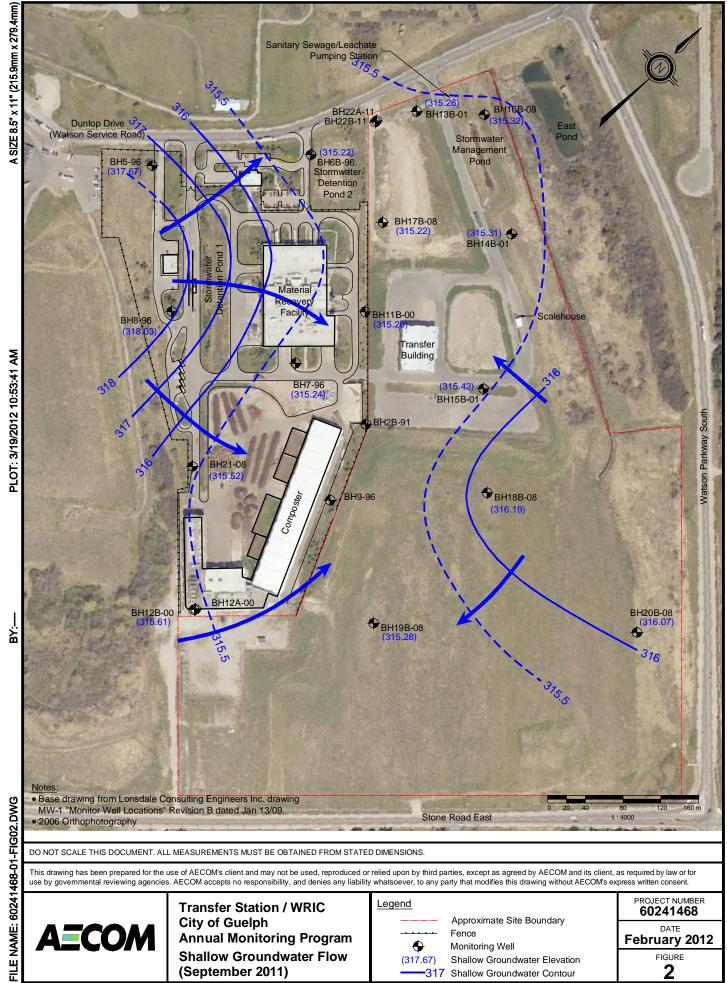
(3) Locations on Transfer Station Property.

Monitor	Geological Unit	Groundwater Zone	
14b-01 ³	Gravelly Outwash	Water Table	
15a-01 ³	Dolostone Bedrock	Bedrock	
15b-01 ³	Gravelly Outwash	Water Table	
16a-08 ³	Dolostone Bedrock	Bedrock	
16b-08 ³	Gravelly Outwash	Water Table	
17a-08 ³	Dolostone Bedrock	Bedrock	
17b-08 ³	Gravelly Outwash	Water Table	
18a-08 ³	Dolostone Bedrock	Bedrock	
18b-08 ³	Gravelly Outwash	Water Table	
19a-08 ³	Dolostone Bedrock	Bedrock	
19b-08 ³	Gravelly Outwash	Water Table	
20a-08 ³	Dolostone Bedrock	Bedrock	
20b-08 ³	Gravelly Outwash	Water Table	
21-08	Dolostone Bedrock	Water Table/Bedrock	
22a-11 ³	Dolostone Bedrock	Bedrock	
22b-11 ³	Gravelly Outwash	Water Table	

In general, the shallow groundwater flow beneath the site is similar to previous years though flows have been refined based on the groundwater elevation information from the new monitors installed in 2008. Shallow groundwater flow beneath the majority of the site is in a northeasterly direction (Figure 2). To the west of the site, groundwater flows out of a bedrock high into the outwash beneath the site before being directed to the northeast. The 2008 drilling identified a bedrock high southeast of the site in the vicinity of 20a-08.

The bedrock groundwater flow pattern is similar to the overlying shallow groundwater system (Figure 3). Groundwater flow is from west to east and east to west coming into the site from both directions. It is expected that flow will ultimately become northerly as observed with the shallow groundwater system, and based on the assessment of the bedrock surface topography, which suggests that the bedrock is deepening to the north. This is important as previous hydrogeological assessments in the area suggest that the bedrock low observed in this area is a former paleo river valley (incised bedrock low) that trends to the north. Therefore, it would be expected that the groundwater flow would follow this feature. The 2008 monitoring nests (bedrock and overburden) were placed to the east of the facility (BH18-08, BH19-08 and BH20-08) to confirm the geology and groundwater flow in this area. Southeast of the Transfer Station, the bedrock elevation is highest at BH20-8, sloping to the northwest towards the paleo river valley. A more detailed assessment of the geology in the area incorporating the 2008 borehole data was provided in the 2009 Annual report (AECOM, 2010).

In their review of the 2006 Annual Monitoring report, the MOE commented that though water levels are collected four times per year, only one data set was used to plot the groundwater contour map. It should be noted that for our assessment of groundwater flow conditions, each set of water level data are plotted and reviewed. However, for reporting purposes, only one set of data are presented as flow contours from season to season (and from year to year) as flows have been quite similar. Should significant differences between the seasonal flow conditions be noted, they would be identified and discussed.


Late in 2011, a new monitoring nest consisting of two monitors, 22a-11 and 22b-11, was installed along the western boundary of the site, adjacent to Dunlop Drive as requested by the MOE. These monitors have now been incorporated into the routine monitoring program for the site.

8.2 WRIC Detention Pond 1 (SW 3) Monitoring

In 2011, the pond at SW 3 was inspected monthly with samples collected when possible. The table below briefly outlines the conditions at Detention Pond 1 (SW 3) during the 2011 monthly monitoring events.

Month	Runoff From Pad	Conditions	Sampling Date
January	None	Frozen/Snow covered	No Sample
February	None	Frozen/Snow covered	No Sample
March	None	Frozen/Dry	No Sample
April	None	Sample collected at outlet	April 8, 2011
May	None	Sample collected at outlet	June 3, 2011
June	None	Dry	No Sample
July	None	Dry	No Sample
August	None	Sample collected at outlet	August 25, 2011
September	None	Dry	No Sample
October	None	Sample collected at outlet	October 20, 2011
November	None	Sample collected at outlet	November 29, 2011
December	None	Sample collected at outlet	December 15, 2011

No impacts are expected at SW 3 since compost is no longer stored on the pad. Composting did occur on the site between September 27 and November 25, 2011 however, all composting activities occurred indoors. In the past when the water quality was sampled at SW 3 (or CL-1 leachate), it showed elevated concentrations of conductivity,

This drawing has been prepared for the use of AECOM's client and may not be used, reproduced or relied upon by third parties, except as agreed by AECOM and its client, as required by law or for use by governmental reviewing agencies. AECOM accepts no responsibility, and denies any liability whatsoever, to any party that modifies this drawing without AECOM's express written consent.

Transfer Station / WRIC City of Guelph **Annual Monitoring Program Shallow Groundwater Flow** (September 2011)

Legend Approximate Site Boundary Fence • Monitoring Well (317.67)Shallow Groundwater Elevation Shallow Groundwater Contour

PROJECT NUMBER **60241468** February 2012 FIGURE

potassium, BOD, COD, TKN, ammonia, total phosphorus, chloride, sodium and iron. In 2011, SW3 parameter concentrations are generally much lower than pre-2007 concentrations in the absence of compost impacts. As suggested by the MOE, SW3 quality was compared to the water quality from the samples collected from the staff gauge in the East Pond (designated EPTS-01). The East Pond can be considered as background surface water quality as it is upstream of both facilities⁸. Most indicator parameters were elevated at SW3 in 2011 compared to historic concentrations in the East Pond. SW3 conductivity, alkalinity, chloride and sodium concentrations were highest in the spring (April, June) compared to the remainder of the year, possibly due to flushing of residual leachate impacts combined with road salt impacts. Parameter concentrations were within the range of historic concentrations at this location. Elevated concentrations may be related to residual leachate inputs in the clay-lined pond, which is expected to continue to flush out over time. Although this was the case, all water collected from the compost pad into the pond was directed to the sanity sewer.

SW3 was analyzed for organics in August 2011. Toluene (5 μ g/L), indole (80 μ g/L), phenol (29 μ g/L) and m-p cresol (61 μ g/L) were detected in the August 2011 sample. Phenols and m-p cresol have been detected at this location in the past at concentrations of 1.3 μ g/L and 4.5 μ g/L in 2003. Toluene and indole have not historically been detected at SW3. It should be noted that occasional organic detections have also been noted in Detention Pond 1 (EPTS-01), which is considered representative of background.

8.3 Groundwater Monitoring

Transfer Station

The monitoring program for the site includes three overburden monitors (in outwash materials) 13-b-01, 14b-01 and 15b-01 and three bedrock monitors 13a-01, 14a-01 and 15a-01. The MOE completed a review of the 2004 and 2005 Annual Monitoring reports for the Eastview Landfill and the Transfer Station. The MOE recommended installation of additional monitoring locations to better address the geological setting with respect to the groundwater flow. Based on the MOE review comments, six monitoring nest locations (BH16-08 to BH21-08) were completed in 2008, at the locations shown on Figures 1 to 3. These monitors consist of overburden outwash (16b-08, 17b-08, 18b-08, 20b-08) and bedrock monitors (16a-08, 17a-08, 18a-08, 19a-08, 20a-08). These monitors were incorporated into the routine monitoring program in 2008.

In 2011, the groundwater monitoring program included biannual (June and December) routine organic and inorganic water quality sampling plus seasonal water levels.

WRIC

Baseline groundwater monitoring was conducted from 1991 to 1995, prior to construction at the WRIC site (monitor locations 1a-91, 1b-91, 2a-91, 2b-91, 3-91 and 5-91). Monitoring of the groundwater at the WRIC Facility commenced in April 1996 at the remaining monitoring locations that were not destroyed during construction (Figure 1). In late 1996, replacements for the monitors that were destroyed were completed and added to the program. The present monitoring program, initiated in 1999 after MOE approval, is twice per year (June and December). Groundwater samples were collected in June and December in 2011.

8.3.1 Groundwater Quality

Groundwater sampling was conducted for both the Transfer Station and the WRIC in June and December 2011. Groundwater quality results are appended.

^{8.} Memorandum from Lynnette Latulippe (MOE) to Bill Shields (City of Guelph), Re: Annual Monitoring Report – 2009 Guelph Wet-Dry Recycling Centre and Waste Transfer Station, dated February 7, 2011.

8.3.1.1 Background Outwash Water Quality

Background outwash groundwater quality has historically been measured at locations 14 and 15 on the adjacent eastern property. Location 15 is now considered a downgradient location due to the construction of the compost pad to the east. Groundwater flow is directed towards the site from these areas. Recent monitors BH18b-08, BH19b-08 and BH20b-08, located southeast of the Transfer Station and 16b-08, located north of the Transfer Station are also representative of background outwash conditions based on the groundwater flow patterns in this area. BH18B-08 had insufficient volume of water to sample in December 2011. Water quality for the indicator parameters are summarized in the table below.

	Monitor		Chloride (ppm)	Sodium (ppm)	Calcium (ppm)	Magnesium (ppm)	Potassium (ppm)
14b-01	Historical Range	267 – 438	22.3 – 280	0.1 – 170	0.2 – 140	0.05 – 38	0.2 - 2.6
	2011 Average	378	96.5	91	106.5	27	2.05
16b-08	2008-2010 Range	318 – 597	38 – 260	39 – 150	130 – 170	41 – 51	1.5 – 3.1
	2011 Average	450.5	96.5	84	140	43.5	1.95
18b-08	March 2008	284	8	270	29	12	2.1
	June 2011	424	19	190	60	18	5.5
19b-08	2008-2009 Range*	289 – 499	38 – 60	350 – 480	23 – 36	10 – 14	4.5 – 8.6
	2011 Average	576	17	205	64.5	20	6.85
20b-08	2008-2010 Range	235 – 272	8 – 170	3.5 – 58	82 – 110	25 – 31	1.2 – 3.3
	2011 Average	284	8.5	3.95	83.5	26.5	1.2

Note: Historical Ranges include all data up to and including 2010, except where specified. *No samples collected in 2010 due to insufficient volume

Monitors 18b-08, 19b-08 and 20b-08 have chemistry similar to monitors 14b-01, located northeast of the WRIC though a few parameters at 19b-08 were notably higher than the other overburden background monitors. Monitor 19b-08 showed elevated concentrations of potassium, sulphate, sodium and boron. Sulphate concentrations were also elevated at monitor 18b-08 though this monitor has only been sampled twice due to persistent dry conditions. The cause of these elevated concentrations is unknown, however, since these monitors are upgradient of the site, the elevated concentrations are not a result of site activities. The December conductivity and both June and December calcium concentrations at 19b-08 were higher than the historic maximum concentrations. The 2011 sulphate, chloride and sodium concentrations were lower than historic minimum concentrations. As only four samples constitute the historic data set for this monitor, some variability in water quality is expected. Monitor 20b-08, located upgradient from 18b-08 and 19b-08, shows parameter concentrations similar to the historic overburden background monitors.

Elevated sodium and chloride concentrations at these three monitors have decreased since the first few sampling events and, though still evident, are lower than at 14b-01 and 16b-08. The 2011 18b-08 and 19b-08 chloride concentration is within the range of concentrations found at 15b-01 though sodium at both locations is slightly elevated compared to 15b-01. The sodium and chloride concentrations at 20b-08 have decreased significantly compared to previous years'. Monitor BH15b-01 has been exhibiting elevated chloride and sodium but are similar to concentrations at 18b-08 and 19b-08 suggesting that these elevated concentrations are not a result of site operations.

Most 2011 parameter concentrations at monitor 20b-08 are within their historic ranges, except for June alkalinity, and December total phosphorus, which were higher than their historic maximum concentrations and sulphate, which was lower than its historic minimum concentration.

The 2011 parameter concentrations at monitor 14b-01 were generally within the historic range of concentrations at this monitor for both sampling events, except for December TKN and iron and June zinc and nitrate. The December iron concentration of 61 mg/L is significantly higher than the historic maximum iron concentration of 1.3 mg/L. This result is likely anomalous. December 2010 concentrations of magnesium, sodium, calcium, zinc and nitrate were considered suspect as they were all lower than the laboratory detection limits for these parameters. The 2011 concentrations for these parameters are similar to historic suggesting laboratory error in 2010. COD concentrations at 14b-01 are showing a decreasing trend since peaking in 2004-2003 such that concentrations appear to have stabilized around 11 mg/L, similar to lower than the other background overburden monitors. Monitor 14b-01 has shown increasing sodium and chloride over time from about 20 mg/L and 40 mg/L, respectively in 2001-2003 to 170 mg/L and 270 mg/L in 2009, though 2010 and 2011 concentrations have appear to show a declining trend. The elevated sodium and chloride concentrations are most likely related to road salting along Watson Parkway. The average 2011 indicator parameter concentrations at monitor 14b-01 were generally slightly lower than average 2010 concentrations.

Monitor 16b-08 is located near the northwest corner of the of the Transfer Station site by the stormwater management pond. Indicator parameter concentrations are within the range of concentrations for the other background overburden monitors though they tend to be at the high end of the range. The 2011 parameter concentrations at monitor 16b-08 are generally within their historic ranges, except for December total phosphorus, iron and nitrate which are higher than the historic maximum concentration. The average 2011 indicator parameter concentrations at monitor 16b-08 were generally lower than average 2011 concentrations.

8.3.1.2 Background Bedrock Water Quality

Background bedrock groundwater quality is measured at locations 5-96 (northwest) and 8-96 (west) on the bedrock high along the western portion of the WRIC site from where groundwater flows into the immediate area of the WRIC. As well, groundwater quality in the bedrock below the site was measured at location 6a-96. Background bedrock groundwater quality is typically hard with more elevated concentrations of the major ions, most noticeably alkalinity and calcium. These types of concentrations are associated with dolostone, which is made up of calcium and magnesium carbonate. The average concentrations of these parameters observed in 2011, along with the historical ranges at these locations are provided below. Also, provided in this table are the 2011 averages from the bedrock WRIC site monitors (10-00, 11a-00) installed in 2000, the bedrock monitors (13a-01, 14a-01 and 15a-01) installed in late 2001 and late 2011 (22a-11) on the Solid Waste Transfer Station property and the bedrock monitors (16a-08, 17a-08, 19a-08, 20a-08, 21-08) installed in 2008.

	Monitor		Alkalinity (ppm)	Chloride (ppm)	Sodium (ppm)	Calcium (ppm)	Magnesium (ppm)	Potassium (ppm)
	5-96	Historical Range ⁽¹⁾	278 – 380	112 – 474	71.9 – 263	83.7 – 134	24.2 – 38.4	3.9 – 6
		2011 Average	290.5	515 ⁽²⁾	360 ⁽²⁾	100	22.5	4.1
	8-96	Historical Range	264 – 356	37.2 – 332	17.6 – 171	87 – 123	32 – 43.4	1.73 – 3.1
		2011 Average	289	125	76	91	32.5	2.6
	14a-01	Historical Range	215 – 263	4.8 – 26.6	9.1 – 27.4	63.5 – 86	22.4 – 29	1 – 2
nd		2011 Average	239.5	25.5	16.5	82	28	1.2
Background	16a-08	2008-2010 Range	236 – 251	28 – 39	2.1 – 42	76 – 88	26 – 29	1.8 – 3.6
ckg		2011 Average	235.5	34.5	2.85	87.5	29.5	2
Ва	18a-08	2008-2010 Range	241 – 258	16 – 19	4.5 – 89	65 – 88	27 – 31	1.1 – 3
		2011 Average	242	36.5	14	89	30.5	1.35
	19a-08	2008-2010 Range	234 – 245	27 – 50	12 – 47	94 – 110	33 – 37	1.2 – 1.4
		2011 Average	240.5	65	27	100	34.5	1.45
	20a-08	2008-2010 Range	236 – 262	16 – 37	4.7 – 56	72 – 88	26 – 31	1.1 – 1.8
		2011 Average	241.5	17.5	5.15	80.5	26.5	1.1

		Monitor	Alkalinity (ppm)	Chloride (ppm)	Sodium (ppm)	Calcium (ppm)	Magnesium (ppm)	Potassium (ppm)
	6a-96	Historical Range	206 – 420	158 – 345	70 – 176	94.6 – 158	28 – 42	2 – 16.4
		2011 Average	272	175 ⁽²⁾	130 ⁽²⁾	99	27	3
	10-00	Historical Range	236 – 267	17 – 44.9	7.7 – 14	79 - 95.1	27 – 32	1 – 2
	11a-00	Historical Range	225 – 263	4 – 22	4.3 - 25.9	62 - 83.2	23 – 28	1 – 3
		2011 Average	229	24	5.35	75	27	1.8
adient	13a-01	Historical Range	243 – 272	83.9 – 111	38 – 49	90 – 112	32 – 38.8	2 – 2.9
rad ad		2011 Average	243	94	44	100	36.5	2.7
Downgra	15a-01	Historical Range	245 – 271	42 – 62.4	7.7 – 21	88 – 129	29 – 37	1 – 2
ŏ		2011 Average	245	58.5	21.5	115	37	1.35
-	17a-08	2008-2010 Range	228 – 248	27 – 36	10 – 67	64 – 81	26 – 30	1.4 – 2.2
		2011 Average	227	38.5	12	83	29	1.6
	21-08	2008-2010 Range	261 – 284	5 – 54	13 – 34	75 – 87	25 – 32	0.87 – 1.2
		2011 Average	270.5	7	10.8	79	26	1
	22a-11	December 2011	212	56	16	110	35	1.6

Note: 1. Historical Ranges only include data from 1997 up to 2003 due to continued increasing chloride and sodium values after 2003.

2. Road salt impact.

Historical Ranges include all data up to and including 2010, except where specified.

Many of the monitors drilled in 2008 show concentrations that appear to be slightly outside the range of concentrations from results collected in 2008 to 2010. This is expected due to the limited amount of data therefore minor concentrations outside the 2008 monitor ranges are not discussed below. Generally the average 2011 concentrations fall within the historical ranges, with the following exceptions. The 2011 average concentrations of sodium and chloride at monitor 5-96 continue to show significant road salt impacts. The sodium and chloride concentrations at 5-96 have shown a significant increase in recent years from less than 140 mg/L and 300 mg/L pre-2003, respectively to about 360 mg/L and 515 mg/L in 2011. The effects are found to be seasonal with the dry weather (June) sampling period showing higher sodium and chloride concentrations as compared to the wet weather sampling periods. As well, there have been historical road salt effects observed at location 6a-96 and 8-96. Sodium and chloride at monitor 5-96 exceed ODWS. Sodium and chloride are elevated (but within ODWS) at monitor 6a-96. The elevated sodium and chloride concentrations at monitors 5-96 and 6a-96 are due to road salt impacts. The 2011 average magnesium concentration is slightly lower than the historic minimum concentration at 5-96. The magnesium concentration at 5-96 has been decreasing over time. The June 2011 chloride concentration at 18a-01 is significantly higher than historic chloride concentrations, which are typically about 18 mg/L. Several other parameters (conductivity, magnesium, sodium, calcium) also show concentrations higher than historic maximums during this monitoring event. The significance of the December 2011 concentrations will be assessed through further monitoring. Last year, in June 2010, the chloride concentration at monitor 20a-08 of 37 mg/L was about double historic chloride concentrations and accompanied by elevated sulphate and iron and low nitrate and nitrite. The 2011 parameter concentrations at 20a-08 have returned to within the range of historic concentrations, except for iron (discussed further below). The 2011 chloride concentration of 60 mg/L and 70 mg/L was elevated at 19a-08 compared to the historic maximum concentration of 50 mg/L. These concentrations may be due to natural variation of the water quality in this area as this location is located upgradient of site operations.

Unusually high iron concentrations in the December 2011 samples were noted at monitors 2b-91, 5-96, 6b-96, 11b-00, 12a-00, 13b-01, 14b-01, 15b-01, 16a-08, 16b-0817a-08, 17b-08, 18a-08, 19a-08 and 21a-08. These elevated iron results occurred across the site in both upgradient and downgradient and overburden and bedrock monitors. Future iron results will be examined to confirm that these are anomalous concentrations.

When the water quality from the monitors located along the eastern boundary of the WRIC (10-00, 11a-00) and in the Transfer Station property (13a-01, 14a-01, 15a-01, 16a-08, 17a-08) are compared to the historical monitors to the west, there is a difference in bedrock water quality observed. With the exception of alkalinity, the concentrations of the major ions are generally lower indicating a less mineralized water. This difference in water quality is attributed to the bedrock units they are completed in. As stated earlier, there is a bedrock high to the west of the site. This

high is dominated by the dolostone units of the Guelph Formation. The bedrock topography dips steeply to the east, across the WRIC site, towards a deeply incised bedrock valley low. This valley cuts into the underlying Gasport Formation (formerly the Amabel). The 2001 and 2008 monitors are installed in this formation or at the contact of this formation at the eastern boundary of the WRIC facility. Overall, water quality from this lower formation is found to be less mineralized, which is confirmed by sampling of these monitors.

Monitor 22-11 is located downgradient in the bedrock low and constructed as a piezometer in the bedrock (total depth of 24.4 m below ground surface⁹). The one sample collected at the site shows parameter concentrations within the range of other downgradient bedrock monitors. Chloride and sodium concentrations are slightly elevated suggesting possible road salt impacts, as observed further up-gradient. However, since only one sample has been collected from this location, further sampling is required.

8.4 Downgradient Groundwater Quality

8.4.1 Shallow Outwash Groundwater Quality

Monitors along the eastern property boundary of the WRIC and within the paleo-valley in this same area are downgradient of operations at the Transfer Station and the WRIC based on shallow groundwater flows (Figure 2). The table below compares downgradient water quality at monitors 2b-01, 6b-96, 7-96, 11b-00, 13b-01, 15b-01, 17b-08 and 22b-11 to the Ontario Drinking Water Standards (ODWS), leachate quality (from Eastview Landfill) and background outwash water quality from monitors BH14b-01, 16b-08, 18b-08, 19b-08 and 20b-08.

Alkalinity concentrations at 2b-91 have increased compared to the pre-2003 average of 183 mg/L. The average 2011 alkalinity concentration was 280.5 mg/L. Sulphate concentrations have been decreasing over time from about 30 mg/L in the mid-1990s to its current 2011 concentration of 8 mg/L. Recent chloride concentrations since 2008 have been about 3 mg/L compared to pre-2008 concentrations of about 10 mg/L. No other trends in indicator parameter concentrations were noted at 2b-91. Of note are the low nitrate concentrations since 2008 of less than 1.5 mg/L. Historically, nitrate concentrations frequently exceeded the ODWS at 2b-91.

			Cr	itical Leach	ate Indicators		C	ther Leach	ate Indicator	s
		Monitor	Boron (ppm)	Phenols (ppm)	Alkalinity (ppm)	Chloride (ppm)	Sodium (ppm)	Calcium (ppm)	Magnesium (ppm)	Potassium (ppm)
a		ODWS	5.0		30 – 500	250	200			
Leachate		Historical Range (1997-2010)	6.22 – 47	0.72 – 830	2,900 – 9,050	101 – 2,660	424 – 2,300	33 – 221	144 – 661	149 – 1,410
Le		Average (1997-2010)	22.8	100	6,195	1,842	1,481	96	467	802
	2b-91	Historical Range	< 0.005 - 0.028	< 0.72 – 6	166 – 362	3 – 17	1.8 – 5.2	52.2 – 90	21.8 – 39	0.69 – 1
		2011 Average	0.018	< 1	280.5	3.5	4.15	79	27	0.825
	6b-96	Historical Range	0.02 - 0.078	< 0.72 – 11	246 – 412	90.3 – 815	53.1 – 467	85.9 – 217	20.5 – 47	5.36 – 18
		2011 Average	0.030	< 1	319.5	225	200	94	23	8.4
	9-96	Historical Range	0.01 - 0.063	< 0.72 – 4	171 – 348	5 – 83.7	1.48 - 34	68.6 – 100	14.7 – 34	0.3 - 1.5
=	7-96	Historical Range	0.03 - 0.102	< 0.72 – 12	224 – 378	54.3 – 397	28.7 - 212	95.1 – 226	28 – 52.7	9.06 - 27
ë		2011 Average	0.0375	< 1	324.5	190	141.5	120	33	11
Downgradient	11b-00	Historical Range	0.04 - 1.9	< 1 – 7	185 – 279	54 – 192	26.8 - 150	44 – 103	12 – 28.4	1 – 2.2
'n		2011 Average	0.535	0.11	231	165	125	68.5	15.5	1.65
ŏ	13b-01	Historical Range	0.01 - 0.1	< 1 – 12	287 – 506	7 – 200	4.8 - 88	84.7 – 160	28 – 45	1 – 2.5
-		2011 Average	0.0265	< 1	415	69.5	44.5	135	30	2.05
	15b-01	Historical Range	< 0.01 - 0.08	< 1 – 10	200 – 544	4 – 270	2 – 130	73.4 – 210	18.7 – 53	0.92 - 2
		2011 Average	0.0235	< 1	433.5	79.5	101.5	135	28	1.25
	17b-08	2008-2010 Range	0.015 - 0.025	< 1	304 – 357	260 – 620	170 – 330	110 – 190	29 – 48	2.2 - 3.1
		2011 Average	0.020	< 1	323	320	205	120	31	2.25
	22b-11	Dec 2011	0.014	< 1	299	57	43	110	24	1.6

^{9.} The monitors at 22-11 will be surveyed during 2012 to obtain ground and top of pipe elevations in order to tie it in to the site.

			Cr	Critical Leachate Indicators				Other Leachate Indicators			
	Monitor		Boron (ppm)	Phenols (ppm)	Alkalinity (ppm)	Chloride (ppm)	Sodium (ppm)	Calcium (ppm)	Magnesium (ppm)	Potassium (ppm)	
	14b-01	Historical Range	< 0.01 – 0.05	< 1 – 13	267 – 438	22.3 – 280	0.1 – 170	0.2 - 140	0.05 – 38	0.2 - 2.6	
		2011 Average	0.020	< 1	378	96.5	91	106.5	27	2.05	
	16b-08	2008-2010 Range	< 0.01 - 0.033	< 1	318 – 597	38 – 260	39 – 150	130 – 170	41 – 51	1.5 – 3.1	
Pur		2011 Average	0.027	< 1	450.5	96.5	84	140	43.5	1.95	
ಕ	18b-08	March 2008	0.07	< 1	284	8	270	29	12	2.1	
ckgro		June 2011	0.10	<1	424	19	190	60	18	5.5	
Ba	19b-08	2008-2009 Range*	0.14 - 0.27	< 1	289 – 499	38 – 60	350 – 480	23 – 36	10 – 14	4.5 - 8.6	
		2011 Average	0.125	< 1	576	17	205	64.5	20	6.85	
	20b-08	2008-2010 Range	< 0.01 - 0.018	< 1	235 – 272	8 – 170	3.5 – 58	82 – 110	25 – 31	1.2 - 3.3	
		2011 Average	0.013	< 1	284	8.5	3.95	83.5	26.5	1.2	

Note: Historical Ranges includes all data up to and including 2010, except where specified.

ODWS = Ontario Drinking Water Standards.

*No samples collected in 2010 due to insufficient volume.

Outwash at monitors 6b-96 (northeast corner) and 7-96 (central) as well as at the historical monitor 3-97 (southwest corner), which was destroyed during the construction of the SUBBOR pilot facility and replaced with monitor 12b-00, are upgradient of the WRIC and Transfer Station. These locations are along the flow path that trends from the southwest to the northeast and receives groundwater inputs from the bedrock high to the west. This water quality is typified by concentrations of the major ions that are elevated above the background outwash but for the most part lower than the bedrock concentrations. This is anticipated as the more ionized water from the bedrock to the west would mix with the less ionized waters in the overburden.

Monitor 6b-96 usually shows lower concentrations of chloride and sodium than observed in the background bedrock at monitor 5-96. These sodium and chloride concentrations always show a seasonal trend, usually highest in the early spring, suggesting they are attributed to road salting of the surrounding area. Monitor 5-96 has been showing increasing chloride concentrations over time from about 200 mg/L up to 2002 to around 800 mg/L in the late-2000s, likely in response to long-term road salting in the area. Monitor 12b-00 shows lower sodium and chloride concentrations compared to 6b-96 and 7-96, likely due to the absence of road salt sources upgradient of this location.

As shown on the above table, indicator parameter concentrations observed in the background and downgradient outwash monitors on the Transfer Station/WRIC property are considerably lower than typical leachate concentrations from the closed Eastview Landfill. Chloride and sodium at 17b-08 (June and December 2011) exceeded ODWS. These exceedances are due to road salt impacts. Monitor 17b-08 is in the shallow outwash, downgradient of Transfer Station. The sodium and chloride concentrations at 17b-08 are within the more recent range of concentrations of the background WRIC bedrock monitors 5-96 and 6a-96, which have been impacted by road salt. Elevated sodium and chloride at 17b-08 suggests road salt impacts by lateral dispersion at this location. Other leachate indicator parameter concentrations are within background outwash ranges for the Transfer Station indicating no impacts.

Nitrates at monitor 7-96 continue to exceed the ODWS in 2011. This has been observed historically, as well as prior to the start-up of the WRIC facility and is most likely a result of past agricultural land use. There were no other exceedances of ODWS for the shallow groundwater monitors in 2011 for the parameters tested, except for iron (previously discussed).

At 13b-01, both sodium and chloride have shown increasing trends since 2004, peaking in 2008 and slowly declining since then. These elevated concentrations are likely due to road salt impacts as this monitor is located adjacent to the access road to the Transfer Station and Dunlop Road. The average 2011 chloride concentration of 69.5 mg/L was lower than the average 2010 concentration of 107 mg/L whereas the average 2008 sodium concentration of

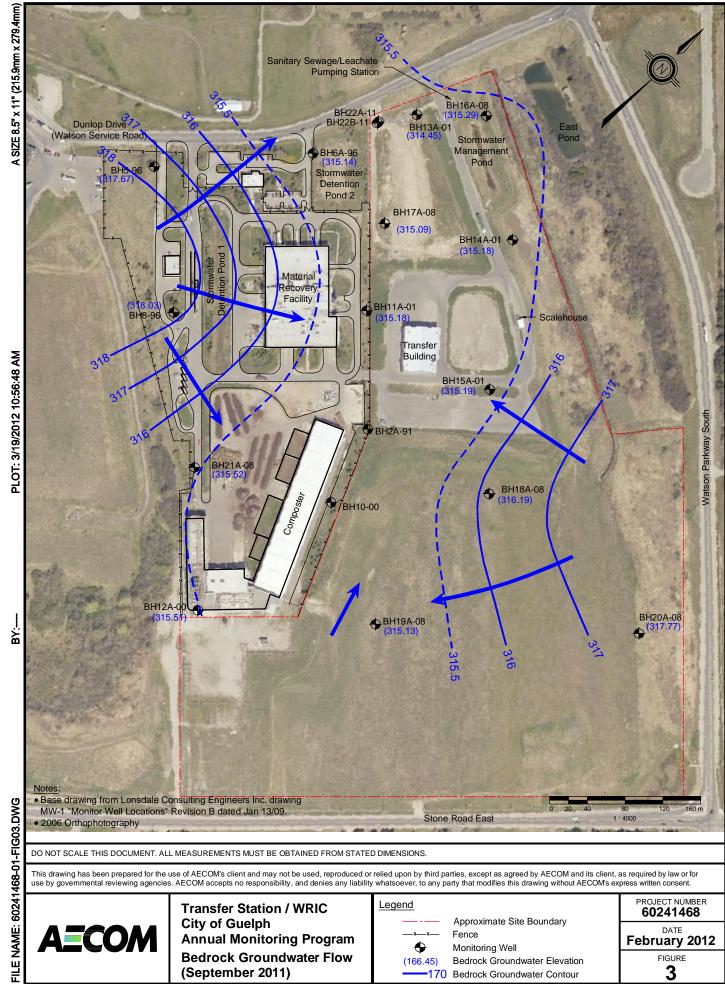
180 mg/L was slightly higher than the average 2007 concentration of 120 mg/L. Since indicator parameter concentrations at monitor 13b-01 remain within background concentrations, it has been concluded that there are no leachate impacts.

At monitor 15b-01, the average chloride concentration has increased from a 2006 average concentration of 6 mg/L to a peak in 2010 with an average concentration of 195 mg/L. Sodium and chloride showed a noticeable increase in concentrations in 2010 with a 2010 average of 108 mg/L and 195 mg/L, respectively, compared to a 2009 average of 72 mg/L and 63 mg/L and a 2007 average concentrations of 11 mg/L and 29 mg/L. Sodium and chloride decreased in 2011 to an average concentration of 101.5 mg/L and 79.5 mg/L, respectively. This monitor shows a subtle increasing trend in alkalinity, peaking in 2008 at about 496 mg/L and gradually decreasing from then to an average 2011 concentration of 434 mg/L. These increases are likely related to the construction of the paved pad immediately south (discussed below). This monitor had previously been considered an upgradient background location due to its location east of the WRIC and south of the Transfer Station. However, in the mid-2000s, a large paved pad was constructed southeast of this monitor location. This pad was originally intended for storage of leaf compost but, starting in early 2011, is now being used to store construction and demolition material (roofing shingles, clean wood, drywall, rubble). The pad is sloped such that surface water runoff is captured by a catch basin located near the middle of the pad and directed to the storm sewer. The change in water quality at this location may be due to a combination of road runoff impacts from the Transfer Station access road to the northwest, a reduction of infiltration (and therefore, dilution) with the installation of the paved pad as well as the road salt from the south as observed in the background monitors.

New monitor, 22b-11, completed in November 2011, is representative of background overburden conditions based on its location along the western site boundary. The December 2011 sample collected from 22b-11 showed water quality similar to 18b-08, 19b-08 and 20b-08. Elevated sodium and chloride at concentrations of 57 mg/L and 43 mg/L, respectively, reflect road salt impacts due to its location immediately adjacent to Dunlop Drive. As only one sample has been collected from this monitor, further sampling will be reviewed to further characterize water quality at this location.

We conclude from this assessment, there have been no leachate impacts to the shallow groundwater in the vicinity of the WRIC and Transfer Station as a result of site operations in 2011.

8.4.2 Downgradient Bedrock Groundwater Quality


The interpreted bedrock groundwater flow directions (Figure 3) indicate that monitors 6a-96, 10-00, 11a-01, 13a-01, 15a-01, 17a-08 and 22a-11 are downgradient of the active Transfer Station and WRIC area, within or on the edge of the paleo-valley trending through the site.

The bedrock groundwater quality was compared to Ontario Drinking Water Standards (ODWS), as applicable. Sodium and chloride exceed ODWS at background bedrock monitor 5-96 due to road salt impacts. There are no other exceedances of ODWS in 2011 for the bedrock groundwater monitors for the parameters tested (except for iron, previously discussed).

As the shallow outwash water quality is not impacted by site operations, no impacts to the deeper bedrock groundwater would be expected nor observed.

8.5 Groundwater Organics Results

Groundwater monitors were analyzed for organics during both the June (dry) and December (dry) monitoring events at monitoring locations 2, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 and monitors 5-96, 7-96, 8-96 and 21a-08. Monitoring location 22-11 was also sampled for organics in December 2011.

This drawing has been prepared for the use of AECOM's client and may not be used, reproduced or relied upon by third parties, except as agreed by AECOM and its client, as required by law or for use by governmental reviewing agencies. AECOM accepts no responsibility, and denies any liability whatsoever, to any party that modifies this drawing without AECOM's express written consent.

Transfer Station / WRIC City of Guelph Annual Monitoring Program Bedrock Groundwater Flow (September 2011)

PROJECT NUMBER **60241468** February 2012 FIGURE 3

Monitor 14b-01 had a detection of bis(2-ethylhexyl) Phthalate (DEHP) in the December 2011 sample at a concentration of 21 μ g/L. Previously, DEHP detections had been observed at monitors 14b-01, 18a-08 and 20a-08 in June 2010 at concentrations of 50 μ g/L, 6 μ g/L and 3 μ g/L and at monitors 14b-01 and 16a-08 in June 2009 ranging from 2 μ g/L (14b-01) to 8 μ g/L (16a-08). DEHP was also detected during both monitoring events in 2007 at monitor 14b-01. It has historically been detected at both upgradient and downgradient monitors in 1997, 1998, 2000, 2002, 2003, 2006, 2007, 2008, 2009 and 2010. Historic DEHP detections ranged from 0.73 μ g/L to 120 μ g/L. DEHP is prevalent in the environment due to their use in plastics. There is no ODWS for DEHP. Since DEHP has sporadically been detected at monitors across the site, we have concluded that it is a result of sampling or laboratory artefact.

Monitors 8-86 and 15b-01 had 2011 detections of pentachlorophenol (PCP) at concentrations of 1 μ g/L, at the laboratory detection limit. Benzyl butyl phthalate (BBP) was detected at monitors 11a-00 (1.1 μ g/L), 12a-11 (0.7 μ g/L), 14a-01 (0.5 μ g/L) and 19b-08 (1.9 μ g/L). Neither PCP or BBP have previously been detected during historic monitoring events. PCP has an ODWS of 60 μ g/L, which the 2011 detections are well within. PCP is used as a pesticide and disinfectant. BBP has no ODWS. It is mostly used as a plasticiser for PVC.

In 2011, m- and p-xylene was detected at 14b-01 (0.12 μ g/L) and 15b-01 (0.1 μ g/L), just at or slightly above the 0.1 μ g/L laboratory detection limit. Historically, low levels (0.1 μ g/L to 0.3 μ g/L) of m- and p-xylene have been detected at 11b-00, 12a-00, 12b-00, 13b-00, 14b-01, 15b-00 and 20a-08 between 2001 and 2010 in both upgradient and downgradient of the site. The ODWS for xylenes is 300 μ g/L. Concentrations detected here are well within ODWS and are not likely related to site activities.

Monitors 6a-96 and 11b-00 had detections of bromodichloromethane (0.12 μ g/L to 5 μ g/L) in 2011. No detections have been observed historically at 6a-96. Bromodichloromethane was previously detected at monitor 11b-00 in 2010 at a concentration of 1.4 μ g/L but had not previously been detected at this location. It had previously been detected in 2010 at 17b-08 (2.9 μ g/L) and in 2002 at CL-1 in the leachate (0.4 μ g/L). Bromodichloromethane can be found in chlorinated drinking water as a disinfection by-product. In the past, they were used as a solvent, a flame retardant and in the manufacture of other chemicals. There is no ODWS for this parameter.

Low concentrations of chloroform $(0.4~\mu g/L)$ and $0.46~\mu g/L)$ were detected at monitor 6a-96, 11b-00 $(0.73~\mu g/L)$ and 1.2 $\mu g/L)$ and 17b-08 $(0.3~and~0.38~\mu g/L)$ in 2011. These three monitors also showed low levels of chloroform in 2010. A low concentration of chloroform $(0.2~\mu g/L)$ was detected at monitor 6a-96 in 2009. The laboratory detection limit for chloroform is 0.1 $\mu g/L$. Low chloroform $(0.3~\mu g/L)$ was also detected during 2008 and both 2007 sampling events at this same monitor. Chloroform has historically been detected at low levels at monitors 6a-96, 6b-96 and 11b-00, in the overburden and bedrock with no elevated indicator parameter concentrations indicating that these occasional detections are not a result of activities on the site. There is no ODWS for chloroform. The low level detections of chloroform at this location are most likely a result of sampling or laboratory artefact.

Acetone was detected at monitor 13b-01 at a concentration of 24 μ g/L in 2011. It has not previously been detected in the groundwater monitors during historic monitoring events. Acetone has no ODWS. It is a solvent commonly used in laboratory cleaning.

Monitor 9-96 was not sampled in 2010 and 2011 due to inaccessibility as a result of construction activities in the area so persistent low levels of 1,1,1-Trichloroethane at 9-96 were not able to be confirmed. Historically 1,1,1-Trichloroethane has not been detected in any of the monitors on the Transfer Station or the WRIC site indicating that it is localized and is not moving beyond the monitor area. Concentrations will continue to be monitored in the future but were low in recent years and have declined since 2004 with 2009 concentration only slightly higher than the laboratory detection limit of $0.1 \mu g/L$.

No other organics were detected at any of the monitors that are part of the WRIC and Transfer Station monitoring program in 2011.

Historically, there have been occasional low level detections of organics at both upgradient and downgradient monitors. Because the detection limits for organic compounds are very low, it is not unusual to have sporadic low level organic detections at sites where organic samples are frequently collected. The presence of persistent organics at one location combined with elevated indicator parameter concentrations and/or increasing trend in parameter concentrations would trigger more intense scrutiny of water quality results. This has not been the case for the organic detections at this site.

To further check the validity of future organic detections, a trip blank and a field blank should be collected with each organic monitoring event for QA/QC purposes.

8.6 General Groundwater Quality Discussion

Overall, the groundwater chemistry during 2011 was similar to previous years.

In 2007, nitrate and nitrite analysis was re-instated into the routine monitoring program for both the sites as per the MOE's recommendations. Historically, nitrates were included in the monitoring program but were removed since elevated nitrate concentrations were prevalent across the site at all locations prior to development of the site. This was once again confirmed in 2011. There were no exceedances of the nitrate ODWS in 2011. Shallow background monitors 1b-91 and 6b-96 historically have also shown elevated nitrate concentrations in the early 1990s (up to 32 mg/L at 1b-91) and late 1990s (up to 44 mg/L at 6b-96) indicating that the elevated nitrates were present prior to the commencement of facility operations.

Monitors 5-96, 6b-96, 7-96, 17b-08 and 19b-08 exceeded ODWS for sodium and/or chloride in 2011 as a result of road salt impacts. Exceedances of the iron ODWS occurred at many of the monitoring locations during the December 2011. These iron exceedances will be investigated further in future monitoring events. There were no other exceedances of the Ontario Drinking Water Standards in 2011.

At monitor 15b-01, the chloride concentration peaked in 2010 with an average concentration of 195 mg/L but had decreased in 2011 to an average concentration of 101.5 mg/L. This monitor shows a subtle increasing trend in alkalinity, peaking in 2008 at about 496 mg/L and gradually decreasing from then to an average 2011 concentration of 434 mg/L. These increases are likely related to the construction of the paved pad immediately south (discussed below). This monitor had previously been considered an upgradient background location due to its location east of the WRIC and south of the Transfer Station. However, in the mid-2000s, a large paved pad was constructed southeast of this monitor location. This pad was originally intended for storage of leaf compost but, starting in early 2011, is now being used to store construction and demolition material (roofing shingles, clean wood, drywall, rubble). The pad is sloped such that surface water runoff is captured by a catch basin located near the middle of the pad and directed to the storm sewer. The change in water quality at this location may be due to a combination of road runoff impacts from the Transfer Station access road to the northwest, a reduction of infiltration (and therefore, dilution) with the installation of the paved pad as well as the road salt from the south as observed in the background monitors.

There were detections of DEHP, PCP, BBP, m- and p-xylene, bromodichloromethane, chloroform and acetone in a few of the monitors during 2011. However, based on the historic detections of occasional low levels of VOC throughout the site in both upgradient and downgradient monitors, most of the 2011 VOC detections are concluded to be a result of sampling or laboratory artefact. DEHP has historically been detected at both upgradient and downgradient monitors in 1997, 1998, 2002, 2003, 2006, 2007, 2008, 2009 and 2010. DEHP is prevalent in the environment due to their use in plastics. In 2011, low levels of m- and p-xylene were reported at 14b-01 and 15b-01. Since DEHP and m- and p-xylene have sporadically been detected at monitors both upgradient and downgradient of the site, we have concluded that it is a result of sampling or laboratory artefact. Only xylenes have an ODWS. Xylene concentrations detected in 2011 are well within ODWS.

Chloroform has also historically been detected at low levels at monitors 6a-96, 11b-00 and 17b-08, in both the overburden and bedrock with no elevated indicator parameter concentrations indicating that these occasional detections are not a result of activities on the site. No other organics were detected at any of the other monitors sampled in 2011.

Other organics were detected in 2011, pentachlorophenol (PCP) at 8-86 and 15b-01, Benzyl butyl phthalate (BBP) at monitors 11a-00, 12a-11, 14a-01 and 19b-08 and acetone at monitor 13b-01, had not previously been detected in any of the groundwater monitors during historic monitoring events. None of these organics have ODWS.

Historically, there have been occasional low level detections of organics at both upgradient and downgradient monitors. Because the detection limits for organic compounds are very low, it is not unusual to have sporadic low level organic detections at sites where organic samples are frequently collected. The presence of persistent organics at one location combined with elevated indicator parameter concentrations and/or increasing trend in parameter concentrations would trigger more intense scrutiny of water quality results. In previous monitoring reports, we had recommended discontinuation of the organic sampling from the groundwater monitoring program for all historical locations. The MOE review of the 2009 Annual Monitoring report (Groundwater Review), the reviewer did not support the discontinuation of the organic groundwater sampling program since an impact assessment with respect to the requirements of Guideline B-7 has not yet been completed. Organic sampling will remain in the program until this assessment has been completed. Organic sampling events should include a trip blank and a field blank should be collected with each organic monitoring event for QA/QC purposes.

In conclusion, there were no observable effects attributed to the WRIC and the Transfer Station on the groundwater quality beneath the site. No effects were observed at the site boundaries. Road salt effects continue to be observed at location 5-96, 8-96 (upgradient of site), 7-96 and 9-96 (on-site) and are related to off-site as well as potential on-site activities.

8.7 Guideline B-7 Assessment

MOE Guideline B-7 (formerly Policy 15-08 referred to as the Reasonable Use Policy) applies the reasonable use approach to groundwater quality management at waste management sites. Guideline B-7 describes acceptable levels of contaminants in the groundwater at site boundaries, based on the Ontario Drinking Water Standards (ODWS) and natural background conditions. In addition, it is used to determine whether any remedial action is warranted. The Guideline B7 limits were calculated using the formula outlined in the MOE's Procedure B-7-1 (MOEE 1994a and 1994b).

The basic methodology to assess groundwater quality in relation to Guideline B7 limits (reasonable use guidelines), is to compare the shallow downgradient groundwater quality to the calculated maximum concentrations. The leachate indicator parameters used in the assessment are either health related or aesthetic parameters specified in the ODWS. Based on the MOE reasonable use approach from Guideline B-7, the maximum concentrations (**Cm**) allowed at the site boundaries are calculated from the drinking water quality criteria (**Cr**) and background concentrations (**Cb**) based on the formula provided in Procedure B-7-1. Guideline B7 allows for some incremental impact to occur on the neighbouring property, relative to background. Input for a given chemical parameter includes the background concentration, the Ontario Drinking Water Standards (MOE, 2000), and a safety factor that was established by the MOE based on human health and aesthetic considerations.

As part of the MOE review on the 2009 Annual Monitoring report, it was recommended that Guideline B-7 be applied to this site as the geological model and groundwater flow have been confirmed, which is generally northeasterly. Monitor 22a-11 (bedrock) and 22b-11 (overburden) were installed at the downgradient northwestern property boundary adjacent to Dunlop Drive to be utilized for an impact assessment with respect to the requirements of

Guideline B-7¹⁰. The median historic concentrations from background bedrock monitors 5-96 and 8-86 were used to calculate the maximum concentration levels presented in Table 8.

$$C_m = C_b + F \times (C_{ODWS} - C_b)$$

where, C_m is the maximum concentration,

C_b is the median background concentration,

C_{ODWS} is the maximum concentration (dependant on water use),

F is a constant – 0.5 mg/L for aesthetic parameters, 0.25 mg/L for health related parameters.

Table 8. Guideline B-7 Calculated Maximum Parameter Concentrations

Parameter	Сь	F	Codws	C _m
Nitrate (mg/L)	1.00	0.25	10	3.25
Boron (mg/L)	0.02	0.25	5	1.27
Sodium (mg/L)	86.1	0.5	200	143
Chloride (mg/L)	154.5	0.5	250	202
Sulphate (mg/L)	46.5	0.5	500	273
Iron (mg/L)	0.02	0.5	0.3	0.16

Note that monitors 5-96 and 8-86 show elevated sodium and chloride concentrations due to road salt impacts, however, these conditions are representative of this area. Maximum allowable concentrations (C_m) are compared to the groundwater quality results from 22-11 sampled in December 2011 in Table 9.

Table 9. Summary of 2011 MOE Guideline B-7 (Reasonable Use) Calculations

Paramet	Parameters		Northwest Boundary			
in mg/L		Cm	Monitor 22a- 11(bedrock)	Monitor 22b-11 (overburden)		
Health Related	Nitrate	3.25	< 0.1	3.7		
Parameters	Boron	1.27	0.02	0.01		
Aesthetic	Sodium	143	16	43		
Parameters	Chloride	202	56	57		
	Sulphate	273	89	25		
	Iron	0.16	1.3	0.21		

Bold, italicized concentrations in Table 9 exceed Guideline B-7 limits. Nitrate at 22b-11 and iron and nitrate at 22a-11 exceed the Guideline B-7 limits. Historically, elevated nitrate concentrations were prevalent across the site at all locations prior to development of the site. Shallow background monitors 1b-91 and 6b-96 historically have also shown elevated nitrate concentrations in the early 1990s (up to 32 mg/L at 1b-91, prior to the facility operations) and late 1990s (up to 44 mg/L at 6b-96) indicating that the elevated nitrates were present prior to the commencement of facility operations. As previously discussed, iron concentrations at some of the monitor locations were unusually high during the December 2011 monitoring event. Therefore, it is unknown if the iron concentrations from location 22-11 reflect actual conditions at this location. Further monitoring is required to confirm iron concentrations and to build up a larger sample set for this location.

Strictly speaking, Guideline B-7 is in place to assess groundwater impacts leaving the site for protection of downgradient users. There are no downgradient well users as the surrounding area is municipally serviced.

^{10.} Memorandum from Lynnette Latulippe (MOE) to Bill Shields (City of Guelph), Re: Annual Monitoring Report – 2009 Guelph Wet-Dry Recycling Centre and Waste Transfer Station Groundwater Review, dated February 7, 2011.

8.8 Surface Water Monitoring

Transfer Station

In 2011, monthly inorganic surface water sampling of the stormwater management pond (SWM) for the parameters shown on Table 3. The SWM pond was routinely checked during 2011. When water was present, samples were collected at the culvert on the west side of the pond (TP1 on Figure 1) and at the discharge at the north end of the pond (TP1 (out) on Figure 1) on a monthly basis. The water in the SWM pond at TP1 and TP1 (out) was sampled in April and June and between August and December 2011.

The existing on-site surface water pond ("East Pond" on Figure 1) is also included in the monitoring program. Water quality from the East Pond is considered representative of background surface water quality as it does not receive any inputs from the facilities. East Pond surface water samples (designated EPTS-01) were to be collected on a quarterly basis but was inadvertently only sampled in June and December 2011, as part of the groundwater monitoring. The 2011 surface water results for the leachate indicator parameters are tabulated below, and the testing results are presented in Appendix C.

		Critica	Leachate Indicat	tors		Other	Leachate Ir	ndicators	
Location	Date	Boron	Phenols	Chloride	Alkalinity	Sodium	Calcium	Magnesium	Potassium
		(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
PWQO/		0.2	0.001	-	-	-	-	-	-
Backgroun	d Overburden ⁽¹⁾	0.005 - 0.063	< 0.001 - 0.013	3 – 280	166 – 438	1.5 – 170	52 – 140	14.7 – 39	0.3 - 2.6
Backgroun	d Overburden ⁽²⁾	<0.01 - 0.27	< 0.001	8 – 620	235 – 597	3.5 – 480	23 – 190	10 – 51	1.2 - 8.6
TP1	8-Apr-11	0.01	< 0.001	190	254	120	84	16	4.4
	3-June-11	0.03	0.017	33	186	41	57	8.8	2.5
	25-Aug-11	0.04	<0.001	17	92	17	40	4.8	5.9
	27-Sept-11	0.04	0.011	25	193	25	68	10	6.2
	20-Oct-11	< 0.01	< 0.001	3	68	5.8	22	1.7	0.9
	29-Nov-11	< 0.01	0.001	3	30	3	11	1.4	1
	15-Dec-11	0.01	0.002	65	100	54	36	4.6	2.3
TP1 (out)	8-Apr-11	0.02	< 0.001	190	195	130	67	10	3.6
	3-June-11	0.04	0.003	66	390	63	140	29	7.4
	22-June-11	0.03	< 0.001	16	150	21	45	5.5	1.5
	25-Aug-11	0.03	< 0.001	33	98	22	41	5.3	14
	27-Sept-11	0.04	0.007	15	109	14	39	5.9	6.9
	20-Oct-11	< 0.01	0.003	13	87	14	26	3.6	1.9
	29-Nov-11	< 0.01	0.003	5	50	7.4	19	2.5	1.7
	15-Dec-11	0.01	0.003	75	70	56	28	2.4	1.6
EPTS-01	15-Jun-11	0.02	< 0.001	45	238	35	70	19	1.6
	19-Dec-11	0.01	0.002	64	256	45	96	27	1.8
	Historic Range	<0.01 - 0.19	<0.001 - 0.001	26 – 190	169 – 334	13 – 120	68 – 160	19 – 27	1 – 2

Note: (1) Range of background overburden water quality from 1997 to 2010 for monitors 2b-91, 9-96 and 14b-01.

Surface water results were compared to Provincial Water Quality Objectives (PWQO), background surface water quality (EPTS-01) and background overburden water quality. Of the June and December samples collected in 2011 at EPTS-01, the PWQO for zinc was exceeded during both monitoring events and for phenol during the December monitoring event. The June and December 2011 zinc concentrations at EPTS-01 were 0.07 mg/L to 0.29 mg/L, respectively, compared to a PWQO of 0.02 mg/L. Zinc has consistently exceeded PWQO in the past at this location. The December phenol concentration was 2 μ g/L compared to a PWQO of 1 μ g/L. Historically, phenol has never exceeded PWQO at this location. Total phosphorus and iron have exceeded PWQO in the past but were within PWQO in 2011. All the leachate indicator parameters concentrations were within background overburden ranges. The East Pond shows no indications of impacts as a result of site operations.

⁽²⁾ Range of background overburden water quality from 2008-2010 for monitors 16b-08, 17b-08, 18b-08, 19b-08 and 20b-08.

For the SWM pond samples at TP1, the PWQO was exceeded for total phosphorus for all seven events, iron for four of the seven 2011 monitoring events, zinc for three events and phenols for two events. For the SWM pond samples at TP1 (out), the PWQO was exceeded for total phosphorus for all 2011 events, iron and phenols in five of the seven 2011 events and zinc in three events. The PWQO for total phosphorus, iron and zinc have routinely to occasionally been exceeded at these locations in the past. Phenol concentrations have occasionally exceeded PWQO in the past. The elevated total phosphorus is a result of former agricultural land use and not a result of operations at the Transfer Station. Elevated zinc, total phosphorus and iron concentrations appear to be related to external factors since background surface water have also exceeded PWQO for these parameters. Metals are a common contaminant from roadway runoff. Elevated phosphorus is typical in rural and urbanized areas. The 2011 concentrations are within the range of historic background overburden quality, except for June TP1 phenols and August TP1(out) potassium, which were higher than background. The June TP1 phenol concentration was 0.017 μg/L compared to the maximum overburden background of 0.013 μg/L. The August TP1(out) potassium concentration was 14 mg/L compared to the maximum overburden background of 8.6 mg/L. 2011 indicator parameter concentrations are within the range of background surface water concentrations, except for TP1 and TP1(out) phenols (three and five occasions, respectively), TP1(out) alkalinity and sodium and magnesium (one occasion each) and TP1 and TP1(out) potassium (five and four occasions, respectively). Baseline water quality information collected prior to building the WRIC had historically shown elevated total phosphorus concentrations and occasional elevated phenols, sodium, magnesium and potassium concentrations. Therefore, the elevated parameter results are due to the impacts of former land use and not a result of operations at the Transfer Station.

In the future, samples from TP1, TP1 (out) and EPTS-01 should be collected on the same day to allow for direct quality comparison to background. Nevertheless, the June and December samples from TP1, TP1 (out) and EPTS-01 were compared 11. In June 2011, the phenols (TP1), chloride, alkalinity, calcium and magnesium (TP1(out)) and sodium and potassium (TP1 and TP1(out)) exceeded background surface water concentrations at EPTS-01. The June phenols (TP1), alkalinity (TP1(out)), magnesium (TP1(out)) and potassium (TP1 and TP1(out) concentrations were also higher than the historic background maximum concentrations for these parameters but are generally within background overburden concentrations. It is noted that both the June samples were collected from standing water, likely resulting in higher parameter concentrations due to concentrated samples. Elevated June concentrations are not attributed to the Transfer Station as site handling and maintenance practices would deter potential surface water impacts. December indicator parameter concentrations are similar or less at TP1 and TP1 (out) compared to concentrations at EPTS-01, except for TP1(out) chloride and TP1 and TP1(out) sodium but within the range of historic EPTS-01 concentrations. The elevated December sodium and chloride concentrations are likely a result of road salt impacts from the adjacent internal road.

2011 parameter concentrations at TP1 were within the range of historic concentrations, except for June ammonia (2.1 mg/L), which was higher than its historic maximum of 0.72 mg/L. 2011 parameter concentrations at TP1 (out) were within the range of historic concentrations, except for June alkalinity and magnesium and September phenol, which were higher than their historic maximum concentrations. The SWM Pond shows elevated sodium and chloride concentrations suggesting road salt impacts from the adjacent access road.

Organic samples were collected from the East Pond (EPTS-01) in June and December 2011 and from the SWM Pond (TP1 and TP1(out)) in June/August. Chloroform was detected at a concentration of $0.3~\mu g/L$ during the June 2011 sampling event of the East Pond. Chloroform was previously detected in June 2009, June 2008, March and June of 2007, June 2004 and in June 2010 at EPTS-01 at low concentrations. Chloroform has also historically been detected at low levels at monitors 6a-96, 6b-96 and 11b-00, in both the overburden and bedrock with no elevated indicator parameter concentrations indicating that these occasional detections are not a result of activities on the site. There is no PWQO for chloroform. The low level detections of chloroform at this location are most likely

^{11.} The June and December samples from TP1 and TP1(out) were collected within two weeks of each other.

a result of sampling or laboratory artefact. There were no detections of organic compounds at either of the 2011 samples collected from the SWM pond.

To effectively compare surface water samples, samples should be collected on the same day. It is recommended that the monitoring frequency of the East Pond be increased to monthly to coincide with those occasions when samples are collected from the on-site SWM ponds. If no samples are collected from the any of the SWM pond locations, no sample from the East Pond for that month is required.

In the past, measurements from the staff gauge in the East Pond are collected concurrent with the groundwater sampling. These measurements serve as a gauge to the amount of water present in the pond but were not being used for analysis. Staff gauge measurements of the East Pond can be discontinued.

WRIC

Monitoring of surface water at the WRIC commenced in March 1996. As required in the C of A, this monitoring was to be to be on a monthly basis for a short parameter list and on a quarterly basis for the full leachate parameter list (updated in 1999), as outlined in Section 3. There are two surface water sampling stations at the site, designated as SW 1 located at the off-site discharge point in Stormwater Detention Area 2 and SW 2 located in the Stormwater Detention Area 1 (Figure 1). Surface water runoff from the site is directed to a series of on-site stormwater catch basins. Excess water from Stormwater Detention Area 1 flows to Stormwater Detention Area 2 where it ultimately discharges via a pond outlet structure in the northwest portion of the pond to the York-Watson Stormwater Detention Area.

East Pond water quality will serve as background surface water for comparison purposes. There is no baseline surface water analysis (prior to site operations), so any impacts due to runoff from the WRIC would be difficult to determine at the discharge point SW 1, due to the potential for other sources of non-facility impacts. These sources include runoff from the surrounding agricultural lands and road systems.

During mid-1998, the surface water monitoring program was re-designed to better understand contributions from runoff directly related to the site and not stagnant pond conditions. Surface water sampling is still undertaken on a monthly basis. However, more detailed recordings on discharge and overall conditions (such as dry or stagnant water) are undertaken. As well, the monthly sampling is to be undertaken during runoff conditions (weather permitting), and if no event occurs, are to be sampled at the end of the month regardless.

Below is a discussion of the surface water monitoring at station SW 1 and SW 2 during 2011. Samples were collected from both Detention Pond 2 (SW 1) and from Detention Pond 1 (SW 2) on April 8, June 3 and 22, October 20, November 29 and December 15. No other surface water samples were collected due to frozen or dry conditions. The table below briefly outlines the surface water monitoring events for the past year at these surface water stations.

Month	Discharge Events	Conditions	Sampling Date
January	No Discharge	SW1 and SW2 – Snow covered	No Sample
February	No Discharge	SW1 and SW2 – Snow covered	No Sample
March	No Discharge	SW1 and SW2 – Frozen/Dry	No Sample
April	No Discharge	SW1 and SW2 – Standing Water	April 8, 2011
May	No Discharge	SW1 and SW2 – Standing Water	June 3, 2011
June	No Discharge	SW1 and SW2 – Standing Water	June 22, 2011
July	No Discharge	Dry	No Sample
August	No Discharge	Dry	No Sample
September	No Discharge	Dry	No Sample
October	No Discharge	SW1 and SW2 – Standing Water	October 20, 2011
November	No Discharge	SW1 and SW2 – Standing Water November 2	
December	No Discharge	SW1 and SW2 – Standing Water December	

Note: *June SW2 sample collected but inadvertently not submitted to the laboratory.

Of the six samples collected at SW1 (Stormwater Detention Area 2) in 2011, the 2011 indicator parameters at SW 1 (Stormwater Detention Area 2) showed elevated phenol (October, December), chloride and sodium (April) and potassium (April, June, October, November, December) compared to background surface water quality at the East Pond (EPTS-01). Conductivity, alkalinity, magnesium, sulphate and calcium concentrations are much lower at SW1 compared to the East Pond. 2011 SW1 parameter concentrations are within the range of historic concentrations at this location, except for June alkalinity, October phenol and June iron. The Provincial Water Quality Objectives (PWQO) were exceeded for total phosphorus during all six sampling events and two sampling events each for phenol and iron. The total phosphorus and iron PWQO have routinely been exceeded in the past at this location. The phenol PWQO has only been exceeded during two sampling events prior to 2011. Iron and total phosphorus PWQO have only rarely been exceeded at the background surface water station though phenols PWQO was slightly exceeded in the December 2011 background sample. Occasionally elevated parameter concentrations at SW1 are a result of road salt impacted runoff from the adjacent internal roadways and/or occasional stagnant water conditions in the pond.

Most parameters are elevated compared to background surface water at the on-site SW2 (Stormwater Detention Area 1) station. Of the indicator parameters, elevated concentrations of phenols (October, November), alkalinity (June), chloride and sodium (April, June, December), magnesium (June) and potassium (all) were reported in 2011. The 2011 conductivity (April, June), alkalinity (June), phenols (October, November) and sodium and chloride (April and June) showed higher concentrations than their historic maximum concentrations. The spring (April to June) concentrations were higher than the October to December concentrations, likely due to seasonal influences. Total phosphorus exceeded the PWQO during all six monitoring events in 2011. Zinc and iron exceeded the PWQO on four occasions each during 2011. These parameters have historically routinely exceeded their PWQO. The phenol PWQO was exceeded twice in 2011. The phenol PWQO was historically only exceeded on three other occasions since 1997. It is noted that background bedrock monitors 5-96 and 8-96 have consistently shown elevated zinc concentrations indicating that high zinc is natural in the area. All surface water quality results are appended.

As per the requirements of the C of A, the surface water was to be analyzed for organics once annually (typically in June). Our 2008 annual report recommended organic samples at SW 1 and SW 2 earlier in the year to avoid frequent dry conditions that typically occur in June. Organic sampling of SW1 and SW2 was completed in June and August 2011. No organics were detected from the samples collected at SW1 and SW2 in 2011.

It is recommended that surface water monitoring continue to be conducted monthly until a suitable water quality database, has been achieved.

8.9 Adequacy of Program and Proposed Changes

In conclusion, there were no observable effects attributed to the WRIC and the Transfer Station on the groundwater quality beneath the site. Monitor 15b-01 showed increases sodium and chloride concentrations in recent years; however, new background overburden monitors 18b-08 and 19b-08 have much higher sodium concentrations compared to 15b-01 indicating that the site operations are not the source of these parameters.

There were detections of DEHP, PCP, BBP, m- and p-xylene, bromodichloromethane, chloroform and acetone in a few of the monitors during 2011. However, based on the historic detections of occasional low levels of VOC throughout the site in both upgradient and downgradient monitors, most of the 2011 VOC detections are concluded to be a result of sampling or laboratory artefact.

The MOE recommended installation of a well nest along the downgradient property boundary to be utilized for an impact assessment with respect to the requirements of Guideline B-7¹². The nest was to include overburden and

^{12.} Memorandum from Lynnette Latulippe (MOE) to Bill Shields (City of Guelph), Re: Annual Monitoring Report – 2009 Guelph Wet-Dry Recycling Centre and Waste Transfer Station Groundwater Review, dated February 7, 2011.

bedrock monitors to be included in the ongoing monitoring program. New monitoring nest 22-11 with a bedrock and overburden monitor was installed in November 2011 and the Guideline B-7 analysis was completed. Nitrate at 22b-11 and iron and nitrate at 22a-11 exceed the Guideline B-7 limits. Historically, elevated nitrate concentrations were prevalent across the site at all locations prior to development of the site. Shallow background monitors 1b-91 and 6b-96 historically have also shown elevated nitrate concentrations in the early 1990s and late 1990s indicating that the elevated nitrates were present prior to the commencement of facility operations. As previously discussed, iron concentrations at some of the monitor locations were unusually high during the December 2011 monitoring event. Therefore, it is unknown if the iron concentrations from 22-11 reflect actual conditions at this location. Further monitoring is required to confirm iron concentrations and to build up a larger sample set for this location.

In previous monitoring reports, we had recommended discontinuation of the organic sampling from the groundwater monitoring program for all historical locations. The MOE review of the 2009 Annual Monitoring report (Groundwater Review), the reviewer did not support the discontinuation of the organic groundwater sampling program since an impact assessment with respect to the requirements of Guideline B-7 has not yet been completed. This Guideline B-7 assessment was completed (discussed above) and found that there were no impacts at the western downgradient site boundary as a result of site operations therefore, we request removal of the organic sampling from the groundwater monitoring program.

Routine staff gauge measurements collected since 2004 are not used in our analysis and may be discontinued.

The East Pond setting is similar to the Transfer Station SWM and the WRIC ponds (influenced by road salting and within similar overburden soils) though it is within a different catchment area. The East Pond will be used as a background surface water station to water quality from the on-site surface water features. To effectively compare surface water samples, samples should be collected on the same day. It is recommended that the monitoring frequency of the East Pond be increased to monthly to coincide with those occasions when samples are collected from the on-site SWM ponds. If no samples are collected from the any of the SWM pond locations, no sample from the East Pond for that month is required.

The 2011 Transfer Station surface water monitoring program shows that there have been no leachate impacts to the SWM pond as a result of operations at the waste Transfer Station. The 2011 SWM Pond results showed June phenols, chloride, alkalinity, calcium and magnesium, sodium and potassium exceeded background surface water concentrations at EPTS-01. Some of these parameter (phenols, alkalinity, magnesium, potassium) concentrations were also higher than their historic background maximum concentrations but are generally within background overburden concentrations. It is noted that both the June samples were collected from standing water, likely resulting in higher parameter concentrations due to concentrated samples. Elevated June concentrations are not attributed to the Transfer Station as site handling and maintenance practices would deter potential surface water impacts. December indicator parameter SWM pond concentrations are similar or less than those at EPTS-01 (except for chloride and sodium) but within the range of historic EPTS-01 concentrations. Elevated sodium and chloride concentrations suggest road salt impacts from the adjacent access road. No organics were detected in the SWM pond in 2011. Chloroform at a low concentration was detected during the June 2011 sampling event of the East Pond. The low level chloroform detections in the East Pond are most likely due to sampling or laboratory artefact since historically low levels of chloroform have been detected in overburden and bedrock monitors with no other elevated leachate indicator parameter concentrations. As previously discussed, the design and operation of the Transfer Station minimizes the potential for leachate generation from site activities.

The 2011 WRIC surface water monitoring program shows occasionally elevated parameter concentrations at SW2 and SW1, due to road salt impacted runoff from the adjacent internal roadways, occasional stagnant water conditions in the pond and/or seasonal influences. The total phosphorus, phenols, zinc and iron PWQO were exceeded during one or more sampling events at the Stormwater Detention Ponds, as they have occasionally to

routinely been exceeded in the past. It is noted that background bedrock monitors 5-96 and 8-96 have consistently shown elevated zinc concentrations indicating that high zinc is natural in the area. No organics were detected at SW1 and SW2 during 2011.

It is concluded that the current monitoring program, as described in Section 2, is adequate for the WRIC and the Transfer Station.

9. Public Liaison (PLC) Activities

The following is a summary of the PLC activities in 2011, as provided by the City.

The City had the first regular PLC meeting on November 17, 2011 followed by a special meeting on December 19th, 2011 that dealt with issues related to the development of an action plan to deal with odours that were caused by organic operations.

A further regular meeting was held on January 12, 2012 with the next regular meeting scheduled for April 26, 2012.

10. WRIC Certificate of Approval for Discharge

The WRIC operates under a C of A for municipal and private sewage works (number 9970-VEVLBH) for discharge off-site. Runoff generated from the site is directed to the two stormwater detention ponds located at the northwest end of the site (Detention Pond 1 and 2). Condition 6(2) of the C of A outlines the monitoring program for the site which includes sampling of the compost pad storage pond overflow during a rainfall event for a return storm of two years or greater and stormwater effluent monitoring for a rainfall event generating a depth of 25 mm or more.

Amended Certificate of Approval 5015-856HHF, issued June 16, 2010 removed this condition from the C of A.

11. WRIC Contingency Plans

The City has detailed contingency plans in place for the site prepared by the Environmental Services Department, Solid Waste Resources. The 2008 Emergency and Contingency Plan and the 2006 Contingency Plan documents (WRIC Contingency Programs, WRIC Business Continuity Plan, WRIC Emergency Plan, WRIC Fire Safety Plan) were reviewed by AECOM.

The pertinent items identified by the C of A are summarized below.

11.1 Spills

The WRIC has a Spills Handling and Reporting procedure in place. This procedure applies to all areas, employees and contractors at the WRIC. The procedure defines spills: minor, major, moderate and hazardous materials. The Spills procedure then outlines how to clean up a minor spill and who must be notified in the case of moderate or major spills.

In the event of a minor spill, the plan indicates that appropriate personal protective equipment should be worn and absorbents used to soak up the spill. Absorbed material should be transported to the Transfer Station for disposal.

The plan also covers procedures to follow in the event of a moderate or major spill. The City of Guelph Operations Department, the Environmental Protection Officer at the Wastewater Treatment Plant and the MOE Spills Action Centre must be notified, also in the event of a major spill, the Fire Department, Police, Operations Department, or City of Guelph Emergency Operations Control Group may need to be notified. The plan indicates that all necessary steps should be taken to eliminate possible ignition sources and prevent the spill from leaving the area or entering a watercourse. The plan notes that an Employee Incident Report must be completed once the cleanup is underway. Finally, the plan provides sources of additional information and applicable legislation and references.

11.2 Fire or Similar Emergency

The WRIC has comprehensive plans in place in case of fire or similar emergency documented in the WRIC Fire Safety Plan and the WRIC Emergency Plan. The Fire Safety Plan includes site mapping, floor plans for each of the on-site buildings (including locations of fire alarms and extinguishers), procedures to be followed in the event of a fire/emergency, staff responsibilities and contacts in the event of a fire/emergency, procedures for fire drills, prevention and monitoring equipment maintenance.

The Emergency Plan includes many of the elements incorporated into the Fire Safety Plan plus emergency communications procedures, locations of emergency supplies, emergency equipment information and procedures related to specific emergency situations. The original Fire Safety Plan was reviewed and approved by the City Fire Department.

11.3 Composting Facilities

The Organic Waste Processing Facility is currently in service. There is a new 2012 contingency plan that now includes the waste processing facility, approved in late 2011.

11.4 Power or Equipment Failure

Procedures related to power failure are discussed in the Emergency and Contingency Plan and the WRIC Emergency Plan. In the event of a minor power outage, a portable generator is available at the closed Eastview Road Landfill site. There is currently no contract for a company to supply the WRIC with a generator in the event of a major power outage. However, arrangements are in place for an outside power generation unit for the WRIC Administration Building if it is being used as an Operations Control Centre. If electricity is unavailable for more than a 24-hour period, the WRIC would be required to re-direct waste materials. Emergency procedures have also been assessed for on-site facilities should the power failure be accompanied by flood or freezing conditions.

Procedures as a result of loss of on-site facilities are addressed in the Emergency and Contingency Plan as well as the WRIC Business Continuity Plan. Recommended procedures associated with the loss of each of the facilities are documented. Ultimately, management will assess the course of action to restore the facilities and re-gain normal operations. A new generator has been installed at the Organic Waste Processing Facility.

11.5 Odour

Twice daily odour monitoring is conducted by qualified Solid Waste Resources (SWR) staff. Odour complaints from the public are investigated through the SWR Environmental Complaint Investigation Procedure in compliance with Condition 46 of the C of A. Control measures may include closing doors, cleaning up standing water and/or spills, other housekeeping measures, making changes to the processes or removal of the odour source to the landfill. If the odour persists, a portion of the operation or the entire site may be closed until the issue is resolved.

11.6 Aircraft Hazards/Bird Control

The Guelph Air Park is located within three km of the site. The most obvious aircraft hazard, as it relates to the operation of the WRIC, is the nuisance bird population. Daily monitoring of the number of birds occurs as part of the site inspections. A maximum number of birds on-site was determined in the bird hazard evaluation referred to in the C of A. Continual housekeeping measures, such as litter pick up around the site, at the yard waste pile and compost area, occur at the site to deter the attraction of birds and vermin. Should nuisance birds become an issue at the site, trained birds-of-prey or other mitigative measures will be considered. If necessary, the site operations may cease until the issue is resolved.

Dust, steam, smoke or any airborne vapour may pose an aircraft hazard due to decreased visibility. Operations are conducted in a manner to minimize emissions.

11.7 Un-Authorized Waste

Non-compliant loads are rejected at the scale house prior to entering the site. If un-authorized, hazardous or inappropriate waste is inadvertently accepted, the material will be loaded back on the vehicle (if it has not left the site) or the material will be placed in the appropriate bin for removal by a licensed hauler to an appropriate disposal site. The waste will be transported off-site as soon as arrangements can be made with a certified disposal company. If possible, the vehicle that brought the non-compliant load will be charged for the disposal fee.

11.8 Groundwater/Surface Water Contamination

The site and operational procedures are designed such that there will be minimal impacts on the environment. In the event of a surface water impact, the on-site SWM detention ponds have valves that can stop off-site flow. A Spills Contingency Plan (discussed in Section 11.1) is in place to handle spills. Dry and wet waste received and handled at the site are conducted in indoor covered areas with impermeable floor surfaces and materials stored outside are covered such that impacted runoff is not generated.

Nevertheless, should water quality results suggest that there are impacts to the ground or surface water, the monitor locations/surface water stations will be re-sampled within a reasonable period of time to confirm results. As well, the area immediately adjacent and upgradient of the impacted location will be inspected for possible contaminant sources. Equipment and floor drains may also be inspected to determine if repairs are required. These repairs will be completed immediately. Should the repairs be such that normal operation is not possible, this portion of the operation will be shut down until maintenance is complete. If the contamination is a result of failure in the infrastructure that cannot be repaired under normal maintenance procedures, a remedial plan will be developed to prevent further impacts.

11.9 Quality/Fungal Contamination

If issues arise regarding air quality or fungal contamination, the appropriate qualified professional will be contracted to investigate the cause and recommend remedial measures. Remedial measures may include a change/alteration of operations or suspension of operations in the affected area(s).

All staff receive and are trained on the procedures contained within the WRIC Emergency Plan and WRIC Fire Safety Plan. The WRIC Business Continuity Plan is for use only by City Management staff due to personal information within the document. Contingency Plans are available at the WRIC for review by the Ministry.

12. Summary of Site Operational Changes and Compliance

As reported by the City, there were no deficiencies, items of non-compliance, or process aberrations in 2011. There have been no changes to the Engineer's Report¹³ or the Design and Operations Report¹⁴ since the last annual report. The WRIC Environmental Emergency Plan was updated in 2011 to include the organic waste processing facility.

Condition 52(i) requires a summary of any changes to the Design and Operations Report that have been approved by the Director since the last annual report. The following description was provided by the City for inclusion in this annual report.

The Guelph WRIC includes a MRF, Waste (solid, non-hazardous) Transfer Station, Municipal Hazardous and Special Waste ("MHSW") Transfer Station, Organic Waste Composting Facility, and public drop-off area. In 2010, the City, in consultation with the MOE, amended multiple Waste Disposal Site approvals issued for the WRIC operations, consolidating Site conditions into a single approval (i.e. Environmental Compliance Approvals (ECA) No. A170128) and including Limited Operational Flexibility for the MRF and the Waste Transfer Station.

As specified by Condition 67 of ECA Number A170128, modifications may be made to the MRF and Waste Transfer Station in accordance with the ECA and the pre-approved changes of the Operating Envelope, as described in the Engineer's Report for the Site. The Operating Envelope is defined as the limits on the pre-approved modifications that the Owner may make to the Site without further amendment to the ECA. Condition 67 of the ECA outlines the modifications that are allowed for both the MRF and Waste Transfer Station, including modifications to infrastructure, and modifications to the Site's processing operations and equipment to improve the efficiency and effectiveness of operations.

Modifications Requiring Notification

Modifications recently implemented at the MRF and Waste Transfer Station are summarized in Table 10 and Table 11, respectively. Based on Golder's review of the modifications implemented at the Site, all modifications made are permitted within the Limited Operational Flexibility for the Site, are consistent with generally accepted best management practices, and are not likely to result in an adverse effect (e.g., discharge of a contaminant into the natural environment).

Table 10.	Guelph	WRIC MR	PE Modific	ations
I able IV.	Jucinii	AAIZIO IAII		auviis

Modification Type	Description of the Change to Operations
Balers and Incline Conveyors	Both balers and incline conveyors (equipment numbers 2512, 2514, 2531 and 2533) were replaced with new, upgraded units. These units better track data and operate at a much faster rate which makes it easier to keep up with production.
Aluminum Storage Cage	A new, engineered aluminum storage cage was installed over conveyor number 2512, thereby relocating the location where aluminum baling occurs. This resulted in the more efficient use of material storage bunkers and baling equipment.
Secondary Screen	The secondary screen (equipment number 5116) was replaced with an upgraded more efficient unit. This was done in order to improve the recovery of paper from the single stream material and reduce the amount of fibre being processed with the dedicated container line.

^{13.} Engineer's Report for the City of Guelph Waste Recycling Innovation Centre prepared by Golder Associates dated July 20, 2010.

^{14.} The Design and Operations Report for the City of Guelph Material Recovery Facility prepared by Golder Associates, dated January 12, 2010. The Design and Operations Report for the City of Guelph Waste Transfer Station prepared by Golder Associates, dated January 12, 2010. The Design and Operations Report for the City of Guelph WRIC Public Drop Off and Municipal Hazardous and Special Waste Facilities prepared by Golder Associates, dated January 12, 2010.

Modification Type	Description of the Change to Operations
Broken Glass Optical Sorter, Transfer Conveyor and Storage Area	An accelerator conveyor and glass optical sorting unit was installed to sort contaminants out of the broken glass stream. A transfer conveyor was installed to transfer this material from the optical sorting unit to a newly constructed glass storage building situated on the west side of the MRF. This modification was carried out to maintain the quality of the broken glass stream and to improve production efficiency.
PET Optical Sorter and Conveyor	An accelerator conveyor, transfer conveyor and PET optical sorter were installed on the dedicated container processing line in order to automate the collection of PET. This equipment installation improved material capture and provided for the relocation of sorting staff to other areas in the MRF, further improving the efficiency of Site operations.
PET Perforator and Transfer Augers	Two new transfer augers and a new PET perforator were installed to handle the increased volumes of PET being collected by the PET optical sorter. The augers transfer PET from the secondary sort room to the new PET perforator located in the commercial sort room. The new perforator is designed to handle higher volumes of PET than the old crusher, making the plant run more efficiently.
Drum Feeder	The former bag breaker (equipment number 4900, 4901, 4902 and 4903) was removed from the tip floor, creating more storage space for single stream materials staged to be processed. A drum feeder was installed in place of conveyor 5100 on the tip floor and is designed to ensure a consistent thickness of material at the beginning of the process and improving sorting efficiency.

Table 11. Guelph WRIC Waste Transfer Station Modifications

Modification Type	Description of the Change to Operations
Truck Doors	All truck doors in the transfer station were replaced with high speed, fabric doors with a breakaway feature which
	allows for ease of repair if the door is ever struck by a hauling vehicle or Site equipment.

The modifications described in Tables 10 and 11, above were generally described in the "City of Guelph Material Recovery Facility Design & Operations Report" (Golder Associates Ltd., January 12, 2010) and the "City of Guelph Waste Transfer Station Design & Operations Report" (Golder Associates Ltd., January 12, 2010). Site design, Site operations, recyclables screening and processing procedures, environmental emergency and contingency plans, site inspection procedures, record keeping or reporting practices, and closure plans have not changed significantly as a result of the modifications outlined herein. As such, no required updates to these technical documents are identified.

Statement of Accountability

This description above accurately and fully describes and discloses the modifications made to the Guelph WRIC MRF and Waste Transfer Station. In support of the notification letter, and as required by Condition 67 of ECA No. A170128, a statement signed by the Site Owner/Permit Holder and an Independent Professional Engineer were provided to the Ministry. These statements declare that the modifications made to the Site are done so in accordance with the Operating Envelope, are consistent with industry's best management practices and are not likely to result in an adverse effect.

13. Conclusions

The following conclusions are provided based on the findings of the 2011 program:

Composting Site

- a) The total tonnage of organic waste received at the composting site in 2011 was 4,611 tonnes. The organic waste was mostly from the City of Guelph and Region of Waterloo.
- b) A total tonnage of 140 tonnes of finished compost was produced and shipped to a farmer in Atwood, Ontario, northwest of Guelph in 2011. A total of 9.28 tonnes residuals from the composting process were shipped to the Transfer Station and then the Green Lane Landfill site near London, Ontario.

- c) The total tonnage of wood waste ("clean wood") and amendment/mulch material received at the site in 2011 was about 85 tonnes and 152 tonnes, respectively. Wood waste was received mostly from the City of Guelph and Region of Waterloo. Amendment material was received from Growbark.
- d) There were six odour incidents reported to the Waste Resources Innovation Centre from 15 different complainants in 2011. These have been investigated by the City of Guelph and in six of the incidents they could not be traced back to the composting operation. Some changes to the humidifiers within the facility have been made to avoid future odour complaints. There are action plans in place to commission the facility.
- e) Compost samples indicate that all compost that has been shipped off of the site has passed the conditions for a Class A compost under the CCME Guidelines and the conditions within the C of A. Temperature monitoring logs of the tunnels at the composting facility show that pasteurisation at 55 degrees C was maintained for 72 hours, as required.
- f) The City is not aware of any non-compliance issues with the conditions of the C of A for 2011.

Operations

- a) The total tonnage of waste accepted by the site in 2011 was 89,023 tonnes. By the end of 2011, 84,511 tonnes were shipped off-site with 21,362 tonnes (25%) processed on-site through the Material Recovery (MRF) or composting facilities and 63,150 tonnes (75%) is shipped off-site to other destinations.
- b) Of the 63,150 tonnes of non-processed outgoing materials in 2011, 45,354 tonnes (54% of the outgoing materials) was sent to the Transfer station for disposal. 5,567 tonnes of material was sent to the Waste to Energy facility in Niagara Falls, New York. The remaining 12,229 tonnes of non-processed materials is marketable consisting of 6,301 tonnes brush, yard waste and leaves, 5,928 tonnes was other recyclable materials such as scrap metal, tires, electronics and clothing.
- c) In 2011, 21,362 tonnes of marketable processed material transferred off the site 17,316 tonnes (81%) was paper-based goods such as cardboard and newsprint, 1,260 tonnes (6%) was plastics and the remaining 2,786 tonnes (13%) was other recyclable materials such as aluminum, steel cans, glass, concrete and finished compost. As reflected in the volumes above, the majority of the marketable materials sold were paper products.
- d) The Emergency and Contingency Plan for the site were reviewed and the items pertinent to the C of A are summarized in this document.
- e) No remedial or mitigative actions were required at the WRIC Facility or the Transfer Station in 2011 based on findings from the monitoring program.

Groundwater Elevations and Flows

- a) Shallow groundwater flow beneath the majority of the site is in a northeasterly direction. To the west of the site, groundwater flows out of a bedrock high into the outwash beneath the site before being directed to the northeast. The 2008 drilling identified a bedrock high southeast of the site in the vicinity of 20a-08.
- b) The bedrock groundwater flow pattern is similar to the overlying shallow groundwater system. Groundwater flow is from west to east and east to west coming into the site area from both directions and ultimately to the north following the former paleo river valley (incised bedrock low) that trends to the north.

Leachate

- a) Historically, WRIC Monitoring results from SW3 was used the characterize leachate inputs. SW3 receives mostly runoff from the former compost pad. SW3 is no longer representative of compost leachate. In the past SW3 (or CL-1 leachate), showed elevated concentrations of conductivity, potassium, BOD, COD, TKN, ammonia, total phosphorus, chloride, sodium and iron. SW3 parameter concentrations are generally much lower than pre-2007 concentrations in the absence of compost runoff. Most indicator parameters were elevated at SW3 in 2011 compared to historic background surface water concentrations (East Pond). SW3 conductivity, alkalinity, chloride and sodium concentrations were highest in the spring (April, June) compared to the remainder of the year, possibly due to flushing of residual leachate impacts combined with road salt impacts. Parameter concentrations were within the range of historic concentrations at this location. Elevated concentrations may be related to residual leachate inputs in the clay-lined pond, which is expected to continue to flush out over time.
- b) SW3 was analyzed for organics in 2011. Toluene (5 μg/L), indole (80 μg/L), phenol (29 μg/L) and m-p cresol (61 μg/L) were detected in the August 2011 sample. Phenols and m-p cresol have been detected at this location in the past at concentrations of 1.3 μg/L and 4.5 μg/L in 2003. Toluene and indole have not historically been detected at SW3. It should be noted that occasional organic detections have also been noted in Detention Pond 1 (EPTS-01), which is considered representative of background. Significant organic concentrations would not be expected as composting at the site only took place briefly in 2011 after the August 2011 sampling event and there had previously been no composting over the past four years.

Groundwater

- a) Groundwater monitoring results indicate road salt effects at some up-gradient groundwater monitoring locations (5-96, 8-96, 18b-08, 19b-08, 20b-08). These are related to off-site winter road salting of the adjacent major roadways. Road salt impacts are detected in some on-site downgradient groundwater monitors (6b-96, 7-96, 13b-01, 15b-01, 17b-08). Monitors 5-96, 6b-96, 7-96, 17b-08 and 19b-08 exceeded ODWS for sodium and/or chloride in 2011 as a result of road salt impacts. There were no apparent leachate impacts observed in the groundwater at the site boundary.
- b) There were no exceedances of the nitrate ODWS in 2011. Historically, elevated nitrate concentrations were prevalent across the site at all locations prior to development of the site. Elevated nitrates are most likely a result of long-term agricultural land use in the area and are not a result of site operations.
- c) Exceedances of the iron ODWS occurred at many of the monitoring locations during the December 2011. These iron exceedances will be investigated further in future monitoring events. Aside from the sodium, chloride and iron exceedances discussed above, there were no other exceedances of the Ontario Drinking Water Standards in 2011 for the groundwater monitors sampled for the WRIC and Transfer Station monitoring programs.
- d) As the shallow outwash water quality is not impacted by site operations, no impacts to the deeper bedrock groundwater would be expected. No leachate impacts were detected in the bedrock monitors sampled in 2011.
- e) The 2011 organic sampling showed there were detections of DEHP, PCP, BBP, m- and p-xylene, bromodichloromethane, chloroform and acetone in a few of the monitors. However, based on the historic detections of occasional low levels of VOC throughout the site in both upgradient and downgradient monitors, most of the 2011 VOC detections are concluded to be a result of sampling or laboratory artefact. There are no sources of VOCs on the WRIC or Transfer station property as waste is handled within the covered buildings, truck boxes are covered when outside (preventing contact between the waste and precipitation) and no waste processing occurs on-site.

- f) No other organics were detected at any of the other groundwater monitors sampled during 2011.
- g) A Guideline B-7 assessment was completed for the new monitor nest 22-11, located along the western property boundary. B7 limits were exceeded by nitrate at 22b-11 and iron and nitrate at 22a-11. Historically, elevated nitrate concentrations were prevalent across the site at all locations prior to development of the site. Shallow background monitors 1b-91 and 6b-96 historically have also shown elevated nitrate concentrations in the early 1990s and late 1990s indicating that the elevated nitrates were present prior to the commencement of facility operations. As previously discussed, iron concentrations at some of the monitor locations were unusually high during the December 2011 monitoring event. Therefore, it is unknown if the iron concentrations from 22-11 reflect actual conditions at this location.

Surface Water Monitoring

- a) Monthly monitoring of the stormwater management pond in the northwest corner of the site was conducted, with samples collected at the culvert on the west side of the pond (TP1) on seven occasions and at the discharge at the north end of the pond (TP1 (out)) on eight occasions in 2011. SWM pond samples at both TP1 and at TP1 (out) exceeded the PWQO for zinc, iron, total phosphorus and phenols during one or more 2011 sampling events. The elevated total phosphorus is a result of agricultural land use and not a result of operations at the Transfer Station. Elevated zinc, total phosphorus and iron concentrations appear to be related to external factors since background surface water have also exceeded PWQO for these parameters. Metals are a common contaminant from roadway runoff. Elevated phosphorus is typical in rural and urbanized areas. There were no detections of organic compounds in either of the 2011 samples collected from the SWM pond in June/August.
- b) Of the two sets of samples collected in 2011 at EPTS-01 (the existing Transfer Station on-site surface water pond (East Pond)), the PWQO for zinc was exceeded during both events and for phenol during the December monitoring event. Historically, phenol has never exceeded PWQO at this location. Total phosphorus and iron have exceeded PWQO in the past but were within PWQO in 2011. Zinc has consistently exceeded PWQO in the past at this location. All the leachate indicator parameters concentrations were within background overburden ranges. Chloroform was detected during the June 2011 sampling event of the East Pond. Chloroform was previously detected in June 2009, June 2008, March and June of 2007, June 2004 and in June 2010 at EPTS-01 at low concentrations. Chloroform has also historically been detected at low levels at monitors 6a-96, 6b-96 and 11b-00, in both the overburden and bedrock with no elevated indicator parameter concentrations indicating that these occasional detections are not a result of activities on the site. The East Pond shows no indications of impacts as a result of site operations.
- c) The 2011 surface water quality at SW1 (Stormwater Detention Area 2) showed elevated phenol, chloride, sodium and potassium compared to background surface water quality at the East Pond (EPTS-01) during one or more of the six sampling events. 2011 SW1 parameter concentrations are within the range of historic concentrations at this location, except for June alkalinity, October phenol and June iron. The Provincial Water Quality Objectives (PWQO) were exceeded for total phosphorus during all six sampling events and two sampling events each for phenol and iron. The total phosphorus and iron PWQO have routinely been exceeded in the past at this location. The phenol PWQO has only been exceeded during two sampling events prior to 2011. Iron and total phosphorus PWQO have only rarely been exceeded at the background surface water station though phenols PWQO was slightly exceeded in the December 2011 background sample. Occasionally elevated parameter concentrations at SW1 are a result of road salt impacted runoff from the adjacent internal roadways and/or occasional stagnant water conditions in the pond.
- d) The SW 2 (Stormwater Detention Area 1) samples at the WRIC showed that of the indicator parameters, elevated concentrations of phenols, alkalinity, chloride, sodium, magnesium and potassium were reported in

2011 during one or more of the six sampling events. The 2011 conductivity, alkalinity, phenols, sodium and chloride showed higher concentrations than their historic maximum concentrations during one to two of the sampling events. Conductivity, ammonia, chloride and sodium all showed higher concentrations than their historic maximum concentrations. The spring (April to June) concentrations were higher than the October to December concentrations, likely due to seasonal influences. Total phosphorus exceeded the PWQO during all six monitoring events in 2011. Zinc and iron exceeded the PWQO on four occasions each during 2011. These parameters have historically routinely exceeded their PWQO. The phenol PWQO was exceeded twice in 2011. The phenol PWQO was historically only exceeded on three other occasions since 1997. It is noted that background bedrock monitors 5-96 and 8-96 have consistently shown elevated zinc concentrations indicating that high zinc is natural in the area.

e) Organic sampling of SW1 and SW2 was completed in June and August 2011. No organics were detected from the samples collected at SW1 and SW2 in 2011.

14. Recommendations

The following recommendations are provided for consideration:

- a) Records pertaining to details of the incoming and outgoing waste/materials, environmental and operational problems should continue to be kept up to date for the WRIC and the Transfer Station.
- b) The approved ground and surface water monitoring program should be continued for the Transfer Station during 2012 for the site with the inclusion of the new monitoring location 22-11 drilled during 2011. As previously recommended by the MOE, additional annual VOC sampling of monitors 5-96, 7-96, 9-96, 12b-00 and nitrate and nitrite analysis have been included in the monitoring program for the site. The monitoring program for both the sites is summarized on Table 12.
- c) Groundwater, surface water and leachate sampling should be continued for the WRIC in 2012 as originally outlined in the 1997 annual report and revised in 1999.
- d) All samples should be analyzed for the parameters listed in the table below.

Monitoring Parameter List

	Leachate Indicator	
Parameters	 Biological Oxygen Demand (BOD) Chemical Oxygen Demand (COD) Total Kjeldahl Nitrogen (TKN) Ammonia as Nitrogen (NH3-N) Total Phosphorus (Total P) Total Suspended Solids (TSS) for surface water and leachate. Total Sulphate (SO4) Phenols Nitrate (NO3) and Nitrite (NO2) 	 Chloride (CI) Sodium (Na) Calcium (Ca) Boron (B) Total Iron (Fe) Phosphorus (P) Zinc (Zn)
General Parameters	pHConductivityAlkalinity	Magnesium (Mg)Potassium (K)
Organics	• EPA 624,625 (ATG 16+17+18 & ATG 19+20)	

- e) During organic sampling events a trip blank and a field blank should be collected and submitted for QA/QC purposes.
- f) East Pond staff gauge measurements may be discontinued.
- g) The East Pond will be used as a background surface water station to water quality from the on-site surface water features. To effectively compare surface water samples, samples should be collected on the same day. It is recommended that the monitoring frequency of the East Pond be increased to monthly to coincide with those occasions when samples are collected from the on-site SWM ponds. If no samples are collected from the any of the SWM pond locations, no sample from the East Pond for that month is required.

City of Guelph Transfer Station

Table 12. Monitoring Program Summary City of Guelph WRIC

Groundwater Monitoring Locations and Sampling Frequency

Formation	Monitor L	_ocations	Sampling Frequency	Water Levels *			
Sandy Silt Till	2a-91	7-96	Semi Annually - Inorganics	Semi Annually (June,			
			(June, December)	December)			
Sandy	2b-91	9-96	Semi Annually - Inorganics	Semi Annually (June,			
Outwash	6b-96		(June, December)	December)			
Gravelly	11b-00	12b-00	Semi Annually - Inorganics	Semi Annually (June,			
Outwash			(June, December)	December)			
Dolostone	5-96	10-00	Semi Annually - Inorganics	Semi Annually (June,			
Bedrock	6a-96	11a-00	(June, December)	December)			
	8-96	12a-00					

Leachate Monitoring Location and Sampling Frequency

Monitor Locations	Sampling Frequency	Leachate Level Sampling
SW3 - Forbay (Southern end) of Detention Pond 1 (Scalehouse)	Semi Annually** - Inorganics Annually** - Organics	Monthly * - Discharge

Surface Water Monitoring Stations and Sampling Frequency

Monitor Locations	Sampling Frequency	SW Level Sampling
SW1 - Downstream	Monthly** - Inorganics	Monthly ** - Discharge
outflow of Detention Pond	Annually** - Organics	
2		
SW2 - Downstream	Monthly** - Inorganics	Monthly ** - Discharge
outflow of Detention Pond	Annually** - Organics	
1		

^{*} C of A requirements for Wet-Dry is semi-annual. Recommend quarterly water levels collected to compare to Waste Transfer Station locations, which have quarterly requirements.

Groundwater Monitoring Locations and Sampling Frequency

-		pg oquooy	
Formation	Monitor L	ocations.	Sampling Program
Gravelly	13b-01	18b-08	Semi Annually - Inorganics
Outwash	14b-01	19b-08	(June, December)
	15b-01	20b-08	Annually - Organics (June)
	16b-08	22b-11	
	17b-08		
Dolostone	13a-01	19a-08	Semi Annually - Inorganics
Bedrock	14a-01	20a-08	(June, December)
	15a-01	21a-08	Annually - Organics (June)
	16a-08	22a-11	
	17a-08	EPTS-01	
	18a-08		

Groundwater Levels

Formation	Monitor L	ocations	Sampling Program					
Gravelly	13b-01	18b-08	Quarterly (June,					
Outwash	14b-01	19b-08	December)					
	15b-01	20b-08						
	16b-08	22b-11	1					
	17b-08							
Dolostone	13a-01	18a-08	Quarterly (June,					
Bedrock	14a-01	19a-08	December)					
	15a-01	20a-08						
	16a-08	21a-08						
	17a-08	22a-11						

Surface Water Monitoring Stations and Sampling Frequency

Monitor Locations	Sampling Program
TP1	Monthly*** - Inorganics
	Annually*** - Organics
TP (out)	Monthly*** - Inorganics
	Annually*** - Organics
East Pond (EPTS-01)	Quarterly*** - Inorganics
	Annually*** - Organics

^{***} After a rain event or if no rain, at end of sampling period

^{**} After a rain event or if no rain, at end of sampling period

15. References

AECOM Canada Ltd., 2009:

2008 Annual Report – Guelph Wet-Dry Recycling Centre (MOE Site No. A170128). Prepared for the City of Guelph, March 2009. AECOM Project 111409.

AECOM Canada Ltd., 2010:

2009 Annual Report – Solid Waste Transfer Station, #9241-5DTRD9 & Wet-Dry Recycling Centre, C of A (Waste Disposal Site) No. A170128. Prepared for the City of Guelph, March 2010. AECOM Project 60145723.

AECOM Canada Ltd., 2011:

2010 Annual Report – Solid Waste Transfer Station, #9241-5DTRD9 & Wet-Dry Recycling Centre, C of A (Waste Disposal Site) No. A170128. Prepared for the City of Guelph, March 2011. AECOM Project 60191193.

Gartner Lee Limited, 2002:

City of Guelph, Solid Waste Transfer Station Design and Operations Report. Prepared for the City of Guelph, January 2002. GLL Project 21-141.

Gartner Lee Limited, 2003:

2002 Annual Report Eastview Road Landfill Site. Prepared for the City of Guelph, June 2003. GLL 23-131.

Gartner Lee Limited, 2004:

2003 Groundwater, Surface Water and Leachate Annual Monitoring Requirements. Prepared for the City of Guelph, March 2004. GLL Project 40-133.

Gartner Lee Limited, 2005:

2004 Groundwater, Surface Water and Leachate Annual Monitoring Requirements. Prepared for the City of Guelph, March 2005. GLL Project 50-133.

Gartner Lee Limited, 2006:

2005 Groundwater, Surface Water and Leachate Annual Monitoring Requirements. Prepared for the City of Guelph, March 2006. GLL Project 60-133.

Gartner Lee Limited, 2007:

2006 Annual Report – Guelph Wet-Dry Recycling Centre (MOE Site No. A170128). Prepared for the City of Guelph, March 2007. GLL Project 70-133.

Gartner Lee Limited, 2008:

2007 Annual Report – Guelph Wet-Dry Recycling Centre (MOE Site No. A170128). Prepared for the City of Guelph, March 2008. GLL Project 80-133.

Ministry of the Environment and Energy (MOEE), 1994a:

Procedure B-7-1 "Determination of Contaminant Limits and Attenuation Zones", MOEE, 1994.

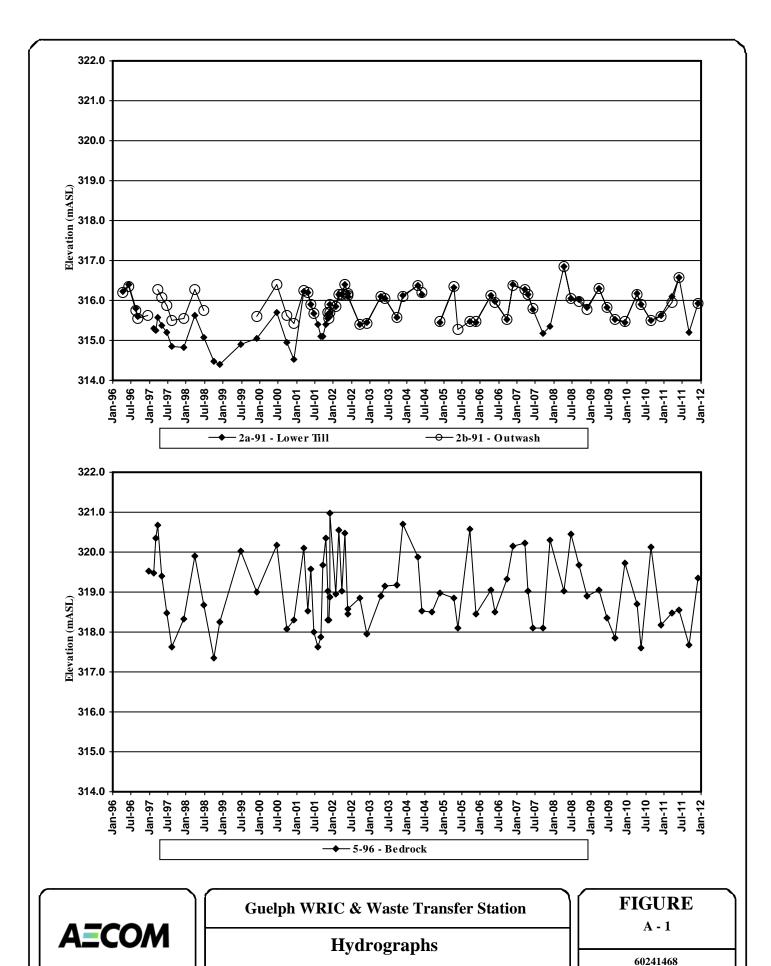
Ministry of the Environment and Energy (MOEE), 1994b:

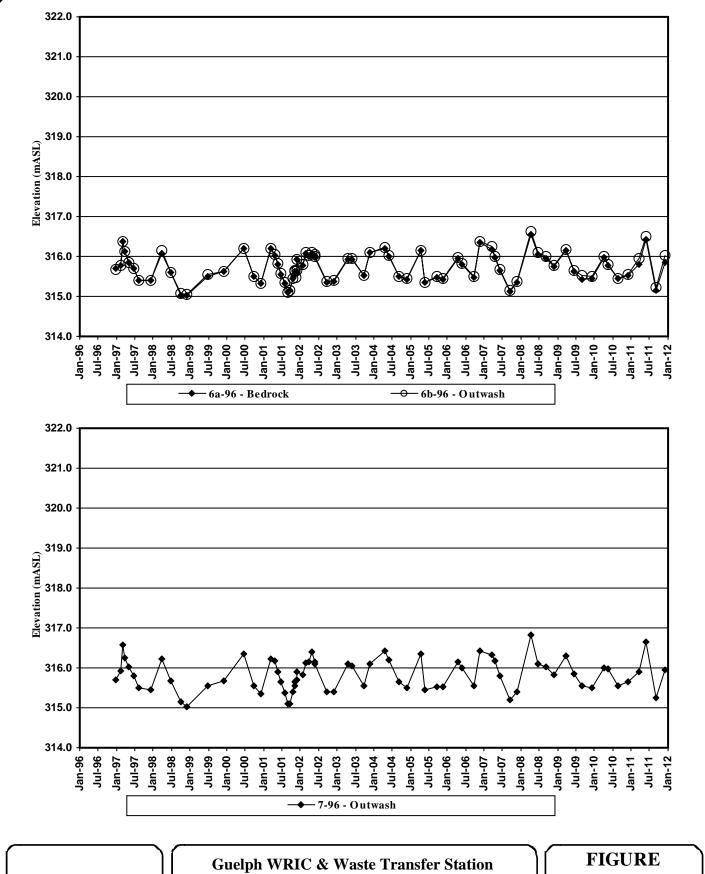
Guideline B-7 "Incorporation of the Reasonable Use Concept into More Groundwater Management Activities", MOEE, 1994.

Appendix A

Groundwater Elevations, Hydrographs and 2011 Borehole Logs

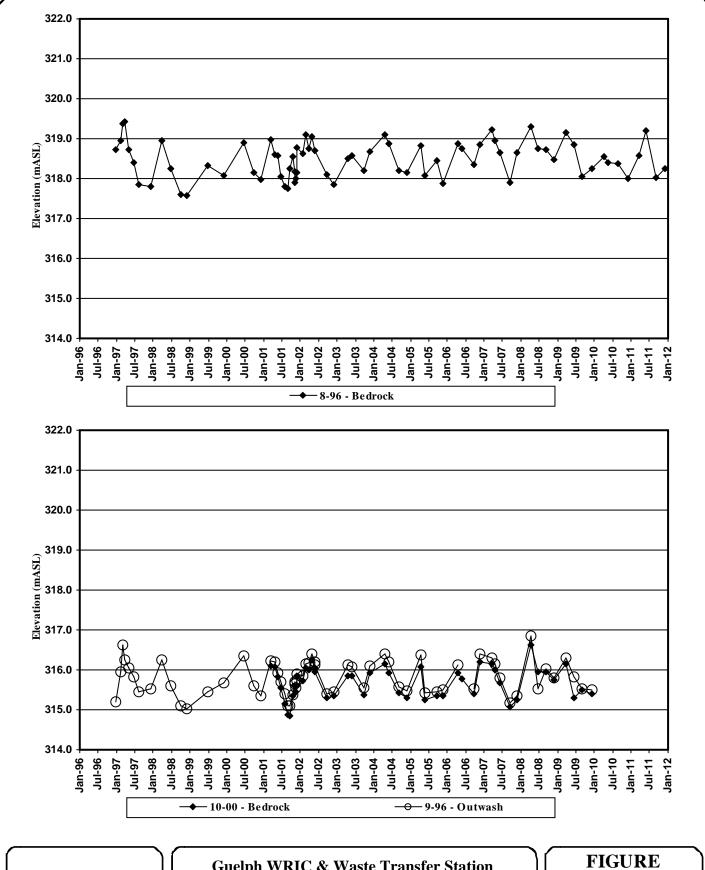
Date	2a-91	2b-91	5-96	6a-96	6b-96	7-96	8-96	9-96	10-00	11a-00	11b-00	12a-00	12b-00	13a-01	13b-01	14a-01	14b-01
4-Apr-91	316.00	316.02															
14-Apr-91	315.88	315.89															
12-May-91	315.67	315.59															
17-May-91	315.60	315.58															
17-May-94	316.32	316.34															
5-May-95	315.96	316.00															
13-Apr-96	316.22	316.20															
13-Jun-96	316.41	316.34															
21-Aug-96	315.81	315.75															
9-Sep-96	315.59	315.55	Ī							Ī	Ī				Ī		
11-Dec-96		315.62															
20-Dec-96			319.53	315.70	315.67	315.70	318.72	315.20									
11-Feb-97	315.31		319.48	315.77	315.78	315.92	318.95	315.96									
3-Mar-97	315.26		320.34	316.37	316.38	316.57	319.37	316.62									
27-Mar-97	315.58	316.27	320.68	316.13	316.13	316.24	319.42	316.24									
6-May-97	315.38	316.08	319.39	315.86	315.86	316.02	318.72	316.04									
23-Jun-97	315.20	315.87	318.47	315.69	315.70	315.81	318.40	315.83									
8-Aug-97	314.86	315.50	317.62	315.39	315.41	315.49	317.85	315.45									
9-Dec-97	314.82	315.55	318.32	315.41	315.41	315.44	317.81	315.52									
31-Mar-98	315.62	316.28	319.90	316.08	316.15	316.22	318.94	316.26									
24-Jun-98	315.07	315.74	318.67	315.60	315.61	315.68	318.26	315.61									
29-Sep-98	314.47	Dry	317.34	315.03	315.08	315.15	317.59	315.11									
3-Dec-98	314.40	Dry	318.24	315.03	315.04	315.02	317.57	315.03									
29-Jun-99	314.91	Dry	320.03	315.51	315.55	315.54	318.33	315.46									
9-Dec-99	315.04	315.60	318.99	315.62	315.63	315.67	318.07	315.68									
21-Jun-00	315.69	316.40	320.17	316.21	316.21	316.34	318.89	316.36									
28-Sep-00	314.95	315.62	318.08	315.51	315.51	315.56	318.16	315.59									
6-Dec-00	314.52	315.43	318.29	315.32	315.32	315.34	317.98	315.35									
22-Mar-01	316.23	316.25	320.11	316.19				316.23				316.30	316.30				
26-Apr-01	316.19	316.19	318.53	316.02	316.04	316.17	318.59	316.20	316.07		316.15	316.26	316.26				
28-May-01	315.91	315.91	319.57	315.80	315.83	315.90	318.57	315.92	315.83	316.06	315.90	316.03	316.07				
27-Jun-01	315.68	315.68	318.01	315.56	315.58	315.66	318.04	315.69	315.56	315.85	315.65	315.82	315.88				
31-Jul-01	315.39	NR	317.62	315.32	315.34	315.38	317.80	315.39	315.14	315.34	315.38	315.53	315.58				
30-Aug-01	315.11	NR	317.87	315.09	315.10	315.10	317.76	315.11	314.87	315.11	315.11	315.26	315.31				
28-Sep-01	315.11	NR	319.68	315.14	315.16	315.11	318.26	315.09	314.85	315.08	315.13	315.35	315.48				
19-Oct-01	315.40	NR	320.35	315.45	315.46	315.40	318.54	315.38	315.35	315.50	315.43	315.61	315.71	215.74	215.64	215.74	215.71
8-Nov-01	315.66	NR	319.03	315.62	315.63	315.65	318.17	315.66	315.61	315.85	315.66	215 70	215 00	315.74 315.89	315.64	315.74	315.71
16-Nov-01 21-Nov-01	315.56	315.71	318.31	315.63	315.65	315.55	317.90	315.71 315.56	315.59	315.82	315.69	315.78	315.80		315.76	315.86	315.83
21-Nov-01 27-Nov-01	315.57	315.56	318.30	315.61	315.48	315.68	317.99	315.56	315.45	315.66	315.68	315.79	315.80	315.89	315.75	315.88	315.82 315.72
4-Dec-01	315.71 315.90	315.71 315.89	318.88 320.97	315.63 315.92	315.65 315.93	315.70 315.90	318.14 318.78	315.72	315.61 315.85	315.84 316.00	315.70 315.92	315.67 316.00	315.70 316.02	315.92 316.17	315.79 316.00	315.76 316.03	315.72
28-Jan-02	315.85	315.84	318.94	315.77	315.79	315.83	318.63	315.85	315.72	315.98	315.83	315.97	316.02	316.17	315.93	316.03	315.99
28-Feb-02	316.14	316.14	320.56	316.08	316.09	316.12	319.09	316.15	316.04	315.98	316.13	316.14	316.00	316.22	315.93	316.04	316.13
28-Mar-02	316.14	316.16			316.02	316.14	318.76	316.17	315.99	316.19	316.13	316.25	316.26	316.27	315.92	316.27	316.05
20-1 v 1a1-02	510.10	510.10	319.02	510.00	310.02	510.14	310.70	510.17	313.77	310.19	510.12	210.23	310.20	310.27	313.71	310.27	510.05


Date	2a-91	2b-91	5-96	6a-96	6b-96	7-96	8-96	9-96	10-00	11a-00	11b-00	12a-00	12b-00	13a-01	13b-01	14a-01	14b-01
10-Apr-02														316.27	316.00	316.26	316.05
29-Apr-02	316.40	316.41	320.48	316.08	316.11	316.39	319.05	316.41	316.24	316.43	316.37	316.39	316.43	316.36	315.96	316.37	316.04
28-May-02	316.18	316.18	318.46	316.03	316.05	316.16	318.70	316.20	316.05	316.07	316.33	316.25	316.25	316.35	315.96	316.35	316.03
4-Jun-02	316.11	316.12	318.57	315.98	315.99	316.10	318.69	316.13	315.95	316.19	316.09	316.20	316.21	316.28	315.93	316.26	315.99
30-Sep-02	315.41	315.40	318.85	315.36	315.38	315.40	318.10	315.41	315.30	315.64	315.40	315.56	315.64	315.75	315.70	315.74	315.81
3-Dec-02	315.44	315.43	317.96	315.37	315.39	315.41	317.84	315.44	315.34	315.67	315.43	315.54	315.59	315.76	315.75	315.76	315.87
25-Apr-03	316.10	316.11	318.90	315.92	315.94	316.09	318.49	316.13	315.85	316.04	316.07	316.20	316.21	316.03	N/A	316.05	315.39
2-Jun-03	316.06	316.05	319.15	315.92	315.94	316.05	318.57	316.08	315.86	316.18	316.03	316.14	316.15	316.23	316.01	316.24	316.11
30-Sep-03	315.57	315.57	319.18	315.52	315.53	315.56	318.20	315.56	315.38	315.74	315.57	N/A	N/A	315.85	315.85	315.84	315.97
1-Dec-03	316.12	316.11	320.70	316.09	316.11	316.11	318.67	316.11	315.93	316.15	316.12	N/A	N/A	316.34	316.16	316.33	316.25
27-Apr-04	316.38	316.38	319.88	316.20	316.23	316.42	319.10	316.39	316.14	316.45	316.34	N/A	N/A	316.52	316.19	316.51	316.27
8-Jun-04	316.16	316.20	318.53	316.00	316.02	316.20	318.88	316.20	315.93	316.32	316.15	316.28	316.27	316.33	316.08	316.34	316.18
14-Sep-04	N/A	N/A	318.50	315.49	315.51	315.66	318.19	315.57	315.42	315.85	315.63	315.67	315.72	315.88	315.82	315.89	315.94
30-Nov-04	315.46	315.47	318.97	315.42	315.44	315.50	318.14	315.47	315.29	315.61	315.46	315.63	315.74	315.72	315.54	315.70	315.52
18-Apr-05	316.33	316.35	318.85	316.14	316.16	316.36	318.83	316.37	316.08	316.32	316.29	316.44	316.44	316.40	315.85	316.38	315.82
1-Jun-05	N/A	315.28	318.11	315.34	315.35	315.44	318.08	315.43	315.26	315.57	315.39	315.56	315.63	315.67	315.44	315.66	315.44
30-Sep-05	315.48	315.47	320.58	315.48	315.51	315.52	318.45	315.46	315.36	315.66	315.50	315.69	315.83	315.77	315.63	315.74	315.62
28-Nov-05	315.44	315.48	318.45	315.42	315.44	315.52	317.88	315.49	315.34	315.72	315.49	315.65	315.73	315.77	315.54	315.74	315.54
20-Apr-06	316.12	316.12	319.06	315.96	315.98	316.14	318.87	316.13	315.93	316.23	316.08	316.23	316.24	316.27	315.77	316.26	315.75
1-Jun-06	315.98	315.96	318.51	315.81	315.82	315.99	318.76	N/A	315.77	316.02	315.93	316.11	316.13	316.11	315.64	315.58	315.09
27-Sep-06	315.53	315.52	319.32	315.47	315.49	315.55	318.35	315.53	315.41	315.72	315.51	315.68	315.78	315.83	315.58	315.94	315.48
4-Dec-06	316.39	316.38	320.16	316.35	316.37	316.43	318.84	316.40	316.20	316.20	316.38	316.52	316.49	316.58	316.06	316.55	316.01
30-Mar-07	316.28	316.28	320.23	316.17	316.25	316.32	319.22	316.30	316.15	316.40	316.26	316.44	316.44	316.52	315.90	316.49	315.87
26-Apr-07 14-Jun-07	316.14 315.77	316.15 315.79	319.03 318.11	315.98 315.66	316.01 315.67	316.17 315.81	318.95 318.66	316.16 315.81	316.00 315.68	316.22 315.93	316.10 315.75	316.27 315.92	316.28 315.95	316.32 316.03	315.80 315.78	316.31 316.02	315.80 315.88
27-Sep-07	315.18	Dry	318.11	315.12	315.14	315.21	317.90	315.18	315.08	315.39	315.18	315.30	315.33	315.51	315.78	315.49	315.55
5-Dec-07	315.36	Dry	320.31	315.36	315.37	315.40	318.65	315.35	315.26	315.58	315.37	315.57	315.72	315.69	315.65	315.68	315.70
25-Apr-08	316.84	316.84	319.02	316.54	316.63	316.82	319.31	316.86	316.62	316.86	316.76	316.91	316.87	316.98	316.16	316.96	316.12
25-Jun-08	316.05	316.04	320.44	316.05	316.10	316.10	318.74	315.53	315.94	316.28	316.07	316.19	316.27	316.41	315.89	316.38	315.92
18-Sep-08	316.03	315.98	319.68	315.95	316.01	316.03	318.72	316.03	315.94	316.24	315.98	316.09	316.13	316.37	315.81	316.36	315.82
9-Dec-08	315.83	315.78	318.91	315.75	315.77	315.82	318.47	315.80	315.76	316.04	315.78	315.89	315.96	316.22	315.70	316.19	315.70
2-Apr-09	316.29	316.29	319.06	316.14	316.18	316.31	319.14	316.31	316.16	316.43	316.24	316.41	316.40	316.56	316.86	316.55	315.84
24-Jun-09	315.83	315.83	318.36	315.63	315.66	315.85	318.85	315.83	315.31	315.38	315.79	315.98	316.01	315.18	315.54	315.22	315.56
10-Sep-09	315.53	315.52	317.84	315.42	315.52	315.56	318.05	315.53	315.50	315.82	315.51	315.62	315.67	316.00	damaged	315.98	315.51
15-Dec-09	315.45	315.48	319.73	315.44	315.49	315.50	318.25	315.51	315.40	315.76	315.48	315.63	315.75	315.91	314.55	315.86	315.57
22-Apr-10	316.17	316.16	318.71	315.98	316.01	316.00	318.54	N/A	N/A	316.30	316.11	316.27	316.26	316.41	315.73	316.38	315.76
1-Jun-10	315.91	315.91	317.59	315.78	315.80	315.97	318.40	N/A	N/A	316.08	315.88	315.97	316.01	316.21	315.65	315.77	315.67
1-Sep-10	315.49	315.50	320.13	315.44	315.44	315.54	318.37	N/A	N/A	315.74	315.50	315.61	315.73	315.86	315.56	315.83	315.60
16-Dec-10	315.62	315.61	318.17	315.53	315.55	315.66	318.00	N/A	N/A	315.85	315.59	316.50	315.77	315.98	315.53	315.95	315.53
5-Apr-11	316.11	315.95	318.48	315.79	315.96	315.89	318.58	N/A	N/A	316.38	316.16	316.42	316.21	316.72	315.80	316.45	315.81
14-Jun-11	316.57	316.58	318.54	316.42	316.51	316.65	319.19	N/A	N/A	316.58	316.58	316.69	316.67	316.61	315.89	316.56	315.91
16-Sep-11	315.20		317.67	315.14	315.22	315.24	318.03	N/A	N/A	315.18	315.20	315.51	315.61	314.45	315.26	315.18	315.31
13-Dec-11	315.93	315.93	319.36	315.84	316.02	315.95	318.24	N/A	N/A	316.07	315.90	316.09	316.22	316.17	315.77	316.14	315.80


Date	15a-01	15b-01	16a-08	16b-08	17a-08	17b-08	18a-08	18b-08	19a-08	19b-08	20a-08	20b-08	21a-08
4-Apr-91													
14-Apr-91													
12-May-91													
17-May-91													
17-May-94													
5-May-95													
13-Apr-96													
13-Jun-96													
21-Aug-96													
9-Sep-96													
11-Dec-96													
20-Dec-96													
11-Feb-97													
3-Mar-97													
27-Mar-97													
6-May-97													
23-Jun-97													
8-Aug-97													
9-Dec-97													
31-Mar-98													
24-Jun-98													
29-Sep-98													
3-Dec-98													
29-Jun-99													
9-Dec-99													
21-Jun-00													
28-Sep-00													
6-Dec-00													
22-Mar-01													
26-Apr-01													
28-May-01													
27-Jun-01													
31-Jul-01													
30-Aug-01 28-Sep-01													
19-Oct-01													
8-Nov-01	315.70	315.95											
16-Nov-01	315.84	316.06											
21-Nov-01	315.84	316.02											
27-Nov-01	315.72	315.86											
4-Dec-01	316.11	316.30											
28-Jan-02	316.02	316.10											
28-Feb-02	316.32	316.47											
28-Mar-02	316.23	316.34											

Date	15a-01	15b-01	16a-08	16b-08	17a-08	17b-08	18a-08	18b-08	19a-08	19b-08	20a-08	20b-08	21a-08
10-Apr-02	316.24	316.31											
29-Apr-02	316.33	316.35											
28-May-02	316.30	316.34											
4-Jun-02	316.24	316.27											
30-Sep-02	315.69	315.75											
3-Dec-02	315.71	315.86											
25-Apr-03	316.01	316.31											
2-Jun-03	316.19	316.35											
30-Sep-03	315.80	315.99											
1-Dec-03	316.29	316.56											
27-Apr-04	316.48	316.56											
8-Jun-04	316.33	316.43											
14-Sep-04	315.83	316.13											
30-Nov-04	315.67	315.74											
18-Apr-05	316.36	316.34											
1-Jun-05	315.62	315.59											
30-Sep-05	315.70	315.66											
28-Nov-05	315.72	315.66											
20-Apr-06	316.23	316.17											
1-Jun-06	315.54	316.00											
27-Sep-06	315.77	315.72											
4-Dec-06	316.54	316.48											
30-Mar-07	316.48	316.37											
26-Apr-07	316.27	316.19											
14-Jun-07	315.96	315.99											
27-Sep-07	315.45	315.52											
5-Dec-07	315.65	315.72											
25-Apr-08	316.92	316.77	316.30	316.09	316.33	316.62	317.72	317.07	316.19	316.89	318.01	316.22	
25-Jun-08	316.35	316.12	316.00	315.95	316.18	316.02	318.17	316.21	316.31	316.03	318.01	316.23	
18-Sep-08	316.31	316.16	316.01	315.78	316.05	315.95	317.03	316.22	316.18	316.02	318.01	316.27	316.23
9-Dec-08	316.16	316.00	315.88	315.69	315.83	315.79	316.98	316.21	315.95	315.98	318.01	316.25	315.96
2-Apr-09	316.51	316.34	316.05	315.82	316.15	316.17	317.42	317.56	316.43	316.36	318.01	316.20	316.64
24-Jun-09	315.28	315.86	315.40	315.55	314.82	315.67	316.79	316.21	315.62	316.03	317.59	316.14	316.17
10-Sep-09	315.92	315.73	315.63	315.50	315.62	315.49	316.57	316.21	315.88	315.78	317.64	316.10	315.75
15-Dec-09	315.83	315.76	315.61	315.56	315.54	315.46	316.59	316.20	315.80	315.53	318.01	316.22	315.70
22-Apr-10	316.35	316.23	315.13	315.71	316.05	316.07	317.40	316.54	316.36	316.24	318.01	316.16	316.48
1-Jun-10	316.15	316.10	315.77	315.65	315.88	315.84	317.00	316.22	316.11	315.98	318.01	316.15	316.15
1-Sep-10	315.80	315.77	315.66	315.56	315.57	315.51	317.00	316.20	315.79	315.56	318.01	316.17	315.75
16-Dec-10	315.92	315.81	315.64	315.51	315.69	315.58	317.02	316.22	315.87	315.81	318.01	316.14	315.73
5-Apr-11	316.53	316.34	315.93	315.88	316.14	316.20	317.37	316.67	316.42	316.40	318.01	316.18	316.52
14-Jun-11	316.63	316.63	315.96	315.81	316.25	316.40	316.99	318.05	316.73	316.66	318.01	316.16	317.91
16-Sep-11	315.19	315.42	315.29	315.32	315.09	315.22	316.19	316.19	315.13	315.28	317.77	316.07	315.52
13-Dec-11	316.17	316.22	315.90	315.77	315.93	315.96	316.06	316.55	315.15	316.03	318.01	316.31	316.12

9 Rpt Hydrographs

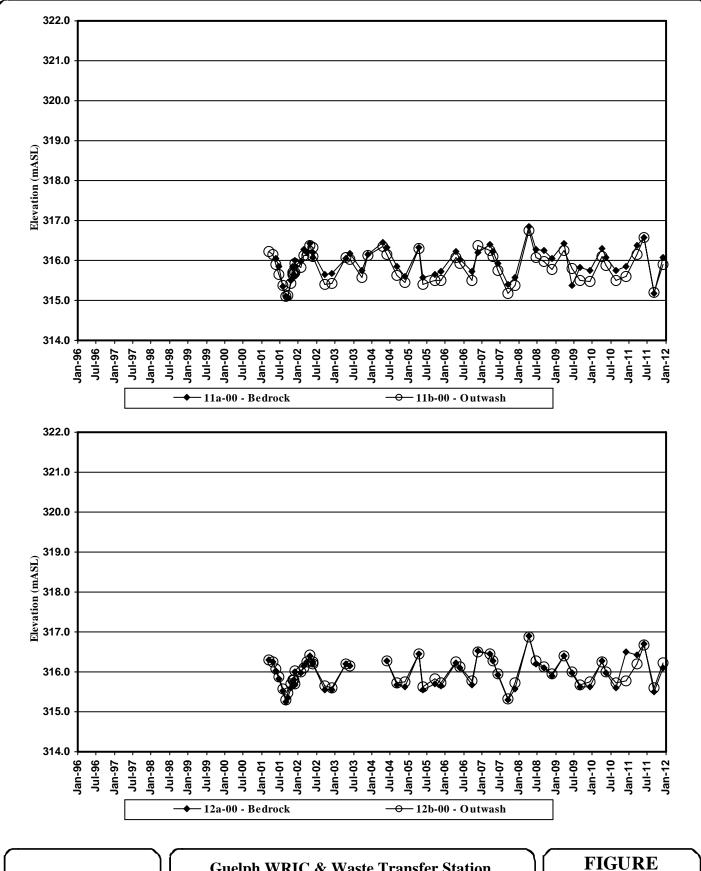


Hydrographs

A - 2

60241468

9 Rpt Hydrographs

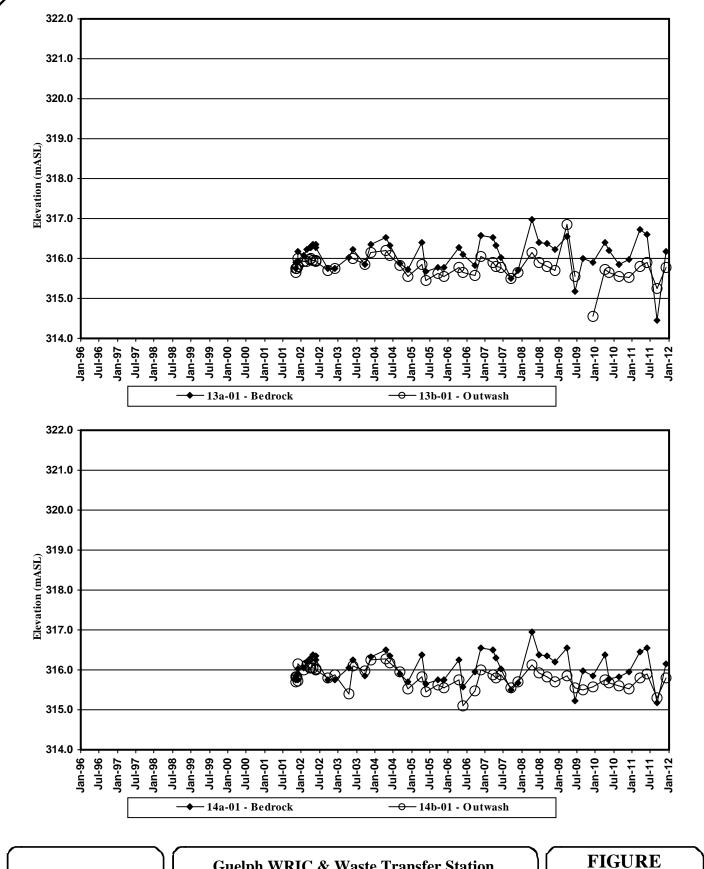

Guelph WRIC & Waste Transfer Station

Hydrographs

A - 3

60241468

9 Rpt Hydrographs

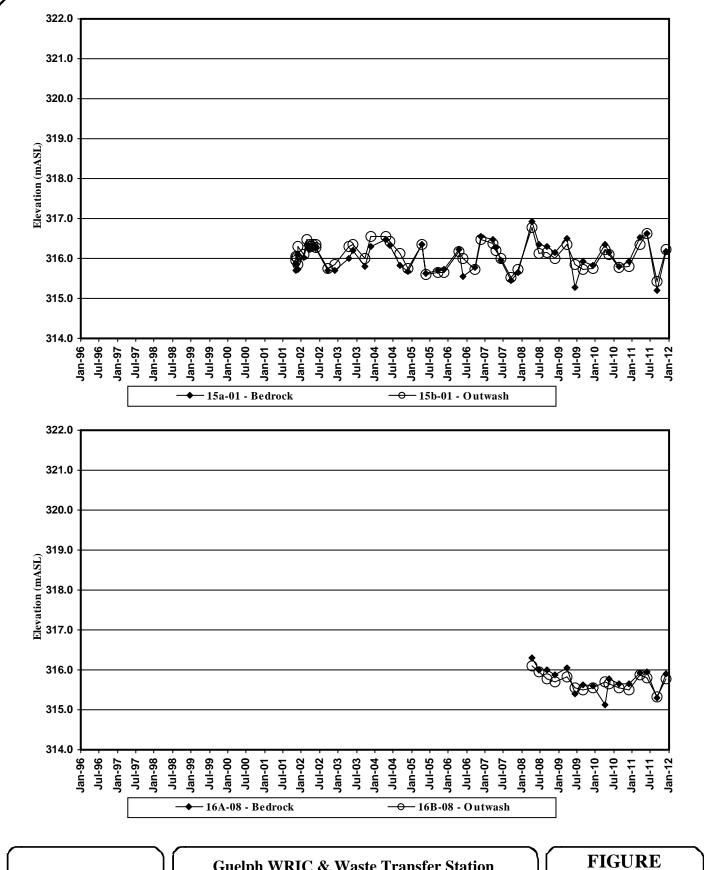

AECOM

Guelph WRIC & Waste Transfer Station

Hydrographs

A - 4

60241468

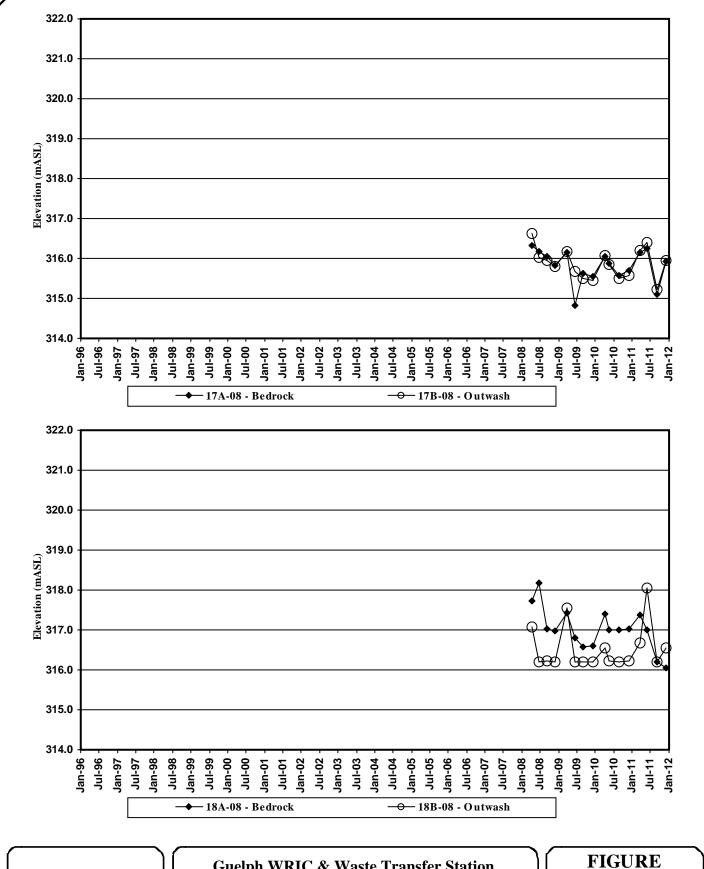


Guelph WRIC & Waste Transfer Station

Hydrographs

A - 5

60241468

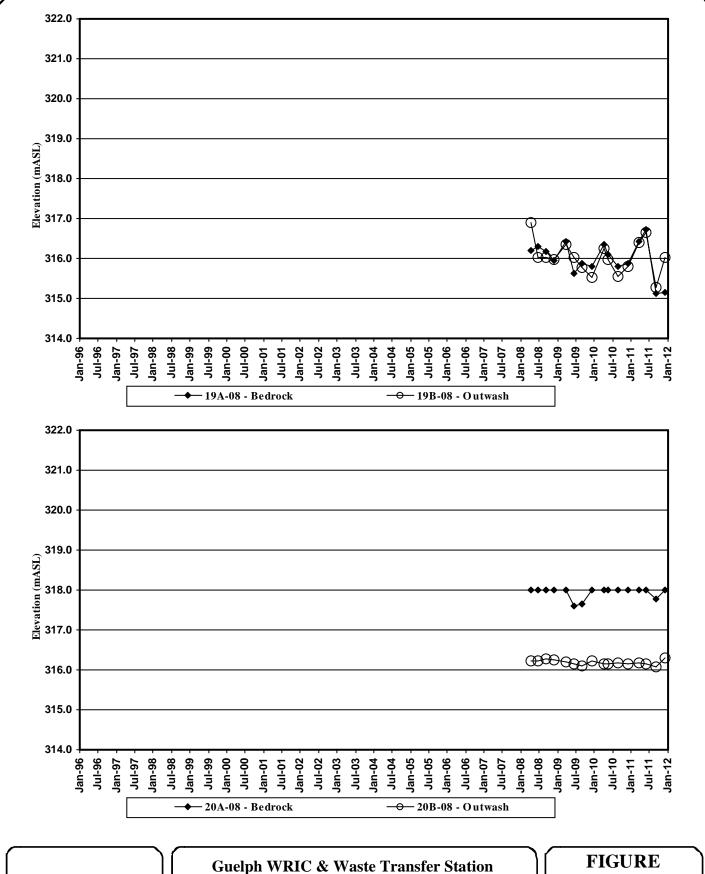

AECOM

Guelph WRIC & Waste Transfer Station

Hydrographs

A - 6

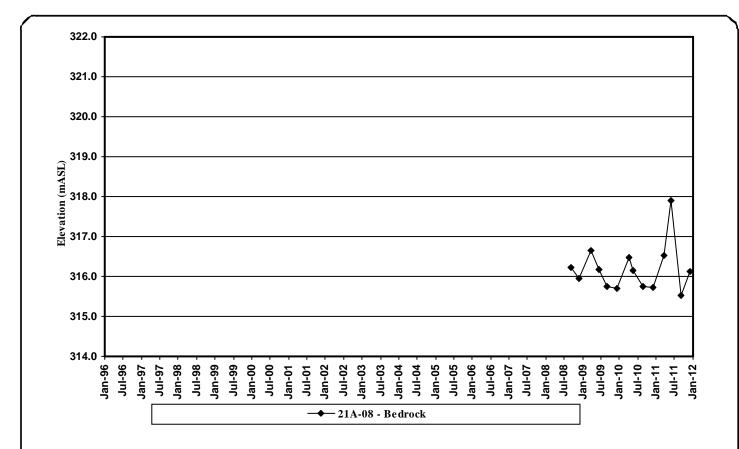
60241468


AECOM

Guelph WRIC & Waste Transfer Station

Hydrographs

A - 7


60241468

Hydrographs

A - 8

60241468

Guelph WRIC & Waste Transfer Station

Hydrographs

FIGURE

A - 9

60241468

100 O	ntar	iO Minist	ry of vironment		Well T	ag No. (Place	Sticker a	nd/or Print Bel		nulation	903 O		= = = =:	Record
Measurem	ents re	corded in:	/letric □	Imperial	A44	3313						Page		of
The section of the Control of the Co		nformation											1	1
First Name	1		ast Name / (tion			E-mail Ad	ldress					Constructed ell Owner
Mailing Add	dress (S	treet Number/Nar	CITY OF GL ne)	JELPH		Municipality		Province	Posta	al Code		Telephone		
AND RESIDENCE TO SERVICE TO SERVI	DEN S	TREET				GUELPH		ON	N	1H3A1				
Well Loca Address of		cation (Street Nur	mber/Name)			Township			Lot			Concession	n	
	OP DRI					CITY OF G			4,5	i		1 DIV C		
County/Dis	strict/Mu NGTON					City/Town/Villa GUELPH	ige				Onta Onta		Posta	Code
		Zone Easting	ı No	orthing		Municipal Plan	and Suble	ot Number			Other	4110		
NAD	-	17 56470		4822		•								
General C		Bedrock Materia Most Comm		nment S		ord (see instruction in the materials	tions on the	e back of this forn	n) General Des	crintion				oth (m/ft)
And the last transfer		0.0000000000000000000000000000000000000	ion material			or materiale				oription			From	То
BROW		TOPSOIL											0	1
BRN R		CLAY			GRAVEL								1	6
BRNR		GRAVEL			SILT								6	22
GREY		CLAY			STONES								22	
BROW		LIMESTONE L	EDGE										26	28
GREY		CLAY			STONES	/ / 45/2005							28	56
BLACK		LIMESTONE			SOFT CLA	Y LAYERS							56	59
BLACK		SOFT LIMEST	ONE										59	73
GREY		LIMESTONE	Annular	Snaas					Pagulte	o 6 \Mo	II Vial	d Testing	73	80
Depth Se		t)	Type of Sea	lant Used	d	Volume I			ell yield, water w		Dra	aw Down	_	ecovery
From	То		(Material an	d Type)		(m³/f	ft ³)	☐ Clear and ☐ Other, sp			Time (min)	Water Leve (m/ft)	Time (min)	Water Level (m/ft)
0	64	BENTONIT	E SLURRY						continued, give	reason:	Static Level	37		
								NOT TES	TED		1		1	Ti Ti
								Pump intake	set at (m/ft)		2		2	
Meth	hod of	Construction			Well U	se		Pumping rate	(I/min / GPM)		3		3	
☐ Cable To		☐ Diamond	Pub		Comm Munici	=	Not used Dewatering	Duration of pu	umping		4		4	
Rotary (F		☐ Driving	Live	estock	☐ Test H	ole	Monitoring	hrs +		- ((G)	5		5	
☐ Boring ☐ Air percu	ussion	Digging	☐ Irrig		Coolin	g & Air Condition	ning	Final water lev	el end of pumpi	ng (m/tt)	10		10	
Other, sp	pecify			ner, specit	ý			If flowing give	rate (I/min / GP	M)	15		15	
Inside	T	Construction Ro	ecord - Cas Wall		pth (m/ft)	Status o		Recommende	ed pump depth	(m/ft)	20		20	
Diameter (cm/in)	(Galva	anized, Fibreglass, rete, Plastic, Steel)	Thickness (cm/in)	From		Replacer	ment Well	recommende	sa pamp depur	(mine)	25		25	
			, , , , , , , , , , , , , , , , , , , ,	.0	CA	☐ Test Hole		Recommende (I/min / GPM)	ed pump rate		30		30	
6		EEL	.188	+2	64	Dewateri	ng Well	The state of the s			40		40	
6	OP	EN HOLE		64	80	Observati Monitoring		Well production	on (I/min / GPM)		50		50	
						Alteration (Construc		Disinfected?						
						Abandon Insufficie	ed, nt Supply	Yes	14		60		60	
Outside		Construction R	ecord - Scre		epth (m/ft)	Abandon Water Qu		Please provide	e a map below f	p of We			back.	
Diameter (cm/in)	(Plastic	Material , Galvanized, Steel)	Slot No.	From		Abandon specify		N						
						Specify		1						
						Other, sp	pecify							
	S to Visita	Water Det	taile			Hole Diamete	or	Dur	slop Or.		1			
Water four	nd at De	pth Kind of Wate		Untest	ed De	pth (m/ft)	Diameter		Nop Or.				1	
		Gas Other, spe			From	To	(cm/in)	-	40	J m			10	
		pth Kind of Wate Gas Other, spe	_	Untest		64	8.75	-		100-	-		12	
		pth Kind of Wate		Untest	ed 64	80	6.25	-					100	
(n	n/ft) 🗌 (Gas Other, spe									1		watson Red.	
Business N	lame of	Well Contractor Well Contractor	or and Well	Technic		ation Vell Contractor's L	icence No.						1.	
	opper L					2644								
Business A	ddress	(Street Number/Na	ame)		N	lunicipality		Comments:	0	14.				
RR#7 Province		Postal Code	Business	E-mail A	Address	St. Marys		Wet (dry faci	A				
		NAX1C9						Well owner's information	Date Package	Delivere	d		stry Us	e Only
Bus. Telepho	one No.	(inc. area code) Na	ame of Weil	ecfinicia	h (Last Name	e, First Name)		package delivered	YYYY	MM	DD	Audit No.	1/1	0496
Well 5epg	7a1786	poce No. Signature	de d	Dallal	66 ntractor	ate Submitted	, I -	Yes	Date Work Co	mpleted			141	3430
2323			THE)	12/5/201		No No	Y 11/18/	2011	DD	Received		
0506E (2007/	/12) ©	Queen's Printer for Ont	tario, 2007			Ministry	y's Copy							

Measurem	ntar			vironment	Imperial			Plac	ce Sticker a	and/or Prir	nt Belo	ow)	Regulation	n 903	Ontario		0.7071 (74)	Recol	
Well Own						ATT	5314			20342 1799						3	1	1	
First Name		morn		ast Name /	Organizatio	on		ll en		E-m	nail Ad	dress					Well	Construct	ted
				CITY OF G	UELPH													ell Owner	
Mailing Add	dress (S	treet N	lumber/Nar	me)			Municipal	lity		Prov	vince		Postal Code	;	Telepho	ne N	o. (inc.	area code	e)
1 CAR	DEN S	TREE	Γ				GUEL	.PH		(ON		N1H3A1						
Well Loca	SECTION OF THE																		
Address of DUNLO			(Street Nui	mber/Name)		Township CITY (GUELPH				Lot		Conces	sion			
County/Dis			ity				City/Town							Provi	nce		Poeta	Code	_
WELLI			ity				GUEL		age					100	tario			Code	ı
UTM Coordi	inates 2	Zone ,	Easting	, N	orthing		Municipal	l Pla	n and Subl	ot Numbe	r			Other					
NAD		17	56470	08	48228	01													
	-	Bedro	ock Materi	als/Abando	onment Se	aling Reco	ord (see ii	instru	ictions on the	e back of th	nis form	1)							
General Co	olour		Most Comn	non Materia	ı	Ot	her Mater	rials				Gener	al Description	1			Dep	th (<i>m/ft</i>)	
BROW	/N	TOF	PSOIL		5	STONES										0		1	
																4		6	_
BROW	/N	CLA	ιΥ			STONES										1			_
BROW	/N	CLE	AN GRAV	EL												6		22	
GREY		CLA	Y			STONES										2	2	25	
																-			
																-			
										1									
Dareth Ca	h = h / == //	54)		Annular			14-1		Discontinuity	Aftertee	t of we		esults of We			_	P	0001001	
Depth Se From	et at (<i>m/t</i>	t)		Type of Sea (Material ar			Volu		Placed //ft³)			sand fr	vater was:	Time	raw Dow Water L			ecovery Water Le	vel
			BENTONIT		14 1960)			(,,,	,,,	Oth			30	(min)			(min)	(m/ft)	VCI
0	8		DENTONI	E CHIPS						If pumpir	ing disc	continue	d, give reason:	Static	1	-			
8	25	5	SILICA SAI	ND						NOT	TES	ΓED		Level			4		
													(61)	1			1		
							1			Pump in	ntake s	set at (m	/ft)	2			2		
										Pumping	a rata	(1/min / (CDM)	3			3		
Meth	nod of	Cons	truction			Well U	se			Fumping	grate	(1/1111117	or IVI)						
Cable To			Diamond			Comme			Not used	Duration	n of pu	mping		4			4		
Rotary (C			☐ Jetting☐ Driving☐		omestic vestock	☐ Municip			Dewatering Monitoring	11	hrs +	m	in	5			5		
Boring	(everse)		Digging	0.000	gation	Cooling			0	Final wa	ter lev	el end of	pumping (m/ft)	10			10		
Air percu					dustrial					100				10			10		
Other, sp	pecify			Ot	her, specify					If flowing	g give	rate (I/m	in / GPM)	15			15		
		Const	ruction R	ecord - Ca					of Well					20			20		
Inside Diameter			R Material Fibreglass,	Wall Thickness		th (<i>m/ft</i>)	☐ Wat		Supply ement Well	Recomm	mende	d pump	depth (m/ft)	05			05		
(cm/in)	Concr	ete, Pla	stic, Steel)	(cm/in)	From	То	Tes			D		-l		25			25		
2	PV	C SCH	140		+2	10	Red	charg	ge Well	Recomm (I/min / C		a pump	rate	30			30		
									ring Well					40			40		
									ation and/or ng Hole	Well pro	oductio	n (I/min	/ GPM)						
							☐ Alte	eratio	on	Disinfect	ted?			50			50		
		THE STATE OF THE S					(Co		uction) ned,	Yes		No		60			60		
		Com	otrantina D	ecord - Scre	non		Insu	uffici	ent Supply				Map of W	ellla	cation		San Principles		
Outside				ecora - Scre	T	th (<i>m/ft</i>)			ned, Poor Quality	Please p	provide	a map l	pelow following			he ba	ick.		
Diameter (cm/in)	(Plastic	Mater , Galvar	nized, Steel)	Slot No.	From	То	Aba	ando	ned, other,	$ \mathcal{N}$									
	011.0	11/0		40	10	25	spe	ecify		4									
2	2" P	VC		10	10	25	Oth	or s	enecify	'									
								101, 0	peeny							1			
			Water Det	tails			Hole Dia	met	er	il		Dunlo	40m						
Water foun	d at De			r: Fresh	Untested		oth (m/ft)		Diameter	1									
10 (m	n/ft) [] (Gas [Other, spe	ecify		From	То		(cm/in)	-			yom			5			
Water foun	d at De	pth Ki	nd of Wate	r: Fresh	Untested	0	25		6				• 100r	-		3	-		
			Other, spe													10	Ž		
				r: Fresh	Untested	d				1							*		
(m	n/ft) [] (Gas [Other, spe	ecify]							3		
				or and Well	Technici									7					
Business Na			ontractor			W		tor's	Licence No.					U					
Durl Ho	• •		Ni t				2644			0	ntc:								
Business Ad	ddress (Street	Number/Na	ime)		M	unicipality			Commer		\	0 11						
RR#7 Province		Post	al Code	Rusines	s E-mail Ad	dress	St. Mary	/S		W:	1	Ury	facility	1					
		100								Well own	ner's	Date Pa	ackage Delivere	ed	M	inist	ry Use	Only	
Ont. Bus.Telepho	one No. 1	inc. are	X1C9 a code) Na	me of Well	er@cyg.ne Technician	Last Name	, First Nar	me)		information package	on	12/3-1			Audit N				
	11	1 1	1 1							delivered		Date W	ork Completed	DD		Z 1	40	149	5
Well Dechnici	61786	ace No	Signature	of Pachfield	and and all	ontractor Da			. 1	Yes	3			١, ١					
2323			1	1/1/		Y	12/5/	201	1 M D D	No		YY	1/18/2014	D D	Receive	d			

Appendix B

Groundwater Chemistry and Time-Concentration Plots – Routine and Organics

^		
A	≡co∧	И

	Date	Lab	рН	Cond-	Alk	Mg	K	BOD	COD	TKN	NH3-N	Total-P	SO4	Phenol	CI	Na	Ca	Fe	В	Р	Zn	NO2	NO3
				uctivity	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L						
Monitor	07-Nov-91	EPL	7.2	609	297	32	8.1						25.6		10.5	2.9	96.7	< 0.005	0.03	< 0.09	< 0.005	< 0.03	18
1a-91	04-Mar-92	EPL	7.09	647	300	31.8	7.9						26.2		9.23	3.14	94.7	0.03	0.03	1.13	0.02	< 0.03	18
Lower Til	07-Mar-92	EPL	7.63	721	234	35.5	8.1						27.3		14.1	2.72	89.1	< 0.005	< 0.01	< 0.06	< 0.005	< 0.03	28
	17-May-94	EPL	7.76	703	242	31.6	5.5					< 0.05	28.7		12.6	2.41	97.6	0.10	0.02	< 0.06	0.02	< 0.03	23
	05-May-95	MDS	7.6	689	250	32.5	5.2					< 0.05	31.7		17.3	2.67	102	0.01	0.02	< 0.06	< 0.005	< 0.03	21
Monitor	07-Nov-91	EPL	7.3	753	280	40	15						37.4		23.9	3.5	111	0.07	0.05	< 0.09	< 0.005	< 0.03	33
1b-91	04-Mar-92	EPL	7.31	733	227	34.9	13.6						34.1		10.5	2.95	97.2	0.27	0.05	0.7	0.02	< 0.03	32
Outwash	07-Mar-92	EPL	7.64	740	224	34.1	14.6						33.6		20.7	3.01	97.8	0.02	0.04	< 0.06	0.01	< 0.03	27
	17-Mar-94	EPL	7.74	521	225	23	11.4					< 0.05	15.6		5.45	2.01	67.7	0.06	0.03	< 0.06	0.009	< 0.03	8.8
	05-May-95	MDS	7.85	398	138	16.4	7.4					< 0.05	19.7		26.9	10.9	46.1	0.03	0.03	< 0.06	< 0.005	< 0.03	5.0

AECOM

	1																						
	Date	Lab	На	Cond-	Alk	Mg	K	BOD	COD	TKN	NH3-N	Total-P	SO4	Phenol	CI	Na	Ca	Fe	В	Р	Zn	NO2	NO3
	2 4.0		ρ	uctivity	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L		ng/L			mg/L
,, ., -	11-Feb-97	WDI	7.9		···g/ =			< 0.34	Ū	0.17	Ū	< 0.011	48.4	< 0.72	119	27.1		_	0.06	0.05	0.03	0	Ť
Monitor	26-Mar-97		8.18	514	235	23.8 27.7	1.7 2.29	< 0.34	8 17	0.17		< 0.011	25.2	< 0.72	5.8	26.2	45.6 51	0.8 0.67		0.03	0.03		
2a-31	25-Jun-97		8.24	471	226	21.8	1.43	1.89	< 7	0.10		< 0.011	18.8	< 0.72	5.33	24	36.5	0.07		0.03	0.02		
Lower Til	01-Oct-97		8.1	441	227	22.6	1.63	0.66	14	0.33		< 0.011	16.3	< 0.72	5.13	26.9	38.6	0.48		0.03	0.02		
	07-Nov-91		7.78	434	215	28	2.8						17.1		24.5	32	35	0.11		0.09	< 0.005	< 0.03	1
	04-Mar-92	EPL	7.61	494	229	28.7	3.6						20		21.3	34.7	36.9	0.31	0.07	1.14	0.009	0.4	1.7
	07-Mar-92	EPL	7.88	479	209	28.3	1.4						16.2		15.2	30.6	36.6	0.02	0.06 <	0.06	< 0.005	0.2	2
	11-Dec-97	WBL	8.12	450	225	22.2	1.92	< 0.34	33	0.34	0.108	< 0.011	16.7	< 0.72	4.97	29.5	38.6	1.28	0.06 <	0.03	0.04		0.2
	31-Mar-98	WBL	8.05	455	227	21.3	1.77	1.03			0.212		16.3	< 0.72	6.47	24.2	44.8	1.14	0.06 <	0.01	0.02		0.6
	24-Jun-98	WBL	8.06	463	230	21.2	1.39	0.9			0.177		17	< 0.72	4.92	26.7	42	0.18		0.006	0.01		8.0
	02-Oct-98		8	500	240	25	< 1	2	< 5	0.17	< 0.1	0.08	19	< 1	4.8	31	41	0.6	0.05		0.02		0.7
	03-Dec-98		7.9	490	240	23	< 1	< 2	< 5	0.2	< 0.1	0.12	17	< 2	4.9	30	36	< 0.05	0.05		< 0.01		0.4
	29-Jun-99		8.45	440	220	24.2	2	1.5	9	0.33	0.24	0.025	15.8		5.9	28.7	38	0.39		0.1	0.02		
	09-Dec-99		8.04	454	221	23.2	1.4	0.7	14	0.46	0.23	0.009	15	< 1	< 5	32.3	34.5	0.02			< 0.005		
	21-Jun-00	•	7.88	441	231	21.6	1.2	1	< 5	0.46	0.31	0.005	15.3	< 1	5.1	25.6	35.8	< 0.03			< 0.005		
	17-May-94		7.99	462	236	24.3	0.9					< 0.05	10.5		10.5	39.6	30.4	0.20				< 0.03	0.08
	05-May-95		8.02	437	210	20.9	1					< 0.05	11.7	0.5	8.92	45.5	28	0.05		0.06		< 0.03	0.5
	13-Apr-96 13-Jun-96		8.31 8.27	424 331	220 234	29 26.5	1.82 2.61				0.45 0.159		19.8 18.9	< 0.5 < 0.5	8.1 7.5	30 32	49.3 43.3	0.23 < 0.01	0.09 0.11			< 0.06 · < 0.06	< 0.05 0.4
	21-Aug-96		7.7	454	234	26.9	2.61				0.139		19.9	1	7.5	33.3	43.3	< 0.01	0.11			< 0.06	1.3
	18-Sep-96		8.11	363	226	31.4	1.9				0.22		18.9	< 0.5	6.4	31.4	43.9	< 0.01	0.11			< 0.06	1.1
	07-Dec-00		8.15	388	236	22.6	1.1	1.1	10	0.47	0.05	0.011	17.8	< 1	5.2	27.8	35.7	0.21	0.09		0.11	< 0.00	
	27-Jun-01		7.9	456	236	23	1.1	1.9	< 5	0.34	0.22	0.018	22.4	< 1	4.8	29.4	38.2	0.06		0.1	0.14		
	03-Dec-01	•	8.19	457	241	20.3	1.6	1	< 5	0.23	0.07	0.028	18.1	< 1	4.2	30.4	33.3	0.03		0.1	0.04		
	04-Jun-02	•	8.44	443	266	23.4	1	0.6	8	0.66	0.13	0.016	15.2	< 1	3.6	25.7	39.6	< 0.01		0.1	0.007		
	03-Dec-02	Philip-	8.27	466	230	24.4	2	< 0.5	17	0.94	0.07	0.01	14.7	< 1	3.3	27.1	42.3	0.01	0.05 <	0.1	< 0.005		
	02-Jun-03	Philip-	8.14	460	220	23.7	1	< 0.5	9	0.67	0.17	< 0.001	15.7	20	4.6	25.8	40.4	< 0.01	0.06		< 0.005		
	01-Dec-03	Philip-	8.21	415	225	24.5	1.1	1	6	0.25	< 0.03	0.015	20.1	< 1	4.4	24.6	40.8	0.03	0.06 <	0.1	< 0.005		
	09-Jun-04	Philip-	8.11	459	234	22	< 1	0.7	6	0.36	0.07	0.01	20.9	1	5.2	36.8	36.6	< 0.01	0.06		0.03	< 0.2	0.7
	30-Nov-04	Philip-	8.04	452	241	23.5	1	< 0.5	5	0.23	0.03	0.005	15.5	< 1	4.3	27.5	38.4	< 0.01	0.05		< 0.005		
	03-Aug-05	N/A																					
	28-Nov-05		8.24	433	233	25		< 2	14	0.8	0.14	< 0.02	15	< 1	4	32	4	< 0.05		0.05	0.005		
	01-Jun-06		8.2	510	254	27	1.4	< 2	6	0.8		< 0.02	15	< 1	7	28	48	< 0.02			< 0.005		
	04-Dec-06		8.2	511	256	26	1.3	< 2	< 4	0.5		< 0.02	18	< 1	6	30	43	< 0.02			< 0.005		
	30-Mar-07		8.3	477	241	22	1.2	< 2	4	0.4		< 0.02	16	< 1	6	32	39	< 0.02			< 0.005		
	14-Jun-07		8.3	501	249	28	1.4	2	5	0.3	0.16	0.04	19	< 1	6	37	42	< 0.02			< 0.005	0.04	0.4
	05-Dec-07		8.3	448	229	23	1.3	< 2	8 13	0.2	0.12	< 0.02	13	< 1	4 5	24	40	< 0.02				< 0.01	0.1
	25-Jun-08 09-Dec-08		8.4 8.1	446	226	23	1.4	< 2	4	0.5		< 0.02	13	< 1	3	33 29	38 39	< 0.02				< 0.01 < 0.01	0.1
	25-Jun-09		8.1	460 486	236 244	21 27	1.1 1.4	< 2 < 2	6	0.3 0.5	0.09 0.25	0.03 < 0.02	16 16	< 1 < 1	3	29 31	39 44	< 0.02 < 0.02				< 0.01 - < 0.01	< 0.1 0.8
	25-Jun-09 16-Dec-09		8.1	486	244	24	1.4	< 2	4	0.5		< 0.02 < 0.02	10	< 1	3	22	44 42	< 0.02					< 0.1
	29-Jun-10		8.1	456	226	23	1.3	< 2	11	0.4		< 0.02	12	< 1	4	25	40	< 0.02				< 0.01	0.1
	22-Dec-10		8.07	452	238	26	1.2	< 2	< 4	0.0	< 0.05	< 0.02	7	< 1	4	22	45	< 0.02		0.1		< 0.01	0.4
	16-Jun-11		8.11	493	246	26	1.4	< 2	13	0.5	0.3	< 0.02	15	< 1	3	27	47	0.02			< 0.005	0.03	0.9
	15-Dec-11		8.11	552	271	28	1.4	< 2	< 4	0.9	0.09	0.17	22	< 1	4	29	52	2		0.1	0.06	0.06	0.4

							1	_			1	1		-	_		1 1	1		1					
	Date	Lab	рН	Cond-	Alk	Mg	K	ВО	D	COD	TKN	NH3-N	Total-P	SO4	PI	nenol	CI	Na	Ca	Fe	В	Р	Zn	NO2	NO3
				uctivity	mg/L	mg/L	mg/L	mg	/L	mg/L	mg/L	mg/L	mg/L	mg/L	ι	ıg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Monitor	11-Dec-96	5 FNT	8.19	459	208	21.1	1.1	Ť				0.04	-	26.7	-	0.5	7.2	4.6	51	< 0.01	0.02	-	0.01	< 0.06	11
	27-Mar-97		8.14	543	180	26.8	0.69	< 0.	34	18	0.24	< 0.04	0.014	25.8		0.72	10.5	2.4	71.9	0.09		< 0.03	0.01	\ 0.00	''
2b-91 Outwash	07-Mar-92		8	499	154	26.3	0.05		-		0.24	3.01	0.017	28.1	`	J., 2	18.1	3.56	63.8	< 0.005		< 0.06		< 0.03	13
Outwasn	31-Mar-98		7.92	556	183	25.8	0.78	1.	.03			< 0.019		23.2		1.34	16.2	3.88	74.8	0.11	< 0.02	0.02	0.01		16
	24-Jun-98																								
	02-Oct-98	B Dry																							
	03-Dec-98	B Dry																							
	09-Dec-99	Barr	7.77	463	166	23.9	< 1	0	.9	14	0.4	0.43	0.005	27	<	1	17	3.6	53.2	< 0.01	< 0.01	< 0.1	0.02		
	21-Jun-00	Philip-	7.89	401	184	24.5	0.7	< 0	.5	< 5	0.23	< 0.03	< 0.002	25.5	<	1	8.1	4	58.2	< 0.03	< 0.005	< 0.05	< 0.005		
	17-May-94	4 EPL	7.9	587	208	31.4	2						< 0.05	34			8.69	9.44	63.9	0.05	0.01	< 0.06	< 0.005	< 0.03	< 0.03
	05-May-95	MDS	7.95	530	179	28.3	0.6						< 0.05	25.5			8.59	3.69	68.9	0.02	< 0.01	< 0.06	< 0.005		17
	13-Apr-96	6 ENT	7.91	425	169	26.8	0.908					0.01		30.3	<	0.5	11.6	4.1	67.9	< 0.01	0.42		< 0.01	< 0.06	< 0.05
	13-Jun-96		8.34	337	177	25.1	0.8					0.016		28.2		0.1	7.5	3.9	60.3	< 0.01	0.05		< 0.01	< 0.06	11
	21-Aug-96		8.16	373	167	22.8	1.14					0.06		26.2		1	6.7	3.63	59.6	< 0.01	0.05		< 0.01	< 0.06	11
	18-Sep-96		7.93	377	216	22.9	0.9					< 0.01		26	<	0.5	6.5	2.9	60.2	< 0.01	0.07		< 0.01	< 0.06	12
	07-Dec-00																								
	27-Jun-01																								
	03-Dec-01 04-Jun-02		8.22	362	176	21.8	. 1	4	1	15	1.01	< 0.03	0.006	19.1		1	5.5	1.8	E2 2	- 0.01	0.01	< 0.1	0.02		
	03-Dec-02		0.22	302	176	21.8	< 1	l '	.1	15	1.01	< 0.03	0.006	19.1	`	1	5.5	1.0	32.2	< 0.01	0.01	< 0.1	0.02		
	02-Jun-03		8	444	182	23.1	< 1	1	.4	14	0.74	< 0.03	< 0.001	15		6	4.8	2.2	54.4	< 0.01	< 0.01		0.02		
	01-Dec-03		8.16	501	190	25.1	< 1		.5	10	0.51	< 0.03	0.004	23	<	1	8.4	2.9	61.4	< 0.01		< 0.1	0.008		
	08-Jun-04		7.83	550	256		< 1		.5	7	0.49	< 0.03	0.002	21.3	<	1	8.4	2.1	90	0.04	0.01	. 0.1		< 0.2	9.2
	30-Nov-04												*****												
	03-Aug-05																								
	28-Nov-05	5 INS																							
	01-Jun-06	6 INS																							
	04-Dec-06	5 INS																							
	30-Mar-07	MAX	8.1	764	362	39	0.84	<	2	5	0.3	0.06	< 0.02	15	<	1	10	2.5	78	< 0.02	0.02	< 0.05	< 0.005		
	14-Jun-07																								
	05-Dec-07																								
	25-Jun-08		8.3	494	228	26	0.79		-	< 4	0.3	0.05	< 0.02	10	<	1	4	2.6	64	< 0.02	0.02	< 0.1	0.02	< 0.01	0.7
	09-Dec-08								_																
	25-Jun-09		8	514	270	27	0.78	<	2	< 4	0.3	< 0.05	< 0.02	9	<	1	3	5.2	71	< 0.02	0.02	< 0.1	0.02	< 0.01	0.7
	16-Dec-09		0	550	20.6	26	0.75		_	7	0.0	0.05	0.00	0				5 0	75	0.00	0.00	0.4	0.00	0.04	4.0
	29-Jun-10 22-Dec-10		8	558	286	26	0.75	< .	2	7	0.2	< 0.05	< 0.02	9	<	1	3	5.2	75	< 0.02	0.02	< 0.1	0.02	< 0.01	1.2
	22-Dec-10 16-Jun-11		7.99	530	278	27	0.7	<	2	12	0.2	< 0.05	< 0.02	8	<	1	3	3.4	78	< 0.02	0.02	< 0.1	0.02	< 0.01	0.4
	15-Juli-11		8.05	537	283	27	0.7		2	9	0.2	< 0.05	0.02	8	_	1	4	4.9	80	4.3		< 0.1	0.02	< 0.01	0.4
M	11-Dec-96		8.09	918	363	32.9	1.86		_		0.5	0.08	0.27	35.9	<	0.5	49	17.4	85.6	< 0.01	0.06	V 0.1		< 0.06	18
<u>Monitor</u>	07-Nov-91		7.2	711	278	42	1.80					0.08		31.7	\	0.5	22.6	3.2	104	0.01		< 0.09	0.74	< 0.00	27
3-91	04-Mar-92		7.49	740	308	39.9	2							33.4			15.7	3.37	96.9	0.12	0.02	0.68	0.22	< 0.03	22
Bedrock	17-May-94		7.92	802	327	40.2	2.7						< 0.05	34.2			32.1	13.2	98.5	0.01		< 0.06	0.3	< 0.03	10
	05-May-95		7.47	687	300	37.2	< 0.4						< 0.05	32.5			20.8	7.75	96.5	0.02		< 0.06	0.43	< 0.03	9.3
	21-Aug-96		7.75	950	363	45.2	13.4					1.09		39		1.5	8	44.1	116	< 0.01	0.12		0.46	< 0.06	15
	18-Sep-96		7.53	720	323	39.9	7.1					0.45		30.8	<	0.5	40.1	18.1	105	0.03	0.11		0.28		9.3

													-									Des Primario	NO CERTAIN CO.
	Date	Lab	рН	Cond-	Alk	Mg	K	BOD	COD	TKN	NH3-N	Total-P	SO4	Phenol	CI	Na	Ca	Fe	В	Р	Zn	NO2	NO3
			P	uctivity	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		*****		dotivity	mg/ L		Ŭ	mg/ L			- u		mg/ L	_	mg/ =			-			Ŭ		
<u>Monitor</u>	11-Dec-97 31-Mar-98		7.72	1270	343	464 30.5	29.4 6.52	1.15	79	2.08	0.037	2.07	58.6	< 0.72 < 0.72	165	98.5 99.3	905 126	54.9 0.12	0.05 0.04	3.3 0.07	6.86 0.05		3.7
3-97	24-Jun-98		7.56	939	364	30.3 27	4.98	1.13			< 0.019		27.8	< 0.72	71.6	99.3 44.9	112	0.12	0.04	< 0.006	0.03		2.4
Outwash	02-Oct-98		7.50	939	304	21	4.70	1.17			0.019		21.0	0.72	71.0	44.5	112	0.40	0.07	< 0.000	0.13		2.4
	03-Dec-98																						1
Monitor	07-Nov-91		7.54	589	290	35	1.8						54.2		15.8	12	88	< 0.005	0.02	< 0.09	0.05	< 0.03	1.8
5-91	07-Mar-92		7.51	658	282	34.7	1.1						41.4		12.3	14.8	85.3	< 0.005	0.01	< 0.06	0.29	0.1	6.4
edrock/Out	17-May-94	EPL	7.64	547	282	31.9	1					< 0.05	15.6		8.68	4.67	68.5	0.08	0.01	< 0.06	0.92	< 0.03	0.9
ediock/Out	05-May-95	MDS	7.37	1210	234	60.2	< 0.4					< 0.05	53		210	51.1	136	< 0.005	0.02	< 0.06	0.23	< 0.03	12
Monitor	11-Feb-97	WBL	7.32			34.8	4.83	< 0.34	< 7	0.24	0.021	0.012	32.7	< 0.72	6.53	54.6	125	0.01	0.04	< 0.03	1.07		
5-96	27-Mar-97	WBL	7.45	1390	312	35	5.16	< 0.34		0.19	0.051	< 0.011	39.5	< 0.72	219	88.8	130	0.01	0.03	< 0.03	1.92		1
Bedrock	25-Jun-97		7.58	1460	326	33.5	5.1	< 0.34	< 7	0.35	0.044	< 0.011	41.6	< 0.72	251	100	104	0.02	0.03	< 0.03	1.62		1
	01-Oct-97		7.26	1290	345	37.1	5.57	< 0.34	13	0.29	< 0.01	< 0.011	43.4	< 0.72	190	102	116	0.02	0.03	< 0.03	1.78		1
	11-Dec-97		7.34	1240	358	35.9	5.85	< 0.34	25	0.24	i	< 0.011	43.3	< 0.72	173	96.3	115	0.02	0.02	< 0.03	1.7	_	2.3
	31-Mar-98		7.18	1180	352	30.6	5.14	< 0.34			0.058		41.5	< 0.72	142	75.3	128	0.02	0.03	< 0.01	1.52		2
	24-Jun-98		7.38	1240	346	31.4	5.27	1.32			0.062		38.6	< 0.72	172	84.2	107	0.03	0.05	< 0.006	2.1		1.8
	02-Oct-98		7.3	1300	370	32	5.3	3	6	0.25	< 0.1	0.03	42	< 1	160	91	100	< 0.05	< 0.05		1.9		0.5
	03-Dec-98 29-Jun-99		7.3	1200 1216	380 333	30 34.4	5.6	< 2 1.3	< 5 10	0.13	< 0.1	0.11 0.004	39 41.7	< 2	130 236	88 105	94 105	< 0.05 < 0.01	< 0.05 < 0.01	< 0.1	1.5 2.12		0.5
	09-Dec-99		8.01 7.32	1136	355	30.2	6 4.8	0.6	14	0.23	0.06 0.32	0.004	33	< 1	124	100	90.5	< 0.01	0.01	< 0.1	1.61		1
	21-Jun-00		7.27	1056	330	29.2	5	0.6	10	0.42	< 0.03	< 0.002	35.8	< 1	165	95.3	100	< 0.01		< 0.05	1.42		1
	07-Dec-00		7.52	910	360	27.2	4.5	0.7	11	0.45	0.04	< 0.002	31.5	< 1	112	71.9	83.9	< 0.03	0.02	0.00	1.66		1
	27-Jun-01		7.55	1376	321	33.2	5	0.8	< 5	0.22		0.01	38	< 1	275	137	111	< 0.01	0.06	< 0.1	1.81		1
	03-Dec-01		7.68	1054	343	27.4	3.9	1	6	0.32	< 0.03	0.003	33	< 1	136	93.2	89.9	< 0.01	0.05	< 0.1	1.88		1
	04-Jun-02	Philip-	8.38	1360	290	31.1	5	0.9	9	0.39	< 0.03	0.005	32.6	< 1	290	139	106	< 0.01	0.02	< 0.1	1.92		1
	03-Dec-02	Philip-	7.9	1116	316	25.9	5	< 0.5	10	0.37	< 0.03	0.013	30.4	< 1	177	118	86.1	< 0.01	0.02	< 0.1	1.56		ı İ
	02-Jun-03		7.52	2132	278	38.4	6	< 0.5	10	0.39	0.03	< 0.001	43.2	6	474	263	134	< 0.01	0.02		2.35		1
	01-Dec-03		7.89	1345	299	24.2	4.3	0.9	10	0.36	< 0.03	< 0.002	35.8	< 1	284	178	83.7	< 0.01	0.02	< 0.1	1.65		, ,
	08-Jun-04		7.46	2148	275	33.2	4.6	< 0.5	13	0.48	< 0.03	0.006	47.8	< 1	631	295	130	0.06	0.02		2.43	< 0.2	1
	30-Nov-04		7.69	1707	321 283	20.8 40	4	< 0.5 < 2	19 27	0.64	0.04	0.003 < 0.02	41.3 47	< 1	425 952	272 710	79	< 0.01	0.02	. 0.5	1.44 2.9		1
	03-Aug-05 28-Nov-05		7.97 8.1	3500 2780	333	25	7.7	< 2 < 2	17	1.2 0.5	< 0.05 < 0.05	< 0.02	47 49	< 1 < 1	952 661	53	160 97	< 0.5 < 0.05	< 0.1	< 0.5 < 0.05	1.6		1
	01-Jun-06		8	3480	302	31	5.9	< 2	15	0.5	0.03	< 0.02	41	< 1	908	590	120	< 0.03	0.02	< 0.05	2.1		1
	04-Dec-06		7.9	2190	341	19	4.6	< 2	6	0.3	0.09	< 0.02	41	< 1	470	390	73	< 0.02	0.02	< 0.05	1.4		1
	30-Mar-07		8	2610	297	22	4.6	< 2	11	0.4	0.12	< 0.02	38	< 1	630	410	97	< 0.02	0.02	< 0.05	1.5		1
	14-Jun-07		8.1	2900	284	29	5.3	< 2	12	0.3	0.1	< 0.02	40	< 1	700	490	110	< 0.02	0.02	< 0.05	2.2		1
	05-Dec-07	MAX	8.1	2460	307	23	5.4	< 2	24	0.2	0.06	< 0.02	39	< 1	580	420	94	< 0.02	0.02	< 0.1	1.7	0.01	0.2
	25-Jun-08	MAX	8.1	3810	270	30	5.5		29	0.4	< 0.05	< 0.02	44	< 1	970	610	140	< 0.02	< 0.01	< 0.1	2.2	< 0.01	0.5
	09-Dec-08	MAX	8	2530	319	16	4.2	< 2	12	0.3	< 0.05	< 0.02	39	< 1	570	390	76	< 0.02	0.03	< 0.1	1.5	< 0.01	0.3
	25-Jun-09		7.8	3030	288	27	5	< 2	12	0.3	< 0.05	< 0.02	42	< 1	740	490	110	< 0.02	0.02	< 0.1	2.3	0.01	0.4
	16-Dec-09		7.7	2190	307	19	4.5	14	22	2	1.4	0.09	33	12	480	390	76	0.05	0.02	0.12	0.14	< 0.01	0.2
	24-Jun-10		7.9	2560	263	24	4.4	< 2	4	0.5	< 0.05	< 0.02	32	< 1	610	390	100	< 0.02	0.02	< 0.1	1.4	< 0.01	0.7
	17-Dec-10		7.9	1940	296	18	4	< 2 < 2	10 16	0.2	< 0.05	< 0.02	28	< 1	390 630	330 390	79 120	< 0.02	0.03	< 0.1	0.97	< 0.01	0.4
	15-Jun-11 13-Dec-11		7.82 7.96	2580 1980	277 304	26 19	4.2	< 2	16 14	0.2	< 0.05 0.07	< 0.02 0.07	31 28	< 1	400	390	120 80	< 0.02 0.21	0.02 0.01	< 0.1 < 0.1	2 1.1	< 0.01 < 0.01	0.5 0.2
	13-1000-11	IVIAA	7.90	1900	304	19	4	\	14	0.4	0.07	0.07	20)	400	33U	ου	U.Z I	0.01	V.1	1.1	V.01	U.Z

_													•									70.00	
ſ	Date	Lab	рН	Cond-	Alk	Mg	K	BOD	COD	TKN	NH3-N	Total-P	SO4	Phenol	CI	Na	Ca	Fe	В	Р	Zn	NO2	NO3
				uctivity	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Monitor	11-Feb-97	WBL	7.55			26.4	3.58	0.87	17	0.25	< 0.01	< 0.011	32.4	< 0.72	16.3	68.8	111	0.04	0.04	< 0.03	0.04		
6a-96	26-Mar-97		7.76	1430	237	35.4	4.36	< 0.34		< 0.07	< 0.01	< 0.011	32.7	< 0.72	312	83.9	130	0.03	0.02	< 0.03	0.05		
Bedrock	25-Jun-97	WBL	7.76	1640	238	30	4.74	0.36	< 7	< 0.07	< 0.01	< 0.011	33.4	< 0.72	312	136	104	0.03	0.03	< 0.03	0.05		
Deditook	01-Oct-97	WBL	7.26	1690	420	37.1	16.4	1.44	10	0.23	< 0.01	< 0.011	43.1	< 0.72	216	134	158	0.02	0.06	0.04	0.15		
	11-Dec-97	WBL	7.63	1700	261	33	5.53	< 0.34	15	0.22	< 0.01	< 0.011	38.3	< 0.72	333	176	116	0.02	0.02	< 0.03	0.03		15
	31-Mar-98	WBL	7.56	1290	246	29.1	4.87	< 0.34			< 0.019		32.9	< 0.72	199	70	133	0.02	0.02	< 0.01	0.03		17
	24-Jun-98	WBL	7.61	1480	239	31.5	4.76	0.66			< 0.019		31	< 0.72	270	122	121	0.04	0.02	< 0.006	0.05		13
	02-Oct-98	CAN	7.6	1500	260	33	4.8	2	8	0.24	< 0.1	0.02	33	< 1	250	130	110	< 0.05	< 0.05		0.04		16
	03-Dec-98		7.5	1600	250	33	5	< 2	< 5	0.11	< 0.1	0.12	30	< 2	280	120	110	< 0.05	< 0.05		0.07		12
	29-Jun-99		8.19	1210	252	33.5	5	0.9	10	0.24	0.03	0.003	32.3		261	111	112	< 0.01		< 0.1	0.04		
	09-Dec-99		7.61	1344	260	31.1	4.3	0.7	11	0.14	0.02	0.006	30	< 1	208	129	101	< 0.01	0.02	< 0.1	0.07		
	21-Jun-00		7.52	1157	292	32	4	1.2	8	0.36	< 0.03	< 0.002	33.7	< 1	202	99.8	114	< 0.03		< 0.05	0.04		
	07-Dec-00		7.74	1116	288	28.3	3.5	0.5	9	0.35	< 0.03	< 0.002	32.4	< 1	194	97.3	94.6	< 0.03	0.01		0.03		
	27-Jun-01	•	7.73	1165	290	31.1	3	1.7	5	0.13	< 0.03	0.004	40	< 1	192	96	110	< 0.01	0.06	< 0.1	0.25		
	03-Dec-01		7.91	1232	286	30.7	2.7	< 0.5	< 5	0.12	< 0.03	0.005	36.4	< 1	206	104	106	< 0.01	0.05	< 0.1	0.1		
	04-Jun-02 03-Dec-02		8.14	1051 1143	278 271	30	3	0.7	6 8	0.44	< 0.03 < 0.03	0.005 0.012	33.8 33.9	< 1 < 1	158 179	78.9 99.2	107 106	< 0.01	0.02 0.01	< 0.1 < 0.1	0.03 0.04		
	03-Dec-02	•	7.85		271	29.3	4	< 0.5 < 0.5	7	0.41		< 0.012	33.9 46.8			99.2 83.1		< 0.01	0.01	< 0.1	0.04		
	01-Dec-03	-	7.58 8.09	1191 1098	277	32.1 31.1	2	0.8	10	0.4	< 0.03 < 0.03	0.001	39	6 < 1	171 167	79.4	116 111	< 0.01		< 0.1	0.04		
	09-Jun-04		7.77	1029	248	28.3	2.9	< 0.5	< 5	0.18	< 0.03	0.004	34.8	< 1	164	74.5	125	0.01	0.02	\ 0.1	0.40	< 0.2	16
	30-Nov-04		7.78	1463	253	37	3	< 0.5	8	0.18	0.05	0.004	38.3	< 1	345	115	137	< 0.00	0.01		0.40	V 0.2	10
	03-Aug-05		8.02	1350	235	38	2.8	< 2	5	0.3	< 0.05	< 0.02	34	< 1	233	130	130	< 0.05	0.01	0.07	0.03		
	28-Nov-05		8.08	1510	252	40	2.0	< 2	8	0.9	< 0.05	< 0.02	42	< 1	256	140	140	< 0.05	0.02	< 0.05	0.04		
	01-Jun-06		8.1	1510	264	35	2.7	< 2	7	0.3	< 0.05	0.04	39	1	228	130	120	< 0.02	0.02	< 0.05	0.04		
	04-Dec-06		7.9	1620	273	42	3.2	< 2	6	< 0.1	0.09	0.02	56	< 1	210	140	150	< 0.02		< 0.05	0.04		
	30-Mar-07	MAX	8.1	1530	270	34	3.1	< 2	5	0.3	0.15	< 0.02	55	< 1	180	110	130	< 0.02	0.02	< 0.05	< 0.005		
	14-Jun-07	MAX	8.2	1330	206	38	3.4	< 2	5	< 0.1	0.1	< 0.02	56	< 1	190	130	130	< 0.02	0.03	< 0.05	0.04		
	05-Dec-07	MAX	8	1610	267	38	3.3	< 2	17	0.3	< 0.05	< 0.02	46	< 1	230	140	140	< 0.02	0.02	< 0.1	0.04	< 0.2	34
	25-Jun-08	MAX	8.2	1660	257	32	3.1		< 4	0.4	0.09	< 0.02	42	< 1	280	160	120	0.04	0.02	< 0.1	0.04	< 0.1	26
	09-Dec-08	MAX	8	1740	268	38	3.6	< 2	9	< 0.1	0.09	< 0.02	54	< 1	260	150	140	< 0.02	0.02	< 0.1	0.04	< 0.01	37
	25-Jun-09	MAX	7.9	1700	273	39	4.4	< 2	5	0.1	< 0.05	< 0.02	50	< 1	240	160	150	< 0.02	0.03	< 0.1	0.04	< 0.01	46
	15-Dec-09	MAX	7.8	1520	280	33	3.9	< 2	4	0.2	< 0.05	0.04	41	< 1	220	140	120	< 0.02	0.03	< 0.1	0.04	< 0.01	22
	23-Jun-10	MAX	8	1340	277	28	3.4	< 2	< 4	0.4	< 0.05	< 0.02	37	< 1	200	130	110	< 0.02	0.03	< 0.1	0.03	< 0.01	12
	20-Dec-10		7.86	1340	279	28	2.9	< 2	5	0.2	< 0.05	< 0.02	33	< 1	210	130	110	0.06	0.02	< 0.1	0.04	< 0.01	6.8
	14-Jun-11		7.94	1300	276	28	3	< 2	8	0.3	< 0.05	< 0.02	35	< 1	190	140	100	< 0.02	0.03	< 0.1	0.03	< 0.01	8.4
	13-Dec-11	MAX	8.01	1220	269	26	3	< 2	5	0.2	< 0.05	0.04	34	< 1	160	120	98	< 0.02	0.02	< 0.1	0.04	< 0.01	7.5

A=COM

Montrot 11-Feb 97 Will 739 732 733 730 720 732 733 730	_			Out		· oan	arrato			5011010	<i></i>	11,5010	Ouo	.p.,	1110 G	mas			Otati	O			7-	CO//I
Monthor Mont		Date	Lab	рΗ	Cond-	Alk	Mg	K	BOD	COD	TKN	NH3-N	Total-P	SO4	Phenol	CI	Na	Ca	Fe	В	Р	Zn	NO2	NO3
26-Mac-97 WBL 7.33 3260 260 35.2 16.3 6.34					uctivity	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Outwash Clum-97 Well 7.58 2210 323 34.8 15 0.51 0.77 0.01 0.011 0.011 35.8 0.07 0.01 1.04 1.04 1.04 1.05 0.02 0.02 0.02 0.04 0.	Monitor	11-Feb-97	WBL	7.39			42.2	15.3	0.42	22	0.18	0.055	< 0.011	44.3	< 0.72	621		167	0.04	0.05	< 0.03			
Olocy-97 Web 7.65 1740 246 362 5.36 4.19 56 4.007 4.001 5.011 35.8 4.072 341 164 128 0.02 0.02 0.04 0.04 1.1-Dec-97 Web 7.33 1200 333 30.6 13.1 0.75 17 0.17 0.01 0.011 39.7 0.02 26.9 28.9 168 0.01 0.05	6b-96	26-Mar-97	WBL	7.73	3260	260	35.2	16.3	< 0.34		0.09	< 0.01	< 0.011	44.1	< 0.72	815	467	146	0.07	0.06	< 0.03			
11-De-97 WRL 7.33 1200 333 30.6 13.1 0.75 17 0.17 0.17 0.01 0.011 39.7 0.72 128 80.5 120 0.15 0.05 0.03 0.09 0.08 0	Outwash			7.58	2210	323			0.51	< 7	< 0.07		< 0.011	45			198							
31-Mar-98 WBL 7.34 2770 270 28.8 12.6 2 0.34 24-Jun-98 WBL 7.34 1860 308 35.5 15.4 0.48 0.04 0.047						246							< 0.011				_							
24-Jun-98 VRIL 7.34 1860 308 35.5 15.4 0.48 0.48 0.02 0.04 0.05 0.0										17	0.17		< 0.011											14
02-Oct-98 CAN 7.3 1500 410 45 15 c 2 c 5 0.34 c 0.1 c 0.02 40 c 1 150 92 160 c 0.05 c 0.05 c 0.14																								17
03-Dec-98 CAN 7.3 1300 390 35 12 < 2 < 5 < 0.1 < 0.1 < 0.1 < 0.1 3.5 < 2 2.1 2.0 7.5 120 < 0.05 < 0.05 < 0.05 < 0.01 < 0.1 < 0.1 < 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0																					< 0.006			44
29-Jun-99 Barr 8.01 1550 327 34.3 11 1.9 1.9 11 0.29 < 0.02 0.003 44.4 1 1 338 189 125 0.01 0.03 < 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1																	-							37
09-Dec-99 Barr 7.32 1378 332 32.1 10.5 0.6 17 0.54 0.05 0.002 38 < 1 155 122 121 < 0.01 0.04 < 0.1 0.11 1										_			-		< 2							-		15
21-Jun-00 Philip 7.48 1137 352 32.9 10.2 2.5 111 0.44 0.09 < 0.002 48.8 < 1 313 182 130 < 0.03 0.03 < 0.05 0.1 07-Dec-00 Philip 7.48 1137 352 32.9 10.2 2.5 111 0.44 0.09 < 0.002 43.7 < 1 163 78.3 113 < 0.03 0.04																								
07-Dec-00 Philip 7.48 1137 352 32.9 10.2 2.5 11 0.44 0.09 < 0.002 43.7 < 1 163 78.3 113 < 0.03 0.04 < 0.01 0.10 0.10 0.27 0.10 0.27 0.10 0.10 0.27 0.10 0.28 0.28 < 0.03 0.005 43 < 1 265 188 114 < 0.01 0.07 < 0.1 0.26 0.28 0.28 < 0.03 0.005 43 < 1 265 188 114 < 0.01 0.07 < 0.1 0.26 0.28 0.28 < 0.05 0.28 < 0.03 0.005 43 < 1 252 161 116 < 0.01 0.06 < 0.1 0.14																					-			
27-Jun-01 Philip- 7.59			•																		< 0.05			
03-Dec-01 Philip 7.79 1531 379 28.6 8.9 < 0.5 11 0.42 < 0.03 0.008 56.7 < 1 252 161 116 < 0.01 0.06 < 0.1 0.14 04-Jun-02 Philip 7.89 974 310 25.8 9 < 0.5 14 0.77 < 0.03 0.009 34.7 < 1 97 77.2 95 < 0.01 0.04 < 0.1 0.18 03-Dec-02 Philip 7.89 974 310 25.8 9 < 0.5 14 0.77 < 0.03 0.009 34.7 < 1 97 77.2 95 < 0.01 0.03 < 0.1 0.06 02-Jun-03 Philip 7.69 1538 270 25.8 7 0.7 10 0.37 0.1 < 0.001 41.9 11 350 225 101 < 0.01 0.03 < 0.1 0.07 01-Dec-03 Philip 7.59 1407 309 22.5 6.9 0.8 5 0.42 < 0.03 0.004 38.6 1 278 179 107 0.03 0.03 < 0.1 0.24 09-Jun-04 Philip 7.54 1871 314 40.4 10.2 < 0.5 8 0.3 < 0.03 0.004 38.6 1 278 179 107 0.03 0.03 < 0.1 0.04 30-Nov-04 Philip 7.76 791 290 20.5 6 < 0.5 13 0.6 < 0.03 0.004 23.4 < 1 99.3 53.1 85.9 < 0.01 0.04 < 0.05 < 0.05 03-Aug-05 Maxx 7.86 1920 347 39 13 < 2 13 0.7 < 0.05 < 0.05 < 0.02 35 < 1 120 110 110 < 0.05 0.05 < 0.05 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.									-									-			0.4			
04-Jun-02 Philip- 8.2 1769 317 32.7 10 0.6 12 0.59 < 0.03 0.015 46.1 < 1 390 223 129 0.01 0.04 < 0.1 0.18 03-Dec-02 Philip- 7.85 974 310 25.8 9 < 0.5 14 0.77 < 0.03 0.009 34.7 < 1 97 77.2 95 < 0.01 0.03 < 0.1 0.06 02-Jun-03 Philip- 7.69 1538 270 25.8 7 0.7 10 0.37 0.1 < 0.001 41.9 11 350 225 101 < 0.01 0.03 < 0.1 0.06 09-Jun-04 Philip- 7.54 1871 314 40.4 10.2 < 0.5 8 0.3 < 0.03 0.003 65.2 < 1 412 214 217 0.21 0.04 03-Nov-04 Philip- 7.76 791 290 20.5 6 < 0.5 13 0.6 < 0.03 0.004 23.4 < 1 90.3 53.1 85.9 < 0.01 0.02 0.05 03-Aug-05 Maxx 8.19 1190 348 26																								
03-Dec-02 Philip 7.85 974 310 25.8 9 < 0.5 14 0.77 < 0.03 0.009 34.7 < 1 97 77.2 95 < 0.01 0.03 < 0.1 0.06 0.2 Jun-04 Philip 7.69 1538 270 25.8 7 0.7 10 0.37 0.1 < 0.001 41.9 11 350 225 101 < 0.01 0.03 < 0.1 0.03 < 0.1 0.04 0.03																	-							
02-Jun-03 Philip- 7.69 1538 270 25.8 7 0.7 10 0.37 0.1 < 0.001 41.9 11 350 225 101 < 0.01 0.03 0.03 < 0.1 0.24																	_				-			
01-Dec-03 Philip- 7.96			•													-					< 0.1			
09-Jun-04 Philip- 7.54 1871 314 40.4 10.2 < 0.5 8 0.3 < 0.03 0.003 65.2 < 1 412 214 217 0.21 0.04 1.31 < 0.2 0.05 0									_					_				-			- 01			
30-Nov-04 Philip 7.76 791 290 20.5 6 < 0.5 13 0.6 < 0.03 0.004 23.4 < 1 90.3 53.1 85.9 < 0.01 0.02			•																		V 0.1		- 02	40
03-Aug-05 Max																							< 0.2	40
28-Nov-05 Max			•																		- 0.05			
01-Jun-06 MAX		_						13																
04-Dec-06 MAX								11																
30-Mar-07 MAX				-						_														
14-Jun-07 MAX 8 1820 344 36 11 < 2 9 0.3 0.09 < 0.02 55 < 1 240 230 140 < 0.02 0.05 < 0.05 0.09 0.09 0.01 0.07 < 0.01 0.07 < 0.01 0.07 < 0.01 0.07 < 0.01 0.09 0.002 0.000					_											-								
05-Dec-07 MAX 8.1 1450 282 29 11 < 2 17 0.4 < 0.05 < 0.02 44 < 1 240 130 120 < 0.02 0.04 < 0.1 0.07 < 0.01 25-Jun-08 MAX 8.1 2480 308 47 14									_															
25-Jun-08 MAX 8.1 2480 308 47 14 15 0.6 0.13 < 0.02 63 < 1 420 280 190 < 0.02 0.05 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.1 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0				8.1		282	29	11	< 2	17					< 1								< 0.01	8.3
25-Jun-09 MAX 7.9 2030 320 30 11 < 2 6 0.3 < 0.05 < 0.02 46 < 1 370 280 120 < 0.02 0.05 < 0.1 0.08 < 0.01 15-Dec-09 MAX 7.8 1380 307 30 11 < 2 < 4 0.6 0.19 0.03 45 < 1 170 130 120 < 0.02 0.04 < 0.1 0.07 < 0.01 20-Dec-10 MAX 7.8 1380 302 22 8.1 < 2 < 4 0.5 < 0.05 < 0.05 < 0.02 36 < 1 190 140 90 < 0.02 0.04 < 0.1 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 < 0.01 0.06 0.01 0.06 < 0.01 0.06 0.01 0.06 < 0.01 0.06 0.																								76
15-Dec-09 MAX 7.8 1380 307 30 11 < 2 < 4 0.6 0.19 0.03 45 < 1 170 130 120 < 0.02 0.04 < 0.1 0.07 < 0.01 23-Jun-10 MAX 8 1300 302 22 8.1 < 2 < 4 0.5 < 0.05 < 0.02 36 < 1 190 140 90 < 0.02 0.04 < 0.1 0.06 < 0.01 20-Dec-10 MAX 7.82 1080 283 22 8.3 < 2 6 0.3 < 0.05 < 0.02 33 < 1 130 94 96 < 0.02 0.03 < 0.1 0.06 < 0.01				8	1840	309	33	12	< 2	ł	0.4	0.12	ł		İ	1	ł	i	ł	ł	ł	ł	•	33
15-Dec-09 MAX 7.8 1380 307 30 11 < 2 < 4 0.6 0.19 0.03 45 < 1 170 130 120 < 0.02 0.04 < 0.1 0.07 < 0.01 23-Jun-10 MAX 8 1300 302 22 8.1 < 2 < 4 0.5 < 0.05 < 0.05 < 0.02 36 < 1 190 140 90 < 0.02 0.04 < 0.1 0.06 < 0.01 < 0.06 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01				7.9																				23
20-Dec-10 MAX 7.82 1080 283 22 8.3 < 2 6 0.3 < 0.05 < 0.02 33 < 1 130 94 96 < 0.02 0.03 < 0.1 0.06 < 0.01				7.8					< 2		0.6				< 1									22
20-Dec-10 MAX 7.82 1080 283 22 8.3 < 2 6 0.3 < 0.05 < 0.02 33 < 1 130 94 96 < 0.02 0.03 < 0.1 0.06 < 0.01		23-Jun-10	MAX	8	1300	302	22	8.1	< 2	< 4	0.5	< 0.05	< 0.02	36	< 1	190	140	90	< 0.02	0.04	< 0.1	0.06	< 0.01	12
14 Jun 11 MAX 7 791 1650 313 22 77 - 2 16 04 - 005 - 002 36 - 1 270 240 93 - 002 004 011 006 - 001		20-Dec-10	MAX	7.82		283	22	8.3	< 2	6	0.3	< 0.05	< 0.02	33	< 1	130	94	96	< 0.02	0.03	< 0.1	0.06	< 0.01	11
14-341-11 MAX 7.91 1030 313 22 7.7 < 2 10 0.4 < 0.03 < 0.02 30 < 1 270 240 35 < 0.02 0.04 0.11 0.00 < 0.01		14-Jun-11	MAX	7.91	1650	313	22	7.7	< 2	16	0.4	< 0.05	< 0.02	36	< 1	270	240	93	< 0.02	0.04	0.11	0.06	< 0.01	6.1

0.8 < 0.05

0.12

0.07 < 0.01

0.02 < 0.1

_													•									25075	
	Date	Lab	рН	Cond-	Alk	Mg	K	BOD	COD	TKN	NH3-N	Total-P	SO4	Phenol	CI	Na	Ca	Fe	В	Р	Zn	NO2	NO3
			'	uctivity	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Monitor	11-Feb-97	WRI	7.7		Ū	26.2	12.6	< 0.34	24	< 0.07	< 0.01	< 0.011	35.2	2.48	132	63.5	90.1	0.05	0.05	< 0.03	0.05		
	26-Mar-97		7.7	1180	256	32.5	14	< 0.34	24	< 0.07	< 0.01	< 0.011	35.5	< 0.72	131	80.6	104	0.07	0.07	< 0.03	0.08		
7-96 Outwash	25-Jun-97		7.8	992	250	29.6	9.65	0.69	< 7	0.08	< 0.01	< 0.011	35.2	< 0.72	66.4	33.7	95.1	0.03		< 0.03	0.11		
Outwasii	01-Oct-97	WBL	7.57	902	251	33.2	10.2	1.44	< 7	0.1	< 0.01	< 0.011	35.7	< 0.72	54.3	28.7	110	0.04	0.06		0.08		25
	11-Dec-97	WBL	7.52	906	248	31.8	10.1	< 0.34	< 7	0.25	< 0.01	< 0.011	36.3	< 0.72	62.1	30	105	0.17	0.06	< 0.03	0.08		23
	31-Mar-98	WBL	7.55	1120	224	32.4	9.06	< 0.34			< 0.019		43	< 0.72	92.4	36.8	127	0.09	0.04	< 0.01	0.09		43
	24-Jun-98	WBL	7.77	1200	226	34.9	9.49	0.78			< 0.019		41.3	< 0.72	89.8	38.8	141	0.06	0.06	< 0.006	0.12		54
	02-Oct-98	CAN	7.4	1100	280	38	11	3	10	0.27	< 0.1	< 0.02	46	< 1	74	35	130	< 0.05	< 0.05		0.12		41
	03-Dec-98	CAN	7.5	1200	310	39	11	< 2	< 5	0.36	< 0.1	0.1	41	< 2	72	32	130	< 0.05	< 0.05		0.13		37
	29-Jun-99		8.15	1325	248	41	12	2.2	10	0.21	< 0.02	0.003	58.4		282	110	132	< 0.01		< 0.1	0.12		ı
	09-Dec-99		7.39	1478	293	45.4	14.1	0.8	13	0.2	< 0.02	< 0.002	41	< 1	231	91.1	135	< 0.01	0.05	0.1	0.15		
	21-Jun-00		7.44	1775	255	48.8	13.9	0.6	12	0.54	< 0.03	< 0.002	80.9	< 1	397	172	157	< 0.03	0.04	< 0.05	0.14		
	07-Dec-00	1	7.5	1430	321	41	13.2	16	12	0.3	0.05	< 0.002	75.8	< 1	227	118	135	< 0.03	0.10		0.3		ı
	27-Jun-01		7.72	1768	293	44.4	13	1.7	6	0.34	< 0.03	0.006	105	< 1	307	176	144	< 0.01	0.09	< 0.1	0.25		ı
	03-Dec-01		7.73	1259	365	36.2	11.8	< 0.5	7	0.41	< 0.03	0.004	48.7	< 1	162	87.8	124	< 0.01	0.05	< 0.1	0.15		
	04-Jun-02 03-Dec-02		8.04 7.92	1863	328	46.1	20 27	< 0.5 < 0.5	11 16	0.77 1.03	0.42	0.006 0.012	110 70.9	< 1 < 1	378 244	201 145	146 152	< 0.01 < 0.01	0.07 0.07	< 0.1 < 0.1	0.18 0.17		
	03-Dec-02 02-Jun-03		7.52	1681 2122	350 298	44.9 52.7	27	< 0.5 < 0.5	11	0.99	1.11 0.41	0.012	131	12	380	212	167	< 0.01	0.07	< 0.1	0.17		ı
	02-Jun-03 01-Dec-03	-	8	1206	303	36.9	16.3	1.3	12	0.99	< 0.03	0.002	61.1	< 1	178	86.6	118	< 0.01	0.05	< 0.1	0.2		
	08-Jun-04		7.48	1995	336	51.6	22	0.8	13	0.57	< 0.03	0.003	129	< 1	370	196	226	0.19	0.03	0.1	0.15	< 0.2	55
	30-Nov-04	1	7.71	1705	368	40.5	20	< 0.5	15	0.75	0.12	0.002	107	< 1	296	158	150	< 0.01	0.07		0.20	V 0.2	00
	03-Aug-05		7.95	1800	325	51	19	< 2	22	1.5	0.12	< 0.02	86	< 1	190	140	180	< 0.05	0.09	0.07	0.23		ı
	28-Nov-05		8.07	2140	378	52		< 2	10	1	< 0.05	< 0.02	112	< 1	258	180	200	< 0.05	0.09	< 0.05	0.27		
	01-Jun-06	MAX	8	1910	306	44	16	< 2	12	0.7	< 0.05	0.04	113	< 1	186	120	170	< 0.02	0.1	< 0.05	0.24		ı
	04-Dec-06	MAX	7.9	1610	315	40	17	< 2	7	0.7	0.09	< 0.02	83	1	150	100	170	< 0.02	0.09	< 0.05	0.22		
	30-Mar-07	MAX	8.1	1650	276	45	16	< 2	12	< 0.1	0.08	< 0.02	65	< 1	160	100	180	< 0.02	0.06	< 0.05	0.23		ı
	14-Jun-07	MAX	8	1370	278	39	15	< 2	8	0.1	0.09	< 0.02	70	< 1	140	110	140	< 0.02	0.06	< 0.05	0.18		ı
	05-Dec-07	MAX	8	1310	289	36	15	< 2	20	0.5	0.06	< 0.02	57	< 1	100	72	150	< 0.02	0.05	< 0.1	0.2	< 0.2	44
	25-Jun-08	MAX	8.1	1810	284	37	14		9	0.6	0.06	< 0.02	83	< 1	240	150	140	< 0.02	0.07	< 0.1	0.21	< 0.1	54
	09-Dec-08	MAX	7.9	1470	289	35	14	< 2	8	0.6	< 0.05	< 0.02	58	< 1	170	110	130	< 0.02	0.06	< 0.1	0.19	0.02	41
	25-Jun-09		7.8	1400	318	33	11	< 2	< 4	0.6	< 0.05	< 0.02	56	< 1	190	130	120	< 0.02	0.04	< 0.1	0.17	< 0.01	21
	15-Dec-09		7.8	1130	298	28	12	< 2	5	0.4	< 0.05	0.03	40	< 1	120	89	100	< 0.02	0.05	< 0.1	0.15	< 0.01	15
	24-Jun-10		8	1380	331	36	12	< 2	4	0.5	< 0.05	< 0.02	51	< 1	180	100	130	< 0.02	0.04	< 0.1	0.19	< 0.01	21
	17-Dec-10		7.73	1030	278	29	11	< 2	12	0.3	< 0.05	< 0.02	41	< 1	84	73	110	< 0.02	0.05	< 0.1	0.17	< 0.01	23
	14-Jun-11		7.85	1740	316	36	11	< 2	16	0.6	< 0.05	< 0.02	60	< 1	270	190	130	< 0.02	0.04	< 0.1	0.16	< 0.01	18
	14-Dec-11	MAX	8.02	1190	333	30	11	< 2	5	0.4	< 0.05	0.05	46	< 1	110	93	110	0.81	0.04	< 0.1	0.22	< 0.01	16

_							<u> </u>	,		41 / (IIIG	-,	Ouo.											COM
	Date	Lab	рН	Cond-	Alk	Mg	K	BOD	COD	TKN	NH3-N	Total-P	SO4	Phenol	CI	Na	Ca	Fe	В	Р	Zn	NO2	NO3
_				uctivity	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Monitor	11-Feb-97	WBL	7.78			39.9	2.08	< 0.34	28	0.21	< 0.01	0.034	73.5	< 0.72	33	19.3	94.9	0.05	0.05	< 0.03	0.02		
8-96	27-Mar-97	WBL	7.77	864	302	36.9	1.73	< 0.34	46	0.3	< 0.01	< 0.011	53.9	< 0.72	49.8	18.8	107	0.01	0.03	< 0.03	0.67		
Bedrock	25-Jun-97		7.84	882	308	33.6	1.77	< 0.34	< 7	< 0.07	0.018	< 0.011	60.8	< 0.72	40.9	17.6	92	0.02	0.05	< 0.03	0.54		
	01-Oct-97	WBL	7.45	838	321	37.1	1.9	0.51	51	0.2	< 0.01	< 0.011	66.2	< 0.72	37.2	19.3	111	0.02		< 0.03	0.50		
	11-Dec-97		7.61	880	297	37.7	1.99	< 0.34	< 7		< 0.01	< 0.011	75.2	< 0.72	55.4	21	105	0.06		< 0.03	0.69		5.2
	31-Mar-98		7.41	997	288	33.4	2.05	1.72			< 0.019		65.6	< 0.72	102	32.9	116	0.01	0.02	< 0.01	0.54		3.9
	24-Jun-98		7.5	890	309	32.1	1.78	0.75		-	< 0.019		59.6	< 0.72	58.4	30.1	107	0.06	< 0.02	< 0.006	0.63		5.2
	02-Oct-98		7.4	890	320	38	2.2	< 2	< 5		< 0.1	< 0.02	73	< 1	57	31	110	< 0.05	< 0.05		0.84		4.8
	03-Dec-98		7.4	910	310	36	2.2	< 2	< 5		< 0.1	0.12	72	< 2	60	28	99	< 0.05	< 0.05		0.83		2.6
	29-Jun-99		8.23	976	282	40.1	3	1.7	12		< 0.02	0.003	68.2		146	67.7	109	< 0.01		< 0.1	0.75		
	09-Dec-99		7.46	1358	287	43.4	2.8	0.9	9	0.49	0.03	0.004	64	< 1	207	103	114	< 0.01		< 0.1	0.9		
	21-Jun-00		7.43	1212	264	38.9	2.4	< 0.5	6	0.20	< 0.03	< 0.002	64.4	< 1	233	107	111	< 0.03		< 0.05	0.89		
	07-Dec-00		7.6	942	320	34.6	2	1.3	13	0.25	0.04	< 0.002	63.7	< 1	125	59.2	94.6	< 0.03	0.06		1.01		
	27-Jun-01		7.76	1019	317	36.3	2	1.6	< 5	0.27	0.03	0.037	63	< 1	139	76.1	105	0.02		< 0.1	1.11		
	03-Dec-01		7.66	1329	356	36	2.3	1.1	< 5		< 0.03	0.005	50	< 1	225	93.9	103	< 0.01		< 0.1	1.02		
	04-Jun-02		8.43	1024	302	35.1	3	< 0.5	12		< 0.03	0.008	56.5	< 1	138	74.1	102	< 0.01		< 0.1	0.87		
	03-Dec-02	-	7.97	1002	309	35.8	3	< 0.5	6		< 0.03	0.004	59.4	< 1	118	65.5	101	< 0.01		< 0.1	0.87		
	02-Jun-03		7.47	1622	276	39.9	3	< 0.5	7		< 0.03	< 0.001	55.1	9	332	171	116	< 0.01	0.01		1.08		
	01-Dec-03		7.85	1262	285	35.6	3.1	1	9		< 0.03	0.003	53.8	< 1	254	124	104	< 0.01		< 0.1	1.05		
	08-Jun-04		7.6	1036	292	35.3	1.8	< 0.5	6		< 0.03	0.003	58.4	< 1	159	80.6	123	0.11	0.01		1.43	< 0.2	3.9
	30-Nov-04	-	7.8	981	309	33.4	3	< 0.5	17		< 0.03	0.006	58.4	< 1	121	66.2	96.3	< 0.01	< 0.01	0.07	0.92		
	03-Aug-05		8.15	888	298	36	2.5	< 2	22		< 0.05	< 0.02	47	< 1	98	71	92	< 0.05	0.02	0.07	0.7		
	28-Nov-05		8.05	997	320	37	2.2	< 2	6		< 0.05	< 0.02	54	< 1	99	66	110	< 0.05	0.02	< 0.05	1		
	01-Jun-06 04-Dec-06		8.1	1040	314	32 35	2.3	< 2 < 2	11		< 0.05	< 0.02	50 50	< 1 < 1	129 99	67 62	87	< 0.02		< 0.05	0.94 1.1		
	30-Mar-07		8.1	976	327		2.8		< 4 5		< 0.05	< 0.02				6∠ 71	99	< 0.02		< 0.05	1.1		
	30-Mar-07 14-Jun-07		8.2 8.1	1030 1010	308 303	36 40	2.6	I	5	0.4 0.5	0.08	< 0.02 < 0.02	55 54	< 1 < 1	120 110	71 79	100 100	< 0.02 < 0.02		< 0.05	1.1		
	05-Dec-07		8			40 37	2.7 2.8	< 2 < 2	12	0.3	< 0.05		62	< 1	150	68		< 0.02		< 0.05	1.1	< 0.01	1.9
	25-Jun-08		8.1	1130 1050	306 291	37	2.8	< 2	15	0.2	0.03		52 52	< 1	130	81	110 100	< 0.02		< 0.1 < 0.1	1.2	< 0.01	1.9
Ī	09-Dec-08		8	997	310	33	2.5	< 2	4		< 0.12	< 0.02	52 56	< 1	110	59	91	< 0.02	1	< 0.1	1.1	< 0.01	1.2
	25-Jun-09		7.8	943	298	32	2.3	< 2	4		< 0.05	< 0.02	54	< 1	97	61	90			< 0.1	1.1	< 0.01	1.1
	16-Dec-09		7.7	1010	312	35	2.5	< 2	8		< 0.05	0.02	46	< 1	110	62	90	< 0.02		< 0.1	1.1	< 0.01	1.1
	24-Jun-10		8	960	292	33	2.3	< 2	< 4		< 0.05	< 0.02	50	< 1	110	63	93	< 0.02		< 0.1	0.97	< 0.01	1.1
	22-Dec-10		7.73	953	304	35	2.6	< 2	< 4		< 0.05	< 0.02	43	< 1	95	64	97	< 0.02		< 0.1	1.1	< 0.01	0.8
	15-Jun-11		7.73	1030	282	33	2.5	< 2	14		< 0.05	< 0.02	56	< 1	140	79	91	< 0.02		< 0.1	1.1	< 0.01	0.6
	13-Juli-11 14-Dec-11		7.99	1000	296	32	2.7	< 2	< 4		< 0.05	0.02	38	< 1	110	73	91	< 0.02			1.4	< 0.01	
	14-DCC-11	WIMA	1.77	1000	270	34	2.1	\	` +	0.5	. 0.03	0.02	30	\ 1	110	13	ופ	\ 0.02	\ U.U1	\ U.1	1.4	< U.U1	0.3

					· oaii			y		2011010		, 5.0	Ouc	· P · · · · · ·	<u> </u>				<u> </u>	••••			7-	20//1
	Date	Lab	рН	Cond-	Alk	Mg	K	ВС	DD	COD	TKN	NH3-N	Total-P	SO4	Phenol	CI	Na	Ca	Fe	В	Р	Zn	NO2	NO3
				uctivity	mg/L	mg/L	mg/L	mg		mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
nitor	11-Feb-97	WBL	7.81			16.4	0.99	C	.69	7	0.19	< 0.01	< 0.011	17.6	2.23	7.17	4.37	61.6	0.12	0.02	< 0.03	0.008		
9-96	26-Mar-97	WBL	8.04	474	186	18.7	0.86	< 0	.34	14	0.24	< 0.01	< 0.011	23.4	< 0.72	6.34	7.96	68.6	0.07	0.04	< 0.03	0.03		
twash	25-Jun-97	WBL	8.01	582	205	20.7	0.95	< 0	.34	< 7	< 0.07	< 0.01	< 0.011	26.7	< 0.72	6.93	7.38	71	0.03	0.03	< 0.03	0.02		
	01-Oct-97	WBL	7.92	490	179	21.7	0.84		1.2	13	0.1	< 0.01	< 0.011	22.4	< 0.72	9.82	1.68	74.5	0.03	0.02	0.03	0.008		11
	11-Dec-97	WBL	7.85	488	171	21.8	0.67	< 0	.34	< 7	0.22	< 0.01	< 0.011	20.4	< 0.72	13.6	1.48	70.3	0.03	< 0.02	0.04	0.005		8.7
	31-Mar-98		8.38	557	195	25.9	0.7	-	.34			0.019		26.7	< 0.72	13.1	2.2	71.7	0.01	0.03	< 0.01	0.005		13
	24-Jun-98		7.79	536	193	21.6	0.78	1	.38			< 0.019		26	< 0.72	12.5	2.83	76.2	0.03	0.05	< 0.006	0.007		12
	02-Oct-98		7.7	610	210	29	< 1	<	2	< 5	0.4	< 0.1	< 0.02	29	< 1	19	2	85	< 0.05	< 0.05		< 0.01		14
	03-Dec-98		7.6	590	230	24	< 1	<	2	< 5	0.31	< 0.1	0.17	23	< 2	11	2.5	79	< 0.05	< 0.05		0.01		9.9
	29-Jun-99		8.31	528	220	19.6	1		1.2	10	0.21	< 0.02	0.004	24.6		23.3	8.2	79.7	< 0.01	0.01	< 0.1	< 0.005		
	09-Dec-99		7.65	649	251	20.2	< 1		0.5	6	0.16	0.06	0.004	17	< 1	31	14.6	93.2	0.01	0.03		0.02		
	21-Jun-00		7.71	414	234	14.7	0.8	< (0.5	5	0.28	< 0.03	< 0.002	12.2	< 1	12	8.9	77.4	< 0.03		< 0.05	< 0.005		
	07-Dec-00		7.91	408	249	15	0.3		1.1	5	0.13	0.04	< 0.002	13.7	< 1	13.5	8.7	69.3	< 0.03	0.06		0.17		
	27-Jun-01	-	7.9	570	248	18.3	< 1		1.7	< 5	0.14	< 0.03	0.004	25	< 1	20	14.2	86	< 0.01	0.06	< 0.1	0.21		
	03-Dec-01		7.93	482	223	15.3	1.3		0.9	< 5	0.39	< 0.03	0.008	10.8	< 1	15.7	20.2	72	0.03	0.03	< 0.1	0.18		
	04-Jun-02		8.08	517	236	16.1	1		0.5	5	0.43	< 0.03	0.005	17.1	< 1	21.7	16.7	79.2	0.01	0.05	< 0.1	< 0.005		
	03-Dec-02		8.08	595	232	20.8	1		0.5	5	0.3	< 0.03	0.012	15.8	< 1	33.5	10.9	84.5	< 0.01	0.03	< 0.1	0.01		
	02-Jun-03		7.76	666	229	20.6	< 1		0.5	7	0.45	0.03	< 0.001	11	4	64.1	20.7	90.2	< 0.01	0.04		0.01		
	01-Dec-03		8.03	701	236	21.6	< 1		0.5	12	0.5	< 0.03	< 0.002	13.4	< 1	83.7	29.2	87	< 0.01		< 0.1	0.02		
	08-Jun-04			591	235	20.1	< 1		0.6	6	0.28	< 0.03	0.002	28.8	< 1	39.7	18.4	89.5	< 0.01	0.05			< 0.2	6.4
	30-Nov-04		7.78	671	274	19.9	1	< (0.5	9	0.34	< 0.03	0.003	27.8	< 1	41.2	28.6	87.9	< 0.01	0.02		< 0.005		
	03-Aug-05		8.08	584	259	22	1	<	2	13	0.8	< 0.05	< 0.02	24	< 1	9	11	87	< 0.05	0.03	0.07	< 0.005		
	28-Nov-05		8.17	714	295	18		<	2	10	0.6	< 0.05	< 0.02	21	< 1	38	34	100	< 0.05	0.04	< 0.05	0.006		
	01-Jun-06																							
	04-Dec-06		8.1	686	291	22	1.2	<	2	< 4	0.3	0.07	< 0.02	20	< 1	34	27	86	< 0.02		< 0.05	0.005		
	30-Mar-07		8.2	691	296	22	1.1	<	2	< 4	0.4	0.06	< 0.02	27	< 1	23	15	81	< 0.02	0.04	< 0.05	< 0.005		
	14-Jun-07		8.1	703	322	30	1.3	<	2	4	0.4	0.09	< 0.02	22	< 1	17	18	100	< 0.02		< 0.05	< 0.005		
	05-Dec-07		8.1	653	305	26	1	<	2	12	0.3	< 0.05	< 0.02	27	< 1	6	6.7	97	< 0.02	0.03	< 0.1	< 0.005		5.3
	25-Jun-08		8.3	738	246	31	1.5	ļ	_	6	0.6	1	< 0.02	26	< 1	23	14	95	< 0.02	0.04	< 0.1	1	< 0.01	6.6
	09-Dec-08		8	700	317	30	1.1		2	8	0.5		< 0.02	27	< 1	18	9.7	93	< 0.02				< 0.01	5.6
	25-Jun-09		7.9	690	317	29	1.3	<	2	4	0.4	< 0.05	< 0.02	22	< 1	15	13	99	< 0.02	0.04	< 0.1		< 0.01	5
	16-Dec-09		8	691	348	34	1.2	<	2	8	0.3	< 0.05	< 0.02	23	< 1	5	9.6	100	< 0.02	0.04	< 0.1	0.006	< 0.01	3.9
	24-Jun-10							I																
	22-Dec-10																							
	15-Jun-11	N/A						I																

ſ							ī	_		ı			 			I			_			_			1100
	Date	Lab	рН	Cond-	Alk	Mg	K		3OD		OD	TKN	NH3-N	Total-P	SO4	Phen		Na	Ca	Fe	В	Р	Zn	NO2	NO3
				uctivity	mg/L	mg/L	mg/L	m	ng/L	m	g/L	mg/L	mg/L	mg/L	mg/L	ug/l	L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Monitor	27-Jun-01	Philip-	7.84	662	259	31.5	< 1	<	0.5	<	5	0.14	0.07	0.009	103	< 1	1 22	9.9	93.7	0.02	0.02	< 0.1	0.02		
10-00	03-Dec-01	Philip-	8.01	666	267	30.7	< 1		8.0	<	5	0.19	0.04	0.01	85.8	< 1	25.8	12	95.1	0.04	0.02	< 0.1	0.06		
Bedrock	04-Jun-02	-	8.23	595	239	28.2	2	<	0.5	<	5	0.19	0.04	0.013	76	< 1		9.2	84.4	0.02	0.02	< 0.1	< 0.005		
	03-Dec-02	-	8	660	255	29.5	1	<	0.5		7	0.42	0.06	0.013	76.8	< 1		11.3	87.7	0.03		< 0.1	< 0.005		
	02-Jun-03	-	7.78 8.09	659	242	29.1	< 1	<	0.5 0.8	<	5 5	0.17	0.05	< 0.001	25.2 78.5	1	_	10	87 85.2	0.03	0.01	. 01	< 0.005		
	01-Dec-03 09-Jun-04	-	7.78	626 600	236 238	28.2 28.2	1.1	<	0.6	<	5 5	0.21 0.13	< 0.03	0.009 0.005	76.5 82.4	< 1 < 1		10.2 9.7	91	0.04	0.02 0.02	< 0.1	0.02	< 0.2	- 02
	30-Nov-04		7.78	626	245	27.7	2	<	0.5	<	5	0.13	0.08	0.005	77.7	< 1	_	10.4	83.5	0.07	0.02		< 0.005	< U.Z	< 0.2
	03-Aug-05		8.18	599	240	31	1.2	<	2	<	4	0.13	< 0.05	< 0.003	67	< 1	_	10.4	86	< 0.05	0.02	< 0.05	< 0.005		
	28-Nov-05		8.07	616	251	31	1.2	<	2		5	0.2	< 0.05	< 0.02	71	< 1		10	90	< 0.05			< 0.005		
	01-Jun-06		8.1	646	254	30	1.1	<	2	<	4	1	0.09	< 0.02	77	< 1		9.1	88	0.03	0.01		< 0.005		
	04-Dec-06	MAX	8.2	651	257	28	1	<	2		4	0.3	0.11	< 0.02	82	< 1	1 17	8.6	83	0.02	0.01	< 0.05	< 0.005		
	30-Mar-07	MAX	8.2	648	249	27	1.1	<	2	<	4	0.5	0.12	< 0.02	75	< 1	19	7.7	79	0.02	0.01	< 0.05	< 0.005		
	14-Jun-07	MAX	8.1	656	246	29	1.1	<	2		5	0.2	0.15	< 0.02	81	< 1	1 21	8.9	84	0.03	0.02	< 0.05	< 0.005		
	05-Dec-07	MAX	8.2	652	239	28	1.1	<	2		11	0.2	0.07	< 0.02	81	< 1		8.8	86	< 0.02	< 0.01	< 0.1	< 0.005	< 0.01	< 0.1
	25-Jun-08		8.2	654	237	28	1.1				11	0.3	0.11	< 0.02	82	< 1		9.5	86	< 0.02		< 0.1			< 0.1
	09-Dec-08		8.1	679	238	29	1.1	<	2	<	4	0.2	0.07	< 0.02	91	< 1		11	85	0.03	0.02	< 0.1	< 0.005		< 0.1
	25-Jun-09		8	631	240	29	1.1	<	2	<	4	0.3	< 0.05	< 0.02	80	< 1		8.8	87	0.03	0.02	< 0.1	< 0.005		< 0.1
	16-Dec-09 24-Jun-10		8	685	239	32	1.2	<	2	<	4	0.2	0.06	0.02	84	< 1	1 28	14	94	0.04	0.02	< 0.1	< 0.005	< 0.01	< 0.1
	24-Jun-10 22-Dec-10																								
	15-Jun-11																								
	14-Dec-11																								
Monitor	27-Jun-01	Philip-	8.13	528	263	25.3	2		2.9	<	5	0.28	0.13	0.03	46.8	< 1	7.1	25.9	68.7	0.34	0.1	< 0.1	0.14		
11a-00	03-Dec-01	_	7.99	512	262	24.9	2		1.2	<	5	0.32	0.12	0.007	34.9	< 1		12	83.2	0.04		< 0.1	0.25		
Bedrock	04-Jun-02	Philip-	8.13	454	241	23.7	2		0.9	<	5	0.41	0.13	0.01	26.7	< 1	5	6	64.4	0.04	0.03	< 0.1	< 0.005		
Boarook	03-Dec-02	Philip-	8.12	500	253	24.3	3	<	0.5	<	5	0.33	0.12	0.009	25.9	< 1	1 4	6.1	67	< 0.01	0.03	< 0.1	0.01		
	02-Jun-03		7.71	515	231	24.7	2	<	0.5	<	5	0.38	0.11	< 0.001	31.8	ç		5.8	67.5	< 0.01	0.03		< 0.005		. !
	01-Dec-03	•	8.02	507	233	23.6	1.6		1		9	0.52	< 0.03	0.004	35.9	< 1	-	5.6	64.8	0.02	0.04	< 0.1	< 0.005		
	08-Jun-04	-	7.81	478	236	24.2	1	<	0.5		6	0.26	0.1	0.003	33.4	< 1		5.4	80.3	0.05	0.03		0.19	< 0.2	< 0.2
	30-Nov-04	-	7.96 8.13	494	241 238	23.8	1 1.9	< <	0.5 2		10 8	0.53	0.13	0.007 < 0.02	29.4	< 1 < 1		5.1 5.5	66 62	< 0.01	0.02 0.04	0.08	< 0.005 < 0.005		
	03-Aug-05 28-Nov-05		8.2	471 470	248	25 26	1.9	<	2		10	0.6 0.4	0.06 0.14	< 0.02 < 0.02	20 26	< 1 < 1		5.5	70	< 0.07	0.04	< 0.05	< 0.005		
	01-Jun-06		8.1	520	250	26	2	<	2	<	4	0.4	0.14	< 0.02	25	< 1		5.2	72	< 0.03	0.03	< 0.05	< 0.005		
	04-Dec-06		8.1	532	252	25	1.8	<	2	<	4	0.3	0.12	< 0.02	38	< 1		5.3	70	< 0.02	0.04	< 0.05	< 0.005		
	30-Mar-07		8.3	523	244	23	1.8	<	2	<	4	0.4	0.26	< 0.02	29	< 1		4.3	64	< 0.02		< 0.05	< 0.005		
	14-Jun-07	MAX	8.3	539	242	27	1.8	<	2	<	4	0.4	0.24	< 0.02	32	< 1	1 12	5.2	77	< 0.02	0.03	< 0.05	0.02		
	05-Dec-07	MAX	8.2	534	236	25	1.9	<	2		11	0.2	0.12	< 0.02	33	< 1	1 12	6	69	< 0.02	0.03	< 0.1	< 0.005	< 0.01	< 0.1
	25-Jun-08	MAX	8.2	534	231	27	2.3				16	0.6	0.21	< 0.02	30	< 1	15	6.5	73	< 0.02	0.03	< 0.1	< 0.005	< 0.01	< 0.1
	09-Dec-08		8.1	526	237	23	1.7	<	2	<	4	0.3	0.1	< 0.02	34	< 1	.	4.9	65	< 0.02		< 0.1		< 0.01	0.1
	25-Jun-09		8	559	232	27	1.8	<	2		11	0.2	< 0.05	< 0.02	44	< 1		5.2	74	< 0.02	0.04	< 0.1	< 0.005	< 0.01	0.1
	15-Dec-09		8	539	233	25	1.8	<	2		5	0.1	< 0.05	0.03	34	< 1		5.2	69	< 0.02		< 0.1		< 0.01	0.2
	28-Jun-10		8.1	546	225	25	1.8	<	2		5	0.2	< 0.05	0.03	39	< 1		4.8	69 75	< 0.02	0.04	< 0.1		< 0.01	0.1
	22-Dec-10		7.85	575	227	28 27	1.9	<	2	<	4 10	0.3	0.24	< 0.02	38 51	< 1 < 1		5.4	75 75	< 0.02		< 0.1 < 0.1	< 0.005		< 0.1
	15-Jun-11 14-Dec-11		7.97 8.12	568 588	228 230	27	1.8 1.8	< <	2	<	4	0.2	0.1 0.1	< 0.02	35	< 1 < 1		5.3 5.4	75 75	0.25	0.03	< 0.1 < 0.1	< 0.005		< 0.1 < 0.1
	14-Dec-11	IVIAA	0.12	200	230	21	1.8	<		<	4	0.3	0.1	0.03	აა	`	ı <u>24</u>	ე.4	73	∪.∠1	0.03	< U.I	0.01	0.05	< U.1

					1			_							1			1						
	Date	Lab	рΗ	Cond-	Alk	Mg	K	ВО	D	COD	TKN	NH3-N	Total-P	SO4	Phenol	CI	Na	Ca	Fe	В	Р	Zn	NO2	NO3
			-	uctivity	mg/L	mg/L	mg/L	mg	/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	27.1 0	1 DI :1:	7.00	798	Ū		2	Ŭ	.2		0.22		0.017			54		-	-			0.11	Ŭ	<u> </u>
<u>Monitor</u>	27-Jun-02 03-Dec-01	-	7.99 7.98	1081	264 266	25.6 28.4	2.2			5 6	0.22	< 0.03 < 0.03	0.017	55 50.4	< 1 < 1	155	54.1 92.8	83.1 100	0.03 < 0.01		< 0.1 < 0.1	0.11		
11b-00	04-Jun-02		8.02	751	252	24.7	1		.4).9	6	0.28	< 0.03	0.023	35	< 1	69.3	40.3	91.4	< 0.01		< 0.1	0.01		
Outwash	03-Dec-02	-	8	813	250	28.2	2		i.9).5	6	0.39	< 0.03	0.003	42.2	< 1	68.9	26.8	103	< 0.01		< 0.1	0.02		
	03-Dec-02	-	7.72	873	226	28.1	2).6	5	0.37	0.03	< 0.022	48.5	7	70.6	37.2	103	< 0.01	0.13	< U.1	0.00		
	01-Dec-03	-	8.1	629	185	13.1	1.1).5	12	0.51	< 0.03	0.001	43	< 1	58.8	58.9	51.6	0.01		< 0.1	0.03		
	08-Jun-04	-	7.9	887	192		< 1).7	23	0.97	0.03	0.007	37.7	< 1	165	93.4	79.2	0.02	1.09	. 0.1	0.13	< 0.2	4.7
	30-Nov-04		8	781	212	15.1	1).5	7	0.26	< 0.03	0.002	29.4	< 1	118	83.2	60.6	< 0.01	0.57		0.01	\ O.L	
	03-Aug-05		8.04	919	235	21	1.6		2	8	0.8	< 0.05	< 0.02	37	< 1	139	88	84	< 0.05		< 0.05	0.03		
	28-Nov-05		8.12	1210	235	21	1.0		2	< 4	0.7	< 0.05	< 0.02	37	< 1	192	150	91	< 0.05		< 0.05	0.02		
	01-Jun-0		8.1	961	268	18	1.4		2	8	0.6	< 0.05	0.05	40	< 1	129	120	69	< 0.02		< 0.05	0.02		
	04-Dec-06		8.2	899	279	14	1.2		2	< 4	0.5	< 0.05	< 0.02	48	< 1	92	110	53	< 0.02		< 0.05	0.01		
	30-Mar-07		8.3	780	274	12	1		2	7	0.4	0.09	< 0.02	34	< 1	61	95	44	< 0.02		< 0.05	< 0.005		
	14-Jun-07	7 MAX	8.2	756	264	15	1.3	<	2	7	0.4	0.08	< 0.02	36	< 1	54	96	60	< 0.02		< 0.05	0.02		
	05-Dec-07	7 MAX	8.2	755	259	16	1.5	<	2	12	0.3	< 0.05	5.2	27	< 1	66	77	65	< 0.02		< 0.1	0.01	< 0.01	3.4
	25-Jun-08	8 MAX	8.2	1100	250	19	1.4			6	0.5	0.08	< 0.02	25	< 1	180	110	81	< 0.02	0.39	< 0.1	0.02	< 0.01	5.5
	09-Dec-08	8 MAX	8.1	939	264	16	1.4	<	2	5	0.4	< 0.05	0.03	27	< 1	110	110	63	< 0.02	0.9	< 0.1	0.02	< 0.01	4.4
	25-Jun-09	9 MAX	8	1130	253	18	1.4	<	2	< 4	0.3	< 0.05	< 0.02	25	< 1	190	140	74	< 0.02	0.85	< 0.1	0.02	< 0.01	3.8
	15-Dec-09	9 MAX	8	890	250	17	1.5	<	2	< 4	0.2	< 0.05	0.03	19	< 1	110	89	71	< 0.02	0.44	< 0.1	0.02	< 0.01	3.5
	28-Jun-10	0 MAX	8	966	243	17	1.5	<	2	6	0.3	< 0.05	< 0.02	35	< 1	140	95	75	< 0.02	0.24	< 0.1	0.02	< 0.01	3.3
	17-Dec-10	0 MAX	7.96	966	255	18	1.5	<	2	< 4	0.2	< 0.05	< 0.02	38	< 1	130	110	75	< 0.02	0.57	< 0.1	0.02	< 0.01	3.3
	14-Jun-1		8.01	1140	224	16	1.9		2	17	0.5	< 0.05	< 0.02	30	< 1	190	140	73	< 0.02		< 0.1	0.01	< 0.01	3
<u>.</u>	14-Dec-11	1 MAX	8.16	975	238	15	1.4	<	2	< 4	1	< 0.05	0.19	25	< 1	140	110	64	1.9	0.49	< 0.1	0.02	< 0.01	2.7
Monitor	27-Jun-0	1 Philip-	7.5	888	390	43.6	14	1	.2	7	0.92	0.45	0.006	96.2	< 1	82.8	22.6	109	< 0.01	0.07	< 0.1	1.44		
12a-00	03-Dec-01	-	7.77	920	389	44.7	10.1	1	.2	16	0.75	0.19	0.008	50.6	< 1	24.7	19.7	110	< 0.01		< 0.1	1.17		
Bedrock	04-Jun-02		8.33	889	346	40.5	15	=	0.6	10	1.34	0.64	0.007	44.5	< 1	44.3	20.6	123	0.04	1 1	< 0.1	1.51		ļ
	03-Dec-02		7.78	4365	372	41.2	15).5	24	4.22	4.23	0.012	55.7	< 1	1200	763	109	< 0.1	-	< 1	0.96		
	02-Jun-03		7.37	915	350	40.4	18	< 0).5	11	1.04	0.41	0.002	46.3	10	55.5	36.2	103	< 0.01	0.02		1.17		ļ
	01-Dec-03							_	_															
	08-Jun-04	-	7.53	845	319	37	13.9).5	10	0.89	0.47	0.009	45.5	< 1	45.3	23	106	< 0.01	0.02		1.15	< 0.2	23
	30-Nov-04		7.57	823	321	37.7	13		0.5	13	0.67	0.13	0.002	50.5	< 1	38.5	16.4	98.4	< 0.01	0.02	0.00	1		
	03-Aug-05		7.93	891	370	44	16		2 2	9 54	0.6	0.17	< 0.02	40	< 1 < 1	42 30	27 20	110	< 0.05	0.03	0.08	1.1 0.97		
	28-Nov-05 01-Jun-06		7.88 7.9	791 858	331 338	40 39	16		2	13	2.5 1.2	0.16 0.24	< 0.02 < 0.02	54 40	< 1 < 1	34	20 25	100 110	< 0.05 < 0.02	0.02 0.02	< 0.05 < 0.05	1.1		
	04-Dec-06		7.9	1020	423	39 41	22		2	8	1.2	0.24	< 0.02	49	< 1	41	34	110	< 0.02	0.02	< 0.05	1.1		
	30-Mar-07		8.1	938	376	33	23		2	5	1.1	0.30	< 0.02	49	< 1	35	26	110	< 0.02		< 0.05	1.2		
	14-Jun-07		8	938	353	33 37	17		2	8	3.5	0.47	< 0.02	45	< 1	40	29	100	< 0.02		< 0.05	1.1		
	05-Dec-07		8	796	343	34	11		2	12	0.4	0.24	0.02	39	< 1	34	17	94	< 0.02		< 0.03	0.92	< 0.01	1.4
	25-Jun-08		8	796	343	32	13	`	_	6	0.4	0.07	< 0.02	36	< 1	23	18	93	< 0.02		< 0.1	0.99	< 0.01	8.9
	09-Dec-08		7.9	816	343	30	12	<	2	9	0.5	0.06	< 0.02	40	< 1	27	18	96	< 0.02		< 0.1	0.92	0.02	5.9
	25-Jun-09		7.7	707	298	30	13		2	4	0.5	0.05	< 0.02	38	< 1	13	15	83	< 0.02		< 0.1	0.81	0.01	8
	16-Dec-09		7.6	742	312	37	10		2	10	0.3	< 0.05	< 0.02	39	< 1	31	13	93	< 0.02		< 0.1	0.81	0.03	1.4
	24-Jun-10		7.9	699	304	30	14		2	7	0.6	< 0.05	< 0.02	35	< 1	11	15	86	< 0.02		< 0.1	0.84	0.02	5.5
	20-Dec-10		7.75	658	304	32	8.7		2	7	0.4	< 0.05	< 0.02	34	< 1	9	6.5	87	< 0.02		< 0.1	0.77	0.02	1.7
	15-Jun-1		7.82	603	283	26	12	<	2	12	0.3	< 0.05	< 0.02	26	< 1	5	8.4	77	< 0.02		< 0.1	0.74	< 0.01	3
	15-Dec-11	1 MAX	8.01	701	318	33	11	<	2	< 4	0.8	< 0.05	0.06	32	< 1	13	11	92	0.55	0.01	< 0.1	0.82	< 0.01	2.3

								_	i				_		ı.								
	Date	Lab	рΗ	Cond-	Alk	Mg	K	BOD	COD	TKN	NH3-N	Total-P	SO4	Phenol	CI	Na	Ca	Fe	В	Р	Zn	NO2	NO3
				uctivity	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Monitor	27-Jun-01	Dhilin	7.77	760	354	27.2	4	0.9	11	0.45	0.13	0.026	48.9	< 1	40	25.2	106	0.62	0.1	< 0.1	0.37	_	-
Monitor	03-Dec-01		7.83	435	204	12.8	3.5	1.2	12	0.43	< 0.13	0.020	21.3	< 1	11.7	12.3	54.8	0.02	0.1	< 0.1	0.37		
12b-00	04-Jun-02	-	8.51	1144	353	25.6	11	2.9	48	10.8	9.3	0.053	30.1	< 1	169	94.7	97	0.02	0.09	< 0.1	0.35		
Outwash	03-Dec-02	•	7.76	1187	420	37.2	5	1.2	32	1.41	0.71	0.239	35.4	< 1	135	112	110	16.7	0.05	0.3	0.006		
	02-Jun-03	-	7.38	1108	398	33.7	3	92	88	1.33	0.57	0.004	4.5	157	117	66	118	22.7	0.11		0.02		
	01-Dec-03	•																					
	08-Jun-04	Philip-	7.56	710	339	24.9	4.1	2.1	29	1.94	1.46	0.151	20.1	< 1	51	33.8	118	11	0.09		0.34	< 0.2	0.2
	30-Nov-04	Philip-	7.62	687	341	24.4	4	< 0.5	24	1.03	0.43	0.046	32.3	< 1	22.7	16.4	96.7	3.25	0.08		0.08		
	03-Aug-05	Maxx	7.78	610	306	21	4.2	< 3	27	2.4	1.07	0.1	20	1	14	16	90	7.1	0.09	0.17	0.03		
	28-Nov-05	Maxx	7.93	647	345	26		< 2	14	1	0.35	< 0.02	28	< 1	13	13	100	2.1	0.07	< 0.05	0.32		
	01-Jun-06	MAX	8.1	584	292	19	2.5	< 2	8	1	0.49	0.02	24	< 1	10	12	72	1.7	0.05	0.05	0.15		
	04-Dec-06		7.9	648	328	22	3.2	< 2	5	0.8	0.43	< 0.02	26	< 1	11	14	92	0.78	0.07	< 0.05	0.21		
	30-Mar-07		8.1	526	257	15	2.2	< 2	8	0.7	0.39	< 0.02	18	< 1	8	10	76	1.1	0.04	< 0.05	0.22		
	14-Jun-07		8	685	337	22	3	< 2	16	0.6	0.44	< 0.02	30	< 1	11	13	93	4.5	0.05	< 0.05	0.22		
	05-Dec-07		7.9	657	305	22	2.8	< 2	11	0.3	< 0.05	0.02	27	< 1	7	8.4	95	< 0.02	0.04	< 0.1	0.58	< 0.01	4.5
	25-Jun-08		8.2	482	235	16	2.7		5	0.6	0.16	< 0.02	22	< 1	5	8.9	70	< 0.02	0.07	< 0.1	0.61	< 0.01	0.2
	09-Dec-08		7.9	707	356	25	4	< 2	9	0.5	< 0.05	< 0.02	27	< 1	6	13	100	< 0.02		< 0.1	0.74	< 0.01	1.4
	25-Jun-09		7.7	587	297	20	3	< 2	< 4	0.4	0.12	0.03	21	< 1	4	9.3	87	< 0.02	0.05	< 0.1	0.61	< 0.01	0.4
	16-Dec-09		7.5	764	383	31	4.7	< 2	5	0.5	< 0.05	< 0.02	25	< 1	-	9	120	< 0.02		< 0.1	0.65	< 0.01	3.6
	24-Jun-10 17-Dec-10		7.9 7.68	532 712	263 353	18 30	2.8 3.9	< 2 < 2	11 9	0.5 0.4	0.07	< 0.02 < 0.02	13 20	< 1 < 1	8 7	9.5 7.7	80 100	< 0.02 < 0.02	0.05 0.06	< 0.1 < 0.1	0.54 0.47	< 0.01 < 0.01	< 0.1
	17-Dec-10 15-Jun-11		7.84	516	260	18	2.6	< 2	14	0.4	0.09	0.02	16	< 1	5	7.7	77	< 0.02		< 0.1	0.47	< 0.01	0.1
	15-Juli-11 15-Dec-11		8.01	749	354	29	3.9	< 2	14	0.3	< 0.05	0.02	32	< 1	8	9.6	110	6.1		< 0.1	0.33	< 0.01	2.4
Monitor	03-Dec-01		7.95	913	272	38.8	2.9	0.8	< 5	0.21	0.09	0.008	105	< 1	83.9	39.9	106	0.77		< 0.1	0.11	1 0.01	
Monitor	04-Jun-02		8.08	851	259	35	2.9	< 0.5	< 5	0.21	0.09	0.005	103	< 1	85.5	38	97.7	0.77	0.04	< 0.1	< 0.005		
13a-01	03-Dec-02	-	7.99	902	262	35.6	2	< 0.5	< 5	0.24	0.1	0.008	104	< 1	85.3	40.3	99.8	0.81		< 0.1	< 0.005		
Bedrock	02-Jun-03		7.77	921	248	35.2	2	< 0.5	< 5	0.23	0.11	< 0.001	111	9	88.5	41	100	0.45	0.03		0.02		į
	01-Dec-03	-	8.15	853	250	34.5	2.3	< 0.5	6	0.25	< 0.03	0.004	110	< 1	97.1	39	109	0.74	0.05	< 0.1	0.19		
	09-Jun-04		7.81	854	254	34.3	2.1	< 0.5	< 5	0.19	0.14	0.007	119	< 1	97.1	39.7	112	0.64	0.04		0.12	< 0.2	< 0.2
	30-Nov-04	-	7.96	897	254	33.9	2	< 0.5	6	0.25	0.1	0.006	115	< 1	101	40.8	98.8	0.65	0.04		< 0.005		
	03-Aug-05	Maxx	8.02	889	252	36	2.5	< 2	4	0.5	0.19	< 0.02	107	< 1	93	44	100	0.58	0.04	< 0.05	< 0.005		
	28-Nov-05	Maxx	8	884	263	37		< 2	< 4	0.2	0.12	< 0.02	101	< 1	87	44	110	0.59	0.04	< 0.05	< 0.005		
	01-Jun-06	MAX	8.1	929	266	33	2.2	< 2	5	0.5	0.17	< 0.02	106	< 1	111	40	94	0.43	0.05	< 0.05	< 0.005		
	04-Dec-06	MAX	8	967	268	35	2.5	< 2	< 4	0.3	0.18	< 0.02	111	< 1	100	43	100	0.5	0.04	< 0.05	< 0.005		
	30-Mar-07	MAX	8.1	958	260	32	2.4	< 2	5	0.3	0.21	< 0.02	103	< 1	94	39	90	0.5	0.04	< 0.05	< 0.005		
	14-Jun-07	MAX	8.2	967	258	34	2.5	< 2	4	0.4	0.21	< 0.02	110	< 1	97	44	100	0.43	0.04	< 0.05	< 0.005		
	05-Dec-07		8.1	939	251	34	2.4	< 2	8	0.2	0.17	< 0.02	103	< 1	97	42	98	0.42		< 0.1	< 0.005	< 0.01	
	25-Jun-08		8.2	967	247	37	2.6		11	0.5	0.19	< 0.02	120	< 1	100	49	100	0.3		< 0.1	< 0.005	< 0.01	
	09-Dec-08		8	965	251	34	2.5	< 2	< 4	0.3	0.14	< 0.02	124	< 1	95	45	97	0.32		< 0.1	< 0.005	< 0.01	
	25-Jun-09		7.9	969	248	34	2.6	< 2	< 4	0.2	0.13	< 0.02	120	< 1	96	44	100	0.54		< 0.1	< 0.005		< 0.1
	16-Dec-09		7.8	955	248	35	2.7	< 2	7	0.3	0.12	0.03	110	< 1	95	45	100	0.37		< 0.1	< 0.005		< 0.1
	28-Jun-10		7.9	953	244	32	2.5	< 2	9	0.4	0.1	0.02	120	< 1	92	40	95	0.4	0.05	< 0.1	< 0.005		< 0.1
	20-Dec-10		7.76	952	243	34	2.6	< 2	6	0.3	0.13	< 0.02	100	< 1	95	43	100	0.2	0.05	< 0.1	< 0.005		< 0.1
	16-Jun-11		7.95	936	241	36	2.7	< 2	13	0.2	0.14	< 0.02	120	< 1	95	44	100	0.39	0.04	< 0.1	< 0.005		< 0.1
	13-Dec-11	MAX	8.02	980	245	37	2.7	< 2	< 4	0.2	0.08	0.04	110	< 1	93	44	100	0.44	0.04	< 0.1	< 0.005	< 0.01	< 0.1

	Date	Lab	рΗ	Cond-	Alk	Mg	K	В	DC	C	OD	TKN	NH3-N	Total-P	SO4	Phenol	CI	Na	Ca	Fe	В	Р	Zn	NO2	NO3
				uctivity	mg/L	mg/L	mg/L	m	g/L	m	g/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Monitor	03-Dec-01	Philip-	7.93	655	296	29.7	2.2		1.4	<	5	0.23	< 0.03	0.223	50.4	< 1	14.9	4.8	84.7	0.01	0.02	< 0.1	0.02		
13b-01	04-Jun-02	-	8.17	576	299	30.4	2		0.7		11	0.75	< 0.03	0.006	38	< 1	7	5	88	< 0.01	0.08	< 0.1	0.08		
Outwash	03-Dec-02		7.93	683	300	31.6	2		0.5	<	5	0.18	< 0.03	0.213	50.4	< 1	17.4	7.2	92.8	0.01		< 0.1	0.02		
	02-Jun-03		7.65	699	287	33.6	1		0.7		9	0.56	< 0.03	< 0.001	53.8	12	23.3	4.9	97.2	< 0.01	0.01		0.04		
	01-Dec-03		7.8	665	375	35.8	1.4		0.8		5	0.2	< 0.03	0.036	29.4	< 1	11.9	7.5	103	0.05	-	< 0.1	0.06		
	09-Jun-04		7.72	610	291	50	< 1		0.5		7	0.48	< 0.03	0.004	44.8	< 1	16.7	5.7	105	0.05	0.02		0.25	< 0.2	4.6
	30-Nov-04 03-Aug-05		7.71 7.98	810 800	369 345	35.4 38	2 2	< <	0.5 2		20 19	0.91	< 0.03 < 0.05	0.002 < 0.02	29.8 25	< 1 < 1	51.8 55	19.9 12	110 110	< 0.01	0.04 0.01	< 0.05	0.06 0.06		
	28-Nov-05		7.98 8.06	800 846	506	38 45	2	<	2		7	1.1 0.5	< 0.05	< 0.02	25 17	< 1 < 1	11	12 14	140	< 0.05		< 0.05	0.06		
	01-Jun-06		8	1090	403	43	1.7	<	2		, 12	0.3	< 0.05	< 0.02	21	< 1	132	30	120	< 0.03		< 0.05	0.09		
	04-Dec-06		7.9	1070	471	41	2	<	2	<	4	0.7	0.03	< 0.02	26	< 1	65	32	140	< 0.02		< 0.05	0.09		
	30-Mar-07		8.1	977	419	38	1.9	<	2	<	4	0.4	0.08	< 0.02	22	< 1	65	40	130	< 0.02		< 0.05	0.07		
	14-Jun-07		8.1	971	383	35	2	<	2		5	0.4	0.09	< 0.02	24	< 1	79	38	130	< 0.02		< 0.05	0.07		
	05-Dec-07	MAX	8	1260	363	36	2	<	2		14	0.2	< 0.05	< 0.02	49	< 1	160	88	120	< 0.02	0.02	< 0.1	0.07	< 0.01	3.3
	25-Jun-08	MAX	8.1	1340	309	45	2.4				4	0.5	< 0.05	< 0.02	29	< 1	200	49	160	< 0.02	0.02	< 0.1	0.09	< 0.01	6
	09-Dec-08	MAX	8	1180	348	28	2.5	<	2	<	4	0.3	< 0.05	< 0.02	35	< 1	160	83	120	< 0.02	0.03	< 0.1	0.07	< 0.01	2.6
	25-Jun-09	MAX	7.7	1190	355	31	2.2	<	2	<	4	0.3	< 0.05	< 0.02	24	< 1	160	78	130	< 0.02	0.03	< 0.1	0.09	0.02	4.1
	16-Dec-09		7.9	1030	338	29	2.4	<	2		9	0.5	0.29	0.03	28	< 1	120	73	110	2.5		< 0.1	0.02	< 0.01	2.7
	28-Jun-10		7.9	1050	402	30	2	<	2		7	0.3	< 0.05	0.02	28	< 1	83	50	130	< 0.02		< 0.1	0.1	0.02	2.4
	20-Dec-10		7.71	1120	357	31	2.2	<	2	<	4	0.2	< 0.05	< 0.02	36	< 1	130	59	140	< 0.02		< 0.1	0.09	< 0.01	2.1
	16-Jun-11		7.76	1040	423	30	2	<	2		11	0.3	< 0.05	< 0.02	24	< 1	77	50	140	< 0.02		< 0.1	0.12	0.03	2.2
	13-Dec-11		7.86	987	407	30	2.1	<	2		14	1.1	< 0.05	0.32	21	< 1	62	39	130	20		< 0.1	0.13	< 0.01	2
<u>Monitor</u>	04-Dec-01 1 04-Jun-02 1		7.95 8.44	674 556	263 240	27.9 22.4	< 1 2		2 1.4		10 8	0.23	< 0.03 < 0.03	0.011 0.006	64.8 56.1	< 1 < 1	26.6 10.7	27.4 24.9	84 63.5	0.25 < 0.01		< 0.1 < 0.1	0.13 0.007		
14a-01	03-Dec-02	•	8.01	519	240		< 1		0.5	<	5	0.3	< 0.03	0.006	38.8	< 1	4.8	11.5	65.3	< 0.01		< 0.1	0.007		
Bedrock	02-Jun-03	•	7.82	489	215	23.7	1		1.1		15	0.23	0.03	< 0.001	49.7	29	7	20	64.6	0.01	0.01	V 0.1	0.007		
	01-Dec-03		8.18	542	232		< 1		0.7		7	0.13	< 0.03	0.003	53.1	< 1	12	18.2	72.9	0.05		< 0.1	0.08		
	09-Jun-04	•	8.04	527	234		< 1		0.5		19	0.86	0.03	0.004	61.2	< 1	14.2	19.6	69.3	0.01	0.02		< 0.005	< 0.2	< 0.2
	30-Nov-04		7.92	527	236	24.4	1	<	0.5	<	5	0.06	< 0.03	< 0.002	48.6	< 1	12.8	9.1	68.1	0.03	< 0.01		< 0.005		
	03-Aug-05	Maxx	8.22	533	234	26	1.1	<	2	Ì	15	1.1	< 0.05	< 0.02	51	< 1	11	19	67	< 0.05	0.03	0.07	< 0.005	İ	. j
	28-Nov-05	Maxx	8.18	529	242	29		<	2		9	0.4	< 0.05	< 0.02	42	< 1	15	14	78	0.16	0.02	< 0.05	< 0.005		
	01-Jun-06	MAX	8.2	605	253	28	1.1	<	2		9	0.4	< 0.05	< 0.02	52	< 1	15	16	77	0.14	0.02	< 0.05	< 0.005		
	04-Dec-06		8.2	597	253	26	1	<	2	<	4	0.2	0.08	< 0.02	61	< 1	13	14	74	0.11			< 0.005		
	30-Mar-07		8.2	599	249	24	0.99	<	2	<	4	0.2	0.06	< 0.02	61	< 1	13	13	72	< 0.02		< 0.05	< 0.005		
	14-Jun-07		8.1	601	243	29	1.1	<	2	<	4	0.2	0.1	< 0.02	63	< 1	14	12	80	< 0.02		< 0.05	0.01		
	05-Dec-07		8.2	603	241	27	1.2	<	2		12	0.1	< 0.05	< 0.02	62	< 1	12	16	77	< 0.02		< 0.1	< 0.005		
	25-Jun-08		8.2	590	236	29	1.1		0		7	0.3	< 0.05	< 0.02	58	< 1	15	11	80	< 0.02		< 0.1	< 0.005	< 0.01	
	09-Dec-08 1 25-Jun-09 1		8	606	239	26	1.1 1.2	<	2	<	4 4	0.2	< 0.05	0.04	67	< 1 < 1	17 21	14 16	72 86	< 0.02		< 0.1	< 0.005 < 0.005	< 0.01	
	25-Jun-09 1 16-Dec-09 1		8 7.9	635 629	237 242	29 29	1.2	< <	2	<	4	0.2	< 0.05 < 0.05	< 0.02 < 0.02	71 64	< 1 < 1	20	17	79	0.06		< 0.1 < 0.1	< 0.005		
	29-Jun-10		8.1	599	242	26	0.98	<	2	`	6	0.1	< 0.05	< 0.02 0.02	64	< 1	19	17	79 75	< 0.03		< 0.1	< 0.005		< 0.1 < 0.1
	29-Jun-10		7.92	672	252	27	1.2	<	2	<	4	0.2	< 0.05	< 0.02	65	< 1	23	19	77	< 0.02		< 0.1	< 0.005		
	15-Jun-11		7.96	666	239	28	1.2	<	2	`	14	0.2	< 0.05	< 0.02	73	< 1	28	16	83	0.02		< 0.1	< 0.005		
	14-Dec-11		8.13	652	240	28	1.2	<	2	<	4	0.2	< 0.05	< 0.02	65	< 1	23	17	81	0.14		< 0.1		< 0.01	

AECOM

_												•									No.	
	Date Lab	рН	Cond-	Alk	Mg	K	BOD	COD	TKN	NH3-N	Total-P	SO4	Phenol	CI	Na	Ca	Fe	В	Р	Zn	NO2	NO3
	Date Lab	Pii	uctivity	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L
Monitor	04-Dec-01 Philip-	7.94	716	336	30.3	< 1	1.3	12	0.3	< 0.03	0.009	62.9	< 1	22.3	8.2	114	0.15	Ŭ	< 0.1	0.27		Ť
14b-01	04-Jun-02 Philip-	8.41	776	279	30.2	2	1	21	0.34	0.06	1.11	89.4	< 1	58.4	20.9	100	< 0.01		< 0.1	0.2	ı	
Outwash	03-Dec-02 Philip-	8.07	680	277	29.7	2	0.7	12	0.68	< 0.03	0.005	58.1	< 1	24.1	7.7	95.4	0.01	< 0.01	< 0.1	0.08	ı	
Outwasii	02-Jun-03 Philip-	7.59	845	270	26.2	2	8.0	18	0.62	0.04	< 0.001	33.7	13	85.8	32.7	104	0.37	0.02		0.12	ı	
	01-Dec-03 Philip-	7.84	895	342	30.1	< 1	< 0.5	27	0.9	0.22	0.005	29.6	< 1	101	40.4	112	0.73	0.02	< 0.1	0.25	ı	
	09-Jun-04 Philip-	7.55	771	327	27.9	1.2	< 0.5	20	0.7	0.14	0.002	39.2	2	70.6	33.8	129	0.8	0.01		0.51	< 0.2	< 0.2
	30-Nov-04 Philip-	7.65	878	364	31.3	< 1	< 0.5	34	1.37	0.15	0.004	30.6	< 1	91.4	34.2	123	1.22	0.02		0.37	ı	
	03-Aug-05 Maxx	7.93	818	267	29	2.3	< 2	20	1.3	0.06	< 0.02	83	< 1	73	31	110	0.91	0.01	0.06	0.11	ı	
	28-Nov-05 Maxx	8.09	1070	305	38	2	6	12	0.6	0.09	< 0.02	77	< 1	143	49	140	1.3	0.02	< 0.05	0.12	ı	
	01-Jun-06 MAX 04-Dec-06 MAX	8	1100 1120	361 438	36 37	2 2	< 2 < 2	11 9	0.5 0.9	0.06	0.03	59 64	< 1 < 1	129 92	60 67	120 130	0.29 0.15		< 0.05 < 0.05	0.26 0.33	ı	
	30-Mar-07 MAX	8.1	901	438 347	37	1.7	< 2	15	0.9	0.09	< 0.02 < 0.02	46	< 1 < 1	67	67 49	110	0.15		< 0.05	0.33	ı	
	14-Jun-07 MAX	8.1	909	295	36	2	< 2	8	0.3	0.07	< 0.02	87	< 1	75	39	110	0.03		< 0.05	0.42	ı	
	05-Dec-07 MAX	8.1	1040	294	35	1.9	< 2	13	0.2	< 0.05	< 0.02	88	< 1	120	42	120	< 0.02		< 0.00		< 0.01	< 0.1
	25-Jun-08 MAX	8	1270	326	35	2.6	_	6	0.3	< 0.05	< 0.02	84	< 1	180	100	120	< 0.02		< 0.1	0.4	< 0.01	0.4
	09-Dec-08 MAX	8	1310	423	33	2.2	< 2	4	0.3	< 0.05	< 0.02	58	< 1	150	110	120	0.02		< 0.1	0.41	< 0.01	0.1
	25-Jun-09 MAX	7.8	1670	357	33	2.6	< 2	< 4	0.2	< 0.05	0.02	52	< 1	280	170	130	< 0.02		< 0.1	0.87	< 0.01	0.2
	15-Dec-09 MAX	7.7	1670	398	32	2.2	< 2	4	0.3	< 0.05	0.03	42	< 1	260	170	130	< 0.02	0.02	< 0.1	0.7	< 0.01	< 0.1
	29-Jun-10 MAX	8	1230	365	27	2.3	< 2	9	0.4	< 0.05	< 0.02	47	< 1	150	120	110	< 0.02	0.03	< 0.1	0.79	< 0.01	0.3
	20-Dec-10 MAX	7.76	1240	420	< 0.05	< 0.2	< 2	7	0.3	< 0.05	< 0.02	38	< 1	130 <	< 0.1	< 0.2	< 0.02	< 0.01	< 0.1	< 0.005	< 0.01	4
	14-Jun-11 MAX	7.74	1170	370	30	2.2	< 2	8	0.4	< 0.05	< 0.02	35	< 1	130	94	120	< 0.02		< 0.1	1.4	< 0.01	3.5
<u>_</u>	14-Dec-11 MAX	8.05	977	386	24	1.9	< 2	15	3	< 0.05	1	32	< 1	63	88	93	61	0.02	< 0.1	0.72	< 0.01	1.2
Monitor	04-Dec-01 Philip-	7.95	754	259	35.1	< 1	0.6	< 5	0.16	< 0.03	0.006	92.4	< 1	48.3	7.7	104	0.27		< 0.1	< 0.005	ı	
15a-01	04-Jun-02 Philip-		718	254	34.9	1	< 0.5	< 5	0.15	< 0.03	0.086	94.1	< 1	52.8	8.3	103	0.4		< 0.1	< 0.005	ı	
Bedrock	03-Dec-02 Philip-		794	260	35.7	2	< 0.5	8	0.49	0.03	0.011	92.3	< 1	57.6	10.6	106	0.47		< 0.1	< 0.005	ı	
	02-Jun-03 Philip-	7.87	789	246	36	1	< 0.5	6	0.15	< 0.03	< 0.001	99	15	56.2	12.2	107	0.5	< 0.01	0.4	< 0.005	ı	
	01-Dec-03 Philip-	8.17	754	245	32.5	< 1	< 0.5	7	0.19	< 0.03	0.007	101	< 1	60.7	11.5	103	0.5		< 0.1	0.07	0.0	0.0
	09-Jun-04 Philip- 30-Nov-04 Philip-	7.85 7.97	734 754	258 257	34.9 33.7	< 1 1	< 0.5 < 0.5	6 < 5	0.16 0.16	< 0.03 < 0.03	0.004 0.005	105 105	< 1 < 1	62.4 61.5	13 13.7	129 101	0.55 0.52	0.01 < 0.01		0.34 < 0.005	< 0.2	< 0.2
	03-Aug-05 Maxx	8.14	737	254	35.7	1.1	< 2	5	0.10	< 0.05	< 0.003	91	< 1	49	15.7	101	0.55	ł	< 0.05	< 0.005	ı	ŀ
	28-Nov-05 Maxx	8.22	736	262	37	1.1	< 2	6	0.4	< 0.05	< 0.02	88	< 1	47	16	110	0.58		< 0.05	< 0.005	ı	
	01-Jun-06 MAX	8.1	790	268	33	1	< 2	10	0.4	< 0.05	< 0.02	74	1	59	15	92	0.46		< 0.05	< 0.005	ı	
	04-Dec-06 MAX	8	811	271	35	1.1	< 2	< 4	0.3	0.18	< 0.02	79	< 1	55	17	100	0.55		< 0.05	< 0.005	ı	
	30-Mar-07 MAX	8.1	808	263	29	1	< 2	< 4	0.3	0.1	< 0.02	92	< 1	54	15	88	0.56	0.01	< 0.05	< 0.005	ı	
	14-Jun-07 MAX	8.1	799	258	36	1.3	< 2	< 4	0.4	0.11	< 0.02	95	< 1	51	18	110	0.4	0.01	< 0.05	< 0.005	ı	
	05-Dec-07 MAX	8.2	799	255	35	1.2	< 2	13	0.2	0.09	< 0.02	100	< 1	51	19	110	0.47	0.01	< 0.1	< 0.005	< 0.01	< 0.1
	25-Jun-08 MAX	8.3	783	249	33	1.4		10	0.4	< 0.05	< 0.02	104	< 1	45	19	100	0.07	< 0.01	< 0.1	0.04	< 0.01	< 0.1
	09-Dec-08 MAX	8	786	252	32	1.2	< 2	< 4	0.3	0.07	< 0.02	116	< 1	42	19	96	0.45		< 0.1		< 0.01	
	25-Jun-09 MAX	8	783	249	34	1.2	< 2	4	0.2	< 0.05	< 0.02	110	< 1	43	20	96	0.57		< 0.1	< 0.005	< 0.01	
	16-Dec-09 MAX	8	802	251	32	1.2	2	< 4	0.2	< 0.05	< 0.02	110	< 1	48	19	100	0.62		< 0.1	< 0.005		
	28-Jun-10 MAX	8.1	818	245	34	1.2	< 2	6	0.3	< 0.05	0.02	110	< 1	47	19	100	0.64		< 0.1	< 0.005		
	22-Dec-10 MAX	7.85	844	251	37	1.3	< 2	< 4	0.2	< 0.05	< 0.02	110	< 1	56	21	110	0.64		< 0.1			
	14-Jun-11 MAX	7.92	824	243	35	1.3	< 2 < 2	7	0.3	< 0.05	0.02	100	< 1	56	19	110	0.71		< 0.1	< 0.005		
	15-Dec-11 MAX	8.02	857	247	39	1.4	< 2	< 4	0.2	0.05	< 0.02	100	< 1	61	24	120	0.19	0.01	< 0.1	< 0.005	< 0.01	< U.T

-	_	_		۰
Δ		n	^^	

1		1						1	1					1				l		_	7.	NOO	NOO
	Date	Lab	рН	Cond-	Alk	Mg	K	BOD	COD	TKN	NH3-N	Total-P	SO4	Phenol	CI	Na "	Ca	Fe	В "	Р			NO3
				uctivity	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Monitor		01 Philip-	8.16	646	252	27	< 1	4.4	13	0.27	< 0.03	0.014	26.2	< 1	24.4	6.2	77.7	< 0.01		< 0.1	0.14		
15b-01		02 Philip-	8.1	475	215	21.1	1	0.9	11	0.79	< 0.03	0.008	13.8	< 1	6.9	2	73.4	< 0.01		< 0.1	0.007		
Outwash)2 Philip-	7.95	723	200	29.4	2	0.9	12	0.75	< 0.03	0.012	14.3	< 1	9.1	2	103	< 0.01		< 0.1	0.009		
	02-Jun-0		7.95	534	214	22.4	< 1	1.4	12	0.66	< 0.03	0.002	37.1	10	5.2	5	77.2	< 0.01	0.01		0.009		
)3 Philip-	8.08	661	291	27.5	1.1	< 0.5	25	0.74	< 0.03	0.003	40.5	< 1	7.9	10.7	95	< 0.01		< 0.1	0.01		
		04 Philip-	7.94	478	204	18.7	< 1	< 0.5	11	0.45	< 0.03	0.002	24.2	< 1	24.8	4	74	0.01	< 0.01			< 0.2	4.1
	30-Nov-0		7.99	558	240	21.8	< 1	< 0.5	12	0.58	< 0.03	0.002	22.4	< 1	27.9	3.3	83	< 0.01	0.01	0.05	0.008		
	03-Aug-0		8.06	668	335	30	0.98	< 2 < 2	18	1.4	< 0.05	< 0.02	16	< 1	10	4.6	120	0.1		< 0.05	0.03		
	28-Nov-(7.97 8	1150 853	533	53 32	0.97	< 2 < 2	9 11	0.8 0.7	< 0.05 < 0.05	< 0.02 0.02	26 15	< 1	56 8	10	190	< 0.05		< 0.05	0.05 0.03		
	01-Jun-(04-Dec-(7.8	949	462 490	36	1.2	< 2	7	0.7	< 0.05	< 0.02	24	< 1 < 1	4	12 16	120 150	< 0.02		< 0.05 < 0.05	0.03		
	30-Mar-0		8.1	955	484	38	0.92	< 2	< 4	0.4	0.09	< 0.02	28	< 1	13	9.2	150	< 0.02		< 0.05	0.008		
		07 MAX	8.1	996	478	38	1	< 2	7	0.4	0.09	< 0.02	25	< 1	35	8.7	160	< 0.02		< 0.05	0.00		
	05-Dec-0		8	1130	481	42	1.3	< 2	17	0.4	< 0.05	< 0.02	28	< 1	38	15	180	< 0.02		< 0.1		< 0.1	15
		08 MAX	8.1	1330	449	31	1.3	` -	4	0.4	< 0.05	< 0.02	23	< 1	130	94	150	< 0.02		< 0.1		< 0.1	13
	09-Dec-0		8	1100	544	25	1.2	< 2	6	0.4	< 0.05	< 0.02	18	< 1	21	90	120	< 0.02		< 0.1		< 0.01	8.6
		09 MAX	7.7	1160	423	37	1.1	< 2	6	0.4	< 0.05	< 0.02	27	< 1	110	45	170	< 0.02		< 0.1		< 0.01	5.7
	16-Dec-0	09 MAX	7.8	1070	540	24	1.2	< 2	< 4	0.3	< 0.05	< 0.02	16	< 1	15	98	120	< 0.02	0.03	< 0.1	0.04	< 0.01	10
	25-Jun-1	10 MAX	7.8	1720	393	43	1.4	< 2	8	0.4	< 0.05	0.02	25	< 1	270	85	210	< 0.02	0.03	< 0.1	0.05	< 0.01	9.7
	17-Dec-1	10 MAX	7.6	1380	521	30	1.4	< 2	6	0.3	< 0.05	< 0.02	17	< 1	120	130	150	< 0.02	0.04	< 0.1	0.05	< 0.01	4.6
	14-Jun-1	11 MAX	7.73	1150	402	26	1.1	< 2	13	0.4	< 0.05	< 0.02	23	< 1	110	93	130	< 0.02	0.02	0.11	0.03	< 0.01	5.8
	15-Dec-1	11 MAX	7.84	1130	465	30	1.4	< 2	19	1.2	< 0.05	1.2	36	< 1	49	110	140	6.7	0.02	< 0.1	0.06	< 0.01	8.8
Monitor	26-Mar-0	08 MAX	8	691	251	29	3.6	< 2	4	0.4	0.16	< 0.02	70	< 1	36	42	76	< 0.02	0.04	< 0.1	0.05	0.02	< 0.1
16A-08	25-Jun-(08 MAX	8.3	596	238	28	2.7		7	0.5	0.19	< 0.02	46	< 1	28	6.2	82	< 0.02	0.02	< 0.1	0.04	< 0.01	< 0.1
Bedrock	09-Dec-0	08 MAX	8.1	605	239	26	2	< 2	< 4	0.3	0.06	< 0.02	39	< 1	29	2.5	77	< 0.02		< 0.1		< 0.01	< 0.1
	25-Jun-(8	645	239	29	2	< 2	< 4	0.3	0.05	< 0.02	47	< 1	39	4	88	< 0.02		< 0.1			< 0.1
	16-Dec-0		8.1	636	240	29	2	< 2	7	0.2	0.07	0.03	42	< 1	36	3.6	87	< 0.02		< 0.1		< 0.01	
		10 MAX	7.9	634	236	27	1.8	< 2	4	0.2	< 0.05	0.02	53	< 1	31	2.1	83	< 0.02		< 0.1		< 0.01	
	20-Dec-1	1	7.94	630	236	29	1.9	< 2	< 4	0.2	0.05	< 0.02	41	< 1	33	2.2	88	0.04	1 1	< 0.1	0.03	1	< 0.1
		11 MAX	7.99 8.08	620 653	232 239	29 30	2 2	< 2 < 2	18	0.4	0.06	< 0.02 < 0.02	58 43	< 1 < 1	34 35	2.2 3.5	88 87	0.06 0.63		< 0.1 < 0.1		< 0.01	
	13-Dec-1													1								< 0.01	
<u>Monitor</u>	26-Mar-0		8	1130	477	42	1.5	< 2	15	0.9	0.09	< 0.02	105	< 1	38	60	130	< 0.02		< 0.1	0.16	0.1	3.3
16B-08	09-Dec-0	08 MAX	8.2 7.8	1170 1290	318 597	43 51	2.4 2.1	< 2	14 17	0.3 0.8	< 0.05 < 0.05	< 0.02 < 0.02	68 50	< 1 < 1	160 53	42 39	130 170	< 0.02 < 0.02		< 0.1 < 0.1		< 0.01	< 0.1
Outwash	25-Jun-(7.8	1640	382	46	3.1	< 2	9	0.8	< 0.05	< 0.02 < 0.02	58	< 1	260	150	150	< 0.02		< 0.1			< 0.1
	25-Jun-0		7.6	1350	555	48	2.1	< 2	19	0.4	< 0.05	0.02	48	< 1	96	71	160	0.02		< 0.1			< 0.1
	23-Jun-1		7.9	1470	373	41	2.1	< 2	9	0.3	< 0.05	0.03	79	< 1	210	120	130	< 0.03		< 0.1			< 0.1
	20-Dec-1		7.55	1240	586	49	1.6	< 2	22	0.4	< 0.05	< 0.02	49	< 1	39	46	170	< 0.02		< 0.1	0.75	0.03	1.8
		11 MAX	7.78	1340	383	37	2.6	< 2	20	0.4	< 0.05	< 0.02	63	< 1	170	130	120	0.09		< 0.1	1.3	0.02	0.9
		11 MAX	7.73	1190	518	50	1.3	< 2	17	1.1	< 0.05	0.13	71	< 1	23	38	160	1.3		< 0.1	0.49	0.03	10

-	_	_		۰
Δ		n	^^	

ſ	Date	Lab	рН	Cond-	Alk	Mg	K	В	OD	COD	TKN	NH3-N	Total-P	SO4	Phenol	CI	Na	Ca	Fe	В	Р	Zn	NO2	NO3
				uctivity	mg/L	mg/L	mg/L	m	g/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Monitor	26-Mar-0	8 MAX	8.2	721	248	28	2.1	<	2	7	0.6	0.21	< 0.02	96	< 1	29	67	64	< 0.02		< 0.1	0.007	< 0.01	0.3
17A-08	25-Jun-0		8.3	643	233	30	2.2	1	_	< 4	0.5	0.29	< 0.02	63	< 1	36	16	80	0.05		< 0.1	< 0.005	< 0.01	
Bedrock	09-Dec-0		8.1	609	237	26	1.4	<	2	< 4	0.4	0.1	< 0.02	51	< 1	27	15	69	0.02		< 0.1	< 0.005		
Bedrock	25-Jun-0		8	608	230	28	1.6	<	2	< 4	0.4	0.18	< 0.02	51	< 1	29	10	77	0.13		< 0.1	< 0.005	< 0.01	
	16-Dec-0		7.9	615	232	29	1.6	<	2	4	0.2	0.08	< 0.02	48	< 1	30	11	79	0.1	0.03	< 0.1	< 0.005	< 0.01	0.2
	23-Jun-1	0 MAX	8.1	645	229	30	1.6	<	2	< 4	0.5	0.13	< 0.02	59	< 1	34	12	79	0.11	0.03	< 0.1	< 0.005	< 0.01	< 0.1
	20-Dec-1	0 MAX	7.92	650	228	29	1.6	<	2	5	0.3	0.19	< 0.02	51	< 1	36	11	81	0.03	0.03	< 0.1	< 0.005	0.04	< 0.1
	16-Jun-1	1 MAX	8.02	647	225	29	1.6	<	2	11	0.3	0.17	< 0.02	57	< 1	38	12	83	0.05	0.02	< 0.1	< 0.005	< 0.01	< 0.1
l l	15-Dec-1	1 MAX	8.21	682	229	29	1.6	<	2	< 4	1	0.08	0.05	56	< 1	39	12	83	0.65	0.03	< 0.1	0.01	0.05	0.1
Monitor	26-Mar-0	8 MAX	8	2080	357	41	2.4	<	2	5	0.4	< 0.05	< 0.02	75	< 1	400	240	150	< 0.02	0.03	< 0.1	0.25	0.02	3.6
17B-08	25-Jun-0	8 MAX	8.3	2380	313	46	2.8			11	0.3	< 0.05	< 0.02	68	< 1	500	290	160	< 0.02	0.02	< 0.1	0.29	< 0.01	4.2
Outwash	09-Dec-0	8 MAX	8	1580	319	32	2.5	<	2	4	0.3	< 0.05	< 0.02	56	< 1	260	170	110	< 0.02	0.02	< 0.1	0.14	< 0.01	5.1
Outwaan	25-Jun-0	9 MAX	7.8	2730	304	48	3.1	<	2	8	0.2	< 0.05	< 0.02	66	< 1	620	330	190	< 0.02	0.02	< 0.1	0.33	< 0.01	4.9
	16-Dec-0		7.7	1730	321	36	2.3	<	2	6	0.2	< 0.05	0.04	39	< 1	300	180	140	< 0.02	0.02	< 0.1	0.16	< 0.01	4.5
	23-Jun-1	0 MAX	8	1850	304	34	2.8	<	2	6	0.4	< 0.05	0.02	74	< 1	330	180	140	< 0.02	0.02	< 0.1	0.08	< 0.01	4
	20-Dec-1	0 MAX	7.82	1640	320	29	2.2	<	2	4	0.2	< 0.05	< 0.02	45	< 1	270	170	120	< 0.02	0.02	< 0.1	0.13	< 0.01	5
	16-Jun-1		7.77	2020	321	34	2.4	<	2	12	0.2	< 0.05	< 0.02	64	< 1	410	250	130	< 0.02		< 0.1	0.25	< 0.01	4.1
ļ	15-Dec-1	1 MAX	8.07	1510	325	28	2.1	<	2	10	0.9	< 0.05	0.34	38	< 1	230	160	110	12		< 0.1	0.15	< 0.01	3.5
Monitor	26-Mar-0	8 MAX	8.1	803	258	27	1.5	<	2	23	0.9	0.09	< 0.02	130	< 1	18	89	65	88		< 0.1	0.02	0.1	5.7
18A-08	25-Jun-0		8.3	632	243	28	3			12	0.3	< 0.05	< 0.02	36	< 1	19	20	81	< 0.02		< 0.1	0.25	< 0.01	7.3
Bedrock	09-Dec-0		8.1	613	247	27	1.1	<	2	< 4	0.5	0.16	< 0.02	35	< 1	16	6.1	76	< 0.02		< 0.1	0.12	< 0.01	6.7
	25-Jun-0		7.9	605	242	29	1.2	<	2	< 4	0.2	< 0.05	< 0.02	34	< 1	16	5	85	< 0.02		< 0.1	0.32	< 0.01	6.9
	15-Dec-0		7.9	628	246	28	1.3	<	2	< 4	0.2	< 0.05	0.04	36	< 1	16	4.5	82	< 0.02		< 0.1	0.35	< 0.01	8
	30-Jun-1		8	625	241	29	1.2	<	2	18	0.3	< 0.05	0.03	38	< 1	18	4.6	82	< 0.02		< 0.1	0.33	0.02	6.5
	22-Dec-1		7.85	628	241	31	1.2	<	2	< 4	< 0.1	< 0.05	< 0.02	37	< 1	18	4.6	88	< 0.02		< 0.1	0.36	< 0.01	6.8
	16-Jun-1		7.81 7.91	840 621	233 251	34 27	1.5 1.2	<	2	13 32	0.2	< 0.05	< 0.02	130 36	< 1 2	57 16	24 4	100 78	0.21 20		< 0.1 < 0.1	0.009 0.22	< 0.01 0.02	< 0.1 5.3
	16-Dec-1							<								1		ı	1					
<u>Monitor</u>	26-Mar-0	· · · · · ·	8.2	1020	284	12	2.1	<	2	53	1	0.12	0.02	223	< 1	8	270	29	150	0.07	< 0.1	0.02	0.05	1.6
18B-08	25-Jun-0 09-Dec-0																							
Outwash	25-Jun-0																							
	15-Dec-0																							
	30-Jun-1																							
	22-Dec-1																							
	16-Jun-1		8.03	1080	424	18	5.5	<	2	14	0.4	< 0.05	0.03	120	< 1	19	190	60	< 0.02	0.1	< 0.1	< 0.005	< 0.01	4.4
	16-Dec-1																							
Monitor	26-Mar-0	8 MAX	8.1	844	245	37	1.4	<	2	13	0.3	0.1	0.03	143	< 1	45	47	94	0.02	0.03	< 0.1	< 0.005	0.02	< 0.1
19A-08	25-Jun-0		8.2	841	240	37	1.3			4	0.3	0.05	< 0.02	134	< 1	50	33	100	0.04	0.02	< 0.1	< 0.005	< 0.01	< 0.1
Bedrock	09-Dec-0	8 MAX	8.1	811	242	33	1.2	<	2	< 4	0.2	< 0.05	< 0.02	129	< 1	46	19	96	0.17	0.02	< 0.1	< 0.005	< 0.01	< 0.1
Dediock	25-Jun-0	9 MAX	7.9	768	236	35	1.2	<	2	2	0.2	< 0.05	< 0.02	140	< 1	27	12	100	0.17	0.03	< 0.1	< 0.005	< 0.01	< 0.1
	15-Dec-0	9 MAX	7.9	834	244	35	1.4	<	2	5	0.2	< 0.05	0.02	120	< 1	48	21	100	0.21	0.03	< 0.1	< 0.005	< 0.01	< 0.1
	30-Jun-1	0 MAX	7.8	788	234	33	1.2	<	2	6	0.2	< 0.05	0.03	130	< 1	37	16	100	0.2	0.02	< 0.1	< 0.005	< 0.01	< 0.1
	22-Dec-1	0 MAX	7.87	825	236	36	1.3	<	2	< 4	0.1	< 0.05	< 0.02	120	< 1	43	21	110	0.21	0.03	< 0.1	< 0.005	< 0.01	< 0.1
	15-Jun-1	1 MAX	7.95	838	235	35	1.4	<	2	17	0.2	< 0.05	< 0.02	130	< 1	60	25	100	0.24	0.03	< 0.1	< 0.005	< 0.01	< 0.1
	16-Dec-1	1 MAX	7.95	898	246	34	1.5	<	2	38	0.8	0.09	0.7	120	< 1	70	29	100	29	0.03	< 0.1	0.07	< 0.01	< 0.1

A=COM

ſ	Date	Lab	рН	Cond-	Alk	Mg	K	BOD		COD	TKN	NH3-N		Total-P	SO4	Phen		Na	Ca	Fe	В	Р	Zn	NO2	NO3
				uctivity	mg/L	mg/L	mg/L	mg/L	-	mg/L	mg/L	mg/L		mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Monitor	26-Mar-08		8.1	1560	289	14	4.5	< 2		51	1.7	0.53		0.03	454	< 1	38	350	35	130	0.14	< 0.1	0.02	< 0.1	1
19B-08	25-Jun-08		8.3	2070	314	10	7.8			38	1.8	1		< 0.02	576	< 1	60	480	23	< 0.02	0.2	< 0.1	< 0.005	0.3	2.5
Outwash	09-Dec-08 25-Jun-09		8.2 8.2	2290 2010	485 499	13 10	8.6 8.1	< 2 < 2		13 9	1.1 1.1	0.44		< 0.02	596 420	< 1 < 1	56 40	470 470	36 28	< 0.02 < 0.02	0.27 0.23	< 0.1 < 0.1	< 0.005 < 0.005	0.06 0.1	8.8 10
	15-Dec-09		0.2	2010	499	10	0.1	`		9	1.1	0.54	`	0.02	420	` 1	40	470	20	V 0.02	0.23	0.1	< 0.003	0.1	. 10
	30-Jun-10																								ı
	22-Dec-10	INS																							ı
	15-Jun-11		8.07	1220	485	15	6.4	< 2		16	0.4	< 0.05		0.03	150	< 1	16	250	44	1.7	0.15	< 0.1	0.005	< 0.01	5.4
	16-Dec-11		7.93	1670	666	25	7.3	< 2		25	0.8	< 0.05	-	0.57	180	< 1	18	160	85	15	0.1	< 0.1	0.006	< 0.01	5.6
Monitor	26-Mar-08		8.1	732	262	30	1.8	< 2		15	0.8	0.07		< 0.02	107	< 1	19	56	72	53	0.03	< 0.1	0.01	0.1	2
20A-08	25-Jun-08		8.3	597	242	28	1.2			11	0.4	< 0.05		< 0.02	53	< 1	16	4.9	83	< 0.02	< 0.01	< 0.1	0.03	0.07	2.5
Bedrock	09-Dec-08 25-Jun-09		8.1 7.9	633 602	251 242	26 28	1.1 1.2	< 2 < 2	<	4 : 4	0.3	< 0.05 < 0.05		< 0.02	55 49	< 1 < 1	17 16	9.2 5.9	84 83	< 0.02 < 0.02	0.02	< 0.1 < 0.1	0.07 0.09	0.05 0.09	4.1 2.4
	15-Dec-09		7.9	622	247	29	1.3	< 2			0.2	< 0.05		0.02	47	< 1	16	4.9	84	< 0.02	0.01	< 0.1	0.03	0.03	3.8
	29-Jun-10		8	794	236	27	1.2	< 2	Ì	10	0.4	< 0.05	- 1	< 0.02	130	< 1	37	5.3	80	0.19	< 0.01	< 0.1	0.1	< 0.01	< 0.1
	22-Dec-10	MAX	7.79	630	242	31	1.2	< 2	<	4	0.4	< 0.05	· <	< 0.02	50	< 1	18	4.7	88	< 0.02	< 0.01	< 0.1	0.12	0.06	2.9
	15-Jun-11	MAX	7.94	604	239	26	1	< 2		15	0.2	< 0.05	<	< 0.02	48	< 1	17	4.9	80	< 0.02	< 0.01	< 0.1	0.11	0.08	3.1
	16-Dec-11		8.04	629	244	27	1.2	< 2		51	1	< 0.05	==	1	49	< 1	18	5.4	81	15	< 0.01		0.07	0.02	3.1
Monitor	26-Mar-08		8	572	244	30	1.2	< 2		10	0.5	< 0.05		. 0.02	52	< 1	11	3.5	82	73	< 0.01	< 0.1	0.09	< 0.01	1.2
20B-08	25-Jun-08		8.2	933	235	26 25	3.3	. 0		20 7	0.6	< 0.05		< 0.02	78 72	< 1	110		99	< 0.02	0.01	< 0.1	0.63		
Outwash	09-Dec-08 25-Jun-09		8 7.7	694 822	266 254	25 26	1.3 1.9	< 2 < 2		, 10	0.3	< 0.05 < 0.05		< 0.02	73 49	< 1 < 1	25 88	16 45	84 95	< 0.02 < 0.02	0.02 0.01	< 0.1 < 0.1	0.16 0.37	< 0.01 < 0.01	
	15-Dec-09		7.9	628	271	27	1.5	< 2	<		0.2	< 0.05		< 0.02	56	< 1	8	9.6	85	< 0.02	0.01	< 0.1	0.37	< 0.01	< 0.1
	29-Jun-10		7.8	1080	256	29	1.9	< 2		14	0.4	< 0.05		0.02	44	< 1	170	58	110	< 0.02	0.01	< 0.1	0.64	< 0.01	< 0.1
	22-Dec-10	MAX	7.87	631	272	31	1.5	< 2	<	4	0.2	< 0.05	<	< 0.02	49	< 1	12	5.9	93	< 0.02	< 0.01	< 0.1	0.14	< 0.01	0.3
	15-Jun-11		7.9	614	296	28	1.3	< 2		13	0.3	< 0.05		< 0.02	29	< 1	7	3.6	89	< 0.02	0.02	< 0.1	0.13		< 0.1
	16-Dec-11	i	7.94	590	272	25	1.1	< 2	_	14	0.8	< 0.05		0.27	32	< 1	10	4.3	78	7.1	< 0.01	< 0.1	0.1	< 0.01	< 0.1
Monitor	25-Jun-08	ł	•								l I	ļ	ļ					ļ							. !
21A-08	25-Jun-08																								
Bedrock	25-Jun-08 25-Jun-08																								ı İ
	09-Dec-08		8.1	820	284	32	1.2	< 2		8	0.5	< 0.05	· <	< 0.02	49	< 1	54	34	86	< 0.02	0.01	< 0.1	0.22	0.02	6.2
	25-Jun-09		7.8	583	261	26	0.89	< 2		6	0.3	< 0.05		< 0.02	30	< 1	5	13	78	< 0.02	0.02	< 0.1	0.26	< 0.01	4.8
	15-Dec-09	MAX	7.8	776	277	29	1.1	< 2		4	0.3	< 0.05	;	0.02	39	< 1	47	33	86	0.05	0.02	< 0.1	0.32	< 0.01	6.3
	25-Jun-10		8	589	262	25	0.87	< 2		4	0.4	< 0.05		< 0.02	26	< 1	8	13	75	< 0.02	0.01	< 0.1	0.29	< 0.01	4.3
	22-Dec-10		7.79	660	278	29	1.1	< 2	<		0.3	< 0.05		< 0.02	32	< 1	18	19	87	< 0.02	0.01	< 0.1	0.29	< 0.01	5.1
	14-Jun-11 14-Dec-11		7.85 8.07	557 619	263 278	26 26	0.86	< 2 < 2		15 15	0.5	< 0.05 < 0.05		0.02	21 27	< 1	10	7.5 14	79 79	< 0.02	0.02 < 0.01	< 0.1	0.36 0.31	< 0.01 < 0.01	3.1 3.5
M:4	19-Dec-11			769	212	35	1.6		<		_	< 0.05	-	0.14	89	< 1	56	16	110	1.3	0.02	0.16		< 0.01	
Monitor	19-Dec-11	WAA	7.00	709	212	33	1.0	ζ 2	`	. +	0.9	0.03	' !	0.14	09	< 1	30	10	110	1.3	0.02	0.10	0.02	< 0.01	V 0.1
22A-11 Bedrock																									
Monitor	19-Dec-11	MAX	7.83	817	299	24	1.6	< 2	<	: 4	0.3	< 0.05	:	0.03	25	< 1	57	43	110	0.21	0.01	< 0.1	0.02	< 0.01	3.7
22B-11									- 1			1	-					1 .3	1						
ZZD-II																									

Outwash

Parameter	2a-91	2a-91	2b-91	2b-91
	16-Jun-11	15-Dec-11	16-Jun-11	15-Dec-11
MISA Group 19				
Acenaphthene:	< 0.2	< 0.2	< 0.2	< 0.2
5-Nitroacenaphthene:	< 1	< 1	< 1	< 0.2
Acenaphthylene:	< 0.2	< 0.2	< 0.2	< 0.2
Anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(a)anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(a)Pyrene:	< 0.2			< 0.2
Benzo(b)Fluoranthene:	< 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2
Benzo(g,h,i)perylene:			< 0.2	< 0.2
Benzo(k)Fluoranthene:	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2	< 0.2
Biphenyl:	< 0.5	< 0.5	< 0.5	< 0.2
Camphene:	< 0.5		< 0.5	< 0.5
· ·				
1-Chloronaphthalene:				
2-Chloronaphthalene:	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibenzo(a,h)Anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Fluorene:	< 0.2	< 0.2	< 0.2	< 0.2
Indeno(1,2,3-cd)Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Indole:	< 1	< 1	< 1	< 1
1-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
2-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
Naphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
Perylene:	< 0.2	< 0.2	< 0.2	< 0.2
Phenanthrene:	< 0.2	< 0.2	< 0.2	< 0.2
Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzyl Butyl Phthalate:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-ethylhexyl)Phthalate:	< 2	< 2	< 2	< 2
Di-N-butylPhthalate:	< 2	< 2	< 2	< 2
Di-N-octylPhthalate:	< 0.8	< 0.8	< 0.8	< 0.8
4-Bromophenyl phenyl Ethe	< 0.3	< 0.3	< 0.3	< 0.3
4-Chlorophenyl Phenyl Ethe	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-chloroisopropyl)Ether:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-Chloroethyl)Ether:	< 0.5	< 0.5	< 0.5	< 0.5
Diphenyl ether:	< 0.3	< 0.3	< 0.3	< 0.3
2,4-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	< 0.5
2,6-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-chloroethoxy)Methan	< 0.5	< 0.5	< 0.5	< 0.5
Nitrosodiphenylamine	< 1	< 1	< 1	< 1
/Diphenylamine:				
N-Nitrosodi-N-propylamine:	< 0.5	< 0.5	< 0.5	< 0.5
MISA Group 20				
2,3,4,5-Tetrachlorophenol:	< 0.4	< 0.4	< 0.4	< 0.4
2,3,4,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,5,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,4-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4,6-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dinitrophenol:	< 2	< 6	< 2	< 6
2,4-Dimethylphenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dichlorophenol:	< 0.3	< 0.3	< 0.3	< 0.3
2,6-Dichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
4,6-Dinitro-o-Cresol:				
2-Chlorophenol:	< 0.3	< 0.3	< 0.3	< 0.3
4-Chloro-3-methylphenol:	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol:	< 1	< 1	< 1	< 1
o-Cresol:	< 0.5	< 0.5	< 0.5	< 0.5
m-,p-Cresol:	< 0.5	< 0.5	< 0.5	< 0.5
Pentachlorophenol:	< 1	< 1	< 1	< 1
Phenol:	< 0.5	< 0.5	< 0.5	< 0.5
		<u> </u>		<u> </u>

Parameter	5-96	5-96	6a-96	6a-96
	15-Jun-11	13-Dec-11	14-Jun-11	13-Dec-11
MISA Group 19				
Acenaphthene:	< 0.2		< 0.2	
5-Nitroacenaphthene:	< 1		< 1	
Acenaphthylene:	< 0.2		< 0.2	
Anthracene:	< 0.2		< 0.2	
Benzo(a)anthracene:	< 0.2		< 0.2	
Benzo(a)Pyrene:	< 0.2		< 0.2	
Benzo(b)Fluoranthene:	< 0.2		< 0.2	
Benzo(g,h,i)perylene:	< 0.2		< 0.2	
Benzo(k)Fluoranthene:	< 0.2		< 0.2	
Biphenyl:	< 0.5		< 0.5	
Camphene:	< 1		< 1	
1-Chloronaphthalene:	< 1		< 1	
2-Chloronaphthalene:	< 0.5		< 0.5	
Chrysene:	< 0.2		< 0.2	
Dibenzo(a,h)Anthracene:	< 0.2		< 0.2	
Fluoranthene:	< 0.2		< 0.2	
Fluorene:	< 0.2		< 0.2	
Indeno(1,2,3-cd)Pyrene:	< 0.2		< 0.2	
Indole:	< 1		< 1	
1-Methylnaphthalene:	< 0.2		< 0.2	
2-Methylnaphthalene:	< 0.2		< 0.2	
Naphthalene:	< 0.2		< 0.2	
Perylene:	< 0.2		< 0.2	
Phenanthrene:	< 0.2		< 0.2	
Pyrene:	< 0.2		< 0.2	
Benzyl Butyl Phthalate:	< 0.5		< 0.5	
bis(2-ethylhexyl)Phthalate:	< 2		< 2	
Di-N-butylPhthalate:	< 2		< 2	
Di-N-octylPhthalate:	< 0.8		< 0.8	
4-Bromophenyl phenyl Ethe	< 0.3		< 0.3	
4-Chlorophenyl Phenyl Ethe	< 0.5		< 0.5	
bis(2-chloroisopropyl)Ether:	< 0.5		< 0.5	
bis(2-Chloroethyl)Ether:	< 0.5		< 0.5	
Diphenyl ether:	< 0.3		< 0.3	
2,4-Dinitrotoluene:	< 0.5		< 0.5	
2,6-Dinitrotoluene:	< 0.5		< 0.5	
bis(2-chloroethoxy)Methan	< 0.5		< 0.5	
Nitrosodiphenylamine	< 1		< 1	
/Diphenylamine:			 	
N-Nitrosodi-N-propylamine:	< 0.5		< 0.5	
MISA Group 20				
2,3,4,5-Tetrachlorophenol:	< 0.4		< 0.4	
2,3,4,6-Tetrachlorophenol:	< 0.5		< 0.5	
2,3,5,6-Tetrachlorophenol:	< 0.5		< 0.5	
2,3,4-Trichlorophenol:	< 0.5		< 0.5	
2,3,5-Trichlorophenol:	< 0.5		< 0.5	
2,4,5-Trichlorophenol:	< 0.5		< 0.5	
2,4,6-Trichlorophenol:	< 0.5		< 0.5	
2,4-Dinitrophenol:	< 2		< 2	
2,4-Dimethylphenol:	< 0.5		< 0.5	
2,4-Dichlorophenol:	< 0.3		< 0.3	
2,6-Dichlorophenol:	< 0.5		< 0.5	
4,6-Dinitro-o-Cresol:				
2-Chlorophenol:	< 0.3		< 0.3	
4-Chloro-3-methylphenol:	< 0.5		< 0.5	
4-Nitrophenol:	< 1		< 1	
o-Cresol:	< 0.5		< 0.5	
m-,p-Cresol:	< 0.5		< 0.5	
Pentachlorophenol:	< 1		< 1	
Phenol:	< 0.5		< 0.5	
				1

Parameter	6b-96	6b-96	7-96	7-96
	14-Jun-11	13-Dec-11	14-Jun-11	14-Dec-11
MISA Group 19				
Acenaphthene:	< 0.2		< 0.2	< 0.2
5-Nitroacenaphthene:	< 1		< 1	< 1
Acenaphthylene:	< 0.2		< 0.2	< 0.2
Anthracene:	< 0.2		< 0.2	< 0.2
Benzo(a)anthracene:	< 0.2		< 0.2	< 0.2
Benzo(a)Pyrene:	< 0.2		< 0.2	< 0.2
Benzo(b)Fluoranthene:	< 0.2		< 0.2	< 0.2
Benzo(g,h,i)perylene:	< 0.2		< 0.2	< 0.2
Benzo(k)Fluoranthene:	< 0.2		< 0.2	< 0.2
Biphenyl:	< 0.5		< 0.5	< 0.5
Camphene:	< 1		< 1	< 1
1-Chloronaphthalene:	< 1		< 1	< 1
2-Chloronaphthalene:	< 0.5		< 0.5	< 0.5
Chrysene:	< 0.2		< 0.2	< 0.2
Dibenzo(a,h)Anthracene:	< 0.2		< 0.2	< 0.2
Fluoranthene:	< 0.2		< 0.2	< 0.2
Fluorene:	< 0.2		< 0.2	< 0.2
Indeno(1,2,3-cd)Pyrene:	< 0.2		< 0.2	< 0.2
Indole:	< 1		< 1	< 1
1-Methylnaphthalene:	< 0.2		< 0.2	< 0.2
2-Methylnaphthalene:	< 0.2		< 0.2	< 0.2
Naphthalene:	< 0.2		< 0.2	< 0.2
Perylene:	< 0.2		< 0.2	< 0.2
Phenanthrene:	< 0.2		< 0.2	< 0.2
Pyrene:	< 0.2		< 0.2	< 0.2
Benzyl Butyl Phthalate:	< 0.5		< 0.5	< 0.5
bis(2-ethylhexyl)Phthalate:	< 2		< 2	< 2
Di-N-butylPhthalate:	< 2		< 2	< 2
Di-N-octylPhthalate:	< 0.8		< 0.8	< 0.8
4-Bromophenyl phenyl Ethe	< 0.3		< 0.3	< 0.3
4-Chlorophenyl Phenyl Ethe	< 0.5		< 0.5	< 0.5
bis(2-chloroisopropyl)Ether:	< 0.5		< 0.5	< 0.5
bis(2-Chloroethyl)Ether:	< 0.5		< 0.5	< 0.5
Diphenyl ether:	< 0.3		< 0.3	< 0.3
2,4-Dinitrotoluene:	< 0.5		< 0.5	< 0.5
2,6-Dinitrotoluene:	< 0.5		< 0.5	< 0.5
bis(2-chloroethoxy)Methan	< 0.5		< 0.5	< 0.5
Nitrosodiphenylamine	< 1		< 1	< 1
/Diphenylamine:			'	'
N-Nitrosodi-N-propylamine:	< 0.5		< 0.5	< 0.5
MISA Group 20				
2,3,4,5-Tetrachlorophenol:	< 0.4		< 0.4	< 0.4
2,3,4,6-Tetrachlorophenol:	< 0.5		< 0.5	< 0.5
2,3,5,6-Tetrachlorophenol:	< 0.5		< 0.5	< 0.5
2,3,4-Trichlorophenol:	< 0.5		< 0.5	< 0.5
2,3,5-Trichlorophenol:	< 0.5		< 0.5	< 0.5
2,4,5-Trichlorophenol:	< 0.5		< 0.5	< 0.5
2,4,6-Trichlorophenol:	< 0.5		< 0.5	< 0.5
2,4-Dinitrophenol:	< 2		< 2	< 2
2,4-Dimethylphenol:	< 0.5		< 0.5	< 0.5
2,4-Dichlorophenol:	< 0.3		< 0.3	< 0.3
2,6-Dichlorophenol:	< 0.5		< 0.5	< 0.5
4,6-Dinitro-o-Cresol:				
2-Chlorophenol:	< 0.3		< 0.3	< 0.3
4-Chloro-3-methylphenol:	< 0.5		< 0.5	< 0.5
4-Nitrophenol:	< 1		< 1	< 1
o-Cresol:	< 0.5		< 0.5	< 0.5
m-,p-Cresol:	< 0.5		< 0.5	< 0.5
Pentachlorophenol:	< 1		< 1	< 1
Phenol:	< 0.5		< 0.5	< 0.5

Parameter	8-96	8-96	11a-00	11a-00
	15-Jun-11	14-Dec-11	15-Jun-11	14-Dec-11
MISA Group 19				
Acenaphthene:	< 0.2	< 0.2	< 0.2	< 0.2
5-Nitroacenaphthene:	< 1	< 1	< 0.2	< 0.2
Acenaphthylene:	< 0.2	< 0.2	< 0.2	< 0.2
Anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(a)anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(a)Pyrene:				
Benzo(b)Fluoranthene:				
Benzo(g,h,i)perylene:				
Benzo(k)Fluoranthene:				
Biphenyl:			< 0.2 < 0.5	< 0.2 < 0.5
Camphene:				
· ·				
1-Chloronaphthalene:				
2-Chloronaphthalene:	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibenzo(a,h)Anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Fluorene:	< 0.2	< 0.2	< 0.2	< 0.2
Indeno(1,2,3-cd)Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Indole:	< 1	< 1	< 1	< 1
1-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
2-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
Naphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
Perylene:	< 0.2	< 0.2	< 0.2	< 0.2
Phenanthrene:	< 0.2	< 0.2	< 0.2	< 0.2
Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzyl Butyl Phthalate:	< 0.5	< 0.5	1.1	< 0.5
bis(2-ethylhexyl)Phthalate:	< 2	< 2	< 2	< 2
Di-N-butylPhthalate:	< 2	< 2	< 2	< 2
Di-N-octylPhthalate:	< 0.8	< 0.8	< 0.8	< 0.8
4-Bromophenyl phenyl Ethe	< 0.3	< 0.3	< 0.3	< 0.3
4-Chlorophenyl Phenyl Ethe	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-chloroisopropyl)Ether:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-Chloroethyl)Ether:	< 0.5	< 0.5	< 0.5	< 0.5
Diphenyl ether:	< 0.3	< 0.3	< 0.3	< 0.3
2,4-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	< 0.5
2,6-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-chloroethoxy)Methan	< 0.5	< 0.5	< 0.5	< 0.5
Nitrosodiphenylamine	< 1	< 1	< 1	< 1
/Diphenylamine:				
N-Nitrosodi-N-propylamine:	< 0.5	< 0.5	< 0.5	< 0.5
MISA Group 20				
2,3,4,5-Tetrachlorophenol:	< 0.4	< 0.4	< 0.4	< 0.4
2,3,4,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,5,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,4-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4,6-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dinitrophenol:	< 2	< 2	< 2	< 2
2,4-Dimethylphenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dichlorophenol:	< 0.3	< 0.3	< 0.3	< 0.3
2,6-Dichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
4,6-Dinitro-o-Cresol:				
2-Chlorophenol:	< 0.3	< 0.3	< 0.3	< 0.3
4-Chloro-3-methylphenol:	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol:	< 1	< 1	< 1	< 1
o-Cresol:	< 0.5	< 0.5	< 0.5	< 0.5
m-,p-Cresol:	< 0.5	< 0.5	< 0.5	< 0.5
Pentachlorophenol:	< 1	1	< 1	< 1
Phenol:	< 0.5	< 0.5	< 0.5	< 0.5
	3.0]		
			<u> </u>	<u> </u>

Parameter	11b-00	11b-00	12a-00	12a-00
	14-Jun-11	14-Dec-11	15-Jun-11	15-Dec-11
MISA Group 19				
Acenaphthene:	< 0.2	< 0.2	< 0.2	< 0.2
5-Nitroacenaphthene:	< 1	< 1	< 1	< 0.2
•				
Acenaphthylene:	< 0.2	< 0.2	< 0.2	< 0.2
Anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(a)anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(a)Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(b)Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(g,h,i)perylene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(k)Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Biphenyl:	< 0.5	< 0.5	< 0.5	< 0.5
Camphene:	< 1	< 1	< 1	< 1
1-Chloronaphthalene:	< 1	< 1	< 1	< 1
2-Chloronaphthalene:	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibenzo(a,h)Anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Fluorene:				
		< 0.2	< 0.2	< 0.2
Indeno(1,2,3-cd)Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Indole:	< 1	< 1	< 1	< 1
1-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
2-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
Naphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
Perylene:	< 0.2	< 0.2	< 0.2	< 0.2
Phenanthrene:	< 0.2	< 0.2	< 0.2	< 0.2
Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzyl Butyl Phthalate:	< 0.5	< 0.5	0.7	< 0.5
bis(2-ethylhexyl)Phthalate:	< 2	< 2	< 2	< 2
Di-N-butylPhthalate:	< 2	< 2	< 2	< 2
Di-N-octylPhthalate:	< 0.8	< 0.8	< 0.8	< 0.8
4-Bromophenyl phenyl Ethe	< 0.3			< 0.3
4-Chlorophenyl Phenyl Ethe			< 0.5	
bis(2-chloroisopropyl)Ether:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-Chloroethyl)Ether:	< 0.5	< 0.5	< 0.5	< 0.5
Diphenyl ether:	< 0.3	< 0.3	< 0.3	< 0.3
2,4-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	< 0.5
2,6-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-chloroethoxy)Methan	< 0.5	< 0.5	< 0.5	< 0.5
Nitrosodiphenylamine	< 1	< 1	< 1	< 1
/Diphenylamine:	< 1		'	'
N-Nitrosodi-N-propylamine:	< 0.5	< 0.5	< 0.5	< 0.5
MISA Group 20				
2,3,4,5-Tetrachlorophenol:	< 0.4	< 0.4	< 0.4	< 0.4
2,3,4,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,5,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,4-Trichlorophenol:				
•				< 0.5
2,3,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4,6-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dinitrophenol:	< 2	< 2	< 2	< 6
2,4-Dimethylphenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dichlorophenol:	< 0.3	< 0.3	< 0.3	< 0.3
2,6-Dichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
4,6-Dinitro-o-Cresol:				
2-Chlorophenol:	< 0.3	< 0.3	< 0.3	< 0.3
4-Chloro-3-methylphenol:	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol:	< 1	< 1	< 1	< 1
o-Cresol:	< 0.5	< 0.5	< 0.5	< 0.5
m-,p-Cresol:	< 0.5	< 0.5	< 0.5	< 0.5
**				
Pentachlorophenol:	< 1			
Phenol:	< 0.5	< 0.5	< 0.5	< 0.5

Parameter	12b-00	12b-00	13a-01	13a-01
	15-Jun-11	15-Dec-11	16-Jun-11	13-Dec-11
MISA Group 19				
Acenaphthene:	< 0.2	< 0.2	< 0.2	
5-Nitroacenaphthene:	< 0.2	< 1	< 1	
Acenaphthylene:	< 0.2	< 0.2	< 0.2	
Anthracene:	< 0.2	< 0.2	< 0.2	
Benzo(a)anthracene:	< 0.2	< 0.2	< 0.2	
Benzo(a)Pyrene:	< 0.2	< 0.2	< 0.2	
Benzo(b)Fluoranthene:	< 0.2	< 0.2	< 0.2	
Benzo(g,h,i)perylene:			< 0.2	
Benzo(k)Fluoranthene:				
Biphenyl:				
Camphene:				
1-Chloronaphthalene:				
· ·		< 1		
2-Chloronaphthalene:	< 0.5	< 0.5	< 0.5	
Chrysene:	< 0.2	< 0.2	< 0.2	
Dibenzo(a,h)Anthracene:	< 0.2	< 0.2	< 0.2	
Fluoranthene:	< 0.2	< 0.2	< 0.2	
Fluorene:	< 0.2	< 0.2	< 0.2	
Indeno(1,2,3-cd)Pyrene:	< 0.2	< 0.2	< 0.2	
Indole:	< 1	< 1	< 1	
1-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	
2-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	
Naphthalene:	< 0.2	< 0.2	< 0.2	
Perylene:	< 0.2	< 0.2	< 0.2	
Phenanthrene:	< 0.2	< 0.2	< 0.2	
Pyrene:	< 0.2	< 0.2	< 0.2	
Benzyl Butyl Phthalate:	< 0.5	< 0.5	< 0.5	
bis(2-ethylhexyl)Phthalate:	< 2	< 2	< 2	
Di-N-butylPhthalate:	< 2	< 2	< 2	
Di-N-octylPhthalate:	< 0.8	< 0.8	< 0.8	
4-Bromophenyl phenyl Ethe	< 0.3	< 0.3	< 0.3	
4-Chlorophenyl Phenyl Ethe	< 0.5	< 0.5	< 0.5	
bis(2-chloroisopropyl)Ether:	< 0.5	< 0.5	< 0.5	
bis(2-Chloroethyl)Ether:	< 0.5	< 0.5	< 0.5	
Diphenyl ether:	< 0.3	< 0.3	< 0.3	
2,4-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	
2,6-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	
bis(2-chloroethoxy)Methan	< 0.5	< 0.5	< 0.5	
Nitrosodiphenylamine	< 1	< 1	< 1	
/Diphenylamine:		'	'	
N-Nitrosodi-N-propylamine:	< 0.5	< 0.5	< 0.5	
MISA Group 20				
2,3,4,5-Tetrachlorophenol:	< 0.4	< 0.4	< 0.4	
2,3,4,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	
2,3,5,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	
2,3,4-Trichlorophenol:	< 0.5	< 0.5	< 0.5	
2,3,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	
2,4,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	
2,4,6-Trichlorophenol:	< 0.5	< 0.5	< 0.5	
2,4-Dinitrophenol:	< 2	< 6	< 2	
2,4-Dimethylphenol:	< 0.5	< 0.5	< 0.5	
2,4-Dichlorophenol:	< 0.3	< 0.3	< 0.3	
2,6-Dichlorophenol:	< 0.5	< 0.5	< 0.5	
4,6-Dinitro-o-Cresol:	0.0	0.0	0.0	
2-Chlorophenol:	< 0.3	< 0.3	< 0.3	
4-Chloro-3-methylphenol:	< 0.5	< 0.5	< 0.5	
4-Nitrophenol:	< 0.5	< 0.5	< 0.5	
o-Cresol:	< 0.5	< 0.5	< 0.5	
m-,p-Cresol:				
I				
Pentachlorophenol:	< 1	< 1	< 1	
Phenol:	< 0.5	< 0.5	< 0.5	
				1

Parameter	13b-01	13b-01	14a-01	14a-01
	16-Jun-11	13-Dec-11	15-Jun-11	14-Dec-11
MISA Group 19				
Acenaphthene:	< 0.2		< 0.2	< 0.2
5-Nitroacenaphthene:	< 1		< 1	< 1
Acenaphthylene:	< 0.2		< 0.2	< 0.2
Anthracene:	< 0.2		< 0.2	< 0.2
Benzo(a)anthracene:	< 0.2		< 0.2	< 0.2
Benzo(a)Pyrene:	< 0.2		< 0.2	< 0.2
Benzo(b)Fluoranthene:	< 0.2		< 0.2	< 0.2
Benzo(g,h,i)perylene:	< 0.2		< 0.2	< 0.2
Benzo(k)Fluoranthene:	< 0.2		< 0.2	< 0.2
Biphenyl:	< 0.5		< 0.5	< 0.5
Camphene:	< 1		< 1	< 1
1-Chloronaphthalene:	< 1		< 1	< 1
2-Chloronaphthalene:	< 0.5		< 0.5	< 0.5
Chrysene:	< 0.2		< 0.2	< 0.2
Dibenzo(a,h)Anthracene:	< 0.2		< 0.2	< 0.2
Fluoranthene:	< 0.2		< 0.2	< 0.2
Fluorene:	< 0.2		< 0.2	< 0.2
Indeno(1,2,3-cd)Pyrene:	< 0.2		< 0.2	< 0.2
Indole:	< 1		< 1	< 1
1-Methylnaphthalene:	< 0.2		< 0.2	< 0.2
2-Methylnaphthalene:	< 0.2		< 0.2	< 0.2
Naphthalene:	< 0.2		< 0.2	< 0.2
Perylene:	< 0.2		< 0.2	< 0.2
Phenanthrene:	< 0.2		< 0.2	< 0.2
Pyrene:	< 0.2		< 0.2	< 0.2
Benzyl Butyl Phthalate:	< 0.5		0.5	< 0.5
bis(2-ethylhexyl)Phthalate:	< 2		< 2	< 2
Di-N-butylPhthalate:	< 2		< 2	< 2
Di-N-octylPhthalate:	< 0.8		< 0.8	< 0.8
4-Bromophenyl phenyl Ethe	< 0.3		< 0.3	< 0.3
4-Chlorophenyl Phenyl Ethe	< 0.5		< 0.5	< 0.5
bis(2-chloroisopropyl)Ether:	< 0.5		< 0.5	< 0.5
bis(2-Chloroethyl)Ether:	< 0.5		< 0.5	< 0.5
Diphenyl ether:	< 0.3		< 0.3	< 0.3
2,4-Dinitrotoluene:	< 0.5		< 0.5	< 0.5
2,6-Dinitrotoluene:	< 0.5		< 0.5	< 0.5
bis(2-chloroethoxy)Methan	< 0.5		< 0.5	< 0.5
Nitrosodiphenylamine				
/Diphenylamine:	< 1		< 1	< 1
N-Nitrosodi-N-propylamine:	< 0.5		< 0.5	< 0.5
MISA Group 20				
2,3,4,5-Tetrachlorophenol:	< 0.4		< 0.4	< 0.4
2,3,4,6-Tetrachlorophenol:	< 0.5		< 0.5	< 0.5
2,3,5,6-Tetrachlorophenol:	< 0.5		< 0.5	< 0.5
2,3,4-Trichlorophenol:	< 0.5		< 0.5	< 0.5
2,3,5-Trichlorophenol:	< 0.5		< 0.5	< 0.5
2,4,5-Trichlorophenol:	< 0.5		< 0.5	< 0.5
2,4,6-Trichlorophenol:	< 0.5		< 0.5	< 0.5
2,4-Dinitrophenol:	< 2		< 2	< 2
2,4-Dimethylphenol:	< 0.5		< 0.5	< 0.5
2,4-Dichlorophenol:	< 0.3		< 0.3	< 0.3
2,6-Dichlorophenol:	< 0.5		< 0.5	< 0.5
4,6-Dinitro-o-Cresol:				
2-Chlorophenol:	< 0.3		< 0.3	< 0.3
4-Chloro-3-methylphenol:	< 0.5		< 0.5	< 0.5
4-Nitrophenol:	< 1		< 1	< 1
o-Cresol:	< 0.5		< 0.5	< 0.5
m-,p-Cresol:	< 0.5		< 0.5	< 0.5
Pentachlorophenol:	< 1		< 1	< 1
Phenol:	< 0.5		< 0.5	< 0.5
	,			
		<u>I</u>	<u> </u>	<u> </u>

Parameter	14b-01	14b-01	15a-01	15a-01
	14-Jun-11	14-Dec-11	14-Jun-11	15-Dec-11
MISA Group 19				
	. 00	. 00	. 00	. 00
Acenaphthene:	< 0.2 < 1	< 0.2 < 1	< 0.2 < 1	< 0.2 < 1
5-Nitroacenaphthene:				
Acenaphthylene:	< 0.2	< 0.2	< 0.2	< 0.2
Anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(a)anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(a)Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(b)Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(g,h,i)perylene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(k)Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Biphenyl:	< 0.5	< 0.5	< 0.5	< 0.5
Camphene:	< 1	< 1	< 1	< 1
1-Chloronaphthalene:	< 1	< 1	< 1	< 1
2-Chloronaphthalene:	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibenzo(a,h)Anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Fluorene:	< 0.2	< 0.2	< 0.2	< 0.2
Indeno(1,2,3-cd)Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Indole:	< 1	< 1	< 1	< 1
1-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
2-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
Naphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
Perylene:	< 0.2	< 0.2	< 0.2	< 0.2
Phenanthrene:	< 0.2	< 0.2	< 0.2	< 0.2
Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzyl Butyl Phthalate:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-ethylhexyl)Phthalate:	< 2	21	< 2	< 2
Di-N-butylPhthalate:	< 2	< 2	< 2	< 2
Di-N-octylPhthalate:	< 0.8	< 0.8	< 0.8	< 0.8
4-Bromophenyl phenyl Ethe	< 0.3	< 0.3	< 0.3	< 0.3
4-Chlorophenyl Phenyl Ethe	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-chloroisopropyl)Ether:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-Chloroethyl)Ether:				
, , ,				
Diphenyl ether:	< 0.3	< 0.3	< 0.3	< 0.3
2,4-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	< 0.5
2,6-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-chloroethoxy)Methan	< 0.5	< 0.5	< 0.5	< 0.5
Nitrosodiphenylamine	< 1	< 1	< 1	< 1
/Diphenylamine:				
N-Nitrosodi-N-propylamine:	< 0.5	< 0.5	< 0.5	< 0.5
MISA Group 20				
	0.4	0.4	0.4	0.4
2,3,4,5-Tetrachlorophenol:	< 0.4	< 0.4	< 0.4	< 0.4
2,3,4,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,5,6-Tetrachlorophenol: 2,3,4-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
•	< 0.5	< 0.5	< 0.5	< 0.5
2,3,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4,6-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dinitrophenol:	< 2	< 2	< 2	< 6
2,4-Dimethylphenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dichlorophenol:	< 0.3	< 0.3	< 0.3	< 0.3
2,6-Dichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
4,6-Dinitro-o-Cresol:				
2-Chlorophenol:	< 0.3	< 0.3	< 0.3	< 0.3
4-Chloro-3-methylphenol:	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol:	< 1	< 1	< 1	< 1
o-Cresol:	< 0.5	< 0.5	< 0.5	< 0.5
m-,p-Cresol:	< 0.5	< 0.5	< 0.5	< 0.5
Pentachlorophenol:	< 1	< 1	< 1	< 1
Phenol:	< 0.5	< 0.5	< 0.5	< 0.5
		Í	1	1

MISA Group 19	Parameter	15b-01	15b-01	16A-08	16A-08
Acengaphthene:		14-Jun-11	15-Dec-11	16-Jun-11	13-Dec-11
AcengaPhtPaner	MISA Group 19				
S-Niroscenaphthene:		- 02	- 02	- 02	
Acenaphthylene:	· ·				
Anthracone:	·				
Benzo(al)Prene:					
Benzola Pyrene:					
Benzo(phipuramhene:	` '				
Benzo(sh.)perylene:					
Banzolic Fluoranthene:	1 1				
Biphenyit					
Camphene:	` '				
1-Chioronaphthalene:	' '				
2-Chloronaphthalene:	•				
Chrysene:	•				
Disenzo(ah)Anthracene;	·				
Fluoranthene:	*				
Fluorene:					
Indeno(1,2,3-cd)Pyrene:					
Indole:					
1-Methylnaphthalene:					
2-Methylnaphthalene:					
Naphthalene: < 0.2					
Perylene:					
Phenanthrene:					
Pyrene:	,				
Benzyl Butyl Phthalate:					
bis(2-ethylhexyl)Phthalate: 2 2 2 2 2 2 2 2 2 2 Di-N-buylPhthalate: <					
Di-N-buty Phthalate:					
Di-N-octylPhthalate:	`				
4-Bromophenyl phenyl Ethe 4-Chlorophenyl Phenyl Ethe 1-Chlorophenyl Ether 1-Chloropheny	-				
4-Chlorophenyl Phenyl Ethe bis(2-chloroisopropyl)Ether: bis(2-chloroisopropyl)Ether: < 0.5	*				
bis(2-chloroisopropyl)Ether: < 0.5					
bis(2-Chloroethyl)Ether:					
Diphenyl ether:					
2,4-Dinitrotoluene: < 0.5	I				
2,6-Dinitrotoluene: < 0.5					
bis(2-chloroethoxy)Methan Nitrosodiphenylamine / Diphenylamine / Diphenylamine / Diphenylamine: 1 0.5	· ·				
Nitrosodiphenylamine /Diphenylamine: 1 2 1 1 2 1 1 2 <td>*</td> <td></td> <td></td> <td></td> <td></td>	*				
Diphenylamine:		< 0.5	< 0.5	< 0.5	
MISA Group 20 Co.5 Co.5 Co.5 2,3,4,5-Tetrachlorophenol: Co.4 Co.4 Co.4 Co.4 Co.4 Co.4 Co.4 Co.4 Co.4 Co.5	. ,	< 1	< 1	< 1	
Misa Group 20 2,3,4,5-Tetrachlorophenol: 0.4 0.4 2,3,4,6-Tetrachlorophenol: 0.5 0.5 2,3,5,6-Tetrachlorophenol: 0.5 0.5 0.5 2,3,4-Trichlorophenol: 0.5 0.5 0.5 2,3,5-Trichlorophenol: 0.5 0.5 0.5 2,3,5-Trichlorophenol: 0.5 0.5 0.5 2,4,5-Trichlorophenol: 0.5 0.5 0.5 2,4,6-Trichlorophenol: 0.5 0.5 0.5 2,4-Dinitrophenol: 0.5 0.5 0.5 2,4-Dimitryphenol: 0.5 0.5 0.5 2,4-Dinitro-o-Cresol: 0.5 0.5 0.5 4,6-Dinitro-o-Cresol: 0.5 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
2,3,4,5-Tetrachlorophenol: < 0.4	N-Nitrosodi-N-propylamine:	< 0.5	< 0.5	< 0.5	
2,3,4,5-Tetrachlorophenol: < 0.4					
2,3,4,6-Tetrachlorophenol: 0.5 <	MISA Group 20				
2,3,5,6-Tetrachlorophenol: < 0.5					
2,3,4-Trichlorophenol: < 0.5					
2,3,5-Trichlorophenol: < 0.5					
2,4,5-Trichlorophenol: < 0.5	· ·				
2,4,6-Trichlorophenol: < 0.5					
2,4-Dinitrophenol: < 2					
2,4-Dimethylphenol: < 0.5	' '				
2,4-Dichlorophenol: 0.3 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5<					
2,6-Dichlorophenol: < 0.5	= -	< 0.5	< 0.5	< 0.5	
4,6-Dinitro-o-Cresol: 2-Chlorophenol: < 0.3	· ·	< 0.3	< 0.3	< 0.3	
2-Chlorophenol: < 0.3		< 0.5	< 0.5	< 0.5	
4-Chloro-3-methylphenol: < 0.5	4,6-Dinitro-o-Cresol:				
4-Nitrophenol: 1 1 1 o-Cresol: 0.5 0.5 0.5 m-,p-Cresol: 0.5 0.5 0.5 Pentachlorophenol: 1 1 1					
o-Cresol:	7 7				
m-,p-Cresol: < 0.5 < 0.5 < 0.5 Pentachlorophenol: < 1 1 < 1	·				
Pentachlorophenol: < 1 1 < 1		< 0.5	< 0.5	< 0.5	
	T	< 0.5	< 0.5	< 0.5	
Phenol: < 0.5 < 0.5 < 0.5	Pentachlorophenol:				
	Phenol:	< 0.5	< 0.5	< 0.5	

Parameter	16B-08	16B-08	17A-08	17A-08
	16-Jun-11	13-Dec-11	16-Jun-11	15-Dec-11
MISA Group 19				
Acenaphthene:	< 0.2		< 0.2	< 0.2
5-Nitroacenaphthene:	< 1		< 1	< 1
Acenaphthylene:	< 0.2		< 0.2	< 0.2
Anthracene:	< 0.2		< 0.2	< 0.2
Benzo(a)anthracene:	< 0.2		< 0.2	< 0.2
Benzo(a)Pyrene:	< 0.2		< 0.2	< 0.2
Benzo(b)Fluoranthene:	< 0.2		< 0.2	< 0.2
Benzo(g,h,i)perylene:	< 0.2		< 0.2	< 0.2
Benzo(k)Fluoranthene:	< 0.2		< 0.2	< 0.2
Biphenyl:	< 0.5		< 0.5	< 0.5
Camphene:	< 1		< 1	< 1
1-Chloronaphthalene:	< 1		< 1	< 1
2-Chloronaphthalene:	< 0.5		< 0.5	< 0.5
Chrysene:	< 0.2		< 0.2	< 0.2
Dibenzo(a,h)Anthracene:	< 0.2		< 0.2	< 0.2
Fluoranthene:	< 0.2		< 0.2	< 0.2
Fluorene:	< 0.2		< 0.2	< 0.2
Indeno(1,2,3-cd)Pyrene:	< 0.2		< 0.2	< 0.2
Indole:	< 1		< 1	< 1
1-Methylnaphthalene:	< 0.2		< 0.2	< 0.2
2-Methylnaphthalene:	< 0.2		< 0.2	< 0.2
Naphthalene:	< 0.2		< 0.2	< 0.2
Perylene:	< 0.2		< 0.2	< 0.2
Phenanthrene:	< 0.2		< 0.2	< 0.2
Pyrene:	< 0.2		< 0.2	< 0.2
Benzyl Butyl Phthalate:	< 0.5		< 0.5	< 0.5
bis(2-ethylhexyl)Phthalate:	< 2		< 2	< 2
Di-N-butylPhthalate:	< 2		< 2	< 2
Di-N-octylPhthalate:	< 0.8		< 0.8	< 0.8
4-Bromophenyl phenyl Ethe	< 0.3		< 0.3	< 0.3
4-Chlorophenyl Phenyl Ethe	< 0.5		< 0.5	< 0.5
bis(2-chloroisopropyl)Ether:	< 0.5		< 0.5	< 0.5
bis(2-Chloroethyl)Ether:	< 0.5		< 0.5	< 0.5
Diphenyl ether:	< 0.3		< 0.3	< 0.3
2,4-Dinitrotoluene:	< 0.5		< 0.5	< 0.5
2,6-Dinitrotoluene:	< 0.5		< 0.5	< 0.5
bis(2-chloroethoxy)Methan	< 0.5		< 0.5	< 0.5
Nitrosodiphenylamine	< 1		< 1	< 1
/Diphenylamine:			'	'
N-Nitrosodi-N-propylamine:	< 0.5		< 0.5	< 0.5
MISA Group 20				
2,3,4,5-Tetrachlorophenol:	< 0.4		< 0.4	< 0.4
2,3,4,6-Tetrachlorophenol:	< 0.5		< 0.5	< 0.5
2,3,5,6-Tetrachlorophenol:	< 0.5		< 0.5	< 0.5
2,3,4-Trichlorophenol:	< 0.5		< 0.5	< 0.5
2,3,5-Trichlorophenol:	< 0.5		< 0.5	< 0.5
2,4,5-Trichlorophenol:	< 0.5		< 0.5	< 0.5
2,4,6-Trichlorophenol:	< 0.5		< 0.5	< 0.5
2,4-Dinitrophenol:	< 2		< 2	< 6
2,4-Dimethylphenol:	< 0.5		< 0.5	< 0.5
2,4-Dichlorophenol:	< 0.3		< 0.3	< 0.3
2,6-Dichlorophenol:	< 0.5		< 0.5	< 0.5
4,6-Dinitro-o-Cresol:				
2-Chlorophenol:	< 0.3		< 0.3	< 0.3
4-Chloro-3-methylphenol:	< 0.5		< 0.5	< 0.5
4-Nitrophenol:	< 1		< 1	< 1
o-Cresol:	< 0.5		< 0.5	< 0.5
m-,p-Cresol:	< 0.5		< 0.5	< 0.5
Pentachlorophenol:	< 1		< 1	< 1
Phenol:	< 0.5		< 0.5	< 0.5
		-		

Parameter	17B-08	17B-08	18A-08	18A-08
	16-Jun-11	15-Dec-11	16-Jun-11	16-Dec-11
MISA Group 19				
Acenaphthene:	< 0.2	< 0.2	< 0.2	< 0.2
5-Nitroacenaphthene:	< 1	< 1	< 1	< 1
Acenaphthylene:	< 0.2	< 0.2	< 0.2	< 0.2
Anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(a)anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(a)Pyrene:	< 0.2		< 0.2	< 0.2
Benzo(b)Fluoranthene:	< 0.2			< 0.2
Benzo(g,h,i)perylene:	< 0.2		< 0.2 < 0.2	< 0.2
Benzo(k)Fluoranthene:	< 0.2		< 0.2	< 0.2
Biphenyl:	< 0.2			< 0.5
Camphene:				
•				
1-Chloronaphthalene:				
2-Chloronaphthalene:	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibenzo(a,h)Anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Fluorene:	< 0.2	< 0.2	< 0.2	< 0.2
Indeno(1,2,3-cd)Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Indole:	< 1	< 1	< 1	< 1
1-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
2-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
Naphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
Perylene:	< 0.2	< 0.2	< 0.2	< 0.2
Phenanthrene:	< 0.2	< 0.2	< 0.2	< 0.2
Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzyl Butyl Phthalate:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-ethylhexyl)Phthalate:	< 2	< 2	< 2	< 2
Di-N-butylPhthalate:	< 2	< 2	< 2	< 2
Di-N-octylPhthalate:	< 0.8	< 0.8	< 0.8	< 0.8
4-Bromophenyl phenyl Ethe	< 0.3	< 0.3	< 0.3	< 0.3
4-Chlorophenyl Phenyl Ethe	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-chloroisopropyl)Ether:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-Chloroethyl)Ether:	< 0.5	< 0.5	< 0.5	< 0.5
Diphenyl ether:	< 0.3	< 0.3	< 0.3	< 0.3
2,4-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	< 0.5
2,6-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-chloroethoxy)Methan	< 0.5	< 0.5	< 0.5	< 0.5
Nitrosodiphenylamine	< 1	< 1	< 1	< 1
/Diphenylamine:			'	
N-Nitrosodi-N-propylamine:	< 0.5	< 0.5	< 0.5	< 0.5
MISA Group 20				
2,3,4,5-Tetrachlorophenol:	< 0.4	< 0.4	< 0.4	< 0.4
2,3,4,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,5,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,4-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4,6-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dinitrophenol:	< 2	< 6	< 2	< 6
2,4-Dimethylphenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dichlorophenol:	< 0.3	< 0.3	< 0.3	< 0.3
2,6-Dichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
4,6-Dinitro-o-Cresol:	. 5.0] , ,,,,]	
2-Chlorophenol:	< 0.3	< 0.3	< 0.3	< 0.3
4-Chloro-3-methylphenol:	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol:	< 1	< 1	< 1	< 1
o-Cresol:	< 0.5	< 0.5	< 0.5	< 0.5
m-,p-Cresol:	< 0.5	< 0.5	< 0.5	< 0.5
Pentachlorophenol:	< 1	< 0.5	< 1	< 0.5
Phenol:	< 0.5	< 0.5	< 0.5	< 0.5
i nono.	\ 0.3	\ 0.5	\ U.3	\ U.5
, I				

Parameter	18B-08	19A-08	19A-08	19B-08
	16-Jun-11	15-Jun-11	16-Dec-11	15-Jun-11
MISA Group 19				
Acenaphthene:	< 0.2	< 0.2	< 0.2	< 0.2
5-Nitroacenaphthene:	< 0.2	< 1	< 0.2	< 0.2
Acenaphthylene:	< 0.2	< 0.2	< 0.2	< 0.2
Anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(a)anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(a)Pyrene:	< 0.2			< 0.2
Benzo(b)Fluoranthene:	< 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2
Benzo(g,h,i)perylene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(k)Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Biphenyl:	< 0.5	< 0.5	< 0.5	< 0.2
Camphene:	< 1	< 0.5	< 1	< 0.5
1-Chloronaphthalene:	< 1	< 1	< 1	< 1
2-Chloronaphthalene:	< 0.5			< 0.5
-				
Chrysene:				
Dibenzo(a,h)Anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Fluorene:	< 0.2	< 0.2	< 0.2	< 0.2
Indeno(1,2,3-cd)Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Indole:	< 1	< 1	< 1	< 1
1-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
2-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
Naphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
Perylene:	< 0.2	< 0.2	< 0.2	< 0.2
Phenanthrene:	< 0.2	< 0.2	< 0.2	< 0.2
Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzyl Butyl Phthalate:	< 0.5	< 0.5	< 0.5	1.9
bis(2-ethylhexyl)Phthalate:	< 2	< 2	< 2	< 2
Di-N-butylPhthalate:	< 2	< 2	< 2	< 2
Di-N-octylPhthalate:	< 0.8	< 0.8	< 0.8	< 0.8
4-Bromophenyl phenyl Ethe	< 0.3	< 0.3	< 0.3	< 0.3
4-Chlorophenyl Phenyl Ethe	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-chloroisopropyl)Ether:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-Chloroethyl)Ether:	< 0.5	< 0.5	< 0.5	< 0.5
Diphenyl ether:	< 0.3	< 0.3	< 0.3	< 0.3
2,4-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	< 0.5
2,6-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-chloroethoxy)Methan	< 0.5	< 0.5	< 0.5	< 0.5
Nitrosodiphenylamine	< 1	< 1	< 1	< 1
/Diphenylamine:		'	'	'
N-Nitrosodi-N-propylamine:	< 0.5	< 0.5	< 0.5	< 0.5
MISA Group 20				
2,3,4,5-Tetrachlorophenol:	< 0.4	< 0.4	< 0.4	< 0.4
2,3,4,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,5,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,4-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4,6-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dinitrophenol:	< 2	< 2	< 6	< 2
2,4-Dimethylphenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dichlorophenol:	< 0.3	< 0.3	< 0.3	< 0.3
2,6-Dichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
4,6-Dinitro-o-Cresol:	0.0	0.0	0.0	0.0
2-Chlorophenol:	< 0.3	< 0.3	< 0.3	< 0.3
4-Chloro-3-methylphenol:	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol:	< 1	< 1	< 1	< 0.5
o-Cresol:	< 0.5	< 0.5	< 0.5	< 0.5
m-,p-Cresol:	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5
Pentachlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
Phenol:			< 0.5	
I IICIIUI.	< 0.5	< 0.5	< 0.5	< 0.5

Parameter	19B-08	20A-08	20A-08	20B-08
	16-Dec-11	15-Jun-11	16-Dec-11	15-Jun-11
MISA Group 19				
Acenaphthene:	< 0.2	< 0.2	< 0.2	< 0.2
5-Nitroacenaphthene:	< 1	< 1	< 1	< 1
Acenaphthylene:	< 0.2	< 0.2	< 0.2	< 0.2
Anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(a)anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(a)Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(b)Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(g,h,i)perylene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(k)Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Biphenyl:	< 0.5	< 0.5	< 0.5	< 0.5
Camphene:	< 1	< 1	< 1	< 1
1-Chloronaphthalene:	< 1	< 1	< 1	< 1
2-Chloronaphthalene:	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibenzo(a,h)Anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Fluorene:	< 0.2	< 0.2	< 0.2	< 0.2
Indeno(1,2,3-cd)Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Indole:	< 1	< 1	< 1	< 1
1-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
2-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
Naphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
Perylene:	< 0.2	< 0.2	< 0.2	< 0.2
Phenanthrene:	< 0.2	< 0.2	< 0.2	< 0.2
Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzyl Butyl Phthalate:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-ethylhexyl)Phthalate:	< 2	< 2	< 2	< 2
Di-N-butylPhthalate:	< 2	< 2	< 2	< 2
Di-N-octylPhthalate:	< 0.8	< 0.8	< 0.8	< 0.8
4-Bromophenyl phenyl Ethe	< 0.3	< 0.3	< 0.3	< 0.3
4-Chlorophenyl Phenyl Ethe	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-chloroisopropyl)Ether:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-Chloroethyl)Ether:	< 0.5	< 0.5	< 0.5	< 0.5
Diphenyl ether:	< 0.3	< 0.3	< 0.3	< 0.3
2,4-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	< 0.5
2,6-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-chloroethoxy)Methan	< 0.5	< 0.5	< 0.5	< 0.5
Nitrosodiphenylamine	< 1	< 1	< 1	< 1
/Diphenylamine:	< 1	< 1	< 1	< 1
N-Nitrosodi-N-propylamine:	< 0.5	< 0.5	< 0.5	< 0.5
MISA Group 20				
2,3,4,5-Tetrachlorophenol:	< 0.4	< 0.4	< 0.4	< 0.4
2,3,4,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,5,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,4-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4,6-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dinitrophenol:	< 6	< 2	< 6	< 2
2,4-Dimethylphenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dichlorophenol:	< 0.3	< 0.3	< 0.3	< 0.3
2,6-Dichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
4,6-Dinitro-o-Cresol:				
2-Chlorophenol:	< 0.3	< 0.3	< 0.3	< 0.3
4-Chloro-3-methylphenol:	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol:	< 1	< 1	< 1	< 1
o-Cresol:	< 0.5	< 0.5	< 0.5	< 0.5
m-,p-Cresol:	< 0.5	< 0.5	< 0.5	< 0.5
Pentachlorophenol:	< 1	< 1	< 1	< 1
Phenol:	< 0.5	< 0.5	< 0.5	< 0.5
	-	•	•	•

Parameter	20B-08	21A-08	21A-08	22A-11
	16-Dec-11	14-Jun-11	14-Dec-11	19-Dec-11
MISA Group 19				
Acenaphthene:	< 0.2	< 0.2	< 0.2	< 0.2
5-Nitroacenaphthene:	< 1	< 1	< 1	< 1
Acenaphthylene:	< 0.2	< 0.2	< 0.2	< 0.2
Anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(a)anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(a)Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(b)Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(g,h,i)perylene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzo(k)Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Biphenyl:	< 0.5	< 0.5	< 0.5	< 0.5
Camphene:	< 1	< 1	< 1	< 1
1-Chloronaphthalene:	< 1	< 1	< 1	< 1
2-Chloronaphthalene:	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibenzo(a,h)Anthracene:	< 0.2	< 0.2	< 0.2	< 0.2
Fluoranthene:	< 0.2	< 0.2	< 0.2	< 0.2
Fluorene:	< 0.2	< 0.2	< 0.2	< 0.2
Indeno(1,2,3-cd)Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Indole:	< 1	< 1	< 1	< 1
1-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
2-Methylnaphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
Naphthalene:	< 0.2	< 0.2	< 0.2	< 0.2
Perylene:	< 0.2	< 0.2	< 0.2	< 0.2
Phenanthrene:	< 0.2	< 0.2	< 0.2	< 0.2
Pyrene:	< 0.2	< 0.2	< 0.2	< 0.2
Benzyl Butyl Phthalate: bis(2-ethylhexyl)Phthalate:	< 0.5 < 2	< 0.5 < 2	< 0.5 < 2	< 0.5 < 2
Di-N-butylPhthalate:	< 2 < 2	< 2 < 2	< 2 < 2	< 2 < 2
Di-N-octylPhthalate:	< 0.8	< 0.8	< 0.8	< 0.8
4-Bromophenyl phenyl Ethe	< 0.3	< 0.3	< 0.3	< 0.3
4-Chlorophenyl Phenyl Ethe	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-chloroisopropyl)Ether:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-Chloroethyl)Ether:	< 0.5	< 0.5	< 0.5	< 0.5
Diphenyl ether:	< 0.3	< 0.3	< 0.3	< 0.3
2,4-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	< 0.5
2,6-Dinitrotoluene:	< 0.5	< 0.5	< 0.5	< 0.5
bis(2-chloroethoxy)Methan	< 0.5	< 0.5	< 0.5	< 0.5
Nitrosodiphenylamine	< 1	< 1	< 1	< 1
/Diphenylamine:			'	'
N-Nitrosodi-N-propylamine:	< 0.5	< 0.5	< 0.5	< 0.5
MISA Group 20				
2,3,4,5-Tetrachlorophenol:	< 0.4	< 0.4	< 0.4	< 0.4
2,3,4,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,5,6-Tetrachlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,4-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,3,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4,5-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4,6-Trichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dinitrophenol:	< 6	< 2	< 2	< 1
2,4-Dimethylphenol: 2,4-Dichlorophenol:	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dichlorophenol:	< 0.3 < 0.5	< 0.3 < 0.5	< 0.3 < 0.5	< 0.3 < 0.5
4,6-Dinitro-o-Cresol:	₹ 0.5	V 0.5	0.0	0.0
2-Chlorophenol:	< 0.3	< 0.3	< 0.3	< 0.3
4-Chloro-3-methylphenol:	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol:	< 1	< 1	< 1	< 1
o-Cresol:	< 0.5	< 0.5	< 0.5	< 0.5
m-,p-Cresol:	< 0.5	< 0.5	< 0.5	< 0.5
Pentachlorophenol:	< 1	< 1	< 1	< 1
Phenol:	< 0.5	< 0.5	< 0.5	< 0.5
		•		

Station - 2011	
Parameter	22B-11
	19-Dec-11
MISA Group 19	
Acenaphthene:	< 0.2
5-Nitroacenaphthene:	< 1
Acenaphthylene:	< 0.2
Anthracene:	< 0.2
Benzo(a)anthracene: Benzo(a)Pyrene:	< 0.2 < 0.2
Benzo(b)Fluoranthene:	< 0.2
Benzo(g,h,i)perylene:	< 0.2
Benzo(k)Fluoranthene:	< 0.2
Biphenyl:	< 0.5
Camphene:	< 1
1-Chloronaphthalene:	< 1
2-Chloronaphthalene:	< 0.5
Chrysene:	< 0.2
Dibenzo(a,h)Anthracene:	< 0.2
Fluoranthene: Fluorene:	< 0.2 < 0.2
Indeno(1,2,3-cd)Pyrene:	< 0.2 < 0.2
Indole:	< 0.2
1-Methylnaphthalene:	< 0.2
2-Methylnaphthalene:	< 0.2
Naphthalene:	< 0.2
Perylene:	< 0.2
Phenanthrene:	< 0.2
Pyrene:	< 0.2
Benzyl Butyl Phthalate:	< 0.5
bis(2-ethylhexyl)Phthalate:	< 2
Di-N-butylPhthalate:	< 2 < 0.8
Di-N-octylPhthalate: 4-Bromophenyl phenyl Ethe	< 0.8 < 0.3
4-Chlorophenyl Phenyl Ethe	< 0.5 < 0.5
bis(2-chloroisopropyl)Ether:	< 0.5
bis(2-Chloroethyl)Ether:	< 0.5
Diphenyl ether:	< 0.3
2,4-Dinitrotoluene:	< 0.5
2,6-Dinitrotoluene:	< 0.5
bis(2-chloroethoxy)Methan	< 0.5
Nitrosodiphenylamine /Diphenylamine:	< 1
N-Nitrosodi-N-propylamine:	< 0.5
TY THE OCCUPATION	1 0.0
MISA Group 20	
2,3,4,5-Tetrachlorophenol:	< 0.4
2,3,4,6-Tetrachlorophenol:	< 0.5
2,3,5,6-Tetrachlorophenol:	< 0.5
2,3,4-Trichlorophenol:	< 0.5
2,3,5-Trichlorophenol:	< 0.5
2,4,5-Trichlorophenol:	< 0.5
2,4,6-Trichlorophenol:	< 0.5
2,4-Dinitrophenol:	< 1 < 0.5
2,4-Dimethylphenol: 2,4-Dichlorophenol:	< 0.5 < 0.3
2,6-Dichlorophenol:	< 0.5 < 0.5
4,6-Dinitro-o-Cresol:	` 0.0
2-Chlorophenol:	< 0.3
4-Chloro-3-methylphenol:	< 0.5
4-Nitrophenol:	< 1
o-Cresol:	< 0.5
m-,p-Cresol:	< 0.5
Pentachlorophenol: Phenol:	< 1
FITERIOI:	< 0.5
İ	

Daramatar	2a-91	2a-91	2b-91	2b-91
Parameter	16-Jun-11	15-Dec-11	16-Jun-11	15-Dec-11
MISA Group 16				
1,1,1,2-Tetrachloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,1-Trichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,2,2-Tetrachloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1,2-Trichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1-Dichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dibromoethane:*	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloropropane:	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,4-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
Bromodichloromethane:	< 0.1	< 0.1	< 0.1	< 0.1
Bromoform:	< 0.2	< 0.2	< 0.2	< 0.2
Bromomethane:	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride:	< 0.1	< 0.1	< 0.1	< 0.1
Chlorobenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Chloroform:	< 0.1	< 0.1	< 0.1	< 0.1
Chloromethane:	< 0.5	< 0.5	< 0.5	< 0.5
Cis-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Cis-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibromochloromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride:	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
trans-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trans-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Trichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trichlorofluoromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Vinyl chloride:	< 0.2	< 0.2	< 0.2	< 0.2
MISA Group 17				
Benzene:	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Styrene:	< 0.2	< 0.2	< 0.2	< 0.2
Toluene:	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
m-Xylene and p-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
MISA Group 18				
Acrolein:	< 10	< 10	< 10	< 10
Acrylonitrile:	< 5	< 5	< 5	< 5

Parameter	5-96	5-96	6a-96	6a-96
r di di ili	15-Jun-11	13-Dec-11	14-Jun-11	13-Dec-11
MISA Group 16				
1,1,1,2-Tetrachloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,1-Trichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,2,2-Tetrachloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1,2-Trichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1-Dichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dibromoethane:*	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloropropane:	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,4-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
Bromodichloromethane:	< 0.1	< 0.1	< 1	0.12
Bromoform:	< 0.2	< 0.2	< 0.2	< 0.2
Bromomethane:	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride:	< 0.1	< 0.1	< 0.1	< 0.1
Chlorobenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Chloroform:	< 0.1	< 0.1	0.4	0.46
Chloromethane:	< 0.5	< 0.5	< 0.5	< 0.5
Cis-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Cis-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibromochloromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride:	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
trans-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trans-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Trichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trichlorofluoromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Vinyl chloride:	< 0.2	< 0.2	< 0.2	< 0.2
MISA Group 17				
Benzene:	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Styrene:	< 0.2	< 0.2	< 0.2	< 0.2
Toluene:	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
m-Xylene and p-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
MISA Group 18				
Acrolein:	< 10	< 10	< 10	< 10
Acrylonitrile:	< 5	< 5	< 5	< 5

Daramatar	6b-96	6b-96	7-96	7-96
Parameter	14-Jun-11	13-Dec-11	14-Jun-11	14-Dec-11
MISA Group 16				
1,1,1,2-Tetrachloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,1-Trichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,2,2-Tetrachloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1,2-Trichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1-Dichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dibromoethane:*	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloropropane:	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,4-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
Bromodichloromethane:	< 0.1	< 0.1	< 0.1	< 0.1
Bromoform:	< 0.2	< 0.2	< 0.2	< 0.2
Bromomethane:	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride:	< 0.1	< 0.1	< 0.1	< 0.1
Chlorobenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Chloroform:	< 0.1	< 0.1	< 0.1	< 0.1
Chloromethane:	< 0.5	< 0.5	< 0.5	< 0.5
Cis-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Cis-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibromochloromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride:	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
trans-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trans-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Trichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trichlorofluoromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Vinyl chloride:	< 0.2	< 0.2	< 0.2	< 0.2
MISA Group 17				
Benzene:	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Styrene:	< 0.2	< 0.2	< 0.2	< 0.2
Toluene:	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
m-Xylene and p-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
MISA Group 18				
Acrolein:	< 10	< 10	< 10	< 10
Acrylonitrile:	< 5	< 5	< 5	< 5

Parameter	8-96	8-96	11a-00	11a-00
Farameter	15-Jun-11	14-Dec-11	15-Jun-11	14-Dec-11
MISA Group 16				
1,1,1,2-Tetrachloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,1-Trichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,2,2-Tetrachloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1,2-Trichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1-Dichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dibromoethane:*	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloropropane:	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,4-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
Bromodichloromethane:	< 0.1	< 0.1	< 0.1	< 0.1
Bromoform:	< 0.2	< 0.2	< 0.2	< 0.2
Bromomethane:	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride:	< 0.1	< 0.1	< 0.1	< 0.1
Chlorobenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Chloroform:	< 0.1	< 0.1	< 0.1	< 0.1
Chloromethane:	< 0.5	< 0.5	< 0.5	< 0.5
Cis-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Cis-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibromochloromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride:	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
trans-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trans-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Trichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trichlorofluoromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Vinyl chloride:	< 0.2	< 0.2	< 0.2	< 0.2
MISA Group 17				
Benzene:	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Styrene:	< 0.2	< 0.2	< 0.2	< 0.2
Toluene:	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
m-Xylene and p-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
MISA Group 18				
Acrolein:	< 10	< 10	< 10	< 10
Acrylonitrile:	< 5	< 5	< 5	< 5

Parameter	11b-00	11b-00	12a-00	12a-00
i arameter	14-Jun-11	14-Dec-11	15-Jun-11	15-Dec-11
MISA Group 16				
1,1,1,2-Tetrachloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,1-Trichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,2,2-Tetrachloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1,2-Trichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1-Dichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dibromoethane:*	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloropropane:	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,4-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
Bromodichloromethane:	0.5	0.39	< 0.1	< 0.1
Bromoform:	< 0.2	< 0.2	< 0.2	< 0.2
Bromomethane:	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride:	< 0.1	< 0.1	< 0.1	< 0.1
Chlorobenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Chloroform:	1.2	0.73	< 0.1	< 0.1
Chloromethane:	< 0.5	< 0.5	< 0.5	< 0.5
Cis-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Cis-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibromochloromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride:	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
trans-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trans-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Trichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trichlorofluoromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Vinyl chloride:	< 0.2	< 0.2	< 0.2	< 0.2
MISA Group 17				
Benzene:	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Styrene:	< 0.2	< 0.2	< 0.2	< 0.2
Toluene:	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
m-Xylene and p-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
MISA Group 18				
Acrolein:	< 10	< 10	< 10	< 10
Acrylonitrile:	< 5	< 5	< 5	< 5

Parameter	12b-00	12b-00	13a-01	13a-01
raiametei	15-Jun-11	15-Dec-11	16-Jun-11	13-Dec-11
MISA Group 16				
1,1,1,2-Tetrachloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,1-Trichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,2,2-Tetrachloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1,2-Trichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1-Dichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dibromoethane:*	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloropropane:	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,4-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
Bromodichloromethane:	< 0.1	< 0.1	< 0.1	< 0.1
Bromoform:	< 0.2	< 0.2	< 0.2	< 0.2
Bromomethane:	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride:	< 0.1	< 0.1	< 0.1	< 0.1
Chlorobenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Chloroform:	< 0.1	< 0.1	< 0.1	< 0.1
Chloromethane:	< 0.5	< 0.5	< 0.5	< 0.5
Cis-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Cis-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibromochloromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride:	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
trans-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trans-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Trichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trichlorofluoromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Vinyl chloride:	< 0.2	< 0.2	< 0.2	< 0.2
MISA Group 17				
Benzene:	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Styrene:	< 0.2	< 0.2	< 0.2	< 0.2
Toluene:	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
m-Xylene and p-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
MISA Group 18				
Acrolein:	< 10	< 10	< 10	< 10
Acrylonitrile:	< 5	< 5	< 5	< 5

Parameter	13b-01	13b-01	14a-01	14a-01
i aiailietei	16-Jun-11	13-Dec-11	15-Jun-11	14-Dec-11
MISA Group 16				
1,1,1,2-Tetrachloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,1-Trichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,2,2-Tetrachloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1,2-Trichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1-Dichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dibromoethane:*	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloropropane:	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,4-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
Bromodichloromethane:	< 0.1	< 0.1	< 0.1	< 0.1
Bromoform:	< 0.2	< 0.2	< 0.2	< 0.2
Bromomethane:	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride:	< 0.1	< 0.1	< 0.1	< 0.1
Chlorobenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Chloroform:	< 0.1	< 0.1	< 0.1	< 0.1
Chloromethane:	< 0.5	< 0.5	< 0.5	< 0.5
Cis-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Cis-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibromochloromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride:	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
trans-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trans-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Trichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trichlorofluoromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Vinyl chloride:	< 0.2	< 0.2	< 0.2	< 0.2
MISA Group 17				
Benzene:	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Styrene:	< 0.2	< 0.2	< 0.2	< 0.2
Toluene:	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
m-Xylene and p-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
MISA Group 18				
Acrolein:	< 10	< 10	< 10	< 10
Acrylonitrile:	< 5	< 5	< 5	< 5

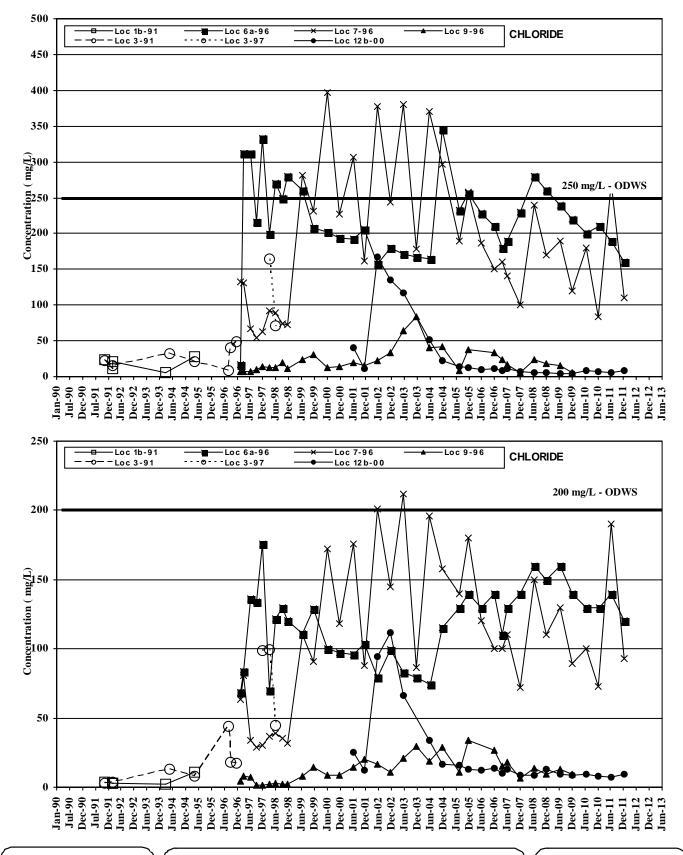
Barranatar	14b-01	14b-01	15a-01	15a-01
Parameter	14-Jun-11	14-Dec-11	14-Jun-11	15-Dec-11
MISA Group 16				
1,1,1,2-Tetrachloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,1-Trichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,2,2-Tetrachloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1,2-Trichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1-Dichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dibromoethane:*	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloropropane:	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,4-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
Bromodichloromethane:	< 0.1	< 0.1	< 0.1	< 0.1
Bromoform:	< 0.2	< 0.2	< 0.2	< 0.2
Bromomethane:	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride:	< 0.1	< 0.1	< 0.1	< 0.1
Chlorobenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Chloroform:	< 0.1	< 0.1	< 0.1	< 0.1
Chloromethane:	< 0.5	< 0.5	< 0.5	< 0.5
Cis-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Cis-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibromochloromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride:	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
trans-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trans-1,3-Dichloropropylene:	< 0.1	< 0.2	< 0.2	< 0.2
Trichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trichlorofluoromethane:	< 0.1	< 0.1	< 0.2	< 0.1
Vinyl chloride:	< 0.2	< 0.2	< 0.2	< 0.2
Viriyi cilionae.	V 0.2	0.2	0.2	V 0.2
MISA Group 17	0.4	0.4	0.4	0.4
Benzene:	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Styrene:	< 0.2	< 0.2	< 0.2	< 0.2
Toluene:	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
m-Xylene and p-Xylene:	< 0.1	0.12	< 0.1	< 0.1
MISA Group 18				
Acrolein:	< 10	< 10	< 10	< 10
Acrylonitrile:	< 5	< 5	< 5	< 5

Parameter MISA Group 16	14-Jun-11	15-Dec-11	40.144	
MISA Group 16		10 200 11	16-Jun-11	13-Dec-11
1,1,1,2-Tetrachloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,1-Trichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,2,2-Tetrachloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1,2-Trichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1-Dichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dibromoethane:*	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloropropane:	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,4-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
Bromodichloromethane:	< 0.1	< 0.1	< 0.1	< 0.1
Bromoform:	< 0.2	< 0.2	< 0.2	< 0.2
Bromomethane:	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride:	< 0.1	< 0.1	< 0.1	< 0.1
Chlorobenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Chloroform:	< 0.1	< 0.1	< 0.1	< 0.1
Chloromethane:	< 0.5	< 0.5	< 0.5	< 0.5
Cis-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Cis-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibromochloromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride:	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
trans-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trans-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Trichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trichlorofluoromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Vinyl chloride:	< 0.2	< 0.2	< 0.2	< 0.2
MISA Group 17				
Benzene:	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Styrene:	< 0.2	< 0.2	< 0.2	< 0.2
Toluene:	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
m-Xylene and p-Xylene:	< 0.1	0.1	< 0.1	< 0.1
MISA Group 18				
Acrolein:	< 10	< 10	< 10	< 10
Acrylonitrile:	< 5	< 5	< 5	< 5

Donomoton	16B-08	16B-08	17A-08	17A-08
Parameter	16-Jun-11	13-Dec-11	16-Jun-11	15-Dec-11
MISA Group 16				
1,1,1,2-Tetrachloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,1-Trichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,2,2-Tetrachloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1,2-Trichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1-Dichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dibromoethane:*	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloropropane:	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,4-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
Bromodichloromethane:	< 0.1	< 0.1	< 0.1	< 0.1
Bromoform:	< 0.2	< 0.2	< 0.2	< 0.2
Bromomethane:	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride:	< 0.1	< 0.1	< 0.1	< 0.1
Chlorobenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Chloroform:	< 0.1	< 0.1	< 0.1	< 0.1
Chloromethane:	< 0.5	< 0.5	< 0.5	< 0.5
Cis-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Cis-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibromochloromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride:	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
trans-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trans-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Trichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trichlorofluoromethane:	< 0.2	< 0.2	< 0.1	< 0.2
Vinyl chloride:	< 0.2	< 0.2	< 0.2	< 0.2
viriyi dilidilde.	0.2	0.2	0.2	0.2
MISA Group 17				
Benzene:	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Styrene:	< 0.2	< 0.2	< 0.2	< 0.2
Toluene:	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
m-Xylene and p-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
MISA Group 18				
Acrolein:	< 10	< 10	< 10	< 10
Acrylonitrile:	< 5	< 5	< 5	< 5

Parameter	17B-08	17B-08	18A-08	18A-08
T di dilliotoi	16-Jun-11	15-Dec-11	16-Jun-11	16-Dec-11
MISA Group 16				
1,1,1,2-Tetrachloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,1-Trichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,2,2-Tetrachloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1,2-Trichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1-Dichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dibromoethane:*	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloropropane:	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,4-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
Bromodichloromethane:	< 0.1	< 0.1	< 0.1	< 0.1
Bromoform:	< 0.2	< 0.2	< 0.2	< 0.2
Bromomethane:	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride:	< 0.1	< 0.1	< 0.1	< 0.1
Chlorobenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Chloroform:	0.3	0.38	< 0.1	< 0.1
Chloromethane:	< 0.5	< 0.5	< 0.5	< 0.5
Cis-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Cis-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibromochloromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride:	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
trans-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trans-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Trichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trichlorofluoromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Vinyl chloride:	< 0.2	< 0.2	< 0.2	< 0.2
MISA Group 17				
Benzene:	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Styrene:	< 0.2	< 0.2	< 0.2	< 0.2
Toluene:	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
m-Xylene and p-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
MISA Group 18				
Acrolein:	< 10	< 10	< 10	< 10
Acrylonitrile:	< 5	< 5	< 5	< 5
Acrylonitrile:	< 5	< 5	< 5	< 5

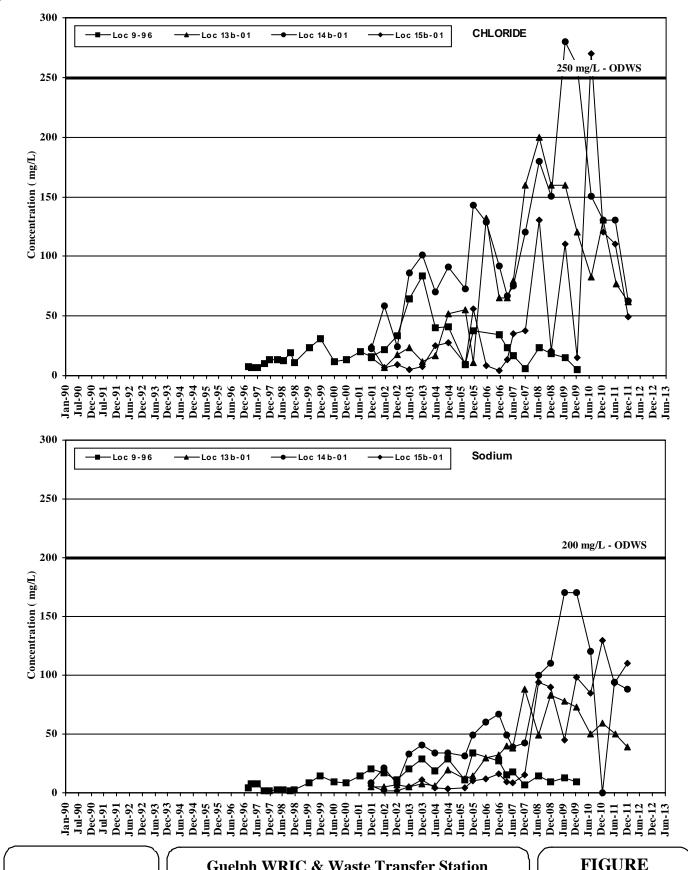
Danamatan	18B-08	19A-08	19A-08	19B-08
Parameter	16-Jun-11	15-Jun-11	16-Dec-11	15-Jun-11
MISA Group 16				
1,1,1,2-Tetrachloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,1-Trichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,2,2-Tetrachloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1,2-Trichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1-Dichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dibromoethane:*	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloropropane:	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,4-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
Bromodichloromethane:	< 0.1	< 0.1	< 0.1	< 0.1
Bromoform:	< 0.2	< 0.2	< 0.2	< 0.2
Bromomethane:	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride:	< 0.1	< 0.1	< 0.1	< 0.1
Chlorobenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Chloroform:	< 0.1	< 0.1	< 0.1	< 0.1
Chloromethane:	< 0.5	< 0.5	< 0.5	< 0.5
Cis-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Cis-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Dibromochloromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride:	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
trans-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trans-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Trichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trichlorofluoromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Vinyl chloride:	< 0.2	< 0.2	< 0.2	< 0.2
MISA Group 17				
Benzene:	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Styrene:	< 0.2	< 0.2	< 0.2	< 0.2
Toluene:	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
m-Xylene and p-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
MISA Group 18				
Acrolein:	< 10	< 10	< 10	< 10
Acrylonitrile:	< 5	< 5	< 5	< 5



Doromotor	19B-08	20A-08	20A-08	20B-08
Parameter	16-Dec-11	15-Jun-11	16-Dec-11	15-Jun-11
MISA Group 16				
1,1,1,2-Tetrachloroethane:		< 0.1	< 0.1	< 0.1
1,1,1-Trichloroethane:		< 0.1	< 0.1	< 0.1
1,1,2,2-Tetrachloroethane:		< 0.2	< 0.2	< 0.2
1,1,2-Trichloroethane:		< 0.2	< 0.2	< 0.2
1,1-Dichloroethane:		< 0.1	< 0.1	< 0.1
1,1-Dichloroethylene:		< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene:		< 0.2	< 0.2	< 0.2
1,2-Dibromoethane:*		< 0.2	< 0.2	< 0.2
1,2-Dichloroethane:		< 0.2	< 0.2	< 0.2
1,2-Dichloropropane:		< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene:		< 0.2	< 0.2	< 0.2
1,4-Dichlorobenzene:		< 0.2	< 0.2	< 0.2
Bromodichloromethane:		< 0.1	< 0.1	< 0.1
Bromoform:		< 0.2	< 0.2	< 0.2
Bromomethane:		< 0.5	< 0.5	< 0.5
Carbon Tetrachloride:		< 0.1	< 0.1	< 0.1
Chlorobenzene:		< 0.1	< 0.1	< 0.1
Chloroform:		< 0.1	< 0.1	< 0.1
Chloromethane:		< 0.5	< 0.5	< 0.5
Cis-1,2-Dichloroethylene:		< 0.1	< 0.1	< 0.1
Cis-1,3-Dichloropropylene:		< 0.2	< 0.2	< 0.2
Dibromochloromethane:		< 0.2	< 0.2	< 0.2
Methylene Chloride:		< 0.5	< 0.5	< 0.5
Tetrachloroethylene:		< 0.1	< 0.1	< 0.1
trans-1,2-Dichloroethylene:		< 0.1	< 0.1	< 0.1
Trans-1,3-Dichloropropylene:		< 0.2	< 0.2	< 0.2
Trichloroethylene:		< 0.1	< 0.1	< 0.1
Trichlorofluoromethane:		< 0.2	< 0.2	< 0.2
Vinyl chloride:		< 0.2	< 0.2	< 0.2
vinyi omondo.		1 0.2	1 0.2	1 0.2
MISA Group 17				
Benzene:	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene:		< 0.1	< 0.1	< 0.1
Styrene:		< 0.2	< 0.2	< 0.2
Toluene:		< 0.2	< 0.2	< 0.2
o-Xylene:		< 0.1	< 0.1	< 0.1
m-Xylene and p-Xylene:		< 0.1	< 0.1	< 0.1
MISA Group 18				
Acrolein:		< 10	< 10	< 10
Acrylonitrile:		< 5	< 5	< 5

Parameter	20B-08	21A-08	21A-08	22A-11
T drameter	16-Dec-11	14-Jun-11	14-Dec-11	19-Dec-11
MISA Group 16				
1,1,1,2-Tetrachloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,1-Trichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1,2,2-Tetrachloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1,2-Trichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,1-Dichloroethane:	< 0.1	< 0.1	< 0.1	< 0.1
1,1-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dibromoethane:*	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloroethane:	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichloropropane:	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
1,4-Dichlorobenzene:	< 0.2	< 0.2	< 0.2	< 0.2
Bromodichloromethane:	< 0.1	< 0.1	< 0.1	< 0.1
Bromoform:	< 0.2	< 0.2	< 0.2	< 0.2
Bromomethane:	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride:	< 0.1	< 0.1	< 0.1	< 0.1
Chlorobenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Chloroform:	< 0.1	< 0.1	< 0.1	< 0.1
Chloromethane:	< 0.5	< 0.5	< 0.5	< 0.5
Cis-1,2-Dichloroethylene:		-		
Cis-1,3-Dichloropropylene:				
Dibromochloromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride:	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
trans-1,2-Dichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trans-1,3-Dichloropropylene:	< 0.2	< 0.2	< 0.2	< 0.2
Trichloroethylene:	< 0.1	< 0.1	< 0.1	< 0.1
Trichlorofluoromethane:	< 0.2	< 0.2	< 0.2	< 0.2
Vinyl chloride:	< 0.2	< 0.2	< 0.2	< 0.2
MISA Group 17				
Benzene:	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene:	< 0.1	< 0.1	< 0.1	< 0.1
Styrene:	< 0.2	< 0.2	< 0.2	< 0.2
Toluene:	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
m-Xylene and p-Xylene:	< 0.1	< 0.1	< 0.1	< 0.1
MISA Group 18				
Acrolein:	< 10	< 10	< 10	< 10
Acrylonitrile:	< 5	< 5	< 5	< 5
7.0. jioniino.	` '			

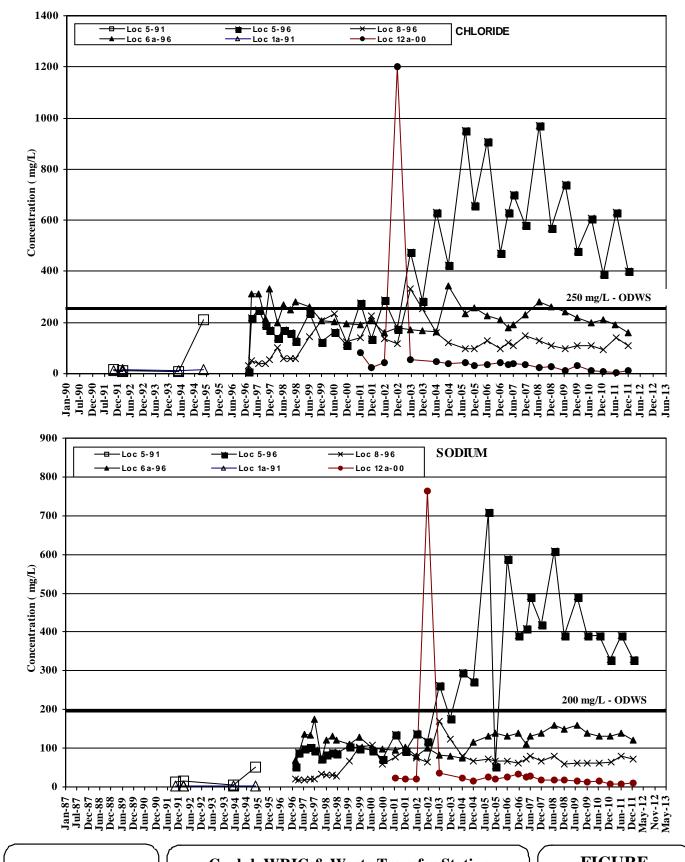
Doromotor	22B-11
Parameter	19-Dec-11
MISA Group 16	
1,1,1,2-Tetrachloroethane:	< 0.1
1,1,1-Trichloroethane:	< 0.1
1,1,2,2-Tetrachloroethane:	< 0.2
1,1,2-Trichloroethane:	< 0.2
1,1-Dichloroethane:	< 0.1
1,1-Dichloroethylene:	< 0.1
1,2-Dichlorobenzene:	< 0.2
1,2-Dibromoethane:*	< 0.2
1,2-Dichloroethane:	< 0.2
1,2-Dichloropropane:	< 0.1
1,3-Dichlorobenzene:	< 0.2
1,4-Dichlorobenzene:	< 0.2
Bromodichloromethane:	< 0.1
Bromoform:	< 0.2
Bromomethane:	< 0.5
Carbon Tetrachloride:	< 0.1
Chlorobenzene:	< 0.1
Chloroform:	< 0.1
Chloromethane:	< 0.5
Cis-1,2-Dichloroethylene:	< 0.1
Cis-1,3-Dichloropropylene:	< 0.2
Dibromochloromethane:	< 0.2
Methylene Chloride:	< 0.5
Tetrachloroethylene:	< 0.1
trans-1,2-Dichloroethylene:	< 0.1
Trans-1,3-Dichloropropylene:	< 0.2
Trichloroethylene:	< 0.1
Trichlorofluoromethane:	< 0.2
Vinyl chloride:	< 0.2
MISA Group 17	
Benzene:	< 0.1
Ethylbenzene:	< 0.1
Styrene:	< 0.2
Toluene:	< 0.2
o-Xylene:	< 0.1
m-Xylene and p-Xylene:	< 0.1
MISA Group 18	
Acrolein:	< 10
Acrylonitrile:	< 5
,	. •



Ground Water Chemistry Trends Overburden Locations on Wet/Dry Facility FIGURE B1

60241468

12 Cl-NA Location WestOB

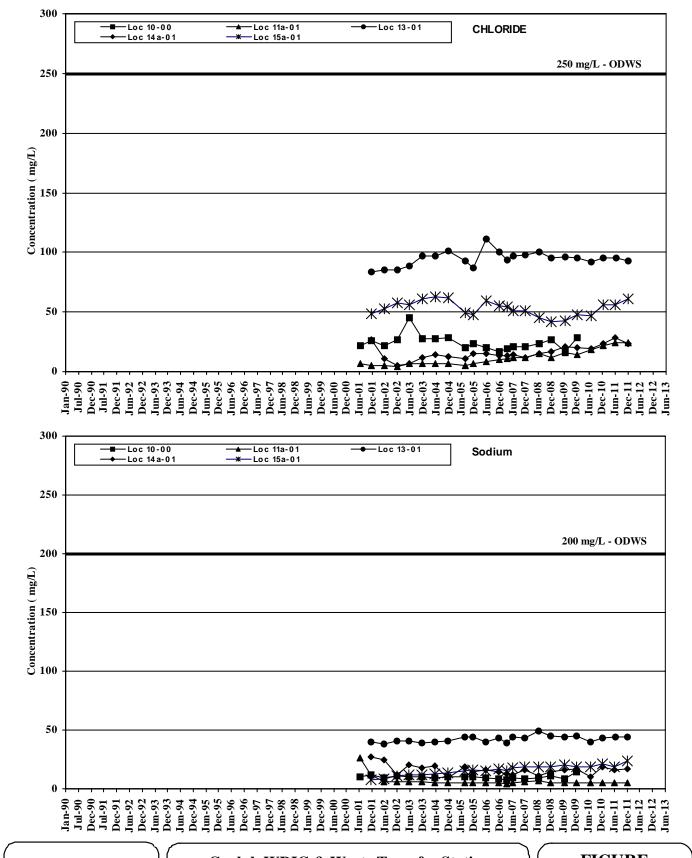


Ground Water Chemistry Trends Overburden Locations East of Wet/Dry or **Transfer Station Property**

FIGURE B2

60241468

12 Cl-NA Location EastOB

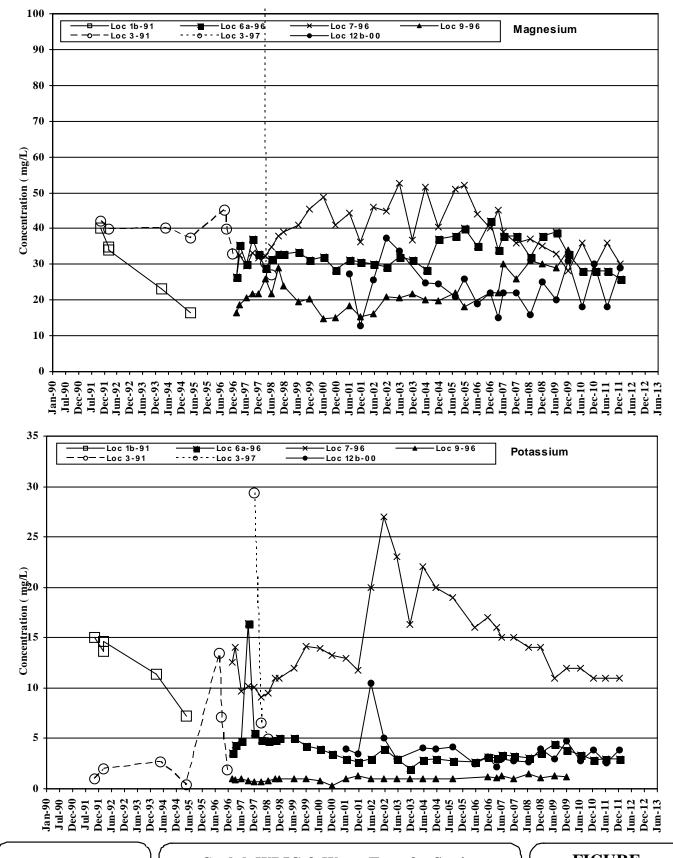


Ground Water Chemistry Trends Bedrock Locations West or on Wet/Dry Facility

FIGURE B3

60241468

12 Cl-NA Location WestBed

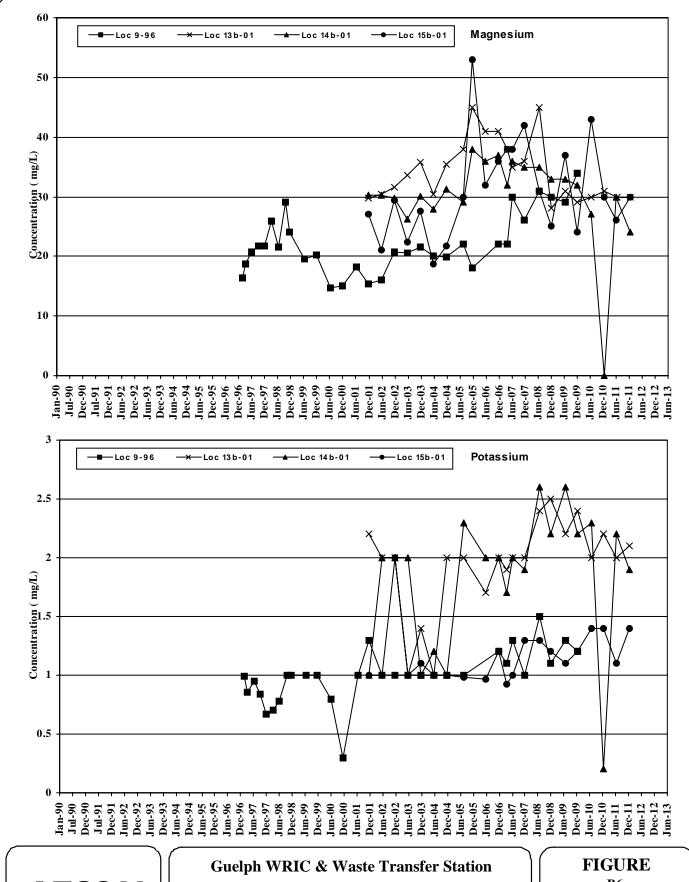

AECOM

Guelph WRIC & Waste Transfer Station

Ground Water Chemistry Trends Bedrock Locations East of Wet/Dry or on Transfer Station Property FIGURE B4

60241468

12 Cl-NA Location EastBed

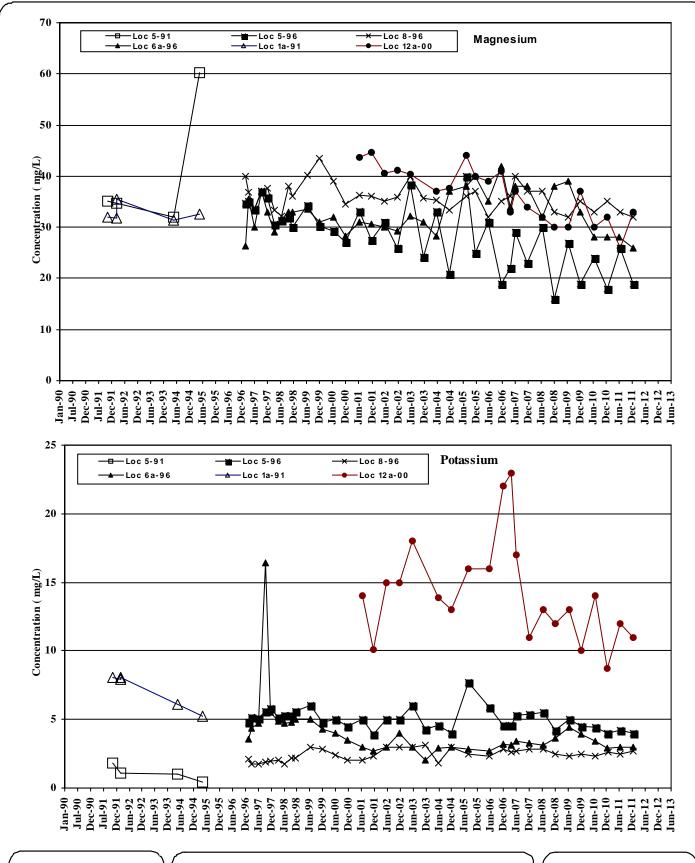

AECOM

Guelph WRIC & Waste Transfer Station

Ground Water Chemistry Trends Overburden Locations on Wet/Dry Facility FIGURE B5

60241468

12 Mg-K Location WestOB

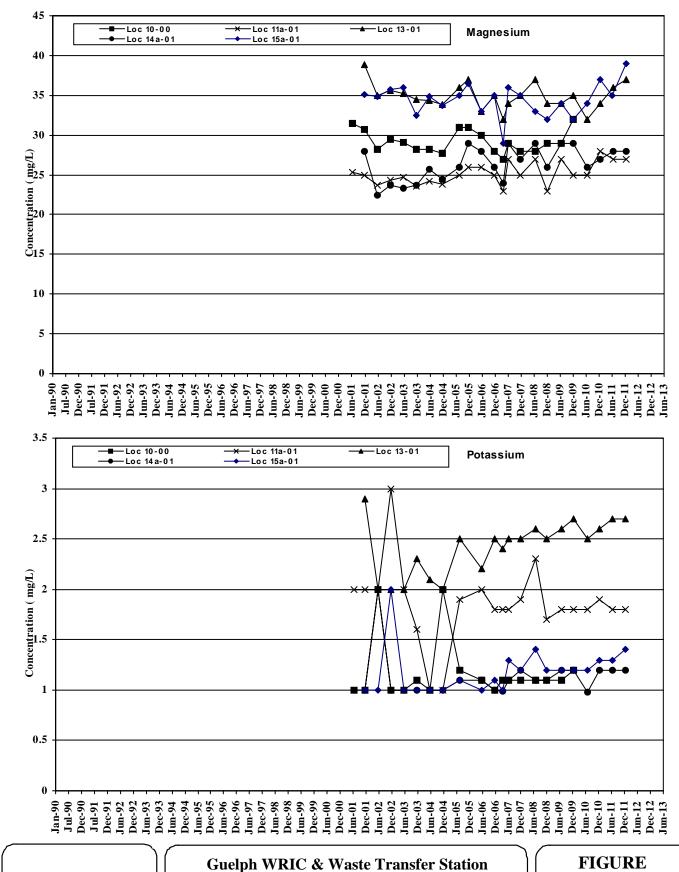


Ground Water Chemistry Trends Overburden Locations East of Wet/Dry or **Transfer Station Property**

B6

60241468

12 Mg-K Location EastOB

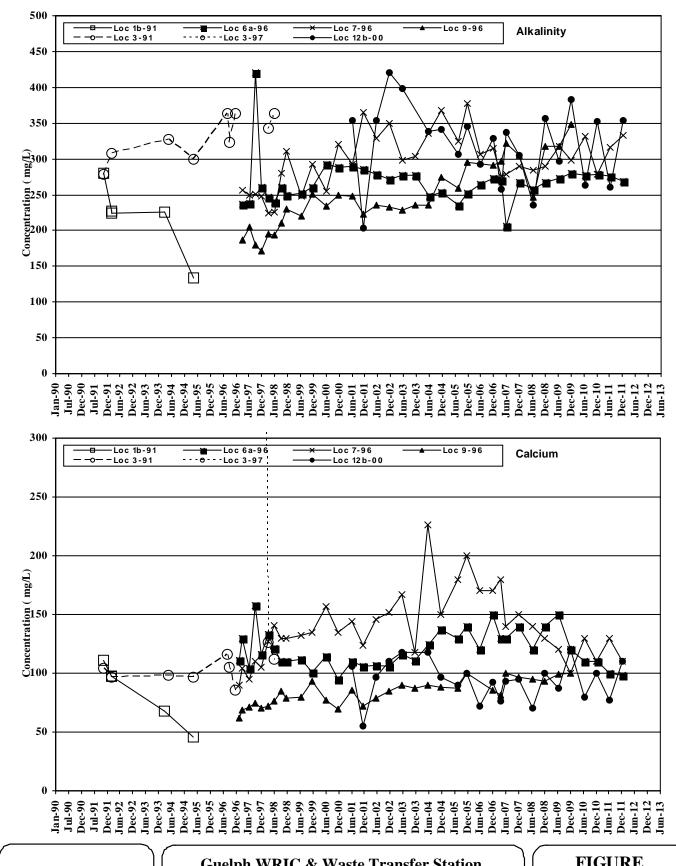


Ground Water Chemistry Trends Bedrock Locations West or on Wet/Dry Facility

FIGURE B7

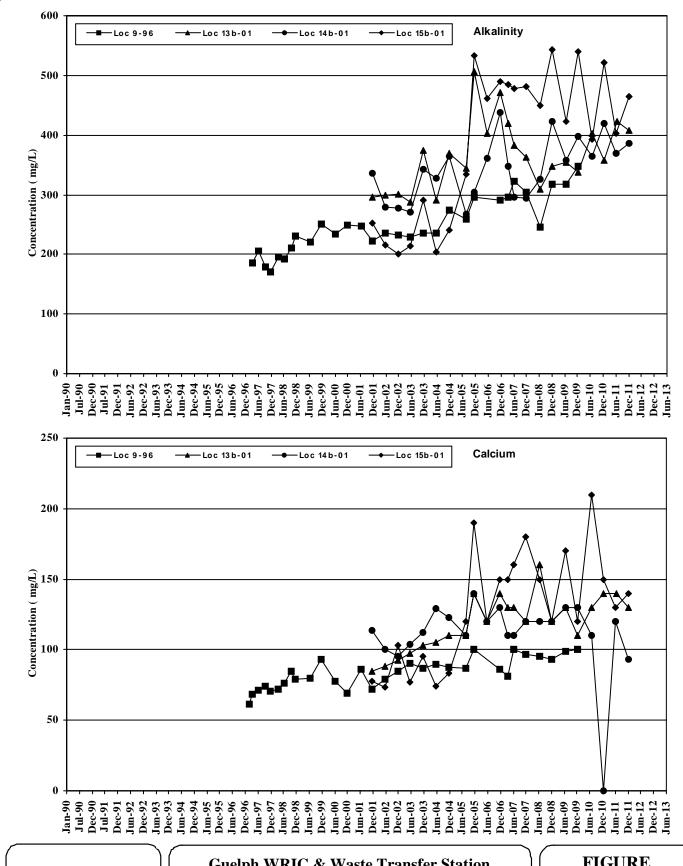
60241468

12 Mg-K Location WestBed



Ground Water Chemistry Trends Bedrock Locations East of Wet/Dry or on Transfer Station Property

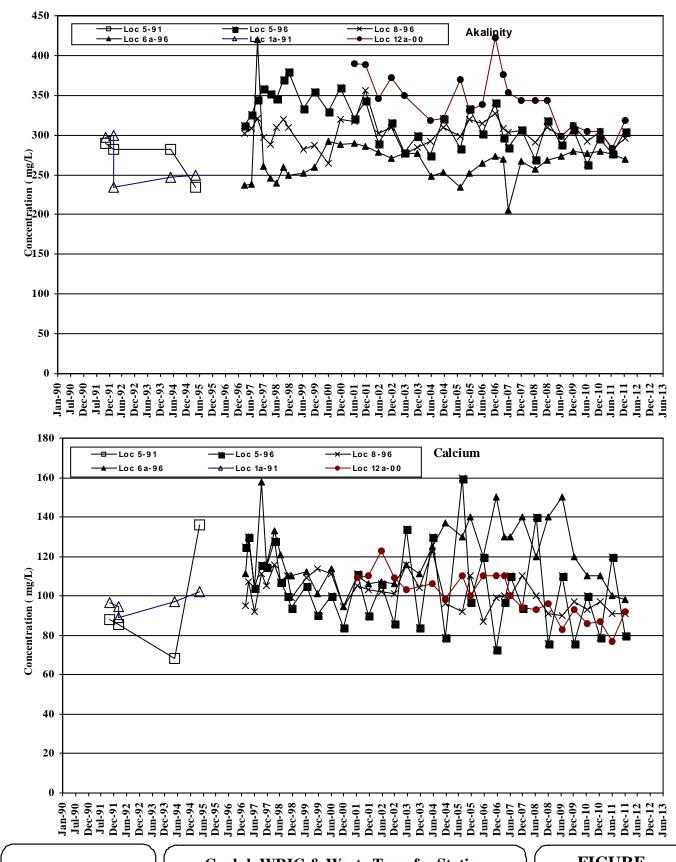
B8


60241468 12 Mg-K Location EastBed

Ground Water Chemistry Trends Overburden Locations on Wet/Dry Facility **FIGURE B9**

60241468

12 Alk-Ca Location WestOB



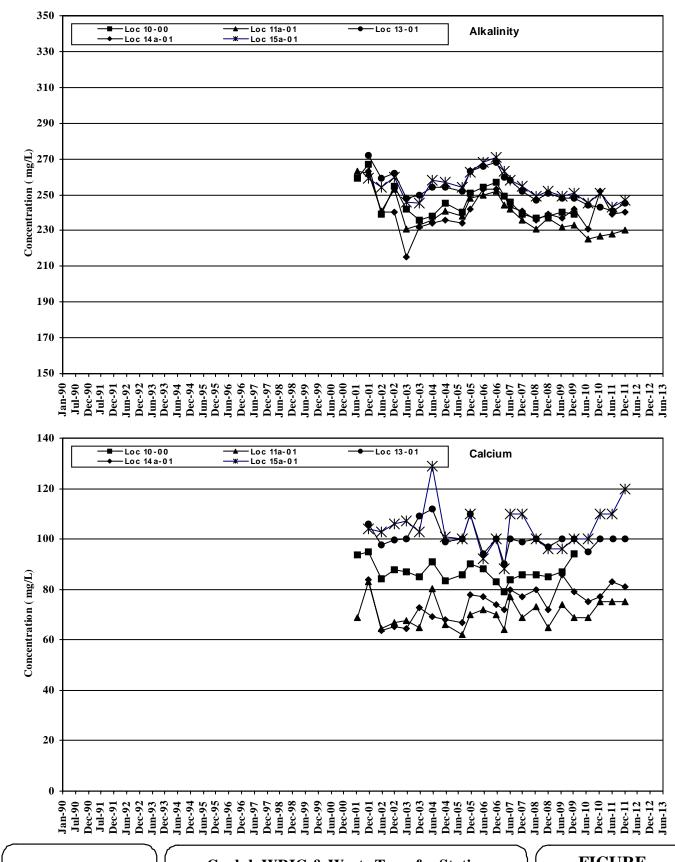
Ground Water Chemistry Trends Overburden Locations East of Wet/Dry or **Transfer Station Property**

FIGURE B10

60241468

12 Alk-Ca Location EastOB

A=COM

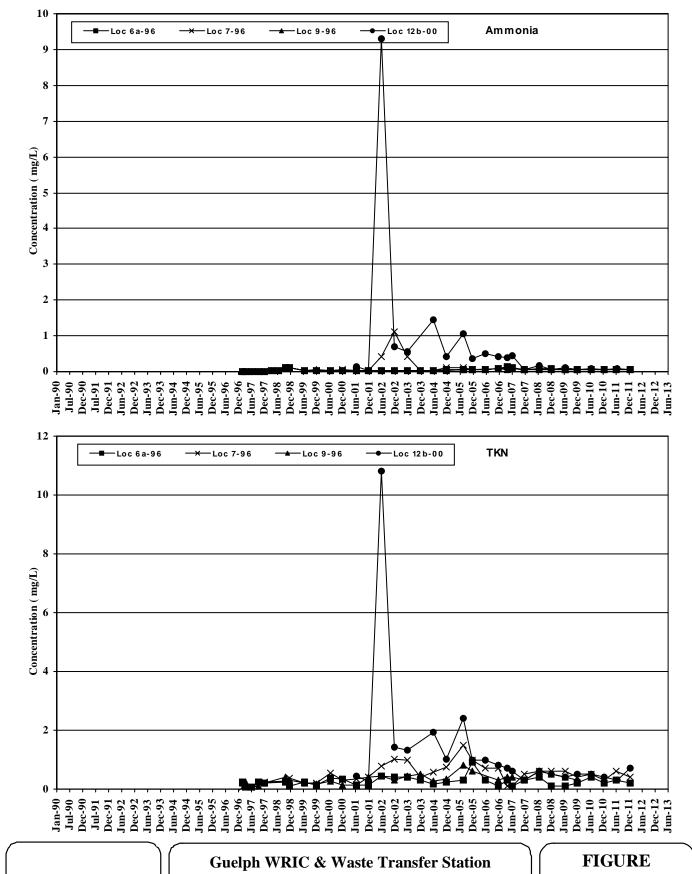

Guelph WRIC & Waste Transfer Station

Ground Water Chemistry Trends Bedrock Locations West or on Wet/Dry Facility

FIGURE B11

60241468

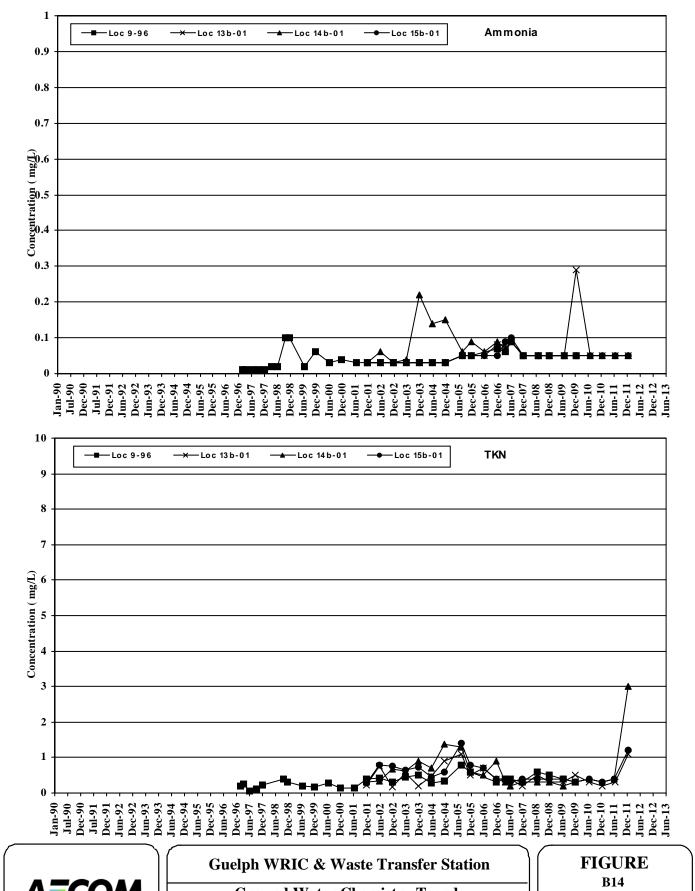
12 Alk-Ca Location WestBed



Ground Water Chemistry Trends Bedrock Locations East of Wet/Dry or on Transfer Station Property FIGURE B12

60241468

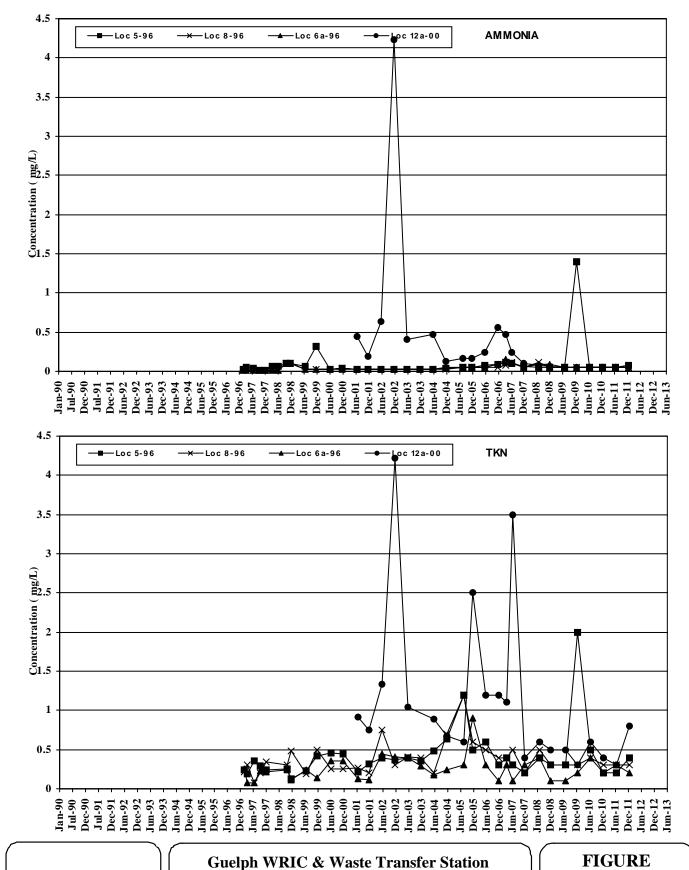
12 Alk-Ca Location EastBed



Ground Water Chemistry Trends Overburden Locations on Wet/Dry Facility **B13**

60241468

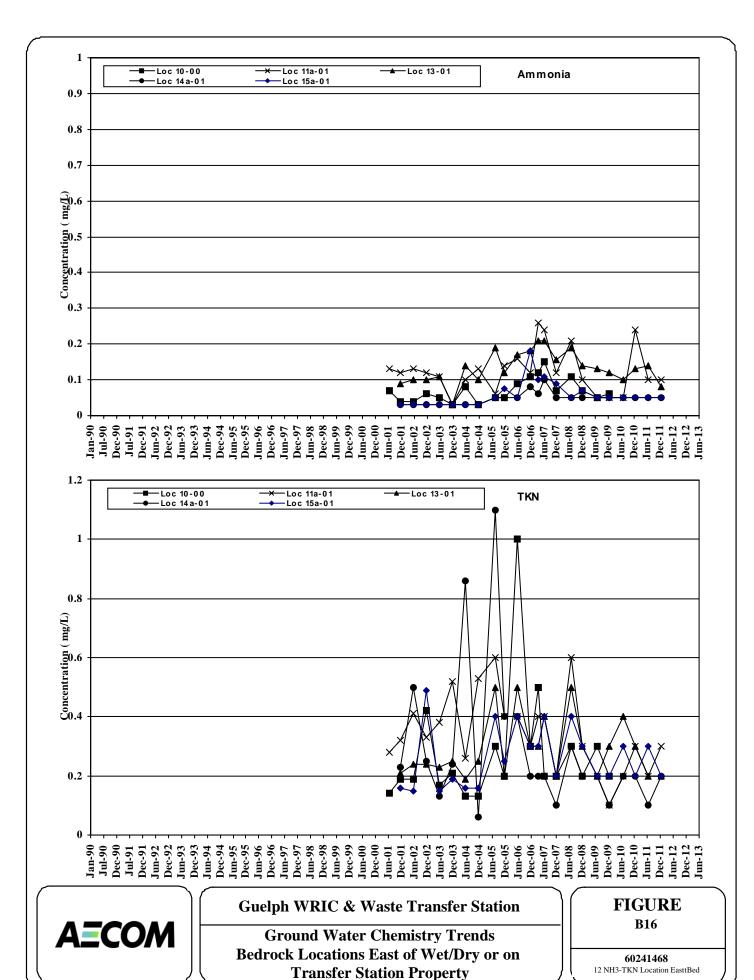
12 NH3-TKN Location WestOB

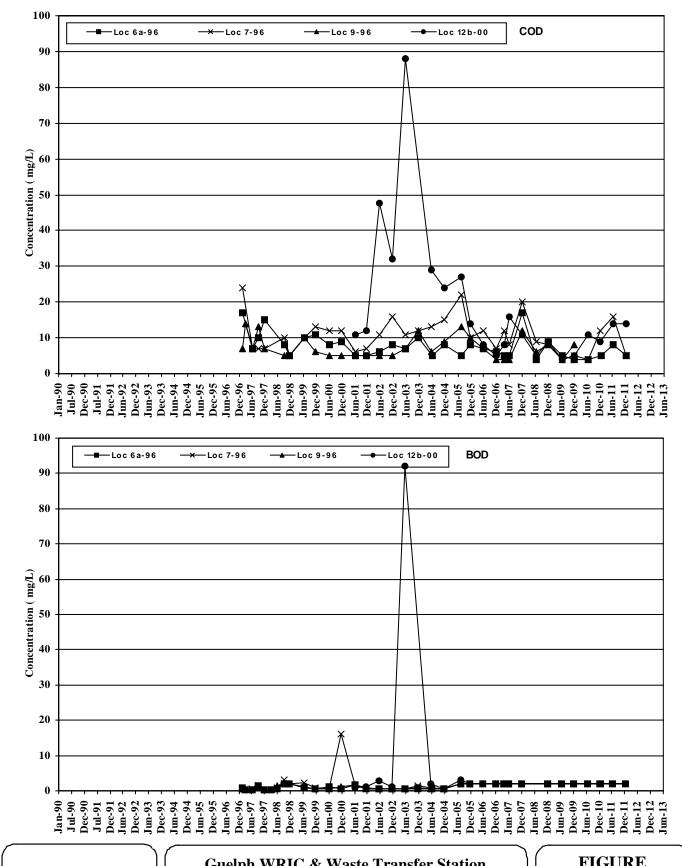


Ground Water Chemistry Trends Overburden Locations East of Wet/Dry or Transfer Station Property

60241468

12 NH3-TKN Location EasttOB

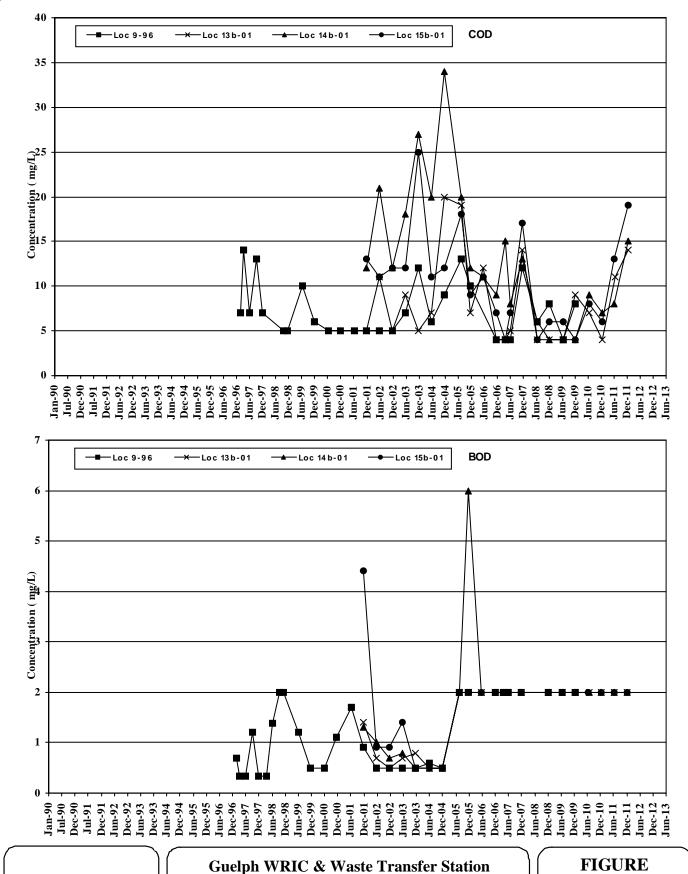




Ground Water Chemistry Trends Bedrock Locations West or on Wet/Dry Facility **B15**

60241468

12 NH3-TKN Location WestBed

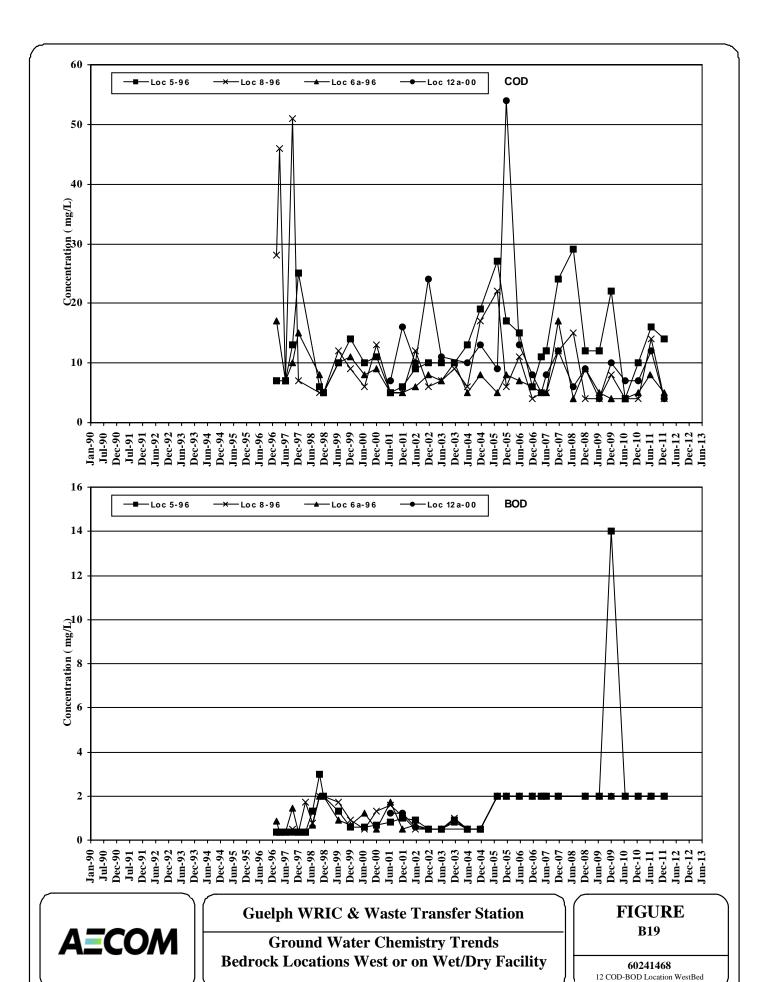


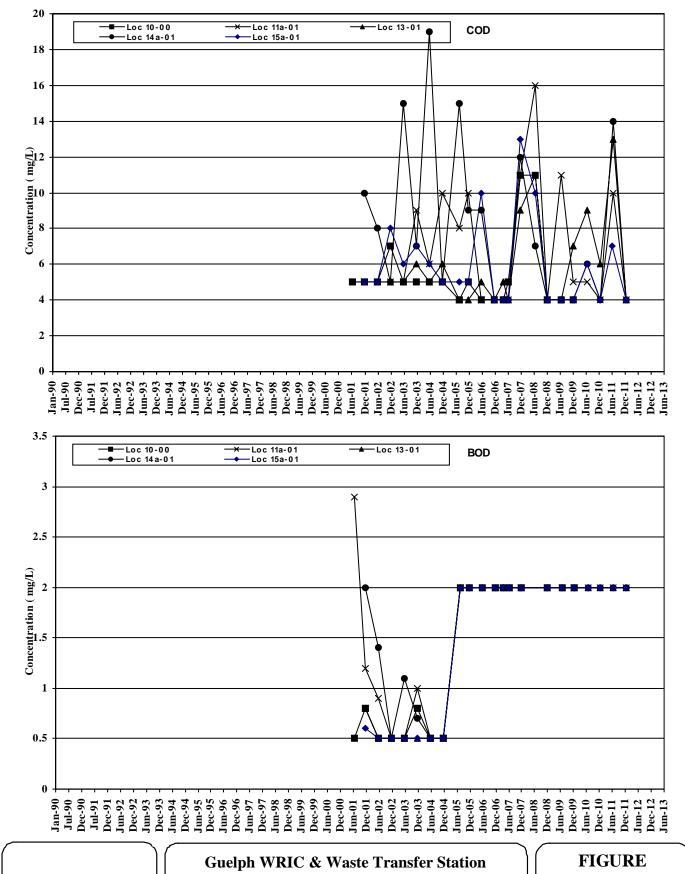
Guelph WRIC & Waste Transfer Station

Ground Water Chemistry Trends Overburden Locations on Wet/Dry Facility **FIGURE B17**

60241468

12 COD-BOD Location WestOB




Ground Water Chemistry Trends Overburden Locations East of Wet/Dry or **Transfer Station Property**

B18

60241468

12 COD-BOD Location EastOB

Ground Water Chemistry Trends Bedrock Locations East of Wet/Dry or on Transfer Station Property

B20

60241468

12 COD-BOD Location EastBed

Appendix C

Surface Water Chemistry – Routine and Organics

		^		
A	=	u	N	

Date	Lab	рН	Cond- uctivity	Alk mg/L	Mg mg/L	K mg/L	BOD mg/L	COD mg/L	TKN mg/L	NH3-N mg/L	Total-P mg/L	TSS mg/L	SO4 mg/L	Phenol ug/L	CI mg/L	Na mg/L	Ca mg/L	Fe mg/L	B mg/L	P mg/L	Zn mg/L
		6.5 -	detivity	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	Ŭ	mg/ =	mg/L		mg/L	IIIg/L	mg/L			IIIg/L	
SW 1		8.5									0.03			1.0				0.30	0.20		0.02
16-Oct-96	6 ENT						< 10		2	0.13	0.01	1		< 1				<u>'</u>		<u>'</u>	
20-Nov-96	6 ENT						< 10		3	0.08	0.15	7		15							
11-Dec-96	6 ENT	7.94			6.84	9.6	< 10	93	1.34	0.08	0.18	4	12.6	1	272	155	41.7	0.59	0.02	0.15	0.02
08-Apr-97	7 WBL	8.64	2840	118	8.09	18.3	9.24	170	2.73	< 0.01	0.206	19	18	< 0.72	732	434	49.7	1.05	< 0.02	< 0.03	0.0
06-May-97	7 WBL	8.29	1450	81	4.47	9.81	5.7	134	1.37	0.067	0.174	39	13.2	1.15	423	236	27.3	1.73	0.02	0.16	0.0
26-Jun-97	7 WBL	9.23	826	111	3.86	11.1	4.11	57	1.35	< 0.01	0.124	5	14.3	< 0.72	164	114	26.3	0.74	0.06	0.13	0.0
31-Jul-97	7 WBL	9.53	1460	123	4.79	13.1	2.82	88	3.51	0.119	0.234	4	15	0.99	394	245	24.2	0.87	0.05	0.23	0.0
11-Sep-97	7 WBL	8.73	527	94.1	4.47	12.3	2.17	71	1.48	0.017	0.072 <	< 6	14.7	< 0.72	89.6	76	25.4	0.56	0.1	0.1	0.0
26-Nov-97	7 WBL	7.6	960				3.12		1.72	0.084	0.139	542		< 0.72							
09-Dec-97	7 WBL	7.79	970	132	7.02	12.5	1.94	59	1.6	0.014	0.095	3	13.9	< 0.72	198	140	45.7	0.38	0.02	0.08	0.0
08-Jan-98	8 WBL	7.65	545				6.3		1	0.2	0.31	357		7							
28-Feb-98	8 Froze																				
31-Mar-98	8 WBL	8.32	1480	121	3.48	6.75	2.53		1.52	0.023	0.107	5	12.7	< 0.72	443	250	35.5	0.54	0.05	0.11	0.00
30-Apr-98	8 Dry		Ì		İ			İ	Ĭ				İ		İ						ĺ
12-May-98	8 WBL	7.55	1420				8.52		4.02	0.795	0.3	840		0.72							
24-Jun-98	8 WBL	9.52	597	112	4.14	9.73	5.58		2.73	0.058	0.245 <	< 2	10.9	< 0.72	109	72.8	27.7	0.64	0.06	0.25	0.0
31-Jul-98																					
31-Aug-98	8 Dry																				
30-Sep-98	-																				
31-Oct-98																					
30-Nov-98																					
31-Dec-98																					
31-Jan-99																					
28-Feb-99																					
31-Mar-99		8.01	1624	142	7.49	13	6.7	68	3.6	0.37	0.27	21	33	< 2	441	298	52.7	0.5	0.05	0.4	0.0
30-Apr-99					,,,,						V										
31-May-99																					
29-Jun-99		7.91	307	77	2.9	9	6.4	51	1.72	0.84	0.057	12	15		41.9	34.3	20.6	0.12		0.4	0.0
31-Jul-99																					
31-Aug-99	-																				
30-Sep-99	-																				
31-Oct-99	-																				
30-Nov-99	-																				
14-Dec-99		8.01	716	168	16.7	18	19.4	49	2.77	1.05	0.11	40	46.9	< 1	57.4	42.5	65.5	0.01	0.04	0.2	0.0
30-Jan-00		0.01	,10	100	10.7	10			2	1.00	0		10.0	, ,	0	.2.0	00.0	0.0.	0.0 .	0.2	
28-Feb-00																					
31-Mar-00		7.37	2380	123	10.2	15	9.1	87	3.31	0.07	0.224	17	21	< 1	634	370	59.7	0.62	0.03		0.
27-Apr-00	•	7.13	2595	140	29.8	43	16.5	117	115	104	0.423	23	35.8	1	123	85.7	146	0.36	0.06	0.5	0.
23-May-00	•	7.13	1930	140	25.9	53	3.2	137	66.3	68.2	0.423	13	35.3	< 1	96.5	70.2	120	0.42	0.00	0.6	0.
30-Jun-00	-		88	241	3.7	10	27	60	1.92	0.19	0.286	5	6.6	< 1	23.6	19	24.9	0.42	5.09	0.0	0.0
30-Jul-00	•	1.55	00	241	3.1	10	21	00	1.92	0.19	0.200	3	0.0	1	25.0	13	24.3	0.30		0.4	0.
29-Aug-00																					
13-Apr-96		7.6	310	60						392		123		< 0.5	59.4				0.02		
13-Apr-96 29-May-96		7.6	510	00	4.74	5 22	- 10	22	1	0.04	0.22	21	14.1	< 0.5 7	59.4 42.2	29.8	32.4	0.51	0.02	0.2	0.
		7.8			4.74	5.32	< 10	22	_				14.1		42.2	29.8	32.4	0.51	0.06	0.2	0.
03-Jul-96	DENI		I				13		2.4	0.19	0.08	73		1	1						

	-0	^		•
A	ΞC	u	N	1

Date	Lab	рН	Cond- uctivity	Alk mg/L	Mg mg/L	K mg/L	BOD mg/L	COD mg/L	TKN mg/L	NH3-N mg/L	Total-P mg/L	TSS mg/L	SO4 mg/L	Phenol ug/L	CI mg/L	Na mg/L	Ca mg/L	Fe mg/L	B mg/L	P mg/L	Zn mg/L
SW 1		6.5 - 8.5	uotivity	1119/ =	mg/L	1119,12		mg/L	mg/L	9,	0.03	<u>g</u>	9/2	1.0	9,	mg/L	9,2	0.30	0.20	g/L	0.02
22-Aug-96	6 ENT	7.82			0.46	13.1	< 10	< 10	0.56	0.27	0.23	10	7.4	< 0.5	19.7	20.5	38.6	0.25	0.3	0.18	< 0.0004
18-Sep-96	6 ENT						< 10		2	0.13	0.07	6		< 0.5							
28-Sep-00	0 Philip-	7.81	374	97	4.32	12.4	12.8	57	2.5	0.08	0.194	128	15.5	< 1	51.8	40.1	30.5	0.16	0.03	0.23	0.04
30-Oct-00	0 Dry																				
28-Nov-00	0 Philip-	7.63	778	90	7.41	16.8	6	57	2.54	0.08	0.5	29	24.4	< 1	193	109	73.7	0.96	0.02	0.7	0.11
07-Dec-00	0 Froze																				
31-Jan-01	1 Froze																				
28-Feb-0																					
31-Mar-01																					
24-Apr-0			747	175	6.13	11	2.2	65	3.16	0.17	0.12	6	9.8	2	140	122	34.4	0.83		0.4	0.02
28-May-01		7.29	333	119	3.93	9	8.3	77	2.4	0.11	0.288	10	13.2	< 1	39.4	46	49.4	0.58	0.03	0.4	0.05
30-Jun-0																					
25-Jul-0		7.3	322	105	4.82	15	8.1	143	5.3	0.3	0.765	21	21.7	< 1	30.3	29.7	56.9	0.96	0.06	1	0.10
31-Aug-0																					
27-Sep-01	-		383	128	5.48	15	3	57	1.64	0.07	0.318	2	19	< 1	33.8	31.7	30.5	0.09	0.03	0.3	0.02
18-Oct-01			304	125	4.94	9	3.4	50	2.94	< 0.03	0.294	7	4.3	< 1	19.3	24.8	31.7	0.91	0.04	0.4	0.04
30-Nov-01			104	39	1.72	4	1.3	24	0.87	0.03	0.3	11	1.5	< 1	4.5	6.8	9.38			0.2	0.03
04-Dec-01		7.57	153	61	3.04	6.3	3.1	26	0.68	< 0.03	0.128	1	2.7	< 1	6.5	8.8	19.2	0.31	0.01	0.4	0.04
31-Jan-02																					
28-Feb-02																					
29-Mar-02																					
29-Apr-02		7.52	398	77	2.9	5	5.6	58	1.88	0.06	0.456	11	7.3	< 1	69.3	57.4	30.8	0.57	0.02	0.5	0.36
31-May-02	-																				
05-Jun-02		7.8	228	55	2.46	4	5.2	75	2.19	0.14	0.438	16	5.6	< 1	28.9	26.4	18.1	0.87	0.02	0.6	0.1
31-Jul-02	-																				
30-Aug-02																					
27-Sep-02						·															ļ ļ
31-Oct-02																					
29-Nov-02																					
20-Dec-02																					
31-Jan-03																					
28-Feb-03																					
29-Mar-03																					
30-Apr-03																					
31-May-03			240		2.00		0.4			0.15	0.004	440	0.4		00.4						
05-Jun-03	-	6.99	240	68	2.89	4	6.1	51	6	0.16	0.934	118	6.1	< 1	26.1						
31-Jul-03																					
30-Aug-03																					
27-Sep-03	-																				
31-Oct-03																					
29-Nov-03		7.21	256	50	216	4	4.0	0.4	0.63	- 0.02	0.446	40		. 1	40.7	20.0	40.0	0.54	- 0.04	0.0	0.07
01-Dec-03		7.21	256	52	3.16	4	4.2	24	0.63	< 0.03	0.146	12	6	< 1	49.7	28.9	18.8	0.54	< 0.01	0.3	0.07
31-Jan-06	-																				
28-Feb-06		7.5	245	25	2.2	2	_	00	1.2	0.20	0.47	0.4	_	2		07	0.0	4.0	. 0.00	0.0	0.00
09-Mar-06	MAX	7.5	245	25	2.2	2	4	22	1.3	0.29	0.17	24	5	2	53	37	8.9	1.8	< 0.02	0.2	0.09

	_		^		4
A		L	0	Λ	7

Date Lab	рН	Cond- uctivity	Alk mg/L	Mg mg/L	K mg/L	BOD mg/L	COD mg/L	TKN mg/L	NH3-N mg/L	Total-P mg/L	TSS mg/L	SO4 mg/L	Phenol ug/L	CI mg/L	Na mg/L	Ca mg/L	Fe mg/L	B mg/L	P mg/L	Zn mg/L
SW 1	6.5 - 8.5									0.03			1.0				0.30	0.20		0.02
30-Apr-06 Dry 16-May-06 MAX 30-Jun-06 Dry 31-Jul-06 Dry 31-Aug-06 Dry 13-Sep-06 N/A 31-Oct-06 Dry 30-Nov-06 Jry 31-Dec-06 Jry 31-Jan-07 Snow	7.6	346	126	4.8	7.6	3	43	1.6	0.16	0.21	3	4	< 1	36	43	31	0.43	0.02		0.02
28-Feb-07 Snow 14-Mar-07 MAX 29-Mar-07 Dry 31-May-07 Dry 30-Jun-07 Dry 31-Jul-07 Dry 31-Aug-07 Dry 28-Sep-07 Dry 31-Oct-07 Dry	7.3 7.8	238 686	22 101	2.4 6.7	5.3 4.4	3 3	25 31	1.3 1.5	0.53 0.08	0.26 0.19	4 10	7 13	< 1 1	49 140	33 120	8.7 34	0.16 0.93	< 0.01 0.02		0.02 0.04
21-Nov-07 MAX 31-Dec-07 Snow 08-Jan-08 MAX 28-Feb-08 Snow	7.9 7.5	239 731	69 83	4.4 5.7	8 5.4	3 2	33 31	1.3	0.09	0.41	8	10 13	< 1	24 170	24 160	15 35	0.56 1.5	0.01		0.04
31-Mar-08 Snow 10-Apr-08 MAX 31-May-08 Dry	8.3	2260	225	20	9.5	< 2	22	0.9	< 0.05	0.06	2	29	< 1	520	350	100	0.2	0.02	ļ	0.03
24-Jun-08 MAX 24-Jul-08 MAX 11-Aug-08 MAX 28-Sep-08 Dry 31-Oct-08 Dry 30-Nov-08 Dry 31-Dec-08 Snow 30-Jan-09 Snow	7.6 7.6 7.3	121 98 157	39 47 61	2.3 2.1 2.2	2.6 2.6 2.2	5 5 3	33 22 19	2.5 0.6 0.8	0.9 < 0.05 0.15	0.28 0.19 0.19	24 5 4	4 < 1 2	< 1 < 1 < 1	9 3 10	11 2.7 11	11 14 16	0.99 0.2 0.2	0.01 0.01 0.02		0.07 0.02 0.02
12-Feb-09 MAX 11-Mar-09 MAX 28-Apr-09 MAX 27-May-09 Dry 31-Jul-09 Dry 31-Aug-09 Dry 30-Sep-09 Dry 30-Oct-09 Dry 30-Nov-09 Dry	7.3 6.4 7 7.4	374 253 374 472	36 47 80 88	1.7 1.7 2.7 4	2.4 2.6 2.2 7.6	< 2 3 < 2 7	14 19 33 67	0.6 0.7 0.1 3.1	< 0.05 < 0.05 < 0.05 0.63	0.19 0.13 0.11 1.3	7 < 10 10 9	7 9 6 20	< 1 < 1 1 < 1	85 43 58 74	60 36 50 80	12 12 23 22		< 0.01 < 0.01 0.02 0.03		0.04 0.03 0.04 0.03

	_	^		
Δ		•	м	л

Date	Lab	рН	Cond- uctivity	Alk mg/L	Mg mg/L	K mg/L	BOD mg/L	COD mg/L	TKN mg/L	NH3-N mg/L	Total-P mg/L	TSS mg/L	SO4 mg/L	Phenol ug/L	CI mg/L	Na mg/L	Ca mg/L	Fe mg/L	B mg/L	P mg/L	Zn mg/L
SW 1		6.5 - 8.5									0.03			1.0				0.30	0.20		0.02
30-Dec-09 29-Jan-10 26-Feb-10 18-Mar-10 30-Apr-10 31-May-10 30-Jun-10 30-Jul-10 31-Aug-10 30-Sep-10	Snow Snow MAX Dry Dry Dry Dry Dry	7.7	268	91	4	3.2	3	23	0.8	< 0.05	0.13	2	5	< 1	27	21	28	< 0.1	< 0.01		0.02
29-Oct-10 02-Dec-10 31-Dec-10 28-Jan-11 28-Feb-11 31-Mar-11	MAX Dry Froze Froze	7.68	187	82	3.9	2.4	< 2	31	0.9	< 0.05	0.29	49	2	1	7	7	23	0.2	< 0.01		0.03
08-Apr-11	MAX	7.93	1060	178	9.3	2.6	< 2	32	0.8	< 0.05	0.07	2	4	< 1	200	140	63	< 0.1	< 0.01		0.01
03-Jun-11	MAX	8.1	463	209	9.1	2.3	< 2	44	1.2	0.13	0.15	7	< 1	< 1	22	26	71	0.8	0.02		0.01
22-Jun-11 29-Jul-11 31-Aug-11 30-Sep-11	Dry Dry	7.8	593	270	9.8	1.3	6	53	2.1	< 0.05	0.38	30	< 1	< 1	30	33	88	2.8	0.02		0.007
20-Oct-11		7.54	67	29	1.7	2.1	< 2	10	0.4	< 0.05	0.25	3	< 1	4	3	2.9	7.5		< 0.01		0.01
29-Nov-11 15-Dec-11			70 200	29 67	1.6 4.7	2.6 3.4	< 2 < 2	10 26	0.3 0.8	< 0.05 0.33	0.18 0.26	6 4	< 1 6	< 1 2	3 16	2.4 10	8.5 25		< 0.01 < 0.01		0.02 0.01

	_	-	_	•		
Δ			0	Λ	Л	

Date	Lab	рН	Cond- uctivity	Alk mg/L	Mg mg/L	K mg/L	BOD mg/L	COD mg/L	TKN mg/L	NH3-N mg/L	Total-P mg/L	TSS mg/L	SO4 mg/L	Phenol ug/L	CI mg/L	Na mg/L	Ca mg/L	Fe mg/L	B mg/L	P mg/L	Zn mg/L
SW 2		6.5 - 8.5	,		3	0		Ü	J		0.03		Ü	1.0	0	<u> </u>		0.30	0.20	- 0	0.02
08-Apr-97	WBL	7.68	2050	120	7.79	35.1	17.3	380	4.91	0.329	0.495	37	20.8	< 0.72	497	293	42.6	2.14	< 0.02	0.58	0.05
06-May-97		7.98	1600	102	4.5	19.2	13	160	2.59	0.071	0.256	41	18.7	0.83	448	251	29.4	2.18	0.03	0.29	0.07
26-Jun-97		8.15	796	110	3.12	13.2	4.89	63	3.04	1.16	0.433	7	13.3	1.92	167	119	23.3	5.88	0.18	1.59	0.06
31-Jul-97		8.56	1020	137	3.74	15.7	14.9	145	5.36	0.079	0.88	54	33.3	1.05	196	154	26.2	2.97	0.06	0.88	0.03
11-Sep-97		7.43	376	83.4	2.98	13.2	2.83	54	1.85	0.38	0.342	9	26.6	< 0.72	42.5	46	22.8	2.45	0.27	0.49	0.26
26-Nov-97		7.73	340				3.15		1.12	< 0.01	0.08	220		< 0.72							
09-Dec-97		7.68	570	85	4.15	7.14	2.78	33	1.16	0.104	0.033	11	39.6	< 0.72	94.7	58	32.8	0.72	0.02	0.06	0.02
08-Jan-98		7.81	537				4.62		0.8	0.1	0.17	319		2							
28-Feb-98	_																				
31-Mar-98		7.84	1530	87.5	2.67	5.65	15.4		1	0.026	0.118	33	23.2	< 0.72	430	274	31.1	0.81	0.05	0.12	0.03
30-Apr-98	1 -																				
12-May-98		7.74	1120				5.55		2.32	1.22	0.13	654		0.72							
24-Jun-98	1	7.51	450	94.7	3.33	7.83	21.1		2.79	0.027	0.259	30	40.5	< 0.72	52.2	43.4	39.4	1.65	0.06	0.26	0.04
31-Jul-98																					
31-Aug-98																					
30-Sep-98																					
31-Oct-98																					
30-Nov-98																					
31-Dec-98																					
31-Jan-99																					
28-Feb-99																					
31-Mar-99	_																				
30-Apr-99																					
31-May-99																					
29-Jun-99	-																				
31-Jul-99	_																				
31-Aug-99																					
30-Sep-99																					
31-Oct-99																					
30-Nov-99																					
14-Dec-99																					
30-Jan-00																					
28-Feb-00																					
31-Mar-00																					
27-Apr-00																					
23-May-00																					
30-Jun-00	_																				
30-Jul-00																					
29-Aug-00																					
28-Sep-00																					
30-Oct-00																					
28-Nov-00	_																				
07-Dec-00																					
31-Jan-02	-																				
28-Feb-02	2 Dry																				

		^	•		
A	L	U	Λ	Л	

Date	Lab	рН	Cond- uctivity	Alk mg/L	Mg mg/L	K mg/L	BOD mg/L	COD mg/L	TKN mg/L	NH3-N mg/L	Total-P mg/L	TSS mg/L	SO4 mg/L	Phenol ug/L	CI mg/L	Na mg/L	Ca mg/L	Fe mg/L	B mg/L	P mg/L	Zn mg/L
SW 2		6.5 - 8.5									0.03			1.0				0.30	0.20		0.02
29-Mar-02 31-May-02 28-Jun-02 31-Jul-02 30-Aug-02 27-Sep-02 31-Oct-02 29-Nov-02 29-Nov-02 29-Mar-03 30-Apr-03 31-Jul-02 30-Aug-03 27-Sep-03 31-Oct-03 29-Nov-03	2 Standi 2 Dry 2 Standi 2 Dry 2 Dry 2 Dry 2 Dry 3 Froze 3 Froze 3 Froze 3 Dry 3 Dry 5 Dry 6 Dry 6 Dry 6 Dry 7 Dry 7 Dry 8 Froze 8 Froz 8 Froz 8 Froz 8 Froz 8 Froz 8 Froz 8 Froz 8 Froz 8 Froz 8 Froz 8 Froz 8	0.0																			
28-Feb-06 09-Mar-06	MAX	7.5	278	29	2.1	1	8	42	1.1	0.23	0.19	38	6	< 1	60	40	9.7	1.6	< 0.02	0.2	0.08
30-Apr-06 16-May-06 30-Jun-06 31-Jul-06 31-Aug-06 13-Sep-06 31-Oct-06 30-Nov-06 31-Dec-06 31-Jan-07 28-Feb-07 14-Mar-07 29-Mar-07	5 MAX 5 Dry 6 Dry 6 Dry 6 Dry 7 Snow 7 Snow 7 Snow	7.4	2320	45 348	1.8	1.4	< 2	18	0.6	0.09	0.08	4	2	< 1	500	12	12	0.4	< 0.01 0.04		0.02
30-Apr-07 31-May-07 30-Jun-07 31-Jul-07 31-Aug-07 28-Sep-07 02-Oct-07	7 Dry 7 Dry 7 Dry 7 Dry 7 Dry 7 Dry		425	113	5.2	5.1	5	70	2.9	0.81	0.29	11	23	1	39	45	43	0.85	0.04		0.04

AECOM

Date L	₋ab	рН	Cond- uctivity	Alk mg/L	Mg mg/L	K mg/L	BOD mg/L	COD mg/L	TKN mg/L	NH3-N mg/L	Total-P mg/L	TSS mg/L	SO4 mg/L	Phenol ug/L	CI mg/L	Na mg/L	Ca mg/L	Fe mg/L	B mg/L	P mg/L	Zn mg/L
SW 2		6.5 - 8.5					g ,		9		0.03		9_	1.0		g, _	9	0.30	0.20		0.02
21-Nov-07 M		8	199	74	3.3	1.5	3	24	1.7	0.15	0.16	20	9	< 1	10	9.1	24	0.99	< 0.01		0.06
31-Dec-07 Si		_		25				40		0.05	0.00	4.4	0		45	40	0.0	0.00	0.04		0.00
08-Jan-08 M 28-Feb-08 Si		7	115	27	1.6	1.5	4	16	1.3	0.06	0.23	11	3	< 1	15	13	9.2	0.68	< 0.01		0.02
19-Mar-08 M		8.1	2170	300	23	6.1	< 2	38	1.1	0.06	0.16	15	24	< 1	490	290	99	< 0.1	0.02		0.03
10-Apr-08 M		8.2	2340	233	21	9.2	< 2	19	0.8	< 0.05	0.12	5	33	< 1	520	350	110	0.2	0.02		0.04
22-May-08 M		8	2270	387	32	8.5	7	30	1.5	< 0.05	0.12	8	21	< 1	480	320	120	0.3	0.02		0.03
24-Jun-08 M	1AX	7.5	148	38	1.6	4.8	7	33	1.7	0.34	0.3	13	3	2	20	12	9	0.55	< 0.01		0.03
24-Jul-08 M	1AX	7.6	170	50	3.1	3	3	20	0.8	< 0.05	0.15	4	< 1	< 1	21	21	17	0.3	0.01		0.02
11-Aug-08 M	1AX	7.4	215	55	2.9	2.3	3	13	1	0.38	0.11	4	2	< 1	28	19	16	0.3	0.01		0.01
17-Sep-08 M		8	1270	264	17	6.5	< 2	14	0.7	< 0.05	0.06	2	23	< 1	220	160	75	0.2	0.03		0.02
16-Oct-08 D	-																				
31-Oct-08 D																					
26-Nov-08 M		8	631	155	10	5.6	3	22	0.9	0.06	0.11	47	13	< 1	95	91	50	0.7	0.01		0.04
31-Dec-08 D	-																				
30-Jan-09 Si 12-Feb-09 M		7.4	647	62	4.2	2.2	< 2	22	0.7	0.15	0.17	24	10	. 1	150	100	21	4.4	< 0.01		0.06
12-Feb-09 M		7.4	1680	63 259	4.3 16	2.3 5.6	< 2 < 2	22 17	0.7	< 0.15		21 < 10	23	< 1 < 1	150 350	100 230	21 77	1.1	0.01		0.06
28-Apr-09 M		7.1	1350	239	19	6.8	8	54	1.9	< 0.03	0.066	< 10 76	16	< 1	270	230	66	< 0.1	0.02		0.04
27-May-09 M		7.9	2130	347	33	10	2	40	1.5	0.06	0.22	9	17	< 1	430	330	100	1	0.03		0.00
17-Jun-09 M		7.7	1990	371	33	12	19	280	1.3	0.17	2.1	410	.,	1	390	290	110	9.5	0.05		0.02
17-Jun-09 D			1,,,0	3,1	33			200		0.17			<	<	000	200		0.0	0.00		0
17-Jun-09 D																					
17-Jun-09 M	1AX	7.7	1990	371	33	12	19	280	14	0.17	2.1	410	<	<	390	290	110	9.5	0.05		0.17
31-Jul-09 D	ry																				
31-Aug-09 D	ry																				
30-Sep-09 D	ry																				
30-Oct-09 D																					
30-Nov-09 D																					
30-Dec-09 D																					
29-Jan-10 Si																					
26-Feb-10 Si		7.0	2020	240	26	10	0	00		0.05	0.05	_	04		770	200	470	0.4	0.04		0.00
18-Mar-10 M 07-Apr-10 M		7.9 7.8	2920 2850	248 285	36 35	10 14	3 12	28 93	1	< 0.05	0.05 0.6	5 43	31 19	< 1 < 1	770 710	390 430	170 150	< 0.1 1.5	0.01 0.02		0.02 0.07
30-Apr-10 D		7.8	2850	285	35	14	12	93	6.4	2.2	0.6	43	19	< 1	710	430	150	1.5	0.02		0.07
31-May-10 N																					
31-May-10 D																					
31-May-10 D																					
31-May-10 N																					
22-Jun-10 N																					
22-Jun-10 N																					
22-Jun-10 D																					
22-Jun-10 D	ry																				
30-Jul-10 D	ry																				
31-Aug-10 D	rv																				

	_	^		
Δ		•	м	л

Date Lab	рН	Cond- uctivity	Alk mg/L	Mg mg/L	K mg/L	BOD mg/L	COD mg/L	TKN mg/L	NH3-N mg/L	Total-P mg/L	TSS mg/L	SO4 mg/L	Phenol ug/L	CI mg/L	Na mg/L	Ca mg/L	Fe mg/L	B mg/L	P mg/L	Zn mg/L
SW 2	6.5 - 8.5		<u> </u>	<u> </u>	3	3	3	3	3	0.03		3	1.0	3	3	J	0.30	0.20	3	0.02
30-Sep-10 MAX	7.2	207	63	3.4	9.4	4	48	1.4	0.09	0.54	17	1	< 1	22	16	16	0.3	0.02	,	0.02
29-Oct-10 Dry 02-Dec-10 MAX 31-Dec-10 Dry 28-Jan-11 Froze	7.93	326	107	5.1	5.2	< 2	25	0.8	< 0.05	0.11	13	6	2	32	31	26	0.6	< 0.01		0.03
28-Feb-11 Froze 31-Mar-11 Snow/		3010	209	25	5.6		21	0.6	0.12	0.00	7	25		780	550	130	< 0.1	0.02		0.04
08-Apr-11 MAX 03-Jun-11 MAX		3420	321	25 33	5.6 6.7	< 2 8	35	1.3	0.12	0.06 0.21	, 5	35 33	< 1 < 1	870	620	150	< 0.1 0.5	0.02		0.04 0.01
22-Jun-11 MAX 29-Jul-11 Dry		1820	378	27	6.8	5	28	1.2	< 0.05	0.13	17	6	< 1	350	250	100	1.7	0.04		0.006
31-Aug-11 Dry 27-Sep-11 MAX 30-Sep-11 Dry				14	19										5.4	44	4.5	0.03		0.28
20-Oct-11 MAX	7.73	157	40	2	4.2	< 2	17	0.5	< 0.05	0.17	4	6	3	19	17	8.9	0.2	< 0.01		0.02
29-Nov-11 MAX	7.53	188	54	3	2.6	< 2	19	0.5	< 0.05	0.13	16	7	4	22	21	13	0.7	< 0.01		0.05
15-Dec-11 MAX	8.03	1310	239	20	6	3	28	1.2	0.1	0.15	17	16	1	220	190	78	1.3	0.01		0.09

		_	•	
A	q	0)	Λ	7

Date Lab	рН	Cond-	Alk	Mg	K	ВО	D	COD	TKN	NH3-N	Total-P	TSS	SO4	Phenol	CI	Na	Ca	Fe	В	Р	Zn
Lab	p	uctivity	mg/L	mg/L	mg/L	mg		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		uouvuy				9		9, =	9, =			3									
	6.5 -										0.03			1.0				0.30	0.20		0.02
EPTS-01	8.5																				
09-Jun-04 N/A																					
09-Jun-04 N/A					<									<							
09-Jun-04 Philip-	8	583	236	20.8	< 1	1	.3	7	0.27	0.07	0.003		19.4	< 1	52.3	24.9	93.5	0.09	0.02		0.43
09-Jun-04 Philip-	8	583	236	20.8	1	1	.3	7	0.27	0.07	0.003		19.4	1	52.3	24.9	93.5	0.09	0.02		0.43
30-Nov-04 Philip-	8.11	665	244	22.4	2	< 0	.5	8	0.18	< 0.03	0.003		21.3	< 1	60.3	23.6	83.4	< 0.01	0.01		0.08
03-Aug-05 N/A																					
28-Nov-05 Maxx	8.18	620	231	24		< .	2	< 4	0.4	0.1	< 0.02		18	< 1	51	26	84	< 0.05	0.02	< 0.05	0.08
01-Jun-06 N/A																					
04-Dec-06 MAX																					
30-Mar-07 MAX	8.3	621	242	24	1.3		2	4	0.6	0.11	< 0.02		14	< 1	44	24	82	< 0.02		< 0.05	0.1
14-Jun-07 MAX	8.3	592	243	22	1.3	< '	2	10	0.9	0.13	< 0.02		16	< 1	35	18	76	< 0.02	0.01		0.17
16-Aug-07 MAX	8.2	558	235	24	1.5		2	12	0.6	0.19	< 0.02		16	< 1	27	15	75	< 0.02	0.01		0.05
05-Dec-07 MAX	8.2	650	232	27	1.7		2	6	0.4	0.18	< 0.02		26	< 1	51	22	96	0.06	0.02		0.1
02-May-08 MAX	8.3	610	213	19	1.1	< :	2	< 4	0.6	0.05	0.02		17	< 1	51	30	68	< 0.02			0.07
25-Jun-08 MAX	8.1	593	217	20	1.3			11	0.7	0.12	< 0.02		15	< 1	45	26		< 0.02			0.05
11-Sep-08 MAX	8.2	574	228	20	1.4		2	11	0.6	< 0.05	< 0.02		16	< 1		21	75	< 0.02	0.01	< 0.1	0.07
09-Dec-08 MAX	8	787	262	20	1.6		2	< 4	0.3	< 0.05	< 0.02		19	< 1	80	47	80	< 0.02	0.02		0.13
01-May-09 MAX	7.8	582	231	21	1.3		2	< 4	0.5	< 0.05	< 0.02		13	< 1	44	22	75	< 0.02	0.01		0.07
25-Jun-09 MAX	8.1	557	228	21	1.4		2	< 4	0.5	< 0.05	< 0.02		12	< 1	31	18	73	< 0.02	0.02		0.06
31-Aug-09 MAX	7.8	1420	334	20	1.7		2	140	1.5	0.13	0.12		110	< 1	190	120	160	1	0.19	0.11	0.01
15-Dec-09 MAX	7.8	451	169	20	1.2		2	9	0.4	0.06	0.02		11	< 1	26	13	70	< 0.02	0.01	< 0.1	0.15
24-Jun-10 MAX	8	618	235	21	1.3		2	< 4	0.6	0.07	0.02		15	1	40	24	73	< 0.06	0.01		0.05
17-Dec-10 MAX	7.98	725	266	24	1.5		2	8	0.3	< 0.05	< 0.02		16	< 1	54	28	88	< 0.02	0.02		0.1
15-Jun-11 MAX	8.07	617	238	19	1.6		2	17	0.5	< 0.05	< 0.02		12	< 1	45	35	70	< 0.02	0.02		0.07
19-Dec-11 MAX	7.99	770	256	27	1.8	<	2	5	0.4	< 0.05	0.03		30	2	64	45	96	0.04	< 0.01	< 0.1	0.29

	_		^	•	
A		L	0	Λ	1

Date Lab	рН	Cond- uctivity	Alk mg/L	Mg mg/L	K mg/L	BOD mg/L	COD mg/L	TKN mg/L	NH3-N mg/L	Total-P mg/L	TSS mg/L	SO4 mg/L	Phenol ug/L	CI mg/L	Na mg/L	Ca mg/L	Fe mg/L	B mg/L	P mg/L	Zn mg/L
TP1	6.5 - 8.5		<u> </u>			-	-			0.03			1.0				0.30	0.20		0.02
31-Jan-06 Dry																				
28-Feb-06 Dry																				
09-Mar-06 MAX	7.4	1440	49	2.7	6	17	61	2.7	0.72	0.32	40	44	3	359	240	40	1.2	< 0.02	0.3	0.12
30-Apr-06 Dry																				
16-May-06 MAX	7.9	200	83	2	0.75	< 2	24	0.8	< 0.05	0.15	4	6	< 1	9	18	27	0.06	0.02		0.15
30-Jun-06 Dry																				
31-Jul-06 Dry																				
31-Aug-06 Dry	7.7	150	50	2.6	3	3	21	0.9	0.08	0.26	1	9	< 1	6	<i>-</i> 7	20	0.07	0.03		0.06
13-Sep-06 MAX 31-Oct-06 Dry	1.1	159	58	2.6	3	3	21	0.9	0.08	0.26	1	9	< 1	6	5.7	20	0.07	0.03		0.06
30-Nov-06 Dry																				
31-Dec-06 Dry	ł								<u> </u> 				}							ļ
31-Jan-07 Snow																				
28-Feb-07 Snow	ł								l İ			Ì	Ì	Ì						Ì
14-Mar-07 MAX	7.9	2000	96	3.6	2.1	4	33	1.8	0.32	0.22	2	17	< 1	520	410	36	0.2	0.03		0.09
29-Mar-07 Dry	7.2	2000	70	3.0	2.1		00	1.0	0.32	0.22	-		` '	020	110	00	0.2	0.00		0.00
30-Apr-07 Dry																				
31-May-07 Dry																				
30-Jun-07 Dry																				
31-Jul-07 Dry																				
31-Aug-07 Dry																				
28-Sep-07 Dry																				
02-Oct-07 Dry																				
21-Nov-07 MAX	7.6	181	56	2.8	3.5	7	38	1	0.08	0.26	20	10	< 1	14	16	20	0.82	0.02		0.06
31-Dec-07 Snow																				
08-Jan-08 MAX	7.9	1080	130	2.2	3.1	4	26	1.8	< 0.05	0.17	5	28	< 1	220	220	29	0.34	0.04		0.19
28-Feb-08 Snow																				
19-Mar-08 MAX	7.9	2150	83	1.9	2.6	3	32	0.9	0.27	0.14	4	24	< 1	580	420	20	0.2	0.02		0.07
10-Apr-08 MAX	8.2	542	117	5.3	1.9	6	30	0.9	< 0.05	0.07	2	8	< 1	90	70	35	0.4	0.02		0.007
22-May-08 MAX	8.3	612	140	7.3	3.9	3	50	1.5	< 0.05	0.035	2	18	< 1	98	88	34	0.1	0.04		0.007
24-Jun-08 MAX	8	272	87	3.8	1.8	6	39	1.5	0.12	0.11	10	5	1	26	25	25	0.44	0.02		0.02
24-Jul-08 MAX	8.2	633	193	10	9	5	74	2	0.25	0.12	6	1	< 1	82	53	58	1	0.03		< 0.005
11-Aug-08 MAX	7.5	403	147	7.1	3.4	4	30	1.3	0.21	0.059	4	4	< 1	38	34	40	0.7	0.02		< 0.005
17-Sep-08 MAX	7.8	506	195	8.9	4.4	3	43	1.4	< 0.05	0.073	6	12	< 1	38	40	64	0.9	0.04		0.01
16-Oct-08 MAX	7.7	346	117	3.9	3.1	4 < 2	26	0.9	< 0.05	0.11	10	31	< 1	19	22	44	0.5 2	0.05		0.02
26-Nov-08 MAX 31-Dec-08 Snow	8.1	2710	259	17	3.4	< 2	47	2.3	0.1	0.25	91	31	< 1	640	380	98	2	0.02		0.08
31-Dec-08 Snow 30-Jan-09 Snow																				
30-Jan-09 Snow 12-Feb-09 MAX	7.6	2370	85	3.8	2.5	< 2	24	1.3	0.14	0.28	40	21	< 1	640	450	33	2.9	< 0.01		0.26
12-Feb-09 MAX 11-Mar-09 MAX	6.8	1290	115	3.8	3	3	26	1.5	0.14		< 10	15	< 1	310	240	33 31	0.2	0.01		0.26
28-Apr-09 MAX	6.7	277	48	2.7	1.3	8	40	2.1	0.07	0.20	50	16	2	43	39	17	2.3	0.01		0.10
27-May-09 MAX	7.1	253	54	2.7	3.7	10	59	2.1	0.23	0.41	20	25	2	27	26	19	2.3	0.01		0.13
17-Jun-09 MAX	6.6	445	70	6.5	6.8	48	230	7	1	0.9	79	88	18	27	32	51	2.3	0.03		0.19
23-Jul-09 MAX	7.2	151	54	1.9	2.1	3	36	2	< 0.05	0.13	12	12	< 1	5	8.3	18	0.3	0.04		0.15
28-Aug-09 Dry	7.2	131	34	1.7	2.1	Ŭ		_	- 0.03	0.10			1		0.0	.5	0.0	0.04		0.50

		^		
A	=	u	N	

Date Lab	рН	Cond- uctivity	Alk mg/L	Mg mg/L	K mg/L	BOD mg/L	COD mg/L	TKN mg/L	NH3-N mg/L	Total-P mg/L	TSS mg/L	SO4 mg/L	Phenol ug/L	CI mg/L	Na mg/L	Ca mg/L	Fe mg/L	B mg/L	P mg/L	Zn mg/L
TP1	6.5 - 8.5	detivity	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	0.03	g/ <u></u>	mg/L	1.0	mg/L	mg/L	mg/L	0.30	0.20	mg/L	0.02
29-Sep-09 MAX	7.6	299	74	4.1	5.4	5	43	1.5	0.1	0.27	7	33	< 1	27	23	36	0.9	0.02		0.04
29-Oct-09 MAX	7.4	692	186	9.8	5.8	5	71	2.1	0.08	0.3	36	46	< 1	77	55	77	2.5	0.04		0.1
19-Nov-09 MAX	7.1	413	72	7.6	7.3	32	160	7	0.41	0.87	110	100	4	21	22	56	2	0.06		0.22
09-Dec-09 MAX	7.5	2730	53	8.8	4.3	3	27	1	0.2	0.21	12	10	< 1	760	430	77	0.3	< 0.01		0.28
29-Jan-10 Snow																				
26-Feb-10 Snow																				
31-Mar-10 Dry																				
07-Apr-10 MAX	7.7	541	72	3.4	2.9	< 2	53	1.6	< 0.05	0.24	10	52	2	87	69	42	0.6	0.04		0.25
31-May-10 Dry																				
22-Jun-10 N/A																				
30-Jul-10 Dry																				
31-Aug-10 Dry																				
30-Sep-10 MAX	7.8	512	175	9.5	7.9	4	69	2	0.11	0.25	< 10	10	< 1	43	43	62	1.4	0.02		0.006
05-Nov-10 MAX	8.14	570	187	7.9	5.7	< 2	41	1.7	0.43	0.15	9	15	< 1	50	51	61	0.7	0.02		0.03
02-Dec-10 MAX	7.84	626	219	27	4.7	31	39	1.2	< 0.05	0.13	130	17	1	56	65	92	19	0.02		0.83
31-Dec-10 Snow	7.0.	020	217	2,	,	0.		1.2	1 0.05	00			-		00	02		0.02		0.00
28-Jan-11 Froze																				
28-Feb-11 Froze																				
31-Mar-11 Snow/																				
08-Apr-11 MAX	8.08	1080	254	16	4.4	4	54	1.6	< 0.05	0.12	66	9	< 1	190	120	84	1.4	0.01		0.03
03-Jun-11 MAX	7.66	470	186	8.8	2.5	10	70	4.2	2.1	0.12	16	< 1	17	33	41	57	4.7	0.03		0.03
30-Jun-11 Dry	7.00	470	100	0.0	2.3	10	70	4.2	2.1	0.54	10	'	17	33	71	31	4.7	0.03		0.01
29-Jul-11 Dry																				
25-Aug-11 MAX	7.49	310	92	4.8	5.9	4	50	2	< 0.05	0.18	15	38	< 1	17	17	40	0.2	0.04		0.02
27-Sep-11 MAX	7.49	500	193	10	6.2	3	68	2.2	< 0.05 < 0.05	0.18	13	30	11	25	25	68	0.2	0.04		0.02
20-Oct-11 MAX	7.94	152	68	1.7	0.2		15	0.4	< 0.05	0.13	3			3	5.8	22	0.9	< 0.04		0.02
20-Oct-11 MAX 29-Nov-11 MAX						< 2 3	24			0.1		5	, ,		3		0.1			
1 1	7.27	76	30	1.4	1	Ĭ.	<u> </u>	0.6	< 4		26 5	4	1	3	_	11) 0.07	< 0.01		0.05
15-Dec-11 MAX	7.86	452	100	4.6	2.3	< 2	24	0.5	< 0.05	0.11	5	12	2	65	54	36	0.27	0.01		0.02

	-0	^	•	•	
A	ΞC		Λ	7	

Date Lab	рН	Cond- uctivity	Alk mg/L	Mg mg/L	K mg/L	BOD mg/L	COD mg/L	TKN mg/L	NH3-N mg/L	Total-P	TSS mg/L	SO4 mg/L	Phenol ug/L	CI mg/L	Na mg/L	Ca mg/L	Fe mg/L	B mg/L	P mg/L	Zn mg/L
	 	uctivity	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	mg/L	IIIg/L	IIIg/L	, i	IIIg/L	IIIg/L	IIIg/L			IIIg/L	-
TP1-Out	6.5 - 8.5									0.03			1.0				0.30	0.20		0.02
31-Jan-06 Dry																			•	
28-Feb-06 Dry																			ļ	
09-Mar-06 MAX	7.6	1390	69	3.9	6	10	52	2.4	0.66	0.29	25	27	1	332	220	37	0.92	< 0.02	0.4	0.07
30-Apr-06 Dry						_					_	_								
16-May-06 MAX	7.8	222	85	3.4	2.7	< 2	31	1.2	0.07	0.13	3	6	< 1	15	23	23	0.47	0.02		0.02
30-Jun-06 Dry																				
31-Jul-06 Dry																				
31-Aug-06 Dry	7.6	135	50	2.2	3.8	4	17	0.9	0.06	0.28	1	8	< 1	5	5.4	16	. 0.05	0.03		0.02
13-Sep-06 MAX 31-Oct-06 Dry	7.0	133	30	2.2	3.8	4	17	0.9	0.06	0.28	'	0	< 1	5	5.4	10	< 0.05	0.03		0.02
30-Nov-06 Dry																			ļ	
31-Dec-06 Dry	ł					ł	<u> </u>													
31-Jan-07 Snow																				
28-Feb-07 Snow	i			l I		ŧ		ļ	Ì						l I				II.	
14-Mar-07 MAX	7.6	972	70	4	5.7	4	28	1.7	0.66	0.3	3	11	< 1	220	180	26	0.2	0.02		0.03
29-Mar-07 MAX	8.2	951	170	9.8	5.8	4	38	2.1	< 0.05	0.12	4	23	2	180	170	61	0.48	0.05		0.02
30-Apr-07 Dry	0.2	,,,,	1,0	7.0	2.0	•		2.1	1 0.00	02	•		_	.00		٠.	00	0.00		0.02
31-May-07 Dry																				
30-Jun-07 Dry																				
31-Jul-07 Dry																				
31-Aug-07 Dry																				
12-Sep-07 MAX	7.7	659	107	0.8	45	14	140	3	0.13	0.75	15	48	4	100	53	48	7.2	0.1	ļ	0.02
02-Oct-07 MAX	7.9	695	229	9.6	24	7	120	4	0.19	0.26	10	24	2	73	47	72	0.96	0.08	ļ	0.02
21-Nov-07 MAX	7.8	191	55	3.1	4.1	5	5	1	0.1	0.22	19	15	< 1	14	15	22	0.77	0.02	ļ	0.05
31-Dec-07 Snow																				
08-Jan-08 MAX	7.7	867	107	4	2.9	2	22	1.5	< 0.05	0.12	9	24	< 1	190	150	32	0.43	0.01		0.04
28-Feb-08 Snow																				
31-Mar-08 Snow																				
10-Apr-08 MAX	8.2	535	126	4.3	2.3	< 2	36	1.1	< 0.05	0.14	3	6	1	84	76	32	0.7	0.02		0.01
22-May-08 MAX	8.1	584	155	5.9	2.5	3	41	1.5	< 0.05	0.12	17	14	< 1	80	80	41	0.7	0.04		0.008
24-Jun-08 MAX	7.8	245	87	2.9	1.7	4	37	1.5	0.24	0.23	6	4	1	19	20	22	0.69	0.03		0.02
24-Jul-08 MAX	8	333	128	4.8	5.8	4	43	1.3	0.11	0.15	5	< 1	< 1	27	24	35	1.2	0.03		0.006
11-Aug-08 MAX	7.5	323	118	4.7	2.1	2	24	0.6	0.4	0.059	3	2	< 1	24	24	32	0.5	0.02	ļ	0.007
17-Sep-08 MAX	7.9	427	165	7.1	5.2	< 2	26	1.2	< 0.05	0.091	4	8	< 1	33	40	54 52	0.5	0.03	ļ	0.01
16-Oct-08 MAX	7.9	389 4740	130	3.9 16	4.7 4.2	< 2 < 2	63 36	1.1 0.8	0.28 0.06	0.11 0.056	< 1 2	34 34	2 < 1	23 1300	23 820	52 160	< 0.1	0.04	ļ	0.007 0.06
26-Nov-08 MAX 31-Dec-08 Snow	8.1	4/40	243	16	4.2	< 2	36	0.8	0.06	0.056	2	34	< 1	1300	820	160	0.2	0.03	ļ	0.06
31-Dec-08 Snow 30-Jan-09 Snow																			ļ	
12-Feb-09 MAX	7.6	772	86	5.2	2.2	< 2	21	0.7	< 0.05	0.11	11	9	< 1	180	110	33	1	< 0.01	ļ	0.05
11-Mar-09 MAX	6.7	526	95	4.5	2.2	3	27	1	< 0.05	0.11	10	13	< 1	99	78	33 29	1	0.01	ļ	0.05
28-Apr-09 MAX	6.7	404	64	3	1.8	8	53	1.6	0.03	0.13	32	21	2	72	57	29	1.5	0.01	ļ	0.03
27-May-09 MAX	7	282	52	2.9	4.6	13	71	2.6	0.24	0.25	48	33	4	32	34	21	1.6	0.02	ļ	0.08
17-Jun-09 MAX	7	462	133	4.2	6.2	6	53	1.6	0.25	0.13	4	42	< 1	37	42	47	0.6	0.11	ļ	0.01
23-Jul-09 MAX	7.1	214	62	3.3	3.4	6	68	2.7	< 0.05	0.5	32	19	< 1	11	16	24	1.2	0.05	ļ	0.08
28-Aug-09 Dry	,	211	02	3.3	3.1			2.,	3.05	3.0	02							0.00	ļ	0.00
20 1.20 07 2519	•	I		I .			I	l	I	I		1	I	I	I .				I.	

		_	•	
A	q	0)	Λ	7

Date	Lab	рΗ	Cond-	Alk	Mg	К	BOD	COD	TKN	NH3-N	Total-P	TSS	SO4	Pheno	ı Cl	Na	Ca	Fe	В	Р	Zn
			uctivity	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		6.5 -	-								0.03			1.0				0.30	0.20		0.02
TP1-Out		8.5									0.03			1.0				0.30	0.20		0.02
29-Sep-09 N	MAX	7.3	228	78	2.7	3.2	3	28	1	0.05	0.19	6	20	< 1	14	15	26	0.1	0.02		0.02
29-Oct-09 N	MAX	7.8	586	161	6.7	7.7	< 2	35	1.1	0.08	0.14	8	28	< 1	65	48	59	0.3	0.03		0.03
19-Nov-09 N	MAX	8	627	190	7.7	7.4	< 2	27	1	0.14	0.11	1	18	< 1	70	55	69	0.2	0.03		0.01
09-Dec-09 N	MAX	7.9	531	167	6.9	4	< 2	21	0.8	0.11	0.06	2	14	< 1	55	48	53	0.2	0.01		0.009
29-Jan-10 S	Snow																				
26-Feb-10 S	Snow																				
18-Mar-10 N	MAX	7.9	723	224	12	6.4	4	34	1.8	0.15	0.16	7	5	< 1	92	73	64	0.8	0.01		0.02
07-Apr-10 N	MAX	7.7	599	140	6.5	5.1	6	58	1.8	< 0.05	0.29	9	32	< 1	88	72	53	1.4	0.03		0.02
31-May-10 I	Dry																				
22-Jun-10 N	N/A																				
30-Jul-10 N	MAX	7.8	365	135	4.6	3.1	3	42	1.5	0.57	0.17	9	20	< 1	20	19	48	0.7	0.04		0.007
31-Aug-10 N	MAX	8.2	379	140	4.1	4.5	3	25	1	0.08	0.13	< 1	20	< 1	21	23	52	< 0.1	0.04		< 0.005
30-Sep-10 N	MAX	7.9	443	146	6.4	6.8	< 2	45	1.4	0.19	0.18	< 10	14	< 1	38	32	47	0.5	0.02		0.008
05-Nov-10 N	MAX	8.17	569	188	8.1	5.9	< 2	41	1.6	0.43	0.15	7	15	< 1	51	51	63	0.7	0.02		0.03
02-Dec-10 N	MAX	8	544	177	7.9	3	< 2	22	0.6	< 0.05	0.05	3	16	< 1	49	57	50	0.4	0.01		0.02
31-Dec-10 F	Froze																				
28-Jan-11 F	Froze																				
28-Feb-11 F	Froze																				
31-Mar-11 S	Snow/																				
08-Apr-11 N	MAX	7.97	996	195	10	3.6	< 2	33	1.1	< 0.05	0.1	5	21	< 1	190	130	67	0.4	0.02		0.02
03-Jun-11 N	MAX	7.65	1030	390	29	7.4	< 2	26	1.7	0.52	0.2	9	36	3	66	63	140	1.4	0.04		0.07
22-Jun-11 N	MAX	8.06	343	150	5.5	1.5	< 2	39	1.4	0.23	0.13	< 10	< 1	< 1	16	21	45	0.6	0.03		< 0.005
29-Jul-11 I	Dry																				
25-Aug-11 N	MAX	7.48	394	98	5.3	14	3	49	2.3	0.09	0.3	5	40	< 1	33	22	41	< 0.1	0.03		0.02
27-Sep-11 N		7.96	316	109	5.9	6.9	< 2	42	1.5	0.15	0.24	2	27	7	15	14	39	0.2	0.04		0.01
20-Oct-11 N	MAX	7.95	225	87	3.6	1.9	< 2	17	0.5	< 0.05	0.09	6	8	3	13	14	26	0.2	< 0.01		0.01
29-Nov-11 N	MAX	7.37	137	50	2.5	1.7	5	35	0.9	< 0.05	0.25	28	10	3	5	7.4	19	1	< 0.01		0.06
15-Dec-11 N		7.78	423	70	2.4	1.6	3	25	0.6	< 0.05	0.14	5	10	3	75	56	28	0.33	0.01		0.07

Date	Lab	рН	Cond- uctivity	Alk mg/L	Mg mg/L	K mg/L	BOD mg/L	COD mg/L	TKN mg/L	NH3-N mg/L	Total-P mg/L	TSS mg/L	S04 mg/L	Phenol ug/L	CI mg/L	Na mg/L	Ca mg/L	Fe mg/L	B mg/L	P mg/L	Zn mg/L
31-Jan-02	Dry																				
28-Feb-02																					
29-Mar-02	Dry																				
30-Apr-02	Dry																				
31-May-02	Dry																				
28-Jun-02	Dry																				
31-Jul-02	Dry																				
30-Aug-02	Dry																				
27-Sep-02	Dry																				
31-Oct-02	Dry																				
29-Nov-02																					
20-Dec-02	Dry																				
31-Jan-03																					
28-Feb-03																					
29-Mar-03																					
30-Apr-03																					
31-May-03																					
05-Jun-03		6.75	1129	184	10.8	102	172	102	31	5.65	4.3	84	72	6	140						
31-Jul-03		0.75	1127	10.	10.0	102		.02	31	5.05		٠.		Ü							
30-Aug-03																					
27-Sep-03																					
31-Oct-03																					
29-Nov-03																					
01-Dec-03		5.8	6243	459	73	179	1420	4900	65.8	9	23.4	639	65.8	1180	1880	979	218	8.7	0.14	21.1	0.47
		3.0	0243	437	13	1/9	1420	4300	05.8	9	23.4	039	03.0	1100	1000	313	210	0.7	0.14	21.1	0.47
31-Jan-06 28-Feb-06																					
		7.0	2620	240	21	150	120	1200	120	22.1	40	220	. 50	£ 1	600	200	07	11	0.00	10	0.0
09-Mar-06		7.6	2620	248	21	150	130	1200	120	23.1	12	230	< 50	51	628	390	87	11	0.09	10	0.67
30-Apr-06	-	7.0	20.60	222	25	200	00	4000	50	2.2	0.5	00	04		000	550	440	0.0	0.40		0.0
16-May-06		7.8	3960	322	35	390	20	1000	53	3.3	2.5	60	61	6	862	550	110	3.2	0.13		0.2
30-Jun-06																					
31-Jul-06																					
31-Aug-06																					
13-Sep-06																					
31-Oct-06																					
30-Nov-06																					
31-Dec-06																					
31-Jan-07																					
28-Feb-07																					
14-Mar-07	MAX	7.5	441	33	1.9	3.3	5	33	1.5	0.57	0.31	21	6	6	100	75	10	0.68	0.01		0.0
29-Mar-07	Dry																				
30-Apr-07																					
31-May-07	Dry																				
30-Jun-07	Dry																				
31-Jul-07	Dry																				
31-Aug-07	Dry																				
28-Sep-07																					
	MAX	1	565	211	9.6	31	5	130	5	0.22	1.2	18	40	3	30	28	64	0.9	0.06	1	0.0

		_	•		
Δ	≡C	C)	Λ	7	

Date	Lab	рН	Cond- uctivity	Alk mg/L	Mg mg/L	K mg/L	BOD mg/L	COD mg/L	TKN mg/L	NH3-N mg/L	Total-P mg/L	TSS mg/L	S04 mg/L	Phenol ug/L	CI mg/L	Na mg/L	Ca mg/L	Fe mg/L	B mg/L	P mg/L	Zn mg/L
21-Nov-07	MAX	6.6	504	116	19	52	180	770	13	1.76	5.2	130	< 20	300	50	13	67	5.7	0.05		0.22
31-Dec-07																					
08-Jan-08		7.3	525	75	4.3	16	11	98	2	0.12	0.64	13	13	2	94	74	23	0.59	0.02	1	0.04
28-Feb-08												_								1	
19-Mar-08		7.3	869	39	2.1	6.7	23	110	1.1	0.28	0.64	9	11	14	220	160	12	0.3	< 0.01	1	0.03
10-Apr-08		7.7	648	126	7.7	36	150	490	4.1	0.3	2	13	15	18	100	71	34	0.9	0.04	1	0.04
31-May-08	-																			1	
30-Jun-08 31-Jul-08	-																			1	
31-Jul-08 31-Aug-08																				1	
28-Sep-08	-																			1	
31-Oct-08	-																			1	
30-Nov-08	-																			1	
31-Dec-08						Ì	-													İ	
30-Jan-09																				1	
12-Feb-09		7.1	1270	38	7.5	2.2	< 2	120	2.5	0.12	0.42	140	11	1	320	240	28	3.7	< 0.01	1	0.14
11-Mar-09		6.6	319	53	2.1	5.7	16	76	1.6	0.14	0.55	10	13	3	53	41	17	0.4	0.01	1	0.02
28-Apr-09		6.7	240	59	7	10	28	240	8	0.63	2.1	75	< 5	17	32	21	24	6.8	0.02	1	0.17
27-May-09		6.5	310	92	8.1	34	83	380	13	2.4	3.1	130	< 2	13	< 2	14	31	7.4	0.05	1	0.22
17-Jun-09		6.5	261	60	7.2	18	59	380	9	1.3	1.4	140	14	14	20	12	32	4	0.04	1	0.17
23-Jul-09	MAX	6.9	162	58	4.5	22	30	160	4.7	0.81	1.6	79	< 1	7	< 1	2.9	16	1.7	0.02	1	0.07
28-Aug-09	Dry																			1	
29-Sep-09	MAX	7.1	235	89	11	29	71	390	11	0.63	3.3	13	< 1	21	< 1	4.3	33	4.9	0.02	1	0.27
29-Oct-09	MAX	6.8	331	109	13	35	71	520	11	0.37	4.4	360	< 1	27	< 1	6.8	44	7.2	0.05	1	0.34
19-Nov-09	MAX	7.1	331	109	32	25	61	520	17	0.97	5.6	640	20	10	23	8.5	99	13	0.05	1	1.1
09-Dec-09		7.2	3000	44	6.6	3.9	5	100	3	0.42	0.69	110	9	6	840	550	28	2.9	< 0.01	1	0.13
29-Jan-10	1 =				ļ	ļ												ļ			
26-Feb-10																				1	
18-Mar-10		7.6	2000	213	77	48	18	200	12	0.52	3.3	41	210	4	190	170	110	2.3	0.09	1	0.22
07-Apr-10		7.6	305	63	18	9.7	7	200	6	0.61	1.9	250	37	2	25	20	57	7	0.03	1	0.44
31-May-10	-																			1	
22-Jun-10									• 0		0.40	400			4=0					1	
30-Jul-10		7.8	945	213	15	4	6	140	2.8	0.08	0.48	120	4	< 1	170	110	75	4.1	0.03	1	0.11
31-Aug-10	-	7.9	399	155	7.4	7.1	3	42	1.5	0.3	0.41	10	16	1	23	28	48	0.4	0.04	1	0.02
30-Sep-10 29-Oct-10		7.9	399	155	7.4	7.1	3	42	1.5	0.3	0.41	10	16	1	23	20	46	0.4	0.04	1	0.02
29-Oct-10 29-Oct-10	-																			1	
29-Oct-10 29-Oct-10																				1	
29-Oct-10																				1	
02-Dec-10																				1	
02-Dec-10		7.98	646	182	13	4.7	< 2	33	1	0.13	0.29	26	31	2	72	38	74	0.9	0.02	1	0.05
02-Dec-10		7.98	646	182	13	4.7	2	33	1	0.13	0.29	26	31	2	72	38	74	0.9	0.02	1	0.05
02-Dec-10							<													1	
31-Dec-10																					
31-Dec-10																				1	
31-Dec-10	MAX																				
31-Dec-10	MAX																			1	

A	≡CO ∧	и

Date	Lab	рН	Cond- uctivity	Alk mg/L	Mg mg/L	K mg/L	BOD mg/L	COD mg/L	TKN mg/L	NH3-N mg/L	Total-P mg/L	TSS mg/L	S04 mg/L	Phenol ug/L	CI mg/L	Na mg/L	Ca mg/L	Fe mg/L	B mg/L	P mg/L	Zn mg/L
20 1 11			dottvity	mg/L	mg/L	mg/L	mg/L	mg/L	9/ =	1119/12	1119/12	9/ =	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	9, =
28-Jan-11																					
28-Feb-11 31-Mar-11																					
08-Apr-11		8.06	2290	379	24	7.4	< 2	24	0.9	< 0.05	0.06	14	25	. 1	460	350	110	0.3	0.03		0.03
08-Apr-11		7.93	1840	381	2 4 26	7.4	< 2	41	1.3	0.03	0.06	110	25	< 1 < 1	320	280	110	1.4	0.03		0.03
30-Jun-11		1.93	1040	361	20	7.4	< Z	41	1.3	0.08	0.14	110	21	\ 1	320	200	110	1.4	0.03		0.00
29-Jul-11	_																				
25-Aug-11	_	7.14	390	144	12	48	80	360	12	0.95	2.7	230	< 1	35	21	8.7	45	2.8	0.07		0.14
30-Sep-11		7.1-1	370	111	1.2	-10	00	000	12	0.75		200	` '	33		0.1	10	2.0	0.07		0.11
20-Oct-11		7.16	175	60	5.1	17	43	200	4.2	0.46	1.3	81	2	87	10	2.3	22	1.5	0.02		0.11
29-Nov-11		6.91	51	21	2.7	3.2	5	59	1.1	0.09	0.35	59	< 1	13	2	0.7	10	1.2	< 0.01		0.07
15-Dec-11		7.28	83	32	1.4	2.1	5	33	0.7	0.1	0.17	11	< 1	9	3	3.1	11		< 0.01		0.03
20-Nov-96	ENT	7.13			50.1	5.69	720	1626	1.46	46.7	10.4	107	95.7	3050	824	265	168	2.48	0.23	5.55	0.2
11-Dec-96		7.13			49.4	218	240	584	52.6	22	7.01	27	106	13	3978	2200	158	2.05	0.25	4.49	
27-Mar-97		7.91	7690	609	107	263	143	1320	248	228	3.72	108	112	13.3	441	367	667	1.54	0.16	3.16	
06-May-97		8.44	3580	1050	43.3	344	969	2110	173	105	6.36	750	50.3	304	441	262	136	5.99	0.28	5.6	0.48
27-Jun-97		7.15	5590	1440	64.1	653	1890	3500	165	127	18.9	410	5.2	614	586	266	194	5.17	0.45	15.2	
11-Sep-97		8.25	6640	1870	97.1	925	541	1100	201	124	15.4	220	51.9	179	913	615	147	39.9	1.32	39.5	
01-Oct-97		8.12	17900	4190	214	1820	2090	7190	560	467	14.7	90	114	1240	2860	1800	370	8.68	1.81	29.6	
09-Dec-97	WBL	7.68	15200	2830	258	1380	570	4450	686	374	13.6	1740	188	745	2070	1360	865	1.44	0.97	12.8	0.45
01-Apr-98	WBL	8.18	5910	1230	79.6	472	193			134		180	217	183	797	501	183	1.72	0.34	13.7	0.33
24-Jun-98	WBL	7.54	3780	1490	70.4	316	771			61.6		388	125	81.1	331	216	326	8.25	0.27	7.39	2.53
02-Oct-98	CAN	7.7	2000	420	38	160	52	370	38	6.5	3.4	40	130	9	210	130	110	2.8	0.18		0.43
03-Dec-98	CAN	7.6	1800	490	37	110	64	520	45	6.8	3.4	210	97	35	170	110	98	1.5	0.14		0.36
14-Dec-99	Barr	7.02	7051	2300	85.1	514	2870	5002	339	286	10.4	282	77.8	1130	734	571	181	0.37	0.52	7.4	0.04
21-Jun-00	Philip-	7.72	16840	1030	322	627	42.3	1393	918	930	6.7	489	363	< 1	1100	623	1270	4.57	0.76	6.8	1.01
29-May-96	ENT	7.64			106.6	1130	4444	9828	650	368.7	17.28	255	398.1	144	1804	1160	339	6.21	0.84	8.8	1.04
04-Sep-96	ENT	6.36			31.1	219	976	2027	38.6	18.54	9.56	198	145	56	418	212	118	2.8	2.41	6.55	
16-Oct-96		7.59			27.7	166	148	542	55.7	13.54	2.45	32	85.3	2	248	124	83.9	1.43	0.19	1.57	
07-Dec-00		7.71	32400	5430	264	2210	5320	10333	672	627	11.2	785	42	2020	8770	6740	240	12.2	1.67		1.94
27-Jun-01		8.07	28200	5370	213	3200	311	4719	2100	1490	12	2870	390	< 30	3580	2970	138	24.5	2.64	19	3.31
04-Dec-01		7.67	1931	297	35.4	96.1	7.3	524	82	66.9	3.5	262	72	7	119	74.1	133	6.29	0.08	3.5	1.3
05-Jun-02	Philip-	7.93	365	99	9.01	12	134	121	8.11	0.75	1.4	311	21.8	3	37.4	26.1	36.3	2.98	0.02	1.7	0.37

Surface Water ORGANIC ANALYSIS - ATG MISA Groups 16, 17 and 18 - Waste Resources Innovation Centre - 2011

5 .	SW 1	SW 2	SW 3
Parameter	22-Jun-11	22-Jun-11	25-Aug-11
MISA Group 16			
1,1,1,2-Tetrachloroethane:	< 0.1	< 0.1	< 2
1,1,1-Trichloroethane:	< 0.1	< 0.1	< 2
1,1,2,2-Tetrachloroethane:	< 0.2	< 0.1	< 4
1,1,2-Trichloroethane:	< 0.2	< 0.2	< 4
1,1-Dichloroethane:	< 0.1	< 0.1	< 2
1,1-Dichloroethylene:	< 0.1	< 0.1	< 2
1,2-Dichlorobenzene:	< 0.2	< 0.2	< 4
1,2-Dibromoethane:*	< 0.2	< 0.2	< 4
1,2-Dichloroethane:	< 0.2	< 0.2	< 4
1,2-Dichloropropane:	< 0.1	< 0.1	< 2
1,3-Dichlorobenzene:	< 0.2	< 0.2	< 4
1,4-Dichlorobenzene:	< 0.2	< 0.2	< 4
Bromodichloromethane:	< 0.1	< 0.1	< 2
Bromoform:	< 0.2	< 0.2	< 4
Bromomethane:	< 0.5	< 0.5	< 10
Carbon Tetrachloride:	< 0.1	< 0.1	< 2
Chlorobenzene:	< 0.1	< 0.1	< 2
Chloroform:	< 0.1	< 0.1	< 2
Chloromethane:	< 0.5	< 0.5	< 10
Cis-1,2-Dichloroethylene:	< 0.1	< 0.1	< 2
Cis-1,3-Dichloropropylene:	< 0.2	< 0.2	< 4
Dibromochloromethane:	< 0.2	< 0.2	< 4
Methylene Chloride:	< 0.5	< 0.5	< 10
Tetrachloroethylene:	< 0.1	< 0.1	< 2
trans-1,2-Dichloroethylene:	< 0.1	< 0.1	< 2
Trans-1,3-Dichloropropylene:	< 0.2	< 0.2	< 4
Trichloroethylene:	< 0.1	< 0.1	< 2
Trichlorofluoromethane:	< 0.2	< 0.2	< 4
Vinyl chloride:	< 0.2	< 0.2	< 4
MISA Group 17			
Benzene:	< 0.1	< 0.1	< 2
Ethylbenzene:	< 0.1	< 0.1	< 2
Styrene:	< 0.2	< 0.2	< 4
Toluene:	< 0.2	< 0.2	5
o-Xylene:	< 0.1	< 0.1	< 2
m-Xylene and p-Xylene:	< 0.1	< 0.1	< 2
MISA Group 18			
Acrolein:	< 10	< 10	< 200
Acrylonitrile:	< 5	< 5	< 100
•		-	

Surface Water ORGANIC ANALYSIS (ATG MISA Groups 19 and 20) - Waste Resources Innovation Centre - 2011

AECOM

Parameter	SW 1	SW 2	SW 3				
	22-Jun-11	22-Jun-11	25-Aug-11				
MISA Group 19							
Acenaphthene:	< 0.2	< 0.2	< 0.8				
5-Nitroacenaphthene:	< 1	< 1	< 4				
Acenaphthylene:	< 0.2	< 0.2	< 0.8				
Anthracene:	< 0.2	< 0.2	< 0.8				
Benzo(a)anthracene:	< 0.2	< 0.2	< 0.8				
Benzo(a)Pyrene:	< 0.2	< 0.2	< 0.8				
Benzo(b)Fluoranthene:	< 0.2	< 0.2	< 0.8				
Benzo(g,h,i)perylene:	< 0.2	< 0.2	< 0.8				
Benzo(k)Fluoranthene:	< 0.2	< 0.2	< 0.8				
Biphenyl:	< 0.5	< 0.5	< 2				
Camphene:	< 1	< 1	< 4				
1-Chloronaphthalene:	< 1	< 1	< 4				
2-Chloronaphthalene:	< 0.5	< 0.5	< 2				
Chrysene:	< 0.2	< 0.2	< 0.8				
Dibenzo(a,h)Anthracene:	< 0.2	< 0.2	< 0.8				
Fluoranthene:	< 0.2	< 0.2	< 0.8				
Fluorene:	< 0.2	< 0.2	< 0.8				
Indeno(1,2,3-cd)Pyrene:	< 0.2	< 0.2	< 0.8				
Indelio(1,2,3-cd)Fyrelie.	< 1	< 1	80				
1-Methylnaphthalene:	< 0.2	< 0.2	< 0.8				
2-Methylnaphthalene:	< 0.2	< 0.2	< 0.8				
Z-Methylnaphthalene: Naphthalene:	< 0.2	< 0.2	< 0.8				
•							
Perylene: Phenanthrene:			< 0.8 < 0.8				
Prienanimene: Pyrene:							
Benzyl Butyl Phthalate:	< 0.2	< 0.2	< 0.8				
, ,	< 0.5 < 2	< 0.5	< 2				
bis(2-ethylhexyl)Phthalate: Di-N-butylPhthalate:		< 2 < 2	< 8				
•			< 8				
Di-N-octylPhthalate:	< 0.8	< 0.8	< 3				
4-Bromophenyl phenyl Ethe	< 0.3	< 0.3 < 0.5	< 1 < 2				
4-Chlorophenyl Phenyl Ethe	< 0.5 < 0.5						
bis(2-chloroisopropyl)Ether:							
bis(2-Chloroethyl)Ether:	< 0.5	< 0.5					
Diphenyl ether:	< 0.3	< 0.3	< 1 < 2				
2,4-Dinitrotoluene: 2.6-Dinitrotoluene:	< 0.5	< 0.5					
,	< 0.5	< 0.5	< 2				
bis(2-chloroethoxy)Methan	< 0.5	< 0.5	< 2				
Nitrosodiphenylamine /Diphenylamine:	< 1	< 1	< 4				
N-Nitrosodi-N-propylamine:	. 0.5	. 05	. 0				
N-Nitrosodi-N-propylamine:	< 0.5	< 0.5	< 2				
MISA Group 20							
2,3,4,5-Tetrachlorophenol:							
2,3,4,6-Tetrachlorophenol:							
2,3,5,6-Tetrachlorophenol:							
2,3,5,6-Tetrachiorophenoi:	< 0.5	< 0.5	< 2				
•							
2,3,5-Trichlorophenol:		< 0.5					
2,4,5-Trichlorophenol:	< 0.5	< 0.5					
2,4,6-Trichlorophenol:	< 0.5 < 2	< 0.5 < 2					
2,4-Dinitrophenol:							
2,4-Dimethylphenol:	< 0.5	< 0.5	< 2				
2,4-Dichlorophenol:	< 0.3	< 0.3	< 1				
2,6-Dichlorophenol:	< 0.5	< 0.5	< 2				
4,6-Dinitro-o-Cresol:	ā =						
2-Chlorophenol:	< 0.3	< 0.3	< 1				
4-Chloro-3-methylphenol:	< 0.5	< 0.5	< 2				
4-Nitrophenol:	< 1	< 1	< 1				
o-Cresol:	< 0.5	< 0.5	< 2				
m-,p-Cresol:	< 0.5	< 0.5	61				
Pentachlorophenol:	< 1	< 1	< 4				
Phenol:	< 0.5	< 0.5	29				
			ł				

Appendix D

Certificate of Approval – WRIC and Transfer Station

Ministry of the Environment Ministère de l'Environnement

AMENDED PROVISIONAL CERTIFICATE OF APPROVAL WASTE DISPOSAL SITE

NUMBER A170128 Issue Date: February 10, 2011

The Corporation of the City of Guelph

1 Carden St Guelph, Ontario N1H 3A1

Site Location: 110 Dunlop Drive

Guelph City, County of Wellington

N1H6N1

You have applied in accordance with Section 27 of the Environmental Protection Act for approval of:

the establishment and operation of a Waste Disposal Site (Transfer and Processing) consisting of a 29.54 hectare of property for the purposes of composting, multi-material recovery, and waste transfer to serve the municipalities and businesses of the Province of Ontario and *Municipal Hazardous and Special Waste Transfer Station* serving the County of Wellington and City of Guelph,

to be used for:

- a) the use and operation of an Organic Waste Processing Facility composting of the following categories of waste (Note: Use of the site for additional categories of wastes requires a new application and amendments to the Provisional Certificate of Approval); organic non-hazardous waste from residential, industrial, commercial and institutional sources limited to a maximum Site indoor storage capacity of 8,500 tonnes;
- b) the use and operation of a *Material Recovery Facility* for processing, transfer and temporary storage of the following categories of waste (*Note: Use of the Site for additional categories of wastes requires a new application and amendments to the Provisional Certificate of Approval*); municipal waste including food and beverage cans, cardboard, glass, newspaper, plastic, waste electrical and electronic equipment and other such materials as would be collected by means of the source separated *dry waste* collection system limited to a maximum indoor storage capacity of 3850 tonnes and having an outdoor storage area for recyclable waste and *leaf and yard waste* that is located to the west of the Organic Waste Processing Facility;
- c) the use and operation of a Municipal Hazardous and Special Waste facility for the transfer and temporary storage of the following categories of waste (*Note: Use of the Site for additional categories of wastes requires a new application and amendments to the Provisional Certificate of Approval*); *Municipal Hazardous and Special Waste* limited to the following waste classes; 112, 121, 145, 146, 148, 212, 213, 221, 242, 251, 252, 261, 263, 269, 312, and 331 as outlined in the New Ontario Waste Classes January 1986 limited to a maximum Site storage capacity of 15 tonnes; and
- d) the use and operation of a Waste Disposal Site (Transfer) for non-hazardous solid industrial waste (*Note: Use of the Site for additional categories of wastes requires a new application and amendments to the Provisional Certificate of Approval*); from industrial, commercial and institutional sources, commercial waste and domestic waste, with an indoor storage maximum capacity of 795 tonnes and outdoor storage areas for *leaf and yard waste* and for recyclable waste.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

- (a) "Act" means the Environmental Protection Act, R.S.O. 1990, C.E-19, as amended;
- (b) "Air Pollution Control Equipment" means the air pollution control equipment to abate emissions to the atmosphere

originating from the *Processing Building*;

- (c) "Amendment Materials" means the materials derived from plants or animals, including materials consisting of other compounds of carbon, all readily biodegradable, and limited to materials listed in Condition 54.(2) of this Certificate;
- (d) "birds" means pigeons, gulls, terns, crows, hawks, ducks, geese or any other birds that create a hazard to aircraft;
- (e) "brush" means tree limbs, natural Christmas trees or other woody materials;
- (f) "**Certificate**" means this entire provisional Certificate of Approval document, issued in accordance with section 39 of the *Act*, and includes any schedules to it, the application and the supporting documentation listed in schedule "A;
- (g) "Certificate of Approval (Air/Noise)" means the Certificate of Approval issued under section 9 of the *EPA* for this Composting Site;
- (h) "City" means the Corporation of the City of Guelph;
- (i) "Clean Wood" means wood that is not painted wood, treated wood or laminated wood. Clean Wood does not include wood waste or waste wood:
- (j) "Competent Person" or "Competent People" means a person or people who has/have training and knowledge of the following:
 - i. relevant waste management legislation, regulations and guidelines;
 - ii. major environmental concerns pertaining to the waste to be handled;
 - iii. contents of the Facility's Design and Operating Report;
 - iv. the terms, conditions and operating requirements of the Certificate;
 - v. the applicable Fire Code and how it applies to proper storage and handling of waste that may be reactive, oxidizing, explosive or flammable;
 - vi. the WRIC Environmental Emergency Plan, including exit locations and evacuation routing, and location of relevant equipment available for emergency situations;
 - vii. procedures for recording and responding to public complaints;
 - viii. record keeping procedures as outlined in Conditions 51 and 63 of this *Certificate*;
 - ix. occupational health and safety concerns pertaining to the wastes to be processed;
 - x. specific written procedures for the control of nuisance conditions;
 - xi. operation and management of the *Site*, in accordance with the specific job requirements of each individual operator;
 - xii. procedures for the identification and refusal of unacceptable wastes;
 - xiii. proper handling of waste, and
 - xiv. proper procedures for the storage of waste and proper maintenance of the Site;
- (k) "Compost" means the material produced by an aerobic Composting of the Organic Waste and which has been tested to show compliance with the Compost quality criteria listed in Schedule B of this *Certificate* and can be used as a soil additive or for other similar uses. Compost is not considered a waste;
- (l) "Composting" means an aerobic biological process, conducted under controlled engineered conditions designed to decompose and stabilize organic matter; simple exposure of organic matter under non-engineered conditions resulting in uncontrolled decay is not considered Composting;
- (m) "Composting Residual Waste" means waste resulting from the Organic Waste processing activities at the *Composting Site* and the waste that cannot be Composted and that is destined for final disposal;
- (n) "Composting Site" means the Organic Waste Composting Site, which is a part of the waste disposal site located at 110 Dunlop Drive in the City of Guelph, approved in this *Certificate* and as described and referred to in Items #32 to #47 of the attached Schedule"A";

- (o) "Current Design and Operations Report" or "Current Design and Operations Reports" means the Design and Operations Report or the Design and Operations Reports that is/are referenced in Items 49, 50, and/or 51 of Schedule "A" of this *Certificate* or the most recent Design and Operations Report that the Owner has submitted to the Ministry in accordance with Condition 68(4) of this *Certificate*;
- (p) "**Director**" means any Ministry employee appointed in writing by the Minister pursuant to section 5 of the *Act* as a Director for the purposes of Part V of the *Act*;
- (q) "**District Manager**" means the District Manager of the Guelph District Office of the Ministry;
- (r) "**District Office**" means the local office of the Ministry in which the Site is geographically located;
- (s) "dry waste" means those waste materials not identified in the wet and household hazardous waste streams;
- (t) "Engineer's Report" means a report prepared under the direction of and signed by an Independent Professional Engineer that sets out the *Operating Envelope*;
- (u) "Finished Compost" means the Organic Waste that has been Composted and fully cured and is considered ready for sampling and testing for compliance with the *Compost* quality criteria. Finished Compost is considered a waste until testing for the *Compost* quality criteria is completed and compliance with the criteria is demonstrated;
- (v) "Immature Compost" means the Organic Waste which has been Composted in the aerate *Composting* tunnels and screened within the confines of the *Processing Building*. Composted Organic Waste is considered an Immature Compost until it has been fully cured and is ready for compliance testing for *Compost* quality criteria. Immature Compost is considered a waste;
- (w) "**incident**" means an abnormal event which causes a spill, emission, emergency situation or other occurrences which may have an adverse effect on the environment, cause a nuisance or endanger public health and safety;
- (x) "**Independent Professional Engineer**" means a Professional Engineer licensed to Practice in the Province of Ontario and who is not an employee of the Owner;
- (y) "**Infrastructure**" means the structural elements that are used at the waste disposal site approved by this *Certificate* including buildings, structures, grounds and utilities;
- (z) "**leaf and yard waste**" means waste consisting of leaves, grass clippings and other plant materials but not tree limbs or other woody materials;
- (aa) "Material Recovery Facility" or "MRF" means the facility where *dry waste* is received, processed and stored, and includes the material recovery building and an outside storage area;
- (bb) "Ministry" means the Ontario Ministry of the Environment and includes all officials, employees or other persons acting on its behalf;
- (cc) "Modifications" means a change to the waste disposal site identified in the Engineer's Report and approved by this *Certificate* including changes to how the *Site* is used, operated, altered or enlarged;
- (dd) "Municipality" means The Corporation of the City of Guelph, and includes its officers, employees, agents and contractors;

- (ee) "Municipal Hazardous and Special Waste" and the acronym "MHSW" means hazardous waste or special waste generated by households located in the geographic boundaries of the City of Guelph and County of Wellington that fall within waste numbers 112, 121, 145, 146, 148, 212, 213, 221, 242, 251, 252, 261, 263, 269, 312, and 331 as outlined in the New Ontario Waste Classes, January 1996. as defined in Ontario Regulation 347; and also includes wet cell batteries and small dry cell batteries, household cleaners and detergents, aerosols, waxes and polishes, fluorescent tubes and energy efficient light bulbs and mercury switches and thermostats;
- (ff) "Municipal Hazardous and Special Waste Transfer Station" or "MHSW Waste Transfer Station" means the location where the *MHSW* waste is received, bulked, packed, stored and transferred to recyclers and/or to final disposal;
- (gg) "NMA" means Nutrient Management Act, 2002, S.O. 2002, c. 4, as amended from time to time;
- (hh) "**Ontario Regulation 347** and *O. Reg. 347*" means Ontario Regulation 347, R.R.O. 1990, General Waste Management, made under the *Act*, as amended from time to time:
- (ii) "**Ontario Regulation 362**" means Ontario Regulation 362 R.R.O. 1990, Waste Management PCBs, or as amended, made under the *Act*;
- (jj) "Ontario Regulation 903" means Ontario Regulation 903 R.R.O. 1990, Wells, amended to Ontario Regulation 128/03, made under the *OWRA*;
- (kk) "**Operating Envelope**" means the limits on the pre-approved *Modifications* that the *Owner* may make to the *Site* without further amendment to the *Certificate*;
- (ll) "**Organic Waste**" means solid non-hazardous waste derived from plants or animals, including wastes consisting of other compounds of carbon, all readily biodegradable, and limited to wastes listed in Condition 54 of this *Certificate*;
- (mm) "**Owner**" means any person that is responsible for the establishment and operation of the *Site* being approved by this *Certificate*, and includes The Corporation of the City of Guelph, its successors and assigns;
- (nn) "OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O.40, as amended;
- (oo) "PA" means the Pesticides Act, R.S.O. 1990, c. P-11, as amended from time to time;
- (pp) "PCB", " PCB waste" and "PCBs" means any monochlorinated or polychlorinated biphenyl or any mixture of them or mixture that contains one or more of them;
- (qq) "**Processing Building**" means the building at the *Composting Site* where the *Organic Waste* is received, preprocessed, Composted, screened and cured;
- (rr) "**Provincial Officer**" means any person designated in writing by the Minister as a provincial officer pursuant to Section 5 of the *OWRA* or Section 5 of the *EPA* or Section 17 of the *PA* or Section 4 of the *NMA* or Section 8 of *SDWA*;
- (ss) "Public Liaison Committee" and "ToR PLC" and PLC" :means the committee referred to in Conditions 29, and 30 that is established to monitor the construction and operation of any activity at the *Site*;
- (tt) "putrescible waste" means solid waste that contains organic matter capable of being decomposed by microorganisms;

- (uu) "Rejected Waste" means the load of incoming waste received at the *Composting Site* and deemed by *Owner* to contain waste that does not meet the incoming *Organic Waste* quality criteria set out in this *Certificate* or that cannot be Composted;
- (vv) "**residual waste**" means waste resulting from the operations at the *Site* and directed for disposal;
- (ww) "residual waste (Processing Building)" means waste resulting from the Organic Waste processing activities at the *Composting Site* and the waste that cannot be Composted and that is destined for final disposal;
- (xx) "Re-Start-up" means resumption of the *Organic Waste* processing activities at the *Composting Site* following suspension of operations or a long duration power failure at the *Composting Site*;
- (yy) "small generators" means small sources of waste of unknown origin that the City manages as a result of improper or illegal disposal of waste within the City of Guelph and is/are less than 500 kg of solid, non-hazardous waste per load or/and a combined total of less than 100 litres per month of hazardous wastes listed in Ontario Regulation 347 Schedule 2B and characteristic waste, or/and less than 1 kg per month of hazardous waste listed in Ontario Regulation 347 Schedule 2A, or/and less than 500 litres per month or 6000 litres per year of liquid industrial waste. Where the small generators generate both hazardous and liquid industrial waste, the sum total of the two shall not exceed 6000 litres per year;
- (zz) "*SDWA*" means *Safe Drinking Water Act*, 2002, S.O. 2002, c. 32, as amended from time to time:
- (aaa) "Site" means the 29.54 hectare Waste Disposal Site (Processing and Transfer) for the purposes of receipt, storage, processing and transfer of waste by *Composting*, waste transfer, and multi-material recovery, to serve the municipalities and businesses of the Province of Ontario and *Municipal Hazardous and Special Transfer Waste Station*, serving the County of Wellington and City of Guelph located on Lot 4 and 5 Concession 1, Division C, Guelph, Ontario as shown on Reference Plan 61R-5574;
- (bbb) "**Start-up Date**" means the date on which the *Organic Waste* is first received at the *Composting Site*;
- (ccc) "**Trained Personnel**" means an employee who in addition to being a *Competent Person* is trained in accordance with the requirements of Condition 60 and knowledgeable through instruction and/or practice;
- (ddd) "Waste Transfer Station" means the part of the *Site* that is used to receive, process and transfer non-hazardous solid waste including municipal, industrial, commercial and institutional wastes, *leaf and yard waste* and source separated recyclables;
- (eee) "waste wood" means waste that is a wood or a wood product that has been treated with adhesives or preservatives or painted and includes manufactured wood such as medium density fibreboard;
- (fff) "wet waste" means organic waste material consisting of food scraps and other non-hazardous waste with similar characteristics collected as part of the *Municipality's* residential curbside collection program;
- (ggg) "wood waste" means waste that is wood or a wood product that is not contaminated with chromated copper arsenate, ammoniacal copper arsenic pentachlorophenol, creosote or other wood preservative, is not part of an upholstered article, does not have an affixed or adhered rigid surface and from which hardware or fittings have been removed;
- (hhh) "WRIC" means the City of Guelph Waste Resource Innovation Centre located at 80/110

Dunlop Drive, Guelph; and

(iii) "WRIC Environmental Emergency Plan" means the plan that is required by Condition 45 for the Waste Resource Innovation centre facility located at 80/110 Dunlop Drive, Guelph.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

- 1. The issuance of, and compliance with, this *Certificate* does not:
- (1) relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement including, but not limited to:
 - (a) obtaining Site plan approval from the local municipal authority;
 - (b) obtaining all necessary building permits from the local municipal authority Building Services Division;
 - (c) obtaining approval from the Chief Fire Prevention Officer, local municipal authority: or
- (2) limit in any way the authority of the Ministry to require certain steps be taken or to require the *Owner* and Operator to furnish any further information related to compliance with this *Certificate*.

A. INTERPRETATION

- 2. The requirements of this *Certificate* are severable. If any requirement of this *Certificate*, or application of any requirement of this *Certificate*, to any circumstances is held invalid, the application of such requirement to other circumstances and the remainder of this *Certificate* shall not be affected thereby.
- 3. Where there is a conflict between a provision of any document, including the application referred to in this *Certificate* and the conditions of this *Certificate*, the conditions in this *Certificate* shall take precedence.
- 4. Where there is a conflict between the application and a provision in any documents listed in Schedule "A", the application shall take precedence, unless it is clear that the purpose of the document was to amend the application and that the *Ministry* approved the amendment.
- 5. Where there is a conflict between any two documents listed in Schedule "A", other than the application, the document bearing the most recent date shall take precedence.

B. CHANGE IN OWNERSHIP

- 6. (a) The *City* shall notify the *Director*, in writing, of any of the following changes within, thirty (30) days of the change occurring;
- (i) change of Owner/operator of the Site or both;
- (ii) change of address of the City's office or address of the new owner; and
- (iii) any changes in the legal name of the *Certificate* holder, or any change of business name or style where applicable;
- (b) Notification shall include a copy of the most current "Initial Notice" or "Notice of Change" filed under the <u>Corporations Information Act</u>, R.S.O. 1990, as amended from time to time, or if that act is not applicable, a copy of the most recent registration under the <u>Business Names Act</u>, R.S.O. 1990, as amended from time to time; and
- (c) In the event of any change in ownership of the *Site*, the *Owner* shall notify in writing the succeeding owner of the existence of this *Certificate*, and a copy of such notice shall be forwarded to the *Director*.

C) RECORDS and MINISTRY ACCESS

7. (a) The City shall make all records, diagrams and reports, available upon request for inspection by a Provincial Officer;

and

- (b) The *City* shall maintain, at all times, up-to-date *Site* plans, plant drawings, operation plans, contingency plans, emergency measures and any other similar type information at the facility for as long as the facility is operational and shall retain this information for five (5) years following closure of the facility.
- 8. The *Municipality* shall allow *Ministry* personnel, or a *Ministry* authorized representative(s), upon presentation of credentials, to carry out any and all inspections authorized by Section 156, 157 or 158 of the *Act*, Section 15, 16, 17 of the Ontario Water Resources Act, R.S.O. 1990, or Section 19, 20 of the Pesticides Act, R.S.O. 1990, as amended from time to time, of any place to which this *Certificate* relates; and, without restricting the generality of the foregoing to:
- (i) enter upon any premises where the records required by the Conditions of this *Certificate* are kept;
- (ii) have access to and copy, at any reasonable time, any records required by the Conditions of this Certificate;
- (iii) inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations required by the Conditions of this *Certificate*; and
- (iv) sample and monitor at reasonable times for the purposes of assuring compliance with the Conditions of this *Certificate*.
- 9. (a) The *Municipality* shall, forthwith upon request of the *Director, District Manager*, or Provincial Officer (as defined in the *Act*), furnish any information requested by such persons with respect to compliance with this *Certificate*, including but not limited to, any records required to be kept under this *Certificate*; and
- (b) In the event the *Municipality* provides the *Ministry* with information, records, documentation or notification in accordance with this *Certificate* (for the purposes of this Condition referred to as "Information");
- (i) the receipt of Information by the *Ministry*;
- (ii) the acceptance by the *Ministry* of the Information completeness or accuracy; or
- (iii) the failure of the *Ministry* to prosecute the *Municipality*, or require the *Municipality* to take any action under this *Certificate* or any statute or regulation in relation to the Information;

shall not be construed as an approval, excuse or justification by the *Ministry* of any act or omission of the *Municipality* relating to the Information, amounting to non-compliance with this *Certificate* or any statute or regulation.

- 10. Any information relating to this *Certificate* and contained in *Ministry* files may be made available to the public in accordance with the provisions of the <u>Freedom of Information and Privacy Protection Act</u>, R.S.O. 1990, C.F-31.
- 11. All records and monitoring data required by the Conditions of this *Certificate* must be kept on the *Site* for a minimum period of at least five (5) years.

D. SITE OPERATIONS

General

- 12. a) Except as otherwise provided by these Terms and Conditions, this *Site* shall be designed, developed, used, maintained and operated in accordance with the Applications for Provisional Certificate of Approval for a Waste Disposal Site dated October 22, 2009 and January 11, 2010 and signed by Bill Shields, Supervisor of Governance and Compliance, City of Guelph and associated plans and specifications, and the other supporting documentation listed in the attached Schedule "A" of this *Certificate*; and
- b) Within ninety (90) days from the first receipt of *Organic Waste* at the *Composting Site*, a set of as-built drawings showing the *Composting Site*, as constructed, shall be prepared and kept at the *Composting Site*.
- 13. Only vehicles operating under the City's current Waste Management System Certificate of Approval No. A170150 are

permitted to bring waste to this *Site*during Sunday operating hours.

- 14. (i) The *Site* shall be operated and maintained in an environmentally safe manner which ensures the health and safety of all persons and minimizes visual impacts, surface water ponding, dust, odours, vectors, litter, vibration, noise and hazard to aircraft; and
- (ii) If at any time problems such as dust, odours, vectors, litter, vibration, noise, hazard to aircraft or other nuisances are generated at the *Site*, resulting in complaints received by this *Ministry* and validated by a Provincial Officer, then the *City* shall upon request of the *Ministry*, take appropriate remedial action immediately. Appropriate measures may include temporary stoppage of all operations until the problem has been rectified and measures have been undertaken to prevent future occurrence.

Receiving Waste

- 15. a) *Residual waste*, transported from the *Site*, shall not exceed an average of one thousand (1000) tonnes per day averaged over a calendar year. If the *residual waste* approaches an average of one thousand (1000) tonnes per day, the *City* shall take measures immediately to reduce the receipt of the waste that causes the *residual waste* to approach the average of one thousand (1000) tonnes per day. *Residual waste* shall be disposed of at a waste disposal site approved by the *Ministry* to accept such waste;
- b) The maximum amount of residual waste that may be transported from the Site is 1200 tonnes per day; and
- c) In the event that *residual waste* and/or processed waste cannot be transferred from the *Site*, the *Owner* shall cease accepting any additional waste at the *Site*.
- 16. All in-coming and outgoing wastes to and from the *Site* shall be screened and inspected by *Competent Person* or *Trained Personnel* as detailed in the *Current Design and Operations Reports*, prior to being received, transferred and shipped to ensure wastes are being managed and disposed of in accordance with the *Act* and *O. Reg. 347*.

Waste Storage

- 17. Waste shall be stored at the *Site* in accordance with the *Current Design and Operations Reports* and at a minimum the *Owner* shall ensure that:
- (1) i) all activities related to unloading waste, in-process waste and *residual waste* shall be conducted indoors at all times; and
- ii) Condition 17. (1) i) does not apply to materials destined for recycling markets; and
- iii) Condition 17.(1)(i) does not apply to materials received at the Public Drop-Off area.
- (2) all *putrescible waste* shall be removed from the tipping floor of the *Waste Transfer Station* and the *MRF* at the end of each operating day and the tipping floor cleaned as necessary. Any *putrescible waste* that is not removed from the *Site* at the end of the operating day shall be stored indoors in a tarped or enclosed container;
- (3) all containers used for the outside storage of non-putrescible processed waste that is destined for recycling markets shall be maintained in a leakproof condition and shall be tarped or enclosed unless material is being added or removed;
- (4) The following are the maximum storage amounts that area allowed at the *Site*:
- (a) Waste Transfer Station 795 tonnes inside the Waste Transfer Station building;
- (b) MRF- 3850 tonnes inside MRF building;
- (c) Organic Waste Processing Facility- 8,500 tonnes inside building;
- (d) Outdoor storage of the following:
- i) leaf and yard waste- 4000 tonnes;
- ii) a maximum of 3050 tonnes of non-putrescible recyclable wastes stored in dedicated bunkers or covered bins on an asphalt paved pad of approximate area of 6100 square metres pads located to the south of the transfer station and an asphalt paved pad of approximate area 2,100 square metres to the west of the Organic Processing Facility for the storage of such

recyclable materials as waste electronics, tires, scrap metal, corrugated cardboard and reusable materials:

- iii) outdoor storage for a maximum of twelve (12) hours of two loaded transfer trailers from *Waste Transfer Station*;
- iv) outdoor storage of *waste wood, wood waste* and *Amendment Materials* that are referred to in Condition 54 (9) of this *Certificate* in amounts that are needed for the processing of *Organic Waste* at the *Organic Waste Processing Facility*;
- v) Any outdoor storage of recyclable waste shall not create a nuisance or hazard;
- (e) wastes that are in bins in the Public Drop-Off area that is identified in Appendix A-1 of the Design and Operations Report that is identified in item 51 of Schedule "A"; and
- (f) MHSW Waste Transfer Station-15 tonnes;
- (5) The maximum storage times are as follows:
- (a) Waste Transfer Station i) Organic Waste- except as provided in (in building) Condition 17 (5) (a) ii), 24-hours storage time at the Waste Transfer Station until the Start-up Date;
- ii) due to exceptional circumstances or an emergency, the *Owner* may request to the *District Manager* that maximum 24-hour storage allowed by Condition 17 (5)(a) i) be extended to up to 72-hours and the *District Manager* has the authority to grant written concurrence to such a request;
 - iii) after the *Start-up Date, Organic Waste, Residual Waste* and/or *rejected waste* may be stored at the *Waste Transfer Station* in accordance with Condition 56 (2)(h), 56(3)(c), and/or 56(4)(b); iv) after the *Start-up Date*, due to exceptional circumstances or an emergency that results in the cessation of further processing at the *Composting Site*, on a one time basis for each such cessation of further processing, the *Owner* may remove the unprocessed organic waste from the *Composting Site* and transfer it in a covered container, on a priority basis, to the *Waste Transfer Station* and have it removed from the *Waste*

Transfer Station on the same day that the transfer of unprocessed

- v) all other waste 72-hours;
 - vi) due to exceptional circumstances or an emergency, the *Owner* may request to the *District Manager* that maximum 72-hour storage allowed by Condition 17 (5)(a) v) be extended to up to seven (7) days and the *District Manager* has the authority to grant written concurrence to such a request; and vii) notwithstanding Conditions 17 i), ii), iii), iv), v) and vi), if the *District Manager* determines that the storage of

Organic Waste occurred on;

- vii) notwithstanding Conditions 17 i), ii), iii), iv), v) and vi), if the *District Manager* determines that the storage of odorous waste at the *Waste Transfer Station* is causing significant odour issues, the odorous waste at the *Waste Transfer Station* shall be immediately removed from the *Site*;
 - (b) MRF i) 5 days for generation of residual waste from date of (in building) generation; and
- ii) 120 days for all other waste;
 - (c) Organic Waste i) as outlined in Condition 54 (8)(a)

Processing Facility of this Certificate, Organic Waste shall

be incorporated into active *Composting* process within 36-hours of receipt:

- ii) as outlined in condition 54 (8)(e) of this *Certificate, residual waste* (*Processing Building*)
- -maximum of 14 days storage time from generation date;
- (d) Outdoor storage of waste i) 12 hours for a maximum of two loaded and

transfer trailers from the Waste Transfer Station; and

- ii) seven (7) days storage time for all other waste stored outside;
- (e) Outdoor storage of materials referred to in Conditions 54 (9) and 17 (4)d.(iv) the reasonable amount of time required for operational needs at the *Organic Waste Processing Facility* for the outdoor storage of *waste wood, wood waste* and *Amendment Materials*; and
- (f) MHSW 90 days storage time; and
- (6) No storage or transfer areas, other than those approved under this *Certificate* shall be used for waste storage or transferring.

Dirt, Dust and Airborne Emissions

- 18. (a) The *City* shall ensure that dust and/or other material that may become a contaminant, generated by activities on the *Site*, is minimized in a manner that ensures there are no off-*Site* impacts of such emissions. The *City* shall implement control measures as outlined in the approved Operation and Management Plan to comply with this Condition;
- (b) The *City* shall ensure that vehicles entering the *Site* do not drag into the *Site*, dirt and/or other material that may become a contaminant or a nuisance. The *City* shall ensure that vehicles leaving the *Site* do not drag out of the buildings or off the *Site* waste, dirt and/or other material that may become a contaminant or a nuisance; and
- (c) All parking areas, on-*Site* roads that are used for transportation of wastes, recyclable material and/or processed material including *Compost*, and storage areas shall be paved and shall be cleaned as necessary to prevent dust and litter from blowing off the *Site*.

Litter

- 19. (a) Litter shall be picked up daily from the *Site* and from roads and ditches within one (1) kilometer of the *Site*;
- (b) All collected and stored litter shall be in closed or covered containers;
- (c) Litter collected through the litter control program shall be transferred off-Site or processed within four (4) days of collection; and
- (d) The *City* shall undertake all reasonable measures at the *Site* to ensure that there is no unauthorized dumping of waste on the *Site*.

Rodents and Vermin

- 20. (a) The *City* shall implement the approved litter control to minimize and control the occurrence of vectors, rodents and vermin; and
- (b) If necessary, the *City* shall retain the services of a pest management company to monitor and controls vectors, rodents and vermin.

Odour

- 21. a) The Odour Monitoring Program that is required by Condition 58 (13) of this *Certificate* also shall be designed to detect and identify any odours originating from the operation of the *Waste Transfer Station* and the *MRF*;
- b) Organic Waste received at the public drop-off bins shall remain covered at all times other than loading and shall be emptied indoors daily; and
- c) If *putrescible waste* is received at the *Material Recovery Facility*, it shall remain covered at all times other than during loading and unloading.

Noise

22. (a) All off-road equipment used at the *Site* shall be operated in such a manner that sound levels from such equipment do not exceed 85 decibels at 15 metres measurement distance;

- (b) All off-road equipment shall be operated and maintained in accordance with the procedures specified in Publication NPC-115 of the *Ministry's* Model Municipal Noise Control By-law;
- (c) All stationary equipment shall be operated and maintained in accordance with the procedures specified in Publication NPC-105 of the *Ministry's* Model Municipal Noise Control By-law; and
- (d) Notwithstanding Conditions 22, (a), (b) and (c), if at any time noise and vibration nuisances are generated at the *Site*, resulting in complaints received by this *Ministry* and validated by a Provincial Officer, the *City* shall take remedial action immediately.

Hazard to Aircraft

- 23. (a) The City shall ensure that the activities related to the operation of the Site do not create a hazard to aircraft;
- (b) The *City* shall ensure that there is no net increase in bird populations at the *Site* above the baseline levels established by the baseline study that has been conducted by the *Owner*;
- (c) If the population of *birds* in the vicinity of the facility increases above the baseline levels, the *City* shall immediately undertake additional bird deterrent measures, to bring the bird population in accordance with baseline levels;
- (d) The *City* shall ensure that the number of thermals created by the *Site* is kept to the minimum and that the number of *birds* soaring in these thermals shall not exceed ten (10) at any given time;
- (e) The *City* shall ensure that the amount of dust, steam, smoke or other airborne vapour discharged from the facility is kept to the minimum and shall not restrict visibility on or near the Guelph Air Park;
- (f) The *City* shall continue to implement a bird control management plan, as required, to ensure the *Site* is not an attraction to *birds*. The bird control management plan shall include but not be limited to additional bird deterrent measures in addition to the measure outlined in Item 6 of Schedule "A"; and
- (g) Upon receipt of a written notification that Transport Canada or such other governmental agency of equivalent jurisdiction over airport operations has served notice or a similar written warning to shut down or curtail airport operations at the Guelph Air Park due to hazard to aircraft as a result of *birds* in the vicinity of the airport, which may or may not be a direct result of the *Site* operations, the *City* shall undertake the following measures immediately:
- (i) cease acceptance of all waste at the *Site*, except *MHSW*, unless in the opinion of the *District Manager*, the reason for the hazard to aircraft as a result of *birds* is known, and is not a direct or indirect result of *Site* operations;
- (ii) if the reason for the hazard to aircraft as a result of *birds* is known and is a direct or indirect result of *Site* operations, take all reasonable measures to investigate the problem, institute remedial/mitigative measures immediately, devise a long-term action plan to avoid any such future occurrences at the airport and submit a comprehensive report of such plans to the *Director*, and the appropriate agency that has served the notification to shutdown or curtail airport operations;
- (iii) if the reason for the hazard to aircraft as a result of *birds* is not known, the *City* shall undertake a comprehensive study, acceptable to the *Director* and the agency that served notification to shutdown or curtail operations to determine if such hazard to aircraft was a direct or indirect result of the *Site* operations and to propose measures to prevent any similar or related occurrences that may create a hazard to aircraft;
- (iv) the *City* shall submit the reports required by Condition 23 (g) (ii) and (iii) to the *Director* for approval and to the agency that served notification to shutdown or curtail airport operations. Upon the *Director's* approval, the *City* shall implement remedial/mitigative/contingency measures, as required;
- (v) The *City* shall not accept any waste at the *Site* unless a qualified professional consultant has submitted a report stating that the hazard to aircraft as a result of *birds* has been resolved, or is not the direct or indirect result of *Site* operations, and the *Director* has authorized that the *Site* can again begin to accept waste;
- (vi) notwithstanding Condition 23 (g) (ii), (iii), (iv) and (v), the *City* may continue to process any waste materials inside the *Organic Waste Processing Facility* and the *Material Recovery Facility* that were present at the *Site* prior to the *City* ceasing to accept waste at the *Site* pursuant to Condition 23 (g) (i). The *City* shall continue to ensure that all *Site* activities do not create a hazard to aircraft safety;
- (vii) During the period of shutdown the *City* shall implement its contingency plan for disposal of waste at approved alternative location(s); and
- (viii) Condition 23(g) (i) to (vii) does not relieve the *City* from implementing all necessary contingency/mitigative measures

to ensure that *Site* activities do not create a hazard to aircraft.

Traffic

24. The *City* shall make adjustments to traffic flow patterns, including but not limited to the use of traffic lights as required, to minimize any adverse traffic impacts resulting from the facility traffic patterns.

Operating Hours

25. (a) All control measures at the *Site*, including but not limited to, dust, odours, vectors, litter, noise and hazard to aircraft shall take place 24-hours a day, seven (7) days a week;

Composting Site

(b) The allowed hours of operation of the *Composting Site* operation are covered by Condition 56 (1);

MHSW Transfer Station, MRF, and Public Drop-off area

- (c) Waste and recyclable materials destined for the *MHSW*, the *MRF*, and/or the Public Drop-off area may be received at the *Site* only from 7:00a.m. to 11:00p.m. from Monday to Friday, and from 8:00a.m. to 4:00p.m. on Saturday;
- (d) Waste and/or recyclable materials may be transferred from the *Site* only during the following hours:
- (i) Monday to Friday 7:00a.m. to 6:00 p.m; and
- (ii) Saturday 8:00 a.m. to 4:00 p.m.;
- (e) Outdoor processing of waste and/or recyclables associated with the *MHSW Transfer Station*, the *MRF* and/or the Public Drop-off area may occur only in the following hours:
 - (i) Monday to Friday 7:00 a.m. to 11:00 p.m.; and
 - (ii) Saturday 8:00 a.m. to 4:00 p.m.;
- (f) Indoor processing at the *MRF* and/or the *MHSW* may take place from Monday 12:00 a.m. to Saturday 11:59 p.m. In extraordinary circumstances, indoor processing may take place beyond these hours to eliminate any backlog of material requiring processing;
- (g) Due to exceptional circumstances or an emergency, the *Owner* may request to the *District Manager* that the hours of operation of the *MHSW Transfer Station*, the *MRF* and/or the Public Drop-off area be extended and the *District Manager* has the authority to grant written concurrence to such a request;

Waste Transfer Station

- (h) Subject to Condition 13, waste destined for the Waste Transfer Station may be received at the *Site* only from Monday to Sunday from 7:00a.m. to 7:00p.m.;
- (i) Notwithstanding the hours of operation for waste receipt at the *Waste Transfer Station* referenced in Condition 25 (g), the *Site's* activities and movement of waste within the *Site*related to the *Waste Transfer Station*, including outgoing shipments, may occur only during the hours of 7:00a.m. to 11:00p.m Monday to Saturday; and
- (j) Due to exceptional circumstances or an emergency, the *Owner* may request to the *District Manager* that the hours of operation of the *Waste Transfer Station* be extended and the *District Manager* has the authority to grant written concurrence to such a request.

Competent People and Trained Personnel

- 26. a) The *Municipality* shall ensure through proper training programs and personnel records that all personnel directly involved with activities relating to the operation, maintenance and inspection of the *Site* are *Competent People* and that all personnel directly involved with the activities of the *Organic Waste Processing Facility* are *Trained Personnel* and that they are given refresher training on the components of a *Competent Person* or *Trained Personnel* as applicable, at least once every three years; and
- b) The *Municipality* shall keep a record that is in electronic or written format that is easily accessible for inspection by a *Provincial Officer* of all employees who are *Competent People* and *Trained Personnel*.

- 27. The *Municipality* shall ensure that *Competent People* or *Trained Personnel* are available at all times during the hours of operation of this *Site*. No loading, unloading, or sorting of recyclables or any waste material shall occur unless a *Competent Person* or *Trained Personnel* supervises the loading, unloading, or sorting operation.
- 28. All in-coming and outgoing wastes shall be screened and inspected by *Competent People* or *Trained Personnel* as detailed in the *Current Design and Operations Reports*, prior to being received, transferred and shipped to ensure wastes are being managed and disposed of in accordance with the Act and *O. Reg. 347*.

Public Liaison Committee

- 29. (1) The *Owner* shall invite the following groups to provide input and/or comments into preparation of the Terms of Reference for the *Public Liaison Committee (ToR PLC):*
 - (a) home owners within 2,000 metres of the *Composting Site*;
 - (b) any interested non-governmental organization (NGOs); and
 - (c) any interested person(s) or group(s);
- (2) (a) The *Owner* shall consider all input and/or comments submitted by the groups listed above during preparation of the *ToR PLC*; and
 - (b) A minimum of ninety (90) days prior to the receipt of the *Organic Waste* at the *Composting Site*, the *Owner* shall prepare and submit to the *District Manager* the *ToR PLC*, including documentation demonstrating consideration of all public input and/or comments received, for written concurrence of the *District Manager*;
- (3) The *ToR PLC* shall be amended from time to time according to appropriate amending procedures identified within the content of the *ToR PLC*. Any amendment to the *ToR PLC* must be agreed to by the *District Manager* prior to its implementation;
- (4) Within sixty (60) days from the *District Manager's* concurrence to the *ToR PLC*, the *Owner* shall take all reasonable steps to establish a *Public Liaison Committee (PLC)* which shall serve as a forum for dissemination, consultation, review and exchange of information regarding the operation of the *Composting Site*, including environmental monitoring, maintenance, complaint resolution, and new approvals or amendments to existing approvals related to the operation of this *Composting Site*;
- (5) The *Owner* shall invite representation from the following groups to participate on the *PLC*:
 - (a) home owners within 2,000 metres of the Composting Site;
 - (b) any interested NGOs; and
 - (c) any interested person(s) or group(s);
- (6) The number of representatives from each group shall be as specified in the *ToR PLC* approved by the *District Manager*;
- (7) No later than ninety (90) days from the *District Manager*'s concurrence to the *ToR PLC*, the *Owner* shall submit to the *District Manager* a written report that details steps to be taken by the *Owner* to establish, maintain and participate in a *PLC*. This report shall include the identification of each of the representatives that have been invited to participate in the *PLC*;
- (8) A copy of the Annual Report that is required by Conditions 52 shall be provided to the *Public Liaison Committee* at the first scheduled meeting following March 31st; and
- (9) The City shall allow reasonable access to the Site for any member of the Public Liaison Committee;
- 30. The *City* shall make available to the *Public Liaison Committee*, all records and reports required by this *Certificate* for the purposes of monitoring the ongoing operations of the *Site*.

E. STORMWATER AND WASTEWATER MANAGEMENT:

31. The *Municipality* shall manage all discharges from this *Site* including stormwater run-off, including the stormwater

collected and contained in the Stormwater Collection Ponds, in accordance with Municipal and Private Sewage Works Certificate of Approval number 5015-856HHG and appropriate Municipal, Provincial and or Federal Legislation, Regulations and By-laws.

F. MONITORING PROGRAM

Groundwater Monitoring

- 32. Groundwater shall be sampled on a semi-annual basis (spring and fall).
- 33. The analyses of samples collected in accordance with Condition 32 shall seek to identify chloride, nitrate and a suite of compounds characteristic of waste at the *Site*. Sampling frequency and parameters for analysis may be adjusted upon the approval of the *District Manager*, as groundwater information become available.
- 34. All monitoring wells which form part of any monitoring program shall be protected from damage. Any groundwater monitoring wells that are damaged shall be repaired or replaced forthwith or properly abandoned in accordance with *Ontario Regulation 903*.

Surface Water Monitoring

- 35. (a) The *City* shall annually review and update the existing surface water sampling program, designed to detect and quantify any impacts originating from the *Site*;
- (b) A surface water sampling program shall be implemented to ensure early detection of contaminants in the event that such contaminants escape the *Site*. Surface water shall be sampled monthly for the following conventional parameters: biochemical oxygen demand (BOD), suspended solids (SS), ammonia, nitrogen, Total Kjeldahl Nitrogen (TKN), total phosphorus and phenolics. For all other parameters, surface water shall be sampled on a semi-annual basis (spring and fall). The analysis shall seek to identify chloride, nitrate and a suite of organic and inorganic compounds characteristic of waste generated at the *Site*;
- (c) Sampling frequency and parameter for analysis may be adjusted upon the approval of the *District Manager*, as surface water information become available:
- (d) Surface water shall be sampled at the discharge location of the final surface water detention pond;
- (e) The *City* shall ensure that all stormwater which comes in contact with waste material is treated or discharged into the sanitary sewer; and
- (f) The *City* shall annually review and update the detailed maintenance schedules for the infiltration trenches and stormwater detention ponds.

Reporting on monitoring.

36. The *Municipality* shall include the results from the approved program covering the previous calendar year, with the interpretation of the monitoring results prepared by a qualified hydrogeologist, engineer or scientist in the Annual Report referenced in Condition 52. Following a review of the analytical results or, of any of the reports required by this Condition, the *District Manager* or, the *Director* may alter the frequencies and locations of sampling and parameters for analysis required by this Condition if he/she considers it necessary for proper assessment of the quality of the groundwater or, if he/she is requested to do so by the *Municipality* and considers it acceptable by the evidence of information in support of the request.

G. SITE SECURITY

37. (a) The *City* shall ensure that a *Competent Person* is available at all times during the hours of operation at this *Site*. No loading or unloading of waste, *Compost* and/or recyclable material, including the public drop-off bins, shall occur unless a *Competent Person* supervises the loading or unloading operation. No public drop-off shall be allowed beyond the normal

operating hours of the facility. No processing shall occur unless a Competent Person supervises the processing;

- (b) Not less than once each calendar year, the *City* shall ensure that a fire inspection is carried out to determine if adequate fire prevention and protection measures are in place for the facility;
- (c) The *City* shall ensure that the *Site* is adequately lit at all times;
- (d) The *City* shall ensure that the existing signs posted on the *Site*, which identify the name of the facility and an emergency and/or *incident* reporting telephone number, continue to be adequately maintained;
- (e) The *City* shall ensure that the existing 1.6 metre high fence with lockable gates is adequately maintained in order to continue to preserve the security of the *Site*; and
- (f) The *City* shall ensure that the *Site* is secured beyond the normal operating hours of the facility to prevent unauthorized entry.

H. WASTE TRANSFER STATION

- 38. a) Except as noted in Condition 38 b) and c) of this *Certificate*, the *Waste Transfer Station* may accept non-hazardous solid industrial waste from industrial, commercial and institutional sources, commercial waste and domestic waste;
- b) asbestos waste may not be accepted at the Waste Transfer Station; and
- c) Organic Waste may only be accepted at the Waste Transfer Station in accordance with Condition 17.(5)(a).
- 39. a) Except as noted in Condition 17.(5)(a) ii), iii), iv) and vi) in accordance with Condition 17.(5)(a)i), the maximum storage time at the *Waste Transfer Station* building for allowed *Organic Waste* is 24-hours; and
- b) The maximum storage capacity in the building at the *Waste Transfer Station* is 795 tonnes in the *Waste Transfer Station* building.

I. MATERIAL RECOVERY FACILITY

- 40. (a) The *City* shall ensure that only municipal waste recyclable material, generated within the Province of Ontario is received at this *Site*:
- (b) The maximum storage capacity at the MRF is 3,850 tonnes;
- (c) All materials to be processed at the *Material Recovery Facility* shall be unloaded and processed indoors except commingled recyclables which may also, as required, be unloaded into the outdoor storage bunker assigned to this material, or in the *Organic Waste Processing Facility* when not in use for *Composting*;
- (d) The City shall ensure all storage containers are maintained in good condition;
- (e) The *City* shall limit any outside storage to processed or source-separated non-putrescible dry materials, dropped off by either commercial or residential vehicles, including but not necessarily limited to tires, rubble, electronic waste, source separated roofing shingles, mattresses, textiles, white goods, construction and demolition wastes, commingled recyclables, *wood waste, waste wood*, glass, scrap metal, and drywall;
- (f) The *Owner* may apply to the *District Manager* for the outdoor storage in concrete bunkers or in storage containers of additional non-hazardous solid waste(s) that is/are not provided for in Condition 40 (e) and the *District Manager* may provide written concurrence to the *Owner* for the storage of non-hazardous solid waste(s) that is/are not provided for in Condition 40 (e);
- (g) Outside storage shall be on an asphalt pad, or equivalent impermeable surface, within designated concrete bunkers, or in closed storage containers in a manner and in amounts which does not create a nuisance or hazard;
- (h) The City shall implement litter controls including, but not limited to, covering waste with netting and limiting the receipt

or movement of materials on windy days. Litter pick-up shall occur daily and after the movement of waste either into the *Material Recovery Facility* for processing or after loading vehicles for off-*Site* transfer at a minimum;

- (i) The outdoor storage of any wastes that may attract *birds*, vectors, rodents and/or vermin is prohibited;
- (j) The *City* shall ensure that the addition, removal and processing of all wastes and/or recyclable material occurs only in the presence of a *Competent Person*;
- (k) The *Material Recovery Facility* doors for vehicular traffic shall normally be kept closed and shall only be opened for entry or departure of vehicles if there is an attraction to *birds*;
- (1) All dry waste shall be processed and shipped off-Site within 120 days of receipt; and
- (m) Residual waste not suitable for further processing at the Site shall be moved off-Site within five (5) days of generation.

J. MUNICIPAL HAZARDOUS AND SPECIAL WASTE TRANSFER STATION

- 41. In this section, "processed waste" means wastes that have been bulked together in a common container or packaged for disposal.
- 42. (a) The operation of this *MHSW Transfer Station* is limited to the collection and transfer of waste classes 112, 121, 145, 146, 148, 212, 213, 221, 242, 251, 252, 261, 263, 269, 312, and 331 and also includes wet cell batteries and small dry cell batteries, household cleaners and detergents, aerosols, waxes and polishes, fluorescent tubes and energy efficient light bulbs, mercury switches and thermostats; as outlined in the New Ontario Waste Classes, January 1996, and waste allowed by Condition 43(b); and
 - (b) The maximum amount of *MHSW* and waste allowed by Condition 43(b) that may be stored at the *Site* is 15 tonnes.
- 43. (a) The *City* shall ensure that only *MHSW* generated by residents living within the City of Guelph and the County of Wellington is received. No industrial, commercial and/or institutional hazardous waste shall be received at this facility;
- (b) Subject to the limitations outlined in Condition 42 of this Certificate, the City of Guelph may accept for collection and transfer at the *MHSW Transfer Station*, *MHSW* or other waste acquired by the City from *small generators* as a result of the management of incidents of improper or illegal dumping in the City of Guelph, none of which shall exceed the quantities outlined in the definition of *small generators* that is defined in the definitions section of this Certificate;
- (c) The *City* shall ensure that a *Competent Person* is on duty at all times during the operation of the *MHSW Transfer Station* to provide proper supervision of activities;
- (d) The *City* shall ensure that adequate fire fighting equipment is available at the *MHSW Transfer Station* location at all times and that on-*Site* staff are trained in the use of such equipment;
- (e) The *City* shall ensure that the local police and fire departments are informed of the operation at the *MHSW Transfer Station* at all times and are kept up-to-date on the types and quantities of waste that the facility handles;
- (f) Not less than once per calendar year, the *City* shall ensure that a fire and explosion prevention inspection is carried out by a qualified person who is either a representative from the City of Guelph Fire Department, a Professional Engineer or who has specialized training in fire and explosion hazards;
- (g) The *City* shall ensure that the management and disposal of waste at the *MHSW Transfer Station* is done in accordance with Ontario Regulation 347;
- (h) i) The MHSW Transfer Station shall be inspected by a Competent Person

on each operating day basis to ensure the proper storage and handling of *MHSW* waste and that the integrity of waste containers is intact;

- ii) A daily record of the inspections required by Condition 43(g)i shall be maintained by the *Owner*;
 - iii) At a minimum, the record shall indicate the date and time of the inspection, the name of the *Competent Person* who did the inspection, a description of any unusual observations, such as spills, made during the inspection, description of
 - any action taken to correct an *incident* that was identified and any recommendations for preventing a recurrence of a similar *incident*; and
 - iv) the records required by Condition 43(g)ii shall be made readily available for an inspection by a *Provincial Officer*;
- (i) No MHSW waste shall be stored on-Site longer than ninety (90) days from the date it was received;
 - (j) All storage of waste shall be in accordance with the *Ministry's* "Guidelines for Environmental Protection Measures at Chemical and Waste Storage Facilities," May 2007, and its amendments;
- (k) The *City* shall have a *Competent Person* annually review and update the existing waste screening measures for all incoming waste, to ensure only wastes approved by this *Certificate* are received at this facility;
- (1) Any updated report on the waste screening measures shall be submitted to the District Manager; and
- (m) The *City* shall ensure that no *PCB waste* are accepted at the *Site*. Oil and oil-based paints which have been manufactured prior to 1972, paints and thinners having an oily appearance, rubber based paints (concrete paints/stains), adhesives, urethane elastomers manufactured prior to 1977, pesticides manufactured prior to 1977, any of these materials whose manufacturing date cannot be determined and any container having contained these materials may contain *PCBs*. The *City* shall undertake a waste screening procedure for *PCBs* that includes, but is not limited to the following:
- (i) The *City* shall ensure that an approved *PCB* storage site is available to take and store any confirmed *PCB waste* that is inadvertently received at the *Site*;
- (ii) The *City* shall ensure a waste tracking system is established to property identify the source of any confirmed *PCB* waste:
- (iii) Any *PCB* suspect material shall be segregated and shall not be mixed or bulked. All *PCB* suspect material shall be sampled and analyzed for *PCB* content. Each individual suspect container or a representative proportional composite of not more than ten (10) individual suspect containers shall be sampled and analyzed;
- (iv) Any material that may be mixed or bulked shall be sampled and analyzed for *PCB* content. Each individual bulk container or drum shall be sampled and analyzed; and
- (v) Any material that has measure levels greater than fifty (50) parts per million is considered to be *PCB waste* as defined in *Ontario Regulation 362*. *PCB waste* shall be removed from the *Site* to an approved *PCB* storage site in accordance with written instructions from a *Director* as defined in *Ontario Regulation 362*, or a Waste Management System Certificate of Approval which specifies the manner in which *PCB waste* may be stored, handled, collected, transported or disposed of.
- 44. The *City* may offer materials in Ontario Waste Classes 145 (paint), 331 (aerosols), 213 (car products) and 148 (cleaning products) to the public.

K. WRIC ENVIRONMENTAL EMERGENCY PLAN

- 45. (a) Within thirty (30) days of commencing the receipt of Organic Waste at the *Composting Site*, the *Owner* shall update its "Solid Waste Resources Emergency and Contingency Plan" that is contained in the *Owner's* Design and Operations Reports that are referenced by Items 49, 50 and 51 of Schedule "A" by submitting to the *District Manager* a *WRIC Environmental Emergency Plan* for the entire *Site*. The *WRIC Environmental Emergency Plan* for the entire *Site* shall be prepared in consultation with the local Municipality and the City of Guelph Fire Department;
- (b) The WRIC Environmental Emergency Plan shall identify measures for the preparation for, the prevention of, the response to and the recovery from environmental emergencies at the Site including but not limited to:

- (i) a spill, process upset, emission of odours, fire, explosion or any other emergency situation, and disruption at the *Site* such as power failure and/or equipment failure;
- (ii) specific clean-up methods for wastes expected to be generated from an emergency situation;
- (iii) fire and explosion prevention planning and fire protection systems;
- (iv) a list of equipment and clean-up materials available for dealing with the projected emergency situation;
- (v) measures to be taken to prevent incompatible chemicals at the *MHSW* Transfer Station from coming into contact;
- (vi) Environmental Emergency Planning measures for the *Composting Site* that are required by Condition 61 of this Certificate;
- (vii) measure to be undertaken in the event hazard to aircraft problems develop or there is a net increase in *birds* at the *Site*; (viii) measures to be undertaken in the event any unauthorized non-hazardous or hazardous waste or unidentifiable waste appears at the *Site*;
- (ix) measures to be undertaken in the event of groundwater and/or surface water contamination:
- (x) notification protocol with names and telephone numbers of persons to be contacted, including persons responsible for the *Site*, the *Ministry's District Office* and Spills Action Centre, the local Fire Department, the local Municipality, the local Medical Officer of Health, and the Ministry of Labour, and the names and telephone numbers of waste management companies available for emergency response; and
- (xi) a complaints procedure that has a minimum the information that is outlined in Condition 46;
- (c) No waste shall be received at the *Composting Site* for storage or processing until the *District Manager* provides a written concurrence for the emergency response and contingency planning measures for the issues in the *WRIC Environmental Emergency Plan* that deals with the *Composting Site*;
- (d) The city shall keep up-to-date copies of its WRIC Environmental Emergency Plan at central locations at the Composting Site, the Waste Transfer Station, the MRF and the MHSW Waste Transfer Station;
- (e) The WRIC Environmental Emergency Plan shall be reviewed on an annual basis and updated, if necessary by the Owner. Any revised version of the WRIC Environmental Emergency Plan shall be submitted within fifteen (15) days of the revision for comments and concurrence to the local Municipality, the Fire Department and to the District Manager; and
- (f) After five (5) years from the date of issue of this *Certificate*, the *Owner* may apply in writing to the *District Manager* for agreement of the requirement in Condition 45(e) that requires *District Manager* concurrence. Also, the *District Manager* may provide written notice to the *Owner* that they are exempted from the noted provision in Condition 45(e).

Complaints Procedure

- 46. If at any time, the *Municipality* receives complaints regarding the operation of the *Site*, the *Municipality* shall respond to these complaints according to the following procedure:
- (a) The *Municipality* shall record each complaint on a formal complaint form entered in a sequentially numbered log book. The information recorded shall include the nature of the complaint, circumstances of the complaint including weather conditions, the name, address and the telephone number of the complainant and the time and date of the complaint;
- (b) The *Municipality*, upon notification of the complaint shall initiate appropriate steps to determine all possible causes of the complaint, proceed to take the necessary actions to eliminate the cause of the complaint and forward a formal reply to the complainant; and
- (c) The *Municipality* shall immediately orally notify the *Ministry* of the complaint, followed with the submission of a written report within one (1) week, of the complaint detailing what actions, if any, were taken to identify and remediate the cause of the complaint and what remedial action, if any, would be taken.

47. The *Municipality* shall take immediate measures to clean-up all spills, related discharges and process upsets of wastes which result from the operation of the *Site*. All spills and upsets shall be immediately reported to the *Ministry's* Spills Action Centre at (416) 325-3000 or 1-800-268-6060 and shall be recorded in a written log or an electronic file format, referred to in Condition 51 of this *Certificate*, as to the nature of the spill or upset, and the action taken for clean-up, correction and prevention of future occurrences.

L. INSPECTION

- 48. The *Municipality* shall have a *Competent Person* or *Trained Personnel* conduct regular daily and weekly inspections of the equipment and facilities as outlined in the Design and Operations Reports of this *Certificate* and as is required by Condition 57 of the *Certificate* to ensure that all equipment and facilities at the *Site* are maintained in good working order at all times. Any deficiencies detected during these regular inspections must be promptly corrected. A written record must be maintained at the *Site*, which includes the following:
- (a) name and signature of *Trained Personnel* conducting the inspection;
- (b) date and time of the inspection;
- (c) list of equipment inspected and all deficiencies observed;
- (d) a detailed description of the maintenance activity;
- (e) date and time of maintenance activity; and
- (f) recommendations for remedial action and actions undertaken.
- 49. The *Municipality*, in addition to inspections and documentation requirements carried out in Condition 48, shall conduct on each operating day, a physical inspection of the following areas to ensure the *Site* is secure or operating properly and that no off-*Site* impacts such as vermin, vectors, odour, noise, dust, litter, or other possible contaminants resulting from the operation of the Facility:
- (a) Oil/water separator;
- (b) holding tanks and associated containment areas;
- (c) drainage swales, culverts and catch basins and stormwater management pond; and
- (d) security fence, barriers and property line.
- 50. The City shall remedy any malfunction and/or deficiency which these inspections reveal.

M. RECORD KEEPING

- 51. (a) The *City* shall maintain written records of daily *Site* inspections at the *Site*. This record shall be in the form of a *Site* Inspection daily log(s) and shall include as a minimum:
- (i) the requirement outlined in Condition 63 of the Certificate;
- (ii) date and time of inspection;
- (iii) name, title and signature of a Competent Person or Trained Personnel supervising the inspection;
- (iv) a listing of all equipment, fencing, gates etc inspected and any deficiencies observed;
- (v) any maintenance conducted as a result of these inspections;
- (vi) recommendations for remedial action and date remedial action, if necessary, was completed;
- (vii) indication whether odours are detectable;
- (viii) indication of any litter collected;
- (ix) indication of any incidents; and
- (x) indication of birds;
- (b) The *City* shall maintain daily written records of the waste and/or recyclable material received and processed at the *Waste Transfer Station*, the *Material Recovery Facility*, the *Municipal Hazardous and Special Waste Facility* and *the Organic Waste and Composting Site*. This record shall include as a minimum:
- (i) date, quantity and source of waste and/or recyclable material received;

- (ii) date and quantity of waste and/or recyclable material processed;
- (iii) date, quantity and the destination of material transferred off-Site; and
- (iv) date, quantity and destination of any rejected waste from the Organic Processing Facility;
- (c) The log for the *Organic Waste* and *Composting Site* shall be in accordance with Condition 63;
- (d) analytical results, when required of all in-coming and outgoing wastes and materials; and
- (e) results of inspections and reports required under Conditions 48, 49 and 50, including the name and signature of the person conducting the inspection and completing the report.

N. ANNUAL REPORT

- 52. The *City* shall submit an annual report on the operation of the *Site* for the previous calendar year to the *District Manager* by March 31st of each year. This report will include the information required as follows:
 - (a) the information required by Condition 63 (8) of the Certificate dealing with the Composting Site;
- (b) a monthly summary of the waste and/or recyclable materials received at the *Site*, including quantity, source and *Ontario Regulation 347* waste classes;
- (c) a monthly summary of the wastes and/or recyclable materials processed at the *Site* including quantity and *Ontario Regulation 347* waste classes;
- (d) a monthly summary of the waste and/or recyclable materials transferred off-*Site* including quantity, destination and *Ontario Regulation 347* waste classes;
- (e) an annual summary of the analytical results for the groundwater, and surface water monitoring program including an interpretation of the results and any remedial/mitigative action undertaken;
 - (f) an annual summary of any deficiencies, items of non-compliance or process aberrations that occurred and remedial/mitigative action taken to correct them;
 - (g) a summary of any changes to the *Engineer's Report* and/or the Design and Operations Report that have been approved by the *Director* since the last annual report;
 - (h) a summary of any changes to the Design and Operations Report Design and the WRIC Environmental Emergency Plan that were made in accordance with Condition 68(1) of this *Certificate*;
 - (i) a summary of any changes to the Design and Operations Report that have been approved by the *Director* since the last annual report;
 - (j) update on activities of the PLC; and
 - (k) all measurement units shall be reported in consistent metric units.

O. CLOSURE PLAN:

- 53. (a) The *Municipality* shall submit, for approval by the *Director*, a written Closure Plan for the *Site* four (4) months prior to the closure of the *Site*. This plan must include as a minimum, a description of the work that will be done to facilitate closure of the *Site* and a schedule for completion of that work;
- (b) The closure plan shall include the requirement of Condition 65 of this Certificate; and
- (c) Within ten (10) days after closure of the *Site*, the *Municipality* shall notify the *Director* in writing that the *Site* has been closed in accordance with the approved Closure Plan.

P. ORGANIC WASTE AND COMPOSTING SITE

54. Service Area, Approved Waste Types, Rates & Storage

- (1) The *Composting Site* may only accept solid non-hazardous residential, commercial, institutional or industrial *Organic Waste* from the Provinces of Ontario, limited to the following *Organic Waste*:
 - (a) Source-Separated *Organic Waste* limited to the following:

- (i) food wastes: fruit, vegetable and general table scraps, meat and fish/shellfish products, dairy products, eggs and egg shells, herbs, nuts and seeds, sugar and spices, confectionery products, sauces, bones, pet food, bread, grains, rice, pasta, flour, coffee grounds and tea bags;
- (ii) solidified cooking oils and cooked or raw grease and fats from residential sources only;
- (iii) paper fibres: soiled paper towels, tissues, paper plates, coffee filters, soiled paper food packaging items such as boxboard, cardboard, newspaper, and other paper fibre packaging materials;
- (iv) fresh flowers, houseplants and their soil, hair, pet fur, feathers and sawdust, wood shavings;
- (v) ashes from residential sources only;
- (vi) pet waste that is not collected or encased in a bag; and
- (vii) pet litter box or bedding wastes, including the intermingled pet waste;
- (b) *Organic Waste* from the industrial, commercial and institutional sources that produce or collect food wastes;
- (c) Leaf and Yard Waste; and
- (d) Compost overs as described in the supporting documentation listed in the attached Schedule "A".
- (2) The *Composting Site* may accept the following *Amendment Materials*:
 - (a) straw and hay; and
 - (b) brush, Clean Wood and Clean Wood products.
- (3) The *Composting Site* may accept the *wood waste* and the *waste wood*, as defined in this *Certificate*, for processing to undertake size reduction on the paved outdoor pad referred to as the Amendment, Recyclables, and Leaf and Yard Staging Area, described in documentation listed in the attached Schedule "A", for the purpose of subsequent transfer from the *Composting Site*.
- (4) (a) The *Owner* shall not accept at the *Composting Site* any cooked or raw grease and fats from industrial, commercial and institutional sources;
 - (b) The *Owner* shall not accept at the *Composting Site* animal carcasses, used sanitary products and human body waste;
 - (c) The Owner shall not receive pet waste from commercial, institutional or industrial sources;
 - (d) The *Owner* shall not accept at the *Composting Site* any *Organic Waste* that is collected through a waste collection program that allows use of bags, except the waste that is generated in and collected by the City of Guelph and in accordance with Table 1 entitled "Proposed Phase-out of Plastic Bag Usage in Organics Collection" included in Item #40 of the attached Schedule "A";
 - (e) The *Owner* shall ensure that the *Organic Waste* collected in bags in accordance with restrictions specified above, is given priority in the processing and transfer to the *Composting* tunnels;
 - (f) The *Owner* shall ensure that the *Organic Waste* collected in bags in accordance with restrictions specified above, is transported directly from the collection route to the *Composting Site*, without any intermediate transfer step; and
 - (g) The *Owner* shall not accept at the *Composting Site* any waste that is classified as hazardous waste or liquid industrial waste in accordance with *O. Reg. 347*.
- (5) The *Owner* is only approved to receive *Organic Waste* in quantities that are not to exceed:
 - (a) a maximum of 450 tonnes on a daily basis; and
 - (b) a maximum of 60,000 tonnes per year.

- (6) The Owner is approved to store a maximum of 8,500 tonnes of waste at the Composting Site at any one time.
- (7) All waste and *Amendment Materials* storage at the *Composting Site* is subject to the following limitations:
 - (a) all unprocessed *Organic Waste* and the *Immature Compost* in various stages of curing and the *Finished Compost* shall be stored within the confines of the *Processing Building*;
 - (b) the *leaf and yard waste*, the *waste wood*, the *wood waste* and the *Amendment Materials* may be stored outdoors on the paved pad referred to as the Amendment, Recyclables, and Leaf and Yard Staging Area, described in documentation listed in the attached Schedule "A";
 - (c) all *Compost* shall be stored within the confines of the *Processing Building*;
 - (d) all solid *residual waste (Processing Building)* shall be stored within the confines of the *Processing Building*; and
 - (e) all solid *putrescible waste* generated through activities not relating to the handling and processing of *Organic Waste* (ie. office, lunch room, etc.) may be stored within the confines of the *Processing Building* and it shall be removed from the *Composting Site* as required in accordance with *O. Reg* 347 and the *EPA*.
- (8) Organic Waste storage duration at the Composting Site is limited to the following:
 - (a) The *Owner* shall ensure that the *Organic Waste*, excluding the *leaf and yard waste*, received at the *Composting Site* is incorporated into active *Composting* process no later than thirty six (36) hours from the time of its receipt;
 - (b) The *Owner* shall ensure that the *Organic Waste* collected in bags in accordance with restrictions specified in this *Certificate*, is given priority in the processing and transfer to the *Composting* tunnels;
 - (c) The *Owner* shall ensure that the *leaf and yard waste* storage duration shall not exceed seven (7) calendar days from the time of its receipt;
 - (d) Notwithstanding provisions of Conditions 54.(8)(a) and (c), above, the *Owner* shall transfer all *Organic Waste* processed in the *Processing Building* into the *Composting* tunnels at the end of the operating day each Friday; and
 - (e) The *Owner* shall not store the *residual waste (Processing Building)*, at the Site in excess of fourteen (14) days from the date of its generation, or as directed by the *District Manager*.
- (9) (a) The *Owner* shall ensure that all outside storage of the *leaf and yard waste*, the *wood waste*, the *waste wood* and the *Amendment Materials* is undertaken in a manner that does not cause an adverse effect or a hazard to the environment or any person; and
 - (b) If in the opinion of the *District Manager*, the outside storage of the *leaf and yard waste*, the *wood waste*, the *waste wood* and the *Amendment Materials* results in odour complaint(s), the *Owner*, in consultation with the *District Manager* shall undertake appropriate steps, including reducing waste storage duration or the storage method, so that odour complaint(s) are eliminated.
- (10) No outside waste storage of material from or for the Organic Waste Processing Facility other than the *leaf and yard* waste, the waste wood, the wood waste and the Amendment Materials, is approved under this Certificate."
- (11) The *Owner* shall ensure that all *wood waste* and *waste wood* that has undergone size reduction at the Amendment, Recyclables, and Leaf and Yard Staging Area is segregated from the shredded *leaf and yard waste* and the *Amendment Materials* to prevent contamination of *Organic Waste* and *Amendment Materials* intended for the Composing Process.
- (12) In the event that *Organic Waste* cannot be processed at the *Composting Site* in accordance with the requirements of this *Certificate*, the *Owner* shall cease accepting additional *Organic Waste* and shall remove all unprocessed *Organic Waste*

from the Composting Site in accordance with the procedures outlined in the WRIC Environmental Emergency Plan.

(13) All waste removed from the *Composting Site* shall be transferred to a waste disposal site for which a Provisional Certificate of Approval has been issued by the *Ministry* and the site is approved to receive this type and quantity of waste.

55. Composting Site Security

- (1) The *Owner* shall ensure that all unloading and loading of waste and all *Organic Waste* processing activities at the *Composting Site* are at all times undertaken by *Trained Personnel*.
- (2) The *Owner* shall ensure that the *Composting Site* is operated in a safe and secure manner, and that all waste is properly handled, packaged or contained and stored so as not to pose any threat to the general public and the *Composting Site* personnel.

56. Composting Site Operations

(1) The *Composting Site* is approved to operate within the following operating hours, subject to limitations of the local municipal by-laws:

Receipt and Removal of Waste from the Composting Site

(a) The *Owner* may only receive *Organic Waste* at the *Composting Site* and ship waste from the *Composting Site* between the hours of 7:00 a.m. and 6:00 p.m. Monday through Friday and between the hours of 8:00 a.m. and 4:00 p.m on Saturday;

Shipment of Compost from the Composting Site

(b) The *Owner* may only ship *Compost* from the *Composting Site* between the hours of 7:00 a.m. and 6:00 p.m. Monday through Friday and between the hours of 8:00 a.m. and 4:00 p.m on Saturday;

Processing Within the Processing Building

(c) The *Owner* may process the *Organic Waste* within the confines of the *Processing Building* twenty four (24) hours per day, seven (7) days per week;

Emergency Receipt of Waste

- (d) The *Owner* may receive the *Organic Waste* at the *Composting Site* outside of the operating hours specified in sub-condition (a), above, on an emergency basis only;
- (e) Within twenty four (24) hours from the emergency receipt of the *Organic Waste*, the *Owner* shall notify, in writing, the *District Manager* during regular business hours or verbally the Spills Action Centre, that the *Organic Waste* was received outside of the approved hours; and
- (f) If in the opinion of the *District Manager*, the emergency receipt of the *Organic Waste* results in complaints, following the written notification from the *District Manager*, the *Owner* shall not receive the *Organic Waste* outside of the approved hours, until such time as the deficiencies causing complaints are rectified to the District Manager's satisfaction.

(2) Incoming Waste/Amendment Materials receipt:

- (a) The *Owner* shall ensure that all unloading of the incoming *Organic Waste* at the *Composting Site*, takes place entirely within the confines of the *Processing Building*;
- (b) Notwithstanding provisions of Condition 56.(2)(a), the *Owner* may unload the *leaf and yard waste*, the *wood waste*, the *wood waste*, the *waste wood* and the *Amendment Materials* outdoors on the paved pad referred to as the Amendment, Recyclables, and Leaf and Yard Staging Area, described in documentation listed in the attached Schedule "A";
- (c) The *Owner* shall ensure that all loads of the incoming *Organic Waste*, excluding the *leaf and yard waste*, are accompanied by documentation containing the results of the required waste characterization as required by Condition 58.(2) or the identification of a pre-approved generator of waste as required by Conditions 58.(3)(b)

and 58.(3)(c);

- (d) *Trained Personnel* shall inspect the required documentation prior to acceptance of the incoming *Organic Waste* at the *Composting Site*;
- (e) The *Organic Waste* that has not been characterized in accordance with this *Certificate* or that is not accompanied by the required documentation shall not be accepted at the *Composting Site*;
- (f) *Trained Personnel* shall visually inspect all incoming *Organic Waste* to ensure that only approved waste type is accepted at the *Composting Site*;
- (g) The *Owner* shall only accept the incoming *Organic Waste* that is delivered in vehicles that have been approved by the *Ministry*, as required; and
- (h) In the event that *Organic Waste* cannot be processed at the *Processing Building*, the portion of *Organic Waste* originating from the geographical area of the City of Guelph may be accepted at the *Waste Transfer Station* and may be stored for a maximum of 24-hours.

(3) Rejected Waste (Organic Composting Facility) handling:

- (a) In the event that *Rejected Waste* is inadvertently accepted at the *Composting Site*, the *Owner* shall ensure that all *Rejected Waste*:
 - (i) is stored in a way that ensures that no adverse effects result from such storage;
 - (ii) is segregated from all other Organic Waste;
 - (iii) is handled and removed from the Composting Site in accordance with O.Reg. 347 and the EPA; and
 - (iv) is removed from the *Composting Site* within three (3) days of its receipt or as acceptable to the *District Manager*;
- (b) In the event that *Rejected Waste* is inadvertently accepted at the *Composting Site*, a record shall be made in the daily log book or in an electronic file of the reason why the waste was rejected and of the origin of the waste, if known; and
- (c) i) Rejected Waste may be transferred to the Waste Transfer Station in a covered container; and
- ii) In the event that *Rejected Waste* is transferred to the *Waste Transfer Station*, it shall be handled on a priority basis and removed from the *Waste Transfer Station* on the same day that the transfer of *Rejected* Waste occurred on.

(4) residual waste (Processing Building) handling:

- (a) Subject to Condition 56 (4) (b), the *Owner* shall ensure that storage of all solid *residual waste* (*Processing Building*) resulting from processing of the *Organic Waste* at the *Composting Site* is undertaken within the confines of the *Processing Building*;
- (b) i) residual waste (Processing Building) may be transferred to the Waste Transfer Station in a covered container; and
- ii) In the event that *residual waste (Processing Building)* is transferred to the *Waste Transfer Station*, it shall be handled on a priority basis and removed from the *Waste Transfer Station* on the same day that the transfer of *residual waste (Processing Building)* occurred on.

(5) Waste Processing:

(a) The Owner shall ensure that all Organic Waste preprocessing, other than the activities approved under

Condition 56.(5)(c)(i), all *Organic Waste Composting*, all *Immature Compost* screening and curing and all *Finished Compost* screening are undertaken within the confines of the *Processing Building*;

- (b) The *Owner* shall segregate the *Immature Compost* at various stages of curing until all *Compost* quality criteria specified in this *Certificate* are tested for and met: and
- (c) (i) *Brush, Clean Wood* and clean wood products, *wood waste* and *waste wood* may undergo size reduction by shredding, grinding and/or chipping using *Ministry* approved equipment on the outdoor paved pad referred to as the Amendment, Recyclables, and Leaf and Yard Staging Area, described in documentation listed in the attached Schedule "A"; and
 - (ii) The *Owner* shall take precautions to ensure that size reduction activities do not cause a nuisance or impact including by limiting the hours of operation and/or refraining from carrying out size reduction during days with unfavourable meteorological conditions.

(6) **Odour Control:**

- (a) The *Owner* shall maintain a negative air pressure atmosphere within the *Processing Building*, as compared to the ambient atmospheric pressure, at all times;
- (b) The *Owner* shall ensure that the outside loading bay doors into the *Processing Building* are kept fully closed at all times except to permit the entry or exit of maintenance and waste and *Compost* transportation vehicles;
- (c) The *Owner* shall ensure that the outside loading bay doors of the Receiving Area of the *Processing Building* are equipped with the air curtains, as described in the documentation of the attached Schedule "A", and that these air curtains are installed and maintained in accordance with the recommendations of the equipment manufacturer;
- (d) The *Owner* shall ensure that, at all times, the air from the *Processing Building* is exhausted through an appropriate *Air Pollution Control Equipment* approved by the *Ministry* in the *Certificate of Approval (Air/Noise)*;
- (e) If in the opinion of the *District Manager*, the fugitive air emissions originating from the *Processing Building* result in odour complaint(s), the *Owner* shall implement modifications to the *Processing Building* as proposed in the *WRIC Environmental Emergency Plan*, within the time frame acceptable to the *District Manager*;
- (f) The *Owner* shall ensure that no equipment handling *Organic Waste* or their storage containers are kept outside, unless they have been washed to prevent odours; and
- (g) (i) Prior to the receipt of *Organic Waste* at the *Composting Site*, the *Owner* shall undertake an appropriate test to confirm the integrity of the *Processing Building* containment;
 - (ii) This test shall be undertaken in accordance with the test protocol prepared in the consultation with and approved by the *District Manager*; and
 - (iii) This test shall be repeated as directed or agreed by the *District Manager*.

57. Equipment and *Composting Site* Inspections & Maintenance

- (1) Prior to receipt of any *Organic Waste* at the *Composting Site*, the *Owner* shall prepare a comprehensive written inspection program which includes inspections of all aspects of the *Composting Site's* operations including the following:
 - (a) *Processing Building* including all outside bay doors, the *Air Pollution Control Equipment* and the presence of rust on metal surfaces within the confines of the *Processing Building*;

- (b) on-Site roads for presence of leaks and drips from the waste delivery trucks;
- (c) presence of excessive fugitive dust emissions from the on-Site roads;
- (d) on and off-Site litter; and
- (e) presence of vector and vermin.
- (2) The inspections are to be undertaken daily by *Trained Personnel* in accordance with the inspection program to ensure that all equipment and facilities at the *Composting Site* are maintained in good working order at all times and that no negative impacts are occurring as a result of the *Organic Waste* management operations at the *Composting Site*. Any deficiencies detected during these regular inspections must be corrected as soon as reasonable.
- (3) The *Owner* shall develop and implement a preventative maintenance program for all equipment associated with the processing and managing of *Organic Waste* at the *Composting Site* and with control of odour and dust emissions. The preventative maintenance program shall be maintained up-to-date and shall be available for inspection by a *Provincial Officer* upon request.

58. Quality Criteria, Testing & Monitoring

(1) Cross-Contamination Prevention

- (a) The *Owner* shall ensure that the incoming *Organic Waste* is kept separate and does not come in contact with the *Immature Compost* / the *Finished Compost* and the *Compost* except where the *Immature Compost* / the *Finished Compost* are being fed back into the *Composting* process; and
- (b) The *Owner* may use the equipment utilized in processing of the incoming *Organic Waste* to process the *Immature Compost* / the *Finished Compost* and the *Compost* provided that the equipment has been cleaned, in accordance with the procedures described in documents listed in the attached Schedule "A", to prevent the *Immature Compost* / the *Finished Compost* and the *Compost* from being contaminated by the incoming *Organic Waste*.

(2) Quality Control Monitoring of the *Organic Waste* at the generator site:

- (a) Prior to being accepted at the *Composting Site* for the first time, the incoming *Organic Waste* from a new source/stream shall be characterized in accordance with the *Ministry's* regulatory requirements for sampling and testing to ensure that the incoming *Organic Waste* complies with the quality criteria specified in this *Certificate*. The incoming *Organic Waste* may be considered a pre-approved waste source/stream once the incoming *Organic Waste* meets the required quality criteria and has been classified as such by the *Owner*; and
- (b) The incoming *Organic Waste* shall be re-characterized following any process changes, operational issues or other factors that may affect the quality of the incoming *Organic Waste* from the pre-approved source/stream.

(3) Quality Control Monitoring of the *Organic Waste* at the *Composting Site*:

- (a) The *Owner* shall not accept for *Composting* any individual *Organic Waste* source or an additive necessary for *Composting* that exceeds the following quality parameters set out in "Schedule B" of this *Certificate*:
 - (i) trace elements; and
 - (ii) organic chemicals;
- (b) (i) Notwithstanding requirements from Condition 58.(2), the *Owner* shall conduct quality control monitoring of the incoming *Organic Waste* from each source/stream, except the *leaf and yard waste*; and
 - (ii) The Owner sample and analyze the incoming Organic Waste weekly; and
- (c) (i) For the incoming *Organic Waste* from a particular source/stream with consistent quality as demonstrated through a minimum of four (4) analytical events spaced over a minimum of four (4) weeks, the *Owner* may reduce the sampling frequency to once every two (2) months; and

(ii) A minimum of seven (7) business days prior to the change in the *Organic Waste* sampling frequency, as permitted by Condition 58.(3)(b)(ii), the *Owner* shall submit a written notification of the proposed change to the *District Manager*.

Compost Quality Criteria

- (4) The *Finished Compost* is considered to be *Compost* when it meets the following *Compost* quality criteria:
 - (a) Compost quality criteria set out in Schedule "B" of this Certificate; and
 - (b) curing duration of a minimum of twenty one (21) days and compliance with one (1) of the following three
 - (3) maturity criteria:
 - (i) the respiration rate is less than, or equal to, 400 milligrams of oxygen per kilogram of volatile solids (or organic matter) per hour; or
 - (ii) the carbon dioxide evolution rate is less than, or equal to, 4 milligrams of carbon in the form of carbon dioxide per gram of organic matter per day; or
 - (iii) the temperature rise of the *Compost* above ambient temperature is less than 8°C.

Quality Control Monitoring of Finished Compost

- (5) As a minimum, the *Owner* shall conduct quality control monitoring of the *Finished Compost* as follows:
 - (a) a composite sample, consisting of a minimum of ten (10) representative grab samples, shall be collected for every 500 tonnes of the *Finished Compost* produced during the first four (4) months of operation;
 - (b) following the first four (4) months of operation, a composite sample, consisting of a minimum of ten (10) representative grab samples, shall be collected every two (2) months representing all *Compost* generated within the preceding sixty (60) days or every 5,000 tonnes of the *Finished Compost*, whichever comes first;
 - (c) if non-compliance with the *Compost* quality criteria has taken place during three (3) consecutive sampling events, the *Owner* shall sample and test the *Finished Compost* in accordance with Condition 58.(5)(a) until compliance with the *Compost* criteria is demonstrated again; and
 - (d) all composite samples shall be analyzed for the parameters listed in Schedule "B".

Enhanced Pathogen Testing

- (6) (a) As a minimum, the *Owner* shall conduct an enhanced pathogen quality control monitoring of the *Finished Compost* as follows:
 - (i) a composite sample, consisting of a minimum of ten (10) representative grab samples, shall be collected and tested for every 500 tonnes of the *Finished Compost*; and
 - (b) Prior to any change in the pathogen testing program, the *Owner* shall submit a minimum of one (1) year of the testing data that demonstrates compliance with the pathogens *Compost* quality criteria to the *District Manager*. This testing data shall be cross-referenced with the pasteurization temperature monitoring data required to be collected in Condition 58.(10).

Sampling And Testing Methods

(7) All sampling and testing required in this *Certificate* for the purpose of verifying compliance with the *Compost* quality criteria from Condition 58.(4) shall be undertaken in compliance with the document entitled "National Standard of Canada CAN/BNQ 0413-200/2005 Organic Soil Conditioners – Composts", dated 2005, as amended.

Non-compliance with Compost Quality Criteria

(8) (a) The *Finished Compost* is classified as waste until sampling/testing required by this *Certificate* demonstrates that all *Compost* quality criteria specified in this *Certificate* are met;

- (b) (i) The *Finished Compost* that does not meet the pathogen criteria from Schedule "B" and/or non-biodegradable matter criteria from Condition 58.(4) shall be moved back to the aerobic *Composting* tunnels for re-processing;
 - (ii) Should the *Finished Compost* consistently exceed the pathogen criteria set out in Schedule "B", as demonstrated by three (3) sampling/testing events, the *Owner*, in consultation with the *District Manager*, shall implement appropriate modifications to the *Composting* process to ensure consistent destruction of pathogens;
 - (iii) The *Finished Compost* that does not meet the maturation criteria from Condition 58.(4) shall be retested and shall not be removed from the Maturation Area of the *Processing Building* until the maturation criteria are met;
 - (iv) The *Finished Compost* that does not meet the trace elements and/or organic chemicals criteria from Schedule "B" shall be kept segregated from all other waste and from the *Compost* and shall be handled as waste; and
 - (v) The *Finished Compost* that continues to be classified as waste shall be handled and be disposed of in accordance with *O. Reg. 347* and the *EPA*.

Process Monitoring

- (9) The *Owner* shall ensure that the following process parameters are monitored:
 - (a) temperature of the *Composting Organic Waste* in the *Composting* tunnels, as proposed in documentation in the attached Schedule "A";
 - (b) temperature of the headspace air in the *Composting* tunnels, as proposed in documentation in the attached Schedule "A";
 - (c) inlet air temperature;
 - (d) outlet air temperature;
 - (e) relative humidity in the *Composting* tunnels;
 - (f) air flow into the tunnels;
 - (g) oxygen content in the air; and
 - (h) temperature of the *Immature Compost* in the curing piles.

Compliance With Composting Process Operating Parameters

- (10) (a) The *Owner* shall ensure that the *Organic Waste Composting* in the *Composting* tunnels, is maintained at a minimum pasteurization temperature of 55°C for a minimum of seventy two (72) hours, in accordance with the documentation listed in attached Schedule "A", to ensure complete inactivation of pathogens in the *Composting Organic Waste*;
 - (b) As a minimum, two (2) temperature probes shall monitor the required pasteurization temperature within the *Composting Organic Waste* and three (3) temperature probes shall monitor the headspace air temperature of each *Composting* tunnel;
 - (c) The pasteurization temperature measurements within the *Composting Organic Waste* must be taken one (1) metre inside the *Composting* stockpile mass; and
 - (d) Should temperature monitoring show that the required pasteurization temperature has not been achieved, the *Composting* process must be continued until the above requirement has been met.

Temperature Monitoring Within the Curing Stockpiles

(11) As a minimum, the *Owner* shall monitor the temperature of the *Immature Compost* within the curing stockpiles weekly. The measurements shall be taken one (1) metre inside the curing stockpile mass and at points sufficient to provide a temperature profile of the *Immature Compost*.

(12) The *Owner* shall not start the curing process duration countdown until the temperature monitoring required by Condition 58.(11), above, demonstrates that the temperature of the *Immature Compost* in the Maturation Area does not exceed 50 °C.

Odour Monitoring Program

(13) A minimum of ninety (90) days prior to any *Organic Waste* being received at the *Composting Site*, the *Owner* shall prepare and submit to the *District Manager* an Odour Monitoring Program. The Odour Monitoring Program shall be designed to detect and identify any odours originating from the operation of the *Composting Site* which may cause nuisance impacts. The Odour Monitoring Program shall include a description of the equipment and inspection protocol to ensure that negative pressure is maintained at all times throughout the *Processing Building*. The Odour Monitoring Program shall be implemented after written concurrence from the *District Manager* has been received. In the future, should it be necessary to modify the approved Odour Monitoring Program written authorization of the *District Manager* is required.

59. Nuisance Impact Control & Housekeeping

- (1) The *Owner* shall ensure that all vehicles that have delivered *Organic Waste* to the *Composting Site* are not leaking or dripping waste when leaving the *Composting Site*.
- (2) The *Owner* shall ensure that the exterior of all trucks delivering *Organic Waste* to the *Composting Site* is cleaned prior to leaving the *Composting Site*, as needed, to prevent odours. Truck washing shall occur only in the dedicated wash down area of the *Processing Building*.
- (3) Should the *Owner* become aware that the truck(s) delivering waste to the *Composting Site* have leaked waste or wastewater on the municipal roadways, the *Owner* shall immediately submit a written and/or verbal notification to the owner of the leaking vehicle(s).
- (4) The *Owner* shall:
 - (a) take all practical steps to prevent the escape of litter from the *Composting Site*;
 - (b) pick up litter around the *Composting Site* on a daily basis, or more frequently if necessary; and
 - (c) if necessary, erect litter fences around the areas causing a litter problem.
- (5) Prior to the receipt of any *Organic Waste* at the *Composting Site*, the *Owner* shall:
 - (a) implement necessary housekeeping procedures to eliminate sources of attraction for vermin and vectors; and
 - (b) hire a qualified, licensed pest control professional to design and implement a pest control plan for the *Composting Site*. The pest control plan shall remain in place, and be updated from time to time as necessary, until the *Composting Site* has been closed and this *Certificate* has been revoked.
- (6) The *Owner* shall ensure that all *Composting Site* roads and operations / yard areas are regularly swept / washed to prevent dust impacts from the *Composting Site*.
- (7) The Owner shall store all Compost within the confines of the Processing Building.
- (8) The *Owner* shall regularly clean and disinfect, if necessary, all equipment and storage areas that are used to handle and process waste at the *Composting Site*.

60. Operations Manual & Staff Training

- (1) The *Owner* shall prepare an Operations Manual for use by the *Composting Site* personnel. The Operations Manual shall contain the following:
 - (a) outline the responsibilities of the *Composting Site* personnel;
 - (b) personnel training protocols;

- (c) waste receiving and screening procedures;
- (d) unloading, handling and storage procedures;
- (e) waste processing and process monitoring procedures;
- (f) sampling and testing procedures;
- (g) Composting Site inspections and recording procedures;
- (h) the emergency response procedures; and
- (i) procedure for handling complaints as described in the *Certificate of Approval (Air/Noise)* for this *Composting Site*.
- (2) A copy of this Operations Manual shall be kept at the *Composting Site*, must be accessible to personnel at all times and must be updated, as required.
- (3) (a) All employees of the *Composting Site* shall be trained with respect to the following, as it is relevant to the employee's position:
 - (i) terms, conditions and operating requirements of this *Certificate*;
 - (ii) operation and management of the *Site*, or area(s) within the *Composting Site*, as per the specific job requirements of each individual employee, and which may include procedures for receiving, screening and identifying waste, refusal, handling, processing and temporarily storing wastes;
 - (iii) an outline of the responsibilities of the *Composting Site* employees including roles and responsibilities during emergency situations;
 - (iv) the WRIC Environmental Emergency Plan, including exit locations and evacuation routing, and location of relevant equipment available for emergency situations;
 - (v) environmental, and occupational health and safety concerns pertaining to the wastes to be handled;
 - (vi) emergency first-aid information;
 - (vii) relevant waste management legislation and regulations, including the EPA and O. Reg. 347;
 - (viii) recording procedures as required by this Certificate;
 - (ix) equipment and *Composting Site* inspection procedures, as required by this *Certificate*;
 - (x) nuisance impact control & housekeeping procedures, as required by this *Certificate*; and
 - (xi) procedures for recording and responding to public complaints as required by the *Certificate of Approval (Air/Noise)* for this *Composting Site*.
- (4) The *Owner* shall ensure that all employees are trained in the requirements of this *Certificate* relevant to the employee's position:
 - (a) upon commencing employment at the *Composting Site* in a particular position;
 - (b) whenever items listed in Condition 60.(1) are changed; or
 - (c) during the planned three (3)-year refresher training.

61. Environmental Emergency Plan (Composting Facility)

- (1) The emergency response and contingency planning measures for the *Composting Site* that are required by Condition 45(a)(vi) shall include, as a minimum, the following information:
 - (a) procedures and actions to be taken should the incoming *Organic Waste* not meet the quality criteria specified by this *Certificate*;
 - (b) procedures and actions to be taken should the composted *Organic Waste* fail to meet the compost quality criteria specified by the *Certificate*;
 - (c) procedures and actions to be taken should the occurrence of the complaints require the *Owner* to suspend the waste processing activities at the *Composting Site*;
 - (d) modifications to the *Processing Building* and the implementation schedule should the fugitive odour emissions originating from the *Processing Building* result in odour complaints;
 - (e) procedures and actions to be taken should a long term power failure at the *Composting Site* or a suspension of waste processing activities require a phased *Re-Start-up* of operations; and
 - (f) procedures to be taken should it be necessary for the *Owner* to remove the unprocessed *Organic Waste* from the *Composting Site*.

- (2) The emergency response and contingency planning measures for the *Composting Site* that are required by Condition 45(a)(vi) shall be prepared in consultation with the *District Manager*, the local Municipality and the Guelph Fire Department.
- (3) As is required by Condition 45(c) of this Certificate, no waste shall be received at the *Composting Site* for storage or processing until the *District Manager* provides a written concurrence to the Plan.

62. Emergency Response and Reporting

- (1) The *Owner* shall immediately take all necessary measures, as outlined in the applicable *WRIC Environmental Emergency Plan*, to handle the emergency situations occurring at the *Composting Site* and/or *Re-Start-up* of operations.
- (2) The *Owner* shall ensure that the equipment and materials outlined in the applicable *WRIC Environmental Emergency Plan* are immediately available at the *Composting Site* at all times and are in a good state of repair and fully operational.
- (3) The *Owner* shall ensure that all *Composting Site* personnel are fully trained in the use of the equipment and materials outlined in the applicable *WRIC Environmental Emergency Plan*, and in the procedures to be employed in the event of an emergency.
- (4) All Spills, as defined in the *EPA*, shall be immediately reported to the *Ministry's* Spills Action Centre at 1-800-268-6060 and shall be recorded in the log book as to the nature and cause of the spill, and the action taken for clean-up, correction and prevention of similar future occurrences.
- (5) Should a Spill, as defined in the *EPA*, occur at the *Composting Site*, in addition to fulfilling the requirements from the *EPA*, the *Owner* shall submit to the *District Manager*, a written report within three (3) calendar days outlining the nature of the Spill, remedial measure taken and the measures taken to prevent future occurrences at the *Composting Site*.

63. Records Keeping

Daily Activities

- (1) The *Owner* shall maintain an on-*Site* written or digital record of activities undertaken at the *Composting Site*. All measurements shall be recorded in consistent metric units of measurement. The record shall include, as a minimum, the following information:
 - (a) date, quantity, source and type of the *Organic Waste*, (including any analytical data), received at the *Composting Site*;
 - (b) date, quantity, type and the destination of the *Compost*, transferred from the *Composting Site*;
 - (c) date, quantity, type and the destination of the *residual waste*, transferred from the *Composting Site* for final disposal:
 - (d) date, quantity, type and the destination of the *Rejected Waste*, transferred from the *Composting Site*;
 - (e) pre-Composting and post-Composting processing activities undertaken at the *Composting Site*;
 - (f) tunnel loading / unloading activities and number of *Composting* tunnels actively undergoing *Composting*;
 - (g) amount of the *Immature Compost* transferred from the *Composting* tunnels to the curing area;
 - (h) housecleaning activities, including litter collection, floor and equipment washing;
 - (i) loss of negative pressure within the *Processing Building* and the activities undertaken to restore the required negative pressure; and
 - (j) results of the hydrogen sulphide and ammonia monitoring required by the *Certificate of Approval* (*Air/Noise*) for this *Composting Site*.

Monitoring Records

- (2) (a) The *Owner* shall establish and maintain a written or digital record of all monitoring activities at the *Composting Site* as required by this *Certificate* and the *Certificate of Approval (Air/Noise)* for this *Composting Site*; and
 - (b) The *Owner* shall establish and maintain a tracking system that tracks the pasteurization temperature measurements from the *Composting* tunnels and the testing results from the enhanced pathogen testing required by this *Certificate*. This tracking system shall include, as a minimum, the following information:

- (i) identification of the *Composting* tunnel used for the purpose of the *Organic Waste* pasteurization;
- (ii) the in-waste and the headspace temperature during the *Composting Organic Waste* pasteurization cycle, as required by this *Certificate*; and
- (iii) the results of the pathogen testing, as required by this Certificate.

Emergency Situations

- (3) The *Owner* shall maintain an on-*Site* written or digital record of the emergency situations. The record shall include, as a minimum, the following:
 - (a) the type of an emergency situation;
 - (b) description of how the emergency situation was handled;
 - (c) the type and amount of material spilled, if applicable;
 - (d) a description of how the spilled material was cleaned up and stored, if generated; and
 - (e) the location and time of final disposal, if applicable.

Inspections

- (4) The *Owner* shall maintain an on-*Site* written or digital record of inspections as required by this *Certificate*. The record shall include, as a minimum, the following:
 - (a) the name and signature of the *Trained Personnel* that conducted the inspection;
 - (b) the date and time of the inspection;
 - (c) the list of any deficiencies discovered;
 - (d) the recommendations for remedial action; and
 - (e) the date, time and description of actions taken.

Training

- (5) The *Owner* shall maintain an on-*Site* written or digital record of training as required by this *Certificate*. The record shall include, as a minimum, the following:
 - (a) date of training;
 - (b) name and signature of employee who has been trained; and
 - (c) description of the training provided.

Sampling & Testing Records

- (6) The *Owner* shall establish and maintain a written or digital record of all sampling and testing activities at the *Composting Site*. This record shall include, as a minimum, the following information:
 - (a) waste sampled, sample collection locations and volume collected;
 - (b) day and time of collection;
 - (c) sample handling procedures;
 - (d) parameters tested for and the resulting concentrations;
 - (e) name of the laboratory facility conducting the testing; and
 - (f) conclusions drawn with respect to the results of the testing.

Complaints Response Records

(7) The *Owner* shall establish and maintain a written or digital record of complaints received and the responses made as required by the *Certificate of Approval (Air/Noise)* for this *Composting Site*.

Annual Report

(8) By March 31st following the end of each operating year, the *Owner* shall prepare and submit to the *District Manager*, an Annual Report summarizing the operation of the *Composting Site* covering the previous calendar year. This Annual Report shall include, as a minimum, the following information:

- (a) a monthly mass balance of the *Organic Waste* received, processed and transferred from this *Composting Site*, including waste type, quantity, sources and/or disposal destinations;
- (b) an annual summary mass balance of the *Organic Waste*, the *wood waste*, the *waste wood* and the Amendment Material received, processed and transferred from this *Composting Site*, including waste type, quantity, sources and/or disposal destination;
- (c) an annual summary of any deficiencies, items of non-compliance or process aberrations that occurred at this *Composting Site* and any remedial / mitigative action taken to correct them;
- (d) a descriptive summary of any spills, *incidents* or other emergency situations which have occurred at this *Composting Site*, any remedial measures taken, and the measures taken to prevent future occurrences;
- (e) a summary describing any *Rejected Waste* including quantity, waste type, reasons for rejection and origin of the *Rejected Waste*;
- (f) the quantity, by weight and volume of *Compost* and residues produced and the quantity of *Compost* and residues removed from the facility;
- (g) any environmental and operational problems, that could negatively impact the environment, encountered during the operation of the *Composting Site* or identified during the facility inspections and any mitigative actions taken;
- (h) any changes to the WRIC Environmental Emergency Plan, the Operations Manual or the Closure Plan that have been approved by the Director since the last Annual Report;
- (i) any recommendations to minimize environmental impacts from the operation of the *Composting Site* and to improve *Composting Site* operations and monitoring programs in this regard;
- (j) a summary of any complaints received and the responses made, as required by the *Certificate of Approval* (*Air/Noise*) for the *Composting Site*;
- (k) a description of the *Compost* distribution/markets;
- (l) conclusions from the enhanced pathogen testing as the results relate to the pasteurization temperature monitoring; and
- (m) a condition-by-condition analysis of compliance with all Conditions of this Certificate.

64. Wastewater Management

- (1) The Owner shall ensure that all wastewater generated within the Processing Building is:
 - (a) contained within the *Processing Building* and the storage tanks approved by this *Certificate*;
 - (b) collected in the sufficiently designed wastewater storage facilities; and
 - (c) either utilized in the process or discharged to the sanitary sewer or disposed of at a *Ministry* approved site.
- (2) The *Owner* shall regularly empty, clean and disinfect if necessary, all sumps or wastewater storage/holding areas that are used to contain and collect the wastewater generated within the *Processing Building*.
- (3) The *Owner* shall ensure that only uncontaminated water is used to irrigate the *Composting Organic Waste* after the *Composting Organic Waste* has completed the pasteurization phase of the *Composting* Process.
- (4) The *Owner* shall ensure that the impermeable membrane under the *Processing Building* is installed in accordance with the manufacturer specifications to ensure its integrity and effectiveness as a wastewater leak barrier.

65. Closure Plan

- (1) (a) The *Owner* shall submit, for approval by the *Director*, a written Closure Plan for the *Composting Site* at least six (6) months prior to closure of the *Composting Site*. This plan shall include, as a minimum, a description of the work that will be done to facilitate closure of the *Composting Site* and a schedule for completion of the required work; and
 - (b) Within ten (10) days after closure of the *Composting Site*, the *Owner* shall notify the *Director*, in writing, that the *Composting Site* is closed and that the *Composting Site* Closure Plan has been implemented.

66. Ministry's Supplementary Requirements

Unless otherwise specified by the conditions of this *Certificate*, the *Owner* shall comply with the requirements of the *Ministry's* document entitled "Interim Guidelines for the Production and Use of Aerobic Compost in Ontario", dated November 2004, as amended.

67. Q. LIMITED OPERATIONAL FLEXIBILITY – Design, Operation and Management

- (1) The *Owner* may make *Modifications* to the *Material Recovery Facility (MRF)*, and the *Waste Transfer Station* and the Design and Operations Reports for the *Material Recovery Facility* and the *Waste Transfer Station* in accordance with this *Certificate* and the pre-approved changes of the *Operating Envelope* as described in the *Engineer's Report* that is identified in Item 52 of Schedule "A".
- (2) For greater certainty, the follow are *Modifications* that would be allowed at the *MRF* or the Transfer Station:
- 1) The following *Modifications* to the *infrastructure*; i) replacement of truck doors;
- ii) the installation of a coverall building to house a maximum of 1000 tonnes of recyclable wastes; iii) movement or *Modifications* to the staging area for recyclable materials; iv) additional outdoor storage of recyclable materials in staging area on an asphalt pad:
- v) landscaping changes; vi) on-Site roadway changes; vii) relocation of scales;
- viii) Installation of additional parking stalls and/or rearrangement of parking areas; ix) Installation or *Modifications* to lighting; x) Construction of a facility for the collection and distribution of reusable items
- xi) installation or *Modifications* to signage;
- xii) changes to improve the working environment for the employees within the *MRF* or Transfer Station such as installation or improvements to heating units, air conditioning units, air handling units, odour control systems or dust control systems as long as such changes would occur within the building and would not adversely effect the surroundings environment and would not require an application for a Section 9 Certificate of Approval; and
 - 2) The ability to make *Modifications* to the *Site's* processing operations and equipment to improve the efficiency and effectiveness of the operation of the Waste Transfer Site or the Municipal Recycling Facility such as:
 - i) *Modifications* or repairs to the building and its facilities including walls, floors, pits, roof, doors, plumbing, and electrical;
 - ii) The installation or replacement of recycling or transfer plant equipment such as balers, conveyors, separation equipment, and compactors;
 - iii) Addition or replacement of mobile equipment for use of the *Waste Transfer Station* or the Municipal Recycling Facility; and
 - iv) relocation and modification of maintenance and waste processing operations inside the building used for the *Waste Transfer Station* or the Municipal Recycling Facility.
- (3) For greater certainty, the following *Modifications* to the *Site* are not permitted as part of the *Operating Envelope*:
- i) Any changes to the MHSW;
- ii) Any changes to the Organic Waste Processing Facility;
- iii) Modifications to the type of waste accepted at the Site;
- iv) *Modifications* to the storage capacity of the *Waste Transfer Station* or the Municipal Recycling Facility;
- v) extending the Site onto adjacent lands;
- vi) changing the function of the approved operations of the MRF and the Waste Transfer Station;
- vii) accepting hazardous waste, liquid industrial waste, or municipal or industrial sewage;
- viii) changes to the Site not identified in the Engineer's Report; or
- ix) changes to the *Site* that have requirements under the Environmental Assessment Act.
- (4) The Owner shall provide a written notification to the District Manager and Director at least fifteen (15) days prior to

making *Modifications* to the *Site* in accordance with 67(1) At a minimum the notification shall include the following:

- (1) a description of the change to the operations of the *Site* including an assessment of the anticipated environmental effects of the *Modifications*;
- (2) updated versions of, or amendments to, all relevant technical documents required by this *Certificate* that are affected by the Modification including but not necessarily limited to an updated *Site* Plan drawing, Design and Operations Report, the Emergency Response, Spill Reporting and Contingency Plan and the Closure Plan including a document control record that tracks all changes that were made to the documents; and
- (3) a statement signed by the *Owner* and an *Independent Professional Engineer* declaring that the *Modifications* made to the *Site* are done so in accordance with the *Operating Envelope*, are consistent with industry's best management practices and are not likely to result in an adverse effect.
- (5) Notwithstanding Condition 67(4), if the *Modifications* made to the *Site* require an amendment to the *WRIC Environmental Emergency Plan*, the *Owner* shall obtain the authorization of the local fire services authority prior to instituting the *Modifications*. A copy of the approved plan must be forwarded to the *District Manager* within fifteen (15) days of such approval.

68. Design and Operations Report

- (1) The Design and Operations Reports shall be retained at the *Site*; kept up to date; and be available for inspection by *Ministry* staff. The Design and Operations Report shall contain at a minimum the information specified for a waste processing site as described in the most recent version of the *Ministry* publication "Guide for Applying for Approval of Waste Disposal Site".
- (2) The *Owner* may amend the *Current Design and Operations Reports* for the *MRF* and the *Waste Transfer Station* in accordance with Condition 67(1) of this *Certificate*.
- (3) Changes to the Design and Operations Reports, with the exception of changes made under Condition 67(1), shall be submitted to the *Director* for approval.
- (4) If the *Owner* has made *Modifications* to the *Site* in accordance with Condition 67(1), the *Owner* shall ensure that the *Site* is built, operated and maintained in accordance with the *current Design and Operations Report*.
- (5) The *Owner* shall maintain a document control record at the *Site* that tracks all changes that are made to the Design and Operations Report.
- (6) The *Owner* may accept any solid Municipal Waste at the *Site* if the *Owner* has received written notification from a *Ministry* employee appointed for the purposes of Section 31 of the EPA, including the *Director* and *District Manager*, advising the *Owner* that the waste may be received to alleviate an emergency described in Section 31 of the EPA.

SCHEDULE "A"

This Schedule "A" forms part of this Certificate.

- 1. Applications for a Certificate of Approval for a Waste Disposal Site (Processing & Transfer) dated August 27, 1991, September 10, 1993, and January 2, 2007 and supporting documentation submitted therewith.
- 2. Applications for Certificate of Approval for a Waste Disposal Site (Processing & Transfer) submitted on April 4, 2008, February 24, 2009, October 22, 2009 and January 12, 2010 by Bill Shields, Supervisor, Governance & Compliance, City of Guelph Solid Waste Resources Division, including the Report, dated October 2009 and prepared by Golder Associates Ltd.and all other supporting documentation.
- 3. Applications for a Provisional Certificate of Approval for a Waste Disposal Site dated January 30, 2002 and February 1, 2005 signed by Cathy Smith, Manager, Solid Waste Resources Division, Corporation of the City of Guelph and other

supporting documentation.

- 4. Application for a Provisional Certificate of Approval for a Waste Disposal Site signed by Janet Laird, Director of Environmental Services, City of Guelph, dated February 17, 2006.
- 5. Plume Visibility Study, Wet/Dry Processing Facility, Guelph, Ontario dated November 20, 1991.
- 6. Evaluation of Potential Birds Hazards to Aircraft Safety Associated with the City of Guelph's Proposed Wet/Dry Recycling Facility Adjacent to the Guelph Air Park, dated March 5, 1992.
- 7. Letter from Mr. Dean Wyman, Manager, Solid Waste Resources Division, City of Guelph, to EAAB, dated June 12, 2006 requesting amendments to Certificate of Approval No. 9241-5DTRD9 and providing the rationale for the proposed amendments.
- 8. Letter to E. Gill, Ministry of Environment from K.J. Bull, City of Guelph, dated December 18, 1992 and additional information submitted therewith including the document "City of Guelph Hazardous Waste Facility Operation Manual" dated December 1992.
- 9. Letter and supporting documentation dated April 4, 1994, to Mr. H. M. Wong, Ontario Ministry of Environment and Energy from Mr. Richard Cave, R. Cave and Associates Ltd.
- 10. Letter date March 31, 1995 to the Ministry of Environment and Energy, Cambridge *District Office* from R.D. Funnell, P.Eng., City Engineer, re: Wet-Dry Recycling Centre Annual Report.
- 11. Letter dated May 16, 1995 to Dave Ross, Ministry of Environment and Energy, from R.D. Funnell, P.Eng., City Engineer, RE: City of Guelph's Application to Amend Provisional Certificate of Approval No. A170128 for Waste Disposal Site (Processing) with the attached Application for an Approval of Waste Disposal Site dated May 17, 1995.
- 12. Letter dated December 30, 1996, to Mr. H. Wong, Ministry of Environment and Energy, West Central Region from R.D. Funnell, P.Eng., Director of Works, RE: Amendments to Certificate of Approval (Waste Disposal) No. A170128 for the City of Guelph's Wet-Dry Recycling Centre, including application dated December 31, 1996 and supporting documentation.
- 13. Letter dated July 14, 1997 to Mr. Hardy Wong, Director, West Central Region from Jutta Siebel, Wet-Dry Residential Coordinator, RE: City of Guelph's Wet-Dry Recycling Centre Certificate of Approval No. A170128.
- 14. Letter and application from Janet Laird, Manager of Solid Waste Services, City of Guelph to G. Carpentier, MOE dated April 3, 1998 re: Amendment to Certificate of Approval A170128.
- 15. Letter from Jutta Siebel, Wet-Dry Residential Coordinator, City of Guelph to G. Carpentier, dated May 4, 1998 re: Public Consultation and Analytical Data.
- 16. The covering letter from Ms. J. Laird, Manager of Solid Waste Services, City of Guelph to Mr. G. Carpentier, MOE, dated May 27, 1998 with attachments:
 - (a) Application for approval of a waste disposal site.
 - (b) Public consultation process for amendments to Certificate of Approval No. A170128.
- 17. The covering letter from Ms. J. Laird, to Mr. G. Carpentier, dated June 19, 1998 with attachments:
 - (a) Waste acceptance policy at the wet-dry recycling centre;
 - (b) Section 2.9 "Penalties for Improper Disposal" from the "A Guide for Solid Waste Disposal at Eastview Sanitary Landfill Site and the Wet-Dry Recycling Centre";
 - (c) Contingency plan for "odourous" wet/organic waste received at the wet-dry recycling centre.
- 18. Letter and application from Janet Laird, Manager of Solid Waste Services, City of Guelph, to G. Carpentier, MOE, dated October 26, 1998, re: Amendment to Provisional Certificate of Approval A170128.

- 19. Facsimile from Jutta Siebel, Wet-Dry Residential Coordinator, City of Guelph, to Stephen Rouleau, MOE, dated January 13, 1999, re: Copper and Mercury Levels in Compost.
- 20. Facsimile from Jutta Siebel, Wet-Dry Residential Coordinator, City of Guelph, to Stephen Rouleau, MOE, dated January 15, 1999 re: Copper and Mercury Levels in *leaf and yard waste*.
- 21. Letter and application from Janet Laird, Manager of Solid Waste Services, City of Guelph, to Adam Ciulini, MOE, dated February 12, 1999, re: Rationale for Amendment.
- 22. Memorandum from Adam Ciulini, MOE, to A. Dominski, MOE, dated April 12, 1999, re: Waste Management Policy Branch's Support of the Amendment.
- 23. Letter and application from Janet Laird, Manager of Solid Waste Services, City of Guelph to G. Carpentier, MOE, dated August 19, 1999, re: Amendment to Certificate of Approval No. A170128.
- 24. Document entitled City of Guelph Request for Amendments to Provisional Certificate of Approval No. A170128, prepared for City of Guelph, prepared by Gartner Lee Limited, dated February 2006 except for Section 2.4, 2.6, 3.4 and 3.5 which are not approved by the Director.
- 25. Letter from Dean Wyman, Manager, Solid Waste Resources Division, City of Guelph, to EAAB, dated June 12, 2006 re: changes to and clarification of document submitted in support of the application for amendments.
- 26. Email from Dean Wyman, Manager, Solid Waste Resources Division, City of Guelph, to Veronica Pochmursky, EAAB, sent September 6, 2006, re: City of Guelph's procedures for *Clean Wood* and contaminated wood and final destination of contaminated or combined wood.
- 27. Letter Dated February 8, 2007 from Bill Shields, Supervisor, Governance and Compliance, City of Guelph to T. Gebrezghi, MOE, amendment of Section (C) of Page 1 of the CofA;
- 28. Letter dated March 14, 2007 from Khaled Mamun, P. Eng., EAAB to Jennifer Turnbull, City of Guelph, requesting for additional information;
- 29. Fax dated March 28, 2007 from Dean Wyman, Manager, Solid Waste Resources Division, City of Guelph to Khaled Mamun, P. Eng., MOE, submission of the additional information.
- 30. Fax dated April 11, 2007 from Dean Wyman, Solid Waste Resources Division, City of Guelph to Khaled Mamun, P. Eng., MOE, re: addition of Waste Class 121.
- 31. Document "City of Guelph Household Hazardous Waste Depot Request for Amendment to Certificate of Approval A170128", dated April 2008, including all appendixes.
- 32. E-mail dated February 2, 2010 (4:44 p.m.) from Amy Burke, Golder Associates Ltd., to Margaret Wojcik, Ontario Ministry of the Environment, including an attachment entitled "08-1112-0126 LET 2010'02'02 MOE Response.pdf" to provide additional information on the proposal.
- 33. E-mail dated February 17, 2010 (11:12 a.m.) from Ravi Mahabir, Golder Associates Ltd., to Bijal Shah and Margaret Wojcik, Ontario Ministry of the Environment, including an attachment entitled "0811120126 City of Guelph OWPF Response to MOE 17Feb10.pdf" to provide additional information on the proposal.
- 34. E-mail dated March 1, 2010 (7:46 a.m.) from Amy Burke, Golder Associates Ltd., to Margaret Wojcik, Ontario Ministry of the Environment, including an attachment entitled "08-1112-0126 MEM 2010'02'25.pdf" to provide additional information on the proposed air curtains.
- 35. E-mail dated March 30, 2010 (4:56 p.m.) from Ravi Mahabir, Golder Associates Ltd., to Margaret Wojcik, Ontario Ministry of the Environment, including an attachment entitled "0811120126 City of Guelph OWPF Response to MOE 30Mar,2010.pdf" to provide additional information on the proposal.

- 36. E-mail dated April 8, 2010 (2:23 p.m.) from Ravi Mahabir, Golder Associates Ltd., to Margaret Wojcik, Ontario Ministry of the Environment, including an attachment entitled "0811120126 City of Guelph OWPF Response to MOE 8Apr10.pdf" to provide additional information on the proposal.
- 37. E-mail dated April 9, 2010 (8:27 a.m.) from Ravi Mahabir, Golder Associates Ltd., to Margaret Wojcik, Ontario Ministry of the Environment, including an attachment entitled "Revised Flowchart April 9,2010.pdf" to provide a correction to the previously submitted information.
- 38. E-mail dated April 09, 2010 (11:08 a.m.) from Ravi Mahabir, Golder Associates Ltd., to Margaret Wojcik, Ontario Ministry of the Environment, including an attachment entitled "08375-801-W02-1a.pdf" to provide additional information on the proposal.
- 39. E-mail dated April 28, 2010 (1:06 p.m.) from Ravi Mahabir, Golder Associates Ltd., to Margaret Wojcik, Ontario Ministry of the Environment, including an attachment entitled "0811120126 City of Guelph OWPF Responses to MOE 28Apr10.pdf" to provide additional information on the proposal.
- 40. E-mail dated May 05, 2010 (9:24 a.m.) from Ravi Mahabir, Golder Associates Ltd., to Margaret Wojcik, Ontario Ministry of the Environment, including an attachment entitled "0811120126 City of Guelph OWPF Responses to MOE 4May,2010 FSC.pdf" to provide additional information on the proposal including the schedule for phasing out the use of plastic bags to collect the *Organic Waste* in the City of Guelph, the approach to temperature monitoring of material within *Composting* tunnels.
- 41. E-mail dated May 7, 2010 (2:36 p.m.) from Ravi Mahabir, Golder Associates Ltd., to Margaret Wojcik, Ontario Ministry of the Environment, to clarify the proposal with respect to mixing of the *Composting* waste.
- 42. E-mail dated May 7, 2010 (3:52 p.m.) from Ravi Mahabir, Golder Associates Ltd., to Margaret Wojcik, Ontario Ministry of the Environment, to confirm that the acid spray system will be installed and operational at the start-up of the *Composting Site*.
- 43. E-mail dated May 11, 2010 (2:49 p.m.) from Ravi Mahabir, Golder Associates Ltd., to Margaret Wojcik, Ontario Ministry of the Environment, including an attachment entitled "compost temperatures.pdf" to provide data on compost temperature from two different monitoring methods.
- 44. E-mail dated May 26, 2010 (2:30 p.m.) from Ravi Mahabir, Golder Associates Ltd., to Margaret Wojcik, Ontario Ministry of the Environment, including an attachment entitled "0811120126 Draft CofA Review Supporting Information RSM May 25,2010.pdf" providing additional clarification on the types of wastes to be received at the *Composting Site*.
- 45. E-mail dated June 2, 2010 (10:41 a.m.) from Amy Burke, Golder Associates Ltd., to Margaret Wojcik, Ontario Ministry of the Environment, providing additional clarification on the types of amendment and other wastes to be received at the *Composting Site*, the equipment decontamination procedure and the proposed pasteurization temperature monitoring.
- 46. E-mail dated June 18, 2010 (8:08 a.m.) from Bill Shields, Corporation of the City of Guelph, to Margaret Wojcik, Ontario Ministry of the Environment, including attachments entitled "Fig1_GuelphWRIC_Screening.pdf, Fig2_GuelphWRIC_Screening.pdf, Fig1_GuelphWRIC_Screening Option 3 (2010-05-04).pdf" describing the visual screening features and the landscaping completed at the Site.
- 47. E-mail dated June 25, 2010 (12:38 p.m.) from Amy Burke, Golder Associates Ltd., to Margaret Wojcik, Ontario Ministry of the Environment, including attachments entitled "0811120126 Draft CofA Review Additional Comments 2010'06'25.pdf" and "0811120126 Draft CofA Review Addition Comments 2010'06'23 Site_Layout_v2.pdf" showing the location of the outdoor paved pad referred to as the Amendment, Recyclables, and Leaf and Yard Waste Staging Area and describing handling of wastes at the said outdoor pad.
- 48. Letter from Mr. Dean Wyman, Manager, Solid Waste Resources Division, City of Guelph, to EAAB, dated June 12, 2006 requesting amendments to Certificate of Approval No. 9241-5DTRD9 and providing the rationale for the proposed amendments.
- 49. The Design and Operations Report for the City of Guelph *Material Recovery Facility* prepared by Golder Associates, dated January 12, 2010.

- 50. The Design and Operations Report for the City of Guelph *Waste Transfer Station* prepared by Golder Associates, dated January 12, 2010.
- 51. The Design and Operations Report for the City of Guelph WRIC Public Drop Off and *Municipal Hazardous and Special Waste* Facilities prepared by Golder Associates, dated January 12, 2010 and supplemental information provided by e-mail from Pamela Russell, P.Eng. of Golder Associates, to Jim Chisholm, P.Eng., Senior Review Engineer of the Ministry.
- 52. Engineers Report for the City of Guelph Waste Recycling Innovation Centre prepared by Golder Associates dated July 20, 2010 and provided by e-mail from Pamela Russell, P.Eng. of Golder Associates, to Jim Chisholm, P.Eng., Senior Review Engineer of the Ministry.
- 53. e-mail of July 20, 2010 from Pamela Russell of Golder Associate, to Jim Chisholm, Senior Review Engineer, Ministry of Environment along with attachments.
- 54. e-mail of Nov. 2, 2010 from Amy Burke of Golder Associates to Jim Chisholm, Senior Review Engineer, Ministry of Environment.

SCHEDULE "B"

This Schedule "B" forms part of this Certificate of Approval.

Compost Quality Criteria

Parameter		Concentration
Trace Elements (mg/kg dry weight) ¹	arsenic	13
	cadmium	3
	chromium	210
	cobalt	34
	copper	100
	lead	150
	mercury	0.8
	molybdenum	5
	nickel	62
	selenium	2
	zinc	500
Organic chemicals (mg/kg dry weight) ¹	$PCBs^2$	0.5
Pathogens	fecal coliforms	<1000 MPN/g of total solids calculated on a dry weight basis ³
	salmonellae	<3 MPN/4g total solids calculated on a dry weight basis ³
Non-biodegradable matter ⁴ % dry weight	plastic	1
	other	2

- Note 2 means polychlorinated biphenols
- Note 3 means "Most Probable Number"
- Note 4 will not fit through a size 8 mesh

The reasons for the imposition of these terms and conditions are as follows:

- 1. The reason for Conditions 1 to 5 inclusive and Conditions 10 and 11 is to clarify the legal rights and obligations of this Certificate.
- 2. The reason for Condition 6 is to ensure that the Site is operated under the corporate, limited or applicant's own name which appears on the application and supporting information submitted with the application and not under any name which the Director has not been asked to consider.
- 3. The reason for Conditions 7, 8 and 9 is to ensure that Ministry personnel, when acting in the course of their duties, will be given unobstructed access to the information and records related to the Site which are required by this Certificate, and to enable the Ministry to be assured of the City's compliance with the terms and conditions stated in this Certificate.
- 4. The reason for Conditions 16, 17, 18, 19, 20, 21, 22, and 24, is to minimize and/or prevent nuisance or adverse environmental affects from occurring. The use and operation of the Site without these conditions may create a nuisance or result in a hazard to the health and safety of any person or the environment.
- 5. The reason for Condition 23 is to ensure that there is no adverse impact on aircraft safety in the area and no net increase in the bird population in the area, as a result of the use and operation of this Site.
- 6. The reason for Conditions 12(a), 12(b), 13 and 14 is to ensure that the Site is operated in accordance with the application and supporting documentation for this Certificate and not in any manner which the Director has not been asked to consider. The operation of the Site without these conditions would not be in the public interest and may result in unacceptable environmental impacts. The imposition and compliance with these conditions will further ensure that the facility is operated and monitored in accordance with established procedures and practices for this type of facility.
- 7. The reason for Condition 15 is to outline the maximum amount of residual waste that can be taken from the Site in one day. Any amount above an average o 1000 tonnes per day requires an Environmental Assessment.
- 8. The reason for Condition 25 is to ensure that the Site will not be operated at hours during which such operation could cause material discomfort to any person.
- 9. The reason for Condition 26, 27, 28 is to have personnel that have the sufficient skills, knowledge and experience to do the work that is necessary at the Site.
- 10. The reason for Condition 29 and 30 is to require the Owner to establish a forum and provide reasonable access to the Site for the exchange of information and public dialogue on activities carried out at the Composting Site and other parts of the Site. Open communication with the public and local authorities is important in helping to maintain high standards for the operation of the Composting Site and other parts of the Site and protection of the natural environment. The use and operation of the Site without this condition would not be in the public interest.
- 11. The reason for Condition 31 is to protect the environment from an adverse effect as a result of activities at the Site.
- 12. The reason for Conditions 32, 33, 34, 35, and 36 is to minimize the risk of environmentally unacceptable discharges of a contaminant into the environment. Compliance with the monitoring programs outlined in these conditions will enable the City to allow for an early detection system for any unacceptable discharges of contaminants and allow for the implementation of a contingency plan.
- 13. The reason for Condition 37 is to minimize the risk of vandalism and to ensure that the Site is only operated in the presence of competent people to ensure the waste is properly managed.

- 14. The reason for Conditions 38, 39, 40, 41, 42, 43, and 44 to ensure the Site is operated in accordance with the application and this Certificate and not in any manner which the Director has not been asked to consider. Operation of the Site without these conditions would not be in the public interest.
- 15. The reason for Condition 45 is to ensure the City has an up-to-date Environmental Emergency Plan for the Site for the prompt control, abatement, mitigation and clean-up of emergency incidents, accidental discharge of contaminants, potential environmental or nuisance related impacts.
- 16. The reason for Condition 46 is to ensure that the City has a robust Complaints Procedure
- 17. The reason for Condition 47 is to make sure that the City takes immediate measures to responds to a spill and process upset and informs the Ministry immediately of such spills or upset.
- 18. The reason for conditions 48, 49, 50, 51, and 52 is so that the City have a robust inspection program at the site and that the inspections are properly recorded and an annual summary of activities at the site are sent to the ministry.
- 19. The reason for Condition 53 is to ensure the orderly shut down of the composting facility or other parts of the site.
- 20. Condition 54. is included to specify the approved Organic Waste receipt rate, the approved Organic Waste types and the service area from which the Organic Waste may be accepted at the Composting Site based on the Owner's application and supporting documentation.
- 21. Condition 55. is included to ensure that the Composting Site is sufficiently secured, supervised and operated by properly Trained Personnel and to ensure controlled access and integrity of the Composting Site by preventing unauthorized access when the Composting Site is closed and no Composting Site personnel is on duty.
- 22. Condition 56.(1) is included to specify the hours of operation for the Composting Site to ensure that the hours of the Composting Site's operation do not result in an adverse effect or a hazard to the natural environment or any person.
- 23. Condition 56.(2) is included to ensure that only the approved waste types are accepted and processed at the Composting Site.
- 24. Condition 56.(3) is included to specify the requirements for handling of the Rejected Waste that was inadvertently received at the Composting Site.
- 25. Conditions 56.(4) and (5) are included to ensure that waste and amendment materials handling and storage are undertaken in done in a way which does not result in an adverse effect or a hazard to the environment or any person.
- 26. Condition 56.(6) is included to specify odour control measures to minimize a potential for odour emissions from the Composting Site.
- 27. Condition 57. is included to require the Composting Site to be maintained and inspected thoroughly and on a regular basis to ensure that the operations at the Composting Site are undertaken in a manner which does not result in an adverse effect or a hazard to the health and safety of the environment or any person.
- 28. Condition 58. is included to require the Owner to characterize all waste received at the Composting Site and shipped off the Composting Site to ensure that only waste approved by this Certificate is handled at the Composting Site and that all waste transferred off the Composting Site is handled in accordance with the Ministry's requirements. Condition 38. is also included to require the Owner to monitor the Composting process parameters.
- 29. Condition 59. is included to ensure that the Composting Site is operated and maintained in an environmentally acceptable manner which does not result in a negative impact on the natural environment or any person.
- 30. Condition 60. is included to ensure that personnel employed at the Composting Site are fully aware and properly trained on the requirements and restrictions related to Composting Site operations under this Certificate.
- 31. Condition 61. is included to ensure that the Owner is prepared and properly equipped to take action in the event of an emergency situation.

- 32. Conditions 62. also is included to require further spill notification to the Ministry, in addition to the requirements already listed in Part X of the EPA.
- 33. Condition 63. is included to ensure that detailed records of Composting Site activities, inspections, monitoring and upsets are recorded and maintained for inspection and information purposes.
- 34. Condition 64. is included to ensure that the wastewater generated at the Composting Site is handled in accordance with the Ministry's requirements and in a manner which does not result in a negative impact on the natural environment or any person.
- 35. Condition 65. is included to ensure that final closure of the Composting Site is completed in accordance with Ministry's standards.
- 36. Condition 66. is included to require the Owner to design, operate, maintain and monitor the waste management activities at the Composting Site in compliance with the Ministry's supplementary requirements as they become published and amended from time to time.
- 37. The reason for Conditions 67 and 68 is to ensure that the Site is operated in accordance with the application and supporting documentation submitted by the Owner, and not in a manner which the Director has not been asked to consider.

This Provisional Certificate of Approval revokes and replaces Certificate(s) of Approval No. A170128 and 9241-5DTRD9 issued on September 29, 2006 and April 24, 2003 respectively.

In accordance with Section 139 of the <u>Environmental Protection Act</u>, R.S.O. 1990, Chapter E-19, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the <u>Environmental Protection Act</u>, provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the waste disposal site is located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, 15th Floor
Toronto, Ontario
M5G 1E5

<u>AND</u>

The Director Section 39, Environmental Protection Act Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted waste disposal site is approved under Section 39 of the Environmental Protection Act.

DATED AT TORONTO this 10th day of February, 2011

Tesfaye Gebrezghi, P.Eng. Director Section 39, *Environmental Protection Act*

JC/

c: District Manager, MOE Guelph Pamela Russell, Golder Associates Ltd.